xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/Transforms/InstCombine/InstCombiner.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 using namespace llvm;
27 using namespace PatternMatch;
28 
29 #define DEBUG_TYPE "instcombine"
30 
31 STATISTIC(NumDeadStore, "Number of dead stores eliminated");
32 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
33 
34 static cl::opt<unsigned> MaxCopiedFromConstantUsers(
35     "instcombine-max-copied-from-constant-users", cl::init(300),
36     cl::desc("Maximum users to visit in copy from constant transform"),
37     cl::Hidden);
38 
39 namespace llvm {
40 cl::opt<bool> EnableInferAlignmentPass(
41     "enable-infer-alignment-pass", cl::init(true), cl::Hidden, cl::ZeroOrMore,
42     cl::desc("Enable the InferAlignment pass, disabling alignment inference in "
43              "InstCombine"));
44 }
45 
46 /// isOnlyCopiedFromConstantMemory - Recursively walk the uses of a (derived)
47 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
48 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
49 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
50 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
51 /// the alloca, and if the source pointer is a pointer to a constant memory
52 /// location, we can optimize this.
53 static bool
54 isOnlyCopiedFromConstantMemory(AAResults *AA, AllocaInst *V,
55                                MemTransferInst *&TheCopy,
56                                SmallVectorImpl<Instruction *> &ToDelete) {
57   // We track lifetime intrinsics as we encounter them.  If we decide to go
58   // ahead and replace the value with the memory location, this lets the caller
59   // quickly eliminate the markers.
60 
61   using ValueAndIsOffset = PointerIntPair<Value *, 1, bool>;
62   SmallVector<ValueAndIsOffset, 32> Worklist;
63   SmallPtrSet<ValueAndIsOffset, 32> Visited;
64   Worklist.emplace_back(V, false);
65   while (!Worklist.empty()) {
66     ValueAndIsOffset Elem = Worklist.pop_back_val();
67     if (!Visited.insert(Elem).second)
68       continue;
69     if (Visited.size() > MaxCopiedFromConstantUsers)
70       return false;
71 
72     const auto [Value, IsOffset] = Elem;
73     for (auto &U : Value->uses()) {
74       auto *I = cast<Instruction>(U.getUser());
75 
76       if (auto *LI = dyn_cast<LoadInst>(I)) {
77         // Ignore non-volatile loads, they are always ok.
78         if (!LI->isSimple()) return false;
79         continue;
80       }
81 
82       if (isa<PHINode, SelectInst>(I)) {
83         // We set IsOffset=true, to forbid the memcpy from occurring after the
84         // phi: If one of the phi operands is not based on the alloca, we
85         // would incorrectly omit a write.
86         Worklist.emplace_back(I, true);
87         continue;
88       }
89       if (isa<BitCastInst, AddrSpaceCastInst>(I)) {
90         // If uses of the bitcast are ok, we are ok.
91         Worklist.emplace_back(I, IsOffset);
92         continue;
93       }
94       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
95         // If the GEP has all zero indices, it doesn't offset the pointer. If it
96         // doesn't, it does.
97         Worklist.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
98         continue;
99       }
100 
101       if (auto *Call = dyn_cast<CallBase>(I)) {
102         // If this is the function being called then we treat it like a load and
103         // ignore it.
104         if (Call->isCallee(&U))
105           continue;
106 
107         unsigned DataOpNo = Call->getDataOperandNo(&U);
108         bool IsArgOperand = Call->isArgOperand(&U);
109 
110         // Inalloca arguments are clobbered by the call.
111         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
112           return false;
113 
114         // If this call site doesn't modify the memory, then we know it is just
115         // a load (but one that potentially returns the value itself), so we can
116         // ignore it if we know that the value isn't captured.
117         bool NoCapture = Call->doesNotCapture(DataOpNo);
118         if ((Call->onlyReadsMemory() && (Call->use_empty() || NoCapture)) ||
119             (Call->onlyReadsMemory(DataOpNo) && NoCapture))
120           continue;
121 
122         // If this is being passed as a byval argument, the caller is making a
123         // copy, so it is only a read of the alloca.
124         if (IsArgOperand && Call->isByValArgument(DataOpNo))
125           continue;
126       }
127 
128       // Lifetime intrinsics can be handled by the caller.
129       if (I->isLifetimeStartOrEnd()) {
130         assert(I->use_empty() && "Lifetime markers have no result to use!");
131         ToDelete.push_back(I);
132         continue;
133       }
134 
135       // If this is isn't our memcpy/memmove, reject it as something we can't
136       // handle.
137       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
138       if (!MI)
139         return false;
140 
141       // If the transfer is volatile, reject it.
142       if (MI->isVolatile())
143         return false;
144 
145       // If the transfer is using the alloca as a source of the transfer, then
146       // ignore it since it is a load (unless the transfer is volatile).
147       if (U.getOperandNo() == 1)
148         continue;
149 
150       // If we already have seen a copy, reject the second one.
151       if (TheCopy) return false;
152 
153       // If the pointer has been offset from the start of the alloca, we can't
154       // safely handle this.
155       if (IsOffset) return false;
156 
157       // If the memintrinsic isn't using the alloca as the dest, reject it.
158       if (U.getOperandNo() != 0) return false;
159 
160       // If the source of the memcpy/move is not constant, reject it.
161       if (isModSet(AA->getModRefInfoMask(MI->getSource())))
162         return false;
163 
164       // Otherwise, the transform is safe.  Remember the copy instruction.
165       TheCopy = MI;
166     }
167   }
168   return true;
169 }
170 
171 /// isOnlyCopiedFromConstantMemory - Return true if the specified alloca is only
172 /// modified by a copy from a constant memory location. If we can prove this, we
173 /// can replace any uses of the alloca with uses of the memory location
174 /// directly.
175 static MemTransferInst *
176 isOnlyCopiedFromConstantMemory(AAResults *AA,
177                                AllocaInst *AI,
178                                SmallVectorImpl<Instruction *> &ToDelete) {
179   MemTransferInst *TheCopy = nullptr;
180   if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
181     return TheCopy;
182   return nullptr;
183 }
184 
185 /// Returns true if V is dereferenceable for size of alloca.
186 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
187                                            const DataLayout &DL) {
188   if (AI->isArrayAllocation())
189     return false;
190   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
191   if (!AllocaSize)
192     return false;
193   return isDereferenceableAndAlignedPointer(V, AI->getAlign(),
194                                             APInt(64, AllocaSize), DL);
195 }
196 
197 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
198                                             AllocaInst &AI, DominatorTree &DT) {
199   // Check for array size of 1 (scalar allocation).
200   if (!AI.isArrayAllocation()) {
201     // i32 1 is the canonical array size for scalar allocations.
202     if (AI.getArraySize()->getType()->isIntegerTy(32))
203       return nullptr;
204 
205     // Canonicalize it.
206     return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
207   }
208 
209   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
210   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
211     if (C->getValue().getActiveBits() <= 64) {
212       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
213       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, AI.getAddressSpace(),
214                                                 nullptr, AI.getName());
215       New->setAlignment(AI.getAlign());
216       New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
217 
218       replaceAllDbgUsesWith(AI, *New, *New, DT);
219       return IC.replaceInstUsesWith(AI, New);
220     }
221   }
222 
223   if (isa<UndefValue>(AI.getArraySize()))
224     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
225 
226   // Ensure that the alloca array size argument has type equal to the offset
227   // size of the alloca() pointer, which, in the tyical case, is intptr_t,
228   // so that any casting is exposed early.
229   Type *PtrIdxTy = IC.getDataLayout().getIndexType(AI.getType());
230   if (AI.getArraySize()->getType() != PtrIdxTy) {
231     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), PtrIdxTy, false);
232     return IC.replaceOperand(AI, 0, V);
233   }
234 
235   return nullptr;
236 }
237 
238 namespace {
239 // If I and V are pointers in different address space, it is not allowed to
240 // use replaceAllUsesWith since I and V have different types. A
241 // non-target-specific transformation should not use addrspacecast on V since
242 // the two address space may be disjoint depending on target.
243 //
244 // This class chases down uses of the old pointer until reaching the load
245 // instructions, then replaces the old pointer in the load instructions with
246 // the new pointer. If during the chasing it sees bitcast or GEP, it will
247 // create new bitcast or GEP with the new pointer and use them in the load
248 // instruction.
249 class PointerReplacer {
250 public:
251   PointerReplacer(InstCombinerImpl &IC, Instruction &Root, unsigned SrcAS)
252       : IC(IC), Root(Root), FromAS(SrcAS) {}
253 
254   bool collectUsers();
255   void replacePointer(Value *V);
256 
257 private:
258   bool collectUsersRecursive(Instruction &I);
259   void replace(Instruction *I);
260   Value *getReplacement(Value *I);
261   bool isAvailable(Instruction *I) const {
262     return I == &Root || Worklist.contains(I);
263   }
264 
265   bool isEqualOrValidAddrSpaceCast(const Instruction *I,
266                                    unsigned FromAS) const {
267     const auto *ASC = dyn_cast<AddrSpaceCastInst>(I);
268     if (!ASC)
269       return false;
270     unsigned ToAS = ASC->getDestAddressSpace();
271     return (FromAS == ToAS) || IC.isValidAddrSpaceCast(FromAS, ToAS);
272   }
273 
274   SmallPtrSet<Instruction *, 32> ValuesToRevisit;
275   SmallSetVector<Instruction *, 4> Worklist;
276   MapVector<Value *, Value *> WorkMap;
277   InstCombinerImpl &IC;
278   Instruction &Root;
279   unsigned FromAS;
280 };
281 } // end anonymous namespace
282 
283 bool PointerReplacer::collectUsers() {
284   if (!collectUsersRecursive(Root))
285     return false;
286 
287   // Ensure that all outstanding (indirect) users of I
288   // are inserted into the Worklist. Return false
289   // otherwise.
290   for (auto *Inst : ValuesToRevisit)
291     if (!Worklist.contains(Inst))
292       return false;
293   return true;
294 }
295 
296 bool PointerReplacer::collectUsersRecursive(Instruction &I) {
297   for (auto *U : I.users()) {
298     auto *Inst = cast<Instruction>(&*U);
299     if (auto *Load = dyn_cast<LoadInst>(Inst)) {
300       if (Load->isVolatile())
301         return false;
302       Worklist.insert(Load);
303     } else if (auto *PHI = dyn_cast<PHINode>(Inst)) {
304       // All incoming values must be instructions for replacability
305       if (any_of(PHI->incoming_values(),
306                  [](Value *V) { return !isa<Instruction>(V); }))
307         return false;
308 
309       // If at least one incoming value of the PHI is not in Worklist,
310       // store the PHI for revisiting and skip this iteration of the
311       // loop.
312       if (any_of(PHI->incoming_values(), [this](Value *V) {
313             return !isAvailable(cast<Instruction>(V));
314           })) {
315         ValuesToRevisit.insert(Inst);
316         continue;
317       }
318 
319       Worklist.insert(PHI);
320       if (!collectUsersRecursive(*PHI))
321         return false;
322     } else if (auto *SI = dyn_cast<SelectInst>(Inst)) {
323       if (!isa<Instruction>(SI->getTrueValue()) ||
324           !isa<Instruction>(SI->getFalseValue()))
325         return false;
326 
327       if (!isAvailable(cast<Instruction>(SI->getTrueValue())) ||
328           !isAvailable(cast<Instruction>(SI->getFalseValue()))) {
329         ValuesToRevisit.insert(Inst);
330         continue;
331       }
332       Worklist.insert(SI);
333       if (!collectUsersRecursive(*SI))
334         return false;
335     } else if (isa<GetElementPtrInst>(Inst)) {
336       Worklist.insert(Inst);
337       if (!collectUsersRecursive(*Inst))
338         return false;
339     } else if (auto *MI = dyn_cast<MemTransferInst>(Inst)) {
340       if (MI->isVolatile())
341         return false;
342       Worklist.insert(Inst);
343     } else if (isEqualOrValidAddrSpaceCast(Inst, FromAS)) {
344       Worklist.insert(Inst);
345       if (!collectUsersRecursive(*Inst))
346         return false;
347     } else if (Inst->isLifetimeStartOrEnd()) {
348       continue;
349     } else {
350       // TODO: For arbitrary uses with address space mismatches, should we check
351       // if we can introduce a valid addrspacecast?
352       LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
353       return false;
354     }
355   }
356 
357   return true;
358 }
359 
360 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); }
361 
362 void PointerReplacer::replace(Instruction *I) {
363   if (getReplacement(I))
364     return;
365 
366   if (auto *LT = dyn_cast<LoadInst>(I)) {
367     auto *V = getReplacement(LT->getPointerOperand());
368     assert(V && "Operand not replaced");
369     auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
370                               LT->getAlign(), LT->getOrdering(),
371                               LT->getSyncScopeID());
372     NewI->takeName(LT);
373     copyMetadataForLoad(*NewI, *LT);
374 
375     IC.InsertNewInstWith(NewI, LT->getIterator());
376     IC.replaceInstUsesWith(*LT, NewI);
377     WorkMap[LT] = NewI;
378   } else if (auto *PHI = dyn_cast<PHINode>(I)) {
379     Type *NewTy = getReplacement(PHI->getIncomingValue(0))->getType();
380     auto *NewPHI = PHINode::Create(NewTy, PHI->getNumIncomingValues(),
381                                    PHI->getName(), PHI->getIterator());
382     for (unsigned int I = 0; I < PHI->getNumIncomingValues(); ++I)
383       NewPHI->addIncoming(getReplacement(PHI->getIncomingValue(I)),
384                           PHI->getIncomingBlock(I));
385     WorkMap[PHI] = NewPHI;
386   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
387     auto *V = getReplacement(GEP->getPointerOperand());
388     assert(V && "Operand not replaced");
389     SmallVector<Value *, 8> Indices(GEP->indices());
390     auto *NewI =
391         GetElementPtrInst::Create(GEP->getSourceElementType(), V, Indices);
392     IC.InsertNewInstWith(NewI, GEP->getIterator());
393     NewI->takeName(GEP);
394     NewI->setNoWrapFlags(GEP->getNoWrapFlags());
395     WorkMap[GEP] = NewI;
396   } else if (auto *SI = dyn_cast<SelectInst>(I)) {
397     Value *TrueValue = SI->getTrueValue();
398     Value *FalseValue = SI->getFalseValue();
399     if (Value *Replacement = getReplacement(TrueValue))
400       TrueValue = Replacement;
401     if (Value *Replacement = getReplacement(FalseValue))
402       FalseValue = Replacement;
403     auto *NewSI = SelectInst::Create(SI->getCondition(), TrueValue, FalseValue,
404                                      SI->getName(), nullptr, SI);
405     IC.InsertNewInstWith(NewSI, SI->getIterator());
406     NewSI->takeName(SI);
407     WorkMap[SI] = NewSI;
408   } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
409     auto *DestV = MemCpy->getRawDest();
410     auto *SrcV = MemCpy->getRawSource();
411 
412     if (auto *DestReplace = getReplacement(DestV))
413       DestV = DestReplace;
414     if (auto *SrcReplace = getReplacement(SrcV))
415       SrcV = SrcReplace;
416 
417     IC.Builder.SetInsertPoint(MemCpy);
418     auto *NewI = IC.Builder.CreateMemTransferInst(
419         MemCpy->getIntrinsicID(), DestV, MemCpy->getDestAlign(), SrcV,
420         MemCpy->getSourceAlign(), MemCpy->getLength(), MemCpy->isVolatile());
421     AAMDNodes AAMD = MemCpy->getAAMetadata();
422     if (AAMD)
423       NewI->setAAMetadata(AAMD);
424 
425     IC.eraseInstFromFunction(*MemCpy);
426     WorkMap[MemCpy] = NewI;
427   } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I)) {
428     auto *V = getReplacement(ASC->getPointerOperand());
429     assert(V && "Operand not replaced");
430     assert(isEqualOrValidAddrSpaceCast(
431                ASC, V->getType()->getPointerAddressSpace()) &&
432            "Invalid address space cast!");
433 
434     if (V->getType()->getPointerAddressSpace() !=
435         ASC->getType()->getPointerAddressSpace()) {
436       auto *NewI = new AddrSpaceCastInst(V, ASC->getType(), "");
437       NewI->takeName(ASC);
438       IC.InsertNewInstWith(NewI, ASC->getIterator());
439       WorkMap[ASC] = NewI;
440     } else {
441       WorkMap[ASC] = V;
442     }
443 
444   } else {
445     llvm_unreachable("should never reach here");
446   }
447 }
448 
449 void PointerReplacer::replacePointer(Value *V) {
450 #ifndef NDEBUG
451   auto *PT = cast<PointerType>(Root.getType());
452   auto *NT = cast<PointerType>(V->getType());
453   assert(PT != NT && "Invalid usage");
454 #endif
455   WorkMap[&Root] = V;
456 
457   for (Instruction *Workitem : Worklist)
458     replace(Workitem);
459 }
460 
461 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
462   if (auto *I = simplifyAllocaArraySize(*this, AI, DT))
463     return I;
464 
465   if (AI.getAllocatedType()->isSized()) {
466     // Move all alloca's of zero byte objects to the entry block and merge them
467     // together.  Note that we only do this for alloca's, because malloc should
468     // allocate and return a unique pointer, even for a zero byte allocation.
469     if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinValue() == 0) {
470       // For a zero sized alloca there is no point in doing an array allocation.
471       // This is helpful if the array size is a complicated expression not used
472       // elsewhere.
473       if (AI.isArrayAllocation())
474         return replaceOperand(AI, 0,
475             ConstantInt::get(AI.getArraySize()->getType(), 1));
476 
477       // Get the first instruction in the entry block.
478       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
479       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
480       if (FirstInst != &AI) {
481         // If the entry block doesn't start with a zero-size alloca then move
482         // this one to the start of the entry block.  There is no problem with
483         // dominance as the array size was forced to a constant earlier already.
484         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
485         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
486             DL.getTypeAllocSize(EntryAI->getAllocatedType())
487                     .getKnownMinValue() != 0) {
488           AI.moveBefore(FirstInst);
489           return &AI;
490         }
491 
492         // Replace this zero-sized alloca with the one at the start of the entry
493         // block after ensuring that the address will be aligned enough for both
494         // types.
495         const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
496         EntryAI->setAlignment(MaxAlign);
497         return replaceInstUsesWith(AI, EntryAI);
498       }
499     }
500   }
501 
502   // Check to see if this allocation is only modified by a memcpy/memmove from
503   // a memory location whose alignment is equal to or exceeds that of the
504   // allocation. If this is the case, we can change all users to use the
505   // constant memory location instead.  This is commonly produced by the CFE by
506   // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
507   // is only subsequently read.
508   SmallVector<Instruction *, 4> ToDelete;
509   if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
510     Value *TheSrc = Copy->getSource();
511     Align AllocaAlign = AI.getAlign();
512     Align SourceAlign = getOrEnforceKnownAlignment(
513       TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
514     if (AllocaAlign <= SourceAlign &&
515         isDereferenceableForAllocaSize(TheSrc, &AI, DL) &&
516         !isa<Instruction>(TheSrc)) {
517       // FIXME: Can we sink instructions without violating dominance when TheSrc
518       // is an instruction instead of a constant or argument?
519       LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
520       LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
521       unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
522       if (AI.getAddressSpace() == SrcAddrSpace) {
523         for (Instruction *Delete : ToDelete)
524           eraseInstFromFunction(*Delete);
525 
526         Instruction *NewI = replaceInstUsesWith(AI, TheSrc);
527         eraseInstFromFunction(*Copy);
528         ++NumGlobalCopies;
529         return NewI;
530       }
531 
532       PointerReplacer PtrReplacer(*this, AI, SrcAddrSpace);
533       if (PtrReplacer.collectUsers()) {
534         for (Instruction *Delete : ToDelete)
535           eraseInstFromFunction(*Delete);
536 
537         PtrReplacer.replacePointer(TheSrc);
538         ++NumGlobalCopies;
539       }
540     }
541   }
542 
543   // At last, use the generic allocation site handler to aggressively remove
544   // unused allocas.
545   return visitAllocSite(AI);
546 }
547 
548 // Are we allowed to form a atomic load or store of this type?
549 static bool isSupportedAtomicType(Type *Ty) {
550   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
551 }
552 
553 /// Helper to combine a load to a new type.
554 ///
555 /// This just does the work of combining a load to a new type. It handles
556 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
557 /// loaded *value* type. This will convert it to a pointer, cast the operand to
558 /// that pointer type, load it, etc.
559 ///
560 /// Note that this will create all of the instructions with whatever insert
561 /// point the \c InstCombinerImpl currently is using.
562 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
563                                                  const Twine &Suffix) {
564   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
565          "can't fold an atomic load to requested type");
566 
567   LoadInst *NewLoad =
568       Builder.CreateAlignedLoad(NewTy, LI.getPointerOperand(), LI.getAlign(),
569                                 LI.isVolatile(), LI.getName() + Suffix);
570   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
571   copyMetadataForLoad(*NewLoad, LI);
572   return NewLoad;
573 }
574 
575 /// Combine a store to a new type.
576 ///
577 /// Returns the newly created store instruction.
578 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
579                                          Value *V) {
580   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
581          "can't fold an atomic store of requested type");
582 
583   Value *Ptr = SI.getPointerOperand();
584   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
585   SI.getAllMetadata(MD);
586 
587   StoreInst *NewStore =
588       IC.Builder.CreateAlignedStore(V, Ptr, SI.getAlign(), SI.isVolatile());
589   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
590   for (const auto &MDPair : MD) {
591     unsigned ID = MDPair.first;
592     MDNode *N = MDPair.second;
593     // Note, essentially every kind of metadata should be preserved here! This
594     // routine is supposed to clone a store instruction changing *only its
595     // type*. The only metadata it makes sense to drop is metadata which is
596     // invalidated when the pointer type changes. This should essentially
597     // never be the case in LLVM, but we explicitly switch over only known
598     // metadata to be conservatively correct. If you are adding metadata to
599     // LLVM which pertains to stores, you almost certainly want to add it
600     // here.
601     switch (ID) {
602     case LLVMContext::MD_dbg:
603     case LLVMContext::MD_DIAssignID:
604     case LLVMContext::MD_tbaa:
605     case LLVMContext::MD_prof:
606     case LLVMContext::MD_fpmath:
607     case LLVMContext::MD_tbaa_struct:
608     case LLVMContext::MD_alias_scope:
609     case LLVMContext::MD_noalias:
610     case LLVMContext::MD_nontemporal:
611     case LLVMContext::MD_mem_parallel_loop_access:
612     case LLVMContext::MD_access_group:
613       // All of these directly apply.
614       NewStore->setMetadata(ID, N);
615       break;
616     case LLVMContext::MD_invariant_load:
617     case LLVMContext::MD_nonnull:
618     case LLVMContext::MD_noundef:
619     case LLVMContext::MD_range:
620     case LLVMContext::MD_align:
621     case LLVMContext::MD_dereferenceable:
622     case LLVMContext::MD_dereferenceable_or_null:
623       // These don't apply for stores.
624       break;
625     }
626   }
627 
628   return NewStore;
629 }
630 
631 /// Combine loads to match the type of their uses' value after looking
632 /// through intervening bitcasts.
633 ///
634 /// The core idea here is that if the result of a load is used in an operation,
635 /// we should load the type most conducive to that operation. For example, when
636 /// loading an integer and converting that immediately to a pointer, we should
637 /// instead directly load a pointer.
638 ///
639 /// However, this routine must never change the width of a load or the number of
640 /// loads as that would introduce a semantic change. This combine is expected to
641 /// be a semantic no-op which just allows loads to more closely model the types
642 /// of their consuming operations.
643 ///
644 /// Currently, we also refuse to change the precise type used for an atomic load
645 /// or a volatile load. This is debatable, and might be reasonable to change
646 /// later. However, it is risky in case some backend or other part of LLVM is
647 /// relying on the exact type loaded to select appropriate atomic operations.
648 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
649                                                LoadInst &Load) {
650   // FIXME: We could probably with some care handle both volatile and ordered
651   // atomic loads here but it isn't clear that this is important.
652   if (!Load.isUnordered())
653     return nullptr;
654 
655   if (Load.use_empty())
656     return nullptr;
657 
658   // swifterror values can't be bitcasted.
659   if (Load.getPointerOperand()->isSwiftError())
660     return nullptr;
661 
662   // Fold away bit casts of the loaded value by loading the desired type.
663   // Note that we should not do this for pointer<->integer casts,
664   // because that would result in type punning.
665   if (Load.hasOneUse()) {
666     // Don't transform when the type is x86_amx, it makes the pass that lower
667     // x86_amx type happy.
668     Type *LoadTy = Load.getType();
669     if (auto *BC = dyn_cast<BitCastInst>(Load.user_back())) {
670       assert(!LoadTy->isX86_AMXTy() && "Load from x86_amx* should not happen!");
671       if (BC->getType()->isX86_AMXTy())
672         return nullptr;
673     }
674 
675     if (auto *CastUser = dyn_cast<CastInst>(Load.user_back())) {
676       Type *DestTy = CastUser->getDestTy();
677       if (CastUser->isNoopCast(IC.getDataLayout()) &&
678           LoadTy->isPtrOrPtrVectorTy() == DestTy->isPtrOrPtrVectorTy() &&
679           (!Load.isAtomic() || isSupportedAtomicType(DestTy))) {
680         LoadInst *NewLoad = IC.combineLoadToNewType(Load, DestTy);
681         CastUser->replaceAllUsesWith(NewLoad);
682         IC.eraseInstFromFunction(*CastUser);
683         return &Load;
684       }
685     }
686   }
687 
688   // FIXME: We should also canonicalize loads of vectors when their elements are
689   // cast to other types.
690   return nullptr;
691 }
692 
693 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
694   // FIXME: We could probably with some care handle both volatile and atomic
695   // stores here but it isn't clear that this is important.
696   if (!LI.isSimple())
697     return nullptr;
698 
699   Type *T = LI.getType();
700   if (!T->isAggregateType())
701     return nullptr;
702 
703   StringRef Name = LI.getName();
704 
705   if (auto *ST = dyn_cast<StructType>(T)) {
706     // If the struct only have one element, we unpack.
707     auto NumElements = ST->getNumElements();
708     if (NumElements == 1) {
709       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
710                                                   ".unpack");
711       NewLoad->setAAMetadata(LI.getAAMetadata());
712       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
713         PoisonValue::get(T), NewLoad, 0, Name));
714     }
715 
716     // We don't want to break loads with padding here as we'd loose
717     // the knowledge that padding exists for the rest of the pipeline.
718     const DataLayout &DL = IC.getDataLayout();
719     auto *SL = DL.getStructLayout(ST);
720 
721     // Don't unpack for structure with scalable vector.
722     if (SL->getSizeInBits().isScalable())
723       return nullptr;
724 
725     if (SL->hasPadding())
726       return nullptr;
727 
728     const auto Align = LI.getAlign();
729     auto *Addr = LI.getPointerOperand();
730     auto *IdxType = Type::getInt32Ty(T->getContext());
731     auto *Zero = ConstantInt::get(IdxType, 0);
732 
733     Value *V = PoisonValue::get(T);
734     for (unsigned i = 0; i < NumElements; i++) {
735       Value *Indices[2] = {
736         Zero,
737         ConstantInt::get(IdxType, i),
738       };
739       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, ArrayRef(Indices),
740                                                Name + ".elt");
741       auto *L = IC.Builder.CreateAlignedLoad(
742           ST->getElementType(i), Ptr,
743           commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
744       // Propagate AA metadata. It'll still be valid on the narrowed load.
745       L->setAAMetadata(LI.getAAMetadata());
746       V = IC.Builder.CreateInsertValue(V, L, i);
747     }
748 
749     V->setName(Name);
750     return IC.replaceInstUsesWith(LI, V);
751   }
752 
753   if (auto *AT = dyn_cast<ArrayType>(T)) {
754     auto *ET = AT->getElementType();
755     auto NumElements = AT->getNumElements();
756     if (NumElements == 1) {
757       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
758       NewLoad->setAAMetadata(LI.getAAMetadata());
759       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
760         PoisonValue::get(T), NewLoad, 0, Name));
761     }
762 
763     // Bail out if the array is too large. Ideally we would like to optimize
764     // arrays of arbitrary size but this has a terrible impact on compile time.
765     // The threshold here is chosen arbitrarily, maybe needs a little bit of
766     // tuning.
767     if (NumElements > IC.MaxArraySizeForCombine)
768       return nullptr;
769 
770     const DataLayout &DL = IC.getDataLayout();
771     TypeSize EltSize = DL.getTypeAllocSize(ET);
772     const auto Align = LI.getAlign();
773 
774     auto *Addr = LI.getPointerOperand();
775     auto *IdxType = Type::getInt64Ty(T->getContext());
776     auto *Zero = ConstantInt::get(IdxType, 0);
777 
778     Value *V = PoisonValue::get(T);
779     TypeSize Offset = TypeSize::getZero();
780     for (uint64_t i = 0; i < NumElements; i++) {
781       Value *Indices[2] = {
782         Zero,
783         ConstantInt::get(IdxType, i),
784       };
785       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, ArrayRef(Indices),
786                                                Name + ".elt");
787       auto EltAlign = commonAlignment(Align, Offset.getKnownMinValue());
788       auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
789                                              EltAlign, Name + ".unpack");
790       L->setAAMetadata(LI.getAAMetadata());
791       V = IC.Builder.CreateInsertValue(V, L, i);
792       Offset += EltSize;
793     }
794 
795     V->setName(Name);
796     return IC.replaceInstUsesWith(LI, V);
797   }
798 
799   return nullptr;
800 }
801 
802 // If we can determine that all possible objects pointed to by the provided
803 // pointer value are, not only dereferenceable, but also definitively less than
804 // or equal to the provided maximum size, then return true. Otherwise, return
805 // false (constant global values and allocas fall into this category).
806 //
807 // FIXME: This should probably live in ValueTracking (or similar).
808 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
809                                      const DataLayout &DL) {
810   SmallPtrSet<Value *, 4> Visited;
811   SmallVector<Value *, 4> Worklist(1, V);
812 
813   do {
814     Value *P = Worklist.pop_back_val();
815     P = P->stripPointerCasts();
816 
817     if (!Visited.insert(P).second)
818       continue;
819 
820     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
821       Worklist.push_back(SI->getTrueValue());
822       Worklist.push_back(SI->getFalseValue());
823       continue;
824     }
825 
826     if (PHINode *PN = dyn_cast<PHINode>(P)) {
827       append_range(Worklist, PN->incoming_values());
828       continue;
829     }
830 
831     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
832       if (GA->isInterposable())
833         return false;
834       Worklist.push_back(GA->getAliasee());
835       continue;
836     }
837 
838     // If we know how big this object is, and it is less than MaxSize, continue
839     // searching. Otherwise, return false.
840     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
841       if (!AI->getAllocatedType()->isSized())
842         return false;
843 
844       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
845       if (!CS)
846         return false;
847 
848       TypeSize TS = DL.getTypeAllocSize(AI->getAllocatedType());
849       if (TS.isScalable())
850         return false;
851       // Make sure that, even if the multiplication below would wrap as an
852       // uint64_t, we still do the right thing.
853       if ((CS->getValue().zext(128) * APInt(128, TS.getFixedValue()))
854               .ugt(MaxSize))
855         return false;
856       continue;
857     }
858 
859     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
860       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
861         return false;
862 
863       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
864       if (InitSize > MaxSize)
865         return false;
866       continue;
867     }
868 
869     return false;
870   } while (!Worklist.empty());
871 
872   return true;
873 }
874 
875 // If we're indexing into an object of a known size, and the outer index is
876 // not a constant, but having any value but zero would lead to undefined
877 // behavior, replace it with zero.
878 //
879 // For example, if we have:
880 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
881 // ...
882 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
883 // ... = load i32* %arrayidx, align 4
884 // Then we know that we can replace %x in the GEP with i64 0.
885 //
886 // FIXME: We could fold any GEP index to zero that would cause UB if it were
887 // not zero. Currently, we only handle the first such index. Also, we could
888 // also search through non-zero constant indices if we kept track of the
889 // offsets those indices implied.
890 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
891                                      GetElementPtrInst *GEPI, Instruction *MemI,
892                                      unsigned &Idx) {
893   if (GEPI->getNumOperands() < 2)
894     return false;
895 
896   // Find the first non-zero index of a GEP. If all indices are zero, return
897   // one past the last index.
898   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
899     unsigned I = 1;
900     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
901       Value *V = GEPI->getOperand(I);
902       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
903         if (CI->isZero())
904           continue;
905 
906       break;
907     }
908 
909     return I;
910   };
911 
912   // Skip through initial 'zero' indices, and find the corresponding pointer
913   // type. See if the next index is not a constant.
914   Idx = FirstNZIdx(GEPI);
915   if (Idx == GEPI->getNumOperands())
916     return false;
917   if (isa<Constant>(GEPI->getOperand(Idx)))
918     return false;
919 
920   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
921   Type *SourceElementType = GEPI->getSourceElementType();
922   // Size information about scalable vectors is not available, so we cannot
923   // deduce whether indexing at n is undefined behaviour or not. Bail out.
924   if (SourceElementType->isScalableTy())
925     return false;
926 
927   Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops);
928   if (!AllocTy || !AllocTy->isSized())
929     return false;
930   const DataLayout &DL = IC.getDataLayout();
931   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedValue();
932 
933   // If there are more indices after the one we might replace with a zero, make
934   // sure they're all non-negative. If any of them are negative, the overall
935   // address being computed might be before the base address determined by the
936   // first non-zero index.
937   auto IsAllNonNegative = [&]() {
938     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
939       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
940       if (Known.isNonNegative())
941         continue;
942       return false;
943     }
944 
945     return true;
946   };
947 
948   // FIXME: If the GEP is not inbounds, and there are extra indices after the
949   // one we'll replace, those could cause the address computation to wrap
950   // (rendering the IsAllNonNegative() check below insufficient). We can do
951   // better, ignoring zero indices (and other indices we can prove small
952   // enough not to wrap).
953   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
954     return false;
955 
956   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
957   // also known to be dereferenceable.
958   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
959          IsAllNonNegative();
960 }
961 
962 // If we're indexing into an object with a variable index for the memory
963 // access, but the object has only one element, we can assume that the index
964 // will always be zero. If we replace the GEP, return it.
965 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
966                                           Instruction &MemI) {
967   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
968     unsigned Idx;
969     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
970       Instruction *NewGEPI = GEPI->clone();
971       NewGEPI->setOperand(Idx,
972         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
973       IC.InsertNewInstBefore(NewGEPI, GEPI->getIterator());
974       return NewGEPI;
975     }
976   }
977 
978   return nullptr;
979 }
980 
981 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
982   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
983     return false;
984 
985   auto *Ptr = SI.getPointerOperand();
986   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
987     Ptr = GEPI->getOperand(0);
988   return (isa<ConstantPointerNull>(Ptr) &&
989           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
990 }
991 
992 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
993   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
994     const Value *GEPI0 = GEPI->getOperand(0);
995     if (isa<ConstantPointerNull>(GEPI0) &&
996         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
997       return true;
998   }
999   if (isa<UndefValue>(Op) ||
1000       (isa<ConstantPointerNull>(Op) &&
1001        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
1002     return true;
1003   return false;
1004 }
1005 
1006 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
1007   Value *Op = LI.getOperand(0);
1008   if (Value *Res = simplifyLoadInst(&LI, Op, SQ.getWithInstruction(&LI)))
1009     return replaceInstUsesWith(LI, Res);
1010 
1011   // Try to canonicalize the loaded type.
1012   if (Instruction *Res = combineLoadToOperationType(*this, LI))
1013     return Res;
1014 
1015   if (!EnableInferAlignmentPass) {
1016     // Attempt to improve the alignment.
1017     Align KnownAlign = getOrEnforceKnownAlignment(
1018         Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
1019     if (KnownAlign > LI.getAlign())
1020       LI.setAlignment(KnownAlign);
1021   }
1022 
1023   // Replace GEP indices if possible.
1024   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI))
1025     return replaceOperand(LI, 0, NewGEPI);
1026 
1027   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
1028     return Res;
1029 
1030   // Do really simple store-to-load forwarding and load CSE, to catch cases
1031   // where there are several consecutive memory accesses to the same location,
1032   // separated by a few arithmetic operations.
1033   bool IsLoadCSE = false;
1034   BatchAAResults BatchAA(*AA);
1035   if (Value *AvailableVal = FindAvailableLoadedValue(&LI, BatchAA, &IsLoadCSE)) {
1036     if (IsLoadCSE)
1037       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
1038 
1039     return replaceInstUsesWith(
1040         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
1041                                            LI.getName() + ".cast"));
1042   }
1043 
1044   // None of the following transforms are legal for volatile/ordered atomic
1045   // loads.  Most of them do apply for unordered atomics.
1046   if (!LI.isUnordered()) return nullptr;
1047 
1048   // load(gep null, ...) -> unreachable
1049   // load null/undef -> unreachable
1050   // TODO: Consider a target hook for valid address spaces for this xforms.
1051   if (canSimplifyNullLoadOrGEP(LI, Op)) {
1052     CreateNonTerminatorUnreachable(&LI);
1053     return replaceInstUsesWith(LI, PoisonValue::get(LI.getType()));
1054   }
1055 
1056   if (Op->hasOneUse()) {
1057     // Change select and PHI nodes to select values instead of addresses: this
1058     // helps alias analysis out a lot, allows many others simplifications, and
1059     // exposes redundancy in the code.
1060     //
1061     // Note that we cannot do the transformation unless we know that the
1062     // introduced loads cannot trap!  Something like this is valid as long as
1063     // the condition is always false: load (select bool %C, int* null, int* %G),
1064     // but it would not be valid if we transformed it to load from null
1065     // unconditionally.
1066     //
1067     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1068       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1069       Align Alignment = LI.getAlign();
1070       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1071                                       Alignment, DL, SI) &&
1072           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1073                                       Alignment, DL, SI)) {
1074         LoadInst *V1 =
1075             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1076                                SI->getOperand(1)->getName() + ".val");
1077         LoadInst *V2 =
1078             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1079                                SI->getOperand(2)->getName() + ".val");
1080         assert(LI.isUnordered() && "implied by above");
1081         V1->setAlignment(Alignment);
1082         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1083         V2->setAlignment(Alignment);
1084         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1085         return SelectInst::Create(SI->getCondition(), V1, V2);
1086       }
1087 
1088       // load (select (cond, null, P)) -> load P
1089       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1090           !NullPointerIsDefined(SI->getFunction(),
1091                                 LI.getPointerAddressSpace()))
1092         return replaceOperand(LI, 0, SI->getOperand(2));
1093 
1094       // load (select (cond, P, null)) -> load P
1095       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1096           !NullPointerIsDefined(SI->getFunction(),
1097                                 LI.getPointerAddressSpace()))
1098         return replaceOperand(LI, 0, SI->getOperand(1));
1099     }
1100   }
1101   return nullptr;
1102 }
1103 
1104 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1105 ///
1106 /// \returns underlying value that was "cast", or nullptr otherwise.
1107 ///
1108 /// For example, if we have:
1109 ///
1110 ///     %E0 = extractelement <2 x double> %U, i32 0
1111 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1112 ///     %E1 = extractelement <2 x double> %U, i32 1
1113 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1114 ///
1115 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1116 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1117 /// Note that %U may contain non-undef values where %V1 has undef.
1118 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
1119   Value *U = nullptr;
1120   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1121     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1122     if (!E)
1123       return nullptr;
1124     auto *W = E->getVectorOperand();
1125     if (!U)
1126       U = W;
1127     else if (U != W)
1128       return nullptr;
1129     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1130     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1131       return nullptr;
1132     V = IV->getAggregateOperand();
1133   }
1134   if (!match(V, m_Undef()) || !U)
1135     return nullptr;
1136 
1137   auto *UT = cast<VectorType>(U->getType());
1138   auto *VT = V->getType();
1139   // Check that types UT and VT are bitwise isomorphic.
1140   const auto &DL = IC.getDataLayout();
1141   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1142     return nullptr;
1143   }
1144   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1145     if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1146       return nullptr;
1147   } else {
1148     auto *ST = cast<StructType>(VT);
1149     if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1150       return nullptr;
1151     for (const auto *EltT : ST->elements()) {
1152       if (EltT != UT->getElementType())
1153         return nullptr;
1154     }
1155   }
1156   return U;
1157 }
1158 
1159 /// Combine stores to match the type of value being stored.
1160 ///
1161 /// The core idea here is that the memory does not have any intrinsic type and
1162 /// where we can we should match the type of a store to the type of value being
1163 /// stored.
1164 ///
1165 /// However, this routine must never change the width of a store or the number of
1166 /// stores as that would introduce a semantic change. This combine is expected to
1167 /// be a semantic no-op which just allows stores to more closely model the types
1168 /// of their incoming values.
1169 ///
1170 /// Currently, we also refuse to change the precise type used for an atomic or
1171 /// volatile store. This is debatable, and might be reasonable to change later.
1172 /// However, it is risky in case some backend or other part of LLVM is relying
1173 /// on the exact type stored to select appropriate atomic operations.
1174 ///
1175 /// \returns true if the store was successfully combined away. This indicates
1176 /// the caller must erase the store instruction. We have to let the caller erase
1177 /// the store instruction as otherwise there is no way to signal whether it was
1178 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1179 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
1180   // FIXME: We could probably with some care handle both volatile and ordered
1181   // atomic stores here but it isn't clear that this is important.
1182   if (!SI.isUnordered())
1183     return false;
1184 
1185   // swifterror values can't be bitcasted.
1186   if (SI.getPointerOperand()->isSwiftError())
1187     return false;
1188 
1189   Value *V = SI.getValueOperand();
1190 
1191   // Fold away bit casts of the stored value by storing the original type.
1192   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1193     assert(!BC->getType()->isX86_AMXTy() &&
1194            "store to x86_amx* should not happen!");
1195     V = BC->getOperand(0);
1196     // Don't transform when the type is x86_amx, it makes the pass that lower
1197     // x86_amx type happy.
1198     if (V->getType()->isX86_AMXTy())
1199       return false;
1200     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1201       combineStoreToNewValue(IC, SI, V);
1202       return true;
1203     }
1204   }
1205 
1206   if (Value *U = likeBitCastFromVector(IC, V))
1207     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1208       combineStoreToNewValue(IC, SI, U);
1209       return true;
1210     }
1211 
1212   // FIXME: We should also canonicalize stores of vectors when their elements
1213   // are cast to other types.
1214   return false;
1215 }
1216 
1217 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
1218   // FIXME: We could probably with some care handle both volatile and atomic
1219   // stores here but it isn't clear that this is important.
1220   if (!SI.isSimple())
1221     return false;
1222 
1223   Value *V = SI.getValueOperand();
1224   Type *T = V->getType();
1225 
1226   if (!T->isAggregateType())
1227     return false;
1228 
1229   if (auto *ST = dyn_cast<StructType>(T)) {
1230     // If the struct only have one element, we unpack.
1231     unsigned Count = ST->getNumElements();
1232     if (Count == 1) {
1233       V = IC.Builder.CreateExtractValue(V, 0);
1234       combineStoreToNewValue(IC, SI, V);
1235       return true;
1236     }
1237 
1238     // We don't want to break loads with padding here as we'd loose
1239     // the knowledge that padding exists for the rest of the pipeline.
1240     const DataLayout &DL = IC.getDataLayout();
1241     auto *SL = DL.getStructLayout(ST);
1242 
1243     // Don't unpack for structure with scalable vector.
1244     if (SL->getSizeInBits().isScalable())
1245       return false;
1246 
1247     if (SL->hasPadding())
1248       return false;
1249 
1250     const auto Align = SI.getAlign();
1251 
1252     SmallString<16> EltName = V->getName();
1253     EltName += ".elt";
1254     auto *Addr = SI.getPointerOperand();
1255     SmallString<16> AddrName = Addr->getName();
1256     AddrName += ".repack";
1257 
1258     auto *IdxType = Type::getInt32Ty(ST->getContext());
1259     auto *Zero = ConstantInt::get(IdxType, 0);
1260     for (unsigned i = 0; i < Count; i++) {
1261       Value *Indices[2] = {
1262         Zero,
1263         ConstantInt::get(IdxType, i),
1264       };
1265       auto *Ptr =
1266           IC.Builder.CreateInBoundsGEP(ST, Addr, ArrayRef(Indices), AddrName);
1267       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1268       auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1269       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1270       NS->setAAMetadata(SI.getAAMetadata());
1271     }
1272 
1273     return true;
1274   }
1275 
1276   if (auto *AT = dyn_cast<ArrayType>(T)) {
1277     // If the array only have one element, we unpack.
1278     auto NumElements = AT->getNumElements();
1279     if (NumElements == 1) {
1280       V = IC.Builder.CreateExtractValue(V, 0);
1281       combineStoreToNewValue(IC, SI, V);
1282       return true;
1283     }
1284 
1285     // Bail out if the array is too large. Ideally we would like to optimize
1286     // arrays of arbitrary size but this has a terrible impact on compile time.
1287     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1288     // tuning.
1289     if (NumElements > IC.MaxArraySizeForCombine)
1290       return false;
1291 
1292     const DataLayout &DL = IC.getDataLayout();
1293     TypeSize EltSize = DL.getTypeAllocSize(AT->getElementType());
1294     const auto Align = SI.getAlign();
1295 
1296     SmallString<16> EltName = V->getName();
1297     EltName += ".elt";
1298     auto *Addr = SI.getPointerOperand();
1299     SmallString<16> AddrName = Addr->getName();
1300     AddrName += ".repack";
1301 
1302     auto *IdxType = Type::getInt64Ty(T->getContext());
1303     auto *Zero = ConstantInt::get(IdxType, 0);
1304 
1305     TypeSize Offset = TypeSize::getZero();
1306     for (uint64_t i = 0; i < NumElements; i++) {
1307       Value *Indices[2] = {
1308         Zero,
1309         ConstantInt::get(IdxType, i),
1310       };
1311       auto *Ptr =
1312           IC.Builder.CreateInBoundsGEP(AT, Addr, ArrayRef(Indices), AddrName);
1313       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1314       auto EltAlign = commonAlignment(Align, Offset.getKnownMinValue());
1315       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1316       NS->setAAMetadata(SI.getAAMetadata());
1317       Offset += EltSize;
1318     }
1319 
1320     return true;
1321   }
1322 
1323   return false;
1324 }
1325 
1326 /// equivalentAddressValues - Test if A and B will obviously have the same
1327 /// value. This includes recognizing that %t0 and %t1 will have the same
1328 /// value in code like this:
1329 ///   %t0 = getelementptr \@a, 0, 3
1330 ///   store i32 0, i32* %t0
1331 ///   %t1 = getelementptr \@a, 0, 3
1332 ///   %t2 = load i32* %t1
1333 ///
1334 static bool equivalentAddressValues(Value *A, Value *B) {
1335   // Test if the values are trivially equivalent.
1336   if (A == B) return true;
1337 
1338   // Test if the values come form identical arithmetic instructions.
1339   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1340   // its only used to compare two uses within the same basic block, which
1341   // means that they'll always either have the same value or one of them
1342   // will have an undefined value.
1343   if (isa<BinaryOperator>(A) ||
1344       isa<CastInst>(A) ||
1345       isa<PHINode>(A) ||
1346       isa<GetElementPtrInst>(A))
1347     if (Instruction *BI = dyn_cast<Instruction>(B))
1348       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1349         return true;
1350 
1351   // Otherwise they may not be equivalent.
1352   return false;
1353 }
1354 
1355 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
1356   Value *Val = SI.getOperand(0);
1357   Value *Ptr = SI.getOperand(1);
1358 
1359   // Try to canonicalize the stored type.
1360   if (combineStoreToValueType(*this, SI))
1361     return eraseInstFromFunction(SI);
1362 
1363   if (!EnableInferAlignmentPass) {
1364     // Attempt to improve the alignment.
1365     const Align KnownAlign = getOrEnforceKnownAlignment(
1366         Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
1367     if (KnownAlign > SI.getAlign())
1368       SI.setAlignment(KnownAlign);
1369   }
1370 
1371   // Try to canonicalize the stored type.
1372   if (unpackStoreToAggregate(*this, SI))
1373     return eraseInstFromFunction(SI);
1374 
1375   // Replace GEP indices if possible.
1376   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI))
1377     return replaceOperand(SI, 1, NewGEPI);
1378 
1379   // Don't hack volatile/ordered stores.
1380   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1381   if (!SI.isUnordered()) return nullptr;
1382 
1383   // If the RHS is an alloca with a single use, zapify the store, making the
1384   // alloca dead.
1385   if (Ptr->hasOneUse()) {
1386     if (isa<AllocaInst>(Ptr))
1387       return eraseInstFromFunction(SI);
1388     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1389       if (isa<AllocaInst>(GEP->getOperand(0))) {
1390         if (GEP->getOperand(0)->hasOneUse())
1391           return eraseInstFromFunction(SI);
1392       }
1393     }
1394   }
1395 
1396   // If we have a store to a location which is known constant, we can conclude
1397   // that the store must be storing the constant value (else the memory
1398   // wouldn't be constant), and this must be a noop.
1399   if (!isModSet(AA->getModRefInfoMask(Ptr)))
1400     return eraseInstFromFunction(SI);
1401 
1402   // Do really simple DSE, to catch cases where there are several consecutive
1403   // stores to the same location, separated by a few arithmetic operations. This
1404   // situation often occurs with bitfield accesses.
1405   BasicBlock::iterator BBI(SI);
1406   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1407        --ScanInsts) {
1408     --BBI;
1409     // Don't count debug info directives, lest they affect codegen,
1410     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1411     if (BBI->isDebugOrPseudoInst()) {
1412       ScanInsts++;
1413       continue;
1414     }
1415 
1416     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1417       // Prev store isn't volatile, and stores to the same location?
1418       if (PrevSI->isUnordered() &&
1419           equivalentAddressValues(PrevSI->getOperand(1), SI.getOperand(1)) &&
1420           PrevSI->getValueOperand()->getType() ==
1421               SI.getValueOperand()->getType()) {
1422         ++NumDeadStore;
1423         // Manually add back the original store to the worklist now, so it will
1424         // be processed after the operands of the removed store, as this may
1425         // expose additional DSE opportunities.
1426         Worklist.push(&SI);
1427         eraseInstFromFunction(*PrevSI);
1428         return nullptr;
1429       }
1430       break;
1431     }
1432 
1433     // If this is a load, we have to stop.  However, if the loaded value is from
1434     // the pointer we're loading and is producing the pointer we're storing,
1435     // then *this* store is dead (X = load P; store X -> P).
1436     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1437       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1438         assert(SI.isUnordered() && "can't eliminate ordering operation");
1439         return eraseInstFromFunction(SI);
1440       }
1441 
1442       // Otherwise, this is a load from some other location.  Stores before it
1443       // may not be dead.
1444       break;
1445     }
1446 
1447     // Don't skip over loads, throws or things that can modify memory.
1448     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1449       break;
1450   }
1451 
1452   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1453   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1454   if (canSimplifyNullStoreOrGEP(SI)) {
1455     if (!isa<PoisonValue>(Val))
1456       return replaceOperand(SI, 0, PoisonValue::get(Val->getType()));
1457     return nullptr;  // Do not modify these!
1458   }
1459 
1460   // This is a non-terminator unreachable marker. Don't remove it.
1461   if (isa<UndefValue>(Ptr)) {
1462     // Remove guaranteed-to-transfer instructions before the marker.
1463     if (removeInstructionsBeforeUnreachable(SI))
1464       return &SI;
1465 
1466     // Remove all instructions after the marker and handle dead blocks this
1467     // implies.
1468     SmallVector<BasicBlock *> Worklist;
1469     handleUnreachableFrom(SI.getNextNode(), Worklist);
1470     handlePotentiallyDeadBlocks(Worklist);
1471     return nullptr;
1472   }
1473 
1474   // store undef, Ptr -> noop
1475   // FIXME: This is technically incorrect because it might overwrite a poison
1476   // value. Change to PoisonValue once #52930 is resolved.
1477   if (isa<UndefValue>(Val))
1478     return eraseInstFromFunction(SI);
1479 
1480   return nullptr;
1481 }
1482 
1483 /// Try to transform:
1484 ///   if () { *P = v1; } else { *P = v2 }
1485 /// or:
1486 ///   *P = v1; if () { *P = v2; }
1487 /// into a phi node with a store in the successor.
1488 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
1489   if (!SI.isUnordered())
1490     return false; // This code has not been audited for volatile/ordered case.
1491 
1492   // Check if the successor block has exactly 2 incoming edges.
1493   BasicBlock *StoreBB = SI.getParent();
1494   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1495   if (!DestBB->hasNPredecessors(2))
1496     return false;
1497 
1498   // Capture the other block (the block that doesn't contain our store).
1499   pred_iterator PredIter = pred_begin(DestBB);
1500   if (*PredIter == StoreBB)
1501     ++PredIter;
1502   BasicBlock *OtherBB = *PredIter;
1503 
1504   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1505   // for example, if SI is in an infinite loop.
1506   if (StoreBB == DestBB || OtherBB == DestBB)
1507     return false;
1508 
1509   // Verify that the other block ends in a branch and is not otherwise empty.
1510   BasicBlock::iterator BBI(OtherBB->getTerminator());
1511   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1512   if (!OtherBr || BBI == OtherBB->begin())
1513     return false;
1514 
1515   auto OtherStoreIsMergeable = [&](StoreInst *OtherStore) -> bool {
1516     if (!OtherStore ||
1517         OtherStore->getPointerOperand() != SI.getPointerOperand())
1518       return false;
1519 
1520     auto *SIVTy = SI.getValueOperand()->getType();
1521     auto *OSVTy = OtherStore->getValueOperand()->getType();
1522     return CastInst::isBitOrNoopPointerCastable(OSVTy, SIVTy, DL) &&
1523            SI.hasSameSpecialState(OtherStore);
1524   };
1525 
1526   // If the other block ends in an unconditional branch, check for the 'if then
1527   // else' case. There is an instruction before the branch.
1528   StoreInst *OtherStore = nullptr;
1529   if (OtherBr->isUnconditional()) {
1530     --BBI;
1531     // Skip over debugging info and pseudo probes.
1532     while (BBI->isDebugOrPseudoInst()) {
1533       if (BBI==OtherBB->begin())
1534         return false;
1535       --BBI;
1536     }
1537     // If this isn't a store, isn't a store to the same location, or is not the
1538     // right kind of store, bail out.
1539     OtherStore = dyn_cast<StoreInst>(BBI);
1540     if (!OtherStoreIsMergeable(OtherStore))
1541       return false;
1542   } else {
1543     // Otherwise, the other block ended with a conditional branch. If one of the
1544     // destinations is StoreBB, then we have the if/then case.
1545     if (OtherBr->getSuccessor(0) != StoreBB &&
1546         OtherBr->getSuccessor(1) != StoreBB)
1547       return false;
1548 
1549     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1550     // if/then triangle. See if there is a store to the same ptr as SI that
1551     // lives in OtherBB.
1552     for (;; --BBI) {
1553       // Check to see if we find the matching store.
1554       OtherStore = dyn_cast<StoreInst>(BBI);
1555       if (OtherStoreIsMergeable(OtherStore))
1556         break;
1557 
1558       // If we find something that may be using or overwriting the stored
1559       // value, or if we run out of instructions, we can't do the transform.
1560       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1561           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1562         return false;
1563     }
1564 
1565     // In order to eliminate the store in OtherBr, we have to make sure nothing
1566     // reads or overwrites the stored value in StoreBB.
1567     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1568       // FIXME: This should really be AA driven.
1569       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1570         return false;
1571     }
1572   }
1573 
1574   // Insert a PHI node now if we need it.
1575   Value *MergedVal = OtherStore->getValueOperand();
1576   // The debug locations of the original instructions might differ. Merge them.
1577   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1578                                                      OtherStore->getDebugLoc());
1579   if (MergedVal != SI.getValueOperand()) {
1580     PHINode *PN =
1581         PHINode::Create(SI.getValueOperand()->getType(), 2, "storemerge");
1582     PN->addIncoming(SI.getValueOperand(), SI.getParent());
1583     Builder.SetInsertPoint(OtherStore);
1584     PN->addIncoming(Builder.CreateBitOrPointerCast(MergedVal, PN->getType()),
1585                     OtherBB);
1586     MergedVal = InsertNewInstBefore(PN, DestBB->begin());
1587     PN->setDebugLoc(MergedLoc);
1588   }
1589 
1590   // Advance to a place where it is safe to insert the new store and insert it.
1591   BBI = DestBB->getFirstInsertionPt();
1592   StoreInst *NewSI =
1593       new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
1594                     SI.getOrdering(), SI.getSyncScopeID());
1595   InsertNewInstBefore(NewSI, BBI);
1596   NewSI->setDebugLoc(MergedLoc);
1597   NewSI->mergeDIAssignID({&SI, OtherStore});
1598 
1599   // If the two stores had AA tags, merge them.
1600   AAMDNodes AATags = SI.getAAMetadata();
1601   if (AATags)
1602     NewSI->setAAMetadata(AATags.merge(OtherStore->getAAMetadata()));
1603 
1604   // Nuke the old stores.
1605   eraseInstFromFunction(SI);
1606   eraseInstFromFunction(*OtherStore);
1607   return true;
1608 }
1609