1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/Transforms/Utils/Local.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "instcombine" 31 32 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 34 35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 36 /// some part of a constant global variable. This intentionally only accepts 37 /// constant expressions because we can't rewrite arbitrary instructions. 38 static bool pointsToConstantGlobal(Value *V) { 39 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 40 return GV->isConstant(); 41 42 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 43 if (CE->getOpcode() == Instruction::BitCast || 44 CE->getOpcode() == Instruction::AddrSpaceCast || 45 CE->getOpcode() == Instruction::GetElementPtr) 46 return pointsToConstantGlobal(CE->getOperand(0)); 47 } 48 return false; 49 } 50 51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 52 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 53 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 55 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 56 /// the alloca, and if the source pointer is a pointer to a constant global, we 57 /// can optimize this. 58 static bool 59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 60 SmallVectorImpl<Instruction *> &ToDelete) { 61 // We track lifetime intrinsics as we encounter them. If we decide to go 62 // ahead and replace the value with the global, this lets the caller quickly 63 // eliminate the markers. 64 65 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 66 ValuesToInspect.emplace_back(V, false); 67 while (!ValuesToInspect.empty()) { 68 auto ValuePair = ValuesToInspect.pop_back_val(); 69 const bool IsOffset = ValuePair.second; 70 for (auto &U : ValuePair.first->uses()) { 71 auto *I = cast<Instruction>(U.getUser()); 72 73 if (auto *LI = dyn_cast<LoadInst>(I)) { 74 // Ignore non-volatile loads, they are always ok. 75 if (!LI->isSimple()) return false; 76 continue; 77 } 78 79 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 80 // If uses of the bitcast are ok, we are ok. 81 ValuesToInspect.emplace_back(I, IsOffset); 82 continue; 83 } 84 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 85 // If the GEP has all zero indices, it doesn't offset the pointer. If it 86 // doesn't, it does. 87 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 88 continue; 89 } 90 91 if (auto *Call = dyn_cast<CallBase>(I)) { 92 // If this is the function being called then we treat it like a load and 93 // ignore it. 94 if (Call->isCallee(&U)) 95 continue; 96 97 unsigned DataOpNo = Call->getDataOperandNo(&U); 98 bool IsArgOperand = Call->isArgOperand(&U); 99 100 // Inalloca arguments are clobbered by the call. 101 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 102 return false; 103 104 // If this is a readonly/readnone call site, then we know it is just a 105 // load (but one that potentially returns the value itself), so we can 106 // ignore it if we know that the value isn't captured. 107 if (Call->onlyReadsMemory() && 108 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 109 continue; 110 111 // If this is being passed as a byval argument, the caller is making a 112 // copy, so it is only a read of the alloca. 113 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 114 continue; 115 } 116 117 // Lifetime intrinsics can be handled by the caller. 118 if (I->isLifetimeStartOrEnd()) { 119 assert(I->use_empty() && "Lifetime markers have no result to use!"); 120 ToDelete.push_back(I); 121 continue; 122 } 123 124 // If this is isn't our memcpy/memmove, reject it as something we can't 125 // handle. 126 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 127 if (!MI) 128 return false; 129 130 // If the transfer is using the alloca as a source of the transfer, then 131 // ignore it since it is a load (unless the transfer is volatile). 132 if (U.getOperandNo() == 1) { 133 if (MI->isVolatile()) return false; 134 continue; 135 } 136 137 // If we already have seen a copy, reject the second one. 138 if (TheCopy) return false; 139 140 // If the pointer has been offset from the start of the alloca, we can't 141 // safely handle this. 142 if (IsOffset) return false; 143 144 // If the memintrinsic isn't using the alloca as the dest, reject it. 145 if (U.getOperandNo() != 0) return false; 146 147 // If the source of the memcpy/move is not a constant global, reject it. 148 if (!pointsToConstantGlobal(MI->getSource())) 149 return false; 150 151 // Otherwise, the transform is safe. Remember the copy instruction. 152 TheCopy = MI; 153 } 154 } 155 return true; 156 } 157 158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 159 /// modified by a copy from a constant global. If we can prove this, we can 160 /// replace any uses of the alloca with uses of the global directly. 161 static MemTransferInst * 162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 163 SmallVectorImpl<Instruction *> &ToDelete) { 164 MemTransferInst *TheCopy = nullptr; 165 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 166 return TheCopy; 167 return nullptr; 168 } 169 170 /// Returns true if V is dereferenceable for size of alloca. 171 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 172 const DataLayout &DL) { 173 if (AI->isArrayAllocation()) 174 return false; 175 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 176 if (!AllocaSize) 177 return false; 178 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()), 179 APInt(64, AllocaSize), DL); 180 } 181 182 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 183 // Check for array size of 1 (scalar allocation). 184 if (!AI.isArrayAllocation()) { 185 // i32 1 is the canonical array size for scalar allocations. 186 if (AI.getArraySize()->getType()->isIntegerTy(32)) 187 return nullptr; 188 189 // Canonicalize it. 190 Value *V = IC.Builder.getInt32(1); 191 AI.setOperand(0, V); 192 return &AI; 193 } 194 195 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 196 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 197 if (C->getValue().getActiveBits() <= 64) { 198 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 199 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 200 New->setAlignment(MaybeAlign(AI.getAlignment())); 201 202 // Scan to the end of the allocation instructions, to skip over a block of 203 // allocas if possible...also skip interleaved debug info 204 // 205 BasicBlock::iterator It(New); 206 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 207 ++It; 208 209 // Now that I is pointing to the first non-allocation-inst in the block, 210 // insert our getelementptr instruction... 211 // 212 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 213 Value *NullIdx = Constant::getNullValue(IdxTy); 214 Value *Idx[2] = {NullIdx, NullIdx}; 215 Instruction *GEP = GetElementPtrInst::CreateInBounds( 216 NewTy, New, Idx, New->getName() + ".sub"); 217 IC.InsertNewInstBefore(GEP, *It); 218 219 // Now make everything use the getelementptr instead of the original 220 // allocation. 221 return IC.replaceInstUsesWith(AI, GEP); 222 } 223 } 224 225 if (isa<UndefValue>(AI.getArraySize())) 226 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 227 228 // Ensure that the alloca array size argument has type intptr_t, so that 229 // any casting is exposed early. 230 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 231 if (AI.getArraySize()->getType() != IntPtrTy) { 232 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 233 AI.setOperand(0, V); 234 return &AI; 235 } 236 237 return nullptr; 238 } 239 240 namespace { 241 // If I and V are pointers in different address space, it is not allowed to 242 // use replaceAllUsesWith since I and V have different types. A 243 // non-target-specific transformation should not use addrspacecast on V since 244 // the two address space may be disjoint depending on target. 245 // 246 // This class chases down uses of the old pointer until reaching the load 247 // instructions, then replaces the old pointer in the load instructions with 248 // the new pointer. If during the chasing it sees bitcast or GEP, it will 249 // create new bitcast or GEP with the new pointer and use them in the load 250 // instruction. 251 class PointerReplacer { 252 public: 253 PointerReplacer(InstCombiner &IC) : IC(IC) {} 254 void replacePointer(Instruction &I, Value *V); 255 256 private: 257 void findLoadAndReplace(Instruction &I); 258 void replace(Instruction *I); 259 Value *getReplacement(Value *I); 260 261 SmallVector<Instruction *, 4> Path; 262 MapVector<Value *, Value *> WorkMap; 263 InstCombiner &IC; 264 }; 265 } // end anonymous namespace 266 267 void PointerReplacer::findLoadAndReplace(Instruction &I) { 268 for (auto U : I.users()) { 269 auto *Inst = dyn_cast<Instruction>(&*U); 270 if (!Inst) 271 return; 272 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 273 if (isa<LoadInst>(Inst)) { 274 for (auto P : Path) 275 replace(P); 276 replace(Inst); 277 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 278 Path.push_back(Inst); 279 findLoadAndReplace(*Inst); 280 Path.pop_back(); 281 } else { 282 return; 283 } 284 } 285 } 286 287 Value *PointerReplacer::getReplacement(Value *V) { 288 auto Loc = WorkMap.find(V); 289 if (Loc != WorkMap.end()) 290 return Loc->second; 291 return nullptr; 292 } 293 294 void PointerReplacer::replace(Instruction *I) { 295 if (getReplacement(I)) 296 return; 297 298 if (auto *LT = dyn_cast<LoadInst>(I)) { 299 auto *V = getReplacement(LT->getPointerOperand()); 300 assert(V && "Operand not replaced"); 301 auto *NewI = new LoadInst(I->getType(), V); 302 NewI->takeName(LT); 303 IC.InsertNewInstWith(NewI, *LT); 304 IC.replaceInstUsesWith(*LT, NewI); 305 WorkMap[LT] = NewI; 306 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 307 auto *V = getReplacement(GEP->getPointerOperand()); 308 assert(V && "Operand not replaced"); 309 SmallVector<Value *, 8> Indices; 310 Indices.append(GEP->idx_begin(), GEP->idx_end()); 311 auto *NewI = GetElementPtrInst::Create( 312 V->getType()->getPointerElementType(), V, Indices); 313 IC.InsertNewInstWith(NewI, *GEP); 314 NewI->takeName(GEP); 315 WorkMap[GEP] = NewI; 316 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 317 auto *V = getReplacement(BC->getOperand(0)); 318 assert(V && "Operand not replaced"); 319 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 320 V->getType()->getPointerAddressSpace()); 321 auto *NewI = new BitCastInst(V, NewT); 322 IC.InsertNewInstWith(NewI, *BC); 323 NewI->takeName(BC); 324 WorkMap[BC] = NewI; 325 } else { 326 llvm_unreachable("should never reach here"); 327 } 328 } 329 330 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 331 #ifndef NDEBUG 332 auto *PT = cast<PointerType>(I.getType()); 333 auto *NT = cast<PointerType>(V->getType()); 334 assert(PT != NT && PT->getElementType() == NT->getElementType() && 335 "Invalid usage"); 336 #endif 337 WorkMap[&I] = V; 338 findLoadAndReplace(I); 339 } 340 341 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 342 if (auto *I = simplifyAllocaArraySize(*this, AI)) 343 return I; 344 345 if (AI.getAllocatedType()->isSized()) { 346 // If the alignment is 0 (unspecified), assign it the preferred alignment. 347 if (AI.getAlignment() == 0) 348 AI.setAlignment( 349 MaybeAlign(DL.getPrefTypeAlignment(AI.getAllocatedType()))); 350 351 // Move all alloca's of zero byte objects to the entry block and merge them 352 // together. Note that we only do this for alloca's, because malloc should 353 // allocate and return a unique pointer, even for a zero byte allocation. 354 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 355 // For a zero sized alloca there is no point in doing an array allocation. 356 // This is helpful if the array size is a complicated expression not used 357 // elsewhere. 358 if (AI.isArrayAllocation()) { 359 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 360 return &AI; 361 } 362 363 // Get the first instruction in the entry block. 364 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 365 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 366 if (FirstInst != &AI) { 367 // If the entry block doesn't start with a zero-size alloca then move 368 // this one to the start of the entry block. There is no problem with 369 // dominance as the array size was forced to a constant earlier already. 370 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 371 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 372 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 373 AI.moveBefore(FirstInst); 374 return &AI; 375 } 376 377 // If the alignment of the entry block alloca is 0 (unspecified), 378 // assign it the preferred alignment. 379 if (EntryAI->getAlignment() == 0) 380 EntryAI->setAlignment( 381 MaybeAlign(DL.getPrefTypeAlignment(EntryAI->getAllocatedType()))); 382 // Replace this zero-sized alloca with the one at the start of the entry 383 // block after ensuring that the address will be aligned enough for both 384 // types. 385 const MaybeAlign MaxAlign( 386 std::max(EntryAI->getAlignment(), AI.getAlignment())); 387 EntryAI->setAlignment(MaxAlign); 388 if (AI.getType() != EntryAI->getType()) 389 return new BitCastInst(EntryAI, AI.getType()); 390 return replaceInstUsesWith(AI, EntryAI); 391 } 392 } 393 } 394 395 if (AI.getAlignment()) { 396 // Check to see if this allocation is only modified by a memcpy/memmove from 397 // a constant global whose alignment is equal to or exceeds that of the 398 // allocation. If this is the case, we can change all users to use 399 // the constant global instead. This is commonly produced by the CFE by 400 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 401 // is only subsequently read. 402 SmallVector<Instruction *, 4> ToDelete; 403 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 404 unsigned SourceAlign = getOrEnforceKnownAlignment( 405 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 406 if (AI.getAlignment() <= SourceAlign && 407 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 408 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 409 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 410 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 411 eraseInstFromFunction(*ToDelete[i]); 412 Constant *TheSrc = cast<Constant>(Copy->getSource()); 413 auto *SrcTy = TheSrc->getType(); 414 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 415 SrcTy->getPointerAddressSpace()); 416 Constant *Cast = 417 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 418 if (AI.getType()->getPointerAddressSpace() == 419 SrcTy->getPointerAddressSpace()) { 420 Instruction *NewI = replaceInstUsesWith(AI, Cast); 421 eraseInstFromFunction(*Copy); 422 ++NumGlobalCopies; 423 return NewI; 424 } else { 425 PointerReplacer PtrReplacer(*this); 426 PtrReplacer.replacePointer(AI, Cast); 427 ++NumGlobalCopies; 428 } 429 } 430 } 431 } 432 433 // At last, use the generic allocation site handler to aggressively remove 434 // unused allocas. 435 return visitAllocSite(AI); 436 } 437 438 // Are we allowed to form a atomic load or store of this type? 439 static bool isSupportedAtomicType(Type *Ty) { 440 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 441 } 442 443 /// Helper to combine a load to a new type. 444 /// 445 /// This just does the work of combining a load to a new type. It handles 446 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 447 /// loaded *value* type. This will convert it to a pointer, cast the operand to 448 /// that pointer type, load it, etc. 449 /// 450 /// Note that this will create all of the instructions with whatever insert 451 /// point the \c InstCombiner currently is using. 452 LoadInst *InstCombiner::combineLoadToNewType(LoadInst &LI, Type *NewTy, 453 const Twine &Suffix) { 454 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 455 "can't fold an atomic load to requested type"); 456 457 Value *Ptr = LI.getPointerOperand(); 458 unsigned AS = LI.getPointerAddressSpace(); 459 Value *NewPtr = nullptr; 460 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 461 NewPtr->getType()->getPointerElementType() == NewTy && 462 NewPtr->getType()->getPointerAddressSpace() == AS)) 463 NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 464 465 unsigned Align = LI.getAlignment(); 466 if (!Align) 467 // If old load did not have an explicit alignment specified, 468 // manually preserve the implied (ABI) alignment of the load. 469 // Else we may inadvertently incorrectly over-promise alignment. 470 Align = getDataLayout().getABITypeAlignment(LI.getType()); 471 472 LoadInst *NewLoad = Builder.CreateAlignedLoad( 473 NewTy, NewPtr, Align, LI.isVolatile(), LI.getName() + Suffix); 474 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 475 copyMetadataForLoad(*NewLoad, LI); 476 return NewLoad; 477 } 478 479 /// Combine a store to a new type. 480 /// 481 /// Returns the newly created store instruction. 482 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 483 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 484 "can't fold an atomic store of requested type"); 485 486 Value *Ptr = SI.getPointerOperand(); 487 unsigned AS = SI.getPointerAddressSpace(); 488 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 489 SI.getAllMetadata(MD); 490 491 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 492 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 493 SI.getAlignment(), SI.isVolatile()); 494 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 495 for (const auto &MDPair : MD) { 496 unsigned ID = MDPair.first; 497 MDNode *N = MDPair.second; 498 // Note, essentially every kind of metadata should be preserved here! This 499 // routine is supposed to clone a store instruction changing *only its 500 // type*. The only metadata it makes sense to drop is metadata which is 501 // invalidated when the pointer type changes. This should essentially 502 // never be the case in LLVM, but we explicitly switch over only known 503 // metadata to be conservatively correct. If you are adding metadata to 504 // LLVM which pertains to stores, you almost certainly want to add it 505 // here. 506 switch (ID) { 507 case LLVMContext::MD_dbg: 508 case LLVMContext::MD_tbaa: 509 case LLVMContext::MD_prof: 510 case LLVMContext::MD_fpmath: 511 case LLVMContext::MD_tbaa_struct: 512 case LLVMContext::MD_alias_scope: 513 case LLVMContext::MD_noalias: 514 case LLVMContext::MD_nontemporal: 515 case LLVMContext::MD_mem_parallel_loop_access: 516 case LLVMContext::MD_access_group: 517 // All of these directly apply. 518 NewStore->setMetadata(ID, N); 519 break; 520 case LLVMContext::MD_invariant_load: 521 case LLVMContext::MD_nonnull: 522 case LLVMContext::MD_range: 523 case LLVMContext::MD_align: 524 case LLVMContext::MD_dereferenceable: 525 case LLVMContext::MD_dereferenceable_or_null: 526 // These don't apply for stores. 527 break; 528 } 529 } 530 531 return NewStore; 532 } 533 534 /// Returns true if instruction represent minmax pattern like: 535 /// select ((cmp load V1, load V2), V1, V2). 536 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 537 assert(V->getType()->isPointerTy() && "Expected pointer type."); 538 // Ignore possible ty* to ixx* bitcast. 539 V = peekThroughBitcast(V); 540 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 541 // pattern. 542 CmpInst::Predicate Pred; 543 Instruction *L1; 544 Instruction *L2; 545 Value *LHS; 546 Value *RHS; 547 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 548 m_Value(LHS), m_Value(RHS)))) 549 return false; 550 LoadTy = L1->getType(); 551 return (match(L1, m_Load(m_Specific(LHS))) && 552 match(L2, m_Load(m_Specific(RHS)))) || 553 (match(L1, m_Load(m_Specific(RHS))) && 554 match(L2, m_Load(m_Specific(LHS)))); 555 } 556 557 /// Combine loads to match the type of their uses' value after looking 558 /// through intervening bitcasts. 559 /// 560 /// The core idea here is that if the result of a load is used in an operation, 561 /// we should load the type most conducive to that operation. For example, when 562 /// loading an integer and converting that immediately to a pointer, we should 563 /// instead directly load a pointer. 564 /// 565 /// However, this routine must never change the width of a load or the number of 566 /// loads as that would introduce a semantic change. This combine is expected to 567 /// be a semantic no-op which just allows loads to more closely model the types 568 /// of their consuming operations. 569 /// 570 /// Currently, we also refuse to change the precise type used for an atomic load 571 /// or a volatile load. This is debatable, and might be reasonable to change 572 /// later. However, it is risky in case some backend or other part of LLVM is 573 /// relying on the exact type loaded to select appropriate atomic operations. 574 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 575 // FIXME: We could probably with some care handle both volatile and ordered 576 // atomic loads here but it isn't clear that this is important. 577 if (!LI.isUnordered()) 578 return nullptr; 579 580 if (LI.use_empty()) 581 return nullptr; 582 583 // swifterror values can't be bitcasted. 584 if (LI.getPointerOperand()->isSwiftError()) 585 return nullptr; 586 587 Type *Ty = LI.getType(); 588 const DataLayout &DL = IC.getDataLayout(); 589 590 // Try to canonicalize loads which are only ever stored to operate over 591 // integers instead of any other type. We only do this when the loaded type 592 // is sized and has a size exactly the same as its store size and the store 593 // size is a legal integer type. 594 // Do not perform canonicalization if minmax pattern is found (to avoid 595 // infinite loop). 596 Type *Dummy; 597 if (!Ty->isIntegerTy() && Ty->isSized() && 598 !(Ty->isVectorTy() && Ty->getVectorIsScalable()) && 599 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 600 DL.typeSizeEqualsStoreSize(Ty) && 601 !DL.isNonIntegralPointerType(Ty) && 602 !isMinMaxWithLoads( 603 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true), 604 Dummy)) { 605 if (all_of(LI.users(), [&LI](User *U) { 606 auto *SI = dyn_cast<StoreInst>(U); 607 return SI && SI->getPointerOperand() != &LI && 608 !SI->getPointerOperand()->isSwiftError(); 609 })) { 610 LoadInst *NewLoad = IC.combineLoadToNewType( 611 LI, Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 612 // Replace all the stores with stores of the newly loaded value. 613 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 614 auto *SI = cast<StoreInst>(*UI++); 615 IC.Builder.SetInsertPoint(SI); 616 combineStoreToNewValue(IC, *SI, NewLoad); 617 IC.eraseInstFromFunction(*SI); 618 } 619 assert(LI.use_empty() && "Failed to remove all users of the load!"); 620 // Return the old load so the combiner can delete it safely. 621 return &LI; 622 } 623 } 624 625 // Fold away bit casts of the loaded value by loading the desired type. 626 // We can do this for BitCastInsts as well as casts from and to pointer types, 627 // as long as those are noops (i.e., the source or dest type have the same 628 // bitwidth as the target's pointers). 629 if (LI.hasOneUse()) 630 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 631 if (CI->isNoopCast(DL)) 632 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 633 LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy()); 634 CI->replaceAllUsesWith(NewLoad); 635 IC.eraseInstFromFunction(*CI); 636 return &LI; 637 } 638 639 // FIXME: We should also canonicalize loads of vectors when their elements are 640 // cast to other types. 641 return nullptr; 642 } 643 644 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 645 // FIXME: We could probably with some care handle both volatile and atomic 646 // stores here but it isn't clear that this is important. 647 if (!LI.isSimple()) 648 return nullptr; 649 650 Type *T = LI.getType(); 651 if (!T->isAggregateType()) 652 return nullptr; 653 654 StringRef Name = LI.getName(); 655 assert(LI.getAlignment() && "Alignment must be set at this point"); 656 657 if (auto *ST = dyn_cast<StructType>(T)) { 658 // If the struct only have one element, we unpack. 659 auto NumElements = ST->getNumElements(); 660 if (NumElements == 1) { 661 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 662 ".unpack"); 663 AAMDNodes AAMD; 664 LI.getAAMetadata(AAMD); 665 NewLoad->setAAMetadata(AAMD); 666 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 667 UndefValue::get(T), NewLoad, 0, Name)); 668 } 669 670 // We don't want to break loads with padding here as we'd loose 671 // the knowledge that padding exists for the rest of the pipeline. 672 const DataLayout &DL = IC.getDataLayout(); 673 auto *SL = DL.getStructLayout(ST); 674 if (SL->hasPadding()) 675 return nullptr; 676 677 auto Align = LI.getAlignment(); 678 if (!Align) 679 Align = DL.getABITypeAlignment(ST); 680 681 auto *Addr = LI.getPointerOperand(); 682 auto *IdxType = Type::getInt32Ty(T->getContext()); 683 auto *Zero = ConstantInt::get(IdxType, 0); 684 685 Value *V = UndefValue::get(T); 686 for (unsigned i = 0; i < NumElements; i++) { 687 Value *Indices[2] = { 688 Zero, 689 ConstantInt::get(IdxType, i), 690 }; 691 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 692 Name + ".elt"); 693 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 694 auto *L = IC.Builder.CreateAlignedLoad(ST->getElementType(i), Ptr, 695 EltAlign, Name + ".unpack"); 696 // Propagate AA metadata. It'll still be valid on the narrowed load. 697 AAMDNodes AAMD; 698 LI.getAAMetadata(AAMD); 699 L->setAAMetadata(AAMD); 700 V = IC.Builder.CreateInsertValue(V, L, i); 701 } 702 703 V->setName(Name); 704 return IC.replaceInstUsesWith(LI, V); 705 } 706 707 if (auto *AT = dyn_cast<ArrayType>(T)) { 708 auto *ET = AT->getElementType(); 709 auto NumElements = AT->getNumElements(); 710 if (NumElements == 1) { 711 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 712 AAMDNodes AAMD; 713 LI.getAAMetadata(AAMD); 714 NewLoad->setAAMetadata(AAMD); 715 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 716 UndefValue::get(T), NewLoad, 0, Name)); 717 } 718 719 // Bail out if the array is too large. Ideally we would like to optimize 720 // arrays of arbitrary size but this has a terrible impact on compile time. 721 // The threshold here is chosen arbitrarily, maybe needs a little bit of 722 // tuning. 723 if (NumElements > IC.MaxArraySizeForCombine) 724 return nullptr; 725 726 const DataLayout &DL = IC.getDataLayout(); 727 auto EltSize = DL.getTypeAllocSize(ET); 728 auto Align = LI.getAlignment(); 729 if (!Align) 730 Align = DL.getABITypeAlignment(T); 731 732 auto *Addr = LI.getPointerOperand(); 733 auto *IdxType = Type::getInt64Ty(T->getContext()); 734 auto *Zero = ConstantInt::get(IdxType, 0); 735 736 Value *V = UndefValue::get(T); 737 uint64_t Offset = 0; 738 for (uint64_t i = 0; i < NumElements; i++) { 739 Value *Indices[2] = { 740 Zero, 741 ConstantInt::get(IdxType, i), 742 }; 743 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 744 Name + ".elt"); 745 auto *L = IC.Builder.CreateAlignedLoad( 746 AT->getElementType(), Ptr, MinAlign(Align, Offset), Name + ".unpack"); 747 AAMDNodes AAMD; 748 LI.getAAMetadata(AAMD); 749 L->setAAMetadata(AAMD); 750 V = IC.Builder.CreateInsertValue(V, L, i); 751 Offset += EltSize; 752 } 753 754 V->setName(Name); 755 return IC.replaceInstUsesWith(LI, V); 756 } 757 758 return nullptr; 759 } 760 761 // If we can determine that all possible objects pointed to by the provided 762 // pointer value are, not only dereferenceable, but also definitively less than 763 // or equal to the provided maximum size, then return true. Otherwise, return 764 // false (constant global values and allocas fall into this category). 765 // 766 // FIXME: This should probably live in ValueTracking (or similar). 767 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 768 const DataLayout &DL) { 769 SmallPtrSet<Value *, 4> Visited; 770 SmallVector<Value *, 4> Worklist(1, V); 771 772 do { 773 Value *P = Worklist.pop_back_val(); 774 P = P->stripPointerCasts(); 775 776 if (!Visited.insert(P).second) 777 continue; 778 779 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 780 Worklist.push_back(SI->getTrueValue()); 781 Worklist.push_back(SI->getFalseValue()); 782 continue; 783 } 784 785 if (PHINode *PN = dyn_cast<PHINode>(P)) { 786 for (Value *IncValue : PN->incoming_values()) 787 Worklist.push_back(IncValue); 788 continue; 789 } 790 791 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 792 if (GA->isInterposable()) 793 return false; 794 Worklist.push_back(GA->getAliasee()); 795 continue; 796 } 797 798 // If we know how big this object is, and it is less than MaxSize, continue 799 // searching. Otherwise, return false. 800 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 801 if (!AI->getAllocatedType()->isSized()) 802 return false; 803 804 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 805 if (!CS) 806 return false; 807 808 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 809 // Make sure that, even if the multiplication below would wrap as an 810 // uint64_t, we still do the right thing. 811 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 812 return false; 813 continue; 814 } 815 816 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 817 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 818 return false; 819 820 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 821 if (InitSize > MaxSize) 822 return false; 823 continue; 824 } 825 826 return false; 827 } while (!Worklist.empty()); 828 829 return true; 830 } 831 832 // If we're indexing into an object of a known size, and the outer index is 833 // not a constant, but having any value but zero would lead to undefined 834 // behavior, replace it with zero. 835 // 836 // For example, if we have: 837 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 838 // ... 839 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 840 // ... = load i32* %arrayidx, align 4 841 // Then we know that we can replace %x in the GEP with i64 0. 842 // 843 // FIXME: We could fold any GEP index to zero that would cause UB if it were 844 // not zero. Currently, we only handle the first such index. Also, we could 845 // also search through non-zero constant indices if we kept track of the 846 // offsets those indices implied. 847 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 848 Instruction *MemI, unsigned &Idx) { 849 if (GEPI->getNumOperands() < 2) 850 return false; 851 852 // Find the first non-zero index of a GEP. If all indices are zero, return 853 // one past the last index. 854 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 855 unsigned I = 1; 856 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 857 Value *V = GEPI->getOperand(I); 858 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 859 if (CI->isZero()) 860 continue; 861 862 break; 863 } 864 865 return I; 866 }; 867 868 // Skip through initial 'zero' indices, and find the corresponding pointer 869 // type. See if the next index is not a constant. 870 Idx = FirstNZIdx(GEPI); 871 if (Idx == GEPI->getNumOperands()) 872 return false; 873 if (isa<Constant>(GEPI->getOperand(Idx))) 874 return false; 875 876 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 877 Type *AllocTy = 878 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 879 if (!AllocTy || !AllocTy->isSized()) 880 return false; 881 const DataLayout &DL = IC.getDataLayout(); 882 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 883 884 // If there are more indices after the one we might replace with a zero, make 885 // sure they're all non-negative. If any of them are negative, the overall 886 // address being computed might be before the base address determined by the 887 // first non-zero index. 888 auto IsAllNonNegative = [&]() { 889 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 890 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 891 if (Known.isNonNegative()) 892 continue; 893 return false; 894 } 895 896 return true; 897 }; 898 899 // FIXME: If the GEP is not inbounds, and there are extra indices after the 900 // one we'll replace, those could cause the address computation to wrap 901 // (rendering the IsAllNonNegative() check below insufficient). We can do 902 // better, ignoring zero indices (and other indices we can prove small 903 // enough not to wrap). 904 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 905 return false; 906 907 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 908 // also known to be dereferenceable. 909 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 910 IsAllNonNegative(); 911 } 912 913 // If we're indexing into an object with a variable index for the memory 914 // access, but the object has only one element, we can assume that the index 915 // will always be zero. If we replace the GEP, return it. 916 template <typename T> 917 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 918 T &MemI) { 919 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 920 unsigned Idx; 921 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 922 Instruction *NewGEPI = GEPI->clone(); 923 NewGEPI->setOperand(Idx, 924 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 925 NewGEPI->insertBefore(GEPI); 926 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 927 return NewGEPI; 928 } 929 } 930 931 return nullptr; 932 } 933 934 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 935 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 936 return false; 937 938 auto *Ptr = SI.getPointerOperand(); 939 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 940 Ptr = GEPI->getOperand(0); 941 return (isa<ConstantPointerNull>(Ptr) && 942 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 943 } 944 945 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 946 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 947 const Value *GEPI0 = GEPI->getOperand(0); 948 if (isa<ConstantPointerNull>(GEPI0) && 949 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 950 return true; 951 } 952 if (isa<UndefValue>(Op) || 953 (isa<ConstantPointerNull>(Op) && 954 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 955 return true; 956 return false; 957 } 958 959 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 960 Value *Op = LI.getOperand(0); 961 962 // Try to canonicalize the loaded type. 963 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 964 return Res; 965 966 // Attempt to improve the alignment. 967 unsigned KnownAlign = getOrEnforceKnownAlignment( 968 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 969 unsigned LoadAlign = LI.getAlignment(); 970 unsigned EffectiveLoadAlign = 971 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 972 973 if (KnownAlign > EffectiveLoadAlign) 974 LI.setAlignment(MaybeAlign(KnownAlign)); 975 else if (LoadAlign == 0) 976 LI.setAlignment(MaybeAlign(EffectiveLoadAlign)); 977 978 // Replace GEP indices if possible. 979 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 980 Worklist.Add(NewGEPI); 981 return &LI; 982 } 983 984 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 985 return Res; 986 987 // Do really simple store-to-load forwarding and load CSE, to catch cases 988 // where there are several consecutive memory accesses to the same location, 989 // separated by a few arithmetic operations. 990 BasicBlock::iterator BBI(LI); 991 bool IsLoadCSE = false; 992 if (Value *AvailableVal = FindAvailableLoadedValue( 993 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 994 if (IsLoadCSE) 995 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 996 997 return replaceInstUsesWith( 998 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 999 LI.getName() + ".cast")); 1000 } 1001 1002 // None of the following transforms are legal for volatile/ordered atomic 1003 // loads. Most of them do apply for unordered atomics. 1004 if (!LI.isUnordered()) return nullptr; 1005 1006 // load(gep null, ...) -> unreachable 1007 // load null/undef -> unreachable 1008 // TODO: Consider a target hook for valid address spaces for this xforms. 1009 if (canSimplifyNullLoadOrGEP(LI, Op)) { 1010 // Insert a new store to null instruction before the load to indicate 1011 // that this code is not reachable. We do this instead of inserting 1012 // an unreachable instruction directly because we cannot modify the 1013 // CFG. 1014 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 1015 Constant::getNullValue(Op->getType()), &LI); 1016 SI->setDebugLoc(LI.getDebugLoc()); 1017 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 1018 } 1019 1020 if (Op->hasOneUse()) { 1021 // Change select and PHI nodes to select values instead of addresses: this 1022 // helps alias analysis out a lot, allows many others simplifications, and 1023 // exposes redundancy in the code. 1024 // 1025 // Note that we cannot do the transformation unless we know that the 1026 // introduced loads cannot trap! Something like this is valid as long as 1027 // the condition is always false: load (select bool %C, int* null, int* %G), 1028 // but it would not be valid if we transformed it to load from null 1029 // unconditionally. 1030 // 1031 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1032 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1033 const MaybeAlign Alignment(LI.getAlignment()); 1034 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 1035 Alignment, DL, SI) && 1036 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 1037 Alignment, DL, SI)) { 1038 LoadInst *V1 = 1039 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 1040 SI->getOperand(1)->getName() + ".val"); 1041 LoadInst *V2 = 1042 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1043 SI->getOperand(2)->getName() + ".val"); 1044 assert(LI.isUnordered() && "implied by above"); 1045 V1->setAlignment(Alignment); 1046 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1047 V2->setAlignment(Alignment); 1048 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1049 return SelectInst::Create(SI->getCondition(), V1, V2); 1050 } 1051 1052 // load (select (cond, null, P)) -> load P 1053 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1054 !NullPointerIsDefined(SI->getFunction(), 1055 LI.getPointerAddressSpace())) { 1056 LI.setOperand(0, SI->getOperand(2)); 1057 return &LI; 1058 } 1059 1060 // load (select (cond, P, null)) -> load P 1061 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1062 !NullPointerIsDefined(SI->getFunction(), 1063 LI.getPointerAddressSpace())) { 1064 LI.setOperand(0, SI->getOperand(1)); 1065 return &LI; 1066 } 1067 } 1068 } 1069 return nullptr; 1070 } 1071 1072 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1073 /// 1074 /// \returns underlying value that was "cast", or nullptr otherwise. 1075 /// 1076 /// For example, if we have: 1077 /// 1078 /// %E0 = extractelement <2 x double> %U, i32 0 1079 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1080 /// %E1 = extractelement <2 x double> %U, i32 1 1081 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1082 /// 1083 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1084 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1085 /// Note that %U may contain non-undef values where %V1 has undef. 1086 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1087 Value *U = nullptr; 1088 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1089 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1090 if (!E) 1091 return nullptr; 1092 auto *W = E->getVectorOperand(); 1093 if (!U) 1094 U = W; 1095 else if (U != W) 1096 return nullptr; 1097 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1098 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1099 return nullptr; 1100 V = IV->getAggregateOperand(); 1101 } 1102 if (!isa<UndefValue>(V) ||!U) 1103 return nullptr; 1104 1105 auto *UT = cast<VectorType>(U->getType()); 1106 auto *VT = V->getType(); 1107 // Check that types UT and VT are bitwise isomorphic. 1108 const auto &DL = IC.getDataLayout(); 1109 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1110 return nullptr; 1111 } 1112 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1113 if (AT->getNumElements() != UT->getNumElements()) 1114 return nullptr; 1115 } else { 1116 auto *ST = cast<StructType>(VT); 1117 if (ST->getNumElements() != UT->getNumElements()) 1118 return nullptr; 1119 for (const auto *EltT : ST->elements()) { 1120 if (EltT != UT->getElementType()) 1121 return nullptr; 1122 } 1123 } 1124 return U; 1125 } 1126 1127 /// Combine stores to match the type of value being stored. 1128 /// 1129 /// The core idea here is that the memory does not have any intrinsic type and 1130 /// where we can we should match the type of a store to the type of value being 1131 /// stored. 1132 /// 1133 /// However, this routine must never change the width of a store or the number of 1134 /// stores as that would introduce a semantic change. This combine is expected to 1135 /// be a semantic no-op which just allows stores to more closely model the types 1136 /// of their incoming values. 1137 /// 1138 /// Currently, we also refuse to change the precise type used for an atomic or 1139 /// volatile store. This is debatable, and might be reasonable to change later. 1140 /// However, it is risky in case some backend or other part of LLVM is relying 1141 /// on the exact type stored to select appropriate atomic operations. 1142 /// 1143 /// \returns true if the store was successfully combined away. This indicates 1144 /// the caller must erase the store instruction. We have to let the caller erase 1145 /// the store instruction as otherwise there is no way to signal whether it was 1146 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1147 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1148 // FIXME: We could probably with some care handle both volatile and ordered 1149 // atomic stores here but it isn't clear that this is important. 1150 if (!SI.isUnordered()) 1151 return false; 1152 1153 // swifterror values can't be bitcasted. 1154 if (SI.getPointerOperand()->isSwiftError()) 1155 return false; 1156 1157 Value *V = SI.getValueOperand(); 1158 1159 // Fold away bit casts of the stored value by storing the original type. 1160 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1161 V = BC->getOperand(0); 1162 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1163 combineStoreToNewValue(IC, SI, V); 1164 return true; 1165 } 1166 } 1167 1168 if (Value *U = likeBitCastFromVector(IC, V)) 1169 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1170 combineStoreToNewValue(IC, SI, U); 1171 return true; 1172 } 1173 1174 // FIXME: We should also canonicalize stores of vectors when their elements 1175 // are cast to other types. 1176 return false; 1177 } 1178 1179 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1180 // FIXME: We could probably with some care handle both volatile and atomic 1181 // stores here but it isn't clear that this is important. 1182 if (!SI.isSimple()) 1183 return false; 1184 1185 Value *V = SI.getValueOperand(); 1186 Type *T = V->getType(); 1187 1188 if (!T->isAggregateType()) 1189 return false; 1190 1191 if (auto *ST = dyn_cast<StructType>(T)) { 1192 // If the struct only have one element, we unpack. 1193 unsigned Count = ST->getNumElements(); 1194 if (Count == 1) { 1195 V = IC.Builder.CreateExtractValue(V, 0); 1196 combineStoreToNewValue(IC, SI, V); 1197 return true; 1198 } 1199 1200 // We don't want to break loads with padding here as we'd loose 1201 // the knowledge that padding exists for the rest of the pipeline. 1202 const DataLayout &DL = IC.getDataLayout(); 1203 auto *SL = DL.getStructLayout(ST); 1204 if (SL->hasPadding()) 1205 return false; 1206 1207 auto Align = SI.getAlignment(); 1208 if (!Align) 1209 Align = DL.getABITypeAlignment(ST); 1210 1211 SmallString<16> EltName = V->getName(); 1212 EltName += ".elt"; 1213 auto *Addr = SI.getPointerOperand(); 1214 SmallString<16> AddrName = Addr->getName(); 1215 AddrName += ".repack"; 1216 1217 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1218 auto *Zero = ConstantInt::get(IdxType, 0); 1219 for (unsigned i = 0; i < Count; i++) { 1220 Value *Indices[2] = { 1221 Zero, 1222 ConstantInt::get(IdxType, i), 1223 }; 1224 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1225 AddrName); 1226 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1227 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1228 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1229 AAMDNodes AAMD; 1230 SI.getAAMetadata(AAMD); 1231 NS->setAAMetadata(AAMD); 1232 } 1233 1234 return true; 1235 } 1236 1237 if (auto *AT = dyn_cast<ArrayType>(T)) { 1238 // If the array only have one element, we unpack. 1239 auto NumElements = AT->getNumElements(); 1240 if (NumElements == 1) { 1241 V = IC.Builder.CreateExtractValue(V, 0); 1242 combineStoreToNewValue(IC, SI, V); 1243 return true; 1244 } 1245 1246 // Bail out if the array is too large. Ideally we would like to optimize 1247 // arrays of arbitrary size but this has a terrible impact on compile time. 1248 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1249 // tuning. 1250 if (NumElements > IC.MaxArraySizeForCombine) 1251 return false; 1252 1253 const DataLayout &DL = IC.getDataLayout(); 1254 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1255 auto Align = SI.getAlignment(); 1256 if (!Align) 1257 Align = DL.getABITypeAlignment(T); 1258 1259 SmallString<16> EltName = V->getName(); 1260 EltName += ".elt"; 1261 auto *Addr = SI.getPointerOperand(); 1262 SmallString<16> AddrName = Addr->getName(); 1263 AddrName += ".repack"; 1264 1265 auto *IdxType = Type::getInt64Ty(T->getContext()); 1266 auto *Zero = ConstantInt::get(IdxType, 0); 1267 1268 uint64_t Offset = 0; 1269 for (uint64_t i = 0; i < NumElements; i++) { 1270 Value *Indices[2] = { 1271 Zero, 1272 ConstantInt::get(IdxType, i), 1273 }; 1274 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1275 AddrName); 1276 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1277 auto EltAlign = MinAlign(Align, Offset); 1278 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1279 AAMDNodes AAMD; 1280 SI.getAAMetadata(AAMD); 1281 NS->setAAMetadata(AAMD); 1282 Offset += EltSize; 1283 } 1284 1285 return true; 1286 } 1287 1288 return false; 1289 } 1290 1291 /// equivalentAddressValues - Test if A and B will obviously have the same 1292 /// value. This includes recognizing that %t0 and %t1 will have the same 1293 /// value in code like this: 1294 /// %t0 = getelementptr \@a, 0, 3 1295 /// store i32 0, i32* %t0 1296 /// %t1 = getelementptr \@a, 0, 3 1297 /// %t2 = load i32* %t1 1298 /// 1299 static bool equivalentAddressValues(Value *A, Value *B) { 1300 // Test if the values are trivially equivalent. 1301 if (A == B) return true; 1302 1303 // Test if the values come form identical arithmetic instructions. 1304 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1305 // its only used to compare two uses within the same basic block, which 1306 // means that they'll always either have the same value or one of them 1307 // will have an undefined value. 1308 if (isa<BinaryOperator>(A) || 1309 isa<CastInst>(A) || 1310 isa<PHINode>(A) || 1311 isa<GetElementPtrInst>(A)) 1312 if (Instruction *BI = dyn_cast<Instruction>(B)) 1313 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1314 return true; 1315 1316 // Otherwise they may not be equivalent. 1317 return false; 1318 } 1319 1320 /// Converts store (bitcast (load (bitcast (select ...)))) to 1321 /// store (load (select ...)), where select is minmax: 1322 /// select ((cmp load V1, load V2), V1, V2). 1323 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC, 1324 StoreInst &SI) { 1325 // bitcast? 1326 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1327 return false; 1328 // load? integer? 1329 Value *LoadAddr; 1330 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1331 return false; 1332 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1333 if (!LI->getType()->isIntegerTy()) 1334 return false; 1335 Type *CmpLoadTy; 1336 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1337 return false; 1338 1339 // Make sure the type would actually change. 1340 // This condition can be hit with chains of bitcasts. 1341 if (LI->getType() == CmpLoadTy) 1342 return false; 1343 1344 // Make sure we're not changing the size of the load/store. 1345 const auto &DL = IC.getDataLayout(); 1346 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1347 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1348 return false; 1349 1350 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1351 auto *SI = dyn_cast<StoreInst>(U); 1352 return SI && SI->getPointerOperand() != LI && 1353 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && 1354 !SI->getPointerOperand()->isSwiftError(); 1355 })) 1356 return false; 1357 1358 IC.Builder.SetInsertPoint(LI); 1359 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1360 // Replace all the stores with stores of the newly loaded value. 1361 for (auto *UI : LI->users()) { 1362 auto *USI = cast<StoreInst>(UI); 1363 IC.Builder.SetInsertPoint(USI); 1364 combineStoreToNewValue(IC, *USI, NewLI); 1365 } 1366 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1367 IC.eraseInstFromFunction(*LI); 1368 return true; 1369 } 1370 1371 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1372 Value *Val = SI.getOperand(0); 1373 Value *Ptr = SI.getOperand(1); 1374 1375 // Try to canonicalize the stored type. 1376 if (combineStoreToValueType(*this, SI)) 1377 return eraseInstFromFunction(SI); 1378 1379 // Attempt to improve the alignment. 1380 const Align KnownAlign = Align(getOrEnforceKnownAlignment( 1381 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT)); 1382 const MaybeAlign StoreAlign = MaybeAlign(SI.getAlignment()); 1383 const Align EffectiveStoreAlign = 1384 StoreAlign ? *StoreAlign : Align(DL.getABITypeAlignment(Val->getType())); 1385 1386 if (KnownAlign > EffectiveStoreAlign) 1387 SI.setAlignment(KnownAlign); 1388 else if (!StoreAlign) 1389 SI.setAlignment(EffectiveStoreAlign); 1390 1391 // Try to canonicalize the stored type. 1392 if (unpackStoreToAggregate(*this, SI)) 1393 return eraseInstFromFunction(SI); 1394 1395 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1396 return eraseInstFromFunction(SI); 1397 1398 // Replace GEP indices if possible. 1399 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1400 Worklist.Add(NewGEPI); 1401 return &SI; 1402 } 1403 1404 // Don't hack volatile/ordered stores. 1405 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1406 if (!SI.isUnordered()) return nullptr; 1407 1408 // If the RHS is an alloca with a single use, zapify the store, making the 1409 // alloca dead. 1410 if (Ptr->hasOneUse()) { 1411 if (isa<AllocaInst>(Ptr)) 1412 return eraseInstFromFunction(SI); 1413 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1414 if (isa<AllocaInst>(GEP->getOperand(0))) { 1415 if (GEP->getOperand(0)->hasOneUse()) 1416 return eraseInstFromFunction(SI); 1417 } 1418 } 1419 } 1420 1421 // If we have a store to a location which is known constant, we can conclude 1422 // that the store must be storing the constant value (else the memory 1423 // wouldn't be constant), and this must be a noop. 1424 if (AA->pointsToConstantMemory(Ptr)) 1425 return eraseInstFromFunction(SI); 1426 1427 // Do really simple DSE, to catch cases where there are several consecutive 1428 // stores to the same location, separated by a few arithmetic operations. This 1429 // situation often occurs with bitfield accesses. 1430 BasicBlock::iterator BBI(SI); 1431 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1432 --ScanInsts) { 1433 --BBI; 1434 // Don't count debug info directives, lest they affect codegen, 1435 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1436 if (isa<DbgInfoIntrinsic>(BBI) || 1437 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1438 ScanInsts++; 1439 continue; 1440 } 1441 1442 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1443 // Prev store isn't volatile, and stores to the same location? 1444 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1445 SI.getOperand(1))) { 1446 ++NumDeadStore; 1447 // Manually add back the original store to the worklist now, so it will 1448 // be processed after the operands of the removed store, as this may 1449 // expose additional DSE opportunities. 1450 Worklist.Add(&SI); 1451 eraseInstFromFunction(*PrevSI); 1452 return nullptr; 1453 } 1454 break; 1455 } 1456 1457 // If this is a load, we have to stop. However, if the loaded value is from 1458 // the pointer we're loading and is producing the pointer we're storing, 1459 // then *this* store is dead (X = load P; store X -> P). 1460 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1461 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1462 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1463 return eraseInstFromFunction(SI); 1464 } 1465 1466 // Otherwise, this is a load from some other location. Stores before it 1467 // may not be dead. 1468 break; 1469 } 1470 1471 // Don't skip over loads, throws or things that can modify memory. 1472 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1473 break; 1474 } 1475 1476 // store X, null -> turns into 'unreachable' in SimplifyCFG 1477 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1478 if (canSimplifyNullStoreOrGEP(SI)) { 1479 if (!isa<UndefValue>(Val)) { 1480 SI.setOperand(0, UndefValue::get(Val->getType())); 1481 if (Instruction *U = dyn_cast<Instruction>(Val)) 1482 Worklist.Add(U); // Dropped a use. 1483 } 1484 return nullptr; // Do not modify these! 1485 } 1486 1487 // store undef, Ptr -> noop 1488 if (isa<UndefValue>(Val)) 1489 return eraseInstFromFunction(SI); 1490 1491 // If this store is the second-to-last instruction in the basic block 1492 // (excluding debug info and bitcasts of pointers) and if the block ends with 1493 // an unconditional branch, try to move the store to the successor block. 1494 BBI = SI.getIterator(); 1495 do { 1496 ++BBI; 1497 } while (isa<DbgInfoIntrinsic>(BBI) || 1498 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1499 1500 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1501 if (BI->isUnconditional()) 1502 mergeStoreIntoSuccessor(SI); 1503 1504 return nullptr; 1505 } 1506 1507 /// Try to transform: 1508 /// if () { *P = v1; } else { *P = v2 } 1509 /// or: 1510 /// *P = v1; if () { *P = v2; } 1511 /// into a phi node with a store in the successor. 1512 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) { 1513 assert(SI.isUnordered() && 1514 "This code has not been audited for volatile or ordered store case."); 1515 1516 // Check if the successor block has exactly 2 incoming edges. 1517 BasicBlock *StoreBB = SI.getParent(); 1518 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1519 if (!DestBB->hasNPredecessors(2)) 1520 return false; 1521 1522 // Capture the other block (the block that doesn't contain our store). 1523 pred_iterator PredIter = pred_begin(DestBB); 1524 if (*PredIter == StoreBB) 1525 ++PredIter; 1526 BasicBlock *OtherBB = *PredIter; 1527 1528 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1529 // for example, if SI is in an infinite loop. 1530 if (StoreBB == DestBB || OtherBB == DestBB) 1531 return false; 1532 1533 // Verify that the other block ends in a branch and is not otherwise empty. 1534 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1535 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1536 if (!OtherBr || BBI == OtherBB->begin()) 1537 return false; 1538 1539 // If the other block ends in an unconditional branch, check for the 'if then 1540 // else' case. There is an instruction before the branch. 1541 StoreInst *OtherStore = nullptr; 1542 if (OtherBr->isUnconditional()) { 1543 --BBI; 1544 // Skip over debugging info. 1545 while (isa<DbgInfoIntrinsic>(BBI) || 1546 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1547 if (BBI==OtherBB->begin()) 1548 return false; 1549 --BBI; 1550 } 1551 // If this isn't a store, isn't a store to the same location, or is not the 1552 // right kind of store, bail out. 1553 OtherStore = dyn_cast<StoreInst>(BBI); 1554 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1555 !SI.isSameOperationAs(OtherStore)) 1556 return false; 1557 } else { 1558 // Otherwise, the other block ended with a conditional branch. If one of the 1559 // destinations is StoreBB, then we have the if/then case. 1560 if (OtherBr->getSuccessor(0) != StoreBB && 1561 OtherBr->getSuccessor(1) != StoreBB) 1562 return false; 1563 1564 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1565 // if/then triangle. See if there is a store to the same ptr as SI that 1566 // lives in OtherBB. 1567 for (;; --BBI) { 1568 // Check to see if we find the matching store. 1569 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1570 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1571 !SI.isSameOperationAs(OtherStore)) 1572 return false; 1573 break; 1574 } 1575 // If we find something that may be using or overwriting the stored 1576 // value, or if we run out of instructions, we can't do the transform. 1577 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1578 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1579 return false; 1580 } 1581 1582 // In order to eliminate the store in OtherBr, we have to make sure nothing 1583 // reads or overwrites the stored value in StoreBB. 1584 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1585 // FIXME: This should really be AA driven. 1586 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1587 return false; 1588 } 1589 } 1590 1591 // Insert a PHI node now if we need it. 1592 Value *MergedVal = OtherStore->getOperand(0); 1593 // The debug locations of the original instructions might differ. Merge them. 1594 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1595 OtherStore->getDebugLoc()); 1596 if (MergedVal != SI.getOperand(0)) { 1597 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1598 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1599 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1600 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1601 PN->setDebugLoc(MergedLoc); 1602 } 1603 1604 // Advance to a place where it is safe to insert the new store and insert it. 1605 BBI = DestBB->getFirstInsertionPt(); 1606 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), 1607 MaybeAlign(SI.getAlignment()), 1608 SI.getOrdering(), SI.getSyncScopeID()); 1609 InsertNewInstBefore(NewSI, *BBI); 1610 NewSI->setDebugLoc(MergedLoc); 1611 1612 // If the two stores had AA tags, merge them. 1613 AAMDNodes AATags; 1614 SI.getAAMetadata(AATags); 1615 if (AATags) { 1616 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1617 NewSI->setAAMetadata(AATags); 1618 } 1619 1620 // Nuke the old stores. 1621 eraseInstFromFunction(SI); 1622 eraseInstFromFunction(*OtherStore); 1623 return true; 1624 } 1625