xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineInternal.h (revision 3f5d875a27318a909f23a2b7463c4b2d963085df)
1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17 
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetFolder.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
28 #include "llvm/Transforms/InstCombine/InstCombiner.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include <cassert>
31 
32 #define DEBUG_TYPE "instcombine"
33 #include "llvm/Transforms/Utils/InstructionWorklist.h"
34 
35 using namespace llvm::PatternMatch;
36 
37 // As a default, let's assume that we want to be aggressive,
38 // and attempt to traverse with no limits in attempt to sink negation.
39 static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
40 
41 // Let's guesstimate that most often we will end up visiting/producing
42 // fairly small number of new instructions.
43 static constexpr unsigned NegatorMaxNodesSSO = 16;
44 
45 namespace llvm {
46 
47 class AAResults;
48 class APInt;
49 class AssumptionCache;
50 class BlockFrequencyInfo;
51 class DataLayout;
52 class DominatorTree;
53 class GEPOperator;
54 class GlobalVariable;
55 class LoopInfo;
56 class OptimizationRemarkEmitter;
57 class ProfileSummaryInfo;
58 class TargetLibraryInfo;
59 class User;
60 
61 class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
62     : public InstCombiner,
63       public InstVisitor<InstCombinerImpl, Instruction *> {
64 public:
65   InstCombinerImpl(InstructionWorklist &Worklist, BuilderTy &Builder,
66                    bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
67                    TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
68                    DominatorTree &DT, OptimizationRemarkEmitter &ORE,
69                    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
70                    const DataLayout &DL, LoopInfo *LI)
71       : InstCombiner(Worklist, Builder, MinimizeSize, AA, AC, TLI, TTI, DT, ORE,
72                      BFI, PSI, DL, LI) {}
73 
74   virtual ~InstCombinerImpl() = default;
75 
76   /// Run the combiner over the entire worklist until it is empty.
77   ///
78   /// \returns true if the IR is changed.
79   bool run();
80 
81   // Visitation implementation - Implement instruction combining for different
82   // instruction types.  The semantics are as follows:
83   // Return Value:
84   //    null        - No change was made
85   //     I          - Change was made, I is still valid, I may be dead though
86   //   otherwise    - Change was made, replace I with returned instruction
87   //
88   Instruction *visitFNeg(UnaryOperator &I);
89   Instruction *visitAdd(BinaryOperator &I);
90   Instruction *visitFAdd(BinaryOperator &I);
91   Value *OptimizePointerDifference(
92       Value *LHS, Value *RHS, Type *Ty, bool isNUW);
93   Instruction *visitSub(BinaryOperator &I);
94   Instruction *visitFSub(BinaryOperator &I);
95   Instruction *visitMul(BinaryOperator &I);
96   Instruction *visitFMul(BinaryOperator &I);
97   Instruction *visitURem(BinaryOperator &I);
98   Instruction *visitSRem(BinaryOperator &I);
99   Instruction *visitFRem(BinaryOperator &I);
100   bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
101   Instruction *commonIRemTransforms(BinaryOperator &I);
102   Instruction *commonIDivTransforms(BinaryOperator &I);
103   Instruction *visitUDiv(BinaryOperator &I);
104   Instruction *visitSDiv(BinaryOperator &I);
105   Instruction *visitFDiv(BinaryOperator &I);
106   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
107   Instruction *visitAnd(BinaryOperator &I);
108   Instruction *visitOr(BinaryOperator &I);
109   bool sinkNotIntoOtherHandOfAndOrOr(BinaryOperator &I);
110   Instruction *visitXor(BinaryOperator &I);
111   Instruction *visitShl(BinaryOperator &I);
112   Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
113       BinaryOperator *Sh0, const SimplifyQuery &SQ,
114       bool AnalyzeForSignBitExtraction = false);
115   Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
116       BinaryOperator &I);
117   Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
118       BinaryOperator &OldAShr);
119   Instruction *visitAShr(BinaryOperator &I);
120   Instruction *visitLShr(BinaryOperator &I);
121   Instruction *commonShiftTransforms(BinaryOperator &I);
122   Instruction *visitFCmpInst(FCmpInst &I);
123   CmpInst *canonicalizeICmpPredicate(CmpInst &I);
124   Instruction *visitICmpInst(ICmpInst &I);
125   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
126                                    BinaryOperator &I);
127   Instruction *commonCastTransforms(CastInst &CI);
128   Instruction *commonPointerCastTransforms(CastInst &CI);
129   Instruction *visitTrunc(TruncInst &CI);
130   Instruction *visitZExt(ZExtInst &CI);
131   Instruction *visitSExt(SExtInst &CI);
132   Instruction *visitFPTrunc(FPTruncInst &CI);
133   Instruction *visitFPExt(CastInst &CI);
134   Instruction *visitFPToUI(FPToUIInst &FI);
135   Instruction *visitFPToSI(FPToSIInst &FI);
136   Instruction *visitUIToFP(CastInst &CI);
137   Instruction *visitSIToFP(CastInst &CI);
138   Instruction *visitPtrToInt(PtrToIntInst &CI);
139   Instruction *visitIntToPtr(IntToPtrInst &CI);
140   Instruction *visitBitCast(BitCastInst &CI);
141   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
142   Instruction *foldItoFPtoI(CastInst &FI);
143   Instruction *visitSelectInst(SelectInst &SI);
144   Instruction *visitCallInst(CallInst &CI);
145   Instruction *visitInvokeInst(InvokeInst &II);
146   Instruction *visitCallBrInst(CallBrInst &CBI);
147 
148   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
149   Instruction *visitPHINode(PHINode &PN);
150   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
151   Instruction *visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src);
152   Instruction *visitGEPOfBitcast(BitCastInst *BCI, GetElementPtrInst &GEP);
153   Instruction *visitAllocaInst(AllocaInst &AI);
154   Instruction *visitAllocSite(Instruction &FI);
155   Instruction *visitFree(CallInst &FI, Value *FreedOp);
156   Instruction *visitLoadInst(LoadInst &LI);
157   Instruction *visitStoreInst(StoreInst &SI);
158   Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
159   Instruction *visitUnconditionalBranchInst(BranchInst &BI);
160   Instruction *visitBranchInst(BranchInst &BI);
161   Instruction *visitFenceInst(FenceInst &FI);
162   Instruction *visitSwitchInst(SwitchInst &SI);
163   Instruction *visitReturnInst(ReturnInst &RI);
164   Instruction *visitUnreachableInst(UnreachableInst &I);
165   Instruction *
166   foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI);
167   Instruction *visitInsertValueInst(InsertValueInst &IV);
168   Instruction *visitInsertElementInst(InsertElementInst &IE);
169   Instruction *visitExtractElementInst(ExtractElementInst &EI);
170   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
171   Instruction *visitExtractValueInst(ExtractValueInst &EV);
172   Instruction *visitLandingPadInst(LandingPadInst &LI);
173   Instruction *visitVAEndInst(VAEndInst &I);
174   Value *pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI);
175   bool freezeOtherUses(FreezeInst &FI);
176   Instruction *foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN);
177   Instruction *visitFreeze(FreezeInst &I);
178 
179   /// Specify what to return for unhandled instructions.
180   Instruction *visitInstruction(Instruction &I) { return nullptr; }
181 
182   /// True when DB dominates all uses of DI except UI.
183   /// UI must be in the same block as DI.
184   /// The routine checks that the DI parent and DB are different.
185   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
186                         const BasicBlock *DB) const;
187 
188   /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
189   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
190                                  const unsigned SIOpd);
191 
192   LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
193                                  const Twine &Suffix = "");
194 
195 private:
196   bool annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI);
197   bool isDesirableIntType(unsigned BitWidth) const;
198   bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
199   bool shouldChangeType(Type *From, Type *To) const;
200   Value *dyn_castNegVal(Value *V) const;
201 
202   /// Classify whether a cast is worth optimizing.
203   ///
204   /// This is a helper to decide whether the simplification of
205   /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
206   ///
207   /// \param CI The cast we are interested in.
208   ///
209   /// \return true if this cast actually results in any code being generated and
210   /// if it cannot already be eliminated by some other transformation.
211   bool shouldOptimizeCast(CastInst *CI);
212 
213   /// Try to optimize a sequence of instructions checking if an operation
214   /// on LHS and RHS overflows.
215   ///
216   /// If this overflow check is done via one of the overflow check intrinsics,
217   /// then CtxI has to be the call instruction calling that intrinsic.  If this
218   /// overflow check is done by arithmetic followed by a compare, then CtxI has
219   /// to be the arithmetic instruction.
220   ///
221   /// If a simplification is possible, stores the simplified result of the
222   /// operation in OperationResult and result of the overflow check in
223   /// OverflowResult, and return true.  If no simplification is possible,
224   /// returns false.
225   bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
226                              Value *LHS, Value *RHS,
227                              Instruction &CtxI, Value *&OperationResult,
228                              Constant *&OverflowResult);
229 
230   Instruction *visitCallBase(CallBase &Call);
231   Instruction *tryOptimizeCall(CallInst *CI);
232   bool transformConstExprCastCall(CallBase &Call);
233   Instruction *transformCallThroughTrampoline(CallBase &Call,
234                                               IntrinsicInst &Tramp);
235 
236   Value *simplifyMaskedLoad(IntrinsicInst &II);
237   Instruction *simplifyMaskedStore(IntrinsicInst &II);
238   Instruction *simplifyMaskedGather(IntrinsicInst &II);
239   Instruction *simplifyMaskedScatter(IntrinsicInst &II);
240 
241   /// Transform (zext icmp) to bitwise / integer operations in order to
242   /// eliminate it.
243   ///
244   /// \param ICI The icmp of the (zext icmp) pair we are interested in.
245   /// \parem CI The zext of the (zext icmp) pair we are interested in.
246   ///
247   /// \return null if the transformation cannot be performed. If the
248   /// transformation can be performed the new instruction that replaces the
249   /// (zext icmp) pair will be returned.
250   Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI);
251 
252   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
253 
254   bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
255                                 const Instruction &CxtI) const {
256     return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
257            OverflowResult::NeverOverflows;
258   }
259 
260   bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
261                                   const Instruction &CxtI) const {
262     return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
263            OverflowResult::NeverOverflows;
264   }
265 
266   bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
267                           const Instruction &CxtI, bool IsSigned) const {
268     return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
269                     : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
270   }
271 
272   bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
273                                 const Instruction &CxtI) const {
274     return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
275            OverflowResult::NeverOverflows;
276   }
277 
278   bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
279                                   const Instruction &CxtI) const {
280     return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
281            OverflowResult::NeverOverflows;
282   }
283 
284   bool willNotOverflowSub(const Value *LHS, const Value *RHS,
285                           const Instruction &CxtI, bool IsSigned) const {
286     return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
287                     : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
288   }
289 
290   bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
291                                 const Instruction &CxtI) const {
292     return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
293            OverflowResult::NeverOverflows;
294   }
295 
296   bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
297                                   const Instruction &CxtI) const {
298     return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
299            OverflowResult::NeverOverflows;
300   }
301 
302   bool willNotOverflowMul(const Value *LHS, const Value *RHS,
303                           const Instruction &CxtI, bool IsSigned) const {
304     return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
305                     : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
306   }
307 
308   bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
309                        const Value *RHS, const Instruction &CxtI,
310                        bool IsSigned) const {
311     switch (Opcode) {
312     case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
313     case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
314     case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
315     default: llvm_unreachable("Unexpected opcode for overflow query");
316     }
317   }
318 
319   Value *EmitGEPOffset(User *GEP);
320   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
321   Instruction *foldBitcastExtElt(ExtractElementInst &ExtElt);
322   Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
323   Instruction *foldBinopOfSextBoolToSelect(BinaryOperator &I);
324   Instruction *narrowBinOp(TruncInst &Trunc);
325   Instruction *narrowMaskedBinOp(BinaryOperator &And);
326   Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
327   Instruction *narrowFunnelShift(TruncInst &Trunc);
328   Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
329   Instruction *matchSAddSubSat(IntrinsicInst &MinMax1);
330   Instruction *foldNot(BinaryOperator &I);
331 
332   void freelyInvertAllUsersOf(Value *V);
333 
334   /// Determine if a pair of casts can be replaced by a single cast.
335   ///
336   /// \param CI1 The first of a pair of casts.
337   /// \param CI2 The second of a pair of casts.
338   ///
339   /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
340   /// Instruction::CastOps value for a cast that can replace the pair, casting
341   /// CI1->getSrcTy() to CI2->getDstTy().
342   ///
343   /// \see CastInst::isEliminableCastPair
344   Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
345                                             const CastInst *CI2);
346   Value *simplifyIntToPtrRoundTripCast(Value *Val);
347 
348   Value *foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &I,
349                           bool IsAnd, bool IsLogical = false);
350   Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
351 
352   Value *foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd);
353 
354   Value *foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1, ICmpInst *ICmp2,
355                                      bool IsAnd);
356 
357   /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
358   /// NOTE: Unlike most of instcombine, this returns a Value which should
359   /// already be inserted into the function.
360   Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd,
361                           bool IsLogicalSelect = false);
362 
363   Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
364                                        Instruction *CxtI, bool IsAnd,
365                                        bool IsLogical = false);
366   Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
367   Value *getSelectCondition(Value *A, Value *B);
368 
369   Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
370   Instruction *foldFPSignBitOps(BinaryOperator &I);
371 
372   // Optimize one of these forms:
373   //   and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
374   //   or i1 Op, SI  / select i1 Op, i1 true, i1 SI  (if IsAnd = false)
375   // into simplier select instruction using isImpliedCondition.
376   Instruction *foldAndOrOfSelectUsingImpliedCond(Value *Op, SelectInst &SI,
377                                                  bool IsAnd);
378 
379 public:
380   /// Inserts an instruction \p New before instruction \p Old
381   ///
382   /// Also adds the new instruction to the worklist and returns \p New so that
383   /// it is suitable for use as the return from the visitation patterns.
384   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
385     assert(New && !New->getParent() &&
386            "New instruction already inserted into a basic block!");
387     BasicBlock *BB = Old.getParent();
388     BB->getInstList().insert(Old.getIterator(), New); // Insert inst
389     Worklist.add(New);
390     return New;
391   }
392 
393   /// Same as InsertNewInstBefore, but also sets the debug loc.
394   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
395     New->setDebugLoc(Old.getDebugLoc());
396     return InsertNewInstBefore(New, Old);
397   }
398 
399   /// A combiner-aware RAUW-like routine.
400   ///
401   /// This method is to be used when an instruction is found to be dead,
402   /// replaceable with another preexisting expression. Here we add all uses of
403   /// I to the worklist, replace all uses of I with the new value, then return
404   /// I, so that the inst combiner will know that I was modified.
405   Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
406     // If there are no uses to replace, then we return nullptr to indicate that
407     // no changes were made to the program.
408     if (I.use_empty()) return nullptr;
409 
410     Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist.
411 
412     // If we are replacing the instruction with itself, this must be in a
413     // segment of unreachable code, so just clobber the instruction.
414     if (&I == V)
415       V = PoisonValue::get(I.getType());
416 
417     LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
418                       << "    with " << *V << '\n');
419 
420     I.replaceAllUsesWith(V);
421     MadeIRChange = true;
422     return &I;
423   }
424 
425   /// Replace operand of instruction and add old operand to the worklist.
426   Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) {
427     Worklist.addValue(I.getOperand(OpNum));
428     I.setOperand(OpNum, V);
429     return &I;
430   }
431 
432   /// Replace use and add the previously used value to the worklist.
433   void replaceUse(Use &U, Value *NewValue) {
434     Worklist.addValue(U);
435     U = NewValue;
436   }
437 
438   /// Create and insert the idiom we use to indicate a block is unreachable
439   /// without having to rewrite the CFG from within InstCombine.
440   void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
441     auto &Ctx = InsertAt->getContext();
442     new StoreInst(ConstantInt::getTrue(Ctx),
443                   PoisonValue::get(Type::getInt1PtrTy(Ctx)),
444                   InsertAt);
445   }
446 
447 
448   /// Combiner aware instruction erasure.
449   ///
450   /// When dealing with an instruction that has side effects or produces a void
451   /// value, we can't rely on DCE to delete the instruction. Instead, visit
452   /// methods should return the value returned by this function.
453   Instruction *eraseInstFromFunction(Instruction &I) override {
454     LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
455     assert(I.use_empty() && "Cannot erase instruction that is used!");
456     salvageDebugInfo(I);
457 
458     // Make sure that we reprocess all operands now that we reduced their
459     // use counts.
460     for (Use &Operand : I.operands())
461       if (auto *Inst = dyn_cast<Instruction>(Operand))
462         Worklist.add(Inst);
463 
464     Worklist.remove(&I);
465     I.eraseFromParent();
466     MadeIRChange = true;
467     return nullptr; // Don't do anything with FI
468   }
469 
470   void computeKnownBits(const Value *V, KnownBits &Known,
471                         unsigned Depth, const Instruction *CxtI) const {
472     llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
473   }
474 
475   KnownBits computeKnownBits(const Value *V, unsigned Depth,
476                              const Instruction *CxtI) const {
477     return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
478   }
479 
480   bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
481                               unsigned Depth = 0,
482                               const Instruction *CxtI = nullptr) {
483     return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
484   }
485 
486   bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
487                          const Instruction *CxtI = nullptr) const {
488     return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
489   }
490 
491   unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
492                               const Instruction *CxtI = nullptr) const {
493     return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
494   }
495 
496   OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
497                                                const Value *RHS,
498                                                const Instruction *CxtI) const {
499     return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
500   }
501 
502   OverflowResult computeOverflowForSignedMul(const Value *LHS,
503                                              const Value *RHS,
504                                              const Instruction *CxtI) const {
505     return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
506   }
507 
508   OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
509                                                const Value *RHS,
510                                                const Instruction *CxtI) const {
511     return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
512   }
513 
514   OverflowResult computeOverflowForSignedAdd(const Value *LHS,
515                                              const Value *RHS,
516                                              const Instruction *CxtI) const {
517     return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
518   }
519 
520   OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
521                                                const Value *RHS,
522                                                const Instruction *CxtI) const {
523     return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
524   }
525 
526   OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
527                                              const Instruction *CxtI) const {
528     return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
529   }
530 
531   OverflowResult computeOverflow(
532       Instruction::BinaryOps BinaryOp, bool IsSigned,
533       Value *LHS, Value *RHS, Instruction *CxtI) const;
534 
535   /// Performs a few simplifications for operators which are associative
536   /// or commutative.
537   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
538 
539   /// Tries to simplify binary operations which some other binary
540   /// operation distributes over.
541   ///
542   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
543   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
544   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
545   /// value, or null if it didn't simplify.
546   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
547 
548   /// Tries to simplify add operations using the definition of remainder.
549   ///
550   /// The definition of remainder is X % C = X - (X / C ) * C. The add
551   /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
552   /// X % (C0 * C1)
553   Value *SimplifyAddWithRemainder(BinaryOperator &I);
554 
555   // Binary Op helper for select operations where the expression can be
556   // efficiently reorganized.
557   Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
558                                         Value *RHS);
559 
560   /// This tries to simplify binary operations by factorizing out common terms
561   /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
562   Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
563                           Value *, Value *, Value *);
564 
565   /// Match a select chain which produces one of three values based on whether
566   /// the LHS is less than, equal to, or greater than RHS respectively.
567   /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
568   /// Equal and Greater values are saved in the matching process and returned to
569   /// the caller.
570   bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
571                                ConstantInt *&Less, ConstantInt *&Equal,
572                                ConstantInt *&Greater);
573 
574   /// Attempts to replace V with a simpler value based on the demanded
575   /// bits.
576   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
577                                  unsigned Depth, Instruction *CxtI);
578   bool SimplifyDemandedBits(Instruction *I, unsigned Op,
579                             const APInt &DemandedMask, KnownBits &Known,
580                             unsigned Depth = 0) override;
581 
582   /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
583   /// bits. It also tries to handle simplifications that can be done based on
584   /// DemandedMask, but without modifying the Instruction.
585   Value *SimplifyMultipleUseDemandedBits(Instruction *I,
586                                          const APInt &DemandedMask,
587                                          KnownBits &Known,
588                                          unsigned Depth, Instruction *CxtI);
589 
590   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
591   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
592   Value *simplifyShrShlDemandedBits(
593       Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
594       const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
595 
596   /// Tries to simplify operands to an integer instruction based on its
597   /// demanded bits.
598   bool SimplifyDemandedInstructionBits(Instruction &Inst);
599 
600   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
601                                     APInt &UndefElts, unsigned Depth = 0,
602                                     bool AllowMultipleUsers = false) override;
603 
604   /// Canonicalize the position of binops relative to shufflevector.
605   Instruction *foldVectorBinop(BinaryOperator &Inst);
606   Instruction *foldVectorSelect(SelectInst &Sel);
607   Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf);
608 
609   /// Given a binary operator, cast instruction, or select which has a PHI node
610   /// as operand #0, see if we can fold the instruction into the PHI (which is
611   /// only possible if all operands to the PHI are constants).
612   Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
613 
614   /// For a binary operator with 2 phi operands, try to hoist the binary
615   /// operation before the phi. This can result in fewer instructions in
616   /// patterns where at least one set of phi operands simplifies.
617   /// Example:
618   /// BB3: binop (phi [X, BB1], [C1, BB2]), (phi [Y, BB1], [C2, BB2])
619   /// -->
620   /// BB1: BO = binop X, Y
621   /// BB3: phi [BO, BB1], [(binop C1, C2), BB2]
622   Instruction *foldBinopWithPhiOperands(BinaryOperator &BO);
623 
624   /// Given an instruction with a select as one operand and a constant as the
625   /// other operand, try to fold the binary operator into the select arguments.
626   /// This also works for Cast instructions, which obviously do not have a
627   /// second operand.
628   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
629                                 bool FoldWithMultiUse = false);
630 
631   /// This is a convenience wrapper function for the above two functions.
632   Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
633 
634   Instruction *foldAddWithConstant(BinaryOperator &Add);
635 
636   /// Try to rotate an operation below a PHI node, using PHI nodes for
637   /// its operands.
638   Instruction *foldPHIArgOpIntoPHI(PHINode &PN);
639   Instruction *foldPHIArgBinOpIntoPHI(PHINode &PN);
640   Instruction *foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN);
641   Instruction *foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN);
642   Instruction *foldPHIArgGEPIntoPHI(PHINode &PN);
643   Instruction *foldPHIArgLoadIntoPHI(PHINode &PN);
644   Instruction *foldPHIArgZextsIntoPHI(PHINode &PN);
645   Instruction *foldPHIArgIntToPtrToPHI(PHINode &PN);
646 
647   /// If an integer typed PHI has only one use which is an IntToPtr operation,
648   /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
649   /// insert a new pointer typed PHI and replace the original one.
650   Instruction *foldIntegerTypedPHI(PHINode &PN);
651 
652   /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
653   /// folded operation.
654   void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
655 
656   Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
657                            ICmpInst::Predicate Cond, Instruction &I);
658   Instruction *foldSelectICmp(ICmpInst::Predicate Pred, SelectInst *SI,
659                               Value *RHS, const ICmpInst &I);
660   Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca);
661   Instruction *foldCmpLoadFromIndexedGlobal(LoadInst *LI,
662                                             GetElementPtrInst *GEP,
663                                             GlobalVariable *GV, CmpInst &ICI,
664                                             ConstantInt *AndCst = nullptr);
665   Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
666                                     Constant *RHSC);
667   Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
668                                   ICmpInst::Predicate Pred);
669   Instruction *foldICmpWithCastOp(ICmpInst &ICmp);
670   Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp);
671 
672   Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
673   Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
674   Instruction *foldICmpWithConstant(ICmpInst &Cmp);
675   Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
676   Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
677   Instruction *foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp,
678                                                   const APInt &C);
679   Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
680   Instruction *foldICmpEquality(ICmpInst &Cmp);
681   Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
682   Instruction *foldSignBitTest(ICmpInst &I);
683   Instruction *foldICmpWithZero(ICmpInst &Cmp);
684 
685   Value *foldMultiplicationOverflowCheck(ICmpInst &Cmp);
686 
687   Instruction *foldICmpBinOpWithConstant(ICmpInst &Cmp, BinaryOperator *BO,
688                                          const APInt &C);
689   Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
690                                       ConstantInt *C);
691   Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
692                                      const APInt &C);
693   Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
694                                    const APInt &C);
695   Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
696                                    const APInt &C);
697   Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
698                                   const APInt &C);
699   Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
700                                    const APInt &C);
701   Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
702                                    const APInt &C);
703   Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
704                                    const APInt &C);
705   Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
706                                     const APInt &C);
707   Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
708                                     const APInt &C);
709   Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
710                                    const APInt &C);
711   Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
712                                    const APInt &C);
713   Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
714                                    const APInt &C);
715   Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
716                                      const APInt &C1);
717   Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
718                                 const APInt &C1, const APInt &C2);
719   Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
720                                      const APInt &C2);
721   Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
722                                      const APInt &C2);
723 
724   Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
725                                                  BinaryOperator *BO,
726                                                  const APInt &C);
727   Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
728                                              const APInt &C);
729   Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
730                                                const APInt &C);
731   Instruction *foldICmpBitCast(ICmpInst &Cmp);
732 
733   // Helpers of visitSelectInst().
734   Instruction *foldSelectExtConst(SelectInst &Sel);
735   Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
736   Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
737   Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
738                             Value *A, Value *B, Instruction &Outer,
739                             SelectPatternFlavor SPF2, Value *C);
740   Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
741   Instruction *foldSelectValueEquivalence(SelectInst &SI, ICmpInst &ICI);
742 
743   Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
744                          bool isSigned, bool Inside);
745   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
746   bool mergeStoreIntoSuccessor(StoreInst &SI);
747 
748   /// Given an initial instruction, check to see if it is the root of a
749   /// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
750   /// intrinsic.
751   Instruction *matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps,
752                                       bool MatchBitReversals);
753 
754   Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
755   Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
756 
757   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
758 
759   /// Returns a value X such that Val = X * Scale, or null if none.
760   ///
761   /// If the multiplication is known not to overflow then NoSignedWrap is set.
762   Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
763 };
764 
765 class Negator final {
766   /// Top-to-bottom, def-to-use negated instruction tree we produced.
767   SmallVector<Instruction *, NegatorMaxNodesSSO> NewInstructions;
768 
769   using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
770   BuilderTy Builder;
771 
772   const DataLayout &DL;
773   AssumptionCache &AC;
774   const DominatorTree &DT;
775 
776   const bool IsTrulyNegation;
777 
778   SmallDenseMap<Value *, Value *> NegationsCache;
779 
780   Negator(LLVMContext &C, const DataLayout &DL, AssumptionCache &AC,
781           const DominatorTree &DT, bool IsTrulyNegation);
782 
783 #if LLVM_ENABLE_STATS
784   unsigned NumValuesVisitedInThisNegator = 0;
785   ~Negator();
786 #endif
787 
788   using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
789                            Value * /*NegatedRoot*/>;
790 
791   std::array<Value *, 2> getSortedOperandsOfBinOp(Instruction *I);
792 
793   LLVM_NODISCARD Value *visitImpl(Value *V, unsigned Depth);
794 
795   LLVM_NODISCARD Value *negate(Value *V, unsigned Depth);
796 
797   /// Recurse depth-first and attempt to sink the negation.
798   /// FIXME: use worklist?
799   LLVM_NODISCARD Optional<Result> run(Value *Root);
800 
801   Negator(const Negator &) = delete;
802   Negator(Negator &&) = delete;
803   Negator &operator=(const Negator &) = delete;
804   Negator &operator=(Negator &&) = delete;
805 
806 public:
807   /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
808   /// otherwise returns negated value.
809   LLVM_NODISCARD static Value *Negate(bool LHSIsZero, Value *Root,
810                                       InstCombinerImpl &IC);
811 };
812 
813 } // end namespace llvm
814 
815 #undef DEBUG_TYPE
816 
817 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
818