1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/Transforms/InstCombine/InstCombiner.h" 25 #include "llvm/Transforms/Utils/Local.h" 26 using namespace llvm; 27 using namespace PatternMatch; 28 29 #define DEBUG_TYPE "instcombine" 30 31 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 32 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 33 34 static cl::opt<unsigned> MaxCopiedFromConstantUsers( 35 "instcombine-max-copied-from-constant-users", cl::init(300), 36 cl::desc("Maximum users to visit in copy from constant transform"), 37 cl::Hidden); 38 39 /// isOnlyCopiedFromConstantMemory - Recursively walk the uses of a (derived) 40 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 41 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 42 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 43 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 44 /// the alloca, and if the source pointer is a pointer to a constant memory 45 /// location, we can optimize this. 46 static bool 47 isOnlyCopiedFromConstantMemory(AAResults *AA, AllocaInst *V, 48 MemTransferInst *&TheCopy, 49 SmallVectorImpl<Instruction *> &ToDelete) { 50 // We track lifetime intrinsics as we encounter them. If we decide to go 51 // ahead and replace the value with the memory location, this lets the caller 52 // quickly eliminate the markers. 53 54 using ValueAndIsOffset = PointerIntPair<Value *, 1, bool>; 55 SmallVector<ValueAndIsOffset, 32> Worklist; 56 SmallPtrSet<ValueAndIsOffset, 32> Visited; 57 Worklist.emplace_back(V, false); 58 while (!Worklist.empty()) { 59 ValueAndIsOffset Elem = Worklist.pop_back_val(); 60 if (!Visited.insert(Elem).second) 61 continue; 62 if (Visited.size() > MaxCopiedFromConstantUsers) 63 return false; 64 65 const auto [Value, IsOffset] = Elem; 66 for (auto &U : Value->uses()) { 67 auto *I = cast<Instruction>(U.getUser()); 68 69 if (auto *LI = dyn_cast<LoadInst>(I)) { 70 // Ignore non-volatile loads, they are always ok. 71 if (!LI->isSimple()) return false; 72 continue; 73 } 74 75 if (isa<PHINode, SelectInst>(I)) { 76 // We set IsOffset=true, to forbid the memcpy from occurring after the 77 // phi: If one of the phi operands is not based on the alloca, we 78 // would incorrectly omit a write. 79 Worklist.emplace_back(I, true); 80 continue; 81 } 82 if (isa<BitCastInst, AddrSpaceCastInst>(I)) { 83 // If uses of the bitcast are ok, we are ok. 84 Worklist.emplace_back(I, IsOffset); 85 continue; 86 } 87 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 88 // If the GEP has all zero indices, it doesn't offset the pointer. If it 89 // doesn't, it does. 90 Worklist.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 91 continue; 92 } 93 94 if (auto *Call = dyn_cast<CallBase>(I)) { 95 // If this is the function being called then we treat it like a load and 96 // ignore it. 97 if (Call->isCallee(&U)) 98 continue; 99 100 unsigned DataOpNo = Call->getDataOperandNo(&U); 101 bool IsArgOperand = Call->isArgOperand(&U); 102 103 // Inalloca arguments are clobbered by the call. 104 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 105 return false; 106 107 // If this call site doesn't modify the memory, then we know it is just 108 // a load (but one that potentially returns the value itself), so we can 109 // ignore it if we know that the value isn't captured. 110 bool NoCapture = Call->doesNotCapture(DataOpNo); 111 if ((Call->onlyReadsMemory() && (Call->use_empty() || NoCapture)) || 112 (Call->onlyReadsMemory(DataOpNo) && NoCapture)) 113 continue; 114 115 // If this is being passed as a byval argument, the caller is making a 116 // copy, so it is only a read of the alloca. 117 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 118 continue; 119 } 120 121 // Lifetime intrinsics can be handled by the caller. 122 if (I->isLifetimeStartOrEnd()) { 123 assert(I->use_empty() && "Lifetime markers have no result to use!"); 124 ToDelete.push_back(I); 125 continue; 126 } 127 128 // If this is isn't our memcpy/memmove, reject it as something we can't 129 // handle. 130 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 131 if (!MI) 132 return false; 133 134 // If the transfer is volatile, reject it. 135 if (MI->isVolatile()) 136 return false; 137 138 // If the transfer is using the alloca as a source of the transfer, then 139 // ignore it since it is a load (unless the transfer is volatile). 140 if (U.getOperandNo() == 1) 141 continue; 142 143 // If we already have seen a copy, reject the second one. 144 if (TheCopy) return false; 145 146 // If the pointer has been offset from the start of the alloca, we can't 147 // safely handle this. 148 if (IsOffset) return false; 149 150 // If the memintrinsic isn't using the alloca as the dest, reject it. 151 if (U.getOperandNo() != 0) return false; 152 153 // If the source of the memcpy/move is not constant, reject it. 154 if (isModSet(AA->getModRefInfoMask(MI->getSource()))) 155 return false; 156 157 // Otherwise, the transform is safe. Remember the copy instruction. 158 TheCopy = MI; 159 } 160 } 161 return true; 162 } 163 164 /// isOnlyCopiedFromConstantMemory - Return true if the specified alloca is only 165 /// modified by a copy from a constant memory location. If we can prove this, we 166 /// can replace any uses of the alloca with uses of the memory location 167 /// directly. 168 static MemTransferInst * 169 isOnlyCopiedFromConstantMemory(AAResults *AA, 170 AllocaInst *AI, 171 SmallVectorImpl<Instruction *> &ToDelete) { 172 MemTransferInst *TheCopy = nullptr; 173 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) 174 return TheCopy; 175 return nullptr; 176 } 177 178 /// Returns true if V is dereferenceable for size of alloca. 179 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 180 const DataLayout &DL) { 181 if (AI->isArrayAllocation()) 182 return false; 183 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 184 if (!AllocaSize) 185 return false; 186 return isDereferenceableAndAlignedPointer(V, AI->getAlign(), 187 APInt(64, AllocaSize), DL); 188 } 189 190 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC, 191 AllocaInst &AI, DominatorTree &DT) { 192 // Check for array size of 1 (scalar allocation). 193 if (!AI.isArrayAllocation()) { 194 // i32 1 is the canonical array size for scalar allocations. 195 if (AI.getArraySize()->getType()->isIntegerTy(32)) 196 return nullptr; 197 198 // Canonicalize it. 199 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); 200 } 201 202 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 203 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 204 if (C->getValue().getActiveBits() <= 64) { 205 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 206 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, AI.getAddressSpace(), 207 nullptr, AI.getName()); 208 New->setAlignment(AI.getAlign()); 209 210 replaceAllDbgUsesWith(AI, *New, *New, DT); 211 212 // Scan to the end of the allocation instructions, to skip over a block of 213 // allocas if possible...also skip interleaved debug info 214 // 215 BasicBlock::iterator It(New); 216 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 217 ++It; 218 219 // Now that I is pointing to the first non-allocation-inst in the block, 220 // insert our getelementptr instruction... 221 // 222 Type *IdxTy = IC.getDataLayout().getIndexType(AI.getType()); 223 Value *NullIdx = Constant::getNullValue(IdxTy); 224 Value *Idx[2] = {NullIdx, NullIdx}; 225 Instruction *GEP = GetElementPtrInst::CreateInBounds( 226 NewTy, New, Idx, New->getName() + ".sub"); 227 IC.InsertNewInstBefore(GEP, *It); 228 229 // Now make everything use the getelementptr instead of the original 230 // allocation. 231 return IC.replaceInstUsesWith(AI, GEP); 232 } 233 } 234 235 if (isa<UndefValue>(AI.getArraySize())) 236 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 237 238 // Ensure that the alloca array size argument has type equal to the offset 239 // size of the alloca() pointer, which, in the tyical case, is intptr_t, 240 // so that any casting is exposed early. 241 Type *PtrIdxTy = IC.getDataLayout().getIndexType(AI.getType()); 242 if (AI.getArraySize()->getType() != PtrIdxTy) { 243 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), PtrIdxTy, false); 244 return IC.replaceOperand(AI, 0, V); 245 } 246 247 return nullptr; 248 } 249 250 namespace { 251 // If I and V are pointers in different address space, it is not allowed to 252 // use replaceAllUsesWith since I and V have different types. A 253 // non-target-specific transformation should not use addrspacecast on V since 254 // the two address space may be disjoint depending on target. 255 // 256 // This class chases down uses of the old pointer until reaching the load 257 // instructions, then replaces the old pointer in the load instructions with 258 // the new pointer. If during the chasing it sees bitcast or GEP, it will 259 // create new bitcast or GEP with the new pointer and use them in the load 260 // instruction. 261 class PointerReplacer { 262 public: 263 PointerReplacer(InstCombinerImpl &IC, Instruction &Root, unsigned SrcAS) 264 : IC(IC), Root(Root), FromAS(SrcAS) {} 265 266 bool collectUsers(); 267 void replacePointer(Value *V); 268 269 private: 270 bool collectUsersRecursive(Instruction &I); 271 void replace(Instruction *I); 272 Value *getReplacement(Value *I); 273 bool isAvailable(Instruction *I) const { 274 return I == &Root || Worklist.contains(I); 275 } 276 277 bool isEqualOrValidAddrSpaceCast(const Instruction *I, 278 unsigned FromAS) const { 279 const auto *ASC = dyn_cast<AddrSpaceCastInst>(I); 280 if (!ASC) 281 return false; 282 unsigned ToAS = ASC->getDestAddressSpace(); 283 return (FromAS == ToAS) || IC.isValidAddrSpaceCast(FromAS, ToAS); 284 } 285 286 SmallPtrSet<Instruction *, 32> ValuesToRevisit; 287 SmallSetVector<Instruction *, 4> Worklist; 288 MapVector<Value *, Value *> WorkMap; 289 InstCombinerImpl &IC; 290 Instruction &Root; 291 unsigned FromAS; 292 }; 293 } // end anonymous namespace 294 295 bool PointerReplacer::collectUsers() { 296 if (!collectUsersRecursive(Root)) 297 return false; 298 299 // Ensure that all outstanding (indirect) users of I 300 // are inserted into the Worklist. Return false 301 // otherwise. 302 for (auto *Inst : ValuesToRevisit) 303 if (!Worklist.contains(Inst)) 304 return false; 305 return true; 306 } 307 308 bool PointerReplacer::collectUsersRecursive(Instruction &I) { 309 for (auto *U : I.users()) { 310 auto *Inst = cast<Instruction>(&*U); 311 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 312 if (Load->isVolatile()) 313 return false; 314 Worklist.insert(Load); 315 } else if (auto *PHI = dyn_cast<PHINode>(Inst)) { 316 // All incoming values must be instructions for replacability 317 if (any_of(PHI->incoming_values(), 318 [](Value *V) { return !isa<Instruction>(V); })) 319 return false; 320 321 // If at least one incoming value of the PHI is not in Worklist, 322 // store the PHI for revisiting and skip this iteration of the 323 // loop. 324 if (any_of(PHI->incoming_values(), [this](Value *V) { 325 return !isAvailable(cast<Instruction>(V)); 326 })) { 327 ValuesToRevisit.insert(Inst); 328 continue; 329 } 330 331 Worklist.insert(PHI); 332 if (!collectUsersRecursive(*PHI)) 333 return false; 334 } else if (auto *SI = dyn_cast<SelectInst>(Inst)) { 335 if (!isa<Instruction>(SI->getTrueValue()) || 336 !isa<Instruction>(SI->getFalseValue())) 337 return false; 338 339 if (!isAvailable(cast<Instruction>(SI->getTrueValue())) || 340 !isAvailable(cast<Instruction>(SI->getFalseValue()))) { 341 ValuesToRevisit.insert(Inst); 342 continue; 343 } 344 Worklist.insert(SI); 345 if (!collectUsersRecursive(*SI)) 346 return false; 347 } else if (isa<GetElementPtrInst, BitCastInst>(Inst)) { 348 Worklist.insert(Inst); 349 if (!collectUsersRecursive(*Inst)) 350 return false; 351 } else if (auto *MI = dyn_cast<MemTransferInst>(Inst)) { 352 if (MI->isVolatile()) 353 return false; 354 Worklist.insert(Inst); 355 } else if (isEqualOrValidAddrSpaceCast(Inst, FromAS)) { 356 Worklist.insert(Inst); 357 } else if (Inst->isLifetimeStartOrEnd()) { 358 continue; 359 } else { 360 LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n'); 361 return false; 362 } 363 } 364 365 return true; 366 } 367 368 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); } 369 370 void PointerReplacer::replace(Instruction *I) { 371 if (getReplacement(I)) 372 return; 373 374 if (auto *LT = dyn_cast<LoadInst>(I)) { 375 auto *V = getReplacement(LT->getPointerOperand()); 376 assert(V && "Operand not replaced"); 377 auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(), 378 LT->getAlign(), LT->getOrdering(), 379 LT->getSyncScopeID()); 380 NewI->takeName(LT); 381 copyMetadataForLoad(*NewI, *LT); 382 383 IC.InsertNewInstWith(NewI, *LT); 384 IC.replaceInstUsesWith(*LT, NewI); 385 WorkMap[LT] = NewI; 386 } else if (auto *PHI = dyn_cast<PHINode>(I)) { 387 Type *NewTy = getReplacement(PHI->getIncomingValue(0))->getType(); 388 auto *NewPHI = PHINode::Create(NewTy, PHI->getNumIncomingValues(), 389 PHI->getName(), PHI); 390 for (unsigned int I = 0; I < PHI->getNumIncomingValues(); ++I) 391 NewPHI->addIncoming(getReplacement(PHI->getIncomingValue(I)), 392 PHI->getIncomingBlock(I)); 393 WorkMap[PHI] = NewPHI; 394 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 395 auto *V = getReplacement(GEP->getPointerOperand()); 396 assert(V && "Operand not replaced"); 397 SmallVector<Value *, 8> Indices; 398 Indices.append(GEP->idx_begin(), GEP->idx_end()); 399 auto *NewI = 400 GetElementPtrInst::Create(GEP->getSourceElementType(), V, Indices); 401 IC.InsertNewInstWith(NewI, *GEP); 402 NewI->takeName(GEP); 403 WorkMap[GEP] = NewI; 404 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 405 auto *V = getReplacement(BC->getOperand(0)); 406 assert(V && "Operand not replaced"); 407 auto *NewT = PointerType::get(BC->getType()->getContext(), 408 V->getType()->getPointerAddressSpace()); 409 auto *NewI = new BitCastInst(V, NewT); 410 IC.InsertNewInstWith(NewI, *BC); 411 NewI->takeName(BC); 412 WorkMap[BC] = NewI; 413 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 414 auto *NewSI = SelectInst::Create( 415 SI->getCondition(), getReplacement(SI->getTrueValue()), 416 getReplacement(SI->getFalseValue()), SI->getName(), nullptr, SI); 417 IC.InsertNewInstWith(NewSI, *SI); 418 NewSI->takeName(SI); 419 WorkMap[SI] = NewSI; 420 } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) { 421 auto *SrcV = getReplacement(MemCpy->getRawSource()); 422 // The pointer may appear in the destination of a copy, but we don't want to 423 // replace it. 424 if (!SrcV) { 425 assert(getReplacement(MemCpy->getRawDest()) && 426 "destination not in replace list"); 427 return; 428 } 429 430 IC.Builder.SetInsertPoint(MemCpy); 431 auto *NewI = IC.Builder.CreateMemTransferInst( 432 MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(), 433 SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(), 434 MemCpy->isVolatile()); 435 AAMDNodes AAMD = MemCpy->getAAMetadata(); 436 if (AAMD) 437 NewI->setAAMetadata(AAMD); 438 439 IC.eraseInstFromFunction(*MemCpy); 440 WorkMap[MemCpy] = NewI; 441 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I)) { 442 auto *V = getReplacement(ASC->getPointerOperand()); 443 assert(V && "Operand not replaced"); 444 assert(isEqualOrValidAddrSpaceCast( 445 ASC, V->getType()->getPointerAddressSpace()) && 446 "Invalid address space cast!"); 447 auto *NewV = V; 448 if (V->getType()->getPointerAddressSpace() != 449 ASC->getType()->getPointerAddressSpace()) { 450 auto *NewI = new AddrSpaceCastInst(V, ASC->getType(), ""); 451 NewI->takeName(ASC); 452 IC.InsertNewInstWith(NewI, *ASC); 453 NewV = NewI; 454 } 455 IC.replaceInstUsesWith(*ASC, NewV); 456 IC.eraseInstFromFunction(*ASC); 457 } else { 458 llvm_unreachable("should never reach here"); 459 } 460 } 461 462 void PointerReplacer::replacePointer(Value *V) { 463 #ifndef NDEBUG 464 auto *PT = cast<PointerType>(Root.getType()); 465 auto *NT = cast<PointerType>(V->getType()); 466 assert(PT != NT && "Invalid usage"); 467 #endif 468 WorkMap[&Root] = V; 469 470 for (Instruction *Workitem : Worklist) 471 replace(Workitem); 472 } 473 474 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) { 475 if (auto *I = simplifyAllocaArraySize(*this, AI, DT)) 476 return I; 477 478 if (AI.getAllocatedType()->isSized()) { 479 // Move all alloca's of zero byte objects to the entry block and merge them 480 // together. Note that we only do this for alloca's, because malloc should 481 // allocate and return a unique pointer, even for a zero byte allocation. 482 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinValue() == 0) { 483 // For a zero sized alloca there is no point in doing an array allocation. 484 // This is helpful if the array size is a complicated expression not used 485 // elsewhere. 486 if (AI.isArrayAllocation()) 487 return replaceOperand(AI, 0, 488 ConstantInt::get(AI.getArraySize()->getType(), 1)); 489 490 // Get the first instruction in the entry block. 491 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 492 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 493 if (FirstInst != &AI) { 494 // If the entry block doesn't start with a zero-size alloca then move 495 // this one to the start of the entry block. There is no problem with 496 // dominance as the array size was forced to a constant earlier already. 497 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 498 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 499 DL.getTypeAllocSize(EntryAI->getAllocatedType()) 500 .getKnownMinValue() != 0) { 501 AI.moveBefore(FirstInst); 502 return &AI; 503 } 504 505 // Replace this zero-sized alloca with the one at the start of the entry 506 // block after ensuring that the address will be aligned enough for both 507 // types. 508 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); 509 EntryAI->setAlignment(MaxAlign); 510 if (AI.getType() != EntryAI->getType()) 511 return new BitCastInst(EntryAI, AI.getType()); 512 return replaceInstUsesWith(AI, EntryAI); 513 } 514 } 515 } 516 517 // Check to see if this allocation is only modified by a memcpy/memmove from 518 // a memory location whose alignment is equal to or exceeds that of the 519 // allocation. If this is the case, we can change all users to use the 520 // constant memory location instead. This is commonly produced by the CFE by 521 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 522 // is only subsequently read. 523 SmallVector<Instruction *, 4> ToDelete; 524 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { 525 Value *TheSrc = Copy->getSource(); 526 Align AllocaAlign = AI.getAlign(); 527 Align SourceAlign = getOrEnforceKnownAlignment( 528 TheSrc, AllocaAlign, DL, &AI, &AC, &DT); 529 if (AllocaAlign <= SourceAlign && 530 isDereferenceableForAllocaSize(TheSrc, &AI, DL) && 531 !isa<Instruction>(TheSrc)) { 532 // FIXME: Can we sink instructions without violating dominance when TheSrc 533 // is an instruction instead of a constant or argument? 534 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 535 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 536 unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace(); 537 auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace); 538 if (AI.getAddressSpace() == SrcAddrSpace) { 539 for (Instruction *Delete : ToDelete) 540 eraseInstFromFunction(*Delete); 541 542 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 543 Instruction *NewI = replaceInstUsesWith(AI, Cast); 544 eraseInstFromFunction(*Copy); 545 ++NumGlobalCopies; 546 return NewI; 547 } 548 549 PointerReplacer PtrReplacer(*this, AI, SrcAddrSpace); 550 if (PtrReplacer.collectUsers()) { 551 for (Instruction *Delete : ToDelete) 552 eraseInstFromFunction(*Delete); 553 554 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 555 PtrReplacer.replacePointer(Cast); 556 ++NumGlobalCopies; 557 } 558 } 559 } 560 561 // At last, use the generic allocation site handler to aggressively remove 562 // unused allocas. 563 return visitAllocSite(AI); 564 } 565 566 // Are we allowed to form a atomic load or store of this type? 567 static bool isSupportedAtomicType(Type *Ty) { 568 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 569 } 570 571 /// Helper to combine a load to a new type. 572 /// 573 /// This just does the work of combining a load to a new type. It handles 574 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 575 /// loaded *value* type. This will convert it to a pointer, cast the operand to 576 /// that pointer type, load it, etc. 577 /// 578 /// Note that this will create all of the instructions with whatever insert 579 /// point the \c InstCombinerImpl currently is using. 580 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy, 581 const Twine &Suffix) { 582 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 583 "can't fold an atomic load to requested type"); 584 585 Value *Ptr = LI.getPointerOperand(); 586 unsigned AS = LI.getPointerAddressSpace(); 587 Type *NewPtrTy = NewTy->getPointerTo(AS); 588 Value *NewPtr = nullptr; 589 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 590 NewPtr->getType() == NewPtrTy)) 591 NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy); 592 593 LoadInst *NewLoad = Builder.CreateAlignedLoad( 594 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); 595 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 596 copyMetadataForLoad(*NewLoad, LI); 597 return NewLoad; 598 } 599 600 /// Combine a store to a new type. 601 /// 602 /// Returns the newly created store instruction. 603 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI, 604 Value *V) { 605 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 606 "can't fold an atomic store of requested type"); 607 608 Value *Ptr = SI.getPointerOperand(); 609 unsigned AS = SI.getPointerAddressSpace(); 610 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 611 SI.getAllMetadata(MD); 612 613 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 614 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 615 SI.getAlign(), SI.isVolatile()); 616 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 617 for (const auto &MDPair : MD) { 618 unsigned ID = MDPair.first; 619 MDNode *N = MDPair.second; 620 // Note, essentially every kind of metadata should be preserved here! This 621 // routine is supposed to clone a store instruction changing *only its 622 // type*. The only metadata it makes sense to drop is metadata which is 623 // invalidated when the pointer type changes. This should essentially 624 // never be the case in LLVM, but we explicitly switch over only known 625 // metadata to be conservatively correct. If you are adding metadata to 626 // LLVM which pertains to stores, you almost certainly want to add it 627 // here. 628 switch (ID) { 629 case LLVMContext::MD_dbg: 630 case LLVMContext::MD_DIAssignID: 631 case LLVMContext::MD_tbaa: 632 case LLVMContext::MD_prof: 633 case LLVMContext::MD_fpmath: 634 case LLVMContext::MD_tbaa_struct: 635 case LLVMContext::MD_alias_scope: 636 case LLVMContext::MD_noalias: 637 case LLVMContext::MD_nontemporal: 638 case LLVMContext::MD_mem_parallel_loop_access: 639 case LLVMContext::MD_access_group: 640 // All of these directly apply. 641 NewStore->setMetadata(ID, N); 642 break; 643 case LLVMContext::MD_invariant_load: 644 case LLVMContext::MD_nonnull: 645 case LLVMContext::MD_noundef: 646 case LLVMContext::MD_range: 647 case LLVMContext::MD_align: 648 case LLVMContext::MD_dereferenceable: 649 case LLVMContext::MD_dereferenceable_or_null: 650 // These don't apply for stores. 651 break; 652 } 653 } 654 655 return NewStore; 656 } 657 658 /// Returns true if instruction represent minmax pattern like: 659 /// select ((cmp load V1, load V2), V1, V2). 660 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 661 assert(V->getType()->isPointerTy() && "Expected pointer type."); 662 // Ignore possible ty* to ixx* bitcast. 663 V = InstCombiner::peekThroughBitcast(V); 664 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 665 // pattern. 666 CmpInst::Predicate Pred; 667 Instruction *L1; 668 Instruction *L2; 669 Value *LHS; 670 Value *RHS; 671 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 672 m_Value(LHS), m_Value(RHS)))) 673 return false; 674 LoadTy = L1->getType(); 675 return (match(L1, m_Load(m_Specific(LHS))) && 676 match(L2, m_Load(m_Specific(RHS)))) || 677 (match(L1, m_Load(m_Specific(RHS))) && 678 match(L2, m_Load(m_Specific(LHS)))); 679 } 680 681 /// Combine loads to match the type of their uses' value after looking 682 /// through intervening bitcasts. 683 /// 684 /// The core idea here is that if the result of a load is used in an operation, 685 /// we should load the type most conducive to that operation. For example, when 686 /// loading an integer and converting that immediately to a pointer, we should 687 /// instead directly load a pointer. 688 /// 689 /// However, this routine must never change the width of a load or the number of 690 /// loads as that would introduce a semantic change. This combine is expected to 691 /// be a semantic no-op which just allows loads to more closely model the types 692 /// of their consuming operations. 693 /// 694 /// Currently, we also refuse to change the precise type used for an atomic load 695 /// or a volatile load. This is debatable, and might be reasonable to change 696 /// later. However, it is risky in case some backend or other part of LLVM is 697 /// relying on the exact type loaded to select appropriate atomic operations. 698 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC, 699 LoadInst &Load) { 700 // FIXME: We could probably with some care handle both volatile and ordered 701 // atomic loads here but it isn't clear that this is important. 702 if (!Load.isUnordered()) 703 return nullptr; 704 705 if (Load.use_empty()) 706 return nullptr; 707 708 // swifterror values can't be bitcasted. 709 if (Load.getPointerOperand()->isSwiftError()) 710 return nullptr; 711 712 // Fold away bit casts of the loaded value by loading the desired type. 713 // Note that we should not do this for pointer<->integer casts, 714 // because that would result in type punning. 715 if (Load.hasOneUse()) { 716 // Don't transform when the type is x86_amx, it makes the pass that lower 717 // x86_amx type happy. 718 Type *LoadTy = Load.getType(); 719 if (auto *BC = dyn_cast<BitCastInst>(Load.user_back())) { 720 assert(!LoadTy->isX86_AMXTy() && "Load from x86_amx* should not happen!"); 721 if (BC->getType()->isX86_AMXTy()) 722 return nullptr; 723 } 724 725 if (auto *CastUser = dyn_cast<CastInst>(Load.user_back())) { 726 Type *DestTy = CastUser->getDestTy(); 727 if (CastUser->isNoopCast(IC.getDataLayout()) && 728 LoadTy->isPtrOrPtrVectorTy() == DestTy->isPtrOrPtrVectorTy() && 729 (!Load.isAtomic() || isSupportedAtomicType(DestTy))) { 730 LoadInst *NewLoad = IC.combineLoadToNewType(Load, DestTy); 731 CastUser->replaceAllUsesWith(NewLoad); 732 IC.eraseInstFromFunction(*CastUser); 733 return &Load; 734 } 735 } 736 } 737 738 // FIXME: We should also canonicalize loads of vectors when their elements are 739 // cast to other types. 740 return nullptr; 741 } 742 743 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) { 744 // FIXME: We could probably with some care handle both volatile and atomic 745 // stores here but it isn't clear that this is important. 746 if (!LI.isSimple()) 747 return nullptr; 748 749 Type *T = LI.getType(); 750 if (!T->isAggregateType()) 751 return nullptr; 752 753 StringRef Name = LI.getName(); 754 755 if (auto *ST = dyn_cast<StructType>(T)) { 756 // If the struct only have one element, we unpack. 757 auto NumElements = ST->getNumElements(); 758 if (NumElements == 1) { 759 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 760 ".unpack"); 761 NewLoad->setAAMetadata(LI.getAAMetadata()); 762 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 763 PoisonValue::get(T), NewLoad, 0, Name)); 764 } 765 766 // We don't want to break loads with padding here as we'd loose 767 // the knowledge that padding exists for the rest of the pipeline. 768 const DataLayout &DL = IC.getDataLayout(); 769 auto *SL = DL.getStructLayout(ST); 770 771 // Don't unpack for structure with scalable vector. 772 if (SL->getSizeInBits().isScalable()) 773 return nullptr; 774 775 if (SL->hasPadding()) 776 return nullptr; 777 778 const auto Align = LI.getAlign(); 779 auto *Addr = LI.getPointerOperand(); 780 auto *IdxType = Type::getInt32Ty(T->getContext()); 781 auto *Zero = ConstantInt::get(IdxType, 0); 782 783 Value *V = PoisonValue::get(T); 784 for (unsigned i = 0; i < NumElements; i++) { 785 Value *Indices[2] = { 786 Zero, 787 ConstantInt::get(IdxType, i), 788 }; 789 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, ArrayRef(Indices), 790 Name + ".elt"); 791 auto *L = IC.Builder.CreateAlignedLoad( 792 ST->getElementType(i), Ptr, 793 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); 794 // Propagate AA metadata. It'll still be valid on the narrowed load. 795 L->setAAMetadata(LI.getAAMetadata()); 796 V = IC.Builder.CreateInsertValue(V, L, i); 797 } 798 799 V->setName(Name); 800 return IC.replaceInstUsesWith(LI, V); 801 } 802 803 if (auto *AT = dyn_cast<ArrayType>(T)) { 804 auto *ET = AT->getElementType(); 805 auto NumElements = AT->getNumElements(); 806 if (NumElements == 1) { 807 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 808 NewLoad->setAAMetadata(LI.getAAMetadata()); 809 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 810 PoisonValue::get(T), NewLoad, 0, Name)); 811 } 812 813 // Bail out if the array is too large. Ideally we would like to optimize 814 // arrays of arbitrary size but this has a terrible impact on compile time. 815 // The threshold here is chosen arbitrarily, maybe needs a little bit of 816 // tuning. 817 if (NumElements > IC.MaxArraySizeForCombine) 818 return nullptr; 819 820 const DataLayout &DL = IC.getDataLayout(); 821 auto EltSize = DL.getTypeAllocSize(ET); 822 const auto Align = LI.getAlign(); 823 824 auto *Addr = LI.getPointerOperand(); 825 auto *IdxType = Type::getInt64Ty(T->getContext()); 826 auto *Zero = ConstantInt::get(IdxType, 0); 827 828 Value *V = PoisonValue::get(T); 829 uint64_t Offset = 0; 830 for (uint64_t i = 0; i < NumElements; i++) { 831 Value *Indices[2] = { 832 Zero, 833 ConstantInt::get(IdxType, i), 834 }; 835 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, ArrayRef(Indices), 836 Name + ".elt"); 837 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, 838 commonAlignment(Align, Offset), 839 Name + ".unpack"); 840 L->setAAMetadata(LI.getAAMetadata()); 841 V = IC.Builder.CreateInsertValue(V, L, i); 842 Offset += EltSize; 843 } 844 845 V->setName(Name); 846 return IC.replaceInstUsesWith(LI, V); 847 } 848 849 return nullptr; 850 } 851 852 // If we can determine that all possible objects pointed to by the provided 853 // pointer value are, not only dereferenceable, but also definitively less than 854 // or equal to the provided maximum size, then return true. Otherwise, return 855 // false (constant global values and allocas fall into this category). 856 // 857 // FIXME: This should probably live in ValueTracking (or similar). 858 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 859 const DataLayout &DL) { 860 SmallPtrSet<Value *, 4> Visited; 861 SmallVector<Value *, 4> Worklist(1, V); 862 863 do { 864 Value *P = Worklist.pop_back_val(); 865 P = P->stripPointerCasts(); 866 867 if (!Visited.insert(P).second) 868 continue; 869 870 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 871 Worklist.push_back(SI->getTrueValue()); 872 Worklist.push_back(SI->getFalseValue()); 873 continue; 874 } 875 876 if (PHINode *PN = dyn_cast<PHINode>(P)) { 877 append_range(Worklist, PN->incoming_values()); 878 continue; 879 } 880 881 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 882 if (GA->isInterposable()) 883 return false; 884 Worklist.push_back(GA->getAliasee()); 885 continue; 886 } 887 888 // If we know how big this object is, and it is less than MaxSize, continue 889 // searching. Otherwise, return false. 890 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 891 if (!AI->getAllocatedType()->isSized()) 892 return false; 893 894 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 895 if (!CS) 896 return false; 897 898 TypeSize TS = DL.getTypeAllocSize(AI->getAllocatedType()); 899 if (TS.isScalable()) 900 return false; 901 // Make sure that, even if the multiplication below would wrap as an 902 // uint64_t, we still do the right thing. 903 if ((CS->getValue().zext(128) * APInt(128, TS.getFixedValue())) 904 .ugt(MaxSize)) 905 return false; 906 continue; 907 } 908 909 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 910 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 911 return false; 912 913 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 914 if (InitSize > MaxSize) 915 return false; 916 continue; 917 } 918 919 return false; 920 } while (!Worklist.empty()); 921 922 return true; 923 } 924 925 // If we're indexing into an object of a known size, and the outer index is 926 // not a constant, but having any value but zero would lead to undefined 927 // behavior, replace it with zero. 928 // 929 // For example, if we have: 930 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 931 // ... 932 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 933 // ... = load i32* %arrayidx, align 4 934 // Then we know that we can replace %x in the GEP with i64 0. 935 // 936 // FIXME: We could fold any GEP index to zero that would cause UB if it were 937 // not zero. Currently, we only handle the first such index. Also, we could 938 // also search through non-zero constant indices if we kept track of the 939 // offsets those indices implied. 940 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC, 941 GetElementPtrInst *GEPI, Instruction *MemI, 942 unsigned &Idx) { 943 if (GEPI->getNumOperands() < 2) 944 return false; 945 946 // Find the first non-zero index of a GEP. If all indices are zero, return 947 // one past the last index. 948 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 949 unsigned I = 1; 950 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 951 Value *V = GEPI->getOperand(I); 952 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 953 if (CI->isZero()) 954 continue; 955 956 break; 957 } 958 959 return I; 960 }; 961 962 // Skip through initial 'zero' indices, and find the corresponding pointer 963 // type. See if the next index is not a constant. 964 Idx = FirstNZIdx(GEPI); 965 if (Idx == GEPI->getNumOperands()) 966 return false; 967 if (isa<Constant>(GEPI->getOperand(Idx))) 968 return false; 969 970 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 971 Type *SourceElementType = GEPI->getSourceElementType(); 972 // Size information about scalable vectors is not available, so we cannot 973 // deduce whether indexing at n is undefined behaviour or not. Bail out. 974 if (isa<ScalableVectorType>(SourceElementType)) 975 return false; 976 977 Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops); 978 if (!AllocTy || !AllocTy->isSized()) 979 return false; 980 const DataLayout &DL = IC.getDataLayout(); 981 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedValue(); 982 983 // If there are more indices after the one we might replace with a zero, make 984 // sure they're all non-negative. If any of them are negative, the overall 985 // address being computed might be before the base address determined by the 986 // first non-zero index. 987 auto IsAllNonNegative = [&]() { 988 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 989 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 990 if (Known.isNonNegative()) 991 continue; 992 return false; 993 } 994 995 return true; 996 }; 997 998 // FIXME: If the GEP is not inbounds, and there are extra indices after the 999 // one we'll replace, those could cause the address computation to wrap 1000 // (rendering the IsAllNonNegative() check below insufficient). We can do 1001 // better, ignoring zero indices (and other indices we can prove small 1002 // enough not to wrap). 1003 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 1004 return false; 1005 1006 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 1007 // also known to be dereferenceable. 1008 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 1009 IsAllNonNegative(); 1010 } 1011 1012 // If we're indexing into an object with a variable index for the memory 1013 // access, but the object has only one element, we can assume that the index 1014 // will always be zero. If we replace the GEP, return it. 1015 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr, 1016 Instruction &MemI) { 1017 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 1018 unsigned Idx; 1019 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 1020 Instruction *NewGEPI = GEPI->clone(); 1021 NewGEPI->setOperand(Idx, 1022 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 1023 IC.InsertNewInstBefore(NewGEPI, *GEPI); 1024 return NewGEPI; 1025 } 1026 } 1027 1028 return nullptr; 1029 } 1030 1031 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 1032 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 1033 return false; 1034 1035 auto *Ptr = SI.getPointerOperand(); 1036 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 1037 Ptr = GEPI->getOperand(0); 1038 return (isa<ConstantPointerNull>(Ptr) && 1039 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 1040 } 1041 1042 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 1043 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 1044 const Value *GEPI0 = GEPI->getOperand(0); 1045 if (isa<ConstantPointerNull>(GEPI0) && 1046 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 1047 return true; 1048 } 1049 if (isa<UndefValue>(Op) || 1050 (isa<ConstantPointerNull>(Op) && 1051 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 1052 return true; 1053 return false; 1054 } 1055 1056 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) { 1057 Value *Op = LI.getOperand(0); 1058 if (Value *Res = simplifyLoadInst(&LI, Op, SQ.getWithInstruction(&LI))) 1059 return replaceInstUsesWith(LI, Res); 1060 1061 // Try to canonicalize the loaded type. 1062 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 1063 return Res; 1064 1065 // Attempt to improve the alignment. 1066 Align KnownAlign = getOrEnforceKnownAlignment( 1067 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); 1068 if (KnownAlign > LI.getAlign()) 1069 LI.setAlignment(KnownAlign); 1070 1071 // Replace GEP indices if possible. 1072 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) 1073 return replaceOperand(LI, 0, NewGEPI); 1074 1075 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 1076 return Res; 1077 1078 // Do really simple store-to-load forwarding and load CSE, to catch cases 1079 // where there are several consecutive memory accesses to the same location, 1080 // separated by a few arithmetic operations. 1081 bool IsLoadCSE = false; 1082 if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) { 1083 if (IsLoadCSE) 1084 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 1085 1086 return replaceInstUsesWith( 1087 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 1088 LI.getName() + ".cast")); 1089 } 1090 1091 // None of the following transforms are legal for volatile/ordered atomic 1092 // loads. Most of them do apply for unordered atomics. 1093 if (!LI.isUnordered()) return nullptr; 1094 1095 // load(gep null, ...) -> unreachable 1096 // load null/undef -> unreachable 1097 // TODO: Consider a target hook for valid address spaces for this xforms. 1098 if (canSimplifyNullLoadOrGEP(LI, Op)) { 1099 CreateNonTerminatorUnreachable(&LI); 1100 return replaceInstUsesWith(LI, PoisonValue::get(LI.getType())); 1101 } 1102 1103 if (Op->hasOneUse()) { 1104 // Change select and PHI nodes to select values instead of addresses: this 1105 // helps alias analysis out a lot, allows many others simplifications, and 1106 // exposes redundancy in the code. 1107 // 1108 // Note that we cannot do the transformation unless we know that the 1109 // introduced loads cannot trap! Something like this is valid as long as 1110 // the condition is always false: load (select bool %C, int* null, int* %G), 1111 // but it would not be valid if we transformed it to load from null 1112 // unconditionally. 1113 // 1114 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1115 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1116 Align Alignment = LI.getAlign(); 1117 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 1118 Alignment, DL, SI) && 1119 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 1120 Alignment, DL, SI)) { 1121 LoadInst *V1 = 1122 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 1123 SI->getOperand(1)->getName() + ".val"); 1124 LoadInst *V2 = 1125 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1126 SI->getOperand(2)->getName() + ".val"); 1127 assert(LI.isUnordered() && "implied by above"); 1128 V1->setAlignment(Alignment); 1129 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1130 V2->setAlignment(Alignment); 1131 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1132 return SelectInst::Create(SI->getCondition(), V1, V2); 1133 } 1134 1135 // load (select (cond, null, P)) -> load P 1136 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1137 !NullPointerIsDefined(SI->getFunction(), 1138 LI.getPointerAddressSpace())) 1139 return replaceOperand(LI, 0, SI->getOperand(2)); 1140 1141 // load (select (cond, P, null)) -> load P 1142 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1143 !NullPointerIsDefined(SI->getFunction(), 1144 LI.getPointerAddressSpace())) 1145 return replaceOperand(LI, 0, SI->getOperand(1)); 1146 } 1147 } 1148 return nullptr; 1149 } 1150 1151 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1152 /// 1153 /// \returns underlying value that was "cast", or nullptr otherwise. 1154 /// 1155 /// For example, if we have: 1156 /// 1157 /// %E0 = extractelement <2 x double> %U, i32 0 1158 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1159 /// %E1 = extractelement <2 x double> %U, i32 1 1160 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1161 /// 1162 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1163 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1164 /// Note that %U may contain non-undef values where %V1 has undef. 1165 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) { 1166 Value *U = nullptr; 1167 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1168 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1169 if (!E) 1170 return nullptr; 1171 auto *W = E->getVectorOperand(); 1172 if (!U) 1173 U = W; 1174 else if (U != W) 1175 return nullptr; 1176 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1177 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1178 return nullptr; 1179 V = IV->getAggregateOperand(); 1180 } 1181 if (!match(V, m_Undef()) || !U) 1182 return nullptr; 1183 1184 auto *UT = cast<VectorType>(U->getType()); 1185 auto *VT = V->getType(); 1186 // Check that types UT and VT are bitwise isomorphic. 1187 const auto &DL = IC.getDataLayout(); 1188 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1189 return nullptr; 1190 } 1191 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1192 if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1193 return nullptr; 1194 } else { 1195 auto *ST = cast<StructType>(VT); 1196 if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1197 return nullptr; 1198 for (const auto *EltT : ST->elements()) { 1199 if (EltT != UT->getElementType()) 1200 return nullptr; 1201 } 1202 } 1203 return U; 1204 } 1205 1206 /// Combine stores to match the type of value being stored. 1207 /// 1208 /// The core idea here is that the memory does not have any intrinsic type and 1209 /// where we can we should match the type of a store to the type of value being 1210 /// stored. 1211 /// 1212 /// However, this routine must never change the width of a store or the number of 1213 /// stores as that would introduce a semantic change. This combine is expected to 1214 /// be a semantic no-op which just allows stores to more closely model the types 1215 /// of their incoming values. 1216 /// 1217 /// Currently, we also refuse to change the precise type used for an atomic or 1218 /// volatile store. This is debatable, and might be reasonable to change later. 1219 /// However, it is risky in case some backend or other part of LLVM is relying 1220 /// on the exact type stored to select appropriate atomic operations. 1221 /// 1222 /// \returns true if the store was successfully combined away. This indicates 1223 /// the caller must erase the store instruction. We have to let the caller erase 1224 /// the store instruction as otherwise there is no way to signal whether it was 1225 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1226 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) { 1227 // FIXME: We could probably with some care handle both volatile and ordered 1228 // atomic stores here but it isn't clear that this is important. 1229 if (!SI.isUnordered()) 1230 return false; 1231 1232 // swifterror values can't be bitcasted. 1233 if (SI.getPointerOperand()->isSwiftError()) 1234 return false; 1235 1236 Value *V = SI.getValueOperand(); 1237 1238 // Fold away bit casts of the stored value by storing the original type. 1239 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1240 assert(!BC->getType()->isX86_AMXTy() && 1241 "store to x86_amx* should not happen!"); 1242 V = BC->getOperand(0); 1243 // Don't transform when the type is x86_amx, it makes the pass that lower 1244 // x86_amx type happy. 1245 if (V->getType()->isX86_AMXTy()) 1246 return false; 1247 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1248 combineStoreToNewValue(IC, SI, V); 1249 return true; 1250 } 1251 } 1252 1253 if (Value *U = likeBitCastFromVector(IC, V)) 1254 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1255 combineStoreToNewValue(IC, SI, U); 1256 return true; 1257 } 1258 1259 // FIXME: We should also canonicalize stores of vectors when their elements 1260 // are cast to other types. 1261 return false; 1262 } 1263 1264 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) { 1265 // FIXME: We could probably with some care handle both volatile and atomic 1266 // stores here but it isn't clear that this is important. 1267 if (!SI.isSimple()) 1268 return false; 1269 1270 Value *V = SI.getValueOperand(); 1271 Type *T = V->getType(); 1272 1273 if (!T->isAggregateType()) 1274 return false; 1275 1276 if (auto *ST = dyn_cast<StructType>(T)) { 1277 // If the struct only have one element, we unpack. 1278 unsigned Count = ST->getNumElements(); 1279 if (Count == 1) { 1280 V = IC.Builder.CreateExtractValue(V, 0); 1281 combineStoreToNewValue(IC, SI, V); 1282 return true; 1283 } 1284 1285 // We don't want to break loads with padding here as we'd loose 1286 // the knowledge that padding exists for the rest of the pipeline. 1287 const DataLayout &DL = IC.getDataLayout(); 1288 auto *SL = DL.getStructLayout(ST); 1289 1290 // Don't unpack for structure with scalable vector. 1291 if (SL->getSizeInBits().isScalable()) 1292 return false; 1293 1294 if (SL->hasPadding()) 1295 return false; 1296 1297 const auto Align = SI.getAlign(); 1298 1299 SmallString<16> EltName = V->getName(); 1300 EltName += ".elt"; 1301 auto *Addr = SI.getPointerOperand(); 1302 SmallString<16> AddrName = Addr->getName(); 1303 AddrName += ".repack"; 1304 1305 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1306 auto *Zero = ConstantInt::get(IdxType, 0); 1307 for (unsigned i = 0; i < Count; i++) { 1308 Value *Indices[2] = { 1309 Zero, 1310 ConstantInt::get(IdxType, i), 1311 }; 1312 auto *Ptr = 1313 IC.Builder.CreateInBoundsGEP(ST, Addr, ArrayRef(Indices), AddrName); 1314 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1315 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); 1316 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1317 NS->setAAMetadata(SI.getAAMetadata()); 1318 } 1319 1320 return true; 1321 } 1322 1323 if (auto *AT = dyn_cast<ArrayType>(T)) { 1324 // If the array only have one element, we unpack. 1325 auto NumElements = AT->getNumElements(); 1326 if (NumElements == 1) { 1327 V = IC.Builder.CreateExtractValue(V, 0); 1328 combineStoreToNewValue(IC, SI, V); 1329 return true; 1330 } 1331 1332 // Bail out if the array is too large. Ideally we would like to optimize 1333 // arrays of arbitrary size but this has a terrible impact on compile time. 1334 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1335 // tuning. 1336 if (NumElements > IC.MaxArraySizeForCombine) 1337 return false; 1338 1339 const DataLayout &DL = IC.getDataLayout(); 1340 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1341 const auto Align = SI.getAlign(); 1342 1343 SmallString<16> EltName = V->getName(); 1344 EltName += ".elt"; 1345 auto *Addr = SI.getPointerOperand(); 1346 SmallString<16> AddrName = Addr->getName(); 1347 AddrName += ".repack"; 1348 1349 auto *IdxType = Type::getInt64Ty(T->getContext()); 1350 auto *Zero = ConstantInt::get(IdxType, 0); 1351 1352 uint64_t Offset = 0; 1353 for (uint64_t i = 0; i < NumElements; i++) { 1354 Value *Indices[2] = { 1355 Zero, 1356 ConstantInt::get(IdxType, i), 1357 }; 1358 auto *Ptr = 1359 IC.Builder.CreateInBoundsGEP(AT, Addr, ArrayRef(Indices), AddrName); 1360 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1361 auto EltAlign = commonAlignment(Align, Offset); 1362 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1363 NS->setAAMetadata(SI.getAAMetadata()); 1364 Offset += EltSize; 1365 } 1366 1367 return true; 1368 } 1369 1370 return false; 1371 } 1372 1373 /// equivalentAddressValues - Test if A and B will obviously have the same 1374 /// value. This includes recognizing that %t0 and %t1 will have the same 1375 /// value in code like this: 1376 /// %t0 = getelementptr \@a, 0, 3 1377 /// store i32 0, i32* %t0 1378 /// %t1 = getelementptr \@a, 0, 3 1379 /// %t2 = load i32* %t1 1380 /// 1381 static bool equivalentAddressValues(Value *A, Value *B) { 1382 // Test if the values are trivially equivalent. 1383 if (A == B) return true; 1384 1385 // Test if the values come form identical arithmetic instructions. 1386 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1387 // its only used to compare two uses within the same basic block, which 1388 // means that they'll always either have the same value or one of them 1389 // will have an undefined value. 1390 if (isa<BinaryOperator>(A) || 1391 isa<CastInst>(A) || 1392 isa<PHINode>(A) || 1393 isa<GetElementPtrInst>(A)) 1394 if (Instruction *BI = dyn_cast<Instruction>(B)) 1395 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1396 return true; 1397 1398 // Otherwise they may not be equivalent. 1399 return false; 1400 } 1401 1402 /// Converts store (bitcast (load (bitcast (select ...)))) to 1403 /// store (load (select ...)), where select is minmax: 1404 /// select ((cmp load V1, load V2), V1, V2). 1405 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC, 1406 StoreInst &SI) { 1407 // bitcast? 1408 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1409 return false; 1410 // load? integer? 1411 Value *LoadAddr; 1412 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1413 return false; 1414 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1415 if (!LI->getType()->isIntegerTy()) 1416 return false; 1417 Type *CmpLoadTy; 1418 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1419 return false; 1420 1421 // Make sure the type would actually change. 1422 // This condition can be hit with chains of bitcasts. 1423 if (LI->getType() == CmpLoadTy) 1424 return false; 1425 1426 // Make sure we're not changing the size of the load/store. 1427 const auto &DL = IC.getDataLayout(); 1428 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1429 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1430 return false; 1431 1432 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1433 auto *SI = dyn_cast<StoreInst>(U); 1434 return SI && SI->getPointerOperand() != LI && 1435 InstCombiner::peekThroughBitcast(SI->getPointerOperand()) != 1436 LoadAddr && 1437 !SI->getPointerOperand()->isSwiftError(); 1438 })) 1439 return false; 1440 1441 IC.Builder.SetInsertPoint(LI); 1442 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1443 // Replace all the stores with stores of the newly loaded value. 1444 for (auto *UI : LI->users()) { 1445 auto *USI = cast<StoreInst>(UI); 1446 IC.Builder.SetInsertPoint(USI); 1447 combineStoreToNewValue(IC, *USI, NewLI); 1448 } 1449 IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 1450 IC.eraseInstFromFunction(*LI); 1451 return true; 1452 } 1453 1454 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) { 1455 Value *Val = SI.getOperand(0); 1456 Value *Ptr = SI.getOperand(1); 1457 1458 // Try to canonicalize the stored type. 1459 if (combineStoreToValueType(*this, SI)) 1460 return eraseInstFromFunction(SI); 1461 1462 // Attempt to improve the alignment. 1463 const Align KnownAlign = getOrEnforceKnownAlignment( 1464 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); 1465 if (KnownAlign > SI.getAlign()) 1466 SI.setAlignment(KnownAlign); 1467 1468 // Try to canonicalize the stored type. 1469 if (unpackStoreToAggregate(*this, SI)) 1470 return eraseInstFromFunction(SI); 1471 1472 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1473 return eraseInstFromFunction(SI); 1474 1475 // Replace GEP indices if possible. 1476 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) 1477 return replaceOperand(SI, 1, NewGEPI); 1478 1479 // Don't hack volatile/ordered stores. 1480 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1481 if (!SI.isUnordered()) return nullptr; 1482 1483 // If the RHS is an alloca with a single use, zapify the store, making the 1484 // alloca dead. 1485 if (Ptr->hasOneUse()) { 1486 if (isa<AllocaInst>(Ptr)) 1487 return eraseInstFromFunction(SI); 1488 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1489 if (isa<AllocaInst>(GEP->getOperand(0))) { 1490 if (GEP->getOperand(0)->hasOneUse()) 1491 return eraseInstFromFunction(SI); 1492 } 1493 } 1494 } 1495 1496 // If we have a store to a location which is known constant, we can conclude 1497 // that the store must be storing the constant value (else the memory 1498 // wouldn't be constant), and this must be a noop. 1499 if (!isModSet(AA->getModRefInfoMask(Ptr))) 1500 return eraseInstFromFunction(SI); 1501 1502 // Do really simple DSE, to catch cases where there are several consecutive 1503 // stores to the same location, separated by a few arithmetic operations. This 1504 // situation often occurs with bitfield accesses. 1505 BasicBlock::iterator BBI(SI); 1506 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1507 --ScanInsts) { 1508 --BBI; 1509 // Don't count debug info directives, lest they affect codegen, 1510 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1511 if (BBI->isDebugOrPseudoInst() || 1512 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1513 ScanInsts++; 1514 continue; 1515 } 1516 1517 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1518 // Prev store isn't volatile, and stores to the same location? 1519 if (PrevSI->isUnordered() && 1520 equivalentAddressValues(PrevSI->getOperand(1), SI.getOperand(1)) && 1521 PrevSI->getValueOperand()->getType() == 1522 SI.getValueOperand()->getType()) { 1523 ++NumDeadStore; 1524 // Manually add back the original store to the worklist now, so it will 1525 // be processed after the operands of the removed store, as this may 1526 // expose additional DSE opportunities. 1527 Worklist.push(&SI); 1528 eraseInstFromFunction(*PrevSI); 1529 return nullptr; 1530 } 1531 break; 1532 } 1533 1534 // If this is a load, we have to stop. However, if the loaded value is from 1535 // the pointer we're loading and is producing the pointer we're storing, 1536 // then *this* store is dead (X = load P; store X -> P). 1537 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1538 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1539 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1540 return eraseInstFromFunction(SI); 1541 } 1542 1543 // Otherwise, this is a load from some other location. Stores before it 1544 // may not be dead. 1545 break; 1546 } 1547 1548 // Don't skip over loads, throws or things that can modify memory. 1549 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1550 break; 1551 } 1552 1553 // store X, null -> turns into 'unreachable' in SimplifyCFG 1554 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1555 if (canSimplifyNullStoreOrGEP(SI)) { 1556 if (!isa<PoisonValue>(Val)) 1557 return replaceOperand(SI, 0, PoisonValue::get(Val->getType())); 1558 return nullptr; // Do not modify these! 1559 } 1560 1561 // This is a non-terminator unreachable marker. Don't remove it. 1562 if (isa<UndefValue>(Ptr)) { 1563 // Remove all instructions after the marker and guaranteed-to-transfer 1564 // instructions before the marker. 1565 if (handleUnreachableFrom(SI.getNextNode()) || 1566 removeInstructionsBeforeUnreachable(SI)) 1567 return &SI; 1568 return nullptr; 1569 } 1570 1571 // store undef, Ptr -> noop 1572 // FIXME: This is technically incorrect because it might overwrite a poison 1573 // value. Change to PoisonValue once #52930 is resolved. 1574 if (isa<UndefValue>(Val)) 1575 return eraseInstFromFunction(SI); 1576 1577 return nullptr; 1578 } 1579 1580 /// Try to transform: 1581 /// if () { *P = v1; } else { *P = v2 } 1582 /// or: 1583 /// *P = v1; if () { *P = v2; } 1584 /// into a phi node with a store in the successor. 1585 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) { 1586 if (!SI.isUnordered()) 1587 return false; // This code has not been audited for volatile/ordered case. 1588 1589 // Check if the successor block has exactly 2 incoming edges. 1590 BasicBlock *StoreBB = SI.getParent(); 1591 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1592 if (!DestBB->hasNPredecessors(2)) 1593 return false; 1594 1595 // Capture the other block (the block that doesn't contain our store). 1596 pred_iterator PredIter = pred_begin(DestBB); 1597 if (*PredIter == StoreBB) 1598 ++PredIter; 1599 BasicBlock *OtherBB = *PredIter; 1600 1601 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1602 // for example, if SI is in an infinite loop. 1603 if (StoreBB == DestBB || OtherBB == DestBB) 1604 return false; 1605 1606 // Verify that the other block ends in a branch and is not otherwise empty. 1607 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1608 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1609 if (!OtherBr || BBI == OtherBB->begin()) 1610 return false; 1611 1612 auto OtherStoreIsMergeable = [&](StoreInst *OtherStore) -> bool { 1613 if (!OtherStore || 1614 OtherStore->getPointerOperand() != SI.getPointerOperand()) 1615 return false; 1616 1617 auto *SIVTy = SI.getValueOperand()->getType(); 1618 auto *OSVTy = OtherStore->getValueOperand()->getType(); 1619 return CastInst::isBitOrNoopPointerCastable(OSVTy, SIVTy, DL) && 1620 SI.hasSameSpecialState(OtherStore); 1621 }; 1622 1623 // If the other block ends in an unconditional branch, check for the 'if then 1624 // else' case. There is an instruction before the branch. 1625 StoreInst *OtherStore = nullptr; 1626 if (OtherBr->isUnconditional()) { 1627 --BBI; 1628 // Skip over debugging info and pseudo probes. 1629 while (BBI->isDebugOrPseudoInst() || 1630 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1631 if (BBI==OtherBB->begin()) 1632 return false; 1633 --BBI; 1634 } 1635 // If this isn't a store, isn't a store to the same location, or is not the 1636 // right kind of store, bail out. 1637 OtherStore = dyn_cast<StoreInst>(BBI); 1638 if (!OtherStoreIsMergeable(OtherStore)) 1639 return false; 1640 } else { 1641 // Otherwise, the other block ended with a conditional branch. If one of the 1642 // destinations is StoreBB, then we have the if/then case. 1643 if (OtherBr->getSuccessor(0) != StoreBB && 1644 OtherBr->getSuccessor(1) != StoreBB) 1645 return false; 1646 1647 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1648 // if/then triangle. See if there is a store to the same ptr as SI that 1649 // lives in OtherBB. 1650 for (;; --BBI) { 1651 // Check to see if we find the matching store. 1652 OtherStore = dyn_cast<StoreInst>(BBI); 1653 if (OtherStoreIsMergeable(OtherStore)) 1654 break; 1655 1656 // If we find something that may be using or overwriting the stored 1657 // value, or if we run out of instructions, we can't do the transform. 1658 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1659 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1660 return false; 1661 } 1662 1663 // In order to eliminate the store in OtherBr, we have to make sure nothing 1664 // reads or overwrites the stored value in StoreBB. 1665 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1666 // FIXME: This should really be AA driven. 1667 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1668 return false; 1669 } 1670 } 1671 1672 // Insert a PHI node now if we need it. 1673 Value *MergedVal = OtherStore->getValueOperand(); 1674 // The debug locations of the original instructions might differ. Merge them. 1675 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1676 OtherStore->getDebugLoc()); 1677 if (MergedVal != SI.getValueOperand()) { 1678 PHINode *PN = 1679 PHINode::Create(SI.getValueOperand()->getType(), 2, "storemerge"); 1680 PN->addIncoming(SI.getValueOperand(), SI.getParent()); 1681 Builder.SetInsertPoint(OtherStore); 1682 PN->addIncoming(Builder.CreateBitOrPointerCast(MergedVal, PN->getType()), 1683 OtherBB); 1684 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1685 PN->setDebugLoc(MergedLoc); 1686 } 1687 1688 // Advance to a place where it is safe to insert the new store and insert it. 1689 BBI = DestBB->getFirstInsertionPt(); 1690 StoreInst *NewSI = 1691 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), 1692 SI.getOrdering(), SI.getSyncScopeID()); 1693 InsertNewInstBefore(NewSI, *BBI); 1694 NewSI->setDebugLoc(MergedLoc); 1695 NewSI->mergeDIAssignID({&SI, OtherStore}); 1696 1697 // If the two stores had AA tags, merge them. 1698 AAMDNodes AATags = SI.getAAMetadata(); 1699 if (AATags) 1700 NewSI->setAAMetadata(AATags.merge(OtherStore->getAAMetadata())); 1701 1702 // Nuke the old stores. 1703 eraseInstFromFunction(SI); 1704 eraseInstFromFunction(*OtherStore); 1705 return true; 1706 } 1707