xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Transforms/Utils/Local.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "instcombine"
31 
32 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
34 
35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
36 /// some part of a constant global variable.  This intentionally only accepts
37 /// constant expressions because we can't rewrite arbitrary instructions.
38 static bool pointsToConstantGlobal(Value *V) {
39   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
40     return GV->isConstant();
41 
42   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
43     if (CE->getOpcode() == Instruction::BitCast ||
44         CE->getOpcode() == Instruction::AddrSpaceCast ||
45         CE->getOpcode() == Instruction::GetElementPtr)
46       return pointsToConstantGlobal(CE->getOperand(0));
47   }
48   return false;
49 }
50 
51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
52 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
53 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
55 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
56 /// the alloca, and if the source pointer is a pointer to a constant global, we
57 /// can optimize this.
58 static bool
59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
60                                SmallVectorImpl<Instruction *> &ToDelete) {
61   // We track lifetime intrinsics as we encounter them.  If we decide to go
62   // ahead and replace the value with the global, this lets the caller quickly
63   // eliminate the markers.
64 
65   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
66   ValuesToInspect.emplace_back(V, false);
67   while (!ValuesToInspect.empty()) {
68     auto ValuePair = ValuesToInspect.pop_back_val();
69     const bool IsOffset = ValuePair.second;
70     for (auto &U : ValuePair.first->uses()) {
71       auto *I = cast<Instruction>(U.getUser());
72 
73       if (auto *LI = dyn_cast<LoadInst>(I)) {
74         // Ignore non-volatile loads, they are always ok.
75         if (!LI->isSimple()) return false;
76         continue;
77       }
78 
79       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
80         // If uses of the bitcast are ok, we are ok.
81         ValuesToInspect.emplace_back(I, IsOffset);
82         continue;
83       }
84       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
85         // If the GEP has all zero indices, it doesn't offset the pointer. If it
86         // doesn't, it does.
87         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
88         continue;
89       }
90 
91       if (auto *Call = dyn_cast<CallBase>(I)) {
92         // If this is the function being called then we treat it like a load and
93         // ignore it.
94         if (Call->isCallee(&U))
95           continue;
96 
97         unsigned DataOpNo = Call->getDataOperandNo(&U);
98         bool IsArgOperand = Call->isArgOperand(&U);
99 
100         // Inalloca arguments are clobbered by the call.
101         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
102           return false;
103 
104         // If this is a readonly/readnone call site, then we know it is just a
105         // load (but one that potentially returns the value itself), so we can
106         // ignore it if we know that the value isn't captured.
107         if (Call->onlyReadsMemory() &&
108             (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
109           continue;
110 
111         // If this is being passed as a byval argument, the caller is making a
112         // copy, so it is only a read of the alloca.
113         if (IsArgOperand && Call->isByValArgument(DataOpNo))
114           continue;
115       }
116 
117       // Lifetime intrinsics can be handled by the caller.
118       if (I->isLifetimeStartOrEnd()) {
119         assert(I->use_empty() && "Lifetime markers have no result to use!");
120         ToDelete.push_back(I);
121         continue;
122       }
123 
124       // If this is isn't our memcpy/memmove, reject it as something we can't
125       // handle.
126       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
127       if (!MI)
128         return false;
129 
130       // If the transfer is using the alloca as a source of the transfer, then
131       // ignore it since it is a load (unless the transfer is volatile).
132       if (U.getOperandNo() == 1) {
133         if (MI->isVolatile()) return false;
134         continue;
135       }
136 
137       // If we already have seen a copy, reject the second one.
138       if (TheCopy) return false;
139 
140       // If the pointer has been offset from the start of the alloca, we can't
141       // safely handle this.
142       if (IsOffset) return false;
143 
144       // If the memintrinsic isn't using the alloca as the dest, reject it.
145       if (U.getOperandNo() != 0) return false;
146 
147       // If the source of the memcpy/move is not a constant global, reject it.
148       if (!pointsToConstantGlobal(MI->getSource()))
149         return false;
150 
151       // Otherwise, the transform is safe.  Remember the copy instruction.
152       TheCopy = MI;
153     }
154   }
155   return true;
156 }
157 
158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
159 /// modified by a copy from a constant global.  If we can prove this, we can
160 /// replace any uses of the alloca with uses of the global directly.
161 static MemTransferInst *
162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
163                                SmallVectorImpl<Instruction *> &ToDelete) {
164   MemTransferInst *TheCopy = nullptr;
165   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
166     return TheCopy;
167   return nullptr;
168 }
169 
170 /// Returns true if V is dereferenceable for size of alloca.
171 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
172                                            const DataLayout &DL) {
173   if (AI->isArrayAllocation())
174     return false;
175   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
176   if (!AllocaSize)
177     return false;
178   return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
179                                             APInt(64, AllocaSize), DL);
180 }
181 
182 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
183   // Check for array size of 1 (scalar allocation).
184   if (!AI.isArrayAllocation()) {
185     // i32 1 is the canonical array size for scalar allocations.
186     if (AI.getArraySize()->getType()->isIntegerTy(32))
187       return nullptr;
188 
189     // Canonicalize it.
190     Value *V = IC.Builder.getInt32(1);
191     AI.setOperand(0, V);
192     return &AI;
193   }
194 
195   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
196   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
197     if (C->getValue().getActiveBits() <= 64) {
198       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
199       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
200       New->setAlignment(MaybeAlign(AI.getAlignment()));
201 
202       // Scan to the end of the allocation instructions, to skip over a block of
203       // allocas if possible...also skip interleaved debug info
204       //
205       BasicBlock::iterator It(New);
206       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
207         ++It;
208 
209       // Now that I is pointing to the first non-allocation-inst in the block,
210       // insert our getelementptr instruction...
211       //
212       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
213       Value *NullIdx = Constant::getNullValue(IdxTy);
214       Value *Idx[2] = {NullIdx, NullIdx};
215       Instruction *GEP = GetElementPtrInst::CreateInBounds(
216           NewTy, New, Idx, New->getName() + ".sub");
217       IC.InsertNewInstBefore(GEP, *It);
218 
219       // Now make everything use the getelementptr instead of the original
220       // allocation.
221       return IC.replaceInstUsesWith(AI, GEP);
222     }
223   }
224 
225   if (isa<UndefValue>(AI.getArraySize()))
226     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
227 
228   // Ensure that the alloca array size argument has type intptr_t, so that
229   // any casting is exposed early.
230   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
231   if (AI.getArraySize()->getType() != IntPtrTy) {
232     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
233     AI.setOperand(0, V);
234     return &AI;
235   }
236 
237   return nullptr;
238 }
239 
240 namespace {
241 // If I and V are pointers in different address space, it is not allowed to
242 // use replaceAllUsesWith since I and V have different types. A
243 // non-target-specific transformation should not use addrspacecast on V since
244 // the two address space may be disjoint depending on target.
245 //
246 // This class chases down uses of the old pointer until reaching the load
247 // instructions, then replaces the old pointer in the load instructions with
248 // the new pointer. If during the chasing it sees bitcast or GEP, it will
249 // create new bitcast or GEP with the new pointer and use them in the load
250 // instruction.
251 class PointerReplacer {
252 public:
253   PointerReplacer(InstCombiner &IC) : IC(IC) {}
254   void replacePointer(Instruction &I, Value *V);
255 
256 private:
257   void findLoadAndReplace(Instruction &I);
258   void replace(Instruction *I);
259   Value *getReplacement(Value *I);
260 
261   SmallVector<Instruction *, 4> Path;
262   MapVector<Value *, Value *> WorkMap;
263   InstCombiner &IC;
264 };
265 } // end anonymous namespace
266 
267 void PointerReplacer::findLoadAndReplace(Instruction &I) {
268   for (auto U : I.users()) {
269     auto *Inst = dyn_cast<Instruction>(&*U);
270     if (!Inst)
271       return;
272     LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n');
273     if (isa<LoadInst>(Inst)) {
274       for (auto P : Path)
275         replace(P);
276       replace(Inst);
277     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
278       Path.push_back(Inst);
279       findLoadAndReplace(*Inst);
280       Path.pop_back();
281     } else {
282       return;
283     }
284   }
285 }
286 
287 Value *PointerReplacer::getReplacement(Value *V) {
288   auto Loc = WorkMap.find(V);
289   if (Loc != WorkMap.end())
290     return Loc->second;
291   return nullptr;
292 }
293 
294 void PointerReplacer::replace(Instruction *I) {
295   if (getReplacement(I))
296     return;
297 
298   if (auto *LT = dyn_cast<LoadInst>(I)) {
299     auto *V = getReplacement(LT->getPointerOperand());
300     assert(V && "Operand not replaced");
301     auto *NewI = new LoadInst(I->getType(), V);
302     NewI->takeName(LT);
303     IC.InsertNewInstWith(NewI, *LT);
304     IC.replaceInstUsesWith(*LT, NewI);
305     WorkMap[LT] = NewI;
306   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
307     auto *V = getReplacement(GEP->getPointerOperand());
308     assert(V && "Operand not replaced");
309     SmallVector<Value *, 8> Indices;
310     Indices.append(GEP->idx_begin(), GEP->idx_end());
311     auto *NewI = GetElementPtrInst::Create(
312         V->getType()->getPointerElementType(), V, Indices);
313     IC.InsertNewInstWith(NewI, *GEP);
314     NewI->takeName(GEP);
315     WorkMap[GEP] = NewI;
316   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
317     auto *V = getReplacement(BC->getOperand(0));
318     assert(V && "Operand not replaced");
319     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
320                                   V->getType()->getPointerAddressSpace());
321     auto *NewI = new BitCastInst(V, NewT);
322     IC.InsertNewInstWith(NewI, *BC);
323     NewI->takeName(BC);
324     WorkMap[BC] = NewI;
325   } else {
326     llvm_unreachable("should never reach here");
327   }
328 }
329 
330 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
331 #ifndef NDEBUG
332   auto *PT = cast<PointerType>(I.getType());
333   auto *NT = cast<PointerType>(V->getType());
334   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
335          "Invalid usage");
336 #endif
337   WorkMap[&I] = V;
338   findLoadAndReplace(I);
339 }
340 
341 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
342   if (auto *I = simplifyAllocaArraySize(*this, AI))
343     return I;
344 
345   if (AI.getAllocatedType()->isSized()) {
346     // If the alignment is 0 (unspecified), assign it the preferred alignment.
347     if (AI.getAlignment() == 0)
348       AI.setAlignment(
349           MaybeAlign(DL.getPrefTypeAlignment(AI.getAllocatedType())));
350 
351     // Move all alloca's of zero byte objects to the entry block and merge them
352     // together.  Note that we only do this for alloca's, because malloc should
353     // allocate and return a unique pointer, even for a zero byte allocation.
354     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
355       // For a zero sized alloca there is no point in doing an array allocation.
356       // This is helpful if the array size is a complicated expression not used
357       // elsewhere.
358       if (AI.isArrayAllocation()) {
359         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
360         return &AI;
361       }
362 
363       // Get the first instruction in the entry block.
364       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
365       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
366       if (FirstInst != &AI) {
367         // If the entry block doesn't start with a zero-size alloca then move
368         // this one to the start of the entry block.  There is no problem with
369         // dominance as the array size was forced to a constant earlier already.
370         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
371         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
372             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
373           AI.moveBefore(FirstInst);
374           return &AI;
375         }
376 
377         // If the alignment of the entry block alloca is 0 (unspecified),
378         // assign it the preferred alignment.
379         if (EntryAI->getAlignment() == 0)
380           EntryAI->setAlignment(
381               MaybeAlign(DL.getPrefTypeAlignment(EntryAI->getAllocatedType())));
382         // Replace this zero-sized alloca with the one at the start of the entry
383         // block after ensuring that the address will be aligned enough for both
384         // types.
385         const MaybeAlign MaxAlign(
386             std::max(EntryAI->getAlignment(), AI.getAlignment()));
387         EntryAI->setAlignment(MaxAlign);
388         if (AI.getType() != EntryAI->getType())
389           return new BitCastInst(EntryAI, AI.getType());
390         return replaceInstUsesWith(AI, EntryAI);
391       }
392     }
393   }
394 
395   if (AI.getAlignment()) {
396     // Check to see if this allocation is only modified by a memcpy/memmove from
397     // a constant global whose alignment is equal to or exceeds that of the
398     // allocation.  If this is the case, we can change all users to use
399     // the constant global instead.  This is commonly produced by the CFE by
400     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
401     // is only subsequently read.
402     SmallVector<Instruction *, 4> ToDelete;
403     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
404       unsigned SourceAlign = getOrEnforceKnownAlignment(
405           Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
406       if (AI.getAlignment() <= SourceAlign &&
407           isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) {
408         LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
409         LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
410         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
411           eraseInstFromFunction(*ToDelete[i]);
412         Constant *TheSrc = cast<Constant>(Copy->getSource());
413         auto *SrcTy = TheSrc->getType();
414         auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(),
415                                         SrcTy->getPointerAddressSpace());
416         Constant *Cast =
417             ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy);
418         if (AI.getType()->getPointerAddressSpace() ==
419             SrcTy->getPointerAddressSpace()) {
420           Instruction *NewI = replaceInstUsesWith(AI, Cast);
421           eraseInstFromFunction(*Copy);
422           ++NumGlobalCopies;
423           return NewI;
424         } else {
425           PointerReplacer PtrReplacer(*this);
426           PtrReplacer.replacePointer(AI, Cast);
427           ++NumGlobalCopies;
428         }
429       }
430     }
431   }
432 
433   // At last, use the generic allocation site handler to aggressively remove
434   // unused allocas.
435   return visitAllocSite(AI);
436 }
437 
438 // Are we allowed to form a atomic load or store of this type?
439 static bool isSupportedAtomicType(Type *Ty) {
440   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
441 }
442 
443 /// Helper to combine a load to a new type.
444 ///
445 /// This just does the work of combining a load to a new type. It handles
446 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
447 /// loaded *value* type. This will convert it to a pointer, cast the operand to
448 /// that pointer type, load it, etc.
449 ///
450 /// Note that this will create all of the instructions with whatever insert
451 /// point the \c InstCombiner currently is using.
452 LoadInst *InstCombiner::combineLoadToNewType(LoadInst &LI, Type *NewTy,
453                                              const Twine &Suffix) {
454   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
455          "can't fold an atomic load to requested type");
456 
457   Value *Ptr = LI.getPointerOperand();
458   unsigned AS = LI.getPointerAddressSpace();
459   Value *NewPtr = nullptr;
460   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
461         NewPtr->getType()->getPointerElementType() == NewTy &&
462         NewPtr->getType()->getPointerAddressSpace() == AS))
463     NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
464 
465   unsigned Align = LI.getAlignment();
466   if (!Align)
467     // If old load did not have an explicit alignment specified,
468     // manually preserve the implied (ABI) alignment of the load.
469     // Else we may inadvertently incorrectly over-promise alignment.
470     Align = getDataLayout().getABITypeAlignment(LI.getType());
471 
472   LoadInst *NewLoad = Builder.CreateAlignedLoad(
473       NewTy, NewPtr, Align, LI.isVolatile(), LI.getName() + Suffix);
474   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
475   copyMetadataForLoad(*NewLoad, LI);
476   return NewLoad;
477 }
478 
479 /// Combine a store to a new type.
480 ///
481 /// Returns the newly created store instruction.
482 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
483   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
484          "can't fold an atomic store of requested type");
485 
486   Value *Ptr = SI.getPointerOperand();
487   unsigned AS = SI.getPointerAddressSpace();
488   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
489   SI.getAllMetadata(MD);
490 
491   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
492       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
493       SI.getAlignment(), SI.isVolatile());
494   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
495   for (const auto &MDPair : MD) {
496     unsigned ID = MDPair.first;
497     MDNode *N = MDPair.second;
498     // Note, essentially every kind of metadata should be preserved here! This
499     // routine is supposed to clone a store instruction changing *only its
500     // type*. The only metadata it makes sense to drop is metadata which is
501     // invalidated when the pointer type changes. This should essentially
502     // never be the case in LLVM, but we explicitly switch over only known
503     // metadata to be conservatively correct. If you are adding metadata to
504     // LLVM which pertains to stores, you almost certainly want to add it
505     // here.
506     switch (ID) {
507     case LLVMContext::MD_dbg:
508     case LLVMContext::MD_tbaa:
509     case LLVMContext::MD_prof:
510     case LLVMContext::MD_fpmath:
511     case LLVMContext::MD_tbaa_struct:
512     case LLVMContext::MD_alias_scope:
513     case LLVMContext::MD_noalias:
514     case LLVMContext::MD_nontemporal:
515     case LLVMContext::MD_mem_parallel_loop_access:
516     case LLVMContext::MD_access_group:
517       // All of these directly apply.
518       NewStore->setMetadata(ID, N);
519       break;
520     case LLVMContext::MD_invariant_load:
521     case LLVMContext::MD_nonnull:
522     case LLVMContext::MD_range:
523     case LLVMContext::MD_align:
524     case LLVMContext::MD_dereferenceable:
525     case LLVMContext::MD_dereferenceable_or_null:
526       // These don't apply for stores.
527       break;
528     }
529   }
530 
531   return NewStore;
532 }
533 
534 /// Returns true if instruction represent minmax pattern like:
535 ///   select ((cmp load V1, load V2), V1, V2).
536 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
537   assert(V->getType()->isPointerTy() && "Expected pointer type.");
538   // Ignore possible ty* to ixx* bitcast.
539   V = peekThroughBitcast(V);
540   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
541   // pattern.
542   CmpInst::Predicate Pred;
543   Instruction *L1;
544   Instruction *L2;
545   Value *LHS;
546   Value *RHS;
547   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
548                          m_Value(LHS), m_Value(RHS))))
549     return false;
550   LoadTy = L1->getType();
551   return (match(L1, m_Load(m_Specific(LHS))) &&
552           match(L2, m_Load(m_Specific(RHS)))) ||
553          (match(L1, m_Load(m_Specific(RHS))) &&
554           match(L2, m_Load(m_Specific(LHS))));
555 }
556 
557 /// Combine loads to match the type of their uses' value after looking
558 /// through intervening bitcasts.
559 ///
560 /// The core idea here is that if the result of a load is used in an operation,
561 /// we should load the type most conducive to that operation. For example, when
562 /// loading an integer and converting that immediately to a pointer, we should
563 /// instead directly load a pointer.
564 ///
565 /// However, this routine must never change the width of a load or the number of
566 /// loads as that would introduce a semantic change. This combine is expected to
567 /// be a semantic no-op which just allows loads to more closely model the types
568 /// of their consuming operations.
569 ///
570 /// Currently, we also refuse to change the precise type used for an atomic load
571 /// or a volatile load. This is debatable, and might be reasonable to change
572 /// later. However, it is risky in case some backend or other part of LLVM is
573 /// relying on the exact type loaded to select appropriate atomic operations.
574 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
575   // FIXME: We could probably with some care handle both volatile and ordered
576   // atomic loads here but it isn't clear that this is important.
577   if (!LI.isUnordered())
578     return nullptr;
579 
580   if (LI.use_empty())
581     return nullptr;
582 
583   // swifterror values can't be bitcasted.
584   if (LI.getPointerOperand()->isSwiftError())
585     return nullptr;
586 
587   Type *Ty = LI.getType();
588   const DataLayout &DL = IC.getDataLayout();
589 
590   // Try to canonicalize loads which are only ever stored to operate over
591   // integers instead of any other type. We only do this when the loaded type
592   // is sized and has a size exactly the same as its store size and the store
593   // size is a legal integer type.
594   // Do not perform canonicalization if minmax pattern is found (to avoid
595   // infinite loop).
596   Type *Dummy;
597   if (!Ty->isIntegerTy() && Ty->isSized() &&
598       !(Ty->isVectorTy() && Ty->getVectorIsScalable()) &&
599       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
600       DL.typeSizeEqualsStoreSize(Ty) &&
601       !DL.isNonIntegralPointerType(Ty) &&
602       !isMinMaxWithLoads(
603           peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true),
604           Dummy)) {
605     if (all_of(LI.users(), [&LI](User *U) {
606           auto *SI = dyn_cast<StoreInst>(U);
607           return SI && SI->getPointerOperand() != &LI &&
608                  !SI->getPointerOperand()->isSwiftError();
609         })) {
610       LoadInst *NewLoad = IC.combineLoadToNewType(
611           LI, Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
612       // Replace all the stores with stores of the newly loaded value.
613       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
614         auto *SI = cast<StoreInst>(*UI++);
615         IC.Builder.SetInsertPoint(SI);
616         combineStoreToNewValue(IC, *SI, NewLoad);
617         IC.eraseInstFromFunction(*SI);
618       }
619       assert(LI.use_empty() && "Failed to remove all users of the load!");
620       // Return the old load so the combiner can delete it safely.
621       return &LI;
622     }
623   }
624 
625   // Fold away bit casts of the loaded value by loading the desired type.
626   // We can do this for BitCastInsts as well as casts from and to pointer types,
627   // as long as those are noops (i.e., the source or dest type have the same
628   // bitwidth as the target's pointers).
629   if (LI.hasOneUse())
630     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
631       if (CI->isNoopCast(DL))
632         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
633           LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
634           CI->replaceAllUsesWith(NewLoad);
635           IC.eraseInstFromFunction(*CI);
636           return &LI;
637         }
638 
639   // FIXME: We should also canonicalize loads of vectors when their elements are
640   // cast to other types.
641   return nullptr;
642 }
643 
644 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
645   // FIXME: We could probably with some care handle both volatile and atomic
646   // stores here but it isn't clear that this is important.
647   if (!LI.isSimple())
648     return nullptr;
649 
650   Type *T = LI.getType();
651   if (!T->isAggregateType())
652     return nullptr;
653 
654   StringRef Name = LI.getName();
655   assert(LI.getAlignment() && "Alignment must be set at this point");
656 
657   if (auto *ST = dyn_cast<StructType>(T)) {
658     // If the struct only have one element, we unpack.
659     auto NumElements = ST->getNumElements();
660     if (NumElements == 1) {
661       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
662                                                   ".unpack");
663       AAMDNodes AAMD;
664       LI.getAAMetadata(AAMD);
665       NewLoad->setAAMetadata(AAMD);
666       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
667         UndefValue::get(T), NewLoad, 0, Name));
668     }
669 
670     // We don't want to break loads with padding here as we'd loose
671     // the knowledge that padding exists for the rest of the pipeline.
672     const DataLayout &DL = IC.getDataLayout();
673     auto *SL = DL.getStructLayout(ST);
674     if (SL->hasPadding())
675       return nullptr;
676 
677     auto Align = LI.getAlignment();
678     if (!Align)
679       Align = DL.getABITypeAlignment(ST);
680 
681     auto *Addr = LI.getPointerOperand();
682     auto *IdxType = Type::getInt32Ty(T->getContext());
683     auto *Zero = ConstantInt::get(IdxType, 0);
684 
685     Value *V = UndefValue::get(T);
686     for (unsigned i = 0; i < NumElements; i++) {
687       Value *Indices[2] = {
688         Zero,
689         ConstantInt::get(IdxType, i),
690       };
691       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
692                                                Name + ".elt");
693       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
694       auto *L = IC.Builder.CreateAlignedLoad(ST->getElementType(i), Ptr,
695                                              EltAlign, Name + ".unpack");
696       // Propagate AA metadata. It'll still be valid on the narrowed load.
697       AAMDNodes AAMD;
698       LI.getAAMetadata(AAMD);
699       L->setAAMetadata(AAMD);
700       V = IC.Builder.CreateInsertValue(V, L, i);
701     }
702 
703     V->setName(Name);
704     return IC.replaceInstUsesWith(LI, V);
705   }
706 
707   if (auto *AT = dyn_cast<ArrayType>(T)) {
708     auto *ET = AT->getElementType();
709     auto NumElements = AT->getNumElements();
710     if (NumElements == 1) {
711       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
712       AAMDNodes AAMD;
713       LI.getAAMetadata(AAMD);
714       NewLoad->setAAMetadata(AAMD);
715       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
716         UndefValue::get(T), NewLoad, 0, Name));
717     }
718 
719     // Bail out if the array is too large. Ideally we would like to optimize
720     // arrays of arbitrary size but this has a terrible impact on compile time.
721     // The threshold here is chosen arbitrarily, maybe needs a little bit of
722     // tuning.
723     if (NumElements > IC.MaxArraySizeForCombine)
724       return nullptr;
725 
726     const DataLayout &DL = IC.getDataLayout();
727     auto EltSize = DL.getTypeAllocSize(ET);
728     auto Align = LI.getAlignment();
729     if (!Align)
730       Align = DL.getABITypeAlignment(T);
731 
732     auto *Addr = LI.getPointerOperand();
733     auto *IdxType = Type::getInt64Ty(T->getContext());
734     auto *Zero = ConstantInt::get(IdxType, 0);
735 
736     Value *V = UndefValue::get(T);
737     uint64_t Offset = 0;
738     for (uint64_t i = 0; i < NumElements; i++) {
739       Value *Indices[2] = {
740         Zero,
741         ConstantInt::get(IdxType, i),
742       };
743       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
744                                                Name + ".elt");
745       auto *L = IC.Builder.CreateAlignedLoad(
746           AT->getElementType(), Ptr, MinAlign(Align, Offset), Name + ".unpack");
747       AAMDNodes AAMD;
748       LI.getAAMetadata(AAMD);
749       L->setAAMetadata(AAMD);
750       V = IC.Builder.CreateInsertValue(V, L, i);
751       Offset += EltSize;
752     }
753 
754     V->setName(Name);
755     return IC.replaceInstUsesWith(LI, V);
756   }
757 
758   return nullptr;
759 }
760 
761 // If we can determine that all possible objects pointed to by the provided
762 // pointer value are, not only dereferenceable, but also definitively less than
763 // or equal to the provided maximum size, then return true. Otherwise, return
764 // false (constant global values and allocas fall into this category).
765 //
766 // FIXME: This should probably live in ValueTracking (or similar).
767 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
768                                      const DataLayout &DL) {
769   SmallPtrSet<Value *, 4> Visited;
770   SmallVector<Value *, 4> Worklist(1, V);
771 
772   do {
773     Value *P = Worklist.pop_back_val();
774     P = P->stripPointerCasts();
775 
776     if (!Visited.insert(P).second)
777       continue;
778 
779     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
780       Worklist.push_back(SI->getTrueValue());
781       Worklist.push_back(SI->getFalseValue());
782       continue;
783     }
784 
785     if (PHINode *PN = dyn_cast<PHINode>(P)) {
786       for (Value *IncValue : PN->incoming_values())
787         Worklist.push_back(IncValue);
788       continue;
789     }
790 
791     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
792       if (GA->isInterposable())
793         return false;
794       Worklist.push_back(GA->getAliasee());
795       continue;
796     }
797 
798     // If we know how big this object is, and it is less than MaxSize, continue
799     // searching. Otherwise, return false.
800     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
801       if (!AI->getAllocatedType()->isSized())
802         return false;
803 
804       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
805       if (!CS)
806         return false;
807 
808       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
809       // Make sure that, even if the multiplication below would wrap as an
810       // uint64_t, we still do the right thing.
811       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
812         return false;
813       continue;
814     }
815 
816     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
817       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
818         return false;
819 
820       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
821       if (InitSize > MaxSize)
822         return false;
823       continue;
824     }
825 
826     return false;
827   } while (!Worklist.empty());
828 
829   return true;
830 }
831 
832 // If we're indexing into an object of a known size, and the outer index is
833 // not a constant, but having any value but zero would lead to undefined
834 // behavior, replace it with zero.
835 //
836 // For example, if we have:
837 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
838 // ...
839 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
840 // ... = load i32* %arrayidx, align 4
841 // Then we know that we can replace %x in the GEP with i64 0.
842 //
843 // FIXME: We could fold any GEP index to zero that would cause UB if it were
844 // not zero. Currently, we only handle the first such index. Also, we could
845 // also search through non-zero constant indices if we kept track of the
846 // offsets those indices implied.
847 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
848                                      Instruction *MemI, unsigned &Idx) {
849   if (GEPI->getNumOperands() < 2)
850     return false;
851 
852   // Find the first non-zero index of a GEP. If all indices are zero, return
853   // one past the last index.
854   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
855     unsigned I = 1;
856     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
857       Value *V = GEPI->getOperand(I);
858       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
859         if (CI->isZero())
860           continue;
861 
862       break;
863     }
864 
865     return I;
866   };
867 
868   // Skip through initial 'zero' indices, and find the corresponding pointer
869   // type. See if the next index is not a constant.
870   Idx = FirstNZIdx(GEPI);
871   if (Idx == GEPI->getNumOperands())
872     return false;
873   if (isa<Constant>(GEPI->getOperand(Idx)))
874     return false;
875 
876   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
877   Type *AllocTy =
878     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
879   if (!AllocTy || !AllocTy->isSized())
880     return false;
881   const DataLayout &DL = IC.getDataLayout();
882   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
883 
884   // If there are more indices after the one we might replace with a zero, make
885   // sure they're all non-negative. If any of them are negative, the overall
886   // address being computed might be before the base address determined by the
887   // first non-zero index.
888   auto IsAllNonNegative = [&]() {
889     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
890       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
891       if (Known.isNonNegative())
892         continue;
893       return false;
894     }
895 
896     return true;
897   };
898 
899   // FIXME: If the GEP is not inbounds, and there are extra indices after the
900   // one we'll replace, those could cause the address computation to wrap
901   // (rendering the IsAllNonNegative() check below insufficient). We can do
902   // better, ignoring zero indices (and other indices we can prove small
903   // enough not to wrap).
904   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
905     return false;
906 
907   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
908   // also known to be dereferenceable.
909   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
910          IsAllNonNegative();
911 }
912 
913 // If we're indexing into an object with a variable index for the memory
914 // access, but the object has only one element, we can assume that the index
915 // will always be zero. If we replace the GEP, return it.
916 template <typename T>
917 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
918                                           T &MemI) {
919   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
920     unsigned Idx;
921     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
922       Instruction *NewGEPI = GEPI->clone();
923       NewGEPI->setOperand(Idx,
924         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
925       NewGEPI->insertBefore(GEPI);
926       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
927       return NewGEPI;
928     }
929   }
930 
931   return nullptr;
932 }
933 
934 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
935   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
936     return false;
937 
938   auto *Ptr = SI.getPointerOperand();
939   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
940     Ptr = GEPI->getOperand(0);
941   return (isa<ConstantPointerNull>(Ptr) &&
942           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
943 }
944 
945 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
946   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
947     const Value *GEPI0 = GEPI->getOperand(0);
948     if (isa<ConstantPointerNull>(GEPI0) &&
949         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
950       return true;
951   }
952   if (isa<UndefValue>(Op) ||
953       (isa<ConstantPointerNull>(Op) &&
954        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
955     return true;
956   return false;
957 }
958 
959 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
960   Value *Op = LI.getOperand(0);
961 
962   // Try to canonicalize the loaded type.
963   if (Instruction *Res = combineLoadToOperationType(*this, LI))
964     return Res;
965 
966   // Attempt to improve the alignment.
967   unsigned KnownAlign = getOrEnforceKnownAlignment(
968       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
969   unsigned LoadAlign = LI.getAlignment();
970   unsigned EffectiveLoadAlign =
971       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
972 
973   if (KnownAlign > EffectiveLoadAlign)
974     LI.setAlignment(MaybeAlign(KnownAlign));
975   else if (LoadAlign == 0)
976     LI.setAlignment(MaybeAlign(EffectiveLoadAlign));
977 
978   // Replace GEP indices if possible.
979   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
980       Worklist.Add(NewGEPI);
981       return &LI;
982   }
983 
984   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
985     return Res;
986 
987   // Do really simple store-to-load forwarding and load CSE, to catch cases
988   // where there are several consecutive memory accesses to the same location,
989   // separated by a few arithmetic operations.
990   BasicBlock::iterator BBI(LI);
991   bool IsLoadCSE = false;
992   if (Value *AvailableVal = FindAvailableLoadedValue(
993           &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
994     if (IsLoadCSE)
995       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
996 
997     return replaceInstUsesWith(
998         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
999                                            LI.getName() + ".cast"));
1000   }
1001 
1002   // None of the following transforms are legal for volatile/ordered atomic
1003   // loads.  Most of them do apply for unordered atomics.
1004   if (!LI.isUnordered()) return nullptr;
1005 
1006   // load(gep null, ...) -> unreachable
1007   // load null/undef -> unreachable
1008   // TODO: Consider a target hook for valid address spaces for this xforms.
1009   if (canSimplifyNullLoadOrGEP(LI, Op)) {
1010     // Insert a new store to null instruction before the load to indicate
1011     // that this code is not reachable.  We do this instead of inserting
1012     // an unreachable instruction directly because we cannot modify the
1013     // CFG.
1014     StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
1015                                   Constant::getNullValue(Op->getType()), &LI);
1016     SI->setDebugLoc(LI.getDebugLoc());
1017     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
1018   }
1019 
1020   if (Op->hasOneUse()) {
1021     // Change select and PHI nodes to select values instead of addresses: this
1022     // helps alias analysis out a lot, allows many others simplifications, and
1023     // exposes redundancy in the code.
1024     //
1025     // Note that we cannot do the transformation unless we know that the
1026     // introduced loads cannot trap!  Something like this is valid as long as
1027     // the condition is always false: load (select bool %C, int* null, int* %G),
1028     // but it would not be valid if we transformed it to load from null
1029     // unconditionally.
1030     //
1031     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1032       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1033       const MaybeAlign Alignment(LI.getAlignment());
1034       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1035                                       Alignment, DL, SI) &&
1036           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1037                                       Alignment, DL, SI)) {
1038         LoadInst *V1 =
1039             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1040                                SI->getOperand(1)->getName() + ".val");
1041         LoadInst *V2 =
1042             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1043                                SI->getOperand(2)->getName() + ".val");
1044         assert(LI.isUnordered() && "implied by above");
1045         V1->setAlignment(Alignment);
1046         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1047         V2->setAlignment(Alignment);
1048         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1049         return SelectInst::Create(SI->getCondition(), V1, V2);
1050       }
1051 
1052       // load (select (cond, null, P)) -> load P
1053       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1054           !NullPointerIsDefined(SI->getFunction(),
1055                                 LI.getPointerAddressSpace())) {
1056         LI.setOperand(0, SI->getOperand(2));
1057         return &LI;
1058       }
1059 
1060       // load (select (cond, P, null)) -> load P
1061       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1062           !NullPointerIsDefined(SI->getFunction(),
1063                                 LI.getPointerAddressSpace())) {
1064         LI.setOperand(0, SI->getOperand(1));
1065         return &LI;
1066       }
1067     }
1068   }
1069   return nullptr;
1070 }
1071 
1072 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1073 ///
1074 /// \returns underlying value that was "cast", or nullptr otherwise.
1075 ///
1076 /// For example, if we have:
1077 ///
1078 ///     %E0 = extractelement <2 x double> %U, i32 0
1079 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1080 ///     %E1 = extractelement <2 x double> %U, i32 1
1081 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1082 ///
1083 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1084 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1085 /// Note that %U may contain non-undef values where %V1 has undef.
1086 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
1087   Value *U = nullptr;
1088   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1089     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1090     if (!E)
1091       return nullptr;
1092     auto *W = E->getVectorOperand();
1093     if (!U)
1094       U = W;
1095     else if (U != W)
1096       return nullptr;
1097     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1098     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1099       return nullptr;
1100     V = IV->getAggregateOperand();
1101   }
1102   if (!isa<UndefValue>(V) ||!U)
1103     return nullptr;
1104 
1105   auto *UT = cast<VectorType>(U->getType());
1106   auto *VT = V->getType();
1107   // Check that types UT and VT are bitwise isomorphic.
1108   const auto &DL = IC.getDataLayout();
1109   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1110     return nullptr;
1111   }
1112   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1113     if (AT->getNumElements() != UT->getNumElements())
1114       return nullptr;
1115   } else {
1116     auto *ST = cast<StructType>(VT);
1117     if (ST->getNumElements() != UT->getNumElements())
1118       return nullptr;
1119     for (const auto *EltT : ST->elements()) {
1120       if (EltT != UT->getElementType())
1121         return nullptr;
1122     }
1123   }
1124   return U;
1125 }
1126 
1127 /// Combine stores to match the type of value being stored.
1128 ///
1129 /// The core idea here is that the memory does not have any intrinsic type and
1130 /// where we can we should match the type of a store to the type of value being
1131 /// stored.
1132 ///
1133 /// However, this routine must never change the width of a store or the number of
1134 /// stores as that would introduce a semantic change. This combine is expected to
1135 /// be a semantic no-op which just allows stores to more closely model the types
1136 /// of their incoming values.
1137 ///
1138 /// Currently, we also refuse to change the precise type used for an atomic or
1139 /// volatile store. This is debatable, and might be reasonable to change later.
1140 /// However, it is risky in case some backend or other part of LLVM is relying
1141 /// on the exact type stored to select appropriate atomic operations.
1142 ///
1143 /// \returns true if the store was successfully combined away. This indicates
1144 /// the caller must erase the store instruction. We have to let the caller erase
1145 /// the store instruction as otherwise there is no way to signal whether it was
1146 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1147 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
1148   // FIXME: We could probably with some care handle both volatile and ordered
1149   // atomic stores here but it isn't clear that this is important.
1150   if (!SI.isUnordered())
1151     return false;
1152 
1153   // swifterror values can't be bitcasted.
1154   if (SI.getPointerOperand()->isSwiftError())
1155     return false;
1156 
1157   Value *V = SI.getValueOperand();
1158 
1159   // Fold away bit casts of the stored value by storing the original type.
1160   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1161     V = BC->getOperand(0);
1162     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1163       combineStoreToNewValue(IC, SI, V);
1164       return true;
1165     }
1166   }
1167 
1168   if (Value *U = likeBitCastFromVector(IC, V))
1169     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1170       combineStoreToNewValue(IC, SI, U);
1171       return true;
1172     }
1173 
1174   // FIXME: We should also canonicalize stores of vectors when their elements
1175   // are cast to other types.
1176   return false;
1177 }
1178 
1179 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1180   // FIXME: We could probably with some care handle both volatile and atomic
1181   // stores here but it isn't clear that this is important.
1182   if (!SI.isSimple())
1183     return false;
1184 
1185   Value *V = SI.getValueOperand();
1186   Type *T = V->getType();
1187 
1188   if (!T->isAggregateType())
1189     return false;
1190 
1191   if (auto *ST = dyn_cast<StructType>(T)) {
1192     // If the struct only have one element, we unpack.
1193     unsigned Count = ST->getNumElements();
1194     if (Count == 1) {
1195       V = IC.Builder.CreateExtractValue(V, 0);
1196       combineStoreToNewValue(IC, SI, V);
1197       return true;
1198     }
1199 
1200     // We don't want to break loads with padding here as we'd loose
1201     // the knowledge that padding exists for the rest of the pipeline.
1202     const DataLayout &DL = IC.getDataLayout();
1203     auto *SL = DL.getStructLayout(ST);
1204     if (SL->hasPadding())
1205       return false;
1206 
1207     auto Align = SI.getAlignment();
1208     if (!Align)
1209       Align = DL.getABITypeAlignment(ST);
1210 
1211     SmallString<16> EltName = V->getName();
1212     EltName += ".elt";
1213     auto *Addr = SI.getPointerOperand();
1214     SmallString<16> AddrName = Addr->getName();
1215     AddrName += ".repack";
1216 
1217     auto *IdxType = Type::getInt32Ty(ST->getContext());
1218     auto *Zero = ConstantInt::get(IdxType, 0);
1219     for (unsigned i = 0; i < Count; i++) {
1220       Value *Indices[2] = {
1221         Zero,
1222         ConstantInt::get(IdxType, i),
1223       };
1224       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1225                                                AddrName);
1226       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1227       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
1228       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1229       AAMDNodes AAMD;
1230       SI.getAAMetadata(AAMD);
1231       NS->setAAMetadata(AAMD);
1232     }
1233 
1234     return true;
1235   }
1236 
1237   if (auto *AT = dyn_cast<ArrayType>(T)) {
1238     // If the array only have one element, we unpack.
1239     auto NumElements = AT->getNumElements();
1240     if (NumElements == 1) {
1241       V = IC.Builder.CreateExtractValue(V, 0);
1242       combineStoreToNewValue(IC, SI, V);
1243       return true;
1244     }
1245 
1246     // Bail out if the array is too large. Ideally we would like to optimize
1247     // arrays of arbitrary size but this has a terrible impact on compile time.
1248     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1249     // tuning.
1250     if (NumElements > IC.MaxArraySizeForCombine)
1251       return false;
1252 
1253     const DataLayout &DL = IC.getDataLayout();
1254     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1255     auto Align = SI.getAlignment();
1256     if (!Align)
1257       Align = DL.getABITypeAlignment(T);
1258 
1259     SmallString<16> EltName = V->getName();
1260     EltName += ".elt";
1261     auto *Addr = SI.getPointerOperand();
1262     SmallString<16> AddrName = Addr->getName();
1263     AddrName += ".repack";
1264 
1265     auto *IdxType = Type::getInt64Ty(T->getContext());
1266     auto *Zero = ConstantInt::get(IdxType, 0);
1267 
1268     uint64_t Offset = 0;
1269     for (uint64_t i = 0; i < NumElements; i++) {
1270       Value *Indices[2] = {
1271         Zero,
1272         ConstantInt::get(IdxType, i),
1273       };
1274       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1275                                                AddrName);
1276       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1277       auto EltAlign = MinAlign(Align, Offset);
1278       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1279       AAMDNodes AAMD;
1280       SI.getAAMetadata(AAMD);
1281       NS->setAAMetadata(AAMD);
1282       Offset += EltSize;
1283     }
1284 
1285     return true;
1286   }
1287 
1288   return false;
1289 }
1290 
1291 /// equivalentAddressValues - Test if A and B will obviously have the same
1292 /// value. This includes recognizing that %t0 and %t1 will have the same
1293 /// value in code like this:
1294 ///   %t0 = getelementptr \@a, 0, 3
1295 ///   store i32 0, i32* %t0
1296 ///   %t1 = getelementptr \@a, 0, 3
1297 ///   %t2 = load i32* %t1
1298 ///
1299 static bool equivalentAddressValues(Value *A, Value *B) {
1300   // Test if the values are trivially equivalent.
1301   if (A == B) return true;
1302 
1303   // Test if the values come form identical arithmetic instructions.
1304   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1305   // its only used to compare two uses within the same basic block, which
1306   // means that they'll always either have the same value or one of them
1307   // will have an undefined value.
1308   if (isa<BinaryOperator>(A) ||
1309       isa<CastInst>(A) ||
1310       isa<PHINode>(A) ||
1311       isa<GetElementPtrInst>(A))
1312     if (Instruction *BI = dyn_cast<Instruction>(B))
1313       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1314         return true;
1315 
1316   // Otherwise they may not be equivalent.
1317   return false;
1318 }
1319 
1320 /// Converts store (bitcast (load (bitcast (select ...)))) to
1321 /// store (load (select ...)), where select is minmax:
1322 /// select ((cmp load V1, load V2), V1, V2).
1323 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC,
1324                                                 StoreInst &SI) {
1325   // bitcast?
1326   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1327     return false;
1328   // load? integer?
1329   Value *LoadAddr;
1330   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1331     return false;
1332   auto *LI = cast<LoadInst>(SI.getValueOperand());
1333   if (!LI->getType()->isIntegerTy())
1334     return false;
1335   Type *CmpLoadTy;
1336   if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
1337     return false;
1338 
1339   // Make sure the type would actually change.
1340   // This condition can be hit with chains of bitcasts.
1341   if (LI->getType() == CmpLoadTy)
1342     return false;
1343 
1344   // Make sure we're not changing the size of the load/store.
1345   const auto &DL = IC.getDataLayout();
1346   if (DL.getTypeStoreSizeInBits(LI->getType()) !=
1347       DL.getTypeStoreSizeInBits(CmpLoadTy))
1348     return false;
1349 
1350   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1351         auto *SI = dyn_cast<StoreInst>(U);
1352         return SI && SI->getPointerOperand() != LI &&
1353                peekThroughBitcast(SI->getPointerOperand()) != LoadAddr &&
1354                !SI->getPointerOperand()->isSwiftError();
1355       }))
1356     return false;
1357 
1358   IC.Builder.SetInsertPoint(LI);
1359   LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
1360   // Replace all the stores with stores of the newly loaded value.
1361   for (auto *UI : LI->users()) {
1362     auto *USI = cast<StoreInst>(UI);
1363     IC.Builder.SetInsertPoint(USI);
1364     combineStoreToNewValue(IC, *USI, NewLI);
1365   }
1366   IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1367   IC.eraseInstFromFunction(*LI);
1368   return true;
1369 }
1370 
1371 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1372   Value *Val = SI.getOperand(0);
1373   Value *Ptr = SI.getOperand(1);
1374 
1375   // Try to canonicalize the stored type.
1376   if (combineStoreToValueType(*this, SI))
1377     return eraseInstFromFunction(SI);
1378 
1379   // Attempt to improve the alignment.
1380   const Align KnownAlign = Align(getOrEnforceKnownAlignment(
1381       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT));
1382   const MaybeAlign StoreAlign = MaybeAlign(SI.getAlignment());
1383   const Align EffectiveStoreAlign =
1384       StoreAlign ? *StoreAlign : Align(DL.getABITypeAlignment(Val->getType()));
1385 
1386   if (KnownAlign > EffectiveStoreAlign)
1387     SI.setAlignment(KnownAlign);
1388   else if (!StoreAlign)
1389     SI.setAlignment(EffectiveStoreAlign);
1390 
1391   // Try to canonicalize the stored type.
1392   if (unpackStoreToAggregate(*this, SI))
1393     return eraseInstFromFunction(SI);
1394 
1395   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1396     return eraseInstFromFunction(SI);
1397 
1398   // Replace GEP indices if possible.
1399   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1400       Worklist.Add(NewGEPI);
1401       return &SI;
1402   }
1403 
1404   // Don't hack volatile/ordered stores.
1405   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1406   if (!SI.isUnordered()) return nullptr;
1407 
1408   // If the RHS is an alloca with a single use, zapify the store, making the
1409   // alloca dead.
1410   if (Ptr->hasOneUse()) {
1411     if (isa<AllocaInst>(Ptr))
1412       return eraseInstFromFunction(SI);
1413     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1414       if (isa<AllocaInst>(GEP->getOperand(0))) {
1415         if (GEP->getOperand(0)->hasOneUse())
1416           return eraseInstFromFunction(SI);
1417       }
1418     }
1419   }
1420 
1421   // If we have a store to a location which is known constant, we can conclude
1422   // that the store must be storing the constant value (else the memory
1423   // wouldn't be constant), and this must be a noop.
1424   if (AA->pointsToConstantMemory(Ptr))
1425     return eraseInstFromFunction(SI);
1426 
1427   // Do really simple DSE, to catch cases where there are several consecutive
1428   // stores to the same location, separated by a few arithmetic operations. This
1429   // situation often occurs with bitfield accesses.
1430   BasicBlock::iterator BBI(SI);
1431   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1432        --ScanInsts) {
1433     --BBI;
1434     // Don't count debug info directives, lest they affect codegen,
1435     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1436     if (isa<DbgInfoIntrinsic>(BBI) ||
1437         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1438       ScanInsts++;
1439       continue;
1440     }
1441 
1442     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1443       // Prev store isn't volatile, and stores to the same location?
1444       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1445                                                         SI.getOperand(1))) {
1446         ++NumDeadStore;
1447         // Manually add back the original store to the worklist now, so it will
1448         // be processed after the operands of the removed store, as this may
1449         // expose additional DSE opportunities.
1450         Worklist.Add(&SI);
1451         eraseInstFromFunction(*PrevSI);
1452         return nullptr;
1453       }
1454       break;
1455     }
1456 
1457     // If this is a load, we have to stop.  However, if the loaded value is from
1458     // the pointer we're loading and is producing the pointer we're storing,
1459     // then *this* store is dead (X = load P; store X -> P).
1460     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1461       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1462         assert(SI.isUnordered() && "can't eliminate ordering operation");
1463         return eraseInstFromFunction(SI);
1464       }
1465 
1466       // Otherwise, this is a load from some other location.  Stores before it
1467       // may not be dead.
1468       break;
1469     }
1470 
1471     // Don't skip over loads, throws or things that can modify memory.
1472     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1473       break;
1474   }
1475 
1476   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1477   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1478   if (canSimplifyNullStoreOrGEP(SI)) {
1479     if (!isa<UndefValue>(Val)) {
1480       SI.setOperand(0, UndefValue::get(Val->getType()));
1481       if (Instruction *U = dyn_cast<Instruction>(Val))
1482         Worklist.Add(U);  // Dropped a use.
1483     }
1484     return nullptr;  // Do not modify these!
1485   }
1486 
1487   // store undef, Ptr -> noop
1488   if (isa<UndefValue>(Val))
1489     return eraseInstFromFunction(SI);
1490 
1491   // If this store is the second-to-last instruction in the basic block
1492   // (excluding debug info and bitcasts of pointers) and if the block ends with
1493   // an unconditional branch, try to move the store to the successor block.
1494   BBI = SI.getIterator();
1495   do {
1496     ++BBI;
1497   } while (isa<DbgInfoIntrinsic>(BBI) ||
1498            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1499 
1500   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1501     if (BI->isUnconditional())
1502       mergeStoreIntoSuccessor(SI);
1503 
1504   return nullptr;
1505 }
1506 
1507 /// Try to transform:
1508 ///   if () { *P = v1; } else { *P = v2 }
1509 /// or:
1510 ///   *P = v1; if () { *P = v2; }
1511 /// into a phi node with a store in the successor.
1512 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) {
1513   assert(SI.isUnordered() &&
1514          "This code has not been audited for volatile or ordered store case.");
1515 
1516   // Check if the successor block has exactly 2 incoming edges.
1517   BasicBlock *StoreBB = SI.getParent();
1518   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1519   if (!DestBB->hasNPredecessors(2))
1520     return false;
1521 
1522   // Capture the other block (the block that doesn't contain our store).
1523   pred_iterator PredIter = pred_begin(DestBB);
1524   if (*PredIter == StoreBB)
1525     ++PredIter;
1526   BasicBlock *OtherBB = *PredIter;
1527 
1528   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1529   // for example, if SI is in an infinite loop.
1530   if (StoreBB == DestBB || OtherBB == DestBB)
1531     return false;
1532 
1533   // Verify that the other block ends in a branch and is not otherwise empty.
1534   BasicBlock::iterator BBI(OtherBB->getTerminator());
1535   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1536   if (!OtherBr || BBI == OtherBB->begin())
1537     return false;
1538 
1539   // If the other block ends in an unconditional branch, check for the 'if then
1540   // else' case. There is an instruction before the branch.
1541   StoreInst *OtherStore = nullptr;
1542   if (OtherBr->isUnconditional()) {
1543     --BBI;
1544     // Skip over debugging info.
1545     while (isa<DbgInfoIntrinsic>(BBI) ||
1546            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1547       if (BBI==OtherBB->begin())
1548         return false;
1549       --BBI;
1550     }
1551     // If this isn't a store, isn't a store to the same location, or is not the
1552     // right kind of store, bail out.
1553     OtherStore = dyn_cast<StoreInst>(BBI);
1554     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1555         !SI.isSameOperationAs(OtherStore))
1556       return false;
1557   } else {
1558     // Otherwise, the other block ended with a conditional branch. If one of the
1559     // destinations is StoreBB, then we have the if/then case.
1560     if (OtherBr->getSuccessor(0) != StoreBB &&
1561         OtherBr->getSuccessor(1) != StoreBB)
1562       return false;
1563 
1564     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1565     // if/then triangle. See if there is a store to the same ptr as SI that
1566     // lives in OtherBB.
1567     for (;; --BBI) {
1568       // Check to see if we find the matching store.
1569       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1570         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1571             !SI.isSameOperationAs(OtherStore))
1572           return false;
1573         break;
1574       }
1575       // If we find something that may be using or overwriting the stored
1576       // value, or if we run out of instructions, we can't do the transform.
1577       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1578           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1579         return false;
1580     }
1581 
1582     // In order to eliminate the store in OtherBr, we have to make sure nothing
1583     // reads or overwrites the stored value in StoreBB.
1584     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1585       // FIXME: This should really be AA driven.
1586       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1587         return false;
1588     }
1589   }
1590 
1591   // Insert a PHI node now if we need it.
1592   Value *MergedVal = OtherStore->getOperand(0);
1593   // The debug locations of the original instructions might differ. Merge them.
1594   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1595                                                      OtherStore->getDebugLoc());
1596   if (MergedVal != SI.getOperand(0)) {
1597     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1598     PN->addIncoming(SI.getOperand(0), SI.getParent());
1599     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1600     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1601     PN->setDebugLoc(MergedLoc);
1602   }
1603 
1604   // Advance to a place where it is safe to insert the new store and insert it.
1605   BBI = DestBB->getFirstInsertionPt();
1606   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(),
1607                                    MaybeAlign(SI.getAlignment()),
1608                                    SI.getOrdering(), SI.getSyncScopeID());
1609   InsertNewInstBefore(NewSI, *BBI);
1610   NewSI->setDebugLoc(MergedLoc);
1611 
1612   // If the two stores had AA tags, merge them.
1613   AAMDNodes AATags;
1614   SI.getAAMetadata(AATags);
1615   if (AATags) {
1616     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1617     NewSI->setAAMetadata(AATags);
1618   }
1619 
1620   // Nuke the old stores.
1621   eraseInstFromFunction(SI);
1622   eraseInstFromFunction(*OtherStore);
1623   return true;
1624 }
1625