1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/Transforms/Utils/Local.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "instcombine" 31 32 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 34 35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 36 /// some part of a constant global variable. This intentionally only accepts 37 /// constant expressions because we can't rewrite arbitrary instructions. 38 static bool pointsToConstantGlobal(Value *V) { 39 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 40 return GV->isConstant(); 41 42 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 43 if (CE->getOpcode() == Instruction::BitCast || 44 CE->getOpcode() == Instruction::AddrSpaceCast || 45 CE->getOpcode() == Instruction::GetElementPtr) 46 return pointsToConstantGlobal(CE->getOperand(0)); 47 } 48 return false; 49 } 50 51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 52 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 53 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 55 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 56 /// the alloca, and if the source pointer is a pointer to a constant global, we 57 /// can optimize this. 58 static bool 59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 60 SmallVectorImpl<Instruction *> &ToDelete) { 61 // We track lifetime intrinsics as we encounter them. If we decide to go 62 // ahead and replace the value with the global, this lets the caller quickly 63 // eliminate the markers. 64 65 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 66 ValuesToInspect.emplace_back(V, false); 67 while (!ValuesToInspect.empty()) { 68 auto ValuePair = ValuesToInspect.pop_back_val(); 69 const bool IsOffset = ValuePair.second; 70 for (auto &U : ValuePair.first->uses()) { 71 auto *I = cast<Instruction>(U.getUser()); 72 73 if (auto *LI = dyn_cast<LoadInst>(I)) { 74 // Ignore non-volatile loads, they are always ok. 75 if (!LI->isSimple()) return false; 76 continue; 77 } 78 79 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 80 // If uses of the bitcast are ok, we are ok. 81 ValuesToInspect.emplace_back(I, IsOffset); 82 continue; 83 } 84 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 85 // If the GEP has all zero indices, it doesn't offset the pointer. If it 86 // doesn't, it does. 87 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 88 continue; 89 } 90 91 if (auto *Call = dyn_cast<CallBase>(I)) { 92 // If this is the function being called then we treat it like a load and 93 // ignore it. 94 if (Call->isCallee(&U)) 95 continue; 96 97 unsigned DataOpNo = Call->getDataOperandNo(&U); 98 bool IsArgOperand = Call->isArgOperand(&U); 99 100 // Inalloca arguments are clobbered by the call. 101 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 102 return false; 103 104 // If this is a readonly/readnone call site, then we know it is just a 105 // load (but one that potentially returns the value itself), so we can 106 // ignore it if we know that the value isn't captured. 107 if (Call->onlyReadsMemory() && 108 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 109 continue; 110 111 // If this is being passed as a byval argument, the caller is making a 112 // copy, so it is only a read of the alloca. 113 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 114 continue; 115 } 116 117 // Lifetime intrinsics can be handled by the caller. 118 if (I->isLifetimeStartOrEnd()) { 119 assert(I->use_empty() && "Lifetime markers have no result to use!"); 120 ToDelete.push_back(I); 121 continue; 122 } 123 124 // If this is isn't our memcpy/memmove, reject it as something we can't 125 // handle. 126 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 127 if (!MI) 128 return false; 129 130 // If the transfer is using the alloca as a source of the transfer, then 131 // ignore it since it is a load (unless the transfer is volatile). 132 if (U.getOperandNo() == 1) { 133 if (MI->isVolatile()) return false; 134 continue; 135 } 136 137 // If we already have seen a copy, reject the second one. 138 if (TheCopy) return false; 139 140 // If the pointer has been offset from the start of the alloca, we can't 141 // safely handle this. 142 if (IsOffset) return false; 143 144 // If the memintrinsic isn't using the alloca as the dest, reject it. 145 if (U.getOperandNo() != 0) return false; 146 147 // If the source of the memcpy/move is not a constant global, reject it. 148 if (!pointsToConstantGlobal(MI->getSource())) 149 return false; 150 151 // Otherwise, the transform is safe. Remember the copy instruction. 152 TheCopy = MI; 153 } 154 } 155 return true; 156 } 157 158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 159 /// modified by a copy from a constant global. If we can prove this, we can 160 /// replace any uses of the alloca with uses of the global directly. 161 static MemTransferInst * 162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 163 SmallVectorImpl<Instruction *> &ToDelete) { 164 MemTransferInst *TheCopy = nullptr; 165 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 166 return TheCopy; 167 return nullptr; 168 } 169 170 /// Returns true if V is dereferenceable for size of alloca. 171 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 172 const DataLayout &DL) { 173 if (AI->isArrayAllocation()) 174 return false; 175 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 176 if (!AllocaSize) 177 return false; 178 return isDereferenceableAndAlignedPointer(V, AI->getAlignment(), 179 APInt(64, AllocaSize), DL); 180 } 181 182 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 183 // Check for array size of 1 (scalar allocation). 184 if (!AI.isArrayAllocation()) { 185 // i32 1 is the canonical array size for scalar allocations. 186 if (AI.getArraySize()->getType()->isIntegerTy(32)) 187 return nullptr; 188 189 // Canonicalize it. 190 Value *V = IC.Builder.getInt32(1); 191 AI.setOperand(0, V); 192 return &AI; 193 } 194 195 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 196 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 197 if (C->getValue().getActiveBits() <= 64) { 198 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 199 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 200 New->setAlignment(AI.getAlignment()); 201 202 // Scan to the end of the allocation instructions, to skip over a block of 203 // allocas if possible...also skip interleaved debug info 204 // 205 BasicBlock::iterator It(New); 206 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 207 ++It; 208 209 // Now that I is pointing to the first non-allocation-inst in the block, 210 // insert our getelementptr instruction... 211 // 212 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 213 Value *NullIdx = Constant::getNullValue(IdxTy); 214 Value *Idx[2] = {NullIdx, NullIdx}; 215 Instruction *GEP = GetElementPtrInst::CreateInBounds( 216 NewTy, New, Idx, New->getName() + ".sub"); 217 IC.InsertNewInstBefore(GEP, *It); 218 219 // Now make everything use the getelementptr instead of the original 220 // allocation. 221 return IC.replaceInstUsesWith(AI, GEP); 222 } 223 } 224 225 if (isa<UndefValue>(AI.getArraySize())) 226 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 227 228 // Ensure that the alloca array size argument has type intptr_t, so that 229 // any casting is exposed early. 230 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 231 if (AI.getArraySize()->getType() != IntPtrTy) { 232 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 233 AI.setOperand(0, V); 234 return &AI; 235 } 236 237 return nullptr; 238 } 239 240 namespace { 241 // If I and V are pointers in different address space, it is not allowed to 242 // use replaceAllUsesWith since I and V have different types. A 243 // non-target-specific transformation should not use addrspacecast on V since 244 // the two address space may be disjoint depending on target. 245 // 246 // This class chases down uses of the old pointer until reaching the load 247 // instructions, then replaces the old pointer in the load instructions with 248 // the new pointer. If during the chasing it sees bitcast or GEP, it will 249 // create new bitcast or GEP with the new pointer and use them in the load 250 // instruction. 251 class PointerReplacer { 252 public: 253 PointerReplacer(InstCombiner &IC) : IC(IC) {} 254 void replacePointer(Instruction &I, Value *V); 255 256 private: 257 void findLoadAndReplace(Instruction &I); 258 void replace(Instruction *I); 259 Value *getReplacement(Value *I); 260 261 SmallVector<Instruction *, 4> Path; 262 MapVector<Value *, Value *> WorkMap; 263 InstCombiner &IC; 264 }; 265 } // end anonymous namespace 266 267 void PointerReplacer::findLoadAndReplace(Instruction &I) { 268 for (auto U : I.users()) { 269 auto *Inst = dyn_cast<Instruction>(&*U); 270 if (!Inst) 271 return; 272 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 273 if (isa<LoadInst>(Inst)) { 274 for (auto P : Path) 275 replace(P); 276 replace(Inst); 277 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 278 Path.push_back(Inst); 279 findLoadAndReplace(*Inst); 280 Path.pop_back(); 281 } else { 282 return; 283 } 284 } 285 } 286 287 Value *PointerReplacer::getReplacement(Value *V) { 288 auto Loc = WorkMap.find(V); 289 if (Loc != WorkMap.end()) 290 return Loc->second; 291 return nullptr; 292 } 293 294 void PointerReplacer::replace(Instruction *I) { 295 if (getReplacement(I)) 296 return; 297 298 if (auto *LT = dyn_cast<LoadInst>(I)) { 299 auto *V = getReplacement(LT->getPointerOperand()); 300 assert(V && "Operand not replaced"); 301 auto *NewI = new LoadInst(I->getType(), V); 302 NewI->takeName(LT); 303 IC.InsertNewInstWith(NewI, *LT); 304 IC.replaceInstUsesWith(*LT, NewI); 305 WorkMap[LT] = NewI; 306 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 307 auto *V = getReplacement(GEP->getPointerOperand()); 308 assert(V && "Operand not replaced"); 309 SmallVector<Value *, 8> Indices; 310 Indices.append(GEP->idx_begin(), GEP->idx_end()); 311 auto *NewI = GetElementPtrInst::Create( 312 V->getType()->getPointerElementType(), V, Indices); 313 IC.InsertNewInstWith(NewI, *GEP); 314 NewI->takeName(GEP); 315 WorkMap[GEP] = NewI; 316 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 317 auto *V = getReplacement(BC->getOperand(0)); 318 assert(V && "Operand not replaced"); 319 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 320 V->getType()->getPointerAddressSpace()); 321 auto *NewI = new BitCastInst(V, NewT); 322 IC.InsertNewInstWith(NewI, *BC); 323 NewI->takeName(BC); 324 WorkMap[BC] = NewI; 325 } else { 326 llvm_unreachable("should never reach here"); 327 } 328 } 329 330 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 331 #ifndef NDEBUG 332 auto *PT = cast<PointerType>(I.getType()); 333 auto *NT = cast<PointerType>(V->getType()); 334 assert(PT != NT && PT->getElementType() == NT->getElementType() && 335 "Invalid usage"); 336 #endif 337 WorkMap[&I] = V; 338 findLoadAndReplace(I); 339 } 340 341 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 342 if (auto *I = simplifyAllocaArraySize(*this, AI)) 343 return I; 344 345 if (AI.getAllocatedType()->isSized()) { 346 // If the alignment is 0 (unspecified), assign it the preferred alignment. 347 if (AI.getAlignment() == 0) 348 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 349 350 // Move all alloca's of zero byte objects to the entry block and merge them 351 // together. Note that we only do this for alloca's, because malloc should 352 // allocate and return a unique pointer, even for a zero byte allocation. 353 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 354 // For a zero sized alloca there is no point in doing an array allocation. 355 // This is helpful if the array size is a complicated expression not used 356 // elsewhere. 357 if (AI.isArrayAllocation()) { 358 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 359 return &AI; 360 } 361 362 // Get the first instruction in the entry block. 363 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 364 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 365 if (FirstInst != &AI) { 366 // If the entry block doesn't start with a zero-size alloca then move 367 // this one to the start of the entry block. There is no problem with 368 // dominance as the array size was forced to a constant earlier already. 369 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 370 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 371 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 372 AI.moveBefore(FirstInst); 373 return &AI; 374 } 375 376 // If the alignment of the entry block alloca is 0 (unspecified), 377 // assign it the preferred alignment. 378 if (EntryAI->getAlignment() == 0) 379 EntryAI->setAlignment( 380 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 381 // Replace this zero-sized alloca with the one at the start of the entry 382 // block after ensuring that the address will be aligned enough for both 383 // types. 384 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 385 AI.getAlignment()); 386 EntryAI->setAlignment(MaxAlign); 387 if (AI.getType() != EntryAI->getType()) 388 return new BitCastInst(EntryAI, AI.getType()); 389 return replaceInstUsesWith(AI, EntryAI); 390 } 391 } 392 } 393 394 if (AI.getAlignment()) { 395 // Check to see if this allocation is only modified by a memcpy/memmove from 396 // a constant global whose alignment is equal to or exceeds that of the 397 // allocation. If this is the case, we can change all users to use 398 // the constant global instead. This is commonly produced by the CFE by 399 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 400 // is only subsequently read. 401 SmallVector<Instruction *, 4> ToDelete; 402 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 403 unsigned SourceAlign = getOrEnforceKnownAlignment( 404 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 405 if (AI.getAlignment() <= SourceAlign && 406 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 407 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 408 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 409 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 410 eraseInstFromFunction(*ToDelete[i]); 411 Constant *TheSrc = cast<Constant>(Copy->getSource()); 412 auto *SrcTy = TheSrc->getType(); 413 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 414 SrcTy->getPointerAddressSpace()); 415 Constant *Cast = 416 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 417 if (AI.getType()->getPointerAddressSpace() == 418 SrcTy->getPointerAddressSpace()) { 419 Instruction *NewI = replaceInstUsesWith(AI, Cast); 420 eraseInstFromFunction(*Copy); 421 ++NumGlobalCopies; 422 return NewI; 423 } else { 424 PointerReplacer PtrReplacer(*this); 425 PtrReplacer.replacePointer(AI, Cast); 426 ++NumGlobalCopies; 427 } 428 } 429 } 430 } 431 432 // At last, use the generic allocation site handler to aggressively remove 433 // unused allocas. 434 return visitAllocSite(AI); 435 } 436 437 // Are we allowed to form a atomic load or store of this type? 438 static bool isSupportedAtomicType(Type *Ty) { 439 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 440 } 441 442 /// Helper to combine a load to a new type. 443 /// 444 /// This just does the work of combining a load to a new type. It handles 445 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 446 /// loaded *value* type. This will convert it to a pointer, cast the operand to 447 /// that pointer type, load it, etc. 448 /// 449 /// Note that this will create all of the instructions with whatever insert 450 /// point the \c InstCombiner currently is using. 451 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 452 const Twine &Suffix = "") { 453 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 454 "can't fold an atomic load to requested type"); 455 456 Value *Ptr = LI.getPointerOperand(); 457 unsigned AS = LI.getPointerAddressSpace(); 458 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 459 LI.getAllMetadata(MD); 460 461 Value *NewPtr = nullptr; 462 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 463 NewPtr->getType()->getPointerElementType() == NewTy && 464 NewPtr->getType()->getPointerAddressSpace() == AS)) 465 NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 466 467 LoadInst *NewLoad = IC.Builder.CreateAlignedLoad( 468 NewTy, NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 469 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 470 MDBuilder MDB(NewLoad->getContext()); 471 for (const auto &MDPair : MD) { 472 unsigned ID = MDPair.first; 473 MDNode *N = MDPair.second; 474 // Note, essentially every kind of metadata should be preserved here! This 475 // routine is supposed to clone a load instruction changing *only its type*. 476 // The only metadata it makes sense to drop is metadata which is invalidated 477 // when the pointer type changes. This should essentially never be the case 478 // in LLVM, but we explicitly switch over only known metadata to be 479 // conservatively correct. If you are adding metadata to LLVM which pertains 480 // to loads, you almost certainly want to add it here. 481 switch (ID) { 482 case LLVMContext::MD_dbg: 483 case LLVMContext::MD_tbaa: 484 case LLVMContext::MD_prof: 485 case LLVMContext::MD_fpmath: 486 case LLVMContext::MD_tbaa_struct: 487 case LLVMContext::MD_invariant_load: 488 case LLVMContext::MD_alias_scope: 489 case LLVMContext::MD_noalias: 490 case LLVMContext::MD_nontemporal: 491 case LLVMContext::MD_mem_parallel_loop_access: 492 case LLVMContext::MD_access_group: 493 // All of these directly apply. 494 NewLoad->setMetadata(ID, N); 495 break; 496 497 case LLVMContext::MD_nonnull: 498 copyNonnullMetadata(LI, N, *NewLoad); 499 break; 500 case LLVMContext::MD_align: 501 case LLVMContext::MD_dereferenceable: 502 case LLVMContext::MD_dereferenceable_or_null: 503 // These only directly apply if the new type is also a pointer. 504 if (NewTy->isPointerTy()) 505 NewLoad->setMetadata(ID, N); 506 break; 507 case LLVMContext::MD_range: 508 copyRangeMetadata(IC.getDataLayout(), LI, N, *NewLoad); 509 break; 510 } 511 } 512 return NewLoad; 513 } 514 515 /// Combine a store to a new type. 516 /// 517 /// Returns the newly created store instruction. 518 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 519 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 520 "can't fold an atomic store of requested type"); 521 522 Value *Ptr = SI.getPointerOperand(); 523 unsigned AS = SI.getPointerAddressSpace(); 524 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 525 SI.getAllMetadata(MD); 526 527 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 528 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 529 SI.getAlignment(), SI.isVolatile()); 530 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 531 for (const auto &MDPair : MD) { 532 unsigned ID = MDPair.first; 533 MDNode *N = MDPair.second; 534 // Note, essentially every kind of metadata should be preserved here! This 535 // routine is supposed to clone a store instruction changing *only its 536 // type*. The only metadata it makes sense to drop is metadata which is 537 // invalidated when the pointer type changes. This should essentially 538 // never be the case in LLVM, but we explicitly switch over only known 539 // metadata to be conservatively correct. If you are adding metadata to 540 // LLVM which pertains to stores, you almost certainly want to add it 541 // here. 542 switch (ID) { 543 case LLVMContext::MD_dbg: 544 case LLVMContext::MD_tbaa: 545 case LLVMContext::MD_prof: 546 case LLVMContext::MD_fpmath: 547 case LLVMContext::MD_tbaa_struct: 548 case LLVMContext::MD_alias_scope: 549 case LLVMContext::MD_noalias: 550 case LLVMContext::MD_nontemporal: 551 case LLVMContext::MD_mem_parallel_loop_access: 552 case LLVMContext::MD_access_group: 553 // All of these directly apply. 554 NewStore->setMetadata(ID, N); 555 break; 556 case LLVMContext::MD_invariant_load: 557 case LLVMContext::MD_nonnull: 558 case LLVMContext::MD_range: 559 case LLVMContext::MD_align: 560 case LLVMContext::MD_dereferenceable: 561 case LLVMContext::MD_dereferenceable_or_null: 562 // These don't apply for stores. 563 break; 564 } 565 } 566 567 return NewStore; 568 } 569 570 /// Returns true if instruction represent minmax pattern like: 571 /// select ((cmp load V1, load V2), V1, V2). 572 static bool isMinMaxWithLoads(Value *V) { 573 assert(V->getType()->isPointerTy() && "Expected pointer type."); 574 // Ignore possible ty* to ixx* bitcast. 575 V = peekThroughBitcast(V); 576 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 577 // pattern. 578 CmpInst::Predicate Pred; 579 Instruction *L1; 580 Instruction *L2; 581 Value *LHS; 582 Value *RHS; 583 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 584 m_Value(LHS), m_Value(RHS)))) 585 return false; 586 return (match(L1, m_Load(m_Specific(LHS))) && 587 match(L2, m_Load(m_Specific(RHS)))) || 588 (match(L1, m_Load(m_Specific(RHS))) && 589 match(L2, m_Load(m_Specific(LHS)))); 590 } 591 592 /// Combine loads to match the type of their uses' value after looking 593 /// through intervening bitcasts. 594 /// 595 /// The core idea here is that if the result of a load is used in an operation, 596 /// we should load the type most conducive to that operation. For example, when 597 /// loading an integer and converting that immediately to a pointer, we should 598 /// instead directly load a pointer. 599 /// 600 /// However, this routine must never change the width of a load or the number of 601 /// loads as that would introduce a semantic change. This combine is expected to 602 /// be a semantic no-op which just allows loads to more closely model the types 603 /// of their consuming operations. 604 /// 605 /// Currently, we also refuse to change the precise type used for an atomic load 606 /// or a volatile load. This is debatable, and might be reasonable to change 607 /// later. However, it is risky in case some backend or other part of LLVM is 608 /// relying on the exact type loaded to select appropriate atomic operations. 609 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 610 // FIXME: We could probably with some care handle both volatile and ordered 611 // atomic loads here but it isn't clear that this is important. 612 if (!LI.isUnordered()) 613 return nullptr; 614 615 if (LI.use_empty()) 616 return nullptr; 617 618 // swifterror values can't be bitcasted. 619 if (LI.getPointerOperand()->isSwiftError()) 620 return nullptr; 621 622 Type *Ty = LI.getType(); 623 const DataLayout &DL = IC.getDataLayout(); 624 625 // Try to canonicalize loads which are only ever stored to operate over 626 // integers instead of any other type. We only do this when the loaded type 627 // is sized and has a size exactly the same as its store size and the store 628 // size is a legal integer type. 629 // Do not perform canonicalization if minmax pattern is found (to avoid 630 // infinite loop). 631 if (!Ty->isIntegerTy() && Ty->isSized() && 632 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 633 DL.typeSizeEqualsStoreSize(Ty) && 634 !DL.isNonIntegralPointerType(Ty) && 635 !isMinMaxWithLoads( 636 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) { 637 if (all_of(LI.users(), [&LI](User *U) { 638 auto *SI = dyn_cast<StoreInst>(U); 639 return SI && SI->getPointerOperand() != &LI && 640 !SI->getPointerOperand()->isSwiftError(); 641 })) { 642 LoadInst *NewLoad = combineLoadToNewType( 643 IC, LI, 644 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 645 // Replace all the stores with stores of the newly loaded value. 646 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 647 auto *SI = cast<StoreInst>(*UI++); 648 IC.Builder.SetInsertPoint(SI); 649 combineStoreToNewValue(IC, *SI, NewLoad); 650 IC.eraseInstFromFunction(*SI); 651 } 652 assert(LI.use_empty() && "Failed to remove all users of the load!"); 653 // Return the old load so the combiner can delete it safely. 654 return &LI; 655 } 656 } 657 658 // Fold away bit casts of the loaded value by loading the desired type. 659 // We can do this for BitCastInsts as well as casts from and to pointer types, 660 // as long as those are noops (i.e., the source or dest type have the same 661 // bitwidth as the target's pointers). 662 if (LI.hasOneUse()) 663 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 664 if (CI->isNoopCast(DL)) 665 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 666 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 667 CI->replaceAllUsesWith(NewLoad); 668 IC.eraseInstFromFunction(*CI); 669 return &LI; 670 } 671 672 // FIXME: We should also canonicalize loads of vectors when their elements are 673 // cast to other types. 674 return nullptr; 675 } 676 677 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 678 // FIXME: We could probably with some care handle both volatile and atomic 679 // stores here but it isn't clear that this is important. 680 if (!LI.isSimple()) 681 return nullptr; 682 683 Type *T = LI.getType(); 684 if (!T->isAggregateType()) 685 return nullptr; 686 687 StringRef Name = LI.getName(); 688 assert(LI.getAlignment() && "Alignment must be set at this point"); 689 690 if (auto *ST = dyn_cast<StructType>(T)) { 691 // If the struct only have one element, we unpack. 692 auto NumElements = ST->getNumElements(); 693 if (NumElements == 1) { 694 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 695 ".unpack"); 696 AAMDNodes AAMD; 697 LI.getAAMetadata(AAMD); 698 NewLoad->setAAMetadata(AAMD); 699 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 700 UndefValue::get(T), NewLoad, 0, Name)); 701 } 702 703 // We don't want to break loads with padding here as we'd loose 704 // the knowledge that padding exists for the rest of the pipeline. 705 const DataLayout &DL = IC.getDataLayout(); 706 auto *SL = DL.getStructLayout(ST); 707 if (SL->hasPadding()) 708 return nullptr; 709 710 auto Align = LI.getAlignment(); 711 if (!Align) 712 Align = DL.getABITypeAlignment(ST); 713 714 auto *Addr = LI.getPointerOperand(); 715 auto *IdxType = Type::getInt32Ty(T->getContext()); 716 auto *Zero = ConstantInt::get(IdxType, 0); 717 718 Value *V = UndefValue::get(T); 719 for (unsigned i = 0; i < NumElements; i++) { 720 Value *Indices[2] = { 721 Zero, 722 ConstantInt::get(IdxType, i), 723 }; 724 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 725 Name + ".elt"); 726 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 727 auto *L = IC.Builder.CreateAlignedLoad(ST->getElementType(i), Ptr, 728 EltAlign, Name + ".unpack"); 729 // Propagate AA metadata. It'll still be valid on the narrowed load. 730 AAMDNodes AAMD; 731 LI.getAAMetadata(AAMD); 732 L->setAAMetadata(AAMD); 733 V = IC.Builder.CreateInsertValue(V, L, i); 734 } 735 736 V->setName(Name); 737 return IC.replaceInstUsesWith(LI, V); 738 } 739 740 if (auto *AT = dyn_cast<ArrayType>(T)) { 741 auto *ET = AT->getElementType(); 742 auto NumElements = AT->getNumElements(); 743 if (NumElements == 1) { 744 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 745 AAMDNodes AAMD; 746 LI.getAAMetadata(AAMD); 747 NewLoad->setAAMetadata(AAMD); 748 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 749 UndefValue::get(T), NewLoad, 0, Name)); 750 } 751 752 // Bail out if the array is too large. Ideally we would like to optimize 753 // arrays of arbitrary size but this has a terrible impact on compile time. 754 // The threshold here is chosen arbitrarily, maybe needs a little bit of 755 // tuning. 756 if (NumElements > IC.MaxArraySizeForCombine) 757 return nullptr; 758 759 const DataLayout &DL = IC.getDataLayout(); 760 auto EltSize = DL.getTypeAllocSize(ET); 761 auto Align = LI.getAlignment(); 762 if (!Align) 763 Align = DL.getABITypeAlignment(T); 764 765 auto *Addr = LI.getPointerOperand(); 766 auto *IdxType = Type::getInt64Ty(T->getContext()); 767 auto *Zero = ConstantInt::get(IdxType, 0); 768 769 Value *V = UndefValue::get(T); 770 uint64_t Offset = 0; 771 for (uint64_t i = 0; i < NumElements; i++) { 772 Value *Indices[2] = { 773 Zero, 774 ConstantInt::get(IdxType, i), 775 }; 776 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 777 Name + ".elt"); 778 auto *L = IC.Builder.CreateAlignedLoad( 779 AT->getElementType(), Ptr, MinAlign(Align, Offset), Name + ".unpack"); 780 AAMDNodes AAMD; 781 LI.getAAMetadata(AAMD); 782 L->setAAMetadata(AAMD); 783 V = IC.Builder.CreateInsertValue(V, L, i); 784 Offset += EltSize; 785 } 786 787 V->setName(Name); 788 return IC.replaceInstUsesWith(LI, V); 789 } 790 791 return nullptr; 792 } 793 794 // If we can determine that all possible objects pointed to by the provided 795 // pointer value are, not only dereferenceable, but also definitively less than 796 // or equal to the provided maximum size, then return true. Otherwise, return 797 // false (constant global values and allocas fall into this category). 798 // 799 // FIXME: This should probably live in ValueTracking (or similar). 800 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 801 const DataLayout &DL) { 802 SmallPtrSet<Value *, 4> Visited; 803 SmallVector<Value *, 4> Worklist(1, V); 804 805 do { 806 Value *P = Worklist.pop_back_val(); 807 P = P->stripPointerCasts(); 808 809 if (!Visited.insert(P).second) 810 continue; 811 812 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 813 Worklist.push_back(SI->getTrueValue()); 814 Worklist.push_back(SI->getFalseValue()); 815 continue; 816 } 817 818 if (PHINode *PN = dyn_cast<PHINode>(P)) { 819 for (Value *IncValue : PN->incoming_values()) 820 Worklist.push_back(IncValue); 821 continue; 822 } 823 824 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 825 if (GA->isInterposable()) 826 return false; 827 Worklist.push_back(GA->getAliasee()); 828 continue; 829 } 830 831 // If we know how big this object is, and it is less than MaxSize, continue 832 // searching. Otherwise, return false. 833 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 834 if (!AI->getAllocatedType()->isSized()) 835 return false; 836 837 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 838 if (!CS) 839 return false; 840 841 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 842 // Make sure that, even if the multiplication below would wrap as an 843 // uint64_t, we still do the right thing. 844 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 845 return false; 846 continue; 847 } 848 849 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 850 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 851 return false; 852 853 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 854 if (InitSize > MaxSize) 855 return false; 856 continue; 857 } 858 859 return false; 860 } while (!Worklist.empty()); 861 862 return true; 863 } 864 865 // If we're indexing into an object of a known size, and the outer index is 866 // not a constant, but having any value but zero would lead to undefined 867 // behavior, replace it with zero. 868 // 869 // For example, if we have: 870 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 871 // ... 872 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 873 // ... = load i32* %arrayidx, align 4 874 // Then we know that we can replace %x in the GEP with i64 0. 875 // 876 // FIXME: We could fold any GEP index to zero that would cause UB if it were 877 // not zero. Currently, we only handle the first such index. Also, we could 878 // also search through non-zero constant indices if we kept track of the 879 // offsets those indices implied. 880 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 881 Instruction *MemI, unsigned &Idx) { 882 if (GEPI->getNumOperands() < 2) 883 return false; 884 885 // Find the first non-zero index of a GEP. If all indices are zero, return 886 // one past the last index. 887 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 888 unsigned I = 1; 889 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 890 Value *V = GEPI->getOperand(I); 891 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 892 if (CI->isZero()) 893 continue; 894 895 break; 896 } 897 898 return I; 899 }; 900 901 // Skip through initial 'zero' indices, and find the corresponding pointer 902 // type. See if the next index is not a constant. 903 Idx = FirstNZIdx(GEPI); 904 if (Idx == GEPI->getNumOperands()) 905 return false; 906 if (isa<Constant>(GEPI->getOperand(Idx))) 907 return false; 908 909 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 910 Type *AllocTy = 911 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 912 if (!AllocTy || !AllocTy->isSized()) 913 return false; 914 const DataLayout &DL = IC.getDataLayout(); 915 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 916 917 // If there are more indices after the one we might replace with a zero, make 918 // sure they're all non-negative. If any of them are negative, the overall 919 // address being computed might be before the base address determined by the 920 // first non-zero index. 921 auto IsAllNonNegative = [&]() { 922 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 923 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 924 if (Known.isNonNegative()) 925 continue; 926 return false; 927 } 928 929 return true; 930 }; 931 932 // FIXME: If the GEP is not inbounds, and there are extra indices after the 933 // one we'll replace, those could cause the address computation to wrap 934 // (rendering the IsAllNonNegative() check below insufficient). We can do 935 // better, ignoring zero indices (and other indices we can prove small 936 // enough not to wrap). 937 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 938 return false; 939 940 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 941 // also known to be dereferenceable. 942 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 943 IsAllNonNegative(); 944 } 945 946 // If we're indexing into an object with a variable index for the memory 947 // access, but the object has only one element, we can assume that the index 948 // will always be zero. If we replace the GEP, return it. 949 template <typename T> 950 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 951 T &MemI) { 952 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 953 unsigned Idx; 954 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 955 Instruction *NewGEPI = GEPI->clone(); 956 NewGEPI->setOperand(Idx, 957 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 958 NewGEPI->insertBefore(GEPI); 959 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 960 return NewGEPI; 961 } 962 } 963 964 return nullptr; 965 } 966 967 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 968 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 969 return false; 970 971 auto *Ptr = SI.getPointerOperand(); 972 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 973 Ptr = GEPI->getOperand(0); 974 return (isa<ConstantPointerNull>(Ptr) && 975 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 976 } 977 978 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 979 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 980 const Value *GEPI0 = GEPI->getOperand(0); 981 if (isa<ConstantPointerNull>(GEPI0) && 982 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 983 return true; 984 } 985 if (isa<UndefValue>(Op) || 986 (isa<ConstantPointerNull>(Op) && 987 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 988 return true; 989 return false; 990 } 991 992 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 993 Value *Op = LI.getOperand(0); 994 995 // Try to canonicalize the loaded type. 996 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 997 return Res; 998 999 // Attempt to improve the alignment. 1000 unsigned KnownAlign = getOrEnforceKnownAlignment( 1001 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 1002 unsigned LoadAlign = LI.getAlignment(); 1003 unsigned EffectiveLoadAlign = 1004 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 1005 1006 if (KnownAlign > EffectiveLoadAlign) 1007 LI.setAlignment(KnownAlign); 1008 else if (LoadAlign == 0) 1009 LI.setAlignment(EffectiveLoadAlign); 1010 1011 // Replace GEP indices if possible. 1012 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 1013 Worklist.Add(NewGEPI); 1014 return &LI; 1015 } 1016 1017 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 1018 return Res; 1019 1020 // Do really simple store-to-load forwarding and load CSE, to catch cases 1021 // where there are several consecutive memory accesses to the same location, 1022 // separated by a few arithmetic operations. 1023 BasicBlock::iterator BBI(LI); 1024 bool IsLoadCSE = false; 1025 if (Value *AvailableVal = FindAvailableLoadedValue( 1026 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1027 if (IsLoadCSE) 1028 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 1029 1030 return replaceInstUsesWith( 1031 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 1032 LI.getName() + ".cast")); 1033 } 1034 1035 // None of the following transforms are legal for volatile/ordered atomic 1036 // loads. Most of them do apply for unordered atomics. 1037 if (!LI.isUnordered()) return nullptr; 1038 1039 // load(gep null, ...) -> unreachable 1040 // load null/undef -> unreachable 1041 // TODO: Consider a target hook for valid address spaces for this xforms. 1042 if (canSimplifyNullLoadOrGEP(LI, Op)) { 1043 // Insert a new store to null instruction before the load to indicate 1044 // that this code is not reachable. We do this instead of inserting 1045 // an unreachable instruction directly because we cannot modify the 1046 // CFG. 1047 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 1048 Constant::getNullValue(Op->getType()), &LI); 1049 SI->setDebugLoc(LI.getDebugLoc()); 1050 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 1051 } 1052 1053 if (Op->hasOneUse()) { 1054 // Change select and PHI nodes to select values instead of addresses: this 1055 // helps alias analysis out a lot, allows many others simplifications, and 1056 // exposes redundancy in the code. 1057 // 1058 // Note that we cannot do the transformation unless we know that the 1059 // introduced loads cannot trap! Something like this is valid as long as 1060 // the condition is always false: load (select bool %C, int* null, int* %G), 1061 // but it would not be valid if we transformed it to load from null 1062 // unconditionally. 1063 // 1064 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1065 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1066 unsigned Align = LI.getAlignment(); 1067 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), Align, 1068 DL, SI) && 1069 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), Align, 1070 DL, SI)) { 1071 LoadInst *V1 = 1072 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 1073 SI->getOperand(1)->getName() + ".val"); 1074 LoadInst *V2 = 1075 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1076 SI->getOperand(2)->getName() + ".val"); 1077 assert(LI.isUnordered() && "implied by above"); 1078 V1->setAlignment(Align); 1079 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1080 V2->setAlignment(Align); 1081 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1082 return SelectInst::Create(SI->getCondition(), V1, V2); 1083 } 1084 1085 // load (select (cond, null, P)) -> load P 1086 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1087 !NullPointerIsDefined(SI->getFunction(), 1088 LI.getPointerAddressSpace())) { 1089 LI.setOperand(0, SI->getOperand(2)); 1090 return &LI; 1091 } 1092 1093 // load (select (cond, P, null)) -> load P 1094 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1095 !NullPointerIsDefined(SI->getFunction(), 1096 LI.getPointerAddressSpace())) { 1097 LI.setOperand(0, SI->getOperand(1)); 1098 return &LI; 1099 } 1100 } 1101 } 1102 return nullptr; 1103 } 1104 1105 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1106 /// 1107 /// \returns underlying value that was "cast", or nullptr otherwise. 1108 /// 1109 /// For example, if we have: 1110 /// 1111 /// %E0 = extractelement <2 x double> %U, i32 0 1112 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1113 /// %E1 = extractelement <2 x double> %U, i32 1 1114 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1115 /// 1116 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1117 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1118 /// Note that %U may contain non-undef values where %V1 has undef. 1119 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1120 Value *U = nullptr; 1121 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1122 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1123 if (!E) 1124 return nullptr; 1125 auto *W = E->getVectorOperand(); 1126 if (!U) 1127 U = W; 1128 else if (U != W) 1129 return nullptr; 1130 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1131 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1132 return nullptr; 1133 V = IV->getAggregateOperand(); 1134 } 1135 if (!isa<UndefValue>(V) ||!U) 1136 return nullptr; 1137 1138 auto *UT = cast<VectorType>(U->getType()); 1139 auto *VT = V->getType(); 1140 // Check that types UT and VT are bitwise isomorphic. 1141 const auto &DL = IC.getDataLayout(); 1142 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1143 return nullptr; 1144 } 1145 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1146 if (AT->getNumElements() != UT->getNumElements()) 1147 return nullptr; 1148 } else { 1149 auto *ST = cast<StructType>(VT); 1150 if (ST->getNumElements() != UT->getNumElements()) 1151 return nullptr; 1152 for (const auto *EltT : ST->elements()) { 1153 if (EltT != UT->getElementType()) 1154 return nullptr; 1155 } 1156 } 1157 return U; 1158 } 1159 1160 /// Combine stores to match the type of value being stored. 1161 /// 1162 /// The core idea here is that the memory does not have any intrinsic type and 1163 /// where we can we should match the type of a store to the type of value being 1164 /// stored. 1165 /// 1166 /// However, this routine must never change the width of a store or the number of 1167 /// stores as that would introduce a semantic change. This combine is expected to 1168 /// be a semantic no-op which just allows stores to more closely model the types 1169 /// of their incoming values. 1170 /// 1171 /// Currently, we also refuse to change the precise type used for an atomic or 1172 /// volatile store. This is debatable, and might be reasonable to change later. 1173 /// However, it is risky in case some backend or other part of LLVM is relying 1174 /// on the exact type stored to select appropriate atomic operations. 1175 /// 1176 /// \returns true if the store was successfully combined away. This indicates 1177 /// the caller must erase the store instruction. We have to let the caller erase 1178 /// the store instruction as otherwise there is no way to signal whether it was 1179 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1180 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1181 // FIXME: We could probably with some care handle both volatile and ordered 1182 // atomic stores here but it isn't clear that this is important. 1183 if (!SI.isUnordered()) 1184 return false; 1185 1186 // swifterror values can't be bitcasted. 1187 if (SI.getPointerOperand()->isSwiftError()) 1188 return false; 1189 1190 Value *V = SI.getValueOperand(); 1191 1192 // Fold away bit casts of the stored value by storing the original type. 1193 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1194 V = BC->getOperand(0); 1195 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1196 combineStoreToNewValue(IC, SI, V); 1197 return true; 1198 } 1199 } 1200 1201 if (Value *U = likeBitCastFromVector(IC, V)) 1202 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1203 combineStoreToNewValue(IC, SI, U); 1204 return true; 1205 } 1206 1207 // FIXME: We should also canonicalize stores of vectors when their elements 1208 // are cast to other types. 1209 return false; 1210 } 1211 1212 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1213 // FIXME: We could probably with some care handle both volatile and atomic 1214 // stores here but it isn't clear that this is important. 1215 if (!SI.isSimple()) 1216 return false; 1217 1218 Value *V = SI.getValueOperand(); 1219 Type *T = V->getType(); 1220 1221 if (!T->isAggregateType()) 1222 return false; 1223 1224 if (auto *ST = dyn_cast<StructType>(T)) { 1225 // If the struct only have one element, we unpack. 1226 unsigned Count = ST->getNumElements(); 1227 if (Count == 1) { 1228 V = IC.Builder.CreateExtractValue(V, 0); 1229 combineStoreToNewValue(IC, SI, V); 1230 return true; 1231 } 1232 1233 // We don't want to break loads with padding here as we'd loose 1234 // the knowledge that padding exists for the rest of the pipeline. 1235 const DataLayout &DL = IC.getDataLayout(); 1236 auto *SL = DL.getStructLayout(ST); 1237 if (SL->hasPadding()) 1238 return false; 1239 1240 auto Align = SI.getAlignment(); 1241 if (!Align) 1242 Align = DL.getABITypeAlignment(ST); 1243 1244 SmallString<16> EltName = V->getName(); 1245 EltName += ".elt"; 1246 auto *Addr = SI.getPointerOperand(); 1247 SmallString<16> AddrName = Addr->getName(); 1248 AddrName += ".repack"; 1249 1250 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1251 auto *Zero = ConstantInt::get(IdxType, 0); 1252 for (unsigned i = 0; i < Count; i++) { 1253 Value *Indices[2] = { 1254 Zero, 1255 ConstantInt::get(IdxType, i), 1256 }; 1257 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1258 AddrName); 1259 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1260 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1261 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1262 AAMDNodes AAMD; 1263 SI.getAAMetadata(AAMD); 1264 NS->setAAMetadata(AAMD); 1265 } 1266 1267 return true; 1268 } 1269 1270 if (auto *AT = dyn_cast<ArrayType>(T)) { 1271 // If the array only have one element, we unpack. 1272 auto NumElements = AT->getNumElements(); 1273 if (NumElements == 1) { 1274 V = IC.Builder.CreateExtractValue(V, 0); 1275 combineStoreToNewValue(IC, SI, V); 1276 return true; 1277 } 1278 1279 // Bail out if the array is too large. Ideally we would like to optimize 1280 // arrays of arbitrary size but this has a terrible impact on compile time. 1281 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1282 // tuning. 1283 if (NumElements > IC.MaxArraySizeForCombine) 1284 return false; 1285 1286 const DataLayout &DL = IC.getDataLayout(); 1287 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1288 auto Align = SI.getAlignment(); 1289 if (!Align) 1290 Align = DL.getABITypeAlignment(T); 1291 1292 SmallString<16> EltName = V->getName(); 1293 EltName += ".elt"; 1294 auto *Addr = SI.getPointerOperand(); 1295 SmallString<16> AddrName = Addr->getName(); 1296 AddrName += ".repack"; 1297 1298 auto *IdxType = Type::getInt64Ty(T->getContext()); 1299 auto *Zero = ConstantInt::get(IdxType, 0); 1300 1301 uint64_t Offset = 0; 1302 for (uint64_t i = 0; i < NumElements; i++) { 1303 Value *Indices[2] = { 1304 Zero, 1305 ConstantInt::get(IdxType, i), 1306 }; 1307 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1308 AddrName); 1309 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1310 auto EltAlign = MinAlign(Align, Offset); 1311 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1312 AAMDNodes AAMD; 1313 SI.getAAMetadata(AAMD); 1314 NS->setAAMetadata(AAMD); 1315 Offset += EltSize; 1316 } 1317 1318 return true; 1319 } 1320 1321 return false; 1322 } 1323 1324 /// equivalentAddressValues - Test if A and B will obviously have the same 1325 /// value. This includes recognizing that %t0 and %t1 will have the same 1326 /// value in code like this: 1327 /// %t0 = getelementptr \@a, 0, 3 1328 /// store i32 0, i32* %t0 1329 /// %t1 = getelementptr \@a, 0, 3 1330 /// %t2 = load i32* %t1 1331 /// 1332 static bool equivalentAddressValues(Value *A, Value *B) { 1333 // Test if the values are trivially equivalent. 1334 if (A == B) return true; 1335 1336 // Test if the values come form identical arithmetic instructions. 1337 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1338 // its only used to compare two uses within the same basic block, which 1339 // means that they'll always either have the same value or one of them 1340 // will have an undefined value. 1341 if (isa<BinaryOperator>(A) || 1342 isa<CastInst>(A) || 1343 isa<PHINode>(A) || 1344 isa<GetElementPtrInst>(A)) 1345 if (Instruction *BI = dyn_cast<Instruction>(B)) 1346 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1347 return true; 1348 1349 // Otherwise they may not be equivalent. 1350 return false; 1351 } 1352 1353 /// Converts store (bitcast (load (bitcast (select ...)))) to 1354 /// store (load (select ...)), where select is minmax: 1355 /// select ((cmp load V1, load V2), V1, V2). 1356 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC, 1357 StoreInst &SI) { 1358 // bitcast? 1359 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1360 return false; 1361 // load? integer? 1362 Value *LoadAddr; 1363 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1364 return false; 1365 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1366 if (!LI->getType()->isIntegerTy()) 1367 return false; 1368 if (!isMinMaxWithLoads(LoadAddr)) 1369 return false; 1370 1371 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1372 auto *SI = dyn_cast<StoreInst>(U); 1373 return SI && SI->getPointerOperand() != LI && 1374 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && 1375 !SI->getPointerOperand()->isSwiftError(); 1376 })) 1377 return false; 1378 1379 IC.Builder.SetInsertPoint(LI); 1380 LoadInst *NewLI = combineLoadToNewType( 1381 IC, *LI, LoadAddr->getType()->getPointerElementType()); 1382 // Replace all the stores with stores of the newly loaded value. 1383 for (auto *UI : LI->users()) { 1384 auto *USI = cast<StoreInst>(UI); 1385 IC.Builder.SetInsertPoint(USI); 1386 combineStoreToNewValue(IC, *USI, NewLI); 1387 } 1388 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1389 IC.eraseInstFromFunction(*LI); 1390 return true; 1391 } 1392 1393 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1394 Value *Val = SI.getOperand(0); 1395 Value *Ptr = SI.getOperand(1); 1396 1397 // Try to canonicalize the stored type. 1398 if (combineStoreToValueType(*this, SI)) 1399 return eraseInstFromFunction(SI); 1400 1401 // Attempt to improve the alignment. 1402 unsigned KnownAlign = getOrEnforceKnownAlignment( 1403 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1404 unsigned StoreAlign = SI.getAlignment(); 1405 unsigned EffectiveStoreAlign = 1406 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1407 1408 if (KnownAlign > EffectiveStoreAlign) 1409 SI.setAlignment(KnownAlign); 1410 else if (StoreAlign == 0) 1411 SI.setAlignment(EffectiveStoreAlign); 1412 1413 // Try to canonicalize the stored type. 1414 if (unpackStoreToAggregate(*this, SI)) 1415 return eraseInstFromFunction(SI); 1416 1417 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1418 return eraseInstFromFunction(SI); 1419 1420 // Replace GEP indices if possible. 1421 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1422 Worklist.Add(NewGEPI); 1423 return &SI; 1424 } 1425 1426 // Don't hack volatile/ordered stores. 1427 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1428 if (!SI.isUnordered()) return nullptr; 1429 1430 // If the RHS is an alloca with a single use, zapify the store, making the 1431 // alloca dead. 1432 if (Ptr->hasOneUse()) { 1433 if (isa<AllocaInst>(Ptr)) 1434 return eraseInstFromFunction(SI); 1435 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1436 if (isa<AllocaInst>(GEP->getOperand(0))) { 1437 if (GEP->getOperand(0)->hasOneUse()) 1438 return eraseInstFromFunction(SI); 1439 } 1440 } 1441 } 1442 1443 // If we have a store to a location which is known constant, we can conclude 1444 // that the store must be storing the constant value (else the memory 1445 // wouldn't be constant), and this must be a noop. 1446 if (AA->pointsToConstantMemory(Ptr)) 1447 return eraseInstFromFunction(SI); 1448 1449 // Do really simple DSE, to catch cases where there are several consecutive 1450 // stores to the same location, separated by a few arithmetic operations. This 1451 // situation often occurs with bitfield accesses. 1452 BasicBlock::iterator BBI(SI); 1453 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1454 --ScanInsts) { 1455 --BBI; 1456 // Don't count debug info directives, lest they affect codegen, 1457 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1458 if (isa<DbgInfoIntrinsic>(BBI) || 1459 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1460 ScanInsts++; 1461 continue; 1462 } 1463 1464 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1465 // Prev store isn't volatile, and stores to the same location? 1466 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1467 SI.getOperand(1))) { 1468 ++NumDeadStore; 1469 ++BBI; 1470 eraseInstFromFunction(*PrevSI); 1471 continue; 1472 } 1473 break; 1474 } 1475 1476 // If this is a load, we have to stop. However, if the loaded value is from 1477 // the pointer we're loading and is producing the pointer we're storing, 1478 // then *this* store is dead (X = load P; store X -> P). 1479 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1480 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1481 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1482 return eraseInstFromFunction(SI); 1483 } 1484 1485 // Otherwise, this is a load from some other location. Stores before it 1486 // may not be dead. 1487 break; 1488 } 1489 1490 // Don't skip over loads, throws or things that can modify memory. 1491 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1492 break; 1493 } 1494 1495 // store X, null -> turns into 'unreachable' in SimplifyCFG 1496 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1497 if (canSimplifyNullStoreOrGEP(SI)) { 1498 if (!isa<UndefValue>(Val)) { 1499 SI.setOperand(0, UndefValue::get(Val->getType())); 1500 if (Instruction *U = dyn_cast<Instruction>(Val)) 1501 Worklist.Add(U); // Dropped a use. 1502 } 1503 return nullptr; // Do not modify these! 1504 } 1505 1506 // store undef, Ptr -> noop 1507 if (isa<UndefValue>(Val)) 1508 return eraseInstFromFunction(SI); 1509 1510 // If this store is the second-to-last instruction in the basic block 1511 // (excluding debug info and bitcasts of pointers) and if the block ends with 1512 // an unconditional branch, try to move the store to the successor block. 1513 BBI = SI.getIterator(); 1514 do { 1515 ++BBI; 1516 } while (isa<DbgInfoIntrinsic>(BBI) || 1517 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1518 1519 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1520 if (BI->isUnconditional()) 1521 mergeStoreIntoSuccessor(SI); 1522 1523 return nullptr; 1524 } 1525 1526 /// Try to transform: 1527 /// if () { *P = v1; } else { *P = v2 } 1528 /// or: 1529 /// *P = v1; if () { *P = v2; } 1530 /// into a phi node with a store in the successor. 1531 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) { 1532 assert(SI.isUnordered() && 1533 "This code has not been audited for volatile or ordered store case."); 1534 1535 // Check if the successor block has exactly 2 incoming edges. 1536 BasicBlock *StoreBB = SI.getParent(); 1537 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1538 if (!DestBB->hasNPredecessors(2)) 1539 return false; 1540 1541 // Capture the other block (the block that doesn't contain our store). 1542 pred_iterator PredIter = pred_begin(DestBB); 1543 if (*PredIter == StoreBB) 1544 ++PredIter; 1545 BasicBlock *OtherBB = *PredIter; 1546 1547 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1548 // for example, if SI is in an infinite loop. 1549 if (StoreBB == DestBB || OtherBB == DestBB) 1550 return false; 1551 1552 // Verify that the other block ends in a branch and is not otherwise empty. 1553 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1554 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1555 if (!OtherBr || BBI == OtherBB->begin()) 1556 return false; 1557 1558 // If the other block ends in an unconditional branch, check for the 'if then 1559 // else' case. There is an instruction before the branch. 1560 StoreInst *OtherStore = nullptr; 1561 if (OtherBr->isUnconditional()) { 1562 --BBI; 1563 // Skip over debugging info. 1564 while (isa<DbgInfoIntrinsic>(BBI) || 1565 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1566 if (BBI==OtherBB->begin()) 1567 return false; 1568 --BBI; 1569 } 1570 // If this isn't a store, isn't a store to the same location, or is not the 1571 // right kind of store, bail out. 1572 OtherStore = dyn_cast<StoreInst>(BBI); 1573 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1574 !SI.isSameOperationAs(OtherStore)) 1575 return false; 1576 } else { 1577 // Otherwise, the other block ended with a conditional branch. If one of the 1578 // destinations is StoreBB, then we have the if/then case. 1579 if (OtherBr->getSuccessor(0) != StoreBB && 1580 OtherBr->getSuccessor(1) != StoreBB) 1581 return false; 1582 1583 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1584 // if/then triangle. See if there is a store to the same ptr as SI that 1585 // lives in OtherBB. 1586 for (;; --BBI) { 1587 // Check to see if we find the matching store. 1588 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1589 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1590 !SI.isSameOperationAs(OtherStore)) 1591 return false; 1592 break; 1593 } 1594 // If we find something that may be using or overwriting the stored 1595 // value, or if we run out of instructions, we can't do the transform. 1596 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1597 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1598 return false; 1599 } 1600 1601 // In order to eliminate the store in OtherBr, we have to make sure nothing 1602 // reads or overwrites the stored value in StoreBB. 1603 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1604 // FIXME: This should really be AA driven. 1605 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1606 return false; 1607 } 1608 } 1609 1610 // Insert a PHI node now if we need it. 1611 Value *MergedVal = OtherStore->getOperand(0); 1612 // The debug locations of the original instructions might differ. Merge them. 1613 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1614 OtherStore->getDebugLoc()); 1615 if (MergedVal != SI.getOperand(0)) { 1616 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1617 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1618 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1619 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1620 PN->setDebugLoc(MergedLoc); 1621 } 1622 1623 // Advance to a place where it is safe to insert the new store and insert it. 1624 BBI = DestBB->getFirstInsertionPt(); 1625 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1626 SI.isVolatile(), SI.getAlignment(), 1627 SI.getOrdering(), SI.getSyncScopeID()); 1628 InsertNewInstBefore(NewSI, *BBI); 1629 NewSI->setDebugLoc(MergedLoc); 1630 1631 // If the two stores had AA tags, merge them. 1632 AAMDNodes AATags; 1633 SI.getAAMetadata(AATags); 1634 if (AATags) { 1635 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1636 NewSI->setAAMetadata(AATags); 1637 } 1638 1639 // Nuke the old stores. 1640 eraseInstFromFunction(SI); 1641 eraseInstFromFunction(*OtherStore); 1642 return true; 1643 } 1644