1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/Transforms/InstCombine/InstCombiner.h" 25 #include "llvm/Transforms/Utils/Local.h" 26 using namespace llvm; 27 using namespace PatternMatch; 28 29 #define DEBUG_TYPE "instcombine" 30 31 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 32 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 33 34 static cl::opt<unsigned> MaxCopiedFromConstantUsers( 35 "instcombine-max-copied-from-constant-users", cl::init(128), 36 cl::desc("Maximum users to visit in copy from constant transform"), 37 cl::Hidden); 38 39 /// isOnlyCopiedFromConstantMemory - Recursively walk the uses of a (derived) 40 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 41 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 42 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 43 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 44 /// the alloca, and if the source pointer is a pointer to a constant memory 45 /// location, we can optimize this. 46 static bool 47 isOnlyCopiedFromConstantMemory(AAResults *AA, AllocaInst *V, 48 MemTransferInst *&TheCopy, 49 SmallVectorImpl<Instruction *> &ToDelete) { 50 // We track lifetime intrinsics as we encounter them. If we decide to go 51 // ahead and replace the value with the memory location, this lets the caller 52 // quickly eliminate the markers. 53 54 using ValueAndIsOffset = PointerIntPair<Value *, 1, bool>; 55 SmallVector<ValueAndIsOffset, 32> Worklist; 56 SmallPtrSet<ValueAndIsOffset, 32> Visited; 57 Worklist.emplace_back(V, false); 58 while (!Worklist.empty()) { 59 ValueAndIsOffset Elem = Worklist.pop_back_val(); 60 if (!Visited.insert(Elem).second) 61 continue; 62 if (Visited.size() > MaxCopiedFromConstantUsers) 63 return false; 64 65 const auto [Value, IsOffset] = Elem; 66 for (auto &U : Value->uses()) { 67 auto *I = cast<Instruction>(U.getUser()); 68 69 if (auto *LI = dyn_cast<LoadInst>(I)) { 70 // Ignore non-volatile loads, they are always ok. 71 if (!LI->isSimple()) return false; 72 continue; 73 } 74 75 if (isa<PHINode, SelectInst>(I)) { 76 // We set IsOffset=true, to forbid the memcpy from occurring after the 77 // phi: If one of the phi operands is not based on the alloca, we 78 // would incorrectly omit a write. 79 Worklist.emplace_back(I, true); 80 continue; 81 } 82 if (isa<BitCastInst, AddrSpaceCastInst>(I)) { 83 // If uses of the bitcast are ok, we are ok. 84 Worklist.emplace_back(I, IsOffset); 85 continue; 86 } 87 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 88 // If the GEP has all zero indices, it doesn't offset the pointer. If it 89 // doesn't, it does. 90 Worklist.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 91 continue; 92 } 93 94 if (auto *Call = dyn_cast<CallBase>(I)) { 95 // If this is the function being called then we treat it like a load and 96 // ignore it. 97 if (Call->isCallee(&U)) 98 continue; 99 100 unsigned DataOpNo = Call->getDataOperandNo(&U); 101 bool IsArgOperand = Call->isArgOperand(&U); 102 103 // Inalloca arguments are clobbered by the call. 104 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 105 return false; 106 107 // If this call site doesn't modify the memory, then we know it is just 108 // a load (but one that potentially returns the value itself), so we can 109 // ignore it if we know that the value isn't captured. 110 bool NoCapture = Call->doesNotCapture(DataOpNo); 111 if ((Call->onlyReadsMemory() && (Call->use_empty() || NoCapture)) || 112 (Call->onlyReadsMemory(DataOpNo) && NoCapture)) 113 continue; 114 115 // If this is being passed as a byval argument, the caller is making a 116 // copy, so it is only a read of the alloca. 117 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 118 continue; 119 } 120 121 // Lifetime intrinsics can be handled by the caller. 122 if (I->isLifetimeStartOrEnd()) { 123 assert(I->use_empty() && "Lifetime markers have no result to use!"); 124 ToDelete.push_back(I); 125 continue; 126 } 127 128 // If this is isn't our memcpy/memmove, reject it as something we can't 129 // handle. 130 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 131 if (!MI) 132 return false; 133 134 // If the transfer is volatile, reject it. 135 if (MI->isVolatile()) 136 return false; 137 138 // If the transfer is using the alloca as a source of the transfer, then 139 // ignore it since it is a load (unless the transfer is volatile). 140 if (U.getOperandNo() == 1) 141 continue; 142 143 // If we already have seen a copy, reject the second one. 144 if (TheCopy) return false; 145 146 // If the pointer has been offset from the start of the alloca, we can't 147 // safely handle this. 148 if (IsOffset) return false; 149 150 // If the memintrinsic isn't using the alloca as the dest, reject it. 151 if (U.getOperandNo() != 0) return false; 152 153 // If the source of the memcpy/move is not constant, reject it. 154 if (isModSet(AA->getModRefInfoMask(MI->getSource()))) 155 return false; 156 157 // Otherwise, the transform is safe. Remember the copy instruction. 158 TheCopy = MI; 159 } 160 } 161 return true; 162 } 163 164 /// isOnlyCopiedFromConstantMemory - Return true if the specified alloca is only 165 /// modified by a copy from a constant memory location. If we can prove this, we 166 /// can replace any uses of the alloca with uses of the memory location 167 /// directly. 168 static MemTransferInst * 169 isOnlyCopiedFromConstantMemory(AAResults *AA, 170 AllocaInst *AI, 171 SmallVectorImpl<Instruction *> &ToDelete) { 172 MemTransferInst *TheCopy = nullptr; 173 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) 174 return TheCopy; 175 return nullptr; 176 } 177 178 /// Returns true if V is dereferenceable for size of alloca. 179 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 180 const DataLayout &DL) { 181 if (AI->isArrayAllocation()) 182 return false; 183 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 184 if (!AllocaSize) 185 return false; 186 return isDereferenceableAndAlignedPointer(V, AI->getAlign(), 187 APInt(64, AllocaSize), DL); 188 } 189 190 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC, 191 AllocaInst &AI, DominatorTree &DT) { 192 // Check for array size of 1 (scalar allocation). 193 if (!AI.isArrayAllocation()) { 194 // i32 1 is the canonical array size for scalar allocations. 195 if (AI.getArraySize()->getType()->isIntegerTy(32)) 196 return nullptr; 197 198 // Canonicalize it. 199 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); 200 } 201 202 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 203 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 204 if (C->getValue().getActiveBits() <= 64) { 205 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 206 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, AI.getAddressSpace(), 207 nullptr, AI.getName()); 208 New->setAlignment(AI.getAlign()); 209 210 replaceAllDbgUsesWith(AI, *New, *New, DT); 211 212 // Scan to the end of the allocation instructions, to skip over a block of 213 // allocas if possible...also skip interleaved debug info 214 // 215 BasicBlock::iterator It(New); 216 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 217 ++It; 218 219 // Now that I is pointing to the first non-allocation-inst in the block, 220 // insert our getelementptr instruction... 221 // 222 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 223 Value *NullIdx = Constant::getNullValue(IdxTy); 224 Value *Idx[2] = {NullIdx, NullIdx}; 225 Instruction *GEP = GetElementPtrInst::CreateInBounds( 226 NewTy, New, Idx, New->getName() + ".sub"); 227 IC.InsertNewInstBefore(GEP, *It); 228 229 // Now make everything use the getelementptr instead of the original 230 // allocation. 231 return IC.replaceInstUsesWith(AI, GEP); 232 } 233 } 234 235 if (isa<UndefValue>(AI.getArraySize())) 236 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 237 238 // Ensure that the alloca array size argument has type intptr_t, so that 239 // any casting is exposed early. 240 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 241 if (AI.getArraySize()->getType() != IntPtrTy) { 242 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 243 return IC.replaceOperand(AI, 0, V); 244 } 245 246 return nullptr; 247 } 248 249 namespace { 250 // If I and V are pointers in different address space, it is not allowed to 251 // use replaceAllUsesWith since I and V have different types. A 252 // non-target-specific transformation should not use addrspacecast on V since 253 // the two address space may be disjoint depending on target. 254 // 255 // This class chases down uses of the old pointer until reaching the load 256 // instructions, then replaces the old pointer in the load instructions with 257 // the new pointer. If during the chasing it sees bitcast or GEP, it will 258 // create new bitcast or GEP with the new pointer and use them in the load 259 // instruction. 260 class PointerReplacer { 261 public: 262 PointerReplacer(InstCombinerImpl &IC, Instruction &Root) 263 : IC(IC), Root(Root) {} 264 265 bool collectUsers(); 266 void replacePointer(Value *V); 267 268 private: 269 bool collectUsersRecursive(Instruction &I); 270 void replace(Instruction *I); 271 Value *getReplacement(Value *I); 272 bool isAvailable(Instruction *I) const { 273 return I == &Root || Worklist.contains(I); 274 } 275 276 SmallPtrSet<Instruction *, 32> ValuesToRevisit; 277 SmallSetVector<Instruction *, 4> Worklist; 278 MapVector<Value *, Value *> WorkMap; 279 InstCombinerImpl &IC; 280 Instruction &Root; 281 }; 282 } // end anonymous namespace 283 284 bool PointerReplacer::collectUsers() { 285 if (!collectUsersRecursive(Root)) 286 return false; 287 288 // Ensure that all outstanding (indirect) users of I 289 // are inserted into the Worklist. Return false 290 // otherwise. 291 for (auto *Inst : ValuesToRevisit) 292 if (!Worklist.contains(Inst)) 293 return false; 294 return true; 295 } 296 297 bool PointerReplacer::collectUsersRecursive(Instruction &I) { 298 for (auto *U : I.users()) { 299 auto *Inst = cast<Instruction>(&*U); 300 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 301 if (Load->isVolatile()) 302 return false; 303 Worklist.insert(Load); 304 } else if (auto *PHI = dyn_cast<PHINode>(Inst)) { 305 // All incoming values must be instructions for replacability 306 if (any_of(PHI->incoming_values(), 307 [](Value *V) { return !isa<Instruction>(V); })) 308 return false; 309 310 // If at least one incoming value of the PHI is not in Worklist, 311 // store the PHI for revisiting and skip this iteration of the 312 // loop. 313 if (any_of(PHI->incoming_values(), [this](Value *V) { 314 return !isAvailable(cast<Instruction>(V)); 315 })) { 316 ValuesToRevisit.insert(Inst); 317 continue; 318 } 319 320 Worklist.insert(PHI); 321 if (!collectUsersRecursive(*PHI)) 322 return false; 323 } else if (auto *SI = dyn_cast<SelectInst>(Inst)) { 324 if (!isa<Instruction>(SI->getTrueValue()) || 325 !isa<Instruction>(SI->getFalseValue())) 326 return false; 327 328 if (!isAvailable(cast<Instruction>(SI->getTrueValue())) || 329 !isAvailable(cast<Instruction>(SI->getFalseValue()))) { 330 ValuesToRevisit.insert(Inst); 331 continue; 332 } 333 Worklist.insert(SI); 334 if (!collectUsersRecursive(*SI)) 335 return false; 336 } else if (isa<GetElementPtrInst, BitCastInst>(Inst)) { 337 Worklist.insert(Inst); 338 if (!collectUsersRecursive(*Inst)) 339 return false; 340 } else if (auto *MI = dyn_cast<MemTransferInst>(Inst)) { 341 if (MI->isVolatile()) 342 return false; 343 Worklist.insert(Inst); 344 } else if (Inst->isLifetimeStartOrEnd()) { 345 continue; 346 } else { 347 LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n'); 348 return false; 349 } 350 } 351 352 return true; 353 } 354 355 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); } 356 357 void PointerReplacer::replace(Instruction *I) { 358 if (getReplacement(I)) 359 return; 360 361 if (auto *LT = dyn_cast<LoadInst>(I)) { 362 auto *V = getReplacement(LT->getPointerOperand()); 363 assert(V && "Operand not replaced"); 364 auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(), 365 LT->getAlign(), LT->getOrdering(), 366 LT->getSyncScopeID()); 367 NewI->takeName(LT); 368 copyMetadataForLoad(*NewI, *LT); 369 370 IC.InsertNewInstWith(NewI, *LT); 371 IC.replaceInstUsesWith(*LT, NewI); 372 WorkMap[LT] = NewI; 373 } else if (auto *PHI = dyn_cast<PHINode>(I)) { 374 Type *NewTy = getReplacement(PHI->getIncomingValue(0))->getType(); 375 auto *NewPHI = PHINode::Create(NewTy, PHI->getNumIncomingValues(), 376 PHI->getName(), PHI); 377 for (unsigned int I = 0; I < PHI->getNumIncomingValues(); ++I) 378 NewPHI->addIncoming(getReplacement(PHI->getIncomingValue(I)), 379 PHI->getIncomingBlock(I)); 380 WorkMap[PHI] = NewPHI; 381 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 382 auto *V = getReplacement(GEP->getPointerOperand()); 383 assert(V && "Operand not replaced"); 384 SmallVector<Value *, 8> Indices; 385 Indices.append(GEP->idx_begin(), GEP->idx_end()); 386 auto *NewI = 387 GetElementPtrInst::Create(GEP->getSourceElementType(), V, Indices); 388 IC.InsertNewInstWith(NewI, *GEP); 389 NewI->takeName(GEP); 390 WorkMap[GEP] = NewI; 391 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 392 auto *V = getReplacement(BC->getOperand(0)); 393 assert(V && "Operand not replaced"); 394 auto *NewT = PointerType::getWithSamePointeeType( 395 cast<PointerType>(BC->getType()), 396 V->getType()->getPointerAddressSpace()); 397 auto *NewI = new BitCastInst(V, NewT); 398 IC.InsertNewInstWith(NewI, *BC); 399 NewI->takeName(BC); 400 WorkMap[BC] = NewI; 401 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 402 auto *NewSI = SelectInst::Create( 403 SI->getCondition(), getReplacement(SI->getTrueValue()), 404 getReplacement(SI->getFalseValue()), SI->getName(), nullptr, SI); 405 IC.InsertNewInstWith(NewSI, *SI); 406 NewSI->takeName(SI); 407 WorkMap[SI] = NewSI; 408 } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) { 409 auto *SrcV = getReplacement(MemCpy->getRawSource()); 410 // The pointer may appear in the destination of a copy, but we don't want to 411 // replace it. 412 if (!SrcV) { 413 assert(getReplacement(MemCpy->getRawDest()) && 414 "destination not in replace list"); 415 return; 416 } 417 418 IC.Builder.SetInsertPoint(MemCpy); 419 auto *NewI = IC.Builder.CreateMemTransferInst( 420 MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(), 421 SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(), 422 MemCpy->isVolatile()); 423 AAMDNodes AAMD = MemCpy->getAAMetadata(); 424 if (AAMD) 425 NewI->setAAMetadata(AAMD); 426 427 IC.eraseInstFromFunction(*MemCpy); 428 WorkMap[MemCpy] = NewI; 429 } else { 430 llvm_unreachable("should never reach here"); 431 } 432 } 433 434 void PointerReplacer::replacePointer(Value *V) { 435 #ifndef NDEBUG 436 auto *PT = cast<PointerType>(Root.getType()); 437 auto *NT = cast<PointerType>(V->getType()); 438 assert(PT != NT && PT->hasSameElementTypeAs(NT) && "Invalid usage"); 439 #endif 440 WorkMap[&Root] = V; 441 442 for (Instruction *Workitem : Worklist) 443 replace(Workitem); 444 } 445 446 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) { 447 if (auto *I = simplifyAllocaArraySize(*this, AI, DT)) 448 return I; 449 450 if (AI.getAllocatedType()->isSized()) { 451 // Move all alloca's of zero byte objects to the entry block and merge them 452 // together. Note that we only do this for alloca's, because malloc should 453 // allocate and return a unique pointer, even for a zero byte allocation. 454 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinValue() == 0) { 455 // For a zero sized alloca there is no point in doing an array allocation. 456 // This is helpful if the array size is a complicated expression not used 457 // elsewhere. 458 if (AI.isArrayAllocation()) 459 return replaceOperand(AI, 0, 460 ConstantInt::get(AI.getArraySize()->getType(), 1)); 461 462 // Get the first instruction in the entry block. 463 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 464 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 465 if (FirstInst != &AI) { 466 // If the entry block doesn't start with a zero-size alloca then move 467 // this one to the start of the entry block. There is no problem with 468 // dominance as the array size was forced to a constant earlier already. 469 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 470 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 471 DL.getTypeAllocSize(EntryAI->getAllocatedType()) 472 .getKnownMinValue() != 0) { 473 AI.moveBefore(FirstInst); 474 return &AI; 475 } 476 477 // Replace this zero-sized alloca with the one at the start of the entry 478 // block after ensuring that the address will be aligned enough for both 479 // types. 480 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); 481 EntryAI->setAlignment(MaxAlign); 482 if (AI.getType() != EntryAI->getType()) 483 return new BitCastInst(EntryAI, AI.getType()); 484 return replaceInstUsesWith(AI, EntryAI); 485 } 486 } 487 } 488 489 // Check to see if this allocation is only modified by a memcpy/memmove from 490 // a memory location whose alignment is equal to or exceeds that of the 491 // allocation. If this is the case, we can change all users to use the 492 // constant memory location instead. This is commonly produced by the CFE by 493 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 494 // is only subsequently read. 495 SmallVector<Instruction *, 4> ToDelete; 496 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { 497 Value *TheSrc = Copy->getSource(); 498 Align AllocaAlign = AI.getAlign(); 499 Align SourceAlign = getOrEnforceKnownAlignment( 500 TheSrc, AllocaAlign, DL, &AI, &AC, &DT); 501 if (AllocaAlign <= SourceAlign && 502 isDereferenceableForAllocaSize(TheSrc, &AI, DL) && 503 !isa<Instruction>(TheSrc)) { 504 // FIXME: Can we sink instructions without violating dominance when TheSrc 505 // is an instruction instead of a constant or argument? 506 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 507 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 508 unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace(); 509 auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace); 510 if (AI.getAddressSpace() == SrcAddrSpace) { 511 for (Instruction *Delete : ToDelete) 512 eraseInstFromFunction(*Delete); 513 514 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 515 Instruction *NewI = replaceInstUsesWith(AI, Cast); 516 eraseInstFromFunction(*Copy); 517 ++NumGlobalCopies; 518 return NewI; 519 } 520 521 PointerReplacer PtrReplacer(*this, AI); 522 if (PtrReplacer.collectUsers()) { 523 for (Instruction *Delete : ToDelete) 524 eraseInstFromFunction(*Delete); 525 526 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 527 PtrReplacer.replacePointer(Cast); 528 ++NumGlobalCopies; 529 } 530 } 531 } 532 533 // At last, use the generic allocation site handler to aggressively remove 534 // unused allocas. 535 return visitAllocSite(AI); 536 } 537 538 // Are we allowed to form a atomic load or store of this type? 539 static bool isSupportedAtomicType(Type *Ty) { 540 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 541 } 542 543 /// Helper to combine a load to a new type. 544 /// 545 /// This just does the work of combining a load to a new type. It handles 546 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 547 /// loaded *value* type. This will convert it to a pointer, cast the operand to 548 /// that pointer type, load it, etc. 549 /// 550 /// Note that this will create all of the instructions with whatever insert 551 /// point the \c InstCombinerImpl currently is using. 552 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy, 553 const Twine &Suffix) { 554 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 555 "can't fold an atomic load to requested type"); 556 557 Value *Ptr = LI.getPointerOperand(); 558 unsigned AS = LI.getPointerAddressSpace(); 559 Type *NewPtrTy = NewTy->getPointerTo(AS); 560 Value *NewPtr = nullptr; 561 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 562 NewPtr->getType() == NewPtrTy)) 563 NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy); 564 565 LoadInst *NewLoad = Builder.CreateAlignedLoad( 566 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); 567 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 568 copyMetadataForLoad(*NewLoad, LI); 569 return NewLoad; 570 } 571 572 /// Combine a store to a new type. 573 /// 574 /// Returns the newly created store instruction. 575 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI, 576 Value *V) { 577 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 578 "can't fold an atomic store of requested type"); 579 580 Value *Ptr = SI.getPointerOperand(); 581 unsigned AS = SI.getPointerAddressSpace(); 582 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 583 SI.getAllMetadata(MD); 584 585 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 586 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 587 SI.getAlign(), SI.isVolatile()); 588 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 589 for (const auto &MDPair : MD) { 590 unsigned ID = MDPair.first; 591 MDNode *N = MDPair.second; 592 // Note, essentially every kind of metadata should be preserved here! This 593 // routine is supposed to clone a store instruction changing *only its 594 // type*. The only metadata it makes sense to drop is metadata which is 595 // invalidated when the pointer type changes. This should essentially 596 // never be the case in LLVM, but we explicitly switch over only known 597 // metadata to be conservatively correct. If you are adding metadata to 598 // LLVM which pertains to stores, you almost certainly want to add it 599 // here. 600 switch (ID) { 601 case LLVMContext::MD_dbg: 602 case LLVMContext::MD_DIAssignID: 603 case LLVMContext::MD_tbaa: 604 case LLVMContext::MD_prof: 605 case LLVMContext::MD_fpmath: 606 case LLVMContext::MD_tbaa_struct: 607 case LLVMContext::MD_alias_scope: 608 case LLVMContext::MD_noalias: 609 case LLVMContext::MD_nontemporal: 610 case LLVMContext::MD_mem_parallel_loop_access: 611 case LLVMContext::MD_access_group: 612 // All of these directly apply. 613 NewStore->setMetadata(ID, N); 614 break; 615 case LLVMContext::MD_invariant_load: 616 case LLVMContext::MD_nonnull: 617 case LLVMContext::MD_noundef: 618 case LLVMContext::MD_range: 619 case LLVMContext::MD_align: 620 case LLVMContext::MD_dereferenceable: 621 case LLVMContext::MD_dereferenceable_or_null: 622 // These don't apply for stores. 623 break; 624 } 625 } 626 627 return NewStore; 628 } 629 630 /// Returns true if instruction represent minmax pattern like: 631 /// select ((cmp load V1, load V2), V1, V2). 632 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 633 assert(V->getType()->isPointerTy() && "Expected pointer type."); 634 // Ignore possible ty* to ixx* bitcast. 635 V = InstCombiner::peekThroughBitcast(V); 636 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 637 // pattern. 638 CmpInst::Predicate Pred; 639 Instruction *L1; 640 Instruction *L2; 641 Value *LHS; 642 Value *RHS; 643 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 644 m_Value(LHS), m_Value(RHS)))) 645 return false; 646 LoadTy = L1->getType(); 647 return (match(L1, m_Load(m_Specific(LHS))) && 648 match(L2, m_Load(m_Specific(RHS)))) || 649 (match(L1, m_Load(m_Specific(RHS))) && 650 match(L2, m_Load(m_Specific(LHS)))); 651 } 652 653 /// Combine loads to match the type of their uses' value after looking 654 /// through intervening bitcasts. 655 /// 656 /// The core idea here is that if the result of a load is used in an operation, 657 /// we should load the type most conducive to that operation. For example, when 658 /// loading an integer and converting that immediately to a pointer, we should 659 /// instead directly load a pointer. 660 /// 661 /// However, this routine must never change the width of a load or the number of 662 /// loads as that would introduce a semantic change. This combine is expected to 663 /// be a semantic no-op which just allows loads to more closely model the types 664 /// of their consuming operations. 665 /// 666 /// Currently, we also refuse to change the precise type used for an atomic load 667 /// or a volatile load. This is debatable, and might be reasonable to change 668 /// later. However, it is risky in case some backend or other part of LLVM is 669 /// relying on the exact type loaded to select appropriate atomic operations. 670 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC, 671 LoadInst &Load) { 672 // FIXME: We could probably with some care handle both volatile and ordered 673 // atomic loads here but it isn't clear that this is important. 674 if (!Load.isUnordered()) 675 return nullptr; 676 677 if (Load.use_empty()) 678 return nullptr; 679 680 // swifterror values can't be bitcasted. 681 if (Load.getPointerOperand()->isSwiftError()) 682 return nullptr; 683 684 // Fold away bit casts of the loaded value by loading the desired type. 685 // Note that we should not do this for pointer<->integer casts, 686 // because that would result in type punning. 687 if (Load.hasOneUse()) { 688 // Don't transform when the type is x86_amx, it makes the pass that lower 689 // x86_amx type happy. 690 Type *LoadTy = Load.getType(); 691 if (auto *BC = dyn_cast<BitCastInst>(Load.user_back())) { 692 assert(!LoadTy->isX86_AMXTy() && "Load from x86_amx* should not happen!"); 693 if (BC->getType()->isX86_AMXTy()) 694 return nullptr; 695 } 696 697 if (auto *CastUser = dyn_cast<CastInst>(Load.user_back())) { 698 Type *DestTy = CastUser->getDestTy(); 699 if (CastUser->isNoopCast(IC.getDataLayout()) && 700 LoadTy->isPtrOrPtrVectorTy() == DestTy->isPtrOrPtrVectorTy() && 701 (!Load.isAtomic() || isSupportedAtomicType(DestTy))) { 702 LoadInst *NewLoad = IC.combineLoadToNewType(Load, DestTy); 703 CastUser->replaceAllUsesWith(NewLoad); 704 IC.eraseInstFromFunction(*CastUser); 705 return &Load; 706 } 707 } 708 } 709 710 // FIXME: We should also canonicalize loads of vectors when their elements are 711 // cast to other types. 712 return nullptr; 713 } 714 715 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) { 716 // FIXME: We could probably with some care handle both volatile and atomic 717 // stores here but it isn't clear that this is important. 718 if (!LI.isSimple()) 719 return nullptr; 720 721 Type *T = LI.getType(); 722 if (!T->isAggregateType()) 723 return nullptr; 724 725 StringRef Name = LI.getName(); 726 727 if (auto *ST = dyn_cast<StructType>(T)) { 728 // If the struct only have one element, we unpack. 729 auto NumElements = ST->getNumElements(); 730 if (NumElements == 1) { 731 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 732 ".unpack"); 733 NewLoad->setAAMetadata(LI.getAAMetadata()); 734 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 735 PoisonValue::get(T), NewLoad, 0, Name)); 736 } 737 738 // We don't want to break loads with padding here as we'd loose 739 // the knowledge that padding exists for the rest of the pipeline. 740 const DataLayout &DL = IC.getDataLayout(); 741 auto *SL = DL.getStructLayout(ST); 742 if (SL->hasPadding()) 743 return nullptr; 744 745 const auto Align = LI.getAlign(); 746 auto *Addr = LI.getPointerOperand(); 747 auto *IdxType = Type::getInt32Ty(T->getContext()); 748 auto *Zero = ConstantInt::get(IdxType, 0); 749 750 Value *V = PoisonValue::get(T); 751 for (unsigned i = 0; i < NumElements; i++) { 752 Value *Indices[2] = { 753 Zero, 754 ConstantInt::get(IdxType, i), 755 }; 756 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, ArrayRef(Indices), 757 Name + ".elt"); 758 auto *L = IC.Builder.CreateAlignedLoad( 759 ST->getElementType(i), Ptr, 760 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); 761 // Propagate AA metadata. It'll still be valid on the narrowed load. 762 L->setAAMetadata(LI.getAAMetadata()); 763 V = IC.Builder.CreateInsertValue(V, L, i); 764 } 765 766 V->setName(Name); 767 return IC.replaceInstUsesWith(LI, V); 768 } 769 770 if (auto *AT = dyn_cast<ArrayType>(T)) { 771 auto *ET = AT->getElementType(); 772 auto NumElements = AT->getNumElements(); 773 if (NumElements == 1) { 774 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 775 NewLoad->setAAMetadata(LI.getAAMetadata()); 776 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 777 PoisonValue::get(T), NewLoad, 0, Name)); 778 } 779 780 // Bail out if the array is too large. Ideally we would like to optimize 781 // arrays of arbitrary size but this has a terrible impact on compile time. 782 // The threshold here is chosen arbitrarily, maybe needs a little bit of 783 // tuning. 784 if (NumElements > IC.MaxArraySizeForCombine) 785 return nullptr; 786 787 const DataLayout &DL = IC.getDataLayout(); 788 auto EltSize = DL.getTypeAllocSize(ET); 789 const auto Align = LI.getAlign(); 790 791 auto *Addr = LI.getPointerOperand(); 792 auto *IdxType = Type::getInt64Ty(T->getContext()); 793 auto *Zero = ConstantInt::get(IdxType, 0); 794 795 Value *V = PoisonValue::get(T); 796 uint64_t Offset = 0; 797 for (uint64_t i = 0; i < NumElements; i++) { 798 Value *Indices[2] = { 799 Zero, 800 ConstantInt::get(IdxType, i), 801 }; 802 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, ArrayRef(Indices), 803 Name + ".elt"); 804 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, 805 commonAlignment(Align, Offset), 806 Name + ".unpack"); 807 L->setAAMetadata(LI.getAAMetadata()); 808 V = IC.Builder.CreateInsertValue(V, L, i); 809 Offset += EltSize; 810 } 811 812 V->setName(Name); 813 return IC.replaceInstUsesWith(LI, V); 814 } 815 816 return nullptr; 817 } 818 819 // If we can determine that all possible objects pointed to by the provided 820 // pointer value are, not only dereferenceable, but also definitively less than 821 // or equal to the provided maximum size, then return true. Otherwise, return 822 // false (constant global values and allocas fall into this category). 823 // 824 // FIXME: This should probably live in ValueTracking (or similar). 825 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 826 const DataLayout &DL) { 827 SmallPtrSet<Value *, 4> Visited; 828 SmallVector<Value *, 4> Worklist(1, V); 829 830 do { 831 Value *P = Worklist.pop_back_val(); 832 P = P->stripPointerCasts(); 833 834 if (!Visited.insert(P).second) 835 continue; 836 837 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 838 Worklist.push_back(SI->getTrueValue()); 839 Worklist.push_back(SI->getFalseValue()); 840 continue; 841 } 842 843 if (PHINode *PN = dyn_cast<PHINode>(P)) { 844 append_range(Worklist, PN->incoming_values()); 845 continue; 846 } 847 848 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 849 if (GA->isInterposable()) 850 return false; 851 Worklist.push_back(GA->getAliasee()); 852 continue; 853 } 854 855 // If we know how big this object is, and it is less than MaxSize, continue 856 // searching. Otherwise, return false. 857 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 858 if (!AI->getAllocatedType()->isSized()) 859 return false; 860 861 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 862 if (!CS) 863 return false; 864 865 TypeSize TS = DL.getTypeAllocSize(AI->getAllocatedType()); 866 if (TS.isScalable()) 867 return false; 868 // Make sure that, even if the multiplication below would wrap as an 869 // uint64_t, we still do the right thing. 870 if ((CS->getValue().zext(128) * APInt(128, TS.getFixedValue())) 871 .ugt(MaxSize)) 872 return false; 873 continue; 874 } 875 876 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 877 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 878 return false; 879 880 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 881 if (InitSize > MaxSize) 882 return false; 883 continue; 884 } 885 886 return false; 887 } while (!Worklist.empty()); 888 889 return true; 890 } 891 892 // If we're indexing into an object of a known size, and the outer index is 893 // not a constant, but having any value but zero would lead to undefined 894 // behavior, replace it with zero. 895 // 896 // For example, if we have: 897 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 898 // ... 899 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 900 // ... = load i32* %arrayidx, align 4 901 // Then we know that we can replace %x in the GEP with i64 0. 902 // 903 // FIXME: We could fold any GEP index to zero that would cause UB if it were 904 // not zero. Currently, we only handle the first such index. Also, we could 905 // also search through non-zero constant indices if we kept track of the 906 // offsets those indices implied. 907 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC, 908 GetElementPtrInst *GEPI, Instruction *MemI, 909 unsigned &Idx) { 910 if (GEPI->getNumOperands() < 2) 911 return false; 912 913 // Find the first non-zero index of a GEP. If all indices are zero, return 914 // one past the last index. 915 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 916 unsigned I = 1; 917 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 918 Value *V = GEPI->getOperand(I); 919 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 920 if (CI->isZero()) 921 continue; 922 923 break; 924 } 925 926 return I; 927 }; 928 929 // Skip through initial 'zero' indices, and find the corresponding pointer 930 // type. See if the next index is not a constant. 931 Idx = FirstNZIdx(GEPI); 932 if (Idx == GEPI->getNumOperands()) 933 return false; 934 if (isa<Constant>(GEPI->getOperand(Idx))) 935 return false; 936 937 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 938 Type *SourceElementType = GEPI->getSourceElementType(); 939 // Size information about scalable vectors is not available, so we cannot 940 // deduce whether indexing at n is undefined behaviour or not. Bail out. 941 if (isa<ScalableVectorType>(SourceElementType)) 942 return false; 943 944 Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops); 945 if (!AllocTy || !AllocTy->isSized()) 946 return false; 947 const DataLayout &DL = IC.getDataLayout(); 948 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedValue(); 949 950 // If there are more indices after the one we might replace with a zero, make 951 // sure they're all non-negative. If any of them are negative, the overall 952 // address being computed might be before the base address determined by the 953 // first non-zero index. 954 auto IsAllNonNegative = [&]() { 955 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 956 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 957 if (Known.isNonNegative()) 958 continue; 959 return false; 960 } 961 962 return true; 963 }; 964 965 // FIXME: If the GEP is not inbounds, and there are extra indices after the 966 // one we'll replace, those could cause the address computation to wrap 967 // (rendering the IsAllNonNegative() check below insufficient). We can do 968 // better, ignoring zero indices (and other indices we can prove small 969 // enough not to wrap). 970 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 971 return false; 972 973 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 974 // also known to be dereferenceable. 975 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 976 IsAllNonNegative(); 977 } 978 979 // If we're indexing into an object with a variable index for the memory 980 // access, but the object has only one element, we can assume that the index 981 // will always be zero. If we replace the GEP, return it. 982 template <typename T> 983 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr, 984 T &MemI) { 985 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 986 unsigned Idx; 987 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 988 Instruction *NewGEPI = GEPI->clone(); 989 NewGEPI->setOperand(Idx, 990 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 991 NewGEPI->insertBefore(GEPI); 992 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 993 return NewGEPI; 994 } 995 } 996 997 return nullptr; 998 } 999 1000 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 1001 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 1002 return false; 1003 1004 auto *Ptr = SI.getPointerOperand(); 1005 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 1006 Ptr = GEPI->getOperand(0); 1007 return (isa<ConstantPointerNull>(Ptr) && 1008 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 1009 } 1010 1011 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 1012 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 1013 const Value *GEPI0 = GEPI->getOperand(0); 1014 if (isa<ConstantPointerNull>(GEPI0) && 1015 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 1016 return true; 1017 } 1018 if (isa<UndefValue>(Op) || 1019 (isa<ConstantPointerNull>(Op) && 1020 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 1021 return true; 1022 return false; 1023 } 1024 1025 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) { 1026 Value *Op = LI.getOperand(0); 1027 1028 // Try to canonicalize the loaded type. 1029 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 1030 return Res; 1031 1032 // Attempt to improve the alignment. 1033 Align KnownAlign = getOrEnforceKnownAlignment( 1034 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); 1035 if (KnownAlign > LI.getAlign()) 1036 LI.setAlignment(KnownAlign); 1037 1038 // Replace GEP indices if possible. 1039 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 1040 Worklist.push(NewGEPI); 1041 return &LI; 1042 } 1043 1044 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 1045 return Res; 1046 1047 // Do really simple store-to-load forwarding and load CSE, to catch cases 1048 // where there are several consecutive memory accesses to the same location, 1049 // separated by a few arithmetic operations. 1050 bool IsLoadCSE = false; 1051 if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) { 1052 if (IsLoadCSE) 1053 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 1054 1055 return replaceInstUsesWith( 1056 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 1057 LI.getName() + ".cast")); 1058 } 1059 1060 // None of the following transforms are legal for volatile/ordered atomic 1061 // loads. Most of them do apply for unordered atomics. 1062 if (!LI.isUnordered()) return nullptr; 1063 1064 // load(gep null, ...) -> unreachable 1065 // load null/undef -> unreachable 1066 // TODO: Consider a target hook for valid address spaces for this xforms. 1067 if (canSimplifyNullLoadOrGEP(LI, Op)) { 1068 // Insert a new store to null instruction before the load to indicate 1069 // that this code is not reachable. We do this instead of inserting 1070 // an unreachable instruction directly because we cannot modify the 1071 // CFG. 1072 StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()), 1073 Constant::getNullValue(Op->getType()), &LI); 1074 SI->setDebugLoc(LI.getDebugLoc()); 1075 return replaceInstUsesWith(LI, PoisonValue::get(LI.getType())); 1076 } 1077 1078 if (Op->hasOneUse()) { 1079 // Change select and PHI nodes to select values instead of addresses: this 1080 // helps alias analysis out a lot, allows many others simplifications, and 1081 // exposes redundancy in the code. 1082 // 1083 // Note that we cannot do the transformation unless we know that the 1084 // introduced loads cannot trap! Something like this is valid as long as 1085 // the condition is always false: load (select bool %C, int* null, int* %G), 1086 // but it would not be valid if we transformed it to load from null 1087 // unconditionally. 1088 // 1089 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1090 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1091 Align Alignment = LI.getAlign(); 1092 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 1093 Alignment, DL, SI) && 1094 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 1095 Alignment, DL, SI)) { 1096 LoadInst *V1 = 1097 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 1098 SI->getOperand(1)->getName() + ".val"); 1099 LoadInst *V2 = 1100 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1101 SI->getOperand(2)->getName() + ".val"); 1102 assert(LI.isUnordered() && "implied by above"); 1103 V1->setAlignment(Alignment); 1104 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1105 V2->setAlignment(Alignment); 1106 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1107 return SelectInst::Create(SI->getCondition(), V1, V2); 1108 } 1109 1110 // load (select (cond, null, P)) -> load P 1111 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1112 !NullPointerIsDefined(SI->getFunction(), 1113 LI.getPointerAddressSpace())) 1114 return replaceOperand(LI, 0, SI->getOperand(2)); 1115 1116 // load (select (cond, P, null)) -> load P 1117 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1118 !NullPointerIsDefined(SI->getFunction(), 1119 LI.getPointerAddressSpace())) 1120 return replaceOperand(LI, 0, SI->getOperand(1)); 1121 } 1122 } 1123 return nullptr; 1124 } 1125 1126 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1127 /// 1128 /// \returns underlying value that was "cast", or nullptr otherwise. 1129 /// 1130 /// For example, if we have: 1131 /// 1132 /// %E0 = extractelement <2 x double> %U, i32 0 1133 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1134 /// %E1 = extractelement <2 x double> %U, i32 1 1135 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1136 /// 1137 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1138 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1139 /// Note that %U may contain non-undef values where %V1 has undef. 1140 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) { 1141 Value *U = nullptr; 1142 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1143 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1144 if (!E) 1145 return nullptr; 1146 auto *W = E->getVectorOperand(); 1147 if (!U) 1148 U = W; 1149 else if (U != W) 1150 return nullptr; 1151 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1152 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1153 return nullptr; 1154 V = IV->getAggregateOperand(); 1155 } 1156 if (!match(V, m_Undef()) || !U) 1157 return nullptr; 1158 1159 auto *UT = cast<VectorType>(U->getType()); 1160 auto *VT = V->getType(); 1161 // Check that types UT and VT are bitwise isomorphic. 1162 const auto &DL = IC.getDataLayout(); 1163 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1164 return nullptr; 1165 } 1166 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1167 if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1168 return nullptr; 1169 } else { 1170 auto *ST = cast<StructType>(VT); 1171 if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1172 return nullptr; 1173 for (const auto *EltT : ST->elements()) { 1174 if (EltT != UT->getElementType()) 1175 return nullptr; 1176 } 1177 } 1178 return U; 1179 } 1180 1181 /// Combine stores to match the type of value being stored. 1182 /// 1183 /// The core idea here is that the memory does not have any intrinsic type and 1184 /// where we can we should match the type of a store to the type of value being 1185 /// stored. 1186 /// 1187 /// However, this routine must never change the width of a store or the number of 1188 /// stores as that would introduce a semantic change. This combine is expected to 1189 /// be a semantic no-op which just allows stores to more closely model the types 1190 /// of their incoming values. 1191 /// 1192 /// Currently, we also refuse to change the precise type used for an atomic or 1193 /// volatile store. This is debatable, and might be reasonable to change later. 1194 /// However, it is risky in case some backend or other part of LLVM is relying 1195 /// on the exact type stored to select appropriate atomic operations. 1196 /// 1197 /// \returns true if the store was successfully combined away. This indicates 1198 /// the caller must erase the store instruction. We have to let the caller erase 1199 /// the store instruction as otherwise there is no way to signal whether it was 1200 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1201 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) { 1202 // FIXME: We could probably with some care handle both volatile and ordered 1203 // atomic stores here but it isn't clear that this is important. 1204 if (!SI.isUnordered()) 1205 return false; 1206 1207 // swifterror values can't be bitcasted. 1208 if (SI.getPointerOperand()->isSwiftError()) 1209 return false; 1210 1211 Value *V = SI.getValueOperand(); 1212 1213 // Fold away bit casts of the stored value by storing the original type. 1214 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1215 assert(!BC->getType()->isX86_AMXTy() && 1216 "store to x86_amx* should not happen!"); 1217 V = BC->getOperand(0); 1218 // Don't transform when the type is x86_amx, it makes the pass that lower 1219 // x86_amx type happy. 1220 if (V->getType()->isX86_AMXTy()) 1221 return false; 1222 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1223 combineStoreToNewValue(IC, SI, V); 1224 return true; 1225 } 1226 } 1227 1228 if (Value *U = likeBitCastFromVector(IC, V)) 1229 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1230 combineStoreToNewValue(IC, SI, U); 1231 return true; 1232 } 1233 1234 // FIXME: We should also canonicalize stores of vectors when their elements 1235 // are cast to other types. 1236 return false; 1237 } 1238 1239 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) { 1240 // FIXME: We could probably with some care handle both volatile and atomic 1241 // stores here but it isn't clear that this is important. 1242 if (!SI.isSimple()) 1243 return false; 1244 1245 Value *V = SI.getValueOperand(); 1246 Type *T = V->getType(); 1247 1248 if (!T->isAggregateType()) 1249 return false; 1250 1251 if (auto *ST = dyn_cast<StructType>(T)) { 1252 // If the struct only have one element, we unpack. 1253 unsigned Count = ST->getNumElements(); 1254 if (Count == 1) { 1255 V = IC.Builder.CreateExtractValue(V, 0); 1256 combineStoreToNewValue(IC, SI, V); 1257 return true; 1258 } 1259 1260 // We don't want to break loads with padding here as we'd loose 1261 // the knowledge that padding exists for the rest of the pipeline. 1262 const DataLayout &DL = IC.getDataLayout(); 1263 auto *SL = DL.getStructLayout(ST); 1264 if (SL->hasPadding()) 1265 return false; 1266 1267 const auto Align = SI.getAlign(); 1268 1269 SmallString<16> EltName = V->getName(); 1270 EltName += ".elt"; 1271 auto *Addr = SI.getPointerOperand(); 1272 SmallString<16> AddrName = Addr->getName(); 1273 AddrName += ".repack"; 1274 1275 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1276 auto *Zero = ConstantInt::get(IdxType, 0); 1277 for (unsigned i = 0; i < Count; i++) { 1278 Value *Indices[2] = { 1279 Zero, 1280 ConstantInt::get(IdxType, i), 1281 }; 1282 auto *Ptr = 1283 IC.Builder.CreateInBoundsGEP(ST, Addr, ArrayRef(Indices), AddrName); 1284 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1285 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); 1286 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1287 NS->setAAMetadata(SI.getAAMetadata()); 1288 } 1289 1290 return true; 1291 } 1292 1293 if (auto *AT = dyn_cast<ArrayType>(T)) { 1294 // If the array only have one element, we unpack. 1295 auto NumElements = AT->getNumElements(); 1296 if (NumElements == 1) { 1297 V = IC.Builder.CreateExtractValue(V, 0); 1298 combineStoreToNewValue(IC, SI, V); 1299 return true; 1300 } 1301 1302 // Bail out if the array is too large. Ideally we would like to optimize 1303 // arrays of arbitrary size but this has a terrible impact on compile time. 1304 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1305 // tuning. 1306 if (NumElements > IC.MaxArraySizeForCombine) 1307 return false; 1308 1309 const DataLayout &DL = IC.getDataLayout(); 1310 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1311 const auto Align = SI.getAlign(); 1312 1313 SmallString<16> EltName = V->getName(); 1314 EltName += ".elt"; 1315 auto *Addr = SI.getPointerOperand(); 1316 SmallString<16> AddrName = Addr->getName(); 1317 AddrName += ".repack"; 1318 1319 auto *IdxType = Type::getInt64Ty(T->getContext()); 1320 auto *Zero = ConstantInt::get(IdxType, 0); 1321 1322 uint64_t Offset = 0; 1323 for (uint64_t i = 0; i < NumElements; i++) { 1324 Value *Indices[2] = { 1325 Zero, 1326 ConstantInt::get(IdxType, i), 1327 }; 1328 auto *Ptr = 1329 IC.Builder.CreateInBoundsGEP(AT, Addr, ArrayRef(Indices), AddrName); 1330 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1331 auto EltAlign = commonAlignment(Align, Offset); 1332 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1333 NS->setAAMetadata(SI.getAAMetadata()); 1334 Offset += EltSize; 1335 } 1336 1337 return true; 1338 } 1339 1340 return false; 1341 } 1342 1343 /// equivalentAddressValues - Test if A and B will obviously have the same 1344 /// value. This includes recognizing that %t0 and %t1 will have the same 1345 /// value in code like this: 1346 /// %t0 = getelementptr \@a, 0, 3 1347 /// store i32 0, i32* %t0 1348 /// %t1 = getelementptr \@a, 0, 3 1349 /// %t2 = load i32* %t1 1350 /// 1351 static bool equivalentAddressValues(Value *A, Value *B) { 1352 // Test if the values are trivially equivalent. 1353 if (A == B) return true; 1354 1355 // Test if the values come form identical arithmetic instructions. 1356 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1357 // its only used to compare two uses within the same basic block, which 1358 // means that they'll always either have the same value or one of them 1359 // will have an undefined value. 1360 if (isa<BinaryOperator>(A) || 1361 isa<CastInst>(A) || 1362 isa<PHINode>(A) || 1363 isa<GetElementPtrInst>(A)) 1364 if (Instruction *BI = dyn_cast<Instruction>(B)) 1365 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1366 return true; 1367 1368 // Otherwise they may not be equivalent. 1369 return false; 1370 } 1371 1372 /// Converts store (bitcast (load (bitcast (select ...)))) to 1373 /// store (load (select ...)), where select is minmax: 1374 /// select ((cmp load V1, load V2), V1, V2). 1375 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC, 1376 StoreInst &SI) { 1377 // bitcast? 1378 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1379 return false; 1380 // load? integer? 1381 Value *LoadAddr; 1382 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1383 return false; 1384 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1385 if (!LI->getType()->isIntegerTy()) 1386 return false; 1387 Type *CmpLoadTy; 1388 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1389 return false; 1390 1391 // Make sure the type would actually change. 1392 // This condition can be hit with chains of bitcasts. 1393 if (LI->getType() == CmpLoadTy) 1394 return false; 1395 1396 // Make sure we're not changing the size of the load/store. 1397 const auto &DL = IC.getDataLayout(); 1398 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1399 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1400 return false; 1401 1402 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1403 auto *SI = dyn_cast<StoreInst>(U); 1404 return SI && SI->getPointerOperand() != LI && 1405 InstCombiner::peekThroughBitcast(SI->getPointerOperand()) != 1406 LoadAddr && 1407 !SI->getPointerOperand()->isSwiftError(); 1408 })) 1409 return false; 1410 1411 IC.Builder.SetInsertPoint(LI); 1412 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1413 // Replace all the stores with stores of the newly loaded value. 1414 for (auto *UI : LI->users()) { 1415 auto *USI = cast<StoreInst>(UI); 1416 IC.Builder.SetInsertPoint(USI); 1417 combineStoreToNewValue(IC, *USI, NewLI); 1418 } 1419 IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 1420 IC.eraseInstFromFunction(*LI); 1421 return true; 1422 } 1423 1424 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) { 1425 Value *Val = SI.getOperand(0); 1426 Value *Ptr = SI.getOperand(1); 1427 1428 // Try to canonicalize the stored type. 1429 if (combineStoreToValueType(*this, SI)) 1430 return eraseInstFromFunction(SI); 1431 1432 // Attempt to improve the alignment. 1433 const Align KnownAlign = getOrEnforceKnownAlignment( 1434 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); 1435 if (KnownAlign > SI.getAlign()) 1436 SI.setAlignment(KnownAlign); 1437 1438 // Try to canonicalize the stored type. 1439 if (unpackStoreToAggregate(*this, SI)) 1440 return eraseInstFromFunction(SI); 1441 1442 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1443 return eraseInstFromFunction(SI); 1444 1445 // Replace GEP indices if possible. 1446 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1447 Worklist.push(NewGEPI); 1448 return &SI; 1449 } 1450 1451 // Don't hack volatile/ordered stores. 1452 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1453 if (!SI.isUnordered()) return nullptr; 1454 1455 // If the RHS is an alloca with a single use, zapify the store, making the 1456 // alloca dead. 1457 if (Ptr->hasOneUse()) { 1458 if (isa<AllocaInst>(Ptr)) 1459 return eraseInstFromFunction(SI); 1460 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1461 if (isa<AllocaInst>(GEP->getOperand(0))) { 1462 if (GEP->getOperand(0)->hasOneUse()) 1463 return eraseInstFromFunction(SI); 1464 } 1465 } 1466 } 1467 1468 // If we have a store to a location which is known constant, we can conclude 1469 // that the store must be storing the constant value (else the memory 1470 // wouldn't be constant), and this must be a noop. 1471 if (!isModSet(AA->getModRefInfoMask(Ptr))) 1472 return eraseInstFromFunction(SI); 1473 1474 // Do really simple DSE, to catch cases where there are several consecutive 1475 // stores to the same location, separated by a few arithmetic operations. This 1476 // situation often occurs with bitfield accesses. 1477 BasicBlock::iterator BBI(SI); 1478 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1479 --ScanInsts) { 1480 --BBI; 1481 // Don't count debug info directives, lest they affect codegen, 1482 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1483 if (BBI->isDebugOrPseudoInst() || 1484 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1485 ScanInsts++; 1486 continue; 1487 } 1488 1489 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1490 // Prev store isn't volatile, and stores to the same location? 1491 if (PrevSI->isUnordered() && 1492 equivalentAddressValues(PrevSI->getOperand(1), SI.getOperand(1)) && 1493 PrevSI->getValueOperand()->getType() == 1494 SI.getValueOperand()->getType()) { 1495 ++NumDeadStore; 1496 // Manually add back the original store to the worklist now, so it will 1497 // be processed after the operands of the removed store, as this may 1498 // expose additional DSE opportunities. 1499 Worklist.push(&SI); 1500 eraseInstFromFunction(*PrevSI); 1501 return nullptr; 1502 } 1503 break; 1504 } 1505 1506 // If this is a load, we have to stop. However, if the loaded value is from 1507 // the pointer we're loading and is producing the pointer we're storing, 1508 // then *this* store is dead (X = load P; store X -> P). 1509 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1510 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1511 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1512 return eraseInstFromFunction(SI); 1513 } 1514 1515 // Otherwise, this is a load from some other location. Stores before it 1516 // may not be dead. 1517 break; 1518 } 1519 1520 // Don't skip over loads, throws or things that can modify memory. 1521 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1522 break; 1523 } 1524 1525 // store X, null -> turns into 'unreachable' in SimplifyCFG 1526 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1527 if (canSimplifyNullStoreOrGEP(SI)) { 1528 if (!isa<PoisonValue>(Val)) 1529 return replaceOperand(SI, 0, PoisonValue::get(Val->getType())); 1530 return nullptr; // Do not modify these! 1531 } 1532 1533 // store undef, Ptr -> noop 1534 // FIXME: This is technically incorrect because it might overwrite a poison 1535 // value. Change to PoisonValue once #52930 is resolved. 1536 if (isa<UndefValue>(Val)) 1537 return eraseInstFromFunction(SI); 1538 1539 return nullptr; 1540 } 1541 1542 /// Try to transform: 1543 /// if () { *P = v1; } else { *P = v2 } 1544 /// or: 1545 /// *P = v1; if () { *P = v2; } 1546 /// into a phi node with a store in the successor. 1547 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) { 1548 if (!SI.isUnordered()) 1549 return false; // This code has not been audited for volatile/ordered case. 1550 1551 // Check if the successor block has exactly 2 incoming edges. 1552 BasicBlock *StoreBB = SI.getParent(); 1553 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1554 if (!DestBB->hasNPredecessors(2)) 1555 return false; 1556 1557 // Capture the other block (the block that doesn't contain our store). 1558 pred_iterator PredIter = pred_begin(DestBB); 1559 if (*PredIter == StoreBB) 1560 ++PredIter; 1561 BasicBlock *OtherBB = *PredIter; 1562 1563 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1564 // for example, if SI is in an infinite loop. 1565 if (StoreBB == DestBB || OtherBB == DestBB) 1566 return false; 1567 1568 // Verify that the other block ends in a branch and is not otherwise empty. 1569 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1570 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1571 if (!OtherBr || BBI == OtherBB->begin()) 1572 return false; 1573 1574 // If the other block ends in an unconditional branch, check for the 'if then 1575 // else' case. There is an instruction before the branch. 1576 StoreInst *OtherStore = nullptr; 1577 if (OtherBr->isUnconditional()) { 1578 --BBI; 1579 // Skip over debugging info and pseudo probes. 1580 while (BBI->isDebugOrPseudoInst() || 1581 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1582 if (BBI==OtherBB->begin()) 1583 return false; 1584 --BBI; 1585 } 1586 // If this isn't a store, isn't a store to the same location, or is not the 1587 // right kind of store, bail out. 1588 OtherStore = dyn_cast<StoreInst>(BBI); 1589 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1590 !SI.isSameOperationAs(OtherStore)) 1591 return false; 1592 } else { 1593 // Otherwise, the other block ended with a conditional branch. If one of the 1594 // destinations is StoreBB, then we have the if/then case. 1595 if (OtherBr->getSuccessor(0) != StoreBB && 1596 OtherBr->getSuccessor(1) != StoreBB) 1597 return false; 1598 1599 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1600 // if/then triangle. See if there is a store to the same ptr as SI that 1601 // lives in OtherBB. 1602 for (;; --BBI) { 1603 // Check to see if we find the matching store. 1604 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1605 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1606 !SI.isSameOperationAs(OtherStore)) 1607 return false; 1608 break; 1609 } 1610 // If we find something that may be using or overwriting the stored 1611 // value, or if we run out of instructions, we can't do the transform. 1612 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1613 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1614 return false; 1615 } 1616 1617 // In order to eliminate the store in OtherBr, we have to make sure nothing 1618 // reads or overwrites the stored value in StoreBB. 1619 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1620 // FIXME: This should really be AA driven. 1621 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1622 return false; 1623 } 1624 } 1625 1626 // Insert a PHI node now if we need it. 1627 Value *MergedVal = OtherStore->getOperand(0); 1628 // The debug locations of the original instructions might differ. Merge them. 1629 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1630 OtherStore->getDebugLoc()); 1631 if (MergedVal != SI.getOperand(0)) { 1632 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1633 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1634 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1635 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1636 PN->setDebugLoc(MergedLoc); 1637 } 1638 1639 // Advance to a place where it is safe to insert the new store and insert it. 1640 BBI = DestBB->getFirstInsertionPt(); 1641 StoreInst *NewSI = 1642 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), 1643 SI.getOrdering(), SI.getSyncScopeID()); 1644 InsertNewInstBefore(NewSI, *BBI); 1645 NewSI->setDebugLoc(MergedLoc); 1646 NewSI->mergeDIAssignID({&SI, OtherStore}); 1647 1648 // If the two stores had AA tags, merge them. 1649 AAMDNodes AATags = SI.getAAMetadata(); 1650 if (AATags) 1651 NewSI->setAAMetadata(AATags.merge(OtherStore->getAAMetadata())); 1652 1653 // Nuke the old stores. 1654 eraseInstFromFunction(SI); 1655 eraseInstFromFunction(*OtherStore); 1656 return true; 1657 } 1658