1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 36 37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 38 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 39 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 41 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 42 /// the alloca, and if the source pointer is a pointer to a constant global, we 43 /// can optimize this. 44 static bool 45 isOnlyCopiedFromConstantMemory(AAResults *AA, 46 Value *V, MemTransferInst *&TheCopy, 47 SmallVectorImpl<Instruction *> &ToDelete) { 48 // We track lifetime intrinsics as we encounter them. If we decide to go 49 // ahead and replace the value with the global, this lets the caller quickly 50 // eliminate the markers. 51 52 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 53 ValuesToInspect.emplace_back(V, false); 54 while (!ValuesToInspect.empty()) { 55 auto ValuePair = ValuesToInspect.pop_back_val(); 56 const bool IsOffset = ValuePair.second; 57 for (auto &U : ValuePair.first->uses()) { 58 auto *I = cast<Instruction>(U.getUser()); 59 60 if (auto *LI = dyn_cast<LoadInst>(I)) { 61 // Ignore non-volatile loads, they are always ok. 62 if (!LI->isSimple()) return false; 63 continue; 64 } 65 66 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 67 // If uses of the bitcast are ok, we are ok. 68 ValuesToInspect.emplace_back(I, IsOffset); 69 continue; 70 } 71 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 72 // If the GEP has all zero indices, it doesn't offset the pointer. If it 73 // doesn't, it does. 74 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 75 continue; 76 } 77 78 if (auto *Call = dyn_cast<CallBase>(I)) { 79 // If this is the function being called then we treat it like a load and 80 // ignore it. 81 if (Call->isCallee(&U)) 82 continue; 83 84 unsigned DataOpNo = Call->getDataOperandNo(&U); 85 bool IsArgOperand = Call->isArgOperand(&U); 86 87 // Inalloca arguments are clobbered by the call. 88 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 89 return false; 90 91 // If this is a readonly/readnone call site, then we know it is just a 92 // load (but one that potentially returns the value itself), so we can 93 // ignore it if we know that the value isn't captured. 94 if (Call->onlyReadsMemory() && 95 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 96 continue; 97 98 // If this is being passed as a byval argument, the caller is making a 99 // copy, so it is only a read of the alloca. 100 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 101 continue; 102 } 103 104 // Lifetime intrinsics can be handled by the caller. 105 if (I->isLifetimeStartOrEnd()) { 106 assert(I->use_empty() && "Lifetime markers have no result to use!"); 107 ToDelete.push_back(I); 108 continue; 109 } 110 111 // If this is isn't our memcpy/memmove, reject it as something we can't 112 // handle. 113 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 114 if (!MI) 115 return false; 116 117 // If the transfer is using the alloca as a source of the transfer, then 118 // ignore it since it is a load (unless the transfer is volatile). 119 if (U.getOperandNo() == 1) { 120 if (MI->isVolatile()) return false; 121 continue; 122 } 123 124 // If we already have seen a copy, reject the second one. 125 if (TheCopy) return false; 126 127 // If the pointer has been offset from the start of the alloca, we can't 128 // safely handle this. 129 if (IsOffset) return false; 130 131 // If the memintrinsic isn't using the alloca as the dest, reject it. 132 if (U.getOperandNo() != 0) return false; 133 134 // If the source of the memcpy/move is not a constant global, reject it. 135 if (!AA->pointsToConstantMemory(MI->getSource())) 136 return false; 137 138 // Otherwise, the transform is safe. Remember the copy instruction. 139 TheCopy = MI; 140 } 141 } 142 return true; 143 } 144 145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 146 /// modified by a copy from a constant global. If we can prove this, we can 147 /// replace any uses of the alloca with uses of the global directly. 148 static MemTransferInst * 149 isOnlyCopiedFromConstantMemory(AAResults *AA, 150 AllocaInst *AI, 151 SmallVectorImpl<Instruction *> &ToDelete) { 152 MemTransferInst *TheCopy = nullptr; 153 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) 154 return TheCopy; 155 return nullptr; 156 } 157 158 /// Returns true if V is dereferenceable for size of alloca. 159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 160 const DataLayout &DL) { 161 if (AI->isArrayAllocation()) 162 return false; 163 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 164 if (!AllocaSize) 165 return false; 166 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()), 167 APInt(64, AllocaSize), DL); 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC, 171 AllocaInst &AI) { 172 // Check for array size of 1 (scalar allocation). 173 if (!AI.isArrayAllocation()) { 174 // i32 1 is the canonical array size for scalar allocations. 175 if (AI.getArraySize()->getType()->isIntegerTy(32)) 176 return nullptr; 177 178 // Canonicalize it. 179 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); 180 } 181 182 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 183 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 184 if (C->getValue().getActiveBits() <= 64) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 187 New->setAlignment(AI.getAlign()); 188 189 // Scan to the end of the allocation instructions, to skip over a block of 190 // allocas if possible...also skip interleaved debug info 191 // 192 BasicBlock::iterator It(New); 193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 194 ++It; 195 196 // Now that I is pointing to the first non-allocation-inst in the block, 197 // insert our getelementptr instruction... 198 // 199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 200 Value *NullIdx = Constant::getNullValue(IdxTy); 201 Value *Idx[2] = {NullIdx, NullIdx}; 202 Instruction *NewI = GetElementPtrInst::CreateInBounds( 203 NewTy, New, Idx, New->getName() + ".sub"); 204 IC.InsertNewInstBefore(NewI, *It); 205 206 // Gracefully handle allocas in other address spaces. 207 if (AI.getType()->getPointerAddressSpace() != 208 NewI->getType()->getPointerAddressSpace()) { 209 NewI = 210 CastInst::CreatePointerBitCastOrAddrSpaceCast(NewI, AI.getType()); 211 IC.InsertNewInstBefore(NewI, *It); 212 } 213 214 // Now make everything use the getelementptr instead of the original 215 // allocation. 216 return IC.replaceInstUsesWith(AI, NewI); 217 } 218 } 219 220 if (isa<UndefValue>(AI.getArraySize())) 221 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 222 223 // Ensure that the alloca array size argument has type intptr_t, so that 224 // any casting is exposed early. 225 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 226 if (AI.getArraySize()->getType() != IntPtrTy) { 227 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 228 return IC.replaceOperand(AI, 0, V); 229 } 230 231 return nullptr; 232 } 233 234 namespace { 235 // If I and V are pointers in different address space, it is not allowed to 236 // use replaceAllUsesWith since I and V have different types. A 237 // non-target-specific transformation should not use addrspacecast on V since 238 // the two address space may be disjoint depending on target. 239 // 240 // This class chases down uses of the old pointer until reaching the load 241 // instructions, then replaces the old pointer in the load instructions with 242 // the new pointer. If during the chasing it sees bitcast or GEP, it will 243 // create new bitcast or GEP with the new pointer and use them in the load 244 // instruction. 245 class PointerReplacer { 246 public: 247 PointerReplacer(InstCombinerImpl &IC) : IC(IC) {} 248 249 bool collectUsers(Instruction &I); 250 void replacePointer(Instruction &I, Value *V); 251 252 private: 253 void replace(Instruction *I); 254 Value *getReplacement(Value *I); 255 256 SmallSetVector<Instruction *, 4> Worklist; 257 MapVector<Value *, Value *> WorkMap; 258 InstCombinerImpl &IC; 259 }; 260 } // end anonymous namespace 261 262 bool PointerReplacer::collectUsers(Instruction &I) { 263 for (auto U : I.users()) { 264 auto *Inst = cast<Instruction>(&*U); 265 if (auto *Load = dyn_cast<LoadInst>(Inst)) { 266 if (Load->isVolatile()) 267 return false; 268 Worklist.insert(Load); 269 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 270 Worklist.insert(Inst); 271 if (!collectUsers(*Inst)) 272 return false; 273 } else if (auto *MI = dyn_cast<MemTransferInst>(Inst)) { 274 if (MI->isVolatile()) 275 return false; 276 Worklist.insert(Inst); 277 } else if (Inst->isLifetimeStartOrEnd()) { 278 continue; 279 } else { 280 LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n'); 281 return false; 282 } 283 } 284 285 return true; 286 } 287 288 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); } 289 290 void PointerReplacer::replace(Instruction *I) { 291 if (getReplacement(I)) 292 return; 293 294 if (auto *LT = dyn_cast<LoadInst>(I)) { 295 auto *V = getReplacement(LT->getPointerOperand()); 296 assert(V && "Operand not replaced"); 297 auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(), 298 LT->getAlign(), LT->getOrdering(), 299 LT->getSyncScopeID()); 300 NewI->takeName(LT); 301 copyMetadataForLoad(*NewI, *LT); 302 303 IC.InsertNewInstWith(NewI, *LT); 304 IC.replaceInstUsesWith(*LT, NewI); 305 WorkMap[LT] = NewI; 306 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 307 auto *V = getReplacement(GEP->getPointerOperand()); 308 assert(V && "Operand not replaced"); 309 SmallVector<Value *, 8> Indices; 310 Indices.append(GEP->idx_begin(), GEP->idx_end()); 311 auto *NewI = GetElementPtrInst::Create( 312 V->getType()->getPointerElementType(), V, Indices); 313 IC.InsertNewInstWith(NewI, *GEP); 314 NewI->takeName(GEP); 315 WorkMap[GEP] = NewI; 316 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 317 auto *V = getReplacement(BC->getOperand(0)); 318 assert(V && "Operand not replaced"); 319 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 320 V->getType()->getPointerAddressSpace()); 321 auto *NewI = new BitCastInst(V, NewT); 322 IC.InsertNewInstWith(NewI, *BC); 323 NewI->takeName(BC); 324 WorkMap[BC] = NewI; 325 } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) { 326 auto *SrcV = getReplacement(MemCpy->getRawSource()); 327 // The pointer may appear in the destination of a copy, but we don't want to 328 // replace it. 329 if (!SrcV) { 330 assert(getReplacement(MemCpy->getRawDest()) && 331 "destination not in replace list"); 332 return; 333 } 334 335 IC.Builder.SetInsertPoint(MemCpy); 336 auto *NewI = IC.Builder.CreateMemTransferInst( 337 MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(), 338 SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(), 339 MemCpy->isVolatile()); 340 AAMDNodes AAMD; 341 MemCpy->getAAMetadata(AAMD); 342 if (AAMD) 343 NewI->setAAMetadata(AAMD); 344 345 IC.eraseInstFromFunction(*MemCpy); 346 WorkMap[MemCpy] = NewI; 347 } else { 348 llvm_unreachable("should never reach here"); 349 } 350 } 351 352 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 353 #ifndef NDEBUG 354 auto *PT = cast<PointerType>(I.getType()); 355 auto *NT = cast<PointerType>(V->getType()); 356 assert(PT != NT && PT->getElementType() == NT->getElementType() && 357 "Invalid usage"); 358 #endif 359 WorkMap[&I] = V; 360 361 for (Instruction *Workitem : Worklist) 362 replace(Workitem); 363 } 364 365 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) { 366 if (auto *I = simplifyAllocaArraySize(*this, AI)) 367 return I; 368 369 if (AI.getAllocatedType()->isSized()) { 370 // Move all alloca's of zero byte objects to the entry block and merge them 371 // together. Note that we only do this for alloca's, because malloc should 372 // allocate and return a unique pointer, even for a zero byte allocation. 373 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) { 374 // For a zero sized alloca there is no point in doing an array allocation. 375 // This is helpful if the array size is a complicated expression not used 376 // elsewhere. 377 if (AI.isArrayAllocation()) 378 return replaceOperand(AI, 0, 379 ConstantInt::get(AI.getArraySize()->getType(), 1)); 380 381 // Get the first instruction in the entry block. 382 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 383 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 384 if (FirstInst != &AI) { 385 // If the entry block doesn't start with a zero-size alloca then move 386 // this one to the start of the entry block. There is no problem with 387 // dominance as the array size was forced to a constant earlier already. 388 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 389 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 390 DL.getTypeAllocSize(EntryAI->getAllocatedType()) 391 .getKnownMinSize() != 0) { 392 AI.moveBefore(FirstInst); 393 return &AI; 394 } 395 396 // Replace this zero-sized alloca with the one at the start of the entry 397 // block after ensuring that the address will be aligned enough for both 398 // types. 399 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); 400 EntryAI->setAlignment(MaxAlign); 401 if (AI.getType() != EntryAI->getType()) 402 return new BitCastInst(EntryAI, AI.getType()); 403 return replaceInstUsesWith(AI, EntryAI); 404 } 405 } 406 } 407 408 // Check to see if this allocation is only modified by a memcpy/memmove from 409 // a constant whose alignment is equal to or exceeds that of the allocation. 410 // If this is the case, we can change all users to use the constant global 411 // instead. This is commonly produced by the CFE by constructs like "void 412 // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently 413 // read. 414 SmallVector<Instruction *, 4> ToDelete; 415 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { 416 Value *TheSrc = Copy->getSource(); 417 Align AllocaAlign = AI.getAlign(); 418 Align SourceAlign = getOrEnforceKnownAlignment( 419 TheSrc, AllocaAlign, DL, &AI, &AC, &DT); 420 if (AllocaAlign <= SourceAlign && 421 isDereferenceableForAllocaSize(TheSrc, &AI, DL) && 422 !isa<Instruction>(TheSrc)) { 423 // FIXME: Can we sink instructions without violating dominance when TheSrc 424 // is an instruction instead of a constant or argument? 425 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 426 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 427 unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace(); 428 auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace); 429 if (AI.getType()->getAddressSpace() == SrcAddrSpace) { 430 for (Instruction *Delete : ToDelete) 431 eraseInstFromFunction(*Delete); 432 433 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 434 Instruction *NewI = replaceInstUsesWith(AI, Cast); 435 eraseInstFromFunction(*Copy); 436 ++NumGlobalCopies; 437 return NewI; 438 } 439 440 PointerReplacer PtrReplacer(*this); 441 if (PtrReplacer.collectUsers(AI)) { 442 for (Instruction *Delete : ToDelete) 443 eraseInstFromFunction(*Delete); 444 445 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 446 PtrReplacer.replacePointer(AI, Cast); 447 ++NumGlobalCopies; 448 } 449 } 450 } 451 452 // At last, use the generic allocation site handler to aggressively remove 453 // unused allocas. 454 return visitAllocSite(AI); 455 } 456 457 // Are we allowed to form a atomic load or store of this type? 458 static bool isSupportedAtomicType(Type *Ty) { 459 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 460 } 461 462 /// Helper to combine a load to a new type. 463 /// 464 /// This just does the work of combining a load to a new type. It handles 465 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 466 /// loaded *value* type. This will convert it to a pointer, cast the operand to 467 /// that pointer type, load it, etc. 468 /// 469 /// Note that this will create all of the instructions with whatever insert 470 /// point the \c InstCombinerImpl currently is using. 471 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy, 472 const Twine &Suffix) { 473 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 474 "can't fold an atomic load to requested type"); 475 476 Value *Ptr = LI.getPointerOperand(); 477 unsigned AS = LI.getPointerAddressSpace(); 478 Type *NewPtrTy = NewTy->getPointerTo(AS); 479 Value *NewPtr = nullptr; 480 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 481 NewPtr->getType() == NewPtrTy)) 482 NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy); 483 484 LoadInst *NewLoad = Builder.CreateAlignedLoad( 485 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); 486 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 487 copyMetadataForLoad(*NewLoad, LI); 488 return NewLoad; 489 } 490 491 /// Combine a store to a new type. 492 /// 493 /// Returns the newly created store instruction. 494 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI, 495 Value *V) { 496 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 497 "can't fold an atomic store of requested type"); 498 499 Value *Ptr = SI.getPointerOperand(); 500 unsigned AS = SI.getPointerAddressSpace(); 501 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 502 SI.getAllMetadata(MD); 503 504 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 505 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 506 SI.getAlign(), SI.isVolatile()); 507 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 508 for (const auto &MDPair : MD) { 509 unsigned ID = MDPair.first; 510 MDNode *N = MDPair.second; 511 // Note, essentially every kind of metadata should be preserved here! This 512 // routine is supposed to clone a store instruction changing *only its 513 // type*. The only metadata it makes sense to drop is metadata which is 514 // invalidated when the pointer type changes. This should essentially 515 // never be the case in LLVM, but we explicitly switch over only known 516 // metadata to be conservatively correct. If you are adding metadata to 517 // LLVM which pertains to stores, you almost certainly want to add it 518 // here. 519 switch (ID) { 520 case LLVMContext::MD_dbg: 521 case LLVMContext::MD_tbaa: 522 case LLVMContext::MD_prof: 523 case LLVMContext::MD_fpmath: 524 case LLVMContext::MD_tbaa_struct: 525 case LLVMContext::MD_alias_scope: 526 case LLVMContext::MD_noalias: 527 case LLVMContext::MD_nontemporal: 528 case LLVMContext::MD_mem_parallel_loop_access: 529 case LLVMContext::MD_access_group: 530 // All of these directly apply. 531 NewStore->setMetadata(ID, N); 532 break; 533 case LLVMContext::MD_invariant_load: 534 case LLVMContext::MD_nonnull: 535 case LLVMContext::MD_noundef: 536 case LLVMContext::MD_range: 537 case LLVMContext::MD_align: 538 case LLVMContext::MD_dereferenceable: 539 case LLVMContext::MD_dereferenceable_or_null: 540 // These don't apply for stores. 541 break; 542 } 543 } 544 545 return NewStore; 546 } 547 548 /// Returns true if instruction represent minmax pattern like: 549 /// select ((cmp load V1, load V2), V1, V2). 550 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 551 assert(V->getType()->isPointerTy() && "Expected pointer type."); 552 // Ignore possible ty* to ixx* bitcast. 553 V = InstCombiner::peekThroughBitcast(V); 554 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 555 // pattern. 556 CmpInst::Predicate Pred; 557 Instruction *L1; 558 Instruction *L2; 559 Value *LHS; 560 Value *RHS; 561 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 562 m_Value(LHS), m_Value(RHS)))) 563 return false; 564 LoadTy = L1->getType(); 565 return (match(L1, m_Load(m_Specific(LHS))) && 566 match(L2, m_Load(m_Specific(RHS)))) || 567 (match(L1, m_Load(m_Specific(RHS))) && 568 match(L2, m_Load(m_Specific(LHS)))); 569 } 570 571 /// Combine loads to match the type of their uses' value after looking 572 /// through intervening bitcasts. 573 /// 574 /// The core idea here is that if the result of a load is used in an operation, 575 /// we should load the type most conducive to that operation. For example, when 576 /// loading an integer and converting that immediately to a pointer, we should 577 /// instead directly load a pointer. 578 /// 579 /// However, this routine must never change the width of a load or the number of 580 /// loads as that would introduce a semantic change. This combine is expected to 581 /// be a semantic no-op which just allows loads to more closely model the types 582 /// of their consuming operations. 583 /// 584 /// Currently, we also refuse to change the precise type used for an atomic load 585 /// or a volatile load. This is debatable, and might be reasonable to change 586 /// later. However, it is risky in case some backend or other part of LLVM is 587 /// relying on the exact type loaded to select appropriate atomic operations. 588 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC, 589 LoadInst &LI) { 590 // FIXME: We could probably with some care handle both volatile and ordered 591 // atomic loads here but it isn't clear that this is important. 592 if (!LI.isUnordered()) 593 return nullptr; 594 595 if (LI.use_empty()) 596 return nullptr; 597 598 // swifterror values can't be bitcasted. 599 if (LI.getPointerOperand()->isSwiftError()) 600 return nullptr; 601 602 const DataLayout &DL = IC.getDataLayout(); 603 604 // Fold away bit casts of the loaded value by loading the desired type. 605 // Note that we should not do this for pointer<->integer casts, 606 // because that would result in type punning. 607 if (LI.hasOneUse()) { 608 // Don't transform when the type is x86_amx, it makes the pass that lower 609 // x86_amx type happy. 610 if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) { 611 assert(!LI.getType()->isX86_AMXTy() && 612 "load from x86_amx* should not happen!"); 613 if (BC->getType()->isX86_AMXTy()) 614 return nullptr; 615 } 616 617 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 618 if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() == 619 CI->getDestTy()->isPtrOrPtrVectorTy()) 620 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 621 LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy()); 622 CI->replaceAllUsesWith(NewLoad); 623 IC.eraseInstFromFunction(*CI); 624 return &LI; 625 } 626 } 627 628 // FIXME: We should also canonicalize loads of vectors when their elements are 629 // cast to other types. 630 return nullptr; 631 } 632 633 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) { 634 // FIXME: We could probably with some care handle both volatile and atomic 635 // stores here but it isn't clear that this is important. 636 if (!LI.isSimple()) 637 return nullptr; 638 639 Type *T = LI.getType(); 640 if (!T->isAggregateType()) 641 return nullptr; 642 643 StringRef Name = LI.getName(); 644 assert(LI.getAlignment() && "Alignment must be set at this point"); 645 646 if (auto *ST = dyn_cast<StructType>(T)) { 647 // If the struct only have one element, we unpack. 648 auto NumElements = ST->getNumElements(); 649 if (NumElements == 1) { 650 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 651 ".unpack"); 652 AAMDNodes AAMD; 653 LI.getAAMetadata(AAMD); 654 NewLoad->setAAMetadata(AAMD); 655 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 656 UndefValue::get(T), NewLoad, 0, Name)); 657 } 658 659 // We don't want to break loads with padding here as we'd loose 660 // the knowledge that padding exists for the rest of the pipeline. 661 const DataLayout &DL = IC.getDataLayout(); 662 auto *SL = DL.getStructLayout(ST); 663 if (SL->hasPadding()) 664 return nullptr; 665 666 const auto Align = LI.getAlign(); 667 auto *Addr = LI.getPointerOperand(); 668 auto *IdxType = Type::getInt32Ty(T->getContext()); 669 auto *Zero = ConstantInt::get(IdxType, 0); 670 671 Value *V = UndefValue::get(T); 672 for (unsigned i = 0; i < NumElements; i++) { 673 Value *Indices[2] = { 674 Zero, 675 ConstantInt::get(IdxType, i), 676 }; 677 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 678 Name + ".elt"); 679 auto *L = IC.Builder.CreateAlignedLoad( 680 ST->getElementType(i), Ptr, 681 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); 682 // Propagate AA metadata. It'll still be valid on the narrowed load. 683 AAMDNodes AAMD; 684 LI.getAAMetadata(AAMD); 685 L->setAAMetadata(AAMD); 686 V = IC.Builder.CreateInsertValue(V, L, i); 687 } 688 689 V->setName(Name); 690 return IC.replaceInstUsesWith(LI, V); 691 } 692 693 if (auto *AT = dyn_cast<ArrayType>(T)) { 694 auto *ET = AT->getElementType(); 695 auto NumElements = AT->getNumElements(); 696 if (NumElements == 1) { 697 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 698 AAMDNodes AAMD; 699 LI.getAAMetadata(AAMD); 700 NewLoad->setAAMetadata(AAMD); 701 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 702 UndefValue::get(T), NewLoad, 0, Name)); 703 } 704 705 // Bail out if the array is too large. Ideally we would like to optimize 706 // arrays of arbitrary size but this has a terrible impact on compile time. 707 // The threshold here is chosen arbitrarily, maybe needs a little bit of 708 // tuning. 709 if (NumElements > IC.MaxArraySizeForCombine) 710 return nullptr; 711 712 const DataLayout &DL = IC.getDataLayout(); 713 auto EltSize = DL.getTypeAllocSize(ET); 714 const auto Align = LI.getAlign(); 715 716 auto *Addr = LI.getPointerOperand(); 717 auto *IdxType = Type::getInt64Ty(T->getContext()); 718 auto *Zero = ConstantInt::get(IdxType, 0); 719 720 Value *V = UndefValue::get(T); 721 uint64_t Offset = 0; 722 for (uint64_t i = 0; i < NumElements; i++) { 723 Value *Indices[2] = { 724 Zero, 725 ConstantInt::get(IdxType, i), 726 }; 727 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 728 Name + ".elt"); 729 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, 730 commonAlignment(Align, Offset), 731 Name + ".unpack"); 732 AAMDNodes AAMD; 733 LI.getAAMetadata(AAMD); 734 L->setAAMetadata(AAMD); 735 V = IC.Builder.CreateInsertValue(V, L, i); 736 Offset += EltSize; 737 } 738 739 V->setName(Name); 740 return IC.replaceInstUsesWith(LI, V); 741 } 742 743 return nullptr; 744 } 745 746 // If we can determine that all possible objects pointed to by the provided 747 // pointer value are, not only dereferenceable, but also definitively less than 748 // or equal to the provided maximum size, then return true. Otherwise, return 749 // false (constant global values and allocas fall into this category). 750 // 751 // FIXME: This should probably live in ValueTracking (or similar). 752 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 753 const DataLayout &DL) { 754 SmallPtrSet<Value *, 4> Visited; 755 SmallVector<Value *, 4> Worklist(1, V); 756 757 do { 758 Value *P = Worklist.pop_back_val(); 759 P = P->stripPointerCasts(); 760 761 if (!Visited.insert(P).second) 762 continue; 763 764 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 765 Worklist.push_back(SI->getTrueValue()); 766 Worklist.push_back(SI->getFalseValue()); 767 continue; 768 } 769 770 if (PHINode *PN = dyn_cast<PHINode>(P)) { 771 append_range(Worklist, PN->incoming_values()); 772 continue; 773 } 774 775 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 776 if (GA->isInterposable()) 777 return false; 778 Worklist.push_back(GA->getAliasee()); 779 continue; 780 } 781 782 // If we know how big this object is, and it is less than MaxSize, continue 783 // searching. Otherwise, return false. 784 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 785 if (!AI->getAllocatedType()->isSized()) 786 return false; 787 788 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 789 if (!CS) 790 return false; 791 792 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 793 // Make sure that, even if the multiplication below would wrap as an 794 // uint64_t, we still do the right thing. 795 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 796 return false; 797 continue; 798 } 799 800 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 801 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 802 return false; 803 804 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 805 if (InitSize > MaxSize) 806 return false; 807 continue; 808 } 809 810 return false; 811 } while (!Worklist.empty()); 812 813 return true; 814 } 815 816 // If we're indexing into an object of a known size, and the outer index is 817 // not a constant, but having any value but zero would lead to undefined 818 // behavior, replace it with zero. 819 // 820 // For example, if we have: 821 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 822 // ... 823 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 824 // ... = load i32* %arrayidx, align 4 825 // Then we know that we can replace %x in the GEP with i64 0. 826 // 827 // FIXME: We could fold any GEP index to zero that would cause UB if it were 828 // not zero. Currently, we only handle the first such index. Also, we could 829 // also search through non-zero constant indices if we kept track of the 830 // offsets those indices implied. 831 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC, 832 GetElementPtrInst *GEPI, Instruction *MemI, 833 unsigned &Idx) { 834 if (GEPI->getNumOperands() < 2) 835 return false; 836 837 // Find the first non-zero index of a GEP. If all indices are zero, return 838 // one past the last index. 839 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 840 unsigned I = 1; 841 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 842 Value *V = GEPI->getOperand(I); 843 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 844 if (CI->isZero()) 845 continue; 846 847 break; 848 } 849 850 return I; 851 }; 852 853 // Skip through initial 'zero' indices, and find the corresponding pointer 854 // type. See if the next index is not a constant. 855 Idx = FirstNZIdx(GEPI); 856 if (Idx == GEPI->getNumOperands()) 857 return false; 858 if (isa<Constant>(GEPI->getOperand(Idx))) 859 return false; 860 861 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 862 Type *SourceElementType = GEPI->getSourceElementType(); 863 // Size information about scalable vectors is not available, so we cannot 864 // deduce whether indexing at n is undefined behaviour or not. Bail out. 865 if (isa<ScalableVectorType>(SourceElementType)) 866 return false; 867 868 Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops); 869 if (!AllocTy || !AllocTy->isSized()) 870 return false; 871 const DataLayout &DL = IC.getDataLayout(); 872 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize(); 873 874 // If there are more indices after the one we might replace with a zero, make 875 // sure they're all non-negative. If any of them are negative, the overall 876 // address being computed might be before the base address determined by the 877 // first non-zero index. 878 auto IsAllNonNegative = [&]() { 879 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 880 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 881 if (Known.isNonNegative()) 882 continue; 883 return false; 884 } 885 886 return true; 887 }; 888 889 // FIXME: If the GEP is not inbounds, and there are extra indices after the 890 // one we'll replace, those could cause the address computation to wrap 891 // (rendering the IsAllNonNegative() check below insufficient). We can do 892 // better, ignoring zero indices (and other indices we can prove small 893 // enough not to wrap). 894 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 895 return false; 896 897 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 898 // also known to be dereferenceable. 899 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 900 IsAllNonNegative(); 901 } 902 903 // If we're indexing into an object with a variable index for the memory 904 // access, but the object has only one element, we can assume that the index 905 // will always be zero. If we replace the GEP, return it. 906 template <typename T> 907 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr, 908 T &MemI) { 909 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 910 unsigned Idx; 911 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 912 Instruction *NewGEPI = GEPI->clone(); 913 NewGEPI->setOperand(Idx, 914 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 915 NewGEPI->insertBefore(GEPI); 916 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 917 return NewGEPI; 918 } 919 } 920 921 return nullptr; 922 } 923 924 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 925 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 926 return false; 927 928 auto *Ptr = SI.getPointerOperand(); 929 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 930 Ptr = GEPI->getOperand(0); 931 return (isa<ConstantPointerNull>(Ptr) && 932 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 933 } 934 935 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 936 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 937 const Value *GEPI0 = GEPI->getOperand(0); 938 if (isa<ConstantPointerNull>(GEPI0) && 939 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 940 return true; 941 } 942 if (isa<UndefValue>(Op) || 943 (isa<ConstantPointerNull>(Op) && 944 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 945 return true; 946 return false; 947 } 948 949 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) { 950 Value *Op = LI.getOperand(0); 951 952 // Try to canonicalize the loaded type. 953 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 954 return Res; 955 956 // Attempt to improve the alignment. 957 Align KnownAlign = getOrEnforceKnownAlignment( 958 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); 959 if (KnownAlign > LI.getAlign()) 960 LI.setAlignment(KnownAlign); 961 962 // Replace GEP indices if possible. 963 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 964 Worklist.push(NewGEPI); 965 return &LI; 966 } 967 968 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 969 return Res; 970 971 // Do really simple store-to-load forwarding and load CSE, to catch cases 972 // where there are several consecutive memory accesses to the same location, 973 // separated by a few arithmetic operations. 974 bool IsLoadCSE = false; 975 if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) { 976 if (IsLoadCSE) 977 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 978 979 return replaceInstUsesWith( 980 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 981 LI.getName() + ".cast")); 982 } 983 984 // None of the following transforms are legal for volatile/ordered atomic 985 // loads. Most of them do apply for unordered atomics. 986 if (!LI.isUnordered()) return nullptr; 987 988 // load(gep null, ...) -> unreachable 989 // load null/undef -> unreachable 990 // TODO: Consider a target hook for valid address spaces for this xforms. 991 if (canSimplifyNullLoadOrGEP(LI, Op)) { 992 // Insert a new store to null instruction before the load to indicate 993 // that this code is not reachable. We do this instead of inserting 994 // an unreachable instruction directly because we cannot modify the 995 // CFG. 996 StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()), 997 Constant::getNullValue(Op->getType()), &LI); 998 SI->setDebugLoc(LI.getDebugLoc()); 999 return replaceInstUsesWith(LI, PoisonValue::get(LI.getType())); 1000 } 1001 1002 if (Op->hasOneUse()) { 1003 // Change select and PHI nodes to select values instead of addresses: this 1004 // helps alias analysis out a lot, allows many others simplifications, and 1005 // exposes redundancy in the code. 1006 // 1007 // Note that we cannot do the transformation unless we know that the 1008 // introduced loads cannot trap! Something like this is valid as long as 1009 // the condition is always false: load (select bool %C, int* null, int* %G), 1010 // but it would not be valid if we transformed it to load from null 1011 // unconditionally. 1012 // 1013 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1014 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1015 Align Alignment = LI.getAlign(); 1016 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 1017 Alignment, DL, SI) && 1018 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 1019 Alignment, DL, SI)) { 1020 LoadInst *V1 = 1021 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 1022 SI->getOperand(1)->getName() + ".val"); 1023 LoadInst *V2 = 1024 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1025 SI->getOperand(2)->getName() + ".val"); 1026 assert(LI.isUnordered() && "implied by above"); 1027 V1->setAlignment(Alignment); 1028 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1029 V2->setAlignment(Alignment); 1030 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1031 return SelectInst::Create(SI->getCondition(), V1, V2); 1032 } 1033 1034 // load (select (cond, null, P)) -> load P 1035 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1036 !NullPointerIsDefined(SI->getFunction(), 1037 LI.getPointerAddressSpace())) 1038 return replaceOperand(LI, 0, SI->getOperand(2)); 1039 1040 // load (select (cond, P, null)) -> load P 1041 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1042 !NullPointerIsDefined(SI->getFunction(), 1043 LI.getPointerAddressSpace())) 1044 return replaceOperand(LI, 0, SI->getOperand(1)); 1045 } 1046 } 1047 return nullptr; 1048 } 1049 1050 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1051 /// 1052 /// \returns underlying value that was "cast", or nullptr otherwise. 1053 /// 1054 /// For example, if we have: 1055 /// 1056 /// %E0 = extractelement <2 x double> %U, i32 0 1057 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1058 /// %E1 = extractelement <2 x double> %U, i32 1 1059 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1060 /// 1061 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1062 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1063 /// Note that %U may contain non-undef values where %V1 has undef. 1064 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) { 1065 Value *U = nullptr; 1066 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1067 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1068 if (!E) 1069 return nullptr; 1070 auto *W = E->getVectorOperand(); 1071 if (!U) 1072 U = W; 1073 else if (U != W) 1074 return nullptr; 1075 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1076 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1077 return nullptr; 1078 V = IV->getAggregateOperand(); 1079 } 1080 if (!match(V, m_Undef()) || !U) 1081 return nullptr; 1082 1083 auto *UT = cast<VectorType>(U->getType()); 1084 auto *VT = V->getType(); 1085 // Check that types UT and VT are bitwise isomorphic. 1086 const auto &DL = IC.getDataLayout(); 1087 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1088 return nullptr; 1089 } 1090 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1091 if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1092 return nullptr; 1093 } else { 1094 auto *ST = cast<StructType>(VT); 1095 if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1096 return nullptr; 1097 for (const auto *EltT : ST->elements()) { 1098 if (EltT != UT->getElementType()) 1099 return nullptr; 1100 } 1101 } 1102 return U; 1103 } 1104 1105 /// Combine stores to match the type of value being stored. 1106 /// 1107 /// The core idea here is that the memory does not have any intrinsic type and 1108 /// where we can we should match the type of a store to the type of value being 1109 /// stored. 1110 /// 1111 /// However, this routine must never change the width of a store or the number of 1112 /// stores as that would introduce a semantic change. This combine is expected to 1113 /// be a semantic no-op which just allows stores to more closely model the types 1114 /// of their incoming values. 1115 /// 1116 /// Currently, we also refuse to change the precise type used for an atomic or 1117 /// volatile store. This is debatable, and might be reasonable to change later. 1118 /// However, it is risky in case some backend or other part of LLVM is relying 1119 /// on the exact type stored to select appropriate atomic operations. 1120 /// 1121 /// \returns true if the store was successfully combined away. This indicates 1122 /// the caller must erase the store instruction. We have to let the caller erase 1123 /// the store instruction as otherwise there is no way to signal whether it was 1124 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1125 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) { 1126 // FIXME: We could probably with some care handle both volatile and ordered 1127 // atomic stores here but it isn't clear that this is important. 1128 if (!SI.isUnordered()) 1129 return false; 1130 1131 // swifterror values can't be bitcasted. 1132 if (SI.getPointerOperand()->isSwiftError()) 1133 return false; 1134 1135 Value *V = SI.getValueOperand(); 1136 1137 // Fold away bit casts of the stored value by storing the original type. 1138 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1139 assert(!BC->getType()->isX86_AMXTy() && 1140 "store to x86_amx* should not happen!"); 1141 V = BC->getOperand(0); 1142 // Don't transform when the type is x86_amx, it makes the pass that lower 1143 // x86_amx type happy. 1144 if (V->getType()->isX86_AMXTy()) 1145 return false; 1146 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1147 combineStoreToNewValue(IC, SI, V); 1148 return true; 1149 } 1150 } 1151 1152 if (Value *U = likeBitCastFromVector(IC, V)) 1153 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1154 combineStoreToNewValue(IC, SI, U); 1155 return true; 1156 } 1157 1158 // FIXME: We should also canonicalize stores of vectors when their elements 1159 // are cast to other types. 1160 return false; 1161 } 1162 1163 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) { 1164 // FIXME: We could probably with some care handle both volatile and atomic 1165 // stores here but it isn't clear that this is important. 1166 if (!SI.isSimple()) 1167 return false; 1168 1169 Value *V = SI.getValueOperand(); 1170 Type *T = V->getType(); 1171 1172 if (!T->isAggregateType()) 1173 return false; 1174 1175 if (auto *ST = dyn_cast<StructType>(T)) { 1176 // If the struct only have one element, we unpack. 1177 unsigned Count = ST->getNumElements(); 1178 if (Count == 1) { 1179 V = IC.Builder.CreateExtractValue(V, 0); 1180 combineStoreToNewValue(IC, SI, V); 1181 return true; 1182 } 1183 1184 // We don't want to break loads with padding here as we'd loose 1185 // the knowledge that padding exists for the rest of the pipeline. 1186 const DataLayout &DL = IC.getDataLayout(); 1187 auto *SL = DL.getStructLayout(ST); 1188 if (SL->hasPadding()) 1189 return false; 1190 1191 const auto Align = SI.getAlign(); 1192 1193 SmallString<16> EltName = V->getName(); 1194 EltName += ".elt"; 1195 auto *Addr = SI.getPointerOperand(); 1196 SmallString<16> AddrName = Addr->getName(); 1197 AddrName += ".repack"; 1198 1199 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1200 auto *Zero = ConstantInt::get(IdxType, 0); 1201 for (unsigned i = 0; i < Count; i++) { 1202 Value *Indices[2] = { 1203 Zero, 1204 ConstantInt::get(IdxType, i), 1205 }; 1206 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1207 AddrName); 1208 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1209 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); 1210 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1211 AAMDNodes AAMD; 1212 SI.getAAMetadata(AAMD); 1213 NS->setAAMetadata(AAMD); 1214 } 1215 1216 return true; 1217 } 1218 1219 if (auto *AT = dyn_cast<ArrayType>(T)) { 1220 // If the array only have one element, we unpack. 1221 auto NumElements = AT->getNumElements(); 1222 if (NumElements == 1) { 1223 V = IC.Builder.CreateExtractValue(V, 0); 1224 combineStoreToNewValue(IC, SI, V); 1225 return true; 1226 } 1227 1228 // Bail out if the array is too large. Ideally we would like to optimize 1229 // arrays of arbitrary size but this has a terrible impact on compile time. 1230 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1231 // tuning. 1232 if (NumElements > IC.MaxArraySizeForCombine) 1233 return false; 1234 1235 const DataLayout &DL = IC.getDataLayout(); 1236 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1237 const auto Align = SI.getAlign(); 1238 1239 SmallString<16> EltName = V->getName(); 1240 EltName += ".elt"; 1241 auto *Addr = SI.getPointerOperand(); 1242 SmallString<16> AddrName = Addr->getName(); 1243 AddrName += ".repack"; 1244 1245 auto *IdxType = Type::getInt64Ty(T->getContext()); 1246 auto *Zero = ConstantInt::get(IdxType, 0); 1247 1248 uint64_t Offset = 0; 1249 for (uint64_t i = 0; i < NumElements; i++) { 1250 Value *Indices[2] = { 1251 Zero, 1252 ConstantInt::get(IdxType, i), 1253 }; 1254 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1255 AddrName); 1256 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1257 auto EltAlign = commonAlignment(Align, Offset); 1258 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1259 AAMDNodes AAMD; 1260 SI.getAAMetadata(AAMD); 1261 NS->setAAMetadata(AAMD); 1262 Offset += EltSize; 1263 } 1264 1265 return true; 1266 } 1267 1268 return false; 1269 } 1270 1271 /// equivalentAddressValues - Test if A and B will obviously have the same 1272 /// value. This includes recognizing that %t0 and %t1 will have the same 1273 /// value in code like this: 1274 /// %t0 = getelementptr \@a, 0, 3 1275 /// store i32 0, i32* %t0 1276 /// %t1 = getelementptr \@a, 0, 3 1277 /// %t2 = load i32* %t1 1278 /// 1279 static bool equivalentAddressValues(Value *A, Value *B) { 1280 // Test if the values are trivially equivalent. 1281 if (A == B) return true; 1282 1283 // Test if the values come form identical arithmetic instructions. 1284 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1285 // its only used to compare two uses within the same basic block, which 1286 // means that they'll always either have the same value or one of them 1287 // will have an undefined value. 1288 if (isa<BinaryOperator>(A) || 1289 isa<CastInst>(A) || 1290 isa<PHINode>(A) || 1291 isa<GetElementPtrInst>(A)) 1292 if (Instruction *BI = dyn_cast<Instruction>(B)) 1293 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1294 return true; 1295 1296 // Otherwise they may not be equivalent. 1297 return false; 1298 } 1299 1300 /// Converts store (bitcast (load (bitcast (select ...)))) to 1301 /// store (load (select ...)), where select is minmax: 1302 /// select ((cmp load V1, load V2), V1, V2). 1303 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC, 1304 StoreInst &SI) { 1305 // bitcast? 1306 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1307 return false; 1308 // load? integer? 1309 Value *LoadAddr; 1310 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1311 return false; 1312 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1313 if (!LI->getType()->isIntegerTy()) 1314 return false; 1315 Type *CmpLoadTy; 1316 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1317 return false; 1318 1319 // Make sure the type would actually change. 1320 // This condition can be hit with chains of bitcasts. 1321 if (LI->getType() == CmpLoadTy) 1322 return false; 1323 1324 // Make sure we're not changing the size of the load/store. 1325 const auto &DL = IC.getDataLayout(); 1326 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1327 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1328 return false; 1329 1330 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1331 auto *SI = dyn_cast<StoreInst>(U); 1332 return SI && SI->getPointerOperand() != LI && 1333 InstCombiner::peekThroughBitcast(SI->getPointerOperand()) != 1334 LoadAddr && 1335 !SI->getPointerOperand()->isSwiftError(); 1336 })) 1337 return false; 1338 1339 IC.Builder.SetInsertPoint(LI); 1340 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1341 // Replace all the stores with stores of the newly loaded value. 1342 for (auto *UI : LI->users()) { 1343 auto *USI = cast<StoreInst>(UI); 1344 IC.Builder.SetInsertPoint(USI); 1345 combineStoreToNewValue(IC, *USI, NewLI); 1346 } 1347 IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 1348 IC.eraseInstFromFunction(*LI); 1349 return true; 1350 } 1351 1352 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) { 1353 Value *Val = SI.getOperand(0); 1354 Value *Ptr = SI.getOperand(1); 1355 1356 // Try to canonicalize the stored type. 1357 if (combineStoreToValueType(*this, SI)) 1358 return eraseInstFromFunction(SI); 1359 1360 // Attempt to improve the alignment. 1361 const Align KnownAlign = getOrEnforceKnownAlignment( 1362 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); 1363 if (KnownAlign > SI.getAlign()) 1364 SI.setAlignment(KnownAlign); 1365 1366 // Try to canonicalize the stored type. 1367 if (unpackStoreToAggregate(*this, SI)) 1368 return eraseInstFromFunction(SI); 1369 1370 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1371 return eraseInstFromFunction(SI); 1372 1373 // Replace GEP indices if possible. 1374 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1375 Worklist.push(NewGEPI); 1376 return &SI; 1377 } 1378 1379 // Don't hack volatile/ordered stores. 1380 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1381 if (!SI.isUnordered()) return nullptr; 1382 1383 // If the RHS is an alloca with a single use, zapify the store, making the 1384 // alloca dead. 1385 if (Ptr->hasOneUse()) { 1386 if (isa<AllocaInst>(Ptr)) 1387 return eraseInstFromFunction(SI); 1388 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1389 if (isa<AllocaInst>(GEP->getOperand(0))) { 1390 if (GEP->getOperand(0)->hasOneUse()) 1391 return eraseInstFromFunction(SI); 1392 } 1393 } 1394 } 1395 1396 // If we have a store to a location which is known constant, we can conclude 1397 // that the store must be storing the constant value (else the memory 1398 // wouldn't be constant), and this must be a noop. 1399 if (AA->pointsToConstantMemory(Ptr)) 1400 return eraseInstFromFunction(SI); 1401 1402 // Do really simple DSE, to catch cases where there are several consecutive 1403 // stores to the same location, separated by a few arithmetic operations. This 1404 // situation often occurs with bitfield accesses. 1405 BasicBlock::iterator BBI(SI); 1406 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1407 --ScanInsts) { 1408 --BBI; 1409 // Don't count debug info directives, lest they affect codegen, 1410 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1411 if (BBI->isDebugOrPseudoInst() || 1412 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1413 ScanInsts++; 1414 continue; 1415 } 1416 1417 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1418 // Prev store isn't volatile, and stores to the same location? 1419 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1420 SI.getOperand(1))) { 1421 ++NumDeadStore; 1422 // Manually add back the original store to the worklist now, so it will 1423 // be processed after the operands of the removed store, as this may 1424 // expose additional DSE opportunities. 1425 Worklist.push(&SI); 1426 eraseInstFromFunction(*PrevSI); 1427 return nullptr; 1428 } 1429 break; 1430 } 1431 1432 // If this is a load, we have to stop. However, if the loaded value is from 1433 // the pointer we're loading and is producing the pointer we're storing, 1434 // then *this* store is dead (X = load P; store X -> P). 1435 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1436 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1437 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1438 return eraseInstFromFunction(SI); 1439 } 1440 1441 // Otherwise, this is a load from some other location. Stores before it 1442 // may not be dead. 1443 break; 1444 } 1445 1446 // Don't skip over loads, throws or things that can modify memory. 1447 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1448 break; 1449 } 1450 1451 // store X, null -> turns into 'unreachable' in SimplifyCFG 1452 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1453 if (canSimplifyNullStoreOrGEP(SI)) { 1454 if (!isa<PoisonValue>(Val)) 1455 return replaceOperand(SI, 0, PoisonValue::get(Val->getType())); 1456 return nullptr; // Do not modify these! 1457 } 1458 1459 // store undef, Ptr -> noop 1460 if (isa<UndefValue>(Val)) 1461 return eraseInstFromFunction(SI); 1462 1463 return nullptr; 1464 } 1465 1466 /// Try to transform: 1467 /// if () { *P = v1; } else { *P = v2 } 1468 /// or: 1469 /// *P = v1; if () { *P = v2; } 1470 /// into a phi node with a store in the successor. 1471 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) { 1472 if (!SI.isUnordered()) 1473 return false; // This code has not been audited for volatile/ordered case. 1474 1475 // Check if the successor block has exactly 2 incoming edges. 1476 BasicBlock *StoreBB = SI.getParent(); 1477 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1478 if (!DestBB->hasNPredecessors(2)) 1479 return false; 1480 1481 // Capture the other block (the block that doesn't contain our store). 1482 pred_iterator PredIter = pred_begin(DestBB); 1483 if (*PredIter == StoreBB) 1484 ++PredIter; 1485 BasicBlock *OtherBB = *PredIter; 1486 1487 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1488 // for example, if SI is in an infinite loop. 1489 if (StoreBB == DestBB || OtherBB == DestBB) 1490 return false; 1491 1492 // Verify that the other block ends in a branch and is not otherwise empty. 1493 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1494 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1495 if (!OtherBr || BBI == OtherBB->begin()) 1496 return false; 1497 1498 // If the other block ends in an unconditional branch, check for the 'if then 1499 // else' case. There is an instruction before the branch. 1500 StoreInst *OtherStore = nullptr; 1501 if (OtherBr->isUnconditional()) { 1502 --BBI; 1503 // Skip over debugging info. 1504 while (isa<DbgInfoIntrinsic>(BBI) || 1505 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1506 if (BBI==OtherBB->begin()) 1507 return false; 1508 --BBI; 1509 } 1510 // If this isn't a store, isn't a store to the same location, or is not the 1511 // right kind of store, bail out. 1512 OtherStore = dyn_cast<StoreInst>(BBI); 1513 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1514 !SI.isSameOperationAs(OtherStore)) 1515 return false; 1516 } else { 1517 // Otherwise, the other block ended with a conditional branch. If one of the 1518 // destinations is StoreBB, then we have the if/then case. 1519 if (OtherBr->getSuccessor(0) != StoreBB && 1520 OtherBr->getSuccessor(1) != StoreBB) 1521 return false; 1522 1523 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1524 // if/then triangle. See if there is a store to the same ptr as SI that 1525 // lives in OtherBB. 1526 for (;; --BBI) { 1527 // Check to see if we find the matching store. 1528 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1529 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1530 !SI.isSameOperationAs(OtherStore)) 1531 return false; 1532 break; 1533 } 1534 // If we find something that may be using or overwriting the stored 1535 // value, or if we run out of instructions, we can't do the transform. 1536 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1537 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1538 return false; 1539 } 1540 1541 // In order to eliminate the store in OtherBr, we have to make sure nothing 1542 // reads or overwrites the stored value in StoreBB. 1543 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1544 // FIXME: This should really be AA driven. 1545 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1546 return false; 1547 } 1548 } 1549 1550 // Insert a PHI node now if we need it. 1551 Value *MergedVal = OtherStore->getOperand(0); 1552 // The debug locations of the original instructions might differ. Merge them. 1553 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1554 OtherStore->getDebugLoc()); 1555 if (MergedVal != SI.getOperand(0)) { 1556 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1557 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1558 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1559 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1560 PN->setDebugLoc(MergedLoc); 1561 } 1562 1563 // Advance to a place where it is safe to insert the new store and insert it. 1564 BBI = DestBB->getFirstInsertionPt(); 1565 StoreInst *NewSI = 1566 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), 1567 SI.getOrdering(), SI.getSyncScopeID()); 1568 InsertNewInstBefore(NewSI, *BBI); 1569 NewSI->setDebugLoc(MergedLoc); 1570 1571 // If the two stores had AA tags, merge them. 1572 AAMDNodes AATags; 1573 SI.getAAMetadata(AATags); 1574 if (AATags) { 1575 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1576 NewSI->setAAMetadata(AATags); 1577 } 1578 1579 // Nuke the old stores. 1580 eraseInstFromFunction(SI); 1581 eraseInstFromFunction(*OtherStore); 1582 return true; 1583 } 1584