xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Transforms/Utils/Local.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "instcombine"
31 
32 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
34 
35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
36 /// some part of a constant global variable.  This intentionally only accepts
37 /// constant expressions because we can't rewrite arbitrary instructions.
38 static bool pointsToConstantGlobal(Value *V) {
39   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
40     return GV->isConstant();
41 
42   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
43     if (CE->getOpcode() == Instruction::BitCast ||
44         CE->getOpcode() == Instruction::AddrSpaceCast ||
45         CE->getOpcode() == Instruction::GetElementPtr)
46       return pointsToConstantGlobal(CE->getOperand(0));
47   }
48   return false;
49 }
50 
51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
52 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
53 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
55 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
56 /// the alloca, and if the source pointer is a pointer to a constant global, we
57 /// can optimize this.
58 static bool
59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
60                                SmallVectorImpl<Instruction *> &ToDelete) {
61   // We track lifetime intrinsics as we encounter them.  If we decide to go
62   // ahead and replace the value with the global, this lets the caller quickly
63   // eliminate the markers.
64 
65   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
66   ValuesToInspect.emplace_back(V, false);
67   while (!ValuesToInspect.empty()) {
68     auto ValuePair = ValuesToInspect.pop_back_val();
69     const bool IsOffset = ValuePair.second;
70     for (auto &U : ValuePair.first->uses()) {
71       auto *I = cast<Instruction>(U.getUser());
72 
73       if (auto *LI = dyn_cast<LoadInst>(I)) {
74         // Ignore non-volatile loads, they are always ok.
75         if (!LI->isSimple()) return false;
76         continue;
77       }
78 
79       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
80         // If uses of the bitcast are ok, we are ok.
81         ValuesToInspect.emplace_back(I, IsOffset);
82         continue;
83       }
84       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
85         // If the GEP has all zero indices, it doesn't offset the pointer. If it
86         // doesn't, it does.
87         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
88         continue;
89       }
90 
91       if (auto *Call = dyn_cast<CallBase>(I)) {
92         // If this is the function being called then we treat it like a load and
93         // ignore it.
94         if (Call->isCallee(&U))
95           continue;
96 
97         unsigned DataOpNo = Call->getDataOperandNo(&U);
98         bool IsArgOperand = Call->isArgOperand(&U);
99 
100         // Inalloca arguments are clobbered by the call.
101         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
102           return false;
103 
104         // If this is a readonly/readnone call site, then we know it is just a
105         // load (but one that potentially returns the value itself), so we can
106         // ignore it if we know that the value isn't captured.
107         if (Call->onlyReadsMemory() &&
108             (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
109           continue;
110 
111         // If this is being passed as a byval argument, the caller is making a
112         // copy, so it is only a read of the alloca.
113         if (IsArgOperand && Call->isByValArgument(DataOpNo))
114           continue;
115       }
116 
117       // Lifetime intrinsics can be handled by the caller.
118       if (I->isLifetimeStartOrEnd()) {
119         assert(I->use_empty() && "Lifetime markers have no result to use!");
120         ToDelete.push_back(I);
121         continue;
122       }
123 
124       // If this is isn't our memcpy/memmove, reject it as something we can't
125       // handle.
126       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
127       if (!MI)
128         return false;
129 
130       // If the transfer is using the alloca as a source of the transfer, then
131       // ignore it since it is a load (unless the transfer is volatile).
132       if (U.getOperandNo() == 1) {
133         if (MI->isVolatile()) return false;
134         continue;
135       }
136 
137       // If we already have seen a copy, reject the second one.
138       if (TheCopy) return false;
139 
140       // If the pointer has been offset from the start of the alloca, we can't
141       // safely handle this.
142       if (IsOffset) return false;
143 
144       // If the memintrinsic isn't using the alloca as the dest, reject it.
145       if (U.getOperandNo() != 0) return false;
146 
147       // If the source of the memcpy/move is not a constant global, reject it.
148       if (!pointsToConstantGlobal(MI->getSource()))
149         return false;
150 
151       // Otherwise, the transform is safe.  Remember the copy instruction.
152       TheCopy = MI;
153     }
154   }
155   return true;
156 }
157 
158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
159 /// modified by a copy from a constant global.  If we can prove this, we can
160 /// replace any uses of the alloca with uses of the global directly.
161 static MemTransferInst *
162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
163                                SmallVectorImpl<Instruction *> &ToDelete) {
164   MemTransferInst *TheCopy = nullptr;
165   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
166     return TheCopy;
167   return nullptr;
168 }
169 
170 /// Returns true if V is dereferenceable for size of alloca.
171 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
172                                            const DataLayout &DL) {
173   if (AI->isArrayAllocation())
174     return false;
175   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
176   if (!AllocaSize)
177     return false;
178   return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
179                                             APInt(64, AllocaSize), DL);
180 }
181 
182 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
183   // Check for array size of 1 (scalar allocation).
184   if (!AI.isArrayAllocation()) {
185     // i32 1 is the canonical array size for scalar allocations.
186     if (AI.getArraySize()->getType()->isIntegerTy(32))
187       return nullptr;
188 
189     // Canonicalize it.
190     Value *V = IC.Builder.getInt32(1);
191     AI.setOperand(0, V);
192     return &AI;
193   }
194 
195   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
196   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
197     if (C->getValue().getActiveBits() <= 64) {
198       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
199       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
200       New->setAlignment(MaybeAlign(AI.getAlignment()));
201 
202       // Scan to the end of the allocation instructions, to skip over a block of
203       // allocas if possible...also skip interleaved debug info
204       //
205       BasicBlock::iterator It(New);
206       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
207         ++It;
208 
209       // Now that I is pointing to the first non-allocation-inst in the block,
210       // insert our getelementptr instruction...
211       //
212       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
213       Value *NullIdx = Constant::getNullValue(IdxTy);
214       Value *Idx[2] = {NullIdx, NullIdx};
215       Instruction *GEP = GetElementPtrInst::CreateInBounds(
216           NewTy, New, Idx, New->getName() + ".sub");
217       IC.InsertNewInstBefore(GEP, *It);
218 
219       // Now make everything use the getelementptr instead of the original
220       // allocation.
221       return IC.replaceInstUsesWith(AI, GEP);
222     }
223   }
224 
225   if (isa<UndefValue>(AI.getArraySize()))
226     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
227 
228   // Ensure that the alloca array size argument has type intptr_t, so that
229   // any casting is exposed early.
230   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
231   if (AI.getArraySize()->getType() != IntPtrTy) {
232     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
233     AI.setOperand(0, V);
234     return &AI;
235   }
236 
237   return nullptr;
238 }
239 
240 namespace {
241 // If I and V are pointers in different address space, it is not allowed to
242 // use replaceAllUsesWith since I and V have different types. A
243 // non-target-specific transformation should not use addrspacecast on V since
244 // the two address space may be disjoint depending on target.
245 //
246 // This class chases down uses of the old pointer until reaching the load
247 // instructions, then replaces the old pointer in the load instructions with
248 // the new pointer. If during the chasing it sees bitcast or GEP, it will
249 // create new bitcast or GEP with the new pointer and use them in the load
250 // instruction.
251 class PointerReplacer {
252 public:
253   PointerReplacer(InstCombiner &IC) : IC(IC) {}
254   void replacePointer(Instruction &I, Value *V);
255 
256 private:
257   void findLoadAndReplace(Instruction &I);
258   void replace(Instruction *I);
259   Value *getReplacement(Value *I);
260 
261   SmallVector<Instruction *, 4> Path;
262   MapVector<Value *, Value *> WorkMap;
263   InstCombiner &IC;
264 };
265 } // end anonymous namespace
266 
267 void PointerReplacer::findLoadAndReplace(Instruction &I) {
268   for (auto U : I.users()) {
269     auto *Inst = dyn_cast<Instruction>(&*U);
270     if (!Inst)
271       return;
272     LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n');
273     if (isa<LoadInst>(Inst)) {
274       for (auto P : Path)
275         replace(P);
276       replace(Inst);
277     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
278       Path.push_back(Inst);
279       findLoadAndReplace(*Inst);
280       Path.pop_back();
281     } else {
282       return;
283     }
284   }
285 }
286 
287 Value *PointerReplacer::getReplacement(Value *V) {
288   auto Loc = WorkMap.find(V);
289   if (Loc != WorkMap.end())
290     return Loc->second;
291   return nullptr;
292 }
293 
294 void PointerReplacer::replace(Instruction *I) {
295   if (getReplacement(I))
296     return;
297 
298   if (auto *LT = dyn_cast<LoadInst>(I)) {
299     auto *V = getReplacement(LT->getPointerOperand());
300     assert(V && "Operand not replaced");
301     auto *NewI = new LoadInst(I->getType(), V);
302     NewI->takeName(LT);
303     IC.InsertNewInstWith(NewI, *LT);
304     IC.replaceInstUsesWith(*LT, NewI);
305     WorkMap[LT] = NewI;
306   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
307     auto *V = getReplacement(GEP->getPointerOperand());
308     assert(V && "Operand not replaced");
309     SmallVector<Value *, 8> Indices;
310     Indices.append(GEP->idx_begin(), GEP->idx_end());
311     auto *NewI = GetElementPtrInst::Create(
312         V->getType()->getPointerElementType(), V, Indices);
313     IC.InsertNewInstWith(NewI, *GEP);
314     NewI->takeName(GEP);
315     WorkMap[GEP] = NewI;
316   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
317     auto *V = getReplacement(BC->getOperand(0));
318     assert(V && "Operand not replaced");
319     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
320                                   V->getType()->getPointerAddressSpace());
321     auto *NewI = new BitCastInst(V, NewT);
322     IC.InsertNewInstWith(NewI, *BC);
323     NewI->takeName(BC);
324     WorkMap[BC] = NewI;
325   } else {
326     llvm_unreachable("should never reach here");
327   }
328 }
329 
330 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
331 #ifndef NDEBUG
332   auto *PT = cast<PointerType>(I.getType());
333   auto *NT = cast<PointerType>(V->getType());
334   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
335          "Invalid usage");
336 #endif
337   WorkMap[&I] = V;
338   findLoadAndReplace(I);
339 }
340 
341 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
342   if (auto *I = simplifyAllocaArraySize(*this, AI))
343     return I;
344 
345   if (AI.getAllocatedType()->isSized()) {
346     // If the alignment is 0 (unspecified), assign it the preferred alignment.
347     if (AI.getAlignment() == 0)
348       AI.setAlignment(
349           MaybeAlign(DL.getPrefTypeAlignment(AI.getAllocatedType())));
350 
351     // Move all alloca's of zero byte objects to the entry block and merge them
352     // together.  Note that we only do this for alloca's, because malloc should
353     // allocate and return a unique pointer, even for a zero byte allocation.
354     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
355       // For a zero sized alloca there is no point in doing an array allocation.
356       // This is helpful if the array size is a complicated expression not used
357       // elsewhere.
358       if (AI.isArrayAllocation()) {
359         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
360         return &AI;
361       }
362 
363       // Get the first instruction in the entry block.
364       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
365       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
366       if (FirstInst != &AI) {
367         // If the entry block doesn't start with a zero-size alloca then move
368         // this one to the start of the entry block.  There is no problem with
369         // dominance as the array size was forced to a constant earlier already.
370         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
371         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
372             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
373           AI.moveBefore(FirstInst);
374           return &AI;
375         }
376 
377         // If the alignment of the entry block alloca is 0 (unspecified),
378         // assign it the preferred alignment.
379         if (EntryAI->getAlignment() == 0)
380           EntryAI->setAlignment(
381               MaybeAlign(DL.getPrefTypeAlignment(EntryAI->getAllocatedType())));
382         // Replace this zero-sized alloca with the one at the start of the entry
383         // block after ensuring that the address will be aligned enough for both
384         // types.
385         const MaybeAlign MaxAlign(
386             std::max(EntryAI->getAlignment(), AI.getAlignment()));
387         EntryAI->setAlignment(MaxAlign);
388         if (AI.getType() != EntryAI->getType())
389           return new BitCastInst(EntryAI, AI.getType());
390         return replaceInstUsesWith(AI, EntryAI);
391       }
392     }
393   }
394 
395   if (AI.getAlignment()) {
396     // Check to see if this allocation is only modified by a memcpy/memmove from
397     // a constant global whose alignment is equal to or exceeds that of the
398     // allocation.  If this is the case, we can change all users to use
399     // the constant global instead.  This is commonly produced by the CFE by
400     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
401     // is only subsequently read.
402     SmallVector<Instruction *, 4> ToDelete;
403     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
404       unsigned SourceAlign = getOrEnforceKnownAlignment(
405           Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
406       if (AI.getAlignment() <= SourceAlign &&
407           isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) {
408         LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
409         LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
410         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
411           eraseInstFromFunction(*ToDelete[i]);
412         Constant *TheSrc = cast<Constant>(Copy->getSource());
413         auto *SrcTy = TheSrc->getType();
414         auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(),
415                                         SrcTy->getPointerAddressSpace());
416         Constant *Cast =
417             ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy);
418         if (AI.getType()->getPointerAddressSpace() ==
419             SrcTy->getPointerAddressSpace()) {
420           Instruction *NewI = replaceInstUsesWith(AI, Cast);
421           eraseInstFromFunction(*Copy);
422           ++NumGlobalCopies;
423           return NewI;
424         } else {
425           PointerReplacer PtrReplacer(*this);
426           PtrReplacer.replacePointer(AI, Cast);
427           ++NumGlobalCopies;
428         }
429       }
430     }
431   }
432 
433   // At last, use the generic allocation site handler to aggressively remove
434   // unused allocas.
435   return visitAllocSite(AI);
436 }
437 
438 // Are we allowed to form a atomic load or store of this type?
439 static bool isSupportedAtomicType(Type *Ty) {
440   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
441 }
442 
443 /// Helper to combine a load to a new type.
444 ///
445 /// This just does the work of combining a load to a new type. It handles
446 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
447 /// loaded *value* type. This will convert it to a pointer, cast the operand to
448 /// that pointer type, load it, etc.
449 ///
450 /// Note that this will create all of the instructions with whatever insert
451 /// point the \c InstCombiner currently is using.
452 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
453                                       const Twine &Suffix = "") {
454   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
455          "can't fold an atomic load to requested type");
456 
457   Value *Ptr = LI.getPointerOperand();
458   unsigned AS = LI.getPointerAddressSpace();
459   Value *NewPtr = nullptr;
460   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
461         NewPtr->getType()->getPointerElementType() == NewTy &&
462         NewPtr->getType()->getPointerAddressSpace() == AS))
463     NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
464 
465   LoadInst *NewLoad = IC.Builder.CreateAlignedLoad(
466       NewTy, NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix);
467   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
468   copyMetadataForLoad(*NewLoad, LI);
469   return NewLoad;
470 }
471 
472 /// Combine a store to a new type.
473 ///
474 /// Returns the newly created store instruction.
475 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
476   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
477          "can't fold an atomic store of requested type");
478 
479   Value *Ptr = SI.getPointerOperand();
480   unsigned AS = SI.getPointerAddressSpace();
481   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
482   SI.getAllMetadata(MD);
483 
484   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
485       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
486       SI.getAlignment(), SI.isVolatile());
487   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
488   for (const auto &MDPair : MD) {
489     unsigned ID = MDPair.first;
490     MDNode *N = MDPair.second;
491     // Note, essentially every kind of metadata should be preserved here! This
492     // routine is supposed to clone a store instruction changing *only its
493     // type*. The only metadata it makes sense to drop is metadata which is
494     // invalidated when the pointer type changes. This should essentially
495     // never be the case in LLVM, but we explicitly switch over only known
496     // metadata to be conservatively correct. If you are adding metadata to
497     // LLVM which pertains to stores, you almost certainly want to add it
498     // here.
499     switch (ID) {
500     case LLVMContext::MD_dbg:
501     case LLVMContext::MD_tbaa:
502     case LLVMContext::MD_prof:
503     case LLVMContext::MD_fpmath:
504     case LLVMContext::MD_tbaa_struct:
505     case LLVMContext::MD_alias_scope:
506     case LLVMContext::MD_noalias:
507     case LLVMContext::MD_nontemporal:
508     case LLVMContext::MD_mem_parallel_loop_access:
509     case LLVMContext::MD_access_group:
510       // All of these directly apply.
511       NewStore->setMetadata(ID, N);
512       break;
513     case LLVMContext::MD_invariant_load:
514     case LLVMContext::MD_nonnull:
515     case LLVMContext::MD_range:
516     case LLVMContext::MD_align:
517     case LLVMContext::MD_dereferenceable:
518     case LLVMContext::MD_dereferenceable_or_null:
519       // These don't apply for stores.
520       break;
521     }
522   }
523 
524   return NewStore;
525 }
526 
527 /// Returns true if instruction represent minmax pattern like:
528 ///   select ((cmp load V1, load V2), V1, V2).
529 static bool isMinMaxWithLoads(Value *V) {
530   assert(V->getType()->isPointerTy() && "Expected pointer type.");
531   // Ignore possible ty* to ixx* bitcast.
532   V = peekThroughBitcast(V);
533   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
534   // pattern.
535   CmpInst::Predicate Pred;
536   Instruction *L1;
537   Instruction *L2;
538   Value *LHS;
539   Value *RHS;
540   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
541                          m_Value(LHS), m_Value(RHS))))
542     return false;
543   return (match(L1, m_Load(m_Specific(LHS))) &&
544           match(L2, m_Load(m_Specific(RHS)))) ||
545          (match(L1, m_Load(m_Specific(RHS))) &&
546           match(L2, m_Load(m_Specific(LHS))));
547 }
548 
549 /// Combine loads to match the type of their uses' value after looking
550 /// through intervening bitcasts.
551 ///
552 /// The core idea here is that if the result of a load is used in an operation,
553 /// we should load the type most conducive to that operation. For example, when
554 /// loading an integer and converting that immediately to a pointer, we should
555 /// instead directly load a pointer.
556 ///
557 /// However, this routine must never change the width of a load or the number of
558 /// loads as that would introduce a semantic change. This combine is expected to
559 /// be a semantic no-op which just allows loads to more closely model the types
560 /// of their consuming operations.
561 ///
562 /// Currently, we also refuse to change the precise type used for an atomic load
563 /// or a volatile load. This is debatable, and might be reasonable to change
564 /// later. However, it is risky in case some backend or other part of LLVM is
565 /// relying on the exact type loaded to select appropriate atomic operations.
566 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
567   // FIXME: We could probably with some care handle both volatile and ordered
568   // atomic loads here but it isn't clear that this is important.
569   if (!LI.isUnordered())
570     return nullptr;
571 
572   if (LI.use_empty())
573     return nullptr;
574 
575   // swifterror values can't be bitcasted.
576   if (LI.getPointerOperand()->isSwiftError())
577     return nullptr;
578 
579   Type *Ty = LI.getType();
580   const DataLayout &DL = IC.getDataLayout();
581 
582   // Try to canonicalize loads which are only ever stored to operate over
583   // integers instead of any other type. We only do this when the loaded type
584   // is sized and has a size exactly the same as its store size and the store
585   // size is a legal integer type.
586   // Do not perform canonicalization if minmax pattern is found (to avoid
587   // infinite loop).
588   if (!Ty->isIntegerTy() && Ty->isSized() &&
589       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
590       DL.typeSizeEqualsStoreSize(Ty) &&
591       !DL.isNonIntegralPointerType(Ty) &&
592       !isMinMaxWithLoads(
593           peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) {
594     if (all_of(LI.users(), [&LI](User *U) {
595           auto *SI = dyn_cast<StoreInst>(U);
596           return SI && SI->getPointerOperand() != &LI &&
597                  !SI->getPointerOperand()->isSwiftError();
598         })) {
599       LoadInst *NewLoad = combineLoadToNewType(
600           IC, LI,
601           Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
602       // Replace all the stores with stores of the newly loaded value.
603       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
604         auto *SI = cast<StoreInst>(*UI++);
605         IC.Builder.SetInsertPoint(SI);
606         combineStoreToNewValue(IC, *SI, NewLoad);
607         IC.eraseInstFromFunction(*SI);
608       }
609       assert(LI.use_empty() && "Failed to remove all users of the load!");
610       // Return the old load so the combiner can delete it safely.
611       return &LI;
612     }
613   }
614 
615   // Fold away bit casts of the loaded value by loading the desired type.
616   // We can do this for BitCastInsts as well as casts from and to pointer types,
617   // as long as those are noops (i.e., the source or dest type have the same
618   // bitwidth as the target's pointers).
619   if (LI.hasOneUse())
620     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
621       if (CI->isNoopCast(DL))
622         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
623           LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
624           CI->replaceAllUsesWith(NewLoad);
625           IC.eraseInstFromFunction(*CI);
626           return &LI;
627         }
628 
629   // FIXME: We should also canonicalize loads of vectors when their elements are
630   // cast to other types.
631   return nullptr;
632 }
633 
634 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
635   // FIXME: We could probably with some care handle both volatile and atomic
636   // stores here but it isn't clear that this is important.
637   if (!LI.isSimple())
638     return nullptr;
639 
640   Type *T = LI.getType();
641   if (!T->isAggregateType())
642     return nullptr;
643 
644   StringRef Name = LI.getName();
645   assert(LI.getAlignment() && "Alignment must be set at this point");
646 
647   if (auto *ST = dyn_cast<StructType>(T)) {
648     // If the struct only have one element, we unpack.
649     auto NumElements = ST->getNumElements();
650     if (NumElements == 1) {
651       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
652                                                ".unpack");
653       AAMDNodes AAMD;
654       LI.getAAMetadata(AAMD);
655       NewLoad->setAAMetadata(AAMD);
656       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
657         UndefValue::get(T), NewLoad, 0, Name));
658     }
659 
660     // We don't want to break loads with padding here as we'd loose
661     // the knowledge that padding exists for the rest of the pipeline.
662     const DataLayout &DL = IC.getDataLayout();
663     auto *SL = DL.getStructLayout(ST);
664     if (SL->hasPadding())
665       return nullptr;
666 
667     auto Align = LI.getAlignment();
668     if (!Align)
669       Align = DL.getABITypeAlignment(ST);
670 
671     auto *Addr = LI.getPointerOperand();
672     auto *IdxType = Type::getInt32Ty(T->getContext());
673     auto *Zero = ConstantInt::get(IdxType, 0);
674 
675     Value *V = UndefValue::get(T);
676     for (unsigned i = 0; i < NumElements; i++) {
677       Value *Indices[2] = {
678         Zero,
679         ConstantInt::get(IdxType, i),
680       };
681       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
682                                                Name + ".elt");
683       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
684       auto *L = IC.Builder.CreateAlignedLoad(ST->getElementType(i), Ptr,
685                                              EltAlign, Name + ".unpack");
686       // Propagate AA metadata. It'll still be valid on the narrowed load.
687       AAMDNodes AAMD;
688       LI.getAAMetadata(AAMD);
689       L->setAAMetadata(AAMD);
690       V = IC.Builder.CreateInsertValue(V, L, i);
691     }
692 
693     V->setName(Name);
694     return IC.replaceInstUsesWith(LI, V);
695   }
696 
697   if (auto *AT = dyn_cast<ArrayType>(T)) {
698     auto *ET = AT->getElementType();
699     auto NumElements = AT->getNumElements();
700     if (NumElements == 1) {
701       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
702       AAMDNodes AAMD;
703       LI.getAAMetadata(AAMD);
704       NewLoad->setAAMetadata(AAMD);
705       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
706         UndefValue::get(T), NewLoad, 0, Name));
707     }
708 
709     // Bail out if the array is too large. Ideally we would like to optimize
710     // arrays of arbitrary size but this has a terrible impact on compile time.
711     // The threshold here is chosen arbitrarily, maybe needs a little bit of
712     // tuning.
713     if (NumElements > IC.MaxArraySizeForCombine)
714       return nullptr;
715 
716     const DataLayout &DL = IC.getDataLayout();
717     auto EltSize = DL.getTypeAllocSize(ET);
718     auto Align = LI.getAlignment();
719     if (!Align)
720       Align = DL.getABITypeAlignment(T);
721 
722     auto *Addr = LI.getPointerOperand();
723     auto *IdxType = Type::getInt64Ty(T->getContext());
724     auto *Zero = ConstantInt::get(IdxType, 0);
725 
726     Value *V = UndefValue::get(T);
727     uint64_t Offset = 0;
728     for (uint64_t i = 0; i < NumElements; i++) {
729       Value *Indices[2] = {
730         Zero,
731         ConstantInt::get(IdxType, i),
732       };
733       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
734                                                Name + ".elt");
735       auto *L = IC.Builder.CreateAlignedLoad(
736           AT->getElementType(), Ptr, MinAlign(Align, Offset), Name + ".unpack");
737       AAMDNodes AAMD;
738       LI.getAAMetadata(AAMD);
739       L->setAAMetadata(AAMD);
740       V = IC.Builder.CreateInsertValue(V, L, i);
741       Offset += EltSize;
742     }
743 
744     V->setName(Name);
745     return IC.replaceInstUsesWith(LI, V);
746   }
747 
748   return nullptr;
749 }
750 
751 // If we can determine that all possible objects pointed to by the provided
752 // pointer value are, not only dereferenceable, but also definitively less than
753 // or equal to the provided maximum size, then return true. Otherwise, return
754 // false (constant global values and allocas fall into this category).
755 //
756 // FIXME: This should probably live in ValueTracking (or similar).
757 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
758                                      const DataLayout &DL) {
759   SmallPtrSet<Value *, 4> Visited;
760   SmallVector<Value *, 4> Worklist(1, V);
761 
762   do {
763     Value *P = Worklist.pop_back_val();
764     P = P->stripPointerCasts();
765 
766     if (!Visited.insert(P).second)
767       continue;
768 
769     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
770       Worklist.push_back(SI->getTrueValue());
771       Worklist.push_back(SI->getFalseValue());
772       continue;
773     }
774 
775     if (PHINode *PN = dyn_cast<PHINode>(P)) {
776       for (Value *IncValue : PN->incoming_values())
777         Worklist.push_back(IncValue);
778       continue;
779     }
780 
781     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
782       if (GA->isInterposable())
783         return false;
784       Worklist.push_back(GA->getAliasee());
785       continue;
786     }
787 
788     // If we know how big this object is, and it is less than MaxSize, continue
789     // searching. Otherwise, return false.
790     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
791       if (!AI->getAllocatedType()->isSized())
792         return false;
793 
794       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
795       if (!CS)
796         return false;
797 
798       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
799       // Make sure that, even if the multiplication below would wrap as an
800       // uint64_t, we still do the right thing.
801       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
802         return false;
803       continue;
804     }
805 
806     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
807       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
808         return false;
809 
810       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
811       if (InitSize > MaxSize)
812         return false;
813       continue;
814     }
815 
816     return false;
817   } while (!Worklist.empty());
818 
819   return true;
820 }
821 
822 // If we're indexing into an object of a known size, and the outer index is
823 // not a constant, but having any value but zero would lead to undefined
824 // behavior, replace it with zero.
825 //
826 // For example, if we have:
827 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
828 // ...
829 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
830 // ... = load i32* %arrayidx, align 4
831 // Then we know that we can replace %x in the GEP with i64 0.
832 //
833 // FIXME: We could fold any GEP index to zero that would cause UB if it were
834 // not zero. Currently, we only handle the first such index. Also, we could
835 // also search through non-zero constant indices if we kept track of the
836 // offsets those indices implied.
837 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
838                                      Instruction *MemI, unsigned &Idx) {
839   if (GEPI->getNumOperands() < 2)
840     return false;
841 
842   // Find the first non-zero index of a GEP. If all indices are zero, return
843   // one past the last index.
844   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
845     unsigned I = 1;
846     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
847       Value *V = GEPI->getOperand(I);
848       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
849         if (CI->isZero())
850           continue;
851 
852       break;
853     }
854 
855     return I;
856   };
857 
858   // Skip through initial 'zero' indices, and find the corresponding pointer
859   // type. See if the next index is not a constant.
860   Idx = FirstNZIdx(GEPI);
861   if (Idx == GEPI->getNumOperands())
862     return false;
863   if (isa<Constant>(GEPI->getOperand(Idx)))
864     return false;
865 
866   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
867   Type *AllocTy =
868     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
869   if (!AllocTy || !AllocTy->isSized())
870     return false;
871   const DataLayout &DL = IC.getDataLayout();
872   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
873 
874   // If there are more indices after the one we might replace with a zero, make
875   // sure they're all non-negative. If any of them are negative, the overall
876   // address being computed might be before the base address determined by the
877   // first non-zero index.
878   auto IsAllNonNegative = [&]() {
879     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
880       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
881       if (Known.isNonNegative())
882         continue;
883       return false;
884     }
885 
886     return true;
887   };
888 
889   // FIXME: If the GEP is not inbounds, and there are extra indices after the
890   // one we'll replace, those could cause the address computation to wrap
891   // (rendering the IsAllNonNegative() check below insufficient). We can do
892   // better, ignoring zero indices (and other indices we can prove small
893   // enough not to wrap).
894   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
895     return false;
896 
897   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
898   // also known to be dereferenceable.
899   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
900          IsAllNonNegative();
901 }
902 
903 // If we're indexing into an object with a variable index for the memory
904 // access, but the object has only one element, we can assume that the index
905 // will always be zero. If we replace the GEP, return it.
906 template <typename T>
907 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
908                                           T &MemI) {
909   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
910     unsigned Idx;
911     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
912       Instruction *NewGEPI = GEPI->clone();
913       NewGEPI->setOperand(Idx,
914         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
915       NewGEPI->insertBefore(GEPI);
916       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
917       return NewGEPI;
918     }
919   }
920 
921   return nullptr;
922 }
923 
924 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
925   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
926     return false;
927 
928   auto *Ptr = SI.getPointerOperand();
929   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
930     Ptr = GEPI->getOperand(0);
931   return (isa<ConstantPointerNull>(Ptr) &&
932           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
933 }
934 
935 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
936   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
937     const Value *GEPI0 = GEPI->getOperand(0);
938     if (isa<ConstantPointerNull>(GEPI0) &&
939         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
940       return true;
941   }
942   if (isa<UndefValue>(Op) ||
943       (isa<ConstantPointerNull>(Op) &&
944        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
945     return true;
946   return false;
947 }
948 
949 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
950   Value *Op = LI.getOperand(0);
951 
952   // Try to canonicalize the loaded type.
953   if (Instruction *Res = combineLoadToOperationType(*this, LI))
954     return Res;
955 
956   // Attempt to improve the alignment.
957   unsigned KnownAlign = getOrEnforceKnownAlignment(
958       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
959   unsigned LoadAlign = LI.getAlignment();
960   unsigned EffectiveLoadAlign =
961       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
962 
963   if (KnownAlign > EffectiveLoadAlign)
964     LI.setAlignment(MaybeAlign(KnownAlign));
965   else if (LoadAlign == 0)
966     LI.setAlignment(MaybeAlign(EffectiveLoadAlign));
967 
968   // Replace GEP indices if possible.
969   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
970       Worklist.Add(NewGEPI);
971       return &LI;
972   }
973 
974   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
975     return Res;
976 
977   // Do really simple store-to-load forwarding and load CSE, to catch cases
978   // where there are several consecutive memory accesses to the same location,
979   // separated by a few arithmetic operations.
980   BasicBlock::iterator BBI(LI);
981   bool IsLoadCSE = false;
982   if (Value *AvailableVal = FindAvailableLoadedValue(
983           &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
984     if (IsLoadCSE)
985       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
986 
987     return replaceInstUsesWith(
988         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
989                                            LI.getName() + ".cast"));
990   }
991 
992   // None of the following transforms are legal for volatile/ordered atomic
993   // loads.  Most of them do apply for unordered atomics.
994   if (!LI.isUnordered()) return nullptr;
995 
996   // load(gep null, ...) -> unreachable
997   // load null/undef -> unreachable
998   // TODO: Consider a target hook for valid address spaces for this xforms.
999   if (canSimplifyNullLoadOrGEP(LI, Op)) {
1000     // Insert a new store to null instruction before the load to indicate
1001     // that this code is not reachable.  We do this instead of inserting
1002     // an unreachable instruction directly because we cannot modify the
1003     // CFG.
1004     StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
1005                                   Constant::getNullValue(Op->getType()), &LI);
1006     SI->setDebugLoc(LI.getDebugLoc());
1007     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
1008   }
1009 
1010   if (Op->hasOneUse()) {
1011     // Change select and PHI nodes to select values instead of addresses: this
1012     // helps alias analysis out a lot, allows many others simplifications, and
1013     // exposes redundancy in the code.
1014     //
1015     // Note that we cannot do the transformation unless we know that the
1016     // introduced loads cannot trap!  Something like this is valid as long as
1017     // the condition is always false: load (select bool %C, int* null, int* %G),
1018     // but it would not be valid if we transformed it to load from null
1019     // unconditionally.
1020     //
1021     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1022       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1023       const MaybeAlign Alignment(LI.getAlignment());
1024       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1025                                       Alignment, DL, SI) &&
1026           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1027                                       Alignment, DL, SI)) {
1028         LoadInst *V1 =
1029             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1030                                SI->getOperand(1)->getName() + ".val");
1031         LoadInst *V2 =
1032             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1033                                SI->getOperand(2)->getName() + ".val");
1034         assert(LI.isUnordered() && "implied by above");
1035         V1->setAlignment(Alignment);
1036         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1037         V2->setAlignment(Alignment);
1038         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1039         return SelectInst::Create(SI->getCondition(), V1, V2);
1040       }
1041 
1042       // load (select (cond, null, P)) -> load P
1043       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1044           !NullPointerIsDefined(SI->getFunction(),
1045                                 LI.getPointerAddressSpace())) {
1046         LI.setOperand(0, SI->getOperand(2));
1047         return &LI;
1048       }
1049 
1050       // load (select (cond, P, null)) -> load P
1051       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1052           !NullPointerIsDefined(SI->getFunction(),
1053                                 LI.getPointerAddressSpace())) {
1054         LI.setOperand(0, SI->getOperand(1));
1055         return &LI;
1056       }
1057     }
1058   }
1059   return nullptr;
1060 }
1061 
1062 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1063 ///
1064 /// \returns underlying value that was "cast", or nullptr otherwise.
1065 ///
1066 /// For example, if we have:
1067 ///
1068 ///     %E0 = extractelement <2 x double> %U, i32 0
1069 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1070 ///     %E1 = extractelement <2 x double> %U, i32 1
1071 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1072 ///
1073 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1074 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1075 /// Note that %U may contain non-undef values where %V1 has undef.
1076 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
1077   Value *U = nullptr;
1078   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1079     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1080     if (!E)
1081       return nullptr;
1082     auto *W = E->getVectorOperand();
1083     if (!U)
1084       U = W;
1085     else if (U != W)
1086       return nullptr;
1087     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1088     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1089       return nullptr;
1090     V = IV->getAggregateOperand();
1091   }
1092   if (!isa<UndefValue>(V) ||!U)
1093     return nullptr;
1094 
1095   auto *UT = cast<VectorType>(U->getType());
1096   auto *VT = V->getType();
1097   // Check that types UT and VT are bitwise isomorphic.
1098   const auto &DL = IC.getDataLayout();
1099   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1100     return nullptr;
1101   }
1102   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1103     if (AT->getNumElements() != UT->getNumElements())
1104       return nullptr;
1105   } else {
1106     auto *ST = cast<StructType>(VT);
1107     if (ST->getNumElements() != UT->getNumElements())
1108       return nullptr;
1109     for (const auto *EltT : ST->elements()) {
1110       if (EltT != UT->getElementType())
1111         return nullptr;
1112     }
1113   }
1114   return U;
1115 }
1116 
1117 /// Combine stores to match the type of value being stored.
1118 ///
1119 /// The core idea here is that the memory does not have any intrinsic type and
1120 /// where we can we should match the type of a store to the type of value being
1121 /// stored.
1122 ///
1123 /// However, this routine must never change the width of a store or the number of
1124 /// stores as that would introduce a semantic change. This combine is expected to
1125 /// be a semantic no-op which just allows stores to more closely model the types
1126 /// of their incoming values.
1127 ///
1128 /// Currently, we also refuse to change the precise type used for an atomic or
1129 /// volatile store. This is debatable, and might be reasonable to change later.
1130 /// However, it is risky in case some backend or other part of LLVM is relying
1131 /// on the exact type stored to select appropriate atomic operations.
1132 ///
1133 /// \returns true if the store was successfully combined away. This indicates
1134 /// the caller must erase the store instruction. We have to let the caller erase
1135 /// the store instruction as otherwise there is no way to signal whether it was
1136 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1137 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
1138   // FIXME: We could probably with some care handle both volatile and ordered
1139   // atomic stores here but it isn't clear that this is important.
1140   if (!SI.isUnordered())
1141     return false;
1142 
1143   // swifterror values can't be bitcasted.
1144   if (SI.getPointerOperand()->isSwiftError())
1145     return false;
1146 
1147   Value *V = SI.getValueOperand();
1148 
1149   // Fold away bit casts of the stored value by storing the original type.
1150   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1151     V = BC->getOperand(0);
1152     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1153       combineStoreToNewValue(IC, SI, V);
1154       return true;
1155     }
1156   }
1157 
1158   if (Value *U = likeBitCastFromVector(IC, V))
1159     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1160       combineStoreToNewValue(IC, SI, U);
1161       return true;
1162     }
1163 
1164   // FIXME: We should also canonicalize stores of vectors when their elements
1165   // are cast to other types.
1166   return false;
1167 }
1168 
1169 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1170   // FIXME: We could probably with some care handle both volatile and atomic
1171   // stores here but it isn't clear that this is important.
1172   if (!SI.isSimple())
1173     return false;
1174 
1175   Value *V = SI.getValueOperand();
1176   Type *T = V->getType();
1177 
1178   if (!T->isAggregateType())
1179     return false;
1180 
1181   if (auto *ST = dyn_cast<StructType>(T)) {
1182     // If the struct only have one element, we unpack.
1183     unsigned Count = ST->getNumElements();
1184     if (Count == 1) {
1185       V = IC.Builder.CreateExtractValue(V, 0);
1186       combineStoreToNewValue(IC, SI, V);
1187       return true;
1188     }
1189 
1190     // We don't want to break loads with padding here as we'd loose
1191     // the knowledge that padding exists for the rest of the pipeline.
1192     const DataLayout &DL = IC.getDataLayout();
1193     auto *SL = DL.getStructLayout(ST);
1194     if (SL->hasPadding())
1195       return false;
1196 
1197     auto Align = SI.getAlignment();
1198     if (!Align)
1199       Align = DL.getABITypeAlignment(ST);
1200 
1201     SmallString<16> EltName = V->getName();
1202     EltName += ".elt";
1203     auto *Addr = SI.getPointerOperand();
1204     SmallString<16> AddrName = Addr->getName();
1205     AddrName += ".repack";
1206 
1207     auto *IdxType = Type::getInt32Ty(ST->getContext());
1208     auto *Zero = ConstantInt::get(IdxType, 0);
1209     for (unsigned i = 0; i < Count; i++) {
1210       Value *Indices[2] = {
1211         Zero,
1212         ConstantInt::get(IdxType, i),
1213       };
1214       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1215                                                AddrName);
1216       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1217       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
1218       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1219       AAMDNodes AAMD;
1220       SI.getAAMetadata(AAMD);
1221       NS->setAAMetadata(AAMD);
1222     }
1223 
1224     return true;
1225   }
1226 
1227   if (auto *AT = dyn_cast<ArrayType>(T)) {
1228     // If the array only have one element, we unpack.
1229     auto NumElements = AT->getNumElements();
1230     if (NumElements == 1) {
1231       V = IC.Builder.CreateExtractValue(V, 0);
1232       combineStoreToNewValue(IC, SI, V);
1233       return true;
1234     }
1235 
1236     // Bail out if the array is too large. Ideally we would like to optimize
1237     // arrays of arbitrary size but this has a terrible impact on compile time.
1238     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1239     // tuning.
1240     if (NumElements > IC.MaxArraySizeForCombine)
1241       return false;
1242 
1243     const DataLayout &DL = IC.getDataLayout();
1244     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1245     auto Align = SI.getAlignment();
1246     if (!Align)
1247       Align = DL.getABITypeAlignment(T);
1248 
1249     SmallString<16> EltName = V->getName();
1250     EltName += ".elt";
1251     auto *Addr = SI.getPointerOperand();
1252     SmallString<16> AddrName = Addr->getName();
1253     AddrName += ".repack";
1254 
1255     auto *IdxType = Type::getInt64Ty(T->getContext());
1256     auto *Zero = ConstantInt::get(IdxType, 0);
1257 
1258     uint64_t Offset = 0;
1259     for (uint64_t i = 0; i < NumElements; i++) {
1260       Value *Indices[2] = {
1261         Zero,
1262         ConstantInt::get(IdxType, i),
1263       };
1264       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1265                                                AddrName);
1266       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1267       auto EltAlign = MinAlign(Align, Offset);
1268       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1269       AAMDNodes AAMD;
1270       SI.getAAMetadata(AAMD);
1271       NS->setAAMetadata(AAMD);
1272       Offset += EltSize;
1273     }
1274 
1275     return true;
1276   }
1277 
1278   return false;
1279 }
1280 
1281 /// equivalentAddressValues - Test if A and B will obviously have the same
1282 /// value. This includes recognizing that %t0 and %t1 will have the same
1283 /// value in code like this:
1284 ///   %t0 = getelementptr \@a, 0, 3
1285 ///   store i32 0, i32* %t0
1286 ///   %t1 = getelementptr \@a, 0, 3
1287 ///   %t2 = load i32* %t1
1288 ///
1289 static bool equivalentAddressValues(Value *A, Value *B) {
1290   // Test if the values are trivially equivalent.
1291   if (A == B) return true;
1292 
1293   // Test if the values come form identical arithmetic instructions.
1294   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1295   // its only used to compare two uses within the same basic block, which
1296   // means that they'll always either have the same value or one of them
1297   // will have an undefined value.
1298   if (isa<BinaryOperator>(A) ||
1299       isa<CastInst>(A) ||
1300       isa<PHINode>(A) ||
1301       isa<GetElementPtrInst>(A))
1302     if (Instruction *BI = dyn_cast<Instruction>(B))
1303       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1304         return true;
1305 
1306   // Otherwise they may not be equivalent.
1307   return false;
1308 }
1309 
1310 /// Converts store (bitcast (load (bitcast (select ...)))) to
1311 /// store (load (select ...)), where select is minmax:
1312 /// select ((cmp load V1, load V2), V1, V2).
1313 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC,
1314                                                 StoreInst &SI) {
1315   // bitcast?
1316   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1317     return false;
1318   // load? integer?
1319   Value *LoadAddr;
1320   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1321     return false;
1322   auto *LI = cast<LoadInst>(SI.getValueOperand());
1323   if (!LI->getType()->isIntegerTy())
1324     return false;
1325   if (!isMinMaxWithLoads(LoadAddr))
1326     return false;
1327 
1328   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1329         auto *SI = dyn_cast<StoreInst>(U);
1330         return SI && SI->getPointerOperand() != LI &&
1331                peekThroughBitcast(SI->getPointerOperand()) != LoadAddr &&
1332                !SI->getPointerOperand()->isSwiftError();
1333       }))
1334     return false;
1335 
1336   IC.Builder.SetInsertPoint(LI);
1337   LoadInst *NewLI = combineLoadToNewType(
1338       IC, *LI, LoadAddr->getType()->getPointerElementType());
1339   // Replace all the stores with stores of the newly loaded value.
1340   for (auto *UI : LI->users()) {
1341     auto *USI = cast<StoreInst>(UI);
1342     IC.Builder.SetInsertPoint(USI);
1343     combineStoreToNewValue(IC, *USI, NewLI);
1344   }
1345   IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1346   IC.eraseInstFromFunction(*LI);
1347   return true;
1348 }
1349 
1350 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1351   Value *Val = SI.getOperand(0);
1352   Value *Ptr = SI.getOperand(1);
1353 
1354   // Try to canonicalize the stored type.
1355   if (combineStoreToValueType(*this, SI))
1356     return eraseInstFromFunction(SI);
1357 
1358   // Attempt to improve the alignment.
1359   const Align KnownAlign = Align(getOrEnforceKnownAlignment(
1360       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT));
1361   const MaybeAlign StoreAlign = MaybeAlign(SI.getAlignment());
1362   const Align EffectiveStoreAlign =
1363       StoreAlign ? *StoreAlign : Align(DL.getABITypeAlignment(Val->getType()));
1364 
1365   if (KnownAlign > EffectiveStoreAlign)
1366     SI.setAlignment(KnownAlign);
1367   else if (!StoreAlign)
1368     SI.setAlignment(EffectiveStoreAlign);
1369 
1370   // Try to canonicalize the stored type.
1371   if (unpackStoreToAggregate(*this, SI))
1372     return eraseInstFromFunction(SI);
1373 
1374   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1375     return eraseInstFromFunction(SI);
1376 
1377   // Replace GEP indices if possible.
1378   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1379       Worklist.Add(NewGEPI);
1380       return &SI;
1381   }
1382 
1383   // Don't hack volatile/ordered stores.
1384   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1385   if (!SI.isUnordered()) return nullptr;
1386 
1387   // If the RHS is an alloca with a single use, zapify the store, making the
1388   // alloca dead.
1389   if (Ptr->hasOneUse()) {
1390     if (isa<AllocaInst>(Ptr))
1391       return eraseInstFromFunction(SI);
1392     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1393       if (isa<AllocaInst>(GEP->getOperand(0))) {
1394         if (GEP->getOperand(0)->hasOneUse())
1395           return eraseInstFromFunction(SI);
1396       }
1397     }
1398   }
1399 
1400   // If we have a store to a location which is known constant, we can conclude
1401   // that the store must be storing the constant value (else the memory
1402   // wouldn't be constant), and this must be a noop.
1403   if (AA->pointsToConstantMemory(Ptr))
1404     return eraseInstFromFunction(SI);
1405 
1406   // Do really simple DSE, to catch cases where there are several consecutive
1407   // stores to the same location, separated by a few arithmetic operations. This
1408   // situation often occurs with bitfield accesses.
1409   BasicBlock::iterator BBI(SI);
1410   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1411        --ScanInsts) {
1412     --BBI;
1413     // Don't count debug info directives, lest they affect codegen,
1414     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1415     if (isa<DbgInfoIntrinsic>(BBI) ||
1416         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1417       ScanInsts++;
1418       continue;
1419     }
1420 
1421     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1422       // Prev store isn't volatile, and stores to the same location?
1423       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1424                                                         SI.getOperand(1))) {
1425         ++NumDeadStore;
1426         ++BBI;
1427         eraseInstFromFunction(*PrevSI);
1428         continue;
1429       }
1430       break;
1431     }
1432 
1433     // If this is a load, we have to stop.  However, if the loaded value is from
1434     // the pointer we're loading and is producing the pointer we're storing,
1435     // then *this* store is dead (X = load P; store X -> P).
1436     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1437       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1438         assert(SI.isUnordered() && "can't eliminate ordering operation");
1439         return eraseInstFromFunction(SI);
1440       }
1441 
1442       // Otherwise, this is a load from some other location.  Stores before it
1443       // may not be dead.
1444       break;
1445     }
1446 
1447     // Don't skip over loads, throws or things that can modify memory.
1448     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1449       break;
1450   }
1451 
1452   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1453   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1454   if (canSimplifyNullStoreOrGEP(SI)) {
1455     if (!isa<UndefValue>(Val)) {
1456       SI.setOperand(0, UndefValue::get(Val->getType()));
1457       if (Instruction *U = dyn_cast<Instruction>(Val))
1458         Worklist.Add(U);  // Dropped a use.
1459     }
1460     return nullptr;  // Do not modify these!
1461   }
1462 
1463   // store undef, Ptr -> noop
1464   if (isa<UndefValue>(Val))
1465     return eraseInstFromFunction(SI);
1466 
1467   // If this store is the second-to-last instruction in the basic block
1468   // (excluding debug info and bitcasts of pointers) and if the block ends with
1469   // an unconditional branch, try to move the store to the successor block.
1470   BBI = SI.getIterator();
1471   do {
1472     ++BBI;
1473   } while (isa<DbgInfoIntrinsic>(BBI) ||
1474            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1475 
1476   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1477     if (BI->isUnconditional())
1478       mergeStoreIntoSuccessor(SI);
1479 
1480   return nullptr;
1481 }
1482 
1483 /// Try to transform:
1484 ///   if () { *P = v1; } else { *P = v2 }
1485 /// or:
1486 ///   *P = v1; if () { *P = v2; }
1487 /// into a phi node with a store in the successor.
1488 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) {
1489   assert(SI.isUnordered() &&
1490          "This code has not been audited for volatile or ordered store case.");
1491 
1492   // Check if the successor block has exactly 2 incoming edges.
1493   BasicBlock *StoreBB = SI.getParent();
1494   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1495   if (!DestBB->hasNPredecessors(2))
1496     return false;
1497 
1498   // Capture the other block (the block that doesn't contain our store).
1499   pred_iterator PredIter = pred_begin(DestBB);
1500   if (*PredIter == StoreBB)
1501     ++PredIter;
1502   BasicBlock *OtherBB = *PredIter;
1503 
1504   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1505   // for example, if SI is in an infinite loop.
1506   if (StoreBB == DestBB || OtherBB == DestBB)
1507     return false;
1508 
1509   // Verify that the other block ends in a branch and is not otherwise empty.
1510   BasicBlock::iterator BBI(OtherBB->getTerminator());
1511   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1512   if (!OtherBr || BBI == OtherBB->begin())
1513     return false;
1514 
1515   // If the other block ends in an unconditional branch, check for the 'if then
1516   // else' case. There is an instruction before the branch.
1517   StoreInst *OtherStore = nullptr;
1518   if (OtherBr->isUnconditional()) {
1519     --BBI;
1520     // Skip over debugging info.
1521     while (isa<DbgInfoIntrinsic>(BBI) ||
1522            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1523       if (BBI==OtherBB->begin())
1524         return false;
1525       --BBI;
1526     }
1527     // If this isn't a store, isn't a store to the same location, or is not the
1528     // right kind of store, bail out.
1529     OtherStore = dyn_cast<StoreInst>(BBI);
1530     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1531         !SI.isSameOperationAs(OtherStore))
1532       return false;
1533   } else {
1534     // Otherwise, the other block ended with a conditional branch. If one of the
1535     // destinations is StoreBB, then we have the if/then case.
1536     if (OtherBr->getSuccessor(0) != StoreBB &&
1537         OtherBr->getSuccessor(1) != StoreBB)
1538       return false;
1539 
1540     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1541     // if/then triangle. See if there is a store to the same ptr as SI that
1542     // lives in OtherBB.
1543     for (;; --BBI) {
1544       // Check to see if we find the matching store.
1545       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1546         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1547             !SI.isSameOperationAs(OtherStore))
1548           return false;
1549         break;
1550       }
1551       // If we find something that may be using or overwriting the stored
1552       // value, or if we run out of instructions, we can't do the transform.
1553       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1554           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1555         return false;
1556     }
1557 
1558     // In order to eliminate the store in OtherBr, we have to make sure nothing
1559     // reads or overwrites the stored value in StoreBB.
1560     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1561       // FIXME: This should really be AA driven.
1562       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1563         return false;
1564     }
1565   }
1566 
1567   // Insert a PHI node now if we need it.
1568   Value *MergedVal = OtherStore->getOperand(0);
1569   // The debug locations of the original instructions might differ. Merge them.
1570   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1571                                                      OtherStore->getDebugLoc());
1572   if (MergedVal != SI.getOperand(0)) {
1573     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1574     PN->addIncoming(SI.getOperand(0), SI.getParent());
1575     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1576     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1577     PN->setDebugLoc(MergedLoc);
1578   }
1579 
1580   // Advance to a place where it is safe to insert the new store and insert it.
1581   BBI = DestBB->getFirstInsertionPt();
1582   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(),
1583                                    MaybeAlign(SI.getAlignment()),
1584                                    SI.getOrdering(), SI.getSyncScopeID());
1585   InsertNewInstBefore(NewSI, *BBI);
1586   NewSI->setDebugLoc(MergedLoc);
1587 
1588   // If the two stores had AA tags, merge them.
1589   AAMDNodes AATags;
1590   SI.getAAMetadata(AATags);
1591   if (AATags) {
1592     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1593     NewSI->setAAMetadata(AATags);
1594   }
1595 
1596   // Nuke the old stores.
1597   eraseInstFromFunction(SI);
1598   eraseInstFromFunction(*OtherStore);
1599   return true;
1600 }
1601