xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
36 
37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
38 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
39 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
41 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
42 /// the alloca, and if the source pointer is a pointer to a constant global, we
43 /// can optimize this.
44 static bool
45 isOnlyCopiedFromConstantMemory(AAResults *AA,
46                                Value *V, MemTransferInst *&TheCopy,
47                                SmallVectorImpl<Instruction *> &ToDelete) {
48   // We track lifetime intrinsics as we encounter them.  If we decide to go
49   // ahead and replace the value with the global, this lets the caller quickly
50   // eliminate the markers.
51 
52   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
53   ValuesToInspect.emplace_back(V, false);
54   while (!ValuesToInspect.empty()) {
55     auto ValuePair = ValuesToInspect.pop_back_val();
56     const bool IsOffset = ValuePair.second;
57     for (auto &U : ValuePair.first->uses()) {
58       auto *I = cast<Instruction>(U.getUser());
59 
60       if (auto *LI = dyn_cast<LoadInst>(I)) {
61         // Ignore non-volatile loads, they are always ok.
62         if (!LI->isSimple()) return false;
63         continue;
64       }
65 
66       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
67         // If uses of the bitcast are ok, we are ok.
68         ValuesToInspect.emplace_back(I, IsOffset);
69         continue;
70       }
71       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
72         // If the GEP has all zero indices, it doesn't offset the pointer. If it
73         // doesn't, it does.
74         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
75         continue;
76       }
77 
78       if (auto *Call = dyn_cast<CallBase>(I)) {
79         // If this is the function being called then we treat it like a load and
80         // ignore it.
81         if (Call->isCallee(&U))
82           continue;
83 
84         unsigned DataOpNo = Call->getDataOperandNo(&U);
85         bool IsArgOperand = Call->isArgOperand(&U);
86 
87         // Inalloca arguments are clobbered by the call.
88         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
89           return false;
90 
91         // If this is a readonly/readnone call site, then we know it is just a
92         // load (but one that potentially returns the value itself), so we can
93         // ignore it if we know that the value isn't captured.
94         if (Call->onlyReadsMemory() &&
95             (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
96           continue;
97 
98         // If this is being passed as a byval argument, the caller is making a
99         // copy, so it is only a read of the alloca.
100         if (IsArgOperand && Call->isByValArgument(DataOpNo))
101           continue;
102       }
103 
104       // Lifetime intrinsics can be handled by the caller.
105       if (I->isLifetimeStartOrEnd()) {
106         assert(I->use_empty() && "Lifetime markers have no result to use!");
107         ToDelete.push_back(I);
108         continue;
109       }
110 
111       // If this is isn't our memcpy/memmove, reject it as something we can't
112       // handle.
113       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
114       if (!MI)
115         return false;
116 
117       // If the transfer is using the alloca as a source of the transfer, then
118       // ignore it since it is a load (unless the transfer is volatile).
119       if (U.getOperandNo() == 1) {
120         if (MI->isVolatile()) return false;
121         continue;
122       }
123 
124       // If we already have seen a copy, reject the second one.
125       if (TheCopy) return false;
126 
127       // If the pointer has been offset from the start of the alloca, we can't
128       // safely handle this.
129       if (IsOffset) return false;
130 
131       // If the memintrinsic isn't using the alloca as the dest, reject it.
132       if (U.getOperandNo() != 0) return false;
133 
134       // If the source of the memcpy/move is not a constant global, reject it.
135       if (!AA->pointsToConstantMemory(MI->getSource()))
136         return false;
137 
138       // Otherwise, the transform is safe.  Remember the copy instruction.
139       TheCopy = MI;
140     }
141   }
142   return true;
143 }
144 
145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
146 /// modified by a copy from a constant global.  If we can prove this, we can
147 /// replace any uses of the alloca with uses of the global directly.
148 static MemTransferInst *
149 isOnlyCopiedFromConstantMemory(AAResults *AA,
150                                AllocaInst *AI,
151                                SmallVectorImpl<Instruction *> &ToDelete) {
152   MemTransferInst *TheCopy = nullptr;
153   if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
154     return TheCopy;
155   return nullptr;
156 }
157 
158 /// Returns true if V is dereferenceable for size of alloca.
159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
160                                            const DataLayout &DL) {
161   if (AI->isArrayAllocation())
162     return false;
163   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
164   if (!AllocaSize)
165     return false;
166   return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
167                                             APInt(64, AllocaSize), DL);
168 }
169 
170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
171                                             AllocaInst &AI) {
172   // Check for array size of 1 (scalar allocation).
173   if (!AI.isArrayAllocation()) {
174     // i32 1 is the canonical array size for scalar allocations.
175     if (AI.getArraySize()->getType()->isIntegerTy(32))
176       return nullptr;
177 
178     // Canonicalize it.
179     return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
180   }
181 
182   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
183   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
184     if (C->getValue().getActiveBits() <= 64) {
185       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
186       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
187       New->setAlignment(AI.getAlign());
188 
189       // Scan to the end of the allocation instructions, to skip over a block of
190       // allocas if possible...also skip interleaved debug info
191       //
192       BasicBlock::iterator It(New);
193       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
194         ++It;
195 
196       // Now that I is pointing to the first non-allocation-inst in the block,
197       // insert our getelementptr instruction...
198       //
199       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
200       Value *NullIdx = Constant::getNullValue(IdxTy);
201       Value *Idx[2] = {NullIdx, NullIdx};
202       Instruction *GEP = GetElementPtrInst::CreateInBounds(
203           NewTy, New, Idx, New->getName() + ".sub");
204       IC.InsertNewInstBefore(GEP, *It);
205 
206       // Now make everything use the getelementptr instead of the original
207       // allocation.
208       return IC.replaceInstUsesWith(AI, GEP);
209     }
210   }
211 
212   if (isa<UndefValue>(AI.getArraySize()))
213     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
214 
215   // Ensure that the alloca array size argument has type intptr_t, so that
216   // any casting is exposed early.
217   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
218   if (AI.getArraySize()->getType() != IntPtrTy) {
219     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
220     return IC.replaceOperand(AI, 0, V);
221   }
222 
223   return nullptr;
224 }
225 
226 namespace {
227 // If I and V are pointers in different address space, it is not allowed to
228 // use replaceAllUsesWith since I and V have different types. A
229 // non-target-specific transformation should not use addrspacecast on V since
230 // the two address space may be disjoint depending on target.
231 //
232 // This class chases down uses of the old pointer until reaching the load
233 // instructions, then replaces the old pointer in the load instructions with
234 // the new pointer. If during the chasing it sees bitcast or GEP, it will
235 // create new bitcast or GEP with the new pointer and use them in the load
236 // instruction.
237 class PointerReplacer {
238 public:
239   PointerReplacer(InstCombinerImpl &IC) : IC(IC) {}
240 
241   bool collectUsers(Instruction &I);
242   void replacePointer(Instruction &I, Value *V);
243 
244 private:
245   void replace(Instruction *I);
246   Value *getReplacement(Value *I);
247 
248   SmallSetVector<Instruction *, 4> Worklist;
249   MapVector<Value *, Value *> WorkMap;
250   InstCombinerImpl &IC;
251 };
252 } // end anonymous namespace
253 
254 bool PointerReplacer::collectUsers(Instruction &I) {
255   for (auto U : I.users()) {
256     Instruction *Inst = cast<Instruction>(&*U);
257     if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
258       if (Load->isVolatile())
259         return false;
260       Worklist.insert(Load);
261     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
262       Worklist.insert(Inst);
263       if (!collectUsers(*Inst))
264         return false;
265     } else if (isa<MemTransferInst>(Inst)) {
266       Worklist.insert(Inst);
267     } else {
268       LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
269       return false;
270     }
271   }
272 
273   return true;
274 }
275 
276 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); }
277 
278 void PointerReplacer::replace(Instruction *I) {
279   if (getReplacement(I))
280     return;
281 
282   if (auto *LT = dyn_cast<LoadInst>(I)) {
283     auto *V = getReplacement(LT->getPointerOperand());
284     assert(V && "Operand not replaced");
285     auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
286                               LT->getAlign(), LT->getOrdering(),
287                               LT->getSyncScopeID());
288     NewI->takeName(LT);
289     copyMetadataForLoad(*NewI, *LT);
290 
291     IC.InsertNewInstWith(NewI, *LT);
292     IC.replaceInstUsesWith(*LT, NewI);
293     WorkMap[LT] = NewI;
294   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
295     auto *V = getReplacement(GEP->getPointerOperand());
296     assert(V && "Operand not replaced");
297     SmallVector<Value *, 8> Indices;
298     Indices.append(GEP->idx_begin(), GEP->idx_end());
299     auto *NewI = GetElementPtrInst::Create(
300         V->getType()->getPointerElementType(), V, Indices);
301     IC.InsertNewInstWith(NewI, *GEP);
302     NewI->takeName(GEP);
303     WorkMap[GEP] = NewI;
304   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
305     auto *V = getReplacement(BC->getOperand(0));
306     assert(V && "Operand not replaced");
307     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
308                                   V->getType()->getPointerAddressSpace());
309     auto *NewI = new BitCastInst(V, NewT);
310     IC.InsertNewInstWith(NewI, *BC);
311     NewI->takeName(BC);
312     WorkMap[BC] = NewI;
313   } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
314     auto *SrcV = getReplacement(MemCpy->getRawSource());
315     // The pointer may appear in the destination of a copy, but we don't want to
316     // replace it.
317     if (!SrcV) {
318       assert(getReplacement(MemCpy->getRawDest()) &&
319              "destination not in replace list");
320       return;
321     }
322 
323     IC.Builder.SetInsertPoint(MemCpy);
324     auto *NewI = IC.Builder.CreateMemTransferInst(
325         MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(),
326         SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(),
327         MemCpy->isVolatile());
328     AAMDNodes AAMD;
329     MemCpy->getAAMetadata(AAMD);
330     if (AAMD)
331       NewI->setAAMetadata(AAMD);
332 
333     IC.eraseInstFromFunction(*MemCpy);
334     WorkMap[MemCpy] = NewI;
335   } else {
336     llvm_unreachable("should never reach here");
337   }
338 }
339 
340 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
341 #ifndef NDEBUG
342   auto *PT = cast<PointerType>(I.getType());
343   auto *NT = cast<PointerType>(V->getType());
344   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
345          "Invalid usage");
346 #endif
347   WorkMap[&I] = V;
348 
349   for (Instruction *Workitem : Worklist)
350     replace(Workitem);
351 }
352 
353 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
354   if (auto *I = simplifyAllocaArraySize(*this, AI))
355     return I;
356 
357   if (AI.getAllocatedType()->isSized()) {
358     // Move all alloca's of zero byte objects to the entry block and merge them
359     // together.  Note that we only do this for alloca's, because malloc should
360     // allocate and return a unique pointer, even for a zero byte allocation.
361     if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
362       // For a zero sized alloca there is no point in doing an array allocation.
363       // This is helpful if the array size is a complicated expression not used
364       // elsewhere.
365       if (AI.isArrayAllocation())
366         return replaceOperand(AI, 0,
367             ConstantInt::get(AI.getArraySize()->getType(), 1));
368 
369       // Get the first instruction in the entry block.
370       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
371       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
372       if (FirstInst != &AI) {
373         // If the entry block doesn't start with a zero-size alloca then move
374         // this one to the start of the entry block.  There is no problem with
375         // dominance as the array size was forced to a constant earlier already.
376         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
377         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
378             DL.getTypeAllocSize(EntryAI->getAllocatedType())
379                     .getKnownMinSize() != 0) {
380           AI.moveBefore(FirstInst);
381           return &AI;
382         }
383 
384         // Replace this zero-sized alloca with the one at the start of the entry
385         // block after ensuring that the address will be aligned enough for both
386         // types.
387         const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
388         EntryAI->setAlignment(MaxAlign);
389         if (AI.getType() != EntryAI->getType())
390           return new BitCastInst(EntryAI, AI.getType());
391         return replaceInstUsesWith(AI, EntryAI);
392       }
393     }
394   }
395 
396   // Check to see if this allocation is only modified by a memcpy/memmove from
397   // a constant whose alignment is equal to or exceeds that of the allocation.
398   // If this is the case, we can change all users to use the constant global
399   // instead.  This is commonly produced by the CFE by constructs like "void
400   // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently
401   // read.
402   SmallVector<Instruction *, 4> ToDelete;
403   if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
404     Value *TheSrc = Copy->getSource();
405     Align AllocaAlign = AI.getAlign();
406     Align SourceAlign = getOrEnforceKnownAlignment(
407       TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
408     if (AllocaAlign <= SourceAlign &&
409         isDereferenceableForAllocaSize(TheSrc, &AI, DL)) {
410       LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
411       LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
412       unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
413       auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace);
414       if (AI.getType()->getAddressSpace() == SrcAddrSpace) {
415         for (Instruction *Delete : ToDelete)
416           eraseInstFromFunction(*Delete);
417 
418         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
419         Instruction *NewI = replaceInstUsesWith(AI, Cast);
420         eraseInstFromFunction(*Copy);
421         ++NumGlobalCopies;
422         return NewI;
423       }
424 
425       PointerReplacer PtrReplacer(*this);
426       if (PtrReplacer.collectUsers(AI)) {
427         for (Instruction *Delete : ToDelete)
428           eraseInstFromFunction(*Delete);
429 
430         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
431         PtrReplacer.replacePointer(AI, Cast);
432         ++NumGlobalCopies;
433       }
434     }
435   }
436 
437   // At last, use the generic allocation site handler to aggressively remove
438   // unused allocas.
439   return visitAllocSite(AI);
440 }
441 
442 // Are we allowed to form a atomic load or store of this type?
443 static bool isSupportedAtomicType(Type *Ty) {
444   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
445 }
446 
447 /// Helper to combine a load to a new type.
448 ///
449 /// This just does the work of combining a load to a new type. It handles
450 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
451 /// loaded *value* type. This will convert it to a pointer, cast the operand to
452 /// that pointer type, load it, etc.
453 ///
454 /// Note that this will create all of the instructions with whatever insert
455 /// point the \c InstCombinerImpl currently is using.
456 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
457                                                  const Twine &Suffix) {
458   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
459          "can't fold an atomic load to requested type");
460 
461   Value *Ptr = LI.getPointerOperand();
462   unsigned AS = LI.getPointerAddressSpace();
463   Value *NewPtr = nullptr;
464   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
465         NewPtr->getType()->getPointerElementType() == NewTy &&
466         NewPtr->getType()->getPointerAddressSpace() == AS))
467     NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
468 
469   LoadInst *NewLoad = Builder.CreateAlignedLoad(
470       NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix);
471   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
472   copyMetadataForLoad(*NewLoad, LI);
473   return NewLoad;
474 }
475 
476 /// Combine a store to a new type.
477 ///
478 /// Returns the newly created store instruction.
479 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
480                                          Value *V) {
481   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
482          "can't fold an atomic store of requested type");
483 
484   Value *Ptr = SI.getPointerOperand();
485   unsigned AS = SI.getPointerAddressSpace();
486   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
487   SI.getAllMetadata(MD);
488 
489   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
490       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
491       SI.getAlign(), SI.isVolatile());
492   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
493   for (const auto &MDPair : MD) {
494     unsigned ID = MDPair.first;
495     MDNode *N = MDPair.second;
496     // Note, essentially every kind of metadata should be preserved here! This
497     // routine is supposed to clone a store instruction changing *only its
498     // type*. The only metadata it makes sense to drop is metadata which is
499     // invalidated when the pointer type changes. This should essentially
500     // never be the case in LLVM, but we explicitly switch over only known
501     // metadata to be conservatively correct. If you are adding metadata to
502     // LLVM which pertains to stores, you almost certainly want to add it
503     // here.
504     switch (ID) {
505     case LLVMContext::MD_dbg:
506     case LLVMContext::MD_tbaa:
507     case LLVMContext::MD_prof:
508     case LLVMContext::MD_fpmath:
509     case LLVMContext::MD_tbaa_struct:
510     case LLVMContext::MD_alias_scope:
511     case LLVMContext::MD_noalias:
512     case LLVMContext::MD_nontemporal:
513     case LLVMContext::MD_mem_parallel_loop_access:
514     case LLVMContext::MD_access_group:
515       // All of these directly apply.
516       NewStore->setMetadata(ID, N);
517       break;
518     case LLVMContext::MD_invariant_load:
519     case LLVMContext::MD_nonnull:
520     case LLVMContext::MD_noundef:
521     case LLVMContext::MD_range:
522     case LLVMContext::MD_align:
523     case LLVMContext::MD_dereferenceable:
524     case LLVMContext::MD_dereferenceable_or_null:
525       // These don't apply for stores.
526       break;
527     }
528   }
529 
530   return NewStore;
531 }
532 
533 /// Returns true if instruction represent minmax pattern like:
534 ///   select ((cmp load V1, load V2), V1, V2).
535 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
536   assert(V->getType()->isPointerTy() && "Expected pointer type.");
537   // Ignore possible ty* to ixx* bitcast.
538   V = InstCombiner::peekThroughBitcast(V);
539   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
540   // pattern.
541   CmpInst::Predicate Pred;
542   Instruction *L1;
543   Instruction *L2;
544   Value *LHS;
545   Value *RHS;
546   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
547                          m_Value(LHS), m_Value(RHS))))
548     return false;
549   LoadTy = L1->getType();
550   return (match(L1, m_Load(m_Specific(LHS))) &&
551           match(L2, m_Load(m_Specific(RHS)))) ||
552          (match(L1, m_Load(m_Specific(RHS))) &&
553           match(L2, m_Load(m_Specific(LHS))));
554 }
555 
556 /// Combine loads to match the type of their uses' value after looking
557 /// through intervening bitcasts.
558 ///
559 /// The core idea here is that if the result of a load is used in an operation,
560 /// we should load the type most conducive to that operation. For example, when
561 /// loading an integer and converting that immediately to a pointer, we should
562 /// instead directly load a pointer.
563 ///
564 /// However, this routine must never change the width of a load or the number of
565 /// loads as that would introduce a semantic change. This combine is expected to
566 /// be a semantic no-op which just allows loads to more closely model the types
567 /// of their consuming operations.
568 ///
569 /// Currently, we also refuse to change the precise type used for an atomic load
570 /// or a volatile load. This is debatable, and might be reasonable to change
571 /// later. However, it is risky in case some backend or other part of LLVM is
572 /// relying on the exact type loaded to select appropriate atomic operations.
573 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
574                                                LoadInst &LI) {
575   // FIXME: We could probably with some care handle both volatile and ordered
576   // atomic loads here but it isn't clear that this is important.
577   if (!LI.isUnordered())
578     return nullptr;
579 
580   if (LI.use_empty())
581     return nullptr;
582 
583   // swifterror values can't be bitcasted.
584   if (LI.getPointerOperand()->isSwiftError())
585     return nullptr;
586 
587   const DataLayout &DL = IC.getDataLayout();
588 
589   // Fold away bit casts of the loaded value by loading the desired type.
590   // Note that we should not do this for pointer<->integer casts,
591   // because that would result in type punning.
592   if (LI.hasOneUse()) {
593     // Don't transform when the type is x86_amx, it makes the pass that lower
594     // x86_amx type happy.
595     if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
596       assert(!LI.getType()->isX86_AMXTy() &&
597              "load from x86_amx* should not happen!");
598       if (BC->getType()->isX86_AMXTy())
599         return nullptr;
600     }
601 
602     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
603       if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() ==
604                                     CI->getDestTy()->isPtrOrPtrVectorTy())
605         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
606           LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
607           CI->replaceAllUsesWith(NewLoad);
608           IC.eraseInstFromFunction(*CI);
609           return &LI;
610         }
611   }
612 
613   // FIXME: We should also canonicalize loads of vectors when their elements are
614   // cast to other types.
615   return nullptr;
616 }
617 
618 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
619   // FIXME: We could probably with some care handle both volatile and atomic
620   // stores here but it isn't clear that this is important.
621   if (!LI.isSimple())
622     return nullptr;
623 
624   Type *T = LI.getType();
625   if (!T->isAggregateType())
626     return nullptr;
627 
628   StringRef Name = LI.getName();
629   assert(LI.getAlignment() && "Alignment must be set at this point");
630 
631   if (auto *ST = dyn_cast<StructType>(T)) {
632     // If the struct only have one element, we unpack.
633     auto NumElements = ST->getNumElements();
634     if (NumElements == 1) {
635       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
636                                                   ".unpack");
637       AAMDNodes AAMD;
638       LI.getAAMetadata(AAMD);
639       NewLoad->setAAMetadata(AAMD);
640       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
641         UndefValue::get(T), NewLoad, 0, Name));
642     }
643 
644     // We don't want to break loads with padding here as we'd loose
645     // the knowledge that padding exists for the rest of the pipeline.
646     const DataLayout &DL = IC.getDataLayout();
647     auto *SL = DL.getStructLayout(ST);
648     if (SL->hasPadding())
649       return nullptr;
650 
651     const auto Align = LI.getAlign();
652     auto *Addr = LI.getPointerOperand();
653     auto *IdxType = Type::getInt32Ty(T->getContext());
654     auto *Zero = ConstantInt::get(IdxType, 0);
655 
656     Value *V = UndefValue::get(T);
657     for (unsigned i = 0; i < NumElements; i++) {
658       Value *Indices[2] = {
659         Zero,
660         ConstantInt::get(IdxType, i),
661       };
662       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
663                                                Name + ".elt");
664       auto *L = IC.Builder.CreateAlignedLoad(
665           ST->getElementType(i), Ptr,
666           commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
667       // Propagate AA metadata. It'll still be valid on the narrowed load.
668       AAMDNodes AAMD;
669       LI.getAAMetadata(AAMD);
670       L->setAAMetadata(AAMD);
671       V = IC.Builder.CreateInsertValue(V, L, i);
672     }
673 
674     V->setName(Name);
675     return IC.replaceInstUsesWith(LI, V);
676   }
677 
678   if (auto *AT = dyn_cast<ArrayType>(T)) {
679     auto *ET = AT->getElementType();
680     auto NumElements = AT->getNumElements();
681     if (NumElements == 1) {
682       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
683       AAMDNodes AAMD;
684       LI.getAAMetadata(AAMD);
685       NewLoad->setAAMetadata(AAMD);
686       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
687         UndefValue::get(T), NewLoad, 0, Name));
688     }
689 
690     // Bail out if the array is too large. Ideally we would like to optimize
691     // arrays of arbitrary size but this has a terrible impact on compile time.
692     // The threshold here is chosen arbitrarily, maybe needs a little bit of
693     // tuning.
694     if (NumElements > IC.MaxArraySizeForCombine)
695       return nullptr;
696 
697     const DataLayout &DL = IC.getDataLayout();
698     auto EltSize = DL.getTypeAllocSize(ET);
699     const auto Align = LI.getAlign();
700 
701     auto *Addr = LI.getPointerOperand();
702     auto *IdxType = Type::getInt64Ty(T->getContext());
703     auto *Zero = ConstantInt::get(IdxType, 0);
704 
705     Value *V = UndefValue::get(T);
706     uint64_t Offset = 0;
707     for (uint64_t i = 0; i < NumElements; i++) {
708       Value *Indices[2] = {
709         Zero,
710         ConstantInt::get(IdxType, i),
711       };
712       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
713                                                Name + ".elt");
714       auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
715                                              commonAlignment(Align, Offset),
716                                              Name + ".unpack");
717       AAMDNodes AAMD;
718       LI.getAAMetadata(AAMD);
719       L->setAAMetadata(AAMD);
720       V = IC.Builder.CreateInsertValue(V, L, i);
721       Offset += EltSize;
722     }
723 
724     V->setName(Name);
725     return IC.replaceInstUsesWith(LI, V);
726   }
727 
728   return nullptr;
729 }
730 
731 // If we can determine that all possible objects pointed to by the provided
732 // pointer value are, not only dereferenceable, but also definitively less than
733 // or equal to the provided maximum size, then return true. Otherwise, return
734 // false (constant global values and allocas fall into this category).
735 //
736 // FIXME: This should probably live in ValueTracking (or similar).
737 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
738                                      const DataLayout &DL) {
739   SmallPtrSet<Value *, 4> Visited;
740   SmallVector<Value *, 4> Worklist(1, V);
741 
742   do {
743     Value *P = Worklist.pop_back_val();
744     P = P->stripPointerCasts();
745 
746     if (!Visited.insert(P).second)
747       continue;
748 
749     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
750       Worklist.push_back(SI->getTrueValue());
751       Worklist.push_back(SI->getFalseValue());
752       continue;
753     }
754 
755     if (PHINode *PN = dyn_cast<PHINode>(P)) {
756       append_range(Worklist, PN->incoming_values());
757       continue;
758     }
759 
760     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
761       if (GA->isInterposable())
762         return false;
763       Worklist.push_back(GA->getAliasee());
764       continue;
765     }
766 
767     // If we know how big this object is, and it is less than MaxSize, continue
768     // searching. Otherwise, return false.
769     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
770       if (!AI->getAllocatedType()->isSized())
771         return false;
772 
773       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
774       if (!CS)
775         return false;
776 
777       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
778       // Make sure that, even if the multiplication below would wrap as an
779       // uint64_t, we still do the right thing.
780       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
781         return false;
782       continue;
783     }
784 
785     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
786       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
787         return false;
788 
789       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
790       if (InitSize > MaxSize)
791         return false;
792       continue;
793     }
794 
795     return false;
796   } while (!Worklist.empty());
797 
798   return true;
799 }
800 
801 // If we're indexing into an object of a known size, and the outer index is
802 // not a constant, but having any value but zero would lead to undefined
803 // behavior, replace it with zero.
804 //
805 // For example, if we have:
806 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
807 // ...
808 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
809 // ... = load i32* %arrayidx, align 4
810 // Then we know that we can replace %x in the GEP with i64 0.
811 //
812 // FIXME: We could fold any GEP index to zero that would cause UB if it were
813 // not zero. Currently, we only handle the first such index. Also, we could
814 // also search through non-zero constant indices if we kept track of the
815 // offsets those indices implied.
816 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
817                                      GetElementPtrInst *GEPI, Instruction *MemI,
818                                      unsigned &Idx) {
819   if (GEPI->getNumOperands() < 2)
820     return false;
821 
822   // Find the first non-zero index of a GEP. If all indices are zero, return
823   // one past the last index.
824   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
825     unsigned I = 1;
826     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
827       Value *V = GEPI->getOperand(I);
828       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
829         if (CI->isZero())
830           continue;
831 
832       break;
833     }
834 
835     return I;
836   };
837 
838   // Skip through initial 'zero' indices, and find the corresponding pointer
839   // type. See if the next index is not a constant.
840   Idx = FirstNZIdx(GEPI);
841   if (Idx == GEPI->getNumOperands())
842     return false;
843   if (isa<Constant>(GEPI->getOperand(Idx)))
844     return false;
845 
846   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
847   Type *SourceElementType = GEPI->getSourceElementType();
848   // Size information about scalable vectors is not available, so we cannot
849   // deduce whether indexing at n is undefined behaviour or not. Bail out.
850   if (isa<ScalableVectorType>(SourceElementType))
851     return false;
852 
853   Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops);
854   if (!AllocTy || !AllocTy->isSized())
855     return false;
856   const DataLayout &DL = IC.getDataLayout();
857   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize();
858 
859   // If there are more indices after the one we might replace with a zero, make
860   // sure they're all non-negative. If any of them are negative, the overall
861   // address being computed might be before the base address determined by the
862   // first non-zero index.
863   auto IsAllNonNegative = [&]() {
864     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
865       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
866       if (Known.isNonNegative())
867         continue;
868       return false;
869     }
870 
871     return true;
872   };
873 
874   // FIXME: If the GEP is not inbounds, and there are extra indices after the
875   // one we'll replace, those could cause the address computation to wrap
876   // (rendering the IsAllNonNegative() check below insufficient). We can do
877   // better, ignoring zero indices (and other indices we can prove small
878   // enough not to wrap).
879   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
880     return false;
881 
882   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
883   // also known to be dereferenceable.
884   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
885          IsAllNonNegative();
886 }
887 
888 // If we're indexing into an object with a variable index for the memory
889 // access, but the object has only one element, we can assume that the index
890 // will always be zero. If we replace the GEP, return it.
891 template <typename T>
892 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
893                                           T &MemI) {
894   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
895     unsigned Idx;
896     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
897       Instruction *NewGEPI = GEPI->clone();
898       NewGEPI->setOperand(Idx,
899         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
900       NewGEPI->insertBefore(GEPI);
901       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
902       return NewGEPI;
903     }
904   }
905 
906   return nullptr;
907 }
908 
909 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
910   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
911     return false;
912 
913   auto *Ptr = SI.getPointerOperand();
914   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
915     Ptr = GEPI->getOperand(0);
916   return (isa<ConstantPointerNull>(Ptr) &&
917           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
918 }
919 
920 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
921   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
922     const Value *GEPI0 = GEPI->getOperand(0);
923     if (isa<ConstantPointerNull>(GEPI0) &&
924         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
925       return true;
926   }
927   if (isa<UndefValue>(Op) ||
928       (isa<ConstantPointerNull>(Op) &&
929        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
930     return true;
931   return false;
932 }
933 
934 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
935   Value *Op = LI.getOperand(0);
936 
937   // Try to canonicalize the loaded type.
938   if (Instruction *Res = combineLoadToOperationType(*this, LI))
939     return Res;
940 
941   // Attempt to improve the alignment.
942   Align KnownAlign = getOrEnforceKnownAlignment(
943       Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
944   if (KnownAlign > LI.getAlign())
945     LI.setAlignment(KnownAlign);
946 
947   // Replace GEP indices if possible.
948   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
949       Worklist.push(NewGEPI);
950       return &LI;
951   }
952 
953   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
954     return Res;
955 
956   // Do really simple store-to-load forwarding and load CSE, to catch cases
957   // where there are several consecutive memory accesses to the same location,
958   // separated by a few arithmetic operations.
959   BasicBlock::iterator BBI(LI);
960   bool IsLoadCSE = false;
961   if (Value *AvailableVal = FindAvailableLoadedValue(
962           &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
963     if (IsLoadCSE)
964       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
965 
966     return replaceInstUsesWith(
967         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
968                                            LI.getName() + ".cast"));
969   }
970 
971   // None of the following transforms are legal for volatile/ordered atomic
972   // loads.  Most of them do apply for unordered atomics.
973   if (!LI.isUnordered()) return nullptr;
974 
975   // load(gep null, ...) -> unreachable
976   // load null/undef -> unreachable
977   // TODO: Consider a target hook for valid address spaces for this xforms.
978   if (canSimplifyNullLoadOrGEP(LI, Op)) {
979     // Insert a new store to null instruction before the load to indicate
980     // that this code is not reachable.  We do this instead of inserting
981     // an unreachable instruction directly because we cannot modify the
982     // CFG.
983     StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
984                                   Constant::getNullValue(Op->getType()), &LI);
985     SI->setDebugLoc(LI.getDebugLoc());
986     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
987   }
988 
989   if (Op->hasOneUse()) {
990     // Change select and PHI nodes to select values instead of addresses: this
991     // helps alias analysis out a lot, allows many others simplifications, and
992     // exposes redundancy in the code.
993     //
994     // Note that we cannot do the transformation unless we know that the
995     // introduced loads cannot trap!  Something like this is valid as long as
996     // the condition is always false: load (select bool %C, int* null, int* %G),
997     // but it would not be valid if we transformed it to load from null
998     // unconditionally.
999     //
1000     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1001       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1002       Align Alignment = LI.getAlign();
1003       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1004                                       Alignment, DL, SI) &&
1005           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1006                                       Alignment, DL, SI)) {
1007         LoadInst *V1 =
1008             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1009                                SI->getOperand(1)->getName() + ".val");
1010         LoadInst *V2 =
1011             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1012                                SI->getOperand(2)->getName() + ".val");
1013         assert(LI.isUnordered() && "implied by above");
1014         V1->setAlignment(Alignment);
1015         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1016         V2->setAlignment(Alignment);
1017         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1018         return SelectInst::Create(SI->getCondition(), V1, V2);
1019       }
1020 
1021       // load (select (cond, null, P)) -> load P
1022       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1023           !NullPointerIsDefined(SI->getFunction(),
1024                                 LI.getPointerAddressSpace()))
1025         return replaceOperand(LI, 0, SI->getOperand(2));
1026 
1027       // load (select (cond, P, null)) -> load P
1028       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1029           !NullPointerIsDefined(SI->getFunction(),
1030                                 LI.getPointerAddressSpace()))
1031         return replaceOperand(LI, 0, SI->getOperand(1));
1032     }
1033   }
1034   return nullptr;
1035 }
1036 
1037 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1038 ///
1039 /// \returns underlying value that was "cast", or nullptr otherwise.
1040 ///
1041 /// For example, if we have:
1042 ///
1043 ///     %E0 = extractelement <2 x double> %U, i32 0
1044 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1045 ///     %E1 = extractelement <2 x double> %U, i32 1
1046 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1047 ///
1048 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1049 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1050 /// Note that %U may contain non-undef values where %V1 has undef.
1051 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
1052   Value *U = nullptr;
1053   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1054     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1055     if (!E)
1056       return nullptr;
1057     auto *W = E->getVectorOperand();
1058     if (!U)
1059       U = W;
1060     else if (U != W)
1061       return nullptr;
1062     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1063     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1064       return nullptr;
1065     V = IV->getAggregateOperand();
1066   }
1067   if (!isa<UndefValue>(V) ||!U)
1068     return nullptr;
1069 
1070   auto *UT = cast<VectorType>(U->getType());
1071   auto *VT = V->getType();
1072   // Check that types UT and VT are bitwise isomorphic.
1073   const auto &DL = IC.getDataLayout();
1074   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1075     return nullptr;
1076   }
1077   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1078     if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1079       return nullptr;
1080   } else {
1081     auto *ST = cast<StructType>(VT);
1082     if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1083       return nullptr;
1084     for (const auto *EltT : ST->elements()) {
1085       if (EltT != UT->getElementType())
1086         return nullptr;
1087     }
1088   }
1089   return U;
1090 }
1091 
1092 /// Combine stores to match the type of value being stored.
1093 ///
1094 /// The core idea here is that the memory does not have any intrinsic type and
1095 /// where we can we should match the type of a store to the type of value being
1096 /// stored.
1097 ///
1098 /// However, this routine must never change the width of a store or the number of
1099 /// stores as that would introduce a semantic change. This combine is expected to
1100 /// be a semantic no-op which just allows stores to more closely model the types
1101 /// of their incoming values.
1102 ///
1103 /// Currently, we also refuse to change the precise type used for an atomic or
1104 /// volatile store. This is debatable, and might be reasonable to change later.
1105 /// However, it is risky in case some backend or other part of LLVM is relying
1106 /// on the exact type stored to select appropriate atomic operations.
1107 ///
1108 /// \returns true if the store was successfully combined away. This indicates
1109 /// the caller must erase the store instruction. We have to let the caller erase
1110 /// the store instruction as otherwise there is no way to signal whether it was
1111 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1112 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
1113   // FIXME: We could probably with some care handle both volatile and ordered
1114   // atomic stores here but it isn't clear that this is important.
1115   if (!SI.isUnordered())
1116     return false;
1117 
1118   // swifterror values can't be bitcasted.
1119   if (SI.getPointerOperand()->isSwiftError())
1120     return false;
1121 
1122   Value *V = SI.getValueOperand();
1123 
1124   // Fold away bit casts of the stored value by storing the original type.
1125   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1126     assert(!BC->getType()->isX86_AMXTy() &&
1127            "store to x86_amx* should not happen!");
1128     V = BC->getOperand(0);
1129     // Don't transform when the type is x86_amx, it makes the pass that lower
1130     // x86_amx type happy.
1131     if (V->getType()->isX86_AMXTy())
1132       return false;
1133     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1134       combineStoreToNewValue(IC, SI, V);
1135       return true;
1136     }
1137   }
1138 
1139   if (Value *U = likeBitCastFromVector(IC, V))
1140     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1141       combineStoreToNewValue(IC, SI, U);
1142       return true;
1143     }
1144 
1145   // FIXME: We should also canonicalize stores of vectors when their elements
1146   // are cast to other types.
1147   return false;
1148 }
1149 
1150 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
1151   // FIXME: We could probably with some care handle both volatile and atomic
1152   // stores here but it isn't clear that this is important.
1153   if (!SI.isSimple())
1154     return false;
1155 
1156   Value *V = SI.getValueOperand();
1157   Type *T = V->getType();
1158 
1159   if (!T->isAggregateType())
1160     return false;
1161 
1162   if (auto *ST = dyn_cast<StructType>(T)) {
1163     // If the struct only have one element, we unpack.
1164     unsigned Count = ST->getNumElements();
1165     if (Count == 1) {
1166       V = IC.Builder.CreateExtractValue(V, 0);
1167       combineStoreToNewValue(IC, SI, V);
1168       return true;
1169     }
1170 
1171     // We don't want to break loads with padding here as we'd loose
1172     // the knowledge that padding exists for the rest of the pipeline.
1173     const DataLayout &DL = IC.getDataLayout();
1174     auto *SL = DL.getStructLayout(ST);
1175     if (SL->hasPadding())
1176       return false;
1177 
1178     const auto Align = SI.getAlign();
1179 
1180     SmallString<16> EltName = V->getName();
1181     EltName += ".elt";
1182     auto *Addr = SI.getPointerOperand();
1183     SmallString<16> AddrName = Addr->getName();
1184     AddrName += ".repack";
1185 
1186     auto *IdxType = Type::getInt32Ty(ST->getContext());
1187     auto *Zero = ConstantInt::get(IdxType, 0);
1188     for (unsigned i = 0; i < Count; i++) {
1189       Value *Indices[2] = {
1190         Zero,
1191         ConstantInt::get(IdxType, i),
1192       };
1193       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1194                                                AddrName);
1195       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1196       auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1197       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1198       AAMDNodes AAMD;
1199       SI.getAAMetadata(AAMD);
1200       NS->setAAMetadata(AAMD);
1201     }
1202 
1203     return true;
1204   }
1205 
1206   if (auto *AT = dyn_cast<ArrayType>(T)) {
1207     // If the array only have one element, we unpack.
1208     auto NumElements = AT->getNumElements();
1209     if (NumElements == 1) {
1210       V = IC.Builder.CreateExtractValue(V, 0);
1211       combineStoreToNewValue(IC, SI, V);
1212       return true;
1213     }
1214 
1215     // Bail out if the array is too large. Ideally we would like to optimize
1216     // arrays of arbitrary size but this has a terrible impact on compile time.
1217     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1218     // tuning.
1219     if (NumElements > IC.MaxArraySizeForCombine)
1220       return false;
1221 
1222     const DataLayout &DL = IC.getDataLayout();
1223     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1224     const auto Align = SI.getAlign();
1225 
1226     SmallString<16> EltName = V->getName();
1227     EltName += ".elt";
1228     auto *Addr = SI.getPointerOperand();
1229     SmallString<16> AddrName = Addr->getName();
1230     AddrName += ".repack";
1231 
1232     auto *IdxType = Type::getInt64Ty(T->getContext());
1233     auto *Zero = ConstantInt::get(IdxType, 0);
1234 
1235     uint64_t Offset = 0;
1236     for (uint64_t i = 0; i < NumElements; i++) {
1237       Value *Indices[2] = {
1238         Zero,
1239         ConstantInt::get(IdxType, i),
1240       };
1241       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1242                                                AddrName);
1243       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1244       auto EltAlign = commonAlignment(Align, Offset);
1245       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1246       AAMDNodes AAMD;
1247       SI.getAAMetadata(AAMD);
1248       NS->setAAMetadata(AAMD);
1249       Offset += EltSize;
1250     }
1251 
1252     return true;
1253   }
1254 
1255   return false;
1256 }
1257 
1258 /// equivalentAddressValues - Test if A and B will obviously have the same
1259 /// value. This includes recognizing that %t0 and %t1 will have the same
1260 /// value in code like this:
1261 ///   %t0 = getelementptr \@a, 0, 3
1262 ///   store i32 0, i32* %t0
1263 ///   %t1 = getelementptr \@a, 0, 3
1264 ///   %t2 = load i32* %t1
1265 ///
1266 static bool equivalentAddressValues(Value *A, Value *B) {
1267   // Test if the values are trivially equivalent.
1268   if (A == B) return true;
1269 
1270   // Test if the values come form identical arithmetic instructions.
1271   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1272   // its only used to compare two uses within the same basic block, which
1273   // means that they'll always either have the same value or one of them
1274   // will have an undefined value.
1275   if (isa<BinaryOperator>(A) ||
1276       isa<CastInst>(A) ||
1277       isa<PHINode>(A) ||
1278       isa<GetElementPtrInst>(A))
1279     if (Instruction *BI = dyn_cast<Instruction>(B))
1280       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1281         return true;
1282 
1283   // Otherwise they may not be equivalent.
1284   return false;
1285 }
1286 
1287 /// Converts store (bitcast (load (bitcast (select ...)))) to
1288 /// store (load (select ...)), where select is minmax:
1289 /// select ((cmp load V1, load V2), V1, V2).
1290 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC,
1291                                                 StoreInst &SI) {
1292   // bitcast?
1293   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1294     return false;
1295   // load? integer?
1296   Value *LoadAddr;
1297   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1298     return false;
1299   auto *LI = cast<LoadInst>(SI.getValueOperand());
1300   if (!LI->getType()->isIntegerTy())
1301     return false;
1302   Type *CmpLoadTy;
1303   if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
1304     return false;
1305 
1306   // Make sure the type would actually change.
1307   // This condition can be hit with chains of bitcasts.
1308   if (LI->getType() == CmpLoadTy)
1309     return false;
1310 
1311   // Make sure we're not changing the size of the load/store.
1312   const auto &DL = IC.getDataLayout();
1313   if (DL.getTypeStoreSizeInBits(LI->getType()) !=
1314       DL.getTypeStoreSizeInBits(CmpLoadTy))
1315     return false;
1316 
1317   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1318         auto *SI = dyn_cast<StoreInst>(U);
1319         return SI && SI->getPointerOperand() != LI &&
1320                InstCombiner::peekThroughBitcast(SI->getPointerOperand()) !=
1321                    LoadAddr &&
1322                !SI->getPointerOperand()->isSwiftError();
1323       }))
1324     return false;
1325 
1326   IC.Builder.SetInsertPoint(LI);
1327   LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
1328   // Replace all the stores with stores of the newly loaded value.
1329   for (auto *UI : LI->users()) {
1330     auto *USI = cast<StoreInst>(UI);
1331     IC.Builder.SetInsertPoint(USI);
1332     combineStoreToNewValue(IC, *USI, NewLI);
1333   }
1334   IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1335   IC.eraseInstFromFunction(*LI);
1336   return true;
1337 }
1338 
1339 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
1340   Value *Val = SI.getOperand(0);
1341   Value *Ptr = SI.getOperand(1);
1342 
1343   // Try to canonicalize the stored type.
1344   if (combineStoreToValueType(*this, SI))
1345     return eraseInstFromFunction(SI);
1346 
1347   // Attempt to improve the alignment.
1348   const Align KnownAlign = getOrEnforceKnownAlignment(
1349       Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
1350   if (KnownAlign > SI.getAlign())
1351     SI.setAlignment(KnownAlign);
1352 
1353   // Try to canonicalize the stored type.
1354   if (unpackStoreToAggregate(*this, SI))
1355     return eraseInstFromFunction(SI);
1356 
1357   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1358     return eraseInstFromFunction(SI);
1359 
1360   // Replace GEP indices if possible.
1361   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1362       Worklist.push(NewGEPI);
1363       return &SI;
1364   }
1365 
1366   // Don't hack volatile/ordered stores.
1367   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1368   if (!SI.isUnordered()) return nullptr;
1369 
1370   // If the RHS is an alloca with a single use, zapify the store, making the
1371   // alloca dead.
1372   if (Ptr->hasOneUse()) {
1373     if (isa<AllocaInst>(Ptr))
1374       return eraseInstFromFunction(SI);
1375     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1376       if (isa<AllocaInst>(GEP->getOperand(0))) {
1377         if (GEP->getOperand(0)->hasOneUse())
1378           return eraseInstFromFunction(SI);
1379       }
1380     }
1381   }
1382 
1383   // If we have a store to a location which is known constant, we can conclude
1384   // that the store must be storing the constant value (else the memory
1385   // wouldn't be constant), and this must be a noop.
1386   if (AA->pointsToConstantMemory(Ptr))
1387     return eraseInstFromFunction(SI);
1388 
1389   // Do really simple DSE, to catch cases where there are several consecutive
1390   // stores to the same location, separated by a few arithmetic operations. This
1391   // situation often occurs with bitfield accesses.
1392   BasicBlock::iterator BBI(SI);
1393   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1394        --ScanInsts) {
1395     --BBI;
1396     // Don't count debug info directives, lest they affect codegen,
1397     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1398     if (isa<DbgInfoIntrinsic>(BBI) ||
1399         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1400       ScanInsts++;
1401       continue;
1402     }
1403 
1404     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1405       // Prev store isn't volatile, and stores to the same location?
1406       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1407                                                         SI.getOperand(1))) {
1408         ++NumDeadStore;
1409         // Manually add back the original store to the worklist now, so it will
1410         // be processed after the operands of the removed store, as this may
1411         // expose additional DSE opportunities.
1412         Worklist.push(&SI);
1413         eraseInstFromFunction(*PrevSI);
1414         return nullptr;
1415       }
1416       break;
1417     }
1418 
1419     // If this is a load, we have to stop.  However, if the loaded value is from
1420     // the pointer we're loading and is producing the pointer we're storing,
1421     // then *this* store is dead (X = load P; store X -> P).
1422     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1423       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1424         assert(SI.isUnordered() && "can't eliminate ordering operation");
1425         return eraseInstFromFunction(SI);
1426       }
1427 
1428       // Otherwise, this is a load from some other location.  Stores before it
1429       // may not be dead.
1430       break;
1431     }
1432 
1433     // Don't skip over loads, throws or things that can modify memory.
1434     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1435       break;
1436   }
1437 
1438   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1439   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1440   if (canSimplifyNullStoreOrGEP(SI)) {
1441     if (!isa<UndefValue>(Val))
1442       return replaceOperand(SI, 0, UndefValue::get(Val->getType()));
1443     return nullptr;  // Do not modify these!
1444   }
1445 
1446   // store undef, Ptr -> noop
1447   if (isa<UndefValue>(Val))
1448     return eraseInstFromFunction(SI);
1449 
1450   return nullptr;
1451 }
1452 
1453 /// Try to transform:
1454 ///   if () { *P = v1; } else { *P = v2 }
1455 /// or:
1456 ///   *P = v1; if () { *P = v2; }
1457 /// into a phi node with a store in the successor.
1458 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
1459   if (!SI.isUnordered())
1460     return false; // This code has not been audited for volatile/ordered case.
1461 
1462   // Check if the successor block has exactly 2 incoming edges.
1463   BasicBlock *StoreBB = SI.getParent();
1464   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1465   if (!DestBB->hasNPredecessors(2))
1466     return false;
1467 
1468   // Capture the other block (the block that doesn't contain our store).
1469   pred_iterator PredIter = pred_begin(DestBB);
1470   if (*PredIter == StoreBB)
1471     ++PredIter;
1472   BasicBlock *OtherBB = *PredIter;
1473 
1474   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1475   // for example, if SI is in an infinite loop.
1476   if (StoreBB == DestBB || OtherBB == DestBB)
1477     return false;
1478 
1479   // Verify that the other block ends in a branch and is not otherwise empty.
1480   BasicBlock::iterator BBI(OtherBB->getTerminator());
1481   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1482   if (!OtherBr || BBI == OtherBB->begin())
1483     return false;
1484 
1485   // If the other block ends in an unconditional branch, check for the 'if then
1486   // else' case. There is an instruction before the branch.
1487   StoreInst *OtherStore = nullptr;
1488   if (OtherBr->isUnconditional()) {
1489     --BBI;
1490     // Skip over debugging info.
1491     while (isa<DbgInfoIntrinsic>(BBI) ||
1492            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1493       if (BBI==OtherBB->begin())
1494         return false;
1495       --BBI;
1496     }
1497     // If this isn't a store, isn't a store to the same location, or is not the
1498     // right kind of store, bail out.
1499     OtherStore = dyn_cast<StoreInst>(BBI);
1500     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1501         !SI.isSameOperationAs(OtherStore))
1502       return false;
1503   } else {
1504     // Otherwise, the other block ended with a conditional branch. If one of the
1505     // destinations is StoreBB, then we have the if/then case.
1506     if (OtherBr->getSuccessor(0) != StoreBB &&
1507         OtherBr->getSuccessor(1) != StoreBB)
1508       return false;
1509 
1510     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1511     // if/then triangle. See if there is a store to the same ptr as SI that
1512     // lives in OtherBB.
1513     for (;; --BBI) {
1514       // Check to see if we find the matching store.
1515       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1516         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1517             !SI.isSameOperationAs(OtherStore))
1518           return false;
1519         break;
1520       }
1521       // If we find something that may be using or overwriting the stored
1522       // value, or if we run out of instructions, we can't do the transform.
1523       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1524           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1525         return false;
1526     }
1527 
1528     // In order to eliminate the store in OtherBr, we have to make sure nothing
1529     // reads or overwrites the stored value in StoreBB.
1530     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1531       // FIXME: This should really be AA driven.
1532       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1533         return false;
1534     }
1535   }
1536 
1537   // Insert a PHI node now if we need it.
1538   Value *MergedVal = OtherStore->getOperand(0);
1539   // The debug locations of the original instructions might differ. Merge them.
1540   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1541                                                      OtherStore->getDebugLoc());
1542   if (MergedVal != SI.getOperand(0)) {
1543     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1544     PN->addIncoming(SI.getOperand(0), SI.getParent());
1545     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1546     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1547     PN->setDebugLoc(MergedLoc);
1548   }
1549 
1550   // Advance to a place where it is safe to insert the new store and insert it.
1551   BBI = DestBB->getFirstInsertionPt();
1552   StoreInst *NewSI =
1553       new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
1554                     SI.getOrdering(), SI.getSyncScopeID());
1555   InsertNewInstBefore(NewSI, *BBI);
1556   NewSI->setDebugLoc(MergedLoc);
1557 
1558   // If the two stores had AA tags, merge them.
1559   AAMDNodes AATags;
1560   SI.getAAMetadata(AATags);
1561   if (AATags) {
1562     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1563     NewSI->setAAMetadata(AATags);
1564   }
1565 
1566   // Nuke the old stores.
1567   eraseInstFromFunction(SI);
1568   eraseInstFromFunction(*OtherStore);
1569   return true;
1570 }
1571