xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineInternal.h (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17 
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetFolder.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
28 #include "llvm/Transforms/InstCombine/InstCombiner.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include <cassert>
31 
32 #define DEBUG_TYPE "instcombine"
33 #include "llvm/Transforms/Utils/InstructionWorklist.h"
34 
35 using namespace llvm::PatternMatch;
36 
37 // As a default, let's assume that we want to be aggressive,
38 // and attempt to traverse with no limits in attempt to sink negation.
39 static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
40 
41 // Let's guesstimate that most often we will end up visiting/producing
42 // fairly small number of new instructions.
43 static constexpr unsigned NegatorMaxNodesSSO = 16;
44 
45 namespace llvm {
46 
47 class AAResults;
48 class APInt;
49 class AssumptionCache;
50 class BlockFrequencyInfo;
51 class DataLayout;
52 class DominatorTree;
53 class GEPOperator;
54 class GlobalVariable;
55 class LoopInfo;
56 class OptimizationRemarkEmitter;
57 class ProfileSummaryInfo;
58 class TargetLibraryInfo;
59 class User;
60 
61 class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
62     : public InstCombiner,
63       public InstVisitor<InstCombinerImpl, Instruction *> {
64 public:
65   InstCombinerImpl(InstructionWorklist &Worklist, BuilderTy &Builder,
66                    bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
67                    TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
68                    DominatorTree &DT, OptimizationRemarkEmitter &ORE,
69                    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
70                    const DataLayout &DL, LoopInfo *LI)
71       : InstCombiner(Worklist, Builder, MinimizeSize, AA, AC, TLI, TTI, DT, ORE,
72                      BFI, PSI, DL, LI) {}
73 
74   virtual ~InstCombinerImpl() {}
75 
76   /// Run the combiner over the entire worklist until it is empty.
77   ///
78   /// \returns true if the IR is changed.
79   bool run();
80 
81   // Visitation implementation - Implement instruction combining for different
82   // instruction types.  The semantics are as follows:
83   // Return Value:
84   //    null        - No change was made
85   //     I          - Change was made, I is still valid, I may be dead though
86   //   otherwise    - Change was made, replace I with returned instruction
87   //
88   Instruction *visitFNeg(UnaryOperator &I);
89   Instruction *visitAdd(BinaryOperator &I);
90   Instruction *visitFAdd(BinaryOperator &I);
91   Value *OptimizePointerDifference(
92       Value *LHS, Value *RHS, Type *Ty, bool isNUW);
93   Instruction *visitSub(BinaryOperator &I);
94   Instruction *visitFSub(BinaryOperator &I);
95   Instruction *visitMul(BinaryOperator &I);
96   Instruction *visitFMul(BinaryOperator &I);
97   Instruction *visitURem(BinaryOperator &I);
98   Instruction *visitSRem(BinaryOperator &I);
99   Instruction *visitFRem(BinaryOperator &I);
100   bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
101   Instruction *commonIRemTransforms(BinaryOperator &I);
102   Instruction *commonIDivTransforms(BinaryOperator &I);
103   Instruction *visitUDiv(BinaryOperator &I);
104   Instruction *visitSDiv(BinaryOperator &I);
105   Instruction *visitFDiv(BinaryOperator &I);
106   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
107   Instruction *visitAnd(BinaryOperator &I);
108   Instruction *visitOr(BinaryOperator &I);
109   bool sinkNotIntoOtherHandOfAndOrOr(BinaryOperator &I);
110   Instruction *visitXor(BinaryOperator &I);
111   Instruction *visitShl(BinaryOperator &I);
112   Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
113       BinaryOperator *Sh0, const SimplifyQuery &SQ,
114       bool AnalyzeForSignBitExtraction = false);
115   Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
116       BinaryOperator &I);
117   Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
118       BinaryOperator &OldAShr);
119   Instruction *visitAShr(BinaryOperator &I);
120   Instruction *visitLShr(BinaryOperator &I);
121   Instruction *commonShiftTransforms(BinaryOperator &I);
122   Instruction *visitFCmpInst(FCmpInst &I);
123   CmpInst *canonicalizeICmpPredicate(CmpInst &I);
124   Instruction *visitICmpInst(ICmpInst &I);
125   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
126                                    BinaryOperator &I);
127   Instruction *commonCastTransforms(CastInst &CI);
128   Instruction *commonPointerCastTransforms(CastInst &CI);
129   Instruction *visitTrunc(TruncInst &CI);
130   Instruction *visitZExt(ZExtInst &CI);
131   Instruction *visitSExt(SExtInst &CI);
132   Instruction *visitFPTrunc(FPTruncInst &CI);
133   Instruction *visitFPExt(CastInst &CI);
134   Instruction *visitFPToUI(FPToUIInst &FI);
135   Instruction *visitFPToSI(FPToSIInst &FI);
136   Instruction *visitUIToFP(CastInst &CI);
137   Instruction *visitSIToFP(CastInst &CI);
138   Instruction *visitPtrToInt(PtrToIntInst &CI);
139   Instruction *visitIntToPtr(IntToPtrInst &CI);
140   Instruction *visitBitCast(BitCastInst &CI);
141   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
142   Instruction *foldItoFPtoI(CastInst &FI);
143   Instruction *visitSelectInst(SelectInst &SI);
144   Instruction *visitCallInst(CallInst &CI);
145   Instruction *visitInvokeInst(InvokeInst &II);
146   Instruction *visitCallBrInst(CallBrInst &CBI);
147 
148   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
149   Instruction *visitPHINode(PHINode &PN);
150   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
151   Instruction *visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src);
152   Instruction *visitGEPOfBitcast(BitCastInst *BCI, GetElementPtrInst &GEP);
153   Instruction *visitAllocaInst(AllocaInst &AI);
154   Instruction *visitAllocSite(Instruction &FI);
155   Instruction *visitFree(CallInst &FI);
156   Instruction *visitLoadInst(LoadInst &LI);
157   Instruction *visitStoreInst(StoreInst &SI);
158   Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
159   Instruction *visitUnconditionalBranchInst(BranchInst &BI);
160   Instruction *visitBranchInst(BranchInst &BI);
161   Instruction *visitFenceInst(FenceInst &FI);
162   Instruction *visitSwitchInst(SwitchInst &SI);
163   Instruction *visitReturnInst(ReturnInst &RI);
164   Instruction *visitUnreachableInst(UnreachableInst &I);
165   Instruction *
166   foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI);
167   Instruction *visitInsertValueInst(InsertValueInst &IV);
168   Instruction *visitInsertElementInst(InsertElementInst &IE);
169   Instruction *visitExtractElementInst(ExtractElementInst &EI);
170   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
171   Instruction *visitExtractValueInst(ExtractValueInst &EV);
172   Instruction *visitLandingPadInst(LandingPadInst &LI);
173   Instruction *visitVAEndInst(VAEndInst &I);
174   Value *pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI);
175   bool freezeDominatedUses(FreezeInst &FI);
176   Instruction *visitFreeze(FreezeInst &I);
177 
178   /// Specify what to return for unhandled instructions.
179   Instruction *visitInstruction(Instruction &I) { return nullptr; }
180 
181   /// True when DB dominates all uses of DI except UI.
182   /// UI must be in the same block as DI.
183   /// The routine checks that the DI parent and DB are different.
184   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
185                         const BasicBlock *DB) const;
186 
187   /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
188   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
189                                  const unsigned SIOpd);
190 
191   LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
192                                  const Twine &Suffix = "");
193 
194 private:
195   void annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI);
196   bool isDesirableIntType(unsigned BitWidth) const;
197   bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
198   bool shouldChangeType(Type *From, Type *To) const;
199   Value *dyn_castNegVal(Value *V) const;
200 
201   /// Classify whether a cast is worth optimizing.
202   ///
203   /// This is a helper to decide whether the simplification of
204   /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
205   ///
206   /// \param CI The cast we are interested in.
207   ///
208   /// \return true if this cast actually results in any code being generated and
209   /// if it cannot already be eliminated by some other transformation.
210   bool shouldOptimizeCast(CastInst *CI);
211 
212   /// Try to optimize a sequence of instructions checking if an operation
213   /// on LHS and RHS overflows.
214   ///
215   /// If this overflow check is done via one of the overflow check intrinsics,
216   /// then CtxI has to be the call instruction calling that intrinsic.  If this
217   /// overflow check is done by arithmetic followed by a compare, then CtxI has
218   /// to be the arithmetic instruction.
219   ///
220   /// If a simplification is possible, stores the simplified result of the
221   /// operation in OperationResult and result of the overflow check in
222   /// OverflowResult, and return true.  If no simplification is possible,
223   /// returns false.
224   bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
225                              Value *LHS, Value *RHS,
226                              Instruction &CtxI, Value *&OperationResult,
227                              Constant *&OverflowResult);
228 
229   Instruction *visitCallBase(CallBase &Call);
230   Instruction *tryOptimizeCall(CallInst *CI);
231   bool transformConstExprCastCall(CallBase &Call);
232   Instruction *transformCallThroughTrampoline(CallBase &Call,
233                                               IntrinsicInst &Tramp);
234 
235   Value *simplifyMaskedLoad(IntrinsicInst &II);
236   Instruction *simplifyMaskedStore(IntrinsicInst &II);
237   Instruction *simplifyMaskedGather(IntrinsicInst &II);
238   Instruction *simplifyMaskedScatter(IntrinsicInst &II);
239 
240   /// Transform (zext icmp) to bitwise / integer operations in order to
241   /// eliminate it.
242   ///
243   /// \param ICI The icmp of the (zext icmp) pair we are interested in.
244   /// \parem CI The zext of the (zext icmp) pair we are interested in.
245   ///
246   /// \return null if the transformation cannot be performed. If the
247   /// transformation can be performed the new instruction that replaces the
248   /// (zext icmp) pair will be returned.
249   Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI);
250 
251   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
252 
253   bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
254                                 const Instruction &CxtI) const {
255     return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
256            OverflowResult::NeverOverflows;
257   }
258 
259   bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
260                                   const Instruction &CxtI) const {
261     return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
262            OverflowResult::NeverOverflows;
263   }
264 
265   bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
266                           const Instruction &CxtI, bool IsSigned) const {
267     return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
268                     : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
269   }
270 
271   bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
272                                 const Instruction &CxtI) const {
273     return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
274            OverflowResult::NeverOverflows;
275   }
276 
277   bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
278                                   const Instruction &CxtI) const {
279     return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
280            OverflowResult::NeverOverflows;
281   }
282 
283   bool willNotOverflowSub(const Value *LHS, const Value *RHS,
284                           const Instruction &CxtI, bool IsSigned) const {
285     return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
286                     : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
287   }
288 
289   bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
290                                 const Instruction &CxtI) const {
291     return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
292            OverflowResult::NeverOverflows;
293   }
294 
295   bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
296                                   const Instruction &CxtI) const {
297     return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
298            OverflowResult::NeverOverflows;
299   }
300 
301   bool willNotOverflowMul(const Value *LHS, const Value *RHS,
302                           const Instruction &CxtI, bool IsSigned) const {
303     return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
304                     : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
305   }
306 
307   bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
308                        const Value *RHS, const Instruction &CxtI,
309                        bool IsSigned) const {
310     switch (Opcode) {
311     case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
312     case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
313     case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
314     default: llvm_unreachable("Unexpected opcode for overflow query");
315     }
316   }
317 
318   Value *EmitGEPOffset(User *GEP);
319   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
320   Instruction *foldBitcastExtElt(ExtractElementInst &ExtElt);
321   Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
322   Instruction *foldBinopOfSextBoolToSelect(BinaryOperator &I);
323   Instruction *narrowBinOp(TruncInst &Trunc);
324   Instruction *narrowMaskedBinOp(BinaryOperator &And);
325   Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
326   Instruction *narrowFunnelShift(TruncInst &Trunc);
327   Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
328   Instruction *matchSAddSubSat(Instruction &MinMax1);
329   Instruction *foldNot(BinaryOperator &I);
330 
331   void freelyInvertAllUsersOf(Value *V);
332 
333   /// Determine if a pair of casts can be replaced by a single cast.
334   ///
335   /// \param CI1 The first of a pair of casts.
336   /// \param CI2 The second of a pair of casts.
337   ///
338   /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
339   /// Instruction::CastOps value for a cast that can replace the pair, casting
340   /// CI1->getSrcTy() to CI2->getDstTy().
341   ///
342   /// \see CastInst::isEliminableCastPair
343   Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
344                                             const CastInst *CI2);
345   Value *simplifyIntToPtrRoundTripCast(Value *Val);
346 
347   Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &And);
348   Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Or);
349   Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
350 
351   Value *foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd);
352 
353   /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
354   /// NOTE: Unlike most of instcombine, this returns a Value which should
355   /// already be inserted into the function.
356   Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
357 
358   Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
359                                        Instruction *CxtI, bool IsAnd,
360                                        bool IsLogical = false);
361   Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
362   Value *getSelectCondition(Value *A, Value *B);
363 
364   Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
365   Instruction *foldFPSignBitOps(BinaryOperator &I);
366 
367   // Optimize one of these forms:
368   //   and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
369   //   or i1 Op, SI  / select i1 Op, i1 true, i1 SI  (if IsAnd = false)
370   // into simplier select instruction using isImpliedCondition.
371   Instruction *foldAndOrOfSelectUsingImpliedCond(Value *Op, SelectInst &SI,
372                                                  bool IsAnd);
373 
374 public:
375   /// Inserts an instruction \p New before instruction \p Old
376   ///
377   /// Also adds the new instruction to the worklist and returns \p New so that
378   /// it is suitable for use as the return from the visitation patterns.
379   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
380     assert(New && !New->getParent() &&
381            "New instruction already inserted into a basic block!");
382     BasicBlock *BB = Old.getParent();
383     BB->getInstList().insert(Old.getIterator(), New); // Insert inst
384     Worklist.add(New);
385     return New;
386   }
387 
388   /// Same as InsertNewInstBefore, but also sets the debug loc.
389   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
390     New->setDebugLoc(Old.getDebugLoc());
391     return InsertNewInstBefore(New, Old);
392   }
393 
394   /// A combiner-aware RAUW-like routine.
395   ///
396   /// This method is to be used when an instruction is found to be dead,
397   /// replaceable with another preexisting expression. Here we add all uses of
398   /// I to the worklist, replace all uses of I with the new value, then return
399   /// I, so that the inst combiner will know that I was modified.
400   Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
401     // If there are no uses to replace, then we return nullptr to indicate that
402     // no changes were made to the program.
403     if (I.use_empty()) return nullptr;
404 
405     Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist.
406 
407     // If we are replacing the instruction with itself, this must be in a
408     // segment of unreachable code, so just clobber the instruction.
409     if (&I == V)
410       V = UndefValue::get(I.getType());
411 
412     LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
413                       << "    with " << *V << '\n');
414 
415     I.replaceAllUsesWith(V);
416     MadeIRChange = true;
417     return &I;
418   }
419 
420   /// Replace operand of instruction and add old operand to the worklist.
421   Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) {
422     Worklist.addValue(I.getOperand(OpNum));
423     I.setOperand(OpNum, V);
424     return &I;
425   }
426 
427   /// Replace use and add the previously used value to the worklist.
428   void replaceUse(Use &U, Value *NewValue) {
429     Worklist.addValue(U);
430     U = NewValue;
431   }
432 
433   /// Create and insert the idiom we use to indicate a block is unreachable
434   /// without having to rewrite the CFG from within InstCombine.
435   void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
436     auto &Ctx = InsertAt->getContext();
437     new StoreInst(ConstantInt::getTrue(Ctx),
438                   UndefValue::get(Type::getInt1PtrTy(Ctx)),
439                   InsertAt);
440   }
441 
442 
443   /// Combiner aware instruction erasure.
444   ///
445   /// When dealing with an instruction that has side effects or produces a void
446   /// value, we can't rely on DCE to delete the instruction. Instead, visit
447   /// methods should return the value returned by this function.
448   Instruction *eraseInstFromFunction(Instruction &I) override {
449     LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
450     assert(I.use_empty() && "Cannot erase instruction that is used!");
451     salvageDebugInfo(I);
452 
453     // Make sure that we reprocess all operands now that we reduced their
454     // use counts.
455     for (Use &Operand : I.operands())
456       if (auto *Inst = dyn_cast<Instruction>(Operand))
457         Worklist.add(Inst);
458 
459     Worklist.remove(&I);
460     I.eraseFromParent();
461     MadeIRChange = true;
462     return nullptr; // Don't do anything with FI
463   }
464 
465   void computeKnownBits(const Value *V, KnownBits &Known,
466                         unsigned Depth, const Instruction *CxtI) const {
467     llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
468   }
469 
470   KnownBits computeKnownBits(const Value *V, unsigned Depth,
471                              const Instruction *CxtI) const {
472     return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
473   }
474 
475   bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
476                               unsigned Depth = 0,
477                               const Instruction *CxtI = nullptr) {
478     return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
479   }
480 
481   bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
482                          const Instruction *CxtI = nullptr) const {
483     return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
484   }
485 
486   unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
487                               const Instruction *CxtI = nullptr) const {
488     return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
489   }
490 
491   OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
492                                                const Value *RHS,
493                                                const Instruction *CxtI) const {
494     return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
495   }
496 
497   OverflowResult computeOverflowForSignedMul(const Value *LHS,
498                                              const Value *RHS,
499                                              const Instruction *CxtI) const {
500     return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
501   }
502 
503   OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
504                                                const Value *RHS,
505                                                const Instruction *CxtI) const {
506     return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
507   }
508 
509   OverflowResult computeOverflowForSignedAdd(const Value *LHS,
510                                              const Value *RHS,
511                                              const Instruction *CxtI) const {
512     return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
513   }
514 
515   OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
516                                                const Value *RHS,
517                                                const Instruction *CxtI) const {
518     return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
519   }
520 
521   OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
522                                              const Instruction *CxtI) const {
523     return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
524   }
525 
526   OverflowResult computeOverflow(
527       Instruction::BinaryOps BinaryOp, bool IsSigned,
528       Value *LHS, Value *RHS, Instruction *CxtI) const;
529 
530   /// Performs a few simplifications for operators which are associative
531   /// or commutative.
532   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
533 
534   /// Tries to simplify binary operations which some other binary
535   /// operation distributes over.
536   ///
537   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
538   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
539   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
540   /// value, or null if it didn't simplify.
541   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
542 
543   /// Tries to simplify add operations using the definition of remainder.
544   ///
545   /// The definition of remainder is X % C = X - (X / C ) * C. The add
546   /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
547   /// X % (C0 * C1)
548   Value *SimplifyAddWithRemainder(BinaryOperator &I);
549 
550   // Binary Op helper for select operations where the expression can be
551   // efficiently reorganized.
552   Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
553                                         Value *RHS);
554 
555   /// This tries to simplify binary operations by factorizing out common terms
556   /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
557   Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
558                           Value *, Value *, Value *);
559 
560   /// Match a select chain which produces one of three values based on whether
561   /// the LHS is less than, equal to, or greater than RHS respectively.
562   /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
563   /// Equal and Greater values are saved in the matching process and returned to
564   /// the caller.
565   bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
566                                ConstantInt *&Less, ConstantInt *&Equal,
567                                ConstantInt *&Greater);
568 
569   /// Attempts to replace V with a simpler value based on the demanded
570   /// bits.
571   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
572                                  unsigned Depth, Instruction *CxtI);
573   bool SimplifyDemandedBits(Instruction *I, unsigned Op,
574                             const APInt &DemandedMask, KnownBits &Known,
575                             unsigned Depth = 0) override;
576 
577   /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
578   /// bits. It also tries to handle simplifications that can be done based on
579   /// DemandedMask, but without modifying the Instruction.
580   Value *SimplifyMultipleUseDemandedBits(Instruction *I,
581                                          const APInt &DemandedMask,
582                                          KnownBits &Known,
583                                          unsigned Depth, Instruction *CxtI);
584 
585   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
586   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
587   Value *simplifyShrShlDemandedBits(
588       Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
589       const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
590 
591   /// Tries to simplify operands to an integer instruction based on its
592   /// demanded bits.
593   bool SimplifyDemandedInstructionBits(Instruction &Inst);
594 
595   virtual Value *
596   SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts,
597                              unsigned Depth = 0,
598                              bool AllowMultipleUsers = false) override;
599 
600   /// Canonicalize the position of binops relative to shufflevector.
601   Instruction *foldVectorBinop(BinaryOperator &Inst);
602   Instruction *foldVectorSelect(SelectInst &Sel);
603   Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf);
604 
605   /// Given a binary operator, cast instruction, or select which has a PHI node
606   /// as operand #0, see if we can fold the instruction into the PHI (which is
607   /// only possible if all operands to the PHI are constants).
608   Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
609 
610   /// For a binary operator with 2 phi operands, try to hoist the binary
611   /// operation before the phi. This can result in fewer instructions in
612   /// patterns where at least one set of phi operands simplifies.
613   /// Example:
614   /// BB3: binop (phi [X, BB1], [C1, BB2]), (phi [Y, BB1], [C2, BB2])
615   /// -->
616   /// BB1: BO = binop X, Y
617   /// BB3: phi [BO, BB1], [(binop C1, C2), BB2]
618   Instruction *foldBinopWithPhiOperands(BinaryOperator &BO);
619 
620   /// Given an instruction with a select as one operand and a constant as the
621   /// other operand, try to fold the binary operator into the select arguments.
622   /// This also works for Cast instructions, which obviously do not have a
623   /// second operand.
624   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
625 
626   /// This is a convenience wrapper function for the above two functions.
627   Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
628 
629   Instruction *foldAddWithConstant(BinaryOperator &Add);
630 
631   /// Try to rotate an operation below a PHI node, using PHI nodes for
632   /// its operands.
633   Instruction *foldPHIArgOpIntoPHI(PHINode &PN);
634   Instruction *foldPHIArgBinOpIntoPHI(PHINode &PN);
635   Instruction *foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN);
636   Instruction *foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN);
637   Instruction *foldPHIArgGEPIntoPHI(PHINode &PN);
638   Instruction *foldPHIArgLoadIntoPHI(PHINode &PN);
639   Instruction *foldPHIArgZextsIntoPHI(PHINode &PN);
640   Instruction *foldPHIArgIntToPtrToPHI(PHINode &PN);
641 
642   /// If an integer typed PHI has only one use which is an IntToPtr operation,
643   /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
644   /// insert a new pointer typed PHI and replace the original one.
645   Instruction *foldIntegerTypedPHI(PHINode &PN);
646 
647   /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
648   /// folded operation.
649   void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
650 
651   Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
652                            ICmpInst::Predicate Cond, Instruction &I);
653   Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
654                              const Value *Other);
655   Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
656                                             GlobalVariable *GV, CmpInst &ICI,
657                                             ConstantInt *AndCst = nullptr);
658   Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
659                                     Constant *RHSC);
660   Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
661                                   ICmpInst::Predicate Pred);
662   Instruction *foldICmpWithCastOp(ICmpInst &ICI);
663 
664   Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
665   Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
666   Instruction *foldICmpWithConstant(ICmpInst &Cmp);
667   Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
668   Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
669   Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
670   Instruction *foldICmpEquality(ICmpInst &Cmp);
671   Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
672   Instruction *foldSignBitTest(ICmpInst &I);
673   Instruction *foldICmpWithZero(ICmpInst &Cmp);
674 
675   Value *foldMultiplicationOverflowCheck(ICmpInst &Cmp);
676 
677   Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
678                                       ConstantInt *C);
679   Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
680                                      const APInt &C);
681   Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
682                                    const APInt &C);
683   Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
684                                    const APInt &C);
685   Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
686                                   const APInt &C);
687   Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
688                                    const APInt &C);
689   Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
690                                    const APInt &C);
691   Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
692                                    const APInt &C);
693   Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
694                                     const APInt &C);
695   Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
696                                     const APInt &C);
697   Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
698                                    const APInt &C);
699   Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
700                                    const APInt &C);
701   Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
702                                    const APInt &C);
703   Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
704                                      const APInt &C1);
705   Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
706                                 const APInt &C1, const APInt &C2);
707   Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
708                                      const APInt &C2);
709   Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
710                                      const APInt &C2);
711 
712   Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
713                                                  BinaryOperator *BO,
714                                                  const APInt &C);
715   Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
716                                              const APInt &C);
717   Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
718                                                const APInt &C);
719   Instruction *foldICmpBitCast(ICmpInst &Cmp);
720 
721   // Helpers of visitSelectInst().
722   Instruction *foldSelectExtConst(SelectInst &Sel);
723   Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
724   Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
725   Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
726                             Value *A, Value *B, Instruction &Outer,
727                             SelectPatternFlavor SPF2, Value *C);
728   Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
729   Instruction *foldSelectValueEquivalence(SelectInst &SI, ICmpInst &ICI);
730 
731   Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
732                          bool isSigned, bool Inside);
733   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
734   bool mergeStoreIntoSuccessor(StoreInst &SI);
735 
736   /// Given an initial instruction, check to see if it is the root of a
737   /// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
738   /// intrinsic.
739   Instruction *matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps,
740                                       bool MatchBitReversals);
741 
742   Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
743   Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
744 
745   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
746 
747   /// Returns a value X such that Val = X * Scale, or null if none.
748   ///
749   /// If the multiplication is known not to overflow then NoSignedWrap is set.
750   Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
751 };
752 
753 class Negator final {
754   /// Top-to-bottom, def-to-use negated instruction tree we produced.
755   SmallVector<Instruction *, NegatorMaxNodesSSO> NewInstructions;
756 
757   using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
758   BuilderTy Builder;
759 
760   const DataLayout &DL;
761   AssumptionCache &AC;
762   const DominatorTree &DT;
763 
764   const bool IsTrulyNegation;
765 
766   SmallDenseMap<Value *, Value *> NegationsCache;
767 
768   Negator(LLVMContext &C, const DataLayout &DL, AssumptionCache &AC,
769           const DominatorTree &DT, bool IsTrulyNegation);
770 
771 #if LLVM_ENABLE_STATS
772   unsigned NumValuesVisitedInThisNegator = 0;
773   ~Negator();
774 #endif
775 
776   using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
777                            Value * /*NegatedRoot*/>;
778 
779   std::array<Value *, 2> getSortedOperandsOfBinOp(Instruction *I);
780 
781   LLVM_NODISCARD Value *visitImpl(Value *V, unsigned Depth);
782 
783   LLVM_NODISCARD Value *negate(Value *V, unsigned Depth);
784 
785   /// Recurse depth-first and attempt to sink the negation.
786   /// FIXME: use worklist?
787   LLVM_NODISCARD Optional<Result> run(Value *Root);
788 
789   Negator(const Negator &) = delete;
790   Negator(Negator &&) = delete;
791   Negator &operator=(const Negator &) = delete;
792   Negator &operator=(Negator &&) = delete;
793 
794 public:
795   /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
796   /// otherwise returns negated value.
797   LLVM_NODISCARD static Value *Negate(bool LHSIsZero, Value *Root,
798                                       InstCombinerImpl &IC);
799 };
800 
801 } // end namespace llvm
802 
803 #undef DEBUG_TYPE
804 
805 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
806