1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 #include "llvm/Transforms/Utils/Local.h" 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 34 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 35 36 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 37 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 38 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 39 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 40 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 41 /// the alloca, and if the source pointer is a pointer to a constant global, we 42 /// can optimize this. 43 static bool 44 isOnlyCopiedFromConstantMemory(AAResults *AA, 45 Value *V, MemTransferInst *&TheCopy, 46 SmallVectorImpl<Instruction *> &ToDelete) { 47 // We track lifetime intrinsics as we encounter them. If we decide to go 48 // ahead and replace the value with the global, this lets the caller quickly 49 // eliminate the markers. 50 51 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 52 ValuesToInspect.emplace_back(V, false); 53 while (!ValuesToInspect.empty()) { 54 auto ValuePair = ValuesToInspect.pop_back_val(); 55 const bool IsOffset = ValuePair.second; 56 for (auto &U : ValuePair.first->uses()) { 57 auto *I = cast<Instruction>(U.getUser()); 58 59 if (auto *LI = dyn_cast<LoadInst>(I)) { 60 // Ignore non-volatile loads, they are always ok. 61 if (!LI->isSimple()) return false; 62 continue; 63 } 64 65 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 66 // If uses of the bitcast are ok, we are ok. 67 ValuesToInspect.emplace_back(I, IsOffset); 68 continue; 69 } 70 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 71 // If the GEP has all zero indices, it doesn't offset the pointer. If it 72 // doesn't, it does. 73 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 74 continue; 75 } 76 77 if (auto *Call = dyn_cast<CallBase>(I)) { 78 // If this is the function being called then we treat it like a load and 79 // ignore it. 80 if (Call->isCallee(&U)) 81 continue; 82 83 unsigned DataOpNo = Call->getDataOperandNo(&U); 84 bool IsArgOperand = Call->isArgOperand(&U); 85 86 // Inalloca arguments are clobbered by the call. 87 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 88 return false; 89 90 // If this is a readonly/readnone call site, then we know it is just a 91 // load (but one that potentially returns the value itself), so we can 92 // ignore it if we know that the value isn't captured. 93 if (Call->onlyReadsMemory() && 94 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 95 continue; 96 97 // If this is being passed as a byval argument, the caller is making a 98 // copy, so it is only a read of the alloca. 99 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 100 continue; 101 } 102 103 // Lifetime intrinsics can be handled by the caller. 104 if (I->isLifetimeStartOrEnd()) { 105 assert(I->use_empty() && "Lifetime markers have no result to use!"); 106 ToDelete.push_back(I); 107 continue; 108 } 109 110 // If this is isn't our memcpy/memmove, reject it as something we can't 111 // handle. 112 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 113 if (!MI) 114 return false; 115 116 // If the transfer is using the alloca as a source of the transfer, then 117 // ignore it since it is a load (unless the transfer is volatile). 118 if (U.getOperandNo() == 1) { 119 if (MI->isVolatile()) return false; 120 continue; 121 } 122 123 // If we already have seen a copy, reject the second one. 124 if (TheCopy) return false; 125 126 // If the pointer has been offset from the start of the alloca, we can't 127 // safely handle this. 128 if (IsOffset) return false; 129 130 // If the memintrinsic isn't using the alloca as the dest, reject it. 131 if (U.getOperandNo() != 0) return false; 132 133 // If the source of the memcpy/move is not a constant global, reject it. 134 if (!AA->pointsToConstantMemory(MI->getSource())) 135 return false; 136 137 // Otherwise, the transform is safe. Remember the copy instruction. 138 TheCopy = MI; 139 } 140 } 141 return true; 142 } 143 144 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 145 /// modified by a copy from a constant global. If we can prove this, we can 146 /// replace any uses of the alloca with uses of the global directly. 147 static MemTransferInst * 148 isOnlyCopiedFromConstantMemory(AAResults *AA, 149 AllocaInst *AI, 150 SmallVectorImpl<Instruction *> &ToDelete) { 151 MemTransferInst *TheCopy = nullptr; 152 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) 153 return TheCopy; 154 return nullptr; 155 } 156 157 /// Returns true if V is dereferenceable for size of alloca. 158 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 159 const DataLayout &DL) { 160 if (AI->isArrayAllocation()) 161 return false; 162 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 163 if (!AllocaSize) 164 return false; 165 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()), 166 APInt(64, AllocaSize), DL); 167 } 168 169 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 170 // Check for array size of 1 (scalar allocation). 171 if (!AI.isArrayAllocation()) { 172 // i32 1 is the canonical array size for scalar allocations. 173 if (AI.getArraySize()->getType()->isIntegerTy(32)) 174 return nullptr; 175 176 // Canonicalize it. 177 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); 178 } 179 180 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 181 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 182 if (C->getValue().getActiveBits() <= 64) { 183 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 184 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 185 New->setAlignment(AI.getAlign()); 186 187 // Scan to the end of the allocation instructions, to skip over a block of 188 // allocas if possible...also skip interleaved debug info 189 // 190 BasicBlock::iterator It(New); 191 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 192 ++It; 193 194 // Now that I is pointing to the first non-allocation-inst in the block, 195 // insert our getelementptr instruction... 196 // 197 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 198 Value *NullIdx = Constant::getNullValue(IdxTy); 199 Value *Idx[2] = {NullIdx, NullIdx}; 200 Instruction *GEP = GetElementPtrInst::CreateInBounds( 201 NewTy, New, Idx, New->getName() + ".sub"); 202 IC.InsertNewInstBefore(GEP, *It); 203 204 // Now make everything use the getelementptr instead of the original 205 // allocation. 206 return IC.replaceInstUsesWith(AI, GEP); 207 } 208 } 209 210 if (isa<UndefValue>(AI.getArraySize())) 211 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 212 213 // Ensure that the alloca array size argument has type intptr_t, so that 214 // any casting is exposed early. 215 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 216 if (AI.getArraySize()->getType() != IntPtrTy) { 217 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 218 return IC.replaceOperand(AI, 0, V); 219 } 220 221 return nullptr; 222 } 223 224 namespace { 225 // If I and V are pointers in different address space, it is not allowed to 226 // use replaceAllUsesWith since I and V have different types. A 227 // non-target-specific transformation should not use addrspacecast on V since 228 // the two address space may be disjoint depending on target. 229 // 230 // This class chases down uses of the old pointer until reaching the load 231 // instructions, then replaces the old pointer in the load instructions with 232 // the new pointer. If during the chasing it sees bitcast or GEP, it will 233 // create new bitcast or GEP with the new pointer and use them in the load 234 // instruction. 235 class PointerReplacer { 236 public: 237 PointerReplacer(InstCombiner &IC) : IC(IC) {} 238 void replacePointer(Instruction &I, Value *V); 239 240 private: 241 void findLoadAndReplace(Instruction &I); 242 void replace(Instruction *I); 243 Value *getReplacement(Value *I); 244 245 SmallVector<Instruction *, 4> Path; 246 MapVector<Value *, Value *> WorkMap; 247 InstCombiner &IC; 248 }; 249 } // end anonymous namespace 250 251 void PointerReplacer::findLoadAndReplace(Instruction &I) { 252 for (auto U : I.users()) { 253 auto *Inst = dyn_cast<Instruction>(&*U); 254 if (!Inst) 255 return; 256 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 257 if (isa<LoadInst>(Inst)) { 258 for (auto P : Path) 259 replace(P); 260 replace(Inst); 261 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 262 Path.push_back(Inst); 263 findLoadAndReplace(*Inst); 264 Path.pop_back(); 265 } else { 266 return; 267 } 268 } 269 } 270 271 Value *PointerReplacer::getReplacement(Value *V) { 272 auto Loc = WorkMap.find(V); 273 if (Loc != WorkMap.end()) 274 return Loc->second; 275 return nullptr; 276 } 277 278 void PointerReplacer::replace(Instruction *I) { 279 if (getReplacement(I)) 280 return; 281 282 if (auto *LT = dyn_cast<LoadInst>(I)) { 283 auto *V = getReplacement(LT->getPointerOperand()); 284 assert(V && "Operand not replaced"); 285 auto *NewI = new LoadInst(I->getType(), V, "", false, 286 IC.getDataLayout().getABITypeAlign(I->getType())); 287 NewI->takeName(LT); 288 IC.InsertNewInstWith(NewI, *LT); 289 IC.replaceInstUsesWith(*LT, NewI); 290 WorkMap[LT] = NewI; 291 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 292 auto *V = getReplacement(GEP->getPointerOperand()); 293 assert(V && "Operand not replaced"); 294 SmallVector<Value *, 8> Indices; 295 Indices.append(GEP->idx_begin(), GEP->idx_end()); 296 auto *NewI = GetElementPtrInst::Create( 297 V->getType()->getPointerElementType(), V, Indices); 298 IC.InsertNewInstWith(NewI, *GEP); 299 NewI->takeName(GEP); 300 WorkMap[GEP] = NewI; 301 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 302 auto *V = getReplacement(BC->getOperand(0)); 303 assert(V && "Operand not replaced"); 304 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 305 V->getType()->getPointerAddressSpace()); 306 auto *NewI = new BitCastInst(V, NewT); 307 IC.InsertNewInstWith(NewI, *BC); 308 NewI->takeName(BC); 309 WorkMap[BC] = NewI; 310 } else { 311 llvm_unreachable("should never reach here"); 312 } 313 } 314 315 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 316 #ifndef NDEBUG 317 auto *PT = cast<PointerType>(I.getType()); 318 auto *NT = cast<PointerType>(V->getType()); 319 assert(PT != NT && PT->getElementType() == NT->getElementType() && 320 "Invalid usage"); 321 #endif 322 WorkMap[&I] = V; 323 findLoadAndReplace(I); 324 } 325 326 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 327 if (auto *I = simplifyAllocaArraySize(*this, AI)) 328 return I; 329 330 if (AI.getAllocatedType()->isSized()) { 331 // Move all alloca's of zero byte objects to the entry block and merge them 332 // together. Note that we only do this for alloca's, because malloc should 333 // allocate and return a unique pointer, even for a zero byte allocation. 334 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) { 335 // For a zero sized alloca there is no point in doing an array allocation. 336 // This is helpful if the array size is a complicated expression not used 337 // elsewhere. 338 if (AI.isArrayAllocation()) 339 return replaceOperand(AI, 0, 340 ConstantInt::get(AI.getArraySize()->getType(), 1)); 341 342 // Get the first instruction in the entry block. 343 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 344 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 345 if (FirstInst != &AI) { 346 // If the entry block doesn't start with a zero-size alloca then move 347 // this one to the start of the entry block. There is no problem with 348 // dominance as the array size was forced to a constant earlier already. 349 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 350 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 351 DL.getTypeAllocSize(EntryAI->getAllocatedType()) 352 .getKnownMinSize() != 0) { 353 AI.moveBefore(FirstInst); 354 return &AI; 355 } 356 357 // Replace this zero-sized alloca with the one at the start of the entry 358 // block after ensuring that the address will be aligned enough for both 359 // types. 360 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); 361 EntryAI->setAlignment(MaxAlign); 362 if (AI.getType() != EntryAI->getType()) 363 return new BitCastInst(EntryAI, AI.getType()); 364 return replaceInstUsesWith(AI, EntryAI); 365 } 366 } 367 } 368 369 // Check to see if this allocation is only modified by a memcpy/memmove from 370 // a constant whose alignment is equal to or exceeds that of the allocation. 371 // If this is the case, we can change all users to use the constant global 372 // instead. This is commonly produced by the CFE by constructs like "void 373 // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently 374 // read. 375 SmallVector<Instruction *, 4> ToDelete; 376 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { 377 Align AllocaAlign = AI.getAlign(); 378 Align SourceAlign = getOrEnforceKnownAlignment( 379 Copy->getSource(), AllocaAlign, DL, &AI, &AC, &DT); 380 if (AllocaAlign <= SourceAlign && 381 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 382 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 383 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 384 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 385 eraseInstFromFunction(*ToDelete[i]); 386 Value *TheSrc = Copy->getSource(); 387 auto *SrcTy = TheSrc->getType(); 388 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 389 SrcTy->getPointerAddressSpace()); 390 Value *Cast = 391 Builder.CreatePointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 392 if (AI.getType()->getPointerAddressSpace() == 393 SrcTy->getPointerAddressSpace()) { 394 Instruction *NewI = replaceInstUsesWith(AI, Cast); 395 eraseInstFromFunction(*Copy); 396 ++NumGlobalCopies; 397 return NewI; 398 } 399 400 PointerReplacer PtrReplacer(*this); 401 PtrReplacer.replacePointer(AI, Cast); 402 ++NumGlobalCopies; 403 } 404 } 405 406 // At last, use the generic allocation site handler to aggressively remove 407 // unused allocas. 408 return visitAllocSite(AI); 409 } 410 411 // Are we allowed to form a atomic load or store of this type? 412 static bool isSupportedAtomicType(Type *Ty) { 413 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 414 } 415 416 /// Helper to combine a load to a new type. 417 /// 418 /// This just does the work of combining a load to a new type. It handles 419 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 420 /// loaded *value* type. This will convert it to a pointer, cast the operand to 421 /// that pointer type, load it, etc. 422 /// 423 /// Note that this will create all of the instructions with whatever insert 424 /// point the \c InstCombiner currently is using. 425 LoadInst *InstCombiner::combineLoadToNewType(LoadInst &LI, Type *NewTy, 426 const Twine &Suffix) { 427 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 428 "can't fold an atomic load to requested type"); 429 430 Value *Ptr = LI.getPointerOperand(); 431 unsigned AS = LI.getPointerAddressSpace(); 432 Value *NewPtr = nullptr; 433 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 434 NewPtr->getType()->getPointerElementType() == NewTy && 435 NewPtr->getType()->getPointerAddressSpace() == AS)) 436 NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 437 438 LoadInst *NewLoad = Builder.CreateAlignedLoad( 439 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); 440 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 441 copyMetadataForLoad(*NewLoad, LI); 442 return NewLoad; 443 } 444 445 /// Combine a store to a new type. 446 /// 447 /// Returns the newly created store instruction. 448 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 449 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 450 "can't fold an atomic store of requested type"); 451 452 Value *Ptr = SI.getPointerOperand(); 453 unsigned AS = SI.getPointerAddressSpace(); 454 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 455 SI.getAllMetadata(MD); 456 457 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 458 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 459 SI.getAlign(), SI.isVolatile()); 460 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 461 for (const auto &MDPair : MD) { 462 unsigned ID = MDPair.first; 463 MDNode *N = MDPair.second; 464 // Note, essentially every kind of metadata should be preserved here! This 465 // routine is supposed to clone a store instruction changing *only its 466 // type*. The only metadata it makes sense to drop is metadata which is 467 // invalidated when the pointer type changes. This should essentially 468 // never be the case in LLVM, but we explicitly switch over only known 469 // metadata to be conservatively correct. If you are adding metadata to 470 // LLVM which pertains to stores, you almost certainly want to add it 471 // here. 472 switch (ID) { 473 case LLVMContext::MD_dbg: 474 case LLVMContext::MD_tbaa: 475 case LLVMContext::MD_prof: 476 case LLVMContext::MD_fpmath: 477 case LLVMContext::MD_tbaa_struct: 478 case LLVMContext::MD_alias_scope: 479 case LLVMContext::MD_noalias: 480 case LLVMContext::MD_nontemporal: 481 case LLVMContext::MD_mem_parallel_loop_access: 482 case LLVMContext::MD_access_group: 483 // All of these directly apply. 484 NewStore->setMetadata(ID, N); 485 break; 486 case LLVMContext::MD_invariant_load: 487 case LLVMContext::MD_nonnull: 488 case LLVMContext::MD_range: 489 case LLVMContext::MD_align: 490 case LLVMContext::MD_dereferenceable: 491 case LLVMContext::MD_dereferenceable_or_null: 492 // These don't apply for stores. 493 break; 494 } 495 } 496 497 return NewStore; 498 } 499 500 /// Returns true if instruction represent minmax pattern like: 501 /// select ((cmp load V1, load V2), V1, V2). 502 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 503 assert(V->getType()->isPointerTy() && "Expected pointer type."); 504 // Ignore possible ty* to ixx* bitcast. 505 V = peekThroughBitcast(V); 506 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 507 // pattern. 508 CmpInst::Predicate Pred; 509 Instruction *L1; 510 Instruction *L2; 511 Value *LHS; 512 Value *RHS; 513 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 514 m_Value(LHS), m_Value(RHS)))) 515 return false; 516 LoadTy = L1->getType(); 517 return (match(L1, m_Load(m_Specific(LHS))) && 518 match(L2, m_Load(m_Specific(RHS)))) || 519 (match(L1, m_Load(m_Specific(RHS))) && 520 match(L2, m_Load(m_Specific(LHS)))); 521 } 522 523 /// Combine loads to match the type of their uses' value after looking 524 /// through intervening bitcasts. 525 /// 526 /// The core idea here is that if the result of a load is used in an operation, 527 /// we should load the type most conducive to that operation. For example, when 528 /// loading an integer and converting that immediately to a pointer, we should 529 /// instead directly load a pointer. 530 /// 531 /// However, this routine must never change the width of a load or the number of 532 /// loads as that would introduce a semantic change. This combine is expected to 533 /// be a semantic no-op which just allows loads to more closely model the types 534 /// of their consuming operations. 535 /// 536 /// Currently, we also refuse to change the precise type used for an atomic load 537 /// or a volatile load. This is debatable, and might be reasonable to change 538 /// later. However, it is risky in case some backend or other part of LLVM is 539 /// relying on the exact type loaded to select appropriate atomic operations. 540 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 541 // FIXME: We could probably with some care handle both volatile and ordered 542 // atomic loads here but it isn't clear that this is important. 543 if (!LI.isUnordered()) 544 return nullptr; 545 546 if (LI.use_empty()) 547 return nullptr; 548 549 // swifterror values can't be bitcasted. 550 if (LI.getPointerOperand()->isSwiftError()) 551 return nullptr; 552 553 Type *Ty = LI.getType(); 554 const DataLayout &DL = IC.getDataLayout(); 555 556 // Try to canonicalize loads which are only ever stored to operate over 557 // integers instead of any other type. We only do this when the loaded type 558 // is sized and has a size exactly the same as its store size and the store 559 // size is a legal integer type. 560 // Do not perform canonicalization if minmax pattern is found (to avoid 561 // infinite loop). 562 Type *Dummy; 563 if (!Ty->isIntegerTy() && Ty->isSized() && !isa<ScalableVectorType>(Ty) && 564 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 565 DL.typeSizeEqualsStoreSize(Ty) && !DL.isNonIntegralPointerType(Ty) && 566 !isMinMaxWithLoads( 567 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true), 568 Dummy)) { 569 if (all_of(LI.users(), [&LI](User *U) { 570 auto *SI = dyn_cast<StoreInst>(U); 571 return SI && SI->getPointerOperand() != &LI && 572 !SI->getPointerOperand()->isSwiftError(); 573 })) { 574 LoadInst *NewLoad = IC.combineLoadToNewType( 575 LI, Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 576 // Replace all the stores with stores of the newly loaded value. 577 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 578 auto *SI = cast<StoreInst>(*UI++); 579 IC.Builder.SetInsertPoint(SI); 580 combineStoreToNewValue(IC, *SI, NewLoad); 581 IC.eraseInstFromFunction(*SI); 582 } 583 assert(LI.use_empty() && "Failed to remove all users of the load!"); 584 // Return the old load so the combiner can delete it safely. 585 return &LI; 586 } 587 } 588 589 // Fold away bit casts of the loaded value by loading the desired type. 590 // We can do this for BitCastInsts as well as casts from and to pointer types, 591 // as long as those are noops (i.e., the source or dest type have the same 592 // bitwidth as the target's pointers). 593 if (LI.hasOneUse()) 594 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 595 if (CI->isNoopCast(DL)) 596 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 597 LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy()); 598 CI->replaceAllUsesWith(NewLoad); 599 IC.eraseInstFromFunction(*CI); 600 return &LI; 601 } 602 603 // FIXME: We should also canonicalize loads of vectors when their elements are 604 // cast to other types. 605 return nullptr; 606 } 607 608 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 609 // FIXME: We could probably with some care handle both volatile and atomic 610 // stores here but it isn't clear that this is important. 611 if (!LI.isSimple()) 612 return nullptr; 613 614 Type *T = LI.getType(); 615 if (!T->isAggregateType()) 616 return nullptr; 617 618 StringRef Name = LI.getName(); 619 assert(LI.getAlignment() && "Alignment must be set at this point"); 620 621 if (auto *ST = dyn_cast<StructType>(T)) { 622 // If the struct only have one element, we unpack. 623 auto NumElements = ST->getNumElements(); 624 if (NumElements == 1) { 625 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 626 ".unpack"); 627 AAMDNodes AAMD; 628 LI.getAAMetadata(AAMD); 629 NewLoad->setAAMetadata(AAMD); 630 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 631 UndefValue::get(T), NewLoad, 0, Name)); 632 } 633 634 // We don't want to break loads with padding here as we'd loose 635 // the knowledge that padding exists for the rest of the pipeline. 636 const DataLayout &DL = IC.getDataLayout(); 637 auto *SL = DL.getStructLayout(ST); 638 if (SL->hasPadding()) 639 return nullptr; 640 641 const auto Align = LI.getAlign(); 642 auto *Addr = LI.getPointerOperand(); 643 auto *IdxType = Type::getInt32Ty(T->getContext()); 644 auto *Zero = ConstantInt::get(IdxType, 0); 645 646 Value *V = UndefValue::get(T); 647 for (unsigned i = 0; i < NumElements; i++) { 648 Value *Indices[2] = { 649 Zero, 650 ConstantInt::get(IdxType, i), 651 }; 652 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 653 Name + ".elt"); 654 auto *L = IC.Builder.CreateAlignedLoad( 655 ST->getElementType(i), Ptr, 656 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); 657 // Propagate AA metadata. It'll still be valid on the narrowed load. 658 AAMDNodes AAMD; 659 LI.getAAMetadata(AAMD); 660 L->setAAMetadata(AAMD); 661 V = IC.Builder.CreateInsertValue(V, L, i); 662 } 663 664 V->setName(Name); 665 return IC.replaceInstUsesWith(LI, V); 666 } 667 668 if (auto *AT = dyn_cast<ArrayType>(T)) { 669 auto *ET = AT->getElementType(); 670 auto NumElements = AT->getNumElements(); 671 if (NumElements == 1) { 672 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 673 AAMDNodes AAMD; 674 LI.getAAMetadata(AAMD); 675 NewLoad->setAAMetadata(AAMD); 676 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 677 UndefValue::get(T), NewLoad, 0, Name)); 678 } 679 680 // Bail out if the array is too large. Ideally we would like to optimize 681 // arrays of arbitrary size but this has a terrible impact on compile time. 682 // The threshold here is chosen arbitrarily, maybe needs a little bit of 683 // tuning. 684 if (NumElements > IC.MaxArraySizeForCombine) 685 return nullptr; 686 687 const DataLayout &DL = IC.getDataLayout(); 688 auto EltSize = DL.getTypeAllocSize(ET); 689 const auto Align = LI.getAlign(); 690 691 auto *Addr = LI.getPointerOperand(); 692 auto *IdxType = Type::getInt64Ty(T->getContext()); 693 auto *Zero = ConstantInt::get(IdxType, 0); 694 695 Value *V = UndefValue::get(T); 696 uint64_t Offset = 0; 697 for (uint64_t i = 0; i < NumElements; i++) { 698 Value *Indices[2] = { 699 Zero, 700 ConstantInt::get(IdxType, i), 701 }; 702 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 703 Name + ".elt"); 704 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, 705 commonAlignment(Align, Offset), 706 Name + ".unpack"); 707 AAMDNodes AAMD; 708 LI.getAAMetadata(AAMD); 709 L->setAAMetadata(AAMD); 710 V = IC.Builder.CreateInsertValue(V, L, i); 711 Offset += EltSize; 712 } 713 714 V->setName(Name); 715 return IC.replaceInstUsesWith(LI, V); 716 } 717 718 return nullptr; 719 } 720 721 // If we can determine that all possible objects pointed to by the provided 722 // pointer value are, not only dereferenceable, but also definitively less than 723 // or equal to the provided maximum size, then return true. Otherwise, return 724 // false (constant global values and allocas fall into this category). 725 // 726 // FIXME: This should probably live in ValueTracking (or similar). 727 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 728 const DataLayout &DL) { 729 SmallPtrSet<Value *, 4> Visited; 730 SmallVector<Value *, 4> Worklist(1, V); 731 732 do { 733 Value *P = Worklist.pop_back_val(); 734 P = P->stripPointerCasts(); 735 736 if (!Visited.insert(P).second) 737 continue; 738 739 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 740 Worklist.push_back(SI->getTrueValue()); 741 Worklist.push_back(SI->getFalseValue()); 742 continue; 743 } 744 745 if (PHINode *PN = dyn_cast<PHINode>(P)) { 746 for (Value *IncValue : PN->incoming_values()) 747 Worklist.push_back(IncValue); 748 continue; 749 } 750 751 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 752 if (GA->isInterposable()) 753 return false; 754 Worklist.push_back(GA->getAliasee()); 755 continue; 756 } 757 758 // If we know how big this object is, and it is less than MaxSize, continue 759 // searching. Otherwise, return false. 760 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 761 if (!AI->getAllocatedType()->isSized()) 762 return false; 763 764 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 765 if (!CS) 766 return false; 767 768 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 769 // Make sure that, even if the multiplication below would wrap as an 770 // uint64_t, we still do the right thing. 771 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 772 return false; 773 continue; 774 } 775 776 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 777 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 778 return false; 779 780 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 781 if (InitSize > MaxSize) 782 return false; 783 continue; 784 } 785 786 return false; 787 } while (!Worklist.empty()); 788 789 return true; 790 } 791 792 // If we're indexing into an object of a known size, and the outer index is 793 // not a constant, but having any value but zero would lead to undefined 794 // behavior, replace it with zero. 795 // 796 // For example, if we have: 797 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 798 // ... 799 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 800 // ... = load i32* %arrayidx, align 4 801 // Then we know that we can replace %x in the GEP with i64 0. 802 // 803 // FIXME: We could fold any GEP index to zero that would cause UB if it were 804 // not zero. Currently, we only handle the first such index. Also, we could 805 // also search through non-zero constant indices if we kept track of the 806 // offsets those indices implied. 807 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 808 Instruction *MemI, unsigned &Idx) { 809 if (GEPI->getNumOperands() < 2) 810 return false; 811 812 // Find the first non-zero index of a GEP. If all indices are zero, return 813 // one past the last index. 814 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 815 unsigned I = 1; 816 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 817 Value *V = GEPI->getOperand(I); 818 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 819 if (CI->isZero()) 820 continue; 821 822 break; 823 } 824 825 return I; 826 }; 827 828 // Skip through initial 'zero' indices, and find the corresponding pointer 829 // type. See if the next index is not a constant. 830 Idx = FirstNZIdx(GEPI); 831 if (Idx == GEPI->getNumOperands()) 832 return false; 833 if (isa<Constant>(GEPI->getOperand(Idx))) 834 return false; 835 836 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 837 Type *AllocTy = 838 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 839 if (!AllocTy || !AllocTy->isSized()) 840 return false; 841 const DataLayout &DL = IC.getDataLayout(); 842 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 843 844 // If there are more indices after the one we might replace with a zero, make 845 // sure they're all non-negative. If any of them are negative, the overall 846 // address being computed might be before the base address determined by the 847 // first non-zero index. 848 auto IsAllNonNegative = [&]() { 849 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 850 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 851 if (Known.isNonNegative()) 852 continue; 853 return false; 854 } 855 856 return true; 857 }; 858 859 // FIXME: If the GEP is not inbounds, and there are extra indices after the 860 // one we'll replace, those could cause the address computation to wrap 861 // (rendering the IsAllNonNegative() check below insufficient). We can do 862 // better, ignoring zero indices (and other indices we can prove small 863 // enough not to wrap). 864 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 865 return false; 866 867 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 868 // also known to be dereferenceable. 869 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 870 IsAllNonNegative(); 871 } 872 873 // If we're indexing into an object with a variable index for the memory 874 // access, but the object has only one element, we can assume that the index 875 // will always be zero. If we replace the GEP, return it. 876 template <typename T> 877 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 878 T &MemI) { 879 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 880 unsigned Idx; 881 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 882 Instruction *NewGEPI = GEPI->clone(); 883 NewGEPI->setOperand(Idx, 884 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 885 NewGEPI->insertBefore(GEPI); 886 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 887 return NewGEPI; 888 } 889 } 890 891 return nullptr; 892 } 893 894 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 895 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 896 return false; 897 898 auto *Ptr = SI.getPointerOperand(); 899 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 900 Ptr = GEPI->getOperand(0); 901 return (isa<ConstantPointerNull>(Ptr) && 902 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 903 } 904 905 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 906 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 907 const Value *GEPI0 = GEPI->getOperand(0); 908 if (isa<ConstantPointerNull>(GEPI0) && 909 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 910 return true; 911 } 912 if (isa<UndefValue>(Op) || 913 (isa<ConstantPointerNull>(Op) && 914 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 915 return true; 916 return false; 917 } 918 919 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 920 Value *Op = LI.getOperand(0); 921 922 // Try to canonicalize the loaded type. 923 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 924 return Res; 925 926 // Attempt to improve the alignment. 927 Align KnownAlign = getOrEnforceKnownAlignment( 928 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); 929 if (KnownAlign > LI.getAlign()) 930 LI.setAlignment(KnownAlign); 931 932 // Replace GEP indices if possible. 933 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 934 Worklist.push(NewGEPI); 935 return &LI; 936 } 937 938 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 939 return Res; 940 941 // Do really simple store-to-load forwarding and load CSE, to catch cases 942 // where there are several consecutive memory accesses to the same location, 943 // separated by a few arithmetic operations. 944 BasicBlock::iterator BBI(LI); 945 bool IsLoadCSE = false; 946 if (Value *AvailableVal = FindAvailableLoadedValue( 947 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 948 if (IsLoadCSE) 949 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 950 951 return replaceInstUsesWith( 952 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 953 LI.getName() + ".cast")); 954 } 955 956 // None of the following transforms are legal for volatile/ordered atomic 957 // loads. Most of them do apply for unordered atomics. 958 if (!LI.isUnordered()) return nullptr; 959 960 // load(gep null, ...) -> unreachable 961 // load null/undef -> unreachable 962 // TODO: Consider a target hook for valid address spaces for this xforms. 963 if (canSimplifyNullLoadOrGEP(LI, Op)) { 964 // Insert a new store to null instruction before the load to indicate 965 // that this code is not reachable. We do this instead of inserting 966 // an unreachable instruction directly because we cannot modify the 967 // CFG. 968 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 969 Constant::getNullValue(Op->getType()), &LI); 970 SI->setDebugLoc(LI.getDebugLoc()); 971 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 972 } 973 974 if (Op->hasOneUse()) { 975 // Change select and PHI nodes to select values instead of addresses: this 976 // helps alias analysis out a lot, allows many others simplifications, and 977 // exposes redundancy in the code. 978 // 979 // Note that we cannot do the transformation unless we know that the 980 // introduced loads cannot trap! Something like this is valid as long as 981 // the condition is always false: load (select bool %C, int* null, int* %G), 982 // but it would not be valid if we transformed it to load from null 983 // unconditionally. 984 // 985 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 986 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 987 Align Alignment = LI.getAlign(); 988 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 989 Alignment, DL, SI) && 990 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 991 Alignment, DL, SI)) { 992 LoadInst *V1 = 993 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 994 SI->getOperand(1)->getName() + ".val"); 995 LoadInst *V2 = 996 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 997 SI->getOperand(2)->getName() + ".val"); 998 assert(LI.isUnordered() && "implied by above"); 999 V1->setAlignment(Alignment); 1000 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1001 V2->setAlignment(Alignment); 1002 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1003 return SelectInst::Create(SI->getCondition(), V1, V2); 1004 } 1005 1006 // load (select (cond, null, P)) -> load P 1007 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1008 !NullPointerIsDefined(SI->getFunction(), 1009 LI.getPointerAddressSpace())) 1010 return replaceOperand(LI, 0, SI->getOperand(2)); 1011 1012 // load (select (cond, P, null)) -> load P 1013 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1014 !NullPointerIsDefined(SI->getFunction(), 1015 LI.getPointerAddressSpace())) 1016 return replaceOperand(LI, 0, SI->getOperand(1)); 1017 } 1018 } 1019 return nullptr; 1020 } 1021 1022 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1023 /// 1024 /// \returns underlying value that was "cast", or nullptr otherwise. 1025 /// 1026 /// For example, if we have: 1027 /// 1028 /// %E0 = extractelement <2 x double> %U, i32 0 1029 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1030 /// %E1 = extractelement <2 x double> %U, i32 1 1031 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1032 /// 1033 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1034 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1035 /// Note that %U may contain non-undef values where %V1 has undef. 1036 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1037 Value *U = nullptr; 1038 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1039 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1040 if (!E) 1041 return nullptr; 1042 auto *W = E->getVectorOperand(); 1043 if (!U) 1044 U = W; 1045 else if (U != W) 1046 return nullptr; 1047 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1048 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1049 return nullptr; 1050 V = IV->getAggregateOperand(); 1051 } 1052 if (!isa<UndefValue>(V) ||!U) 1053 return nullptr; 1054 1055 auto *UT = cast<VectorType>(U->getType()); 1056 auto *VT = V->getType(); 1057 // Check that types UT and VT are bitwise isomorphic. 1058 const auto &DL = IC.getDataLayout(); 1059 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1060 return nullptr; 1061 } 1062 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1063 if (AT->getNumElements() != UT->getNumElements()) 1064 return nullptr; 1065 } else { 1066 auto *ST = cast<StructType>(VT); 1067 if (ST->getNumElements() != UT->getNumElements()) 1068 return nullptr; 1069 for (const auto *EltT : ST->elements()) { 1070 if (EltT != UT->getElementType()) 1071 return nullptr; 1072 } 1073 } 1074 return U; 1075 } 1076 1077 /// Combine stores to match the type of value being stored. 1078 /// 1079 /// The core idea here is that the memory does not have any intrinsic type and 1080 /// where we can we should match the type of a store to the type of value being 1081 /// stored. 1082 /// 1083 /// However, this routine must never change the width of a store or the number of 1084 /// stores as that would introduce a semantic change. This combine is expected to 1085 /// be a semantic no-op which just allows stores to more closely model the types 1086 /// of their incoming values. 1087 /// 1088 /// Currently, we also refuse to change the precise type used for an atomic or 1089 /// volatile store. This is debatable, and might be reasonable to change later. 1090 /// However, it is risky in case some backend or other part of LLVM is relying 1091 /// on the exact type stored to select appropriate atomic operations. 1092 /// 1093 /// \returns true if the store was successfully combined away. This indicates 1094 /// the caller must erase the store instruction. We have to let the caller erase 1095 /// the store instruction as otherwise there is no way to signal whether it was 1096 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1097 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1098 // FIXME: We could probably with some care handle both volatile and ordered 1099 // atomic stores here but it isn't clear that this is important. 1100 if (!SI.isUnordered()) 1101 return false; 1102 1103 // swifterror values can't be bitcasted. 1104 if (SI.getPointerOperand()->isSwiftError()) 1105 return false; 1106 1107 Value *V = SI.getValueOperand(); 1108 1109 // Fold away bit casts of the stored value by storing the original type. 1110 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1111 V = BC->getOperand(0); 1112 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1113 combineStoreToNewValue(IC, SI, V); 1114 return true; 1115 } 1116 } 1117 1118 if (Value *U = likeBitCastFromVector(IC, V)) 1119 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1120 combineStoreToNewValue(IC, SI, U); 1121 return true; 1122 } 1123 1124 // FIXME: We should also canonicalize stores of vectors when their elements 1125 // are cast to other types. 1126 return false; 1127 } 1128 1129 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1130 // FIXME: We could probably with some care handle both volatile and atomic 1131 // stores here but it isn't clear that this is important. 1132 if (!SI.isSimple()) 1133 return false; 1134 1135 Value *V = SI.getValueOperand(); 1136 Type *T = V->getType(); 1137 1138 if (!T->isAggregateType()) 1139 return false; 1140 1141 if (auto *ST = dyn_cast<StructType>(T)) { 1142 // If the struct only have one element, we unpack. 1143 unsigned Count = ST->getNumElements(); 1144 if (Count == 1) { 1145 V = IC.Builder.CreateExtractValue(V, 0); 1146 combineStoreToNewValue(IC, SI, V); 1147 return true; 1148 } 1149 1150 // We don't want to break loads with padding here as we'd loose 1151 // the knowledge that padding exists for the rest of the pipeline. 1152 const DataLayout &DL = IC.getDataLayout(); 1153 auto *SL = DL.getStructLayout(ST); 1154 if (SL->hasPadding()) 1155 return false; 1156 1157 const auto Align = SI.getAlign(); 1158 1159 SmallString<16> EltName = V->getName(); 1160 EltName += ".elt"; 1161 auto *Addr = SI.getPointerOperand(); 1162 SmallString<16> AddrName = Addr->getName(); 1163 AddrName += ".repack"; 1164 1165 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1166 auto *Zero = ConstantInt::get(IdxType, 0); 1167 for (unsigned i = 0; i < Count; i++) { 1168 Value *Indices[2] = { 1169 Zero, 1170 ConstantInt::get(IdxType, i), 1171 }; 1172 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1173 AddrName); 1174 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1175 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); 1176 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1177 AAMDNodes AAMD; 1178 SI.getAAMetadata(AAMD); 1179 NS->setAAMetadata(AAMD); 1180 } 1181 1182 return true; 1183 } 1184 1185 if (auto *AT = dyn_cast<ArrayType>(T)) { 1186 // If the array only have one element, we unpack. 1187 auto NumElements = AT->getNumElements(); 1188 if (NumElements == 1) { 1189 V = IC.Builder.CreateExtractValue(V, 0); 1190 combineStoreToNewValue(IC, SI, V); 1191 return true; 1192 } 1193 1194 // Bail out if the array is too large. Ideally we would like to optimize 1195 // arrays of arbitrary size but this has a terrible impact on compile time. 1196 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1197 // tuning. 1198 if (NumElements > IC.MaxArraySizeForCombine) 1199 return false; 1200 1201 const DataLayout &DL = IC.getDataLayout(); 1202 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1203 const auto Align = SI.getAlign(); 1204 1205 SmallString<16> EltName = V->getName(); 1206 EltName += ".elt"; 1207 auto *Addr = SI.getPointerOperand(); 1208 SmallString<16> AddrName = Addr->getName(); 1209 AddrName += ".repack"; 1210 1211 auto *IdxType = Type::getInt64Ty(T->getContext()); 1212 auto *Zero = ConstantInt::get(IdxType, 0); 1213 1214 uint64_t Offset = 0; 1215 for (uint64_t i = 0; i < NumElements; i++) { 1216 Value *Indices[2] = { 1217 Zero, 1218 ConstantInt::get(IdxType, i), 1219 }; 1220 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1221 AddrName); 1222 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1223 auto EltAlign = commonAlignment(Align, Offset); 1224 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1225 AAMDNodes AAMD; 1226 SI.getAAMetadata(AAMD); 1227 NS->setAAMetadata(AAMD); 1228 Offset += EltSize; 1229 } 1230 1231 return true; 1232 } 1233 1234 return false; 1235 } 1236 1237 /// equivalentAddressValues - Test if A and B will obviously have the same 1238 /// value. This includes recognizing that %t0 and %t1 will have the same 1239 /// value in code like this: 1240 /// %t0 = getelementptr \@a, 0, 3 1241 /// store i32 0, i32* %t0 1242 /// %t1 = getelementptr \@a, 0, 3 1243 /// %t2 = load i32* %t1 1244 /// 1245 static bool equivalentAddressValues(Value *A, Value *B) { 1246 // Test if the values are trivially equivalent. 1247 if (A == B) return true; 1248 1249 // Test if the values come form identical arithmetic instructions. 1250 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1251 // its only used to compare two uses within the same basic block, which 1252 // means that they'll always either have the same value or one of them 1253 // will have an undefined value. 1254 if (isa<BinaryOperator>(A) || 1255 isa<CastInst>(A) || 1256 isa<PHINode>(A) || 1257 isa<GetElementPtrInst>(A)) 1258 if (Instruction *BI = dyn_cast<Instruction>(B)) 1259 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1260 return true; 1261 1262 // Otherwise they may not be equivalent. 1263 return false; 1264 } 1265 1266 /// Converts store (bitcast (load (bitcast (select ...)))) to 1267 /// store (load (select ...)), where select is minmax: 1268 /// select ((cmp load V1, load V2), V1, V2). 1269 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC, 1270 StoreInst &SI) { 1271 // bitcast? 1272 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1273 return false; 1274 // load? integer? 1275 Value *LoadAddr; 1276 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1277 return false; 1278 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1279 if (!LI->getType()->isIntegerTy()) 1280 return false; 1281 Type *CmpLoadTy; 1282 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1283 return false; 1284 1285 // Make sure the type would actually change. 1286 // This condition can be hit with chains of bitcasts. 1287 if (LI->getType() == CmpLoadTy) 1288 return false; 1289 1290 // Make sure we're not changing the size of the load/store. 1291 const auto &DL = IC.getDataLayout(); 1292 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1293 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1294 return false; 1295 1296 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1297 auto *SI = dyn_cast<StoreInst>(U); 1298 return SI && SI->getPointerOperand() != LI && 1299 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && 1300 !SI->getPointerOperand()->isSwiftError(); 1301 })) 1302 return false; 1303 1304 IC.Builder.SetInsertPoint(LI); 1305 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1306 // Replace all the stores with stores of the newly loaded value. 1307 for (auto *UI : LI->users()) { 1308 auto *USI = cast<StoreInst>(UI); 1309 IC.Builder.SetInsertPoint(USI); 1310 combineStoreToNewValue(IC, *USI, NewLI); 1311 } 1312 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1313 IC.eraseInstFromFunction(*LI); 1314 return true; 1315 } 1316 1317 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1318 Value *Val = SI.getOperand(0); 1319 Value *Ptr = SI.getOperand(1); 1320 1321 // Try to canonicalize the stored type. 1322 if (combineStoreToValueType(*this, SI)) 1323 return eraseInstFromFunction(SI); 1324 1325 // Attempt to improve the alignment. 1326 const Align KnownAlign = getOrEnforceKnownAlignment( 1327 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); 1328 if (KnownAlign > SI.getAlign()) 1329 SI.setAlignment(KnownAlign); 1330 1331 // Try to canonicalize the stored type. 1332 if (unpackStoreToAggregate(*this, SI)) 1333 return eraseInstFromFunction(SI); 1334 1335 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1336 return eraseInstFromFunction(SI); 1337 1338 // Replace GEP indices if possible. 1339 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1340 Worklist.push(NewGEPI); 1341 return &SI; 1342 } 1343 1344 // Don't hack volatile/ordered stores. 1345 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1346 if (!SI.isUnordered()) return nullptr; 1347 1348 // If the RHS is an alloca with a single use, zapify the store, making the 1349 // alloca dead. 1350 if (Ptr->hasOneUse()) { 1351 if (isa<AllocaInst>(Ptr)) 1352 return eraseInstFromFunction(SI); 1353 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1354 if (isa<AllocaInst>(GEP->getOperand(0))) { 1355 if (GEP->getOperand(0)->hasOneUse()) 1356 return eraseInstFromFunction(SI); 1357 } 1358 } 1359 } 1360 1361 // If we have a store to a location which is known constant, we can conclude 1362 // that the store must be storing the constant value (else the memory 1363 // wouldn't be constant), and this must be a noop. 1364 if (AA->pointsToConstantMemory(Ptr)) 1365 return eraseInstFromFunction(SI); 1366 1367 // Do really simple DSE, to catch cases where there are several consecutive 1368 // stores to the same location, separated by a few arithmetic operations. This 1369 // situation often occurs with bitfield accesses. 1370 BasicBlock::iterator BBI(SI); 1371 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1372 --ScanInsts) { 1373 --BBI; 1374 // Don't count debug info directives, lest they affect codegen, 1375 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1376 if (isa<DbgInfoIntrinsic>(BBI) || 1377 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1378 ScanInsts++; 1379 continue; 1380 } 1381 1382 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1383 // Prev store isn't volatile, and stores to the same location? 1384 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1385 SI.getOperand(1))) { 1386 ++NumDeadStore; 1387 // Manually add back the original store to the worklist now, so it will 1388 // be processed after the operands of the removed store, as this may 1389 // expose additional DSE opportunities. 1390 Worklist.push(&SI); 1391 eraseInstFromFunction(*PrevSI); 1392 return nullptr; 1393 } 1394 break; 1395 } 1396 1397 // If this is a load, we have to stop. However, if the loaded value is from 1398 // the pointer we're loading and is producing the pointer we're storing, 1399 // then *this* store is dead (X = load P; store X -> P). 1400 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1401 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1402 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1403 return eraseInstFromFunction(SI); 1404 } 1405 1406 // Otherwise, this is a load from some other location. Stores before it 1407 // may not be dead. 1408 break; 1409 } 1410 1411 // Don't skip over loads, throws or things that can modify memory. 1412 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1413 break; 1414 } 1415 1416 // store X, null -> turns into 'unreachable' in SimplifyCFG 1417 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1418 if (canSimplifyNullStoreOrGEP(SI)) { 1419 if (!isa<UndefValue>(Val)) 1420 return replaceOperand(SI, 0, UndefValue::get(Val->getType())); 1421 return nullptr; // Do not modify these! 1422 } 1423 1424 // store undef, Ptr -> noop 1425 if (isa<UndefValue>(Val)) 1426 return eraseInstFromFunction(SI); 1427 1428 return nullptr; 1429 } 1430 1431 /// Try to transform: 1432 /// if () { *P = v1; } else { *P = v2 } 1433 /// or: 1434 /// *P = v1; if () { *P = v2; } 1435 /// into a phi node with a store in the successor. 1436 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) { 1437 if (!SI.isUnordered()) 1438 return false; // This code has not been audited for volatile/ordered case. 1439 1440 // Check if the successor block has exactly 2 incoming edges. 1441 BasicBlock *StoreBB = SI.getParent(); 1442 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1443 if (!DestBB->hasNPredecessors(2)) 1444 return false; 1445 1446 // Capture the other block (the block that doesn't contain our store). 1447 pred_iterator PredIter = pred_begin(DestBB); 1448 if (*PredIter == StoreBB) 1449 ++PredIter; 1450 BasicBlock *OtherBB = *PredIter; 1451 1452 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1453 // for example, if SI is in an infinite loop. 1454 if (StoreBB == DestBB || OtherBB == DestBB) 1455 return false; 1456 1457 // Verify that the other block ends in a branch and is not otherwise empty. 1458 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1459 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1460 if (!OtherBr || BBI == OtherBB->begin()) 1461 return false; 1462 1463 // If the other block ends in an unconditional branch, check for the 'if then 1464 // else' case. There is an instruction before the branch. 1465 StoreInst *OtherStore = nullptr; 1466 if (OtherBr->isUnconditional()) { 1467 --BBI; 1468 // Skip over debugging info. 1469 while (isa<DbgInfoIntrinsic>(BBI) || 1470 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1471 if (BBI==OtherBB->begin()) 1472 return false; 1473 --BBI; 1474 } 1475 // If this isn't a store, isn't a store to the same location, or is not the 1476 // right kind of store, bail out. 1477 OtherStore = dyn_cast<StoreInst>(BBI); 1478 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1479 !SI.isSameOperationAs(OtherStore)) 1480 return false; 1481 } else { 1482 // Otherwise, the other block ended with a conditional branch. If one of the 1483 // destinations is StoreBB, then we have the if/then case. 1484 if (OtherBr->getSuccessor(0) != StoreBB && 1485 OtherBr->getSuccessor(1) != StoreBB) 1486 return false; 1487 1488 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1489 // if/then triangle. See if there is a store to the same ptr as SI that 1490 // lives in OtherBB. 1491 for (;; --BBI) { 1492 // Check to see if we find the matching store. 1493 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1494 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1495 !SI.isSameOperationAs(OtherStore)) 1496 return false; 1497 break; 1498 } 1499 // If we find something that may be using or overwriting the stored 1500 // value, or if we run out of instructions, we can't do the transform. 1501 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1502 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1503 return false; 1504 } 1505 1506 // In order to eliminate the store in OtherBr, we have to make sure nothing 1507 // reads or overwrites the stored value in StoreBB. 1508 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1509 // FIXME: This should really be AA driven. 1510 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1511 return false; 1512 } 1513 } 1514 1515 // Insert a PHI node now if we need it. 1516 Value *MergedVal = OtherStore->getOperand(0); 1517 // The debug locations of the original instructions might differ. Merge them. 1518 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1519 OtherStore->getDebugLoc()); 1520 if (MergedVal != SI.getOperand(0)) { 1521 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1522 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1523 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1524 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1525 PN->setDebugLoc(MergedLoc); 1526 } 1527 1528 // Advance to a place where it is safe to insert the new store and insert it. 1529 BBI = DestBB->getFirstInsertionPt(); 1530 StoreInst *NewSI = 1531 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), 1532 SI.getOrdering(), SI.getSyncScopeID()); 1533 InsertNewInstBefore(NewSI, *BBI); 1534 NewSI->setDebugLoc(MergedLoc); 1535 1536 // If the two stores had AA tags, merge them. 1537 AAMDNodes AATags; 1538 SI.getAAMetadata(AATags); 1539 if (AATags) { 1540 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1541 NewSI->setAAMetadata(AATags); 1542 } 1543 1544 // Nuke the old stores. 1545 eraseInstFromFunction(SI); 1546 eraseInstFromFunction(*OtherStore); 1547 return true; 1548 } 1549