1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CmpInstAnalysis.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/KnownBits.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Returns true if the exploded icmp can be expressed as a signed comparison 73 /// to zero and updates the predicate accordingly. 74 /// The signedness of the comparison is preserved. 75 /// TODO: Refactor with decomposeBitTestICmp()? 76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 77 if (!ICmpInst::isSigned(Pred)) 78 return false; 79 80 if (C.isZero()) 81 return ICmpInst::isRelational(Pred); 82 83 if (C.isOne()) { 84 if (Pred == ICmpInst::ICMP_SLT) { 85 Pred = ICmpInst::ICMP_SLE; 86 return true; 87 } 88 } else if (C.isAllOnes()) { 89 if (Pred == ICmpInst::ICMP_SGT) { 90 Pred = ICmpInst::ICMP_SGE; 91 return true; 92 } 93 } 94 95 return false; 96 } 97 98 /// This is called when we see this pattern: 99 /// cmp pred (load (gep GV, ...)), cmpcst 100 /// where GV is a global variable with a constant initializer. Try to simplify 101 /// this into some simple computation that does not need the load. For example 102 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 103 /// 104 /// If AndCst is non-null, then the loaded value is masked with that constant 105 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 106 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( 107 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, 108 ConstantInt *AndCst) { 109 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || 110 GV->getValueType() != GEP->getSourceElementType() || 111 !GV->isConstant() || !GV->hasDefinitiveInitializer()) 112 return nullptr; 113 114 Constant *Init = GV->getInitializer(); 115 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 116 return nullptr; 117 118 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 119 // Don't blow up on huge arrays. 120 if (ArrayElementCount > MaxArraySizeForCombine) 121 return nullptr; 122 123 // There are many forms of this optimization we can handle, for now, just do 124 // the simple index into a single-dimensional array. 125 // 126 // Require: GEP GV, 0, i {{, constant indices}} 127 if (GEP->getNumOperands() < 3 || 128 !isa<ConstantInt>(GEP->getOperand(1)) || 129 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 130 isa<Constant>(GEP->getOperand(2))) 131 return nullptr; 132 133 // Check that indices after the variable are constants and in-range for the 134 // type they index. Collect the indices. This is typically for arrays of 135 // structs. 136 SmallVector<unsigned, 4> LaterIndices; 137 138 Type *EltTy = Init->getType()->getArrayElementType(); 139 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 140 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 141 if (!Idx) return nullptr; // Variable index. 142 143 uint64_t IdxVal = Idx->getZExtValue(); 144 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 145 146 if (StructType *STy = dyn_cast<StructType>(EltTy)) 147 EltTy = STy->getElementType(IdxVal); 148 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 149 if (IdxVal >= ATy->getNumElements()) return nullptr; 150 EltTy = ATy->getElementType(); 151 } else { 152 return nullptr; // Unknown type. 153 } 154 155 LaterIndices.push_back(IdxVal); 156 } 157 158 enum { Overdefined = -3, Undefined = -2 }; 159 160 // Variables for our state machines. 161 162 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 163 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 164 // and 87 is the second (and last) index. FirstTrueElement is -2 when 165 // undefined, otherwise set to the first true element. SecondTrueElement is 166 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 167 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 168 169 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 170 // form "i != 47 & i != 87". Same state transitions as for true elements. 171 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 172 173 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 174 /// define a state machine that triggers for ranges of values that the index 175 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 176 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 177 /// index in the range (inclusive). We use -2 for undefined here because we 178 /// use relative comparisons and don't want 0-1 to match -1. 179 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 180 181 // MagicBitvector - This is a magic bitvector where we set a bit if the 182 // comparison is true for element 'i'. If there are 64 elements or less in 183 // the array, this will fully represent all the comparison results. 184 uint64_t MagicBitvector = 0; 185 186 // Scan the array and see if one of our patterns matches. 187 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 188 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 189 Constant *Elt = Init->getAggregateElement(i); 190 if (!Elt) return nullptr; 191 192 // If this is indexing an array of structures, get the structure element. 193 if (!LaterIndices.empty()) { 194 Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices); 195 if (!Elt) 196 return nullptr; 197 } 198 199 // If the element is masked, handle it. 200 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 201 202 // Find out if the comparison would be true or false for the i'th element. 203 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 204 CompareRHS, DL, &TLI); 205 // If the result is undef for this element, ignore it. 206 if (isa<UndefValue>(C)) { 207 // Extend range state machines to cover this element in case there is an 208 // undef in the middle of the range. 209 if (TrueRangeEnd == (int)i-1) 210 TrueRangeEnd = i; 211 if (FalseRangeEnd == (int)i-1) 212 FalseRangeEnd = i; 213 continue; 214 } 215 216 // If we can't compute the result for any of the elements, we have to give 217 // up evaluating the entire conditional. 218 if (!isa<ConstantInt>(C)) return nullptr; 219 220 // Otherwise, we know if the comparison is true or false for this element, 221 // update our state machines. 222 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 223 224 // State machine for single/double/range index comparison. 225 if (IsTrueForElt) { 226 // Update the TrueElement state machine. 227 if (FirstTrueElement == Undefined) 228 FirstTrueElement = TrueRangeEnd = i; // First true element. 229 else { 230 // Update double-compare state machine. 231 if (SecondTrueElement == Undefined) 232 SecondTrueElement = i; 233 else 234 SecondTrueElement = Overdefined; 235 236 // Update range state machine. 237 if (TrueRangeEnd == (int)i-1) 238 TrueRangeEnd = i; 239 else 240 TrueRangeEnd = Overdefined; 241 } 242 } else { 243 // Update the FalseElement state machine. 244 if (FirstFalseElement == Undefined) 245 FirstFalseElement = FalseRangeEnd = i; // First false element. 246 else { 247 // Update double-compare state machine. 248 if (SecondFalseElement == Undefined) 249 SecondFalseElement = i; 250 else 251 SecondFalseElement = Overdefined; 252 253 // Update range state machine. 254 if (FalseRangeEnd == (int)i-1) 255 FalseRangeEnd = i; 256 else 257 FalseRangeEnd = Overdefined; 258 } 259 } 260 261 // If this element is in range, update our magic bitvector. 262 if (i < 64 && IsTrueForElt) 263 MagicBitvector |= 1ULL << i; 264 265 // If all of our states become overdefined, bail out early. Since the 266 // predicate is expensive, only check it every 8 elements. This is only 267 // really useful for really huge arrays. 268 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 269 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 270 FalseRangeEnd == Overdefined) 271 return nullptr; 272 } 273 274 // Now that we've scanned the entire array, emit our new comparison(s). We 275 // order the state machines in complexity of the generated code. 276 Value *Idx = GEP->getOperand(2); 277 278 // If the index is larger than the pointer size of the target, truncate the 279 // index down like the GEP would do implicitly. We don't have to do this for 280 // an inbounds GEP because the index can't be out of range. 281 if (!GEP->isInBounds()) { 282 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 283 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 284 if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) 285 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 286 } 287 288 // If inbounds keyword is not present, Idx * ElementSize can overflow. 289 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 290 // Then, there are two possible values for Idx to match offset 0: 291 // 0x00..00, 0x80..00. 292 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 293 // comparison is false if Idx was 0x80..00. 294 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 295 unsigned ElementSize = 296 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 297 auto MaskIdx = [&](Value* Idx){ 298 if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) { 299 Value *Mask = ConstantInt::get(Idx->getType(), -1); 300 Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize)); 301 Idx = Builder.CreateAnd(Idx, Mask); 302 } 303 return Idx; 304 }; 305 306 // If the comparison is only true for one or two elements, emit direct 307 // comparisons. 308 if (SecondTrueElement != Overdefined) { 309 Idx = MaskIdx(Idx); 310 // None true -> false. 311 if (FirstTrueElement == Undefined) 312 return replaceInstUsesWith(ICI, Builder.getFalse()); 313 314 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 315 316 // True for one element -> 'i == 47'. 317 if (SecondTrueElement == Undefined) 318 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 319 320 // True for two elements -> 'i == 47 | i == 72'. 321 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 322 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 323 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 324 return BinaryOperator::CreateOr(C1, C2); 325 } 326 327 // If the comparison is only false for one or two elements, emit direct 328 // comparisons. 329 if (SecondFalseElement != Overdefined) { 330 Idx = MaskIdx(Idx); 331 // None false -> true. 332 if (FirstFalseElement == Undefined) 333 return replaceInstUsesWith(ICI, Builder.getTrue()); 334 335 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 336 337 // False for one element -> 'i != 47'. 338 if (SecondFalseElement == Undefined) 339 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 340 341 // False for two elements -> 'i != 47 & i != 72'. 342 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 343 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 344 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 345 return BinaryOperator::CreateAnd(C1, C2); 346 } 347 348 // If the comparison can be replaced with a range comparison for the elements 349 // where it is true, emit the range check. 350 if (TrueRangeEnd != Overdefined) { 351 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 352 Idx = MaskIdx(Idx); 353 354 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 355 if (FirstTrueElement) { 356 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 357 Idx = Builder.CreateAdd(Idx, Offs); 358 } 359 360 Value *End = ConstantInt::get(Idx->getType(), 361 TrueRangeEnd-FirstTrueElement+1); 362 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 363 } 364 365 // False range check. 366 if (FalseRangeEnd != Overdefined) { 367 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 368 Idx = MaskIdx(Idx); 369 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 370 if (FirstFalseElement) { 371 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 372 Idx = Builder.CreateAdd(Idx, Offs); 373 } 374 375 Value *End = ConstantInt::get(Idx->getType(), 376 FalseRangeEnd-FirstFalseElement); 377 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 378 } 379 380 // If a magic bitvector captures the entire comparison state 381 // of this load, replace it with computation that does: 382 // ((magic_cst >> i) & 1) != 0 383 { 384 Type *Ty = nullptr; 385 386 // Look for an appropriate type: 387 // - The type of Idx if the magic fits 388 // - The smallest fitting legal type 389 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 390 Ty = Idx->getType(); 391 else 392 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 393 394 if (Ty) { 395 Idx = MaskIdx(Idx); 396 Value *V = Builder.CreateIntCast(Idx, Ty, false); 397 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 398 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 399 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 400 } 401 } 402 403 return nullptr; 404 } 405 406 /// Return a value that can be used to compare the *offset* implied by a GEP to 407 /// zero. For example, if we have &A[i], we want to return 'i' for 408 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 409 /// are involved. The above expression would also be legal to codegen as 410 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 411 /// This latter form is less amenable to optimization though, and we are allowed 412 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 413 /// 414 /// If we can't emit an optimized form for this expression, this returns null. 415 /// 416 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, 417 const DataLayout &DL) { 418 gep_type_iterator GTI = gep_type_begin(GEP); 419 420 // Check to see if this gep only has a single variable index. If so, and if 421 // any constant indices are a multiple of its scale, then we can compute this 422 // in terms of the scale of the variable index. For example, if the GEP 423 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 424 // because the expression will cross zero at the same point. 425 unsigned i, e = GEP->getNumOperands(); 426 int64_t Offset = 0; 427 for (i = 1; i != e; ++i, ++GTI) { 428 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 429 // Compute the aggregate offset of constant indices. 430 if (CI->isZero()) continue; 431 432 // Handle a struct index, which adds its field offset to the pointer. 433 if (StructType *STy = GTI.getStructTypeOrNull()) { 434 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 435 } else { 436 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 437 Offset += Size*CI->getSExtValue(); 438 } 439 } else { 440 // Found our variable index. 441 break; 442 } 443 } 444 445 // If there are no variable indices, we must have a constant offset, just 446 // evaluate it the general way. 447 if (i == e) return nullptr; 448 449 Value *VariableIdx = GEP->getOperand(i); 450 // Determine the scale factor of the variable element. For example, this is 451 // 4 if the variable index is into an array of i32. 452 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 453 454 // Verify that there are no other variable indices. If so, emit the hard way. 455 for (++i, ++GTI; i != e; ++i, ++GTI) { 456 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 457 if (!CI) return nullptr; 458 459 // Compute the aggregate offset of constant indices. 460 if (CI->isZero()) continue; 461 462 // Handle a struct index, which adds its field offset to the pointer. 463 if (StructType *STy = GTI.getStructTypeOrNull()) { 464 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 465 } else { 466 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 467 Offset += Size*CI->getSExtValue(); 468 } 469 } 470 471 // Okay, we know we have a single variable index, which must be a 472 // pointer/array/vector index. If there is no offset, life is simple, return 473 // the index. 474 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 475 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 476 if (Offset == 0) { 477 // Cast to intptrty in case a truncation occurs. If an extension is needed, 478 // we don't need to bother extending: the extension won't affect where the 479 // computation crosses zero. 480 if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > 481 IntPtrWidth) { 482 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 483 } 484 return VariableIdx; 485 } 486 487 // Otherwise, there is an index. The computation we will do will be modulo 488 // the pointer size. 489 Offset = SignExtend64(Offset, IntPtrWidth); 490 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 491 492 // To do this transformation, any constant index must be a multiple of the 493 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 494 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 495 // multiple of the variable scale. 496 int64_t NewOffs = Offset / (int64_t)VariableScale; 497 if (Offset != NewOffs*(int64_t)VariableScale) 498 return nullptr; 499 500 // Okay, we can do this evaluation. Start by converting the index to intptr. 501 if (VariableIdx->getType() != IntPtrTy) 502 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 503 true /*Signed*/); 504 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 505 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 506 } 507 508 /// Returns true if we can rewrite Start as a GEP with pointer Base 509 /// and some integer offset. The nodes that need to be re-written 510 /// for this transformation will be added to Explored. 511 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 512 const DataLayout &DL, 513 SetVector<Value *> &Explored) { 514 SmallVector<Value *, 16> WorkList(1, Start); 515 Explored.insert(Base); 516 517 // The following traversal gives us an order which can be used 518 // when doing the final transformation. Since in the final 519 // transformation we create the PHI replacement instructions first, 520 // we don't have to get them in any particular order. 521 // 522 // However, for other instructions we will have to traverse the 523 // operands of an instruction first, which means that we have to 524 // do a post-order traversal. 525 while (!WorkList.empty()) { 526 SetVector<PHINode *> PHIs; 527 528 while (!WorkList.empty()) { 529 if (Explored.size() >= 100) 530 return false; 531 532 Value *V = WorkList.back(); 533 534 if (Explored.contains(V)) { 535 WorkList.pop_back(); 536 continue; 537 } 538 539 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 540 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 541 // We've found some value that we can't explore which is different from 542 // the base. Therefore we can't do this transformation. 543 return false; 544 545 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 546 auto *CI = cast<CastInst>(V); 547 if (!CI->isNoopCast(DL)) 548 return false; 549 550 if (!Explored.contains(CI->getOperand(0))) 551 WorkList.push_back(CI->getOperand(0)); 552 } 553 554 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 555 // We're limiting the GEP to having one index. This will preserve 556 // the original pointer type. We could handle more cases in the 557 // future. 558 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 559 GEP->getSourceElementType() != ElemTy) 560 return false; 561 562 if (!Explored.contains(GEP->getOperand(0))) 563 WorkList.push_back(GEP->getOperand(0)); 564 } 565 566 if (WorkList.back() == V) { 567 WorkList.pop_back(); 568 // We've finished visiting this node, mark it as such. 569 Explored.insert(V); 570 } 571 572 if (auto *PN = dyn_cast<PHINode>(V)) { 573 // We cannot transform PHIs on unsplittable basic blocks. 574 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 575 return false; 576 Explored.insert(PN); 577 PHIs.insert(PN); 578 } 579 } 580 581 // Explore the PHI nodes further. 582 for (auto *PN : PHIs) 583 for (Value *Op : PN->incoming_values()) 584 if (!Explored.contains(Op)) 585 WorkList.push_back(Op); 586 } 587 588 // Make sure that we can do this. Since we can't insert GEPs in a basic 589 // block before a PHI node, we can't easily do this transformation if 590 // we have PHI node users of transformed instructions. 591 for (Value *Val : Explored) { 592 for (Value *Use : Val->uses()) { 593 594 auto *PHI = dyn_cast<PHINode>(Use); 595 auto *Inst = dyn_cast<Instruction>(Val); 596 597 if (Inst == Base || Inst == PHI || !Inst || !PHI || 598 !Explored.contains(PHI)) 599 continue; 600 601 if (PHI->getParent() == Inst->getParent()) 602 return false; 603 } 604 } 605 return true; 606 } 607 608 // Sets the appropriate insert point on Builder where we can add 609 // a replacement Instruction for V (if that is possible). 610 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 611 bool Before = true) { 612 if (auto *PHI = dyn_cast<PHINode>(V)) { 613 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 614 return; 615 } 616 if (auto *I = dyn_cast<Instruction>(V)) { 617 if (!Before) 618 I = &*std::next(I->getIterator()); 619 Builder.SetInsertPoint(I); 620 return; 621 } 622 if (auto *A = dyn_cast<Argument>(V)) { 623 // Set the insertion point in the entry block. 624 BasicBlock &Entry = A->getParent()->getEntryBlock(); 625 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 626 return; 627 } 628 // Otherwise, this is a constant and we don't need to set a new 629 // insertion point. 630 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 631 } 632 633 /// Returns a re-written value of Start as an indexed GEP using Base as a 634 /// pointer. 635 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 636 const DataLayout &DL, 637 SetVector<Value *> &Explored) { 638 // Perform all the substitutions. This is a bit tricky because we can 639 // have cycles in our use-def chains. 640 // 1. Create the PHI nodes without any incoming values. 641 // 2. Create all the other values. 642 // 3. Add the edges for the PHI nodes. 643 // 4. Emit GEPs to get the original pointers. 644 // 5. Remove the original instructions. 645 Type *IndexType = IntegerType::get( 646 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 647 648 DenseMap<Value *, Value *> NewInsts; 649 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 650 651 // Create the new PHI nodes, without adding any incoming values. 652 for (Value *Val : Explored) { 653 if (Val == Base) 654 continue; 655 // Create empty phi nodes. This avoids cyclic dependencies when creating 656 // the remaining instructions. 657 if (auto *PHI = dyn_cast<PHINode>(Val)) 658 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 659 PHI->getName() + ".idx", PHI); 660 } 661 IRBuilder<> Builder(Base->getContext()); 662 663 // Create all the other instructions. 664 for (Value *Val : Explored) { 665 666 if (NewInsts.find(Val) != NewInsts.end()) 667 continue; 668 669 if (auto *CI = dyn_cast<CastInst>(Val)) { 670 // Don't get rid of the intermediate variable here; the store can grow 671 // the map which will invalidate the reference to the input value. 672 Value *V = NewInsts[CI->getOperand(0)]; 673 NewInsts[CI] = V; 674 continue; 675 } 676 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 677 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 678 : GEP->getOperand(1); 679 setInsertionPoint(Builder, GEP); 680 // Indices might need to be sign extended. GEPs will magically do 681 // this, but we need to do it ourselves here. 682 if (Index->getType()->getScalarSizeInBits() != 683 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 684 Index = Builder.CreateSExtOrTrunc( 685 Index, NewInsts[GEP->getOperand(0)]->getType(), 686 GEP->getOperand(0)->getName() + ".sext"); 687 } 688 689 auto *Op = NewInsts[GEP->getOperand(0)]; 690 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 691 NewInsts[GEP] = Index; 692 else 693 NewInsts[GEP] = Builder.CreateNSWAdd( 694 Op, Index, GEP->getOperand(0)->getName() + ".add"); 695 continue; 696 } 697 if (isa<PHINode>(Val)) 698 continue; 699 700 llvm_unreachable("Unexpected instruction type"); 701 } 702 703 // Add the incoming values to the PHI nodes. 704 for (Value *Val : Explored) { 705 if (Val == Base) 706 continue; 707 // All the instructions have been created, we can now add edges to the 708 // phi nodes. 709 if (auto *PHI = dyn_cast<PHINode>(Val)) { 710 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 711 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 712 Value *NewIncoming = PHI->getIncomingValue(I); 713 714 if (NewInsts.find(NewIncoming) != NewInsts.end()) 715 NewIncoming = NewInsts[NewIncoming]; 716 717 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 718 } 719 } 720 } 721 722 PointerType *PtrTy = 723 ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace()); 724 for (Value *Val : Explored) { 725 if (Val == Base) 726 continue; 727 728 // Depending on the type, for external users we have to emit 729 // a GEP or a GEP + ptrtoint. 730 setInsertionPoint(Builder, Val, false); 731 732 // Cast base to the expected type. 733 Value *NewVal = Builder.CreateBitOrPointerCast( 734 Base, PtrTy, Start->getName() + "to.ptr"); 735 NewVal = Builder.CreateInBoundsGEP( 736 ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 737 NewVal = Builder.CreateBitOrPointerCast( 738 NewVal, Val->getType(), Val->getName() + ".conv"); 739 Val->replaceAllUsesWith(NewVal); 740 } 741 742 return NewInsts[Start]; 743 } 744 745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 746 /// the input Value as a constant indexed GEP. Returns a pair containing 747 /// the GEPs Pointer and Index. 748 static std::pair<Value *, Value *> 749 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) { 750 Type *IndexType = IntegerType::get(V->getContext(), 751 DL.getIndexTypeSizeInBits(V->getType())); 752 753 Constant *Index = ConstantInt::getNullValue(IndexType); 754 while (true) { 755 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 756 // We accept only inbouds GEPs here to exclude the possibility of 757 // overflow. 758 if (!GEP->isInBounds()) 759 break; 760 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 761 GEP->getSourceElementType() == ElemTy) { 762 V = GEP->getOperand(0); 763 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 764 Index = ConstantExpr::getAdd( 765 Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType)); 766 continue; 767 } 768 break; 769 } 770 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 771 if (!CI->isNoopCast(DL)) 772 break; 773 V = CI->getOperand(0); 774 continue; 775 } 776 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 777 if (!CI->isNoopCast(DL)) 778 break; 779 V = CI->getOperand(0); 780 continue; 781 } 782 break; 783 } 784 return {V, Index}; 785 } 786 787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 788 /// We can look through PHIs, GEPs and casts in order to determine a common base 789 /// between GEPLHS and RHS. 790 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 791 ICmpInst::Predicate Cond, 792 const DataLayout &DL) { 793 // FIXME: Support vector of pointers. 794 if (GEPLHS->getType()->isVectorTy()) 795 return nullptr; 796 797 if (!GEPLHS->hasAllConstantIndices()) 798 return nullptr; 799 800 Type *ElemTy = GEPLHS->getSourceElementType(); 801 Value *PtrBase, *Index; 802 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL); 803 804 // The set of nodes that will take part in this transformation. 805 SetVector<Value *> Nodes; 806 807 if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes)) 808 return nullptr; 809 810 // We know we can re-write this as 811 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 812 // Since we've only looked through inbouds GEPs we know that we 813 // can't have overflow on either side. We can therefore re-write 814 // this as: 815 // OFFSET1 cmp OFFSET2 816 Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes); 817 818 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 819 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 820 // offset. Since Index is the offset of LHS to the base pointer, we will now 821 // compare the offsets instead of comparing the pointers. 822 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 823 } 824 825 /// Fold comparisons between a GEP instruction and something else. At this point 826 /// we know that the GEP is on the LHS of the comparison. 827 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 828 ICmpInst::Predicate Cond, 829 Instruction &I) { 830 // Don't transform signed compares of GEPs into index compares. Even if the 831 // GEP is inbounds, the final add of the base pointer can have signed overflow 832 // and would change the result of the icmp. 833 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 834 // the maximum signed value for the pointer type. 835 if (ICmpInst::isSigned(Cond)) 836 return nullptr; 837 838 // Look through bitcasts and addrspacecasts. We do not however want to remove 839 // 0 GEPs. 840 if (!isa<GetElementPtrInst>(RHS)) 841 RHS = RHS->stripPointerCasts(); 842 843 Value *PtrBase = GEPLHS->getOperand(0); 844 // FIXME: Support vector pointer GEPs. 845 if (PtrBase == RHS && GEPLHS->isInBounds() && 846 !GEPLHS->getType()->isVectorTy()) { 847 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 848 // This transformation (ignoring the base and scales) is valid because we 849 // know pointers can't overflow since the gep is inbounds. See if we can 850 // output an optimized form. 851 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 852 853 // If not, synthesize the offset the hard way. 854 if (!Offset) 855 Offset = EmitGEPOffset(GEPLHS); 856 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 857 Constant::getNullValue(Offset->getType())); 858 } 859 860 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 861 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 862 !NullPointerIsDefined(I.getFunction(), 863 RHS->getType()->getPointerAddressSpace())) { 864 // For most address spaces, an allocation can't be placed at null, but null 865 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 866 // the only valid inbounds address derived from null, is null itself. 867 // Thus, we have four cases to consider: 868 // 1) Base == nullptr, Offset == 0 -> inbounds, null 869 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 870 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 871 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 872 // 873 // (Note if we're indexing a type of size 0, that simply collapses into one 874 // of the buckets above.) 875 // 876 // In general, we're allowed to make values less poison (i.e. remove 877 // sources of full UB), so in this case, we just select between the two 878 // non-poison cases (1 and 4 above). 879 // 880 // For vectors, we apply the same reasoning on a per-lane basis. 881 auto *Base = GEPLHS->getPointerOperand(); 882 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 883 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 884 Base = Builder.CreateVectorSplat(EC, Base); 885 } 886 return new ICmpInst(Cond, Base, 887 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 888 cast<Constant>(RHS), Base->getType())); 889 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 890 // If the base pointers are different, but the indices are the same, just 891 // compare the base pointer. 892 if (PtrBase != GEPRHS->getOperand(0)) { 893 bool IndicesTheSame = 894 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 895 GEPLHS->getPointerOperand()->getType() == 896 GEPRHS->getPointerOperand()->getType() && 897 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 898 if (IndicesTheSame) 899 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 900 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 901 IndicesTheSame = false; 902 break; 903 } 904 905 // If all indices are the same, just compare the base pointers. 906 Type *BaseType = GEPLHS->getOperand(0)->getType(); 907 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 908 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 909 910 // If we're comparing GEPs with two base pointers that only differ in type 911 // and both GEPs have only constant indices or just one use, then fold 912 // the compare with the adjusted indices. 913 // FIXME: Support vector of pointers. 914 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 915 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 916 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 917 PtrBase->stripPointerCasts() == 918 GEPRHS->getOperand(0)->stripPointerCasts() && 919 !GEPLHS->getType()->isVectorTy()) { 920 Value *LOffset = EmitGEPOffset(GEPLHS); 921 Value *ROffset = EmitGEPOffset(GEPRHS); 922 923 // If we looked through an addrspacecast between different sized address 924 // spaces, the LHS and RHS pointers are different sized 925 // integers. Truncate to the smaller one. 926 Type *LHSIndexTy = LOffset->getType(); 927 Type *RHSIndexTy = ROffset->getType(); 928 if (LHSIndexTy != RHSIndexTy) { 929 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < 930 RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { 931 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 932 } else 933 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 934 } 935 936 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 937 LOffset, ROffset); 938 return replaceInstUsesWith(I, Cmp); 939 } 940 941 // Otherwise, the base pointers are different and the indices are 942 // different. Try convert this to an indexed compare by looking through 943 // PHIs/casts. 944 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 945 } 946 947 // If one of the GEPs has all zero indices, recurse. 948 // FIXME: Handle vector of pointers. 949 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 950 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 951 ICmpInst::getSwappedPredicate(Cond), I); 952 953 // If the other GEP has all zero indices, recurse. 954 // FIXME: Handle vector of pointers. 955 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 956 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 957 958 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 959 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 960 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { 961 // If the GEPs only differ by one index, compare it. 962 unsigned NumDifferences = 0; // Keep track of # differences. 963 unsigned DiffOperand = 0; // The operand that differs. 964 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 965 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 966 Type *LHSType = GEPLHS->getOperand(i)->getType(); 967 Type *RHSType = GEPRHS->getOperand(i)->getType(); 968 // FIXME: Better support for vector of pointers. 969 if (LHSType->getPrimitiveSizeInBits() != 970 RHSType->getPrimitiveSizeInBits() || 971 (GEPLHS->getType()->isVectorTy() && 972 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 973 // Irreconcilable differences. 974 NumDifferences = 2; 975 break; 976 } 977 978 if (NumDifferences++) break; 979 DiffOperand = i; 980 } 981 982 if (NumDifferences == 0) // SAME GEP? 983 return replaceInstUsesWith(I, // No comparison is needed here. 984 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 985 986 else if (NumDifferences == 1 && GEPsInBounds) { 987 Value *LHSV = GEPLHS->getOperand(DiffOperand); 988 Value *RHSV = GEPRHS->getOperand(DiffOperand); 989 // Make sure we do a signed comparison here. 990 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 991 } 992 } 993 994 // Only lower this if the icmp is the only user of the GEP or if we expect 995 // the result to fold to a constant! 996 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 997 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 998 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 999 Value *L = EmitGEPOffset(GEPLHS); 1000 Value *R = EmitGEPOffset(GEPRHS); 1001 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1002 } 1003 } 1004 1005 // Try convert this to an indexed compare by looking through PHIs/casts as a 1006 // last resort. 1007 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1008 } 1009 1010 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, 1011 const AllocaInst *Alloca) { 1012 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1013 1014 // It would be tempting to fold away comparisons between allocas and any 1015 // pointer not based on that alloca (e.g. an argument). However, even 1016 // though such pointers cannot alias, they can still compare equal. 1017 // 1018 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1019 // doesn't escape we can argue that it's impossible to guess its value, and we 1020 // can therefore act as if any such guesses are wrong. 1021 // 1022 // The code below checks that the alloca doesn't escape, and that it's only 1023 // used in a comparison once (the current instruction). The 1024 // single-comparison-use condition ensures that we're trivially folding all 1025 // comparisons against the alloca consistently, and avoids the risk of 1026 // erroneously folding a comparison of the pointer with itself. 1027 1028 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1029 1030 SmallVector<const Use *, 32> Worklist; 1031 for (const Use &U : Alloca->uses()) { 1032 if (Worklist.size() >= MaxIter) 1033 return nullptr; 1034 Worklist.push_back(&U); 1035 } 1036 1037 unsigned NumCmps = 0; 1038 while (!Worklist.empty()) { 1039 assert(Worklist.size() <= MaxIter); 1040 const Use *U = Worklist.pop_back_val(); 1041 const Value *V = U->getUser(); 1042 --MaxIter; 1043 1044 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1045 isa<SelectInst>(V)) { 1046 // Track the uses. 1047 } else if (isa<LoadInst>(V)) { 1048 // Loading from the pointer doesn't escape it. 1049 continue; 1050 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1051 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1052 if (SI->getValueOperand() == U->get()) 1053 return nullptr; 1054 continue; 1055 } else if (isa<ICmpInst>(V)) { 1056 if (NumCmps++) 1057 return nullptr; // Found more than one cmp. 1058 continue; 1059 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1060 switch (Intrin->getIntrinsicID()) { 1061 // These intrinsics don't escape or compare the pointer. Memset is safe 1062 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1063 // we don't allow stores, so src cannot point to V. 1064 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1065 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1066 continue; 1067 default: 1068 return nullptr; 1069 } 1070 } else { 1071 return nullptr; 1072 } 1073 for (const Use &U : V->uses()) { 1074 if (Worklist.size() >= MaxIter) 1075 return nullptr; 1076 Worklist.push_back(&U); 1077 } 1078 } 1079 1080 auto *Res = ConstantInt::get(ICI.getType(), 1081 !CmpInst::isTrueWhenEqual(ICI.getPredicate())); 1082 return replaceInstUsesWith(ICI, Res); 1083 } 1084 1085 /// Fold "icmp pred (X+C), X". 1086 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 1087 ICmpInst::Predicate Pred) { 1088 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1089 // so the values can never be equal. Similarly for all other "or equals" 1090 // operators. 1091 assert(!!C && "C should not be zero!"); 1092 1093 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1094 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1095 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1096 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1097 Constant *R = ConstantInt::get(X->getType(), 1098 APInt::getMaxValue(C.getBitWidth()) - C); 1099 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1100 } 1101 1102 // (X+1) >u X --> X <u (0-1) --> X != 255 1103 // (X+2) >u X --> X <u (0-2) --> X <u 254 1104 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1105 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1106 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1107 ConstantInt::get(X->getType(), -C)); 1108 1109 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1110 1111 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1112 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1113 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1114 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1115 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1116 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1117 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1118 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1119 ConstantInt::get(X->getType(), SMax - C)); 1120 1121 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1122 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1123 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1124 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1125 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1126 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1127 1128 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1129 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1130 ConstantInt::get(X->getType(), SMax - (C - 1))); 1131 } 1132 1133 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1134 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1135 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1136 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1137 const APInt &AP1, 1138 const APInt &AP2) { 1139 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1140 1141 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1142 if (I.getPredicate() == I.ICMP_NE) 1143 Pred = CmpInst::getInversePredicate(Pred); 1144 return new ICmpInst(Pred, LHS, RHS); 1145 }; 1146 1147 // Don't bother doing any work for cases which InstSimplify handles. 1148 if (AP2.isZero()) 1149 return nullptr; 1150 1151 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1152 if (IsAShr) { 1153 if (AP2.isAllOnes()) 1154 return nullptr; 1155 if (AP2.isNegative() != AP1.isNegative()) 1156 return nullptr; 1157 if (AP2.sgt(AP1)) 1158 return nullptr; 1159 } 1160 1161 if (!AP1) 1162 // 'A' must be large enough to shift out the highest set bit. 1163 return getICmp(I.ICMP_UGT, A, 1164 ConstantInt::get(A->getType(), AP2.logBase2())); 1165 1166 if (AP1 == AP2) 1167 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1168 1169 int Shift; 1170 if (IsAShr && AP1.isNegative()) 1171 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1172 else 1173 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1174 1175 if (Shift > 0) { 1176 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1177 // There are multiple solutions if we are comparing against -1 and the LHS 1178 // of the ashr is not a power of two. 1179 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1180 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1181 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1182 } else if (AP1 == AP2.lshr(Shift)) { 1183 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1184 } 1185 } 1186 1187 // Shifting const2 will never be equal to const1. 1188 // FIXME: This should always be handled by InstSimplify? 1189 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1190 return replaceInstUsesWith(I, TorF); 1191 } 1192 1193 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1194 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1195 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1196 const APInt &AP1, 1197 const APInt &AP2) { 1198 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1199 1200 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1201 if (I.getPredicate() == I.ICMP_NE) 1202 Pred = CmpInst::getInversePredicate(Pred); 1203 return new ICmpInst(Pred, LHS, RHS); 1204 }; 1205 1206 // Don't bother doing any work for cases which InstSimplify handles. 1207 if (AP2.isZero()) 1208 return nullptr; 1209 1210 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1211 1212 if (!AP1 && AP2TrailingZeros != 0) 1213 return getICmp( 1214 I.ICMP_UGE, A, 1215 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1216 1217 if (AP1 == AP2) 1218 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1219 1220 // Get the distance between the lowest bits that are set. 1221 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1222 1223 if (Shift > 0 && AP2.shl(Shift) == AP1) 1224 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1225 1226 // Shifting const2 will never be equal to const1. 1227 // FIXME: This should always be handled by InstSimplify? 1228 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1229 return replaceInstUsesWith(I, TorF); 1230 } 1231 1232 /// The caller has matched a pattern of the form: 1233 /// I = icmp ugt (add (add A, B), CI2), CI1 1234 /// If this is of the form: 1235 /// sum = a + b 1236 /// if (sum+128 >u 255) 1237 /// Then replace it with llvm.sadd.with.overflow.i8. 1238 /// 1239 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1240 ConstantInt *CI2, ConstantInt *CI1, 1241 InstCombinerImpl &IC) { 1242 // The transformation we're trying to do here is to transform this into an 1243 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1244 // with a narrower add, and discard the add-with-constant that is part of the 1245 // range check (if we can't eliminate it, this isn't profitable). 1246 1247 // In order to eliminate the add-with-constant, the compare can be its only 1248 // use. 1249 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1250 if (!AddWithCst->hasOneUse()) 1251 return nullptr; 1252 1253 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1254 if (!CI2->getValue().isPowerOf2()) 1255 return nullptr; 1256 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1257 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1258 return nullptr; 1259 1260 // The width of the new add formed is 1 more than the bias. 1261 ++NewWidth; 1262 1263 // Check to see that CI1 is an all-ones value with NewWidth bits. 1264 if (CI1->getBitWidth() == NewWidth || 1265 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1266 return nullptr; 1267 1268 // This is only really a signed overflow check if the inputs have been 1269 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1270 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1271 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1272 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1273 return nullptr; 1274 1275 // In order to replace the original add with a narrower 1276 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1277 // and truncates that discard the high bits of the add. Verify that this is 1278 // the case. 1279 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1280 for (User *U : OrigAdd->users()) { 1281 if (U == AddWithCst) 1282 continue; 1283 1284 // Only accept truncates for now. We would really like a nice recursive 1285 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1286 // chain to see which bits of a value are actually demanded. If the 1287 // original add had another add which was then immediately truncated, we 1288 // could still do the transformation. 1289 TruncInst *TI = dyn_cast<TruncInst>(U); 1290 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1291 return nullptr; 1292 } 1293 1294 // If the pattern matches, truncate the inputs to the narrower type and 1295 // use the sadd_with_overflow intrinsic to efficiently compute both the 1296 // result and the overflow bit. 1297 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1298 Function *F = Intrinsic::getDeclaration( 1299 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1300 1301 InstCombiner::BuilderTy &Builder = IC.Builder; 1302 1303 // Put the new code above the original add, in case there are any uses of the 1304 // add between the add and the compare. 1305 Builder.SetInsertPoint(OrigAdd); 1306 1307 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1308 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1309 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1310 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1311 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1312 1313 // The inner add was the result of the narrow add, zero extended to the 1314 // wider type. Replace it with the result computed by the intrinsic. 1315 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1316 IC.eraseInstFromFunction(*OrigAdd); 1317 1318 // The original icmp gets replaced with the overflow value. 1319 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1320 } 1321 1322 /// If we have: 1323 /// icmp eq/ne (urem/srem %x, %y), 0 1324 /// iff %y is a power-of-two, we can replace this with a bit test: 1325 /// icmp eq/ne (and %x, (add %y, -1)), 0 1326 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1327 // This fold is only valid for equality predicates. 1328 if (!I.isEquality()) 1329 return nullptr; 1330 ICmpInst::Predicate Pred; 1331 Value *X, *Y, *Zero; 1332 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1333 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1334 return nullptr; 1335 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1336 return nullptr; 1337 // This may increase instruction count, we don't enforce that Y is a constant. 1338 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1339 Value *Masked = Builder.CreateAnd(X, Mask); 1340 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1341 } 1342 1343 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1344 /// by one-less-than-bitwidth into a sign test on the original value. 1345 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1346 Instruction *Val; 1347 ICmpInst::Predicate Pred; 1348 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1349 return nullptr; 1350 1351 Value *X; 1352 Type *XTy; 1353 1354 Constant *C; 1355 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1356 XTy = X->getType(); 1357 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1358 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1359 APInt(XBitWidth, XBitWidth - 1)))) 1360 return nullptr; 1361 } else if (isa<BinaryOperator>(Val) && 1362 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1363 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1364 /*AnalyzeForSignBitExtraction=*/true))) { 1365 XTy = X->getType(); 1366 } else 1367 return nullptr; 1368 1369 return ICmpInst::Create(Instruction::ICmp, 1370 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1371 : ICmpInst::ICMP_SLT, 1372 X, ConstantInt::getNullValue(XTy)); 1373 } 1374 1375 // Handle icmp pred X, 0 1376 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1377 CmpInst::Predicate Pred = Cmp.getPredicate(); 1378 if (!match(Cmp.getOperand(1), m_Zero())) 1379 return nullptr; 1380 1381 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1382 if (Pred == ICmpInst::ICMP_SGT) { 1383 Value *A, *B; 1384 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1385 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1386 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1387 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1388 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1389 } 1390 } 1391 1392 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1393 return New; 1394 1395 // Given: 1396 // icmp eq/ne (urem %x, %y), 0 1397 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1398 // icmp eq/ne %x, 0 1399 Value *X, *Y; 1400 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1401 ICmpInst::isEquality(Pred)) { 1402 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1403 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1404 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1405 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1406 } 1407 1408 return nullptr; 1409 } 1410 1411 /// Fold icmp Pred X, C. 1412 /// TODO: This code structure does not make sense. The saturating add fold 1413 /// should be moved to some other helper and extended as noted below (it is also 1414 /// possible that code has been made unnecessary - do we canonicalize IR to 1415 /// overflow/saturating intrinsics or not?). 1416 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1417 // Match the following pattern, which is a common idiom when writing 1418 // overflow-safe integer arithmetic functions. The source performs an addition 1419 // in wider type and explicitly checks for overflow using comparisons against 1420 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1421 // 1422 // TODO: This could probably be generalized to handle other overflow-safe 1423 // operations if we worked out the formulas to compute the appropriate magic 1424 // constants. 1425 // 1426 // sum = a + b 1427 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1428 CmpInst::Predicate Pred = Cmp.getPredicate(); 1429 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1430 Value *A, *B; 1431 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1432 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1433 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1434 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1435 return Res; 1436 1437 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1438 Constant *C = dyn_cast<Constant>(Op1); 1439 if (!C) 1440 return nullptr; 1441 1442 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1443 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1444 Type *Ty = Cmp.getType(); 1445 Builder.SetInsertPoint(Phi); 1446 PHINode *NewPhi = 1447 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1448 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1449 auto *Input = 1450 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1451 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1452 NewPhi->addIncoming(BoolInput, Predecessor); 1453 } 1454 NewPhi->takeName(&Cmp); 1455 return replaceInstUsesWith(Cmp, NewPhi); 1456 } 1457 1458 return nullptr; 1459 } 1460 1461 /// Canonicalize icmp instructions based on dominating conditions. 1462 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1463 // This is a cheap/incomplete check for dominance - just match a single 1464 // predecessor with a conditional branch. 1465 BasicBlock *CmpBB = Cmp.getParent(); 1466 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1467 if (!DomBB) 1468 return nullptr; 1469 1470 Value *DomCond; 1471 BasicBlock *TrueBB, *FalseBB; 1472 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1473 return nullptr; 1474 1475 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1476 "Predecessor block does not point to successor?"); 1477 1478 // The branch should get simplified. Don't bother simplifying this condition. 1479 if (TrueBB == FalseBB) 1480 return nullptr; 1481 1482 // Try to simplify this compare to T/F based on the dominating condition. 1483 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1484 if (Imp) 1485 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1486 1487 CmpInst::Predicate Pred = Cmp.getPredicate(); 1488 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1489 ICmpInst::Predicate DomPred; 1490 const APInt *C, *DomC; 1491 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1492 match(Y, m_APInt(C))) { 1493 // We have 2 compares of a variable with constants. Calculate the constant 1494 // ranges of those compares to see if we can transform the 2nd compare: 1495 // DomBB: 1496 // DomCond = icmp DomPred X, DomC 1497 // br DomCond, CmpBB, FalseBB 1498 // CmpBB: 1499 // Cmp = icmp Pred X, C 1500 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1501 ConstantRange DominatingCR = 1502 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1503 : ConstantRange::makeExactICmpRegion( 1504 CmpInst::getInversePredicate(DomPred), *DomC); 1505 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1506 ConstantRange Difference = DominatingCR.difference(CR); 1507 if (Intersection.isEmptySet()) 1508 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1509 if (Difference.isEmptySet()) 1510 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1511 1512 // Canonicalizing a sign bit comparison that gets used in a branch, 1513 // pessimizes codegen by generating branch on zero instruction instead 1514 // of a test and branch. So we avoid canonicalizing in such situations 1515 // because test and branch instruction has better branch displacement 1516 // than compare and branch instruction. 1517 bool UnusedBit; 1518 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1519 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1520 return nullptr; 1521 1522 // Avoid an infinite loop with min/max canonicalization. 1523 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1524 if (Cmp.hasOneUse() && 1525 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1526 return nullptr; 1527 1528 if (const APInt *EqC = Intersection.getSingleElement()) 1529 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1530 if (const APInt *NeC = Difference.getSingleElement()) 1531 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1532 } 1533 1534 return nullptr; 1535 } 1536 1537 /// Fold icmp (trunc X), C. 1538 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1539 TruncInst *Trunc, 1540 const APInt &C) { 1541 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1542 Value *X = Trunc->getOperand(0); 1543 if (C.isOne() && C.getBitWidth() > 1) { 1544 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1545 Value *V = nullptr; 1546 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1547 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1548 ConstantInt::get(V->getType(), 1)); 1549 } 1550 1551 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1552 SrcBits = X->getType()->getScalarSizeInBits(); 1553 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1554 // Canonicalize to a mask and wider compare if the wide type is suitable: 1555 // (trunc X to i8) == C --> (X & 0xff) == (zext C) 1556 if (!X->getType()->isVectorTy() && shouldChangeType(DstBits, SrcBits)) { 1557 Constant *Mask = ConstantInt::get(X->getType(), 1558 APInt::getLowBitsSet(SrcBits, DstBits)); 1559 Value *And = Builder.CreateAnd(X, Mask); 1560 Constant *WideC = ConstantInt::get(X->getType(), C.zext(SrcBits)); 1561 return new ICmpInst(Pred, And, WideC); 1562 } 1563 1564 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1565 // of the high bits truncated out of x are known. 1566 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1567 1568 // If all the high bits are known, we can do this xform. 1569 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1570 // Pull in the high bits from known-ones set. 1571 APInt NewRHS = C.zext(SrcBits); 1572 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1573 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1574 } 1575 } 1576 1577 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1578 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1579 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1580 Value *ShOp; 1581 const APInt *ShAmtC; 1582 bool TrueIfSigned; 1583 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1584 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1585 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1586 return TrueIfSigned 1587 ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1588 ConstantInt::getNullValue(X->getType())) 1589 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1590 ConstantInt::getAllOnesValue(X->getType())); 1591 } 1592 1593 return nullptr; 1594 } 1595 1596 /// Fold icmp (xor X, Y), C. 1597 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1598 BinaryOperator *Xor, 1599 const APInt &C) { 1600 Value *X = Xor->getOperand(0); 1601 Value *Y = Xor->getOperand(1); 1602 const APInt *XorC; 1603 if (!match(Y, m_APInt(XorC))) 1604 return nullptr; 1605 1606 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1607 // fold the xor. 1608 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1609 bool TrueIfSigned = false; 1610 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1611 1612 // If the sign bit of the XorCst is not set, there is no change to 1613 // the operation, just stop using the Xor. 1614 if (!XorC->isNegative()) 1615 return replaceOperand(Cmp, 0, X); 1616 1617 // Emit the opposite comparison. 1618 if (TrueIfSigned) 1619 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1620 ConstantInt::getAllOnesValue(X->getType())); 1621 else 1622 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1623 ConstantInt::getNullValue(X->getType())); 1624 } 1625 1626 if (Xor->hasOneUse()) { 1627 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1628 if (!Cmp.isEquality() && XorC->isSignMask()) { 1629 Pred = Cmp.getFlippedSignednessPredicate(); 1630 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1631 } 1632 1633 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1634 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1635 Pred = Cmp.getFlippedSignednessPredicate(); 1636 Pred = Cmp.getSwappedPredicate(Pred); 1637 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1638 } 1639 } 1640 1641 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1642 if (Pred == ICmpInst::ICMP_UGT) { 1643 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1644 if (*XorC == ~C && (C + 1).isPowerOf2()) 1645 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1646 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1647 if (*XorC == C && (C + 1).isPowerOf2()) 1648 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1649 } 1650 if (Pred == ICmpInst::ICMP_ULT) { 1651 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1652 if (*XorC == -C && C.isPowerOf2()) 1653 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1654 ConstantInt::get(X->getType(), ~C)); 1655 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1656 if (*XorC == C && (-C).isPowerOf2()) 1657 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1658 ConstantInt::get(X->getType(), ~C)); 1659 } 1660 return nullptr; 1661 } 1662 1663 /// Fold icmp (and (sh X, Y), C2), C1. 1664 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1665 BinaryOperator *And, 1666 const APInt &C1, 1667 const APInt &C2) { 1668 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1669 if (!Shift || !Shift->isShift()) 1670 return nullptr; 1671 1672 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1673 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1674 // code produced by the clang front-end, for bitfield access. 1675 // This seemingly simple opportunity to fold away a shift turns out to be 1676 // rather complicated. See PR17827 for details. 1677 unsigned ShiftOpcode = Shift->getOpcode(); 1678 bool IsShl = ShiftOpcode == Instruction::Shl; 1679 const APInt *C3; 1680 if (match(Shift->getOperand(1), m_APInt(C3))) { 1681 APInt NewAndCst, NewCmpCst; 1682 bool AnyCmpCstBitsShiftedOut; 1683 if (ShiftOpcode == Instruction::Shl) { 1684 // For a left shift, we can fold if the comparison is not signed. We can 1685 // also fold a signed comparison if the mask value and comparison value 1686 // are not negative. These constraints may not be obvious, but we can 1687 // prove that they are correct using an SMT solver. 1688 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1689 return nullptr; 1690 1691 NewCmpCst = C1.lshr(*C3); 1692 NewAndCst = C2.lshr(*C3); 1693 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1694 } else if (ShiftOpcode == Instruction::LShr) { 1695 // For a logical right shift, we can fold if the comparison is not signed. 1696 // We can also fold a signed comparison if the shifted mask value and the 1697 // shifted comparison value are not negative. These constraints may not be 1698 // obvious, but we can prove that they are correct using an SMT solver. 1699 NewCmpCst = C1.shl(*C3); 1700 NewAndCst = C2.shl(*C3); 1701 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1702 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1703 return nullptr; 1704 } else { 1705 // For an arithmetic shift, check that both constants don't use (in a 1706 // signed sense) the top bits being shifted out. 1707 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1708 NewCmpCst = C1.shl(*C3); 1709 NewAndCst = C2.shl(*C3); 1710 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1711 if (NewAndCst.ashr(*C3) != C2) 1712 return nullptr; 1713 } 1714 1715 if (AnyCmpCstBitsShiftedOut) { 1716 // If we shifted bits out, the fold is not going to work out. As a 1717 // special case, check to see if this means that the result is always 1718 // true or false now. 1719 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1720 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1721 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1722 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1723 } else { 1724 Value *NewAnd = Builder.CreateAnd( 1725 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1726 return new ICmpInst(Cmp.getPredicate(), 1727 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1728 } 1729 } 1730 1731 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1732 // preferable because it allows the C2 << Y expression to be hoisted out of a 1733 // loop if Y is invariant and X is not. 1734 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1735 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1736 // Compute C2 << Y. 1737 Value *NewShift = 1738 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1739 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1740 1741 // Compute X & (C2 << Y). 1742 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1743 return replaceOperand(Cmp, 0, NewAnd); 1744 } 1745 1746 return nullptr; 1747 } 1748 1749 /// Fold icmp (and X, C2), C1. 1750 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1751 BinaryOperator *And, 1752 const APInt &C1) { 1753 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1754 1755 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1756 // TODO: We canonicalize to the longer form for scalars because we have 1757 // better analysis/folds for icmp, and codegen may be better with icmp. 1758 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1759 match(And->getOperand(1), m_One())) 1760 return new TruncInst(And->getOperand(0), Cmp.getType()); 1761 1762 const APInt *C2; 1763 Value *X; 1764 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1765 return nullptr; 1766 1767 // Don't perform the following transforms if the AND has multiple uses 1768 if (!And->hasOneUse()) 1769 return nullptr; 1770 1771 if (Cmp.isEquality() && C1.isZero()) { 1772 // Restrict this fold to single-use 'and' (PR10267). 1773 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1774 if (C2->isSignMask()) { 1775 Constant *Zero = Constant::getNullValue(X->getType()); 1776 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1777 return new ICmpInst(NewPred, X, Zero); 1778 } 1779 1780 APInt NewC2 = *C2; 1781 KnownBits Know = computeKnownBits(And->getOperand(0), 0, And); 1782 // Set high zeros of C2 to allow matching negated power-of-2. 1783 NewC2 = *C2 + APInt::getHighBitsSet(C2->getBitWidth(), 1784 Know.countMinLeadingZeros()); 1785 1786 // Restrict this fold only for single-use 'and' (PR10267). 1787 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1788 if (NewC2.isNegatedPowerOf2()) { 1789 Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2); 1790 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1791 return new ICmpInst(NewPred, X, NegBOC); 1792 } 1793 } 1794 1795 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1796 // the input width without changing the value produced, eliminate the cast: 1797 // 1798 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1799 // 1800 // We can do this transformation if the constants do not have their sign bits 1801 // set or if it is an equality comparison. Extending a relational comparison 1802 // when we're checking the sign bit would not work. 1803 Value *W; 1804 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1805 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1806 // TODO: Is this a good transform for vectors? Wider types may reduce 1807 // throughput. Should this transform be limited (even for scalars) by using 1808 // shouldChangeType()? 1809 if (!Cmp.getType()->isVectorTy()) { 1810 Type *WideType = W->getType(); 1811 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1812 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1813 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1814 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1815 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1816 } 1817 } 1818 1819 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1820 return I; 1821 1822 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1823 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1824 // 1825 // iff pred isn't signed 1826 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1827 match(And->getOperand(1), m_One())) { 1828 Constant *One = cast<Constant>(And->getOperand(1)); 1829 Value *Or = And->getOperand(0); 1830 Value *A, *B, *LShr; 1831 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1832 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1833 unsigned UsesRemoved = 0; 1834 if (And->hasOneUse()) 1835 ++UsesRemoved; 1836 if (Or->hasOneUse()) 1837 ++UsesRemoved; 1838 if (LShr->hasOneUse()) 1839 ++UsesRemoved; 1840 1841 // Compute A & ((1 << B) | 1) 1842 Value *NewOr = nullptr; 1843 if (auto *C = dyn_cast<Constant>(B)) { 1844 if (UsesRemoved >= 1) 1845 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1846 } else { 1847 if (UsesRemoved >= 3) 1848 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1849 /*HasNUW=*/true), 1850 One, Or->getName()); 1851 } 1852 if (NewOr) { 1853 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1854 return replaceOperand(Cmp, 0, NewAnd); 1855 } 1856 } 1857 } 1858 1859 return nullptr; 1860 } 1861 1862 /// Fold icmp (and X, Y), C. 1863 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1864 BinaryOperator *And, 1865 const APInt &C) { 1866 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1867 return I; 1868 1869 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1870 bool TrueIfNeg; 1871 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1872 // ((X - 1) & ~X) < 0 --> X == 0 1873 // ((X - 1) & ~X) >= 0 --> X != 0 1874 Value *X; 1875 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1876 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1877 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1878 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1879 } 1880 } 1881 1882 // TODO: These all require that Y is constant too, so refactor with the above. 1883 1884 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1885 Value *X = And->getOperand(0); 1886 Value *Y = And->getOperand(1); 1887 if (auto *C2 = dyn_cast<ConstantInt>(Y)) 1888 if (auto *LI = dyn_cast<LoadInst>(X)) 1889 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1890 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1891 if (Instruction *Res = 1892 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) 1893 return Res; 1894 1895 if (!Cmp.isEquality()) 1896 return nullptr; 1897 1898 // X & -C == -C -> X > u ~C 1899 // X & -C != -C -> X <= u ~C 1900 // iff C is a power of 2 1901 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1902 auto NewPred = 1903 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1904 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1905 } 1906 1907 return nullptr; 1908 } 1909 1910 /// Fold icmp (or X, Y), C. 1911 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 1912 BinaryOperator *Or, 1913 const APInt &C) { 1914 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1915 if (C.isOne()) { 1916 // icmp slt signum(V) 1 --> icmp slt V, 1 1917 Value *V = nullptr; 1918 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1919 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1920 ConstantInt::get(V->getType(), 1)); 1921 } 1922 1923 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1924 const APInt *MaskC; 1925 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1926 if (*MaskC == C && (C + 1).isPowerOf2()) { 1927 // X | C == C --> X <=u C 1928 // X | C != C --> X >u C 1929 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1930 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1931 return new ICmpInst(Pred, OrOp0, OrOp1); 1932 } 1933 1934 // More general: canonicalize 'equality with set bits mask' to 1935 // 'equality with clear bits mask'. 1936 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1937 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1938 if (Or->hasOneUse()) { 1939 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1940 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1941 return new ICmpInst(Pred, And, NewC); 1942 } 1943 } 1944 1945 // (X | (X-1)) s< 0 --> X s< 1 1946 // (X | (X-1)) s> -1 --> X s> 0 1947 Value *X; 1948 bool TrueIfSigned; 1949 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1950 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 1951 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 1952 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 1953 return new ICmpInst(NewPred, X, NewC); 1954 } 1955 1956 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 1957 return nullptr; 1958 1959 Value *P, *Q; 1960 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1961 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1962 // -> and (icmp eq P, null), (icmp eq Q, null). 1963 Value *CmpP = 1964 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1965 Value *CmpQ = 1966 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1967 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1968 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1969 } 1970 1971 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1972 // a shorter form that has more potential to be folded even further. 1973 Value *X1, *X2, *X3, *X4; 1974 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1975 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1976 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1977 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1978 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1979 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1980 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1981 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1982 } 1983 1984 return nullptr; 1985 } 1986 1987 /// Fold icmp (mul X, Y), C. 1988 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 1989 BinaryOperator *Mul, 1990 const APInt &C) { 1991 const APInt *MulC; 1992 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1993 return nullptr; 1994 1995 // If this is a test of the sign bit and the multiply is sign-preserving with 1996 // a constant operand, use the multiply LHS operand instead. 1997 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1998 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1999 if (MulC->isNegative()) 2000 Pred = ICmpInst::getSwappedPredicate(Pred); 2001 return new ICmpInst(Pred, Mul->getOperand(0), 2002 Constant::getNullValue(Mul->getType())); 2003 } 2004 2005 if (MulC->isZero() || !(Mul->hasNoSignedWrap() || Mul->hasNoUnsignedWrap())) 2006 return nullptr; 2007 2008 // If the multiply does not wrap, try to divide the compare constant by the 2009 // multiplication factor. 2010 if (Cmp.isEquality()) { 2011 // (mul nsw X, MulC) == C --> X == C /s MulC 2012 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 2013 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); 2014 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2015 } 2016 // (mul nuw X, MulC) == C --> X == C /u MulC 2017 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) { 2018 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); 2019 return new ICmpInst(Pred, Mul->getOperand(0), NewC); 2020 } 2021 } 2022 2023 Constant *NewC = nullptr; 2024 2025 // FIXME: Add assert that Pred is not equal to ICMP_SGE, ICMP_SLE, 2026 // ICMP_UGE, ICMP_ULE. 2027 2028 if (Mul->hasNoSignedWrap()) { 2029 if (MulC->isNegative()) { 2030 // MININT / -1 --> overflow. 2031 if (C.isMinSignedValue() && MulC->isAllOnes()) 2032 return nullptr; 2033 Pred = ICmpInst::getSwappedPredicate(Pred); 2034 } 2035 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) 2036 NewC = ConstantInt::get( 2037 Mul->getType(), 2038 APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::UP)); 2039 if (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGT) 2040 NewC = ConstantInt::get( 2041 Mul->getType(), 2042 APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::DOWN)); 2043 } else if (Mul->hasNoUnsignedWrap()) { 2044 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) 2045 NewC = ConstantInt::get( 2046 Mul->getType(), 2047 APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::UP)); 2048 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) 2049 NewC = ConstantInt::get( 2050 Mul->getType(), 2051 APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::DOWN)); 2052 } 2053 2054 return NewC ? new ICmpInst(Pred, Mul->getOperand(0), NewC) : nullptr; 2055 } 2056 2057 /// Fold icmp (shl 1, Y), C. 2058 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2059 const APInt &C) { 2060 Value *Y; 2061 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2062 return nullptr; 2063 2064 Type *ShiftType = Shl->getType(); 2065 unsigned TypeBits = C.getBitWidth(); 2066 bool CIsPowerOf2 = C.isPowerOf2(); 2067 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2068 if (Cmp.isUnsigned()) { 2069 // (1 << Y) pred C -> Y pred Log2(C) 2070 if (!CIsPowerOf2) { 2071 // (1 << Y) < 30 -> Y <= 4 2072 // (1 << Y) <= 30 -> Y <= 4 2073 // (1 << Y) >= 30 -> Y > 4 2074 // (1 << Y) > 30 -> Y > 4 2075 if (Pred == ICmpInst::ICMP_ULT) 2076 Pred = ICmpInst::ICMP_ULE; 2077 else if (Pred == ICmpInst::ICMP_UGE) 2078 Pred = ICmpInst::ICMP_UGT; 2079 } 2080 2081 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2082 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2083 unsigned CLog2 = C.logBase2(); 2084 if (CLog2 == TypeBits - 1) { 2085 if (Pred == ICmpInst::ICMP_UGE) 2086 Pred = ICmpInst::ICMP_EQ; 2087 else if (Pred == ICmpInst::ICMP_ULT) 2088 Pred = ICmpInst::ICMP_NE; 2089 } 2090 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2091 } else if (Cmp.isSigned()) { 2092 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2093 if (C.isAllOnes()) { 2094 // (1 << Y) <= -1 -> Y == 31 2095 if (Pred == ICmpInst::ICMP_SLE) 2096 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2097 2098 // (1 << Y) > -1 -> Y != 31 2099 if (Pred == ICmpInst::ICMP_SGT) 2100 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2101 } else if (!C) { 2102 // (1 << Y) < 0 -> Y == 31 2103 // (1 << Y) <= 0 -> Y == 31 2104 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2105 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2106 2107 // (1 << Y) >= 0 -> Y != 31 2108 // (1 << Y) > 0 -> Y != 31 2109 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2110 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2111 } 2112 } else if (Cmp.isEquality() && CIsPowerOf2) { 2113 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2114 } 2115 2116 return nullptr; 2117 } 2118 2119 /// Fold icmp (shl X, Y), C. 2120 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2121 BinaryOperator *Shl, 2122 const APInt &C) { 2123 const APInt *ShiftVal; 2124 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2125 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2126 2127 const APInt *ShiftAmt; 2128 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2129 return foldICmpShlOne(Cmp, Shl, C); 2130 2131 // Check that the shift amount is in range. If not, don't perform undefined 2132 // shifts. When the shift is visited, it will be simplified. 2133 unsigned TypeBits = C.getBitWidth(); 2134 if (ShiftAmt->uge(TypeBits)) 2135 return nullptr; 2136 2137 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2138 Value *X = Shl->getOperand(0); 2139 Type *ShType = Shl->getType(); 2140 2141 // NSW guarantees that we are only shifting out sign bits from the high bits, 2142 // so we can ASHR the compare constant without needing a mask and eliminate 2143 // the shift. 2144 if (Shl->hasNoSignedWrap()) { 2145 if (Pred == ICmpInst::ICMP_SGT) { 2146 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2147 APInt ShiftedC = C.ashr(*ShiftAmt); 2148 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2149 } 2150 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2151 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2152 APInt ShiftedC = C.ashr(*ShiftAmt); 2153 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2154 } 2155 if (Pred == ICmpInst::ICMP_SLT) { 2156 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2157 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2158 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2159 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2160 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2161 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2162 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2163 } 2164 // If this is a signed comparison to 0 and the shift is sign preserving, 2165 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2166 // do that if we're sure to not continue on in this function. 2167 if (isSignTest(Pred, C)) 2168 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2169 } 2170 2171 // NUW guarantees that we are only shifting out zero bits from the high bits, 2172 // so we can LSHR the compare constant without needing a mask and eliminate 2173 // the shift. 2174 if (Shl->hasNoUnsignedWrap()) { 2175 if (Pred == ICmpInst::ICMP_UGT) { 2176 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2177 APInt ShiftedC = C.lshr(*ShiftAmt); 2178 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2179 } 2180 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2181 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2182 APInt ShiftedC = C.lshr(*ShiftAmt); 2183 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2184 } 2185 if (Pred == ICmpInst::ICMP_ULT) { 2186 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2187 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2188 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2189 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2190 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2191 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2192 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2193 } 2194 } 2195 2196 if (Cmp.isEquality() && Shl->hasOneUse()) { 2197 // Strength-reduce the shift into an 'and'. 2198 Constant *Mask = ConstantInt::get( 2199 ShType, 2200 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2201 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2202 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2203 return new ICmpInst(Pred, And, LShrC); 2204 } 2205 2206 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2207 bool TrueIfSigned = false; 2208 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2209 // (X << 31) <s 0 --> (X & 1) != 0 2210 Constant *Mask = ConstantInt::get( 2211 ShType, 2212 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2213 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2214 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2215 And, Constant::getNullValue(ShType)); 2216 } 2217 2218 // Simplify 'shl' inequality test into 'and' equality test. 2219 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2220 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2221 if ((C + 1).isPowerOf2() && 2222 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2223 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2224 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2225 : ICmpInst::ICMP_NE, 2226 And, Constant::getNullValue(ShType)); 2227 } 2228 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2229 if (C.isPowerOf2() && 2230 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2231 Value *And = 2232 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2233 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2234 : ICmpInst::ICMP_NE, 2235 And, Constant::getNullValue(ShType)); 2236 } 2237 } 2238 2239 // Transform (icmp pred iM (shl iM %v, N), C) 2240 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2241 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2242 // This enables us to get rid of the shift in favor of a trunc that may be 2243 // free on the target. It has the additional benefit of comparing to a 2244 // smaller constant that may be more target-friendly. 2245 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2246 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2247 DL.isLegalInteger(TypeBits - Amt)) { 2248 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2249 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2250 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2251 Constant *NewC = 2252 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2253 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2254 } 2255 2256 return nullptr; 2257 } 2258 2259 /// Fold icmp ({al}shr X, Y), C. 2260 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2261 BinaryOperator *Shr, 2262 const APInt &C) { 2263 // An exact shr only shifts out zero bits, so: 2264 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2265 Value *X = Shr->getOperand(0); 2266 CmpInst::Predicate Pred = Cmp.getPredicate(); 2267 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2268 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2269 2270 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2271 const APInt *ShiftValC; 2272 if (match(X, m_APInt(ShiftValC))) { 2273 if (Cmp.isEquality()) 2274 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC); 2275 2276 // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0 2277 // (ShiftValC >> Y) <s 0 --> Y == 0 with ShiftValC < 0 2278 bool TrueIfSigned; 2279 if (!IsAShr && ShiftValC->isNegative() && 2280 isSignBitCheck(Pred, C, TrueIfSigned)) 2281 return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE, 2282 Shr->getOperand(1), 2283 ConstantInt::getNullValue(X->getType())); 2284 2285 // If the shifted constant is a power-of-2, test the shift amount directly: 2286 // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC)) 2287 // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC)) 2288 if (!IsAShr && ShiftValC->isPowerOf2() && 2289 (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) { 2290 bool IsUGT = Pred == CmpInst::ICMP_UGT; 2291 assert(ShiftValC->uge(C) && "Expected simplify of compare"); 2292 assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify"); 2293 2294 unsigned CmpLZ = 2295 IsUGT ? C.countLeadingZeros() : (C - 1).countLeadingZeros(); 2296 unsigned ShiftLZ = ShiftValC->countLeadingZeros(); 2297 Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ); 2298 auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 2299 return new ICmpInst(NewPred, Shr->getOperand(1), NewC); 2300 } 2301 } 2302 2303 const APInt *ShiftAmtC; 2304 if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC))) 2305 return nullptr; 2306 2307 // Check that the shift amount is in range. If not, don't perform undefined 2308 // shifts. When the shift is visited it will be simplified. 2309 unsigned TypeBits = C.getBitWidth(); 2310 unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits); 2311 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2312 return nullptr; 2313 2314 bool IsExact = Shr->isExact(); 2315 Type *ShrTy = Shr->getType(); 2316 // TODO: If we could guarantee that InstSimplify would handle all of the 2317 // constant-value-based preconditions in the folds below, then we could assert 2318 // those conditions rather than checking them. This is difficult because of 2319 // undef/poison (PR34838). 2320 if (IsAShr) { 2321 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2322 // When ShAmtC can be shifted losslessly: 2323 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2324 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2325 APInt ShiftedC = C.shl(ShAmtVal); 2326 if (ShiftedC.ashr(ShAmtVal) == C) 2327 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2328 } 2329 if (Pred == CmpInst::ICMP_SGT) { 2330 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2331 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2332 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2333 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2334 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2335 } 2336 if (Pred == CmpInst::ICMP_UGT) { 2337 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2338 // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd 2339 // clause accounts for that pattern. 2340 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2341 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) || 2342 (C + 1).shl(ShAmtVal).isMinSignedValue()) 2343 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2344 } 2345 2346 // If the compare constant has significant bits above the lowest sign-bit, 2347 // then convert an unsigned cmp to a test of the sign-bit: 2348 // (ashr X, ShiftC) u> C --> X s< 0 2349 // (ashr X, ShiftC) u< C --> X s> -1 2350 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2351 if (Pred == CmpInst::ICMP_UGT) { 2352 return new ICmpInst(CmpInst::ICMP_SLT, X, 2353 ConstantInt::getNullValue(ShrTy)); 2354 } 2355 if (Pred == CmpInst::ICMP_ULT) { 2356 return new ICmpInst(CmpInst::ICMP_SGT, X, 2357 ConstantInt::getAllOnesValue(ShrTy)); 2358 } 2359 } 2360 } else { 2361 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2362 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2363 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2364 APInt ShiftedC = C.shl(ShAmtVal); 2365 if (ShiftedC.lshr(ShAmtVal) == C) 2366 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2367 } 2368 if (Pred == CmpInst::ICMP_UGT) { 2369 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2370 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2371 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2372 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2373 } 2374 } 2375 2376 if (!Cmp.isEquality()) 2377 return nullptr; 2378 2379 // Handle equality comparisons of shift-by-constant. 2380 2381 // If the comparison constant changes with the shift, the comparison cannot 2382 // succeed (bits of the comparison constant cannot match the shifted value). 2383 // This should be known by InstSimplify and already be folded to true/false. 2384 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2385 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2386 "Expected icmp+shr simplify did not occur."); 2387 2388 // If the bits shifted out are known zero, compare the unshifted value: 2389 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2390 if (Shr->isExact()) 2391 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2392 2393 if (C.isZero()) { 2394 // == 0 is u< 1. 2395 if (Pred == CmpInst::ICMP_EQ) 2396 return new ICmpInst(CmpInst::ICMP_ULT, X, 2397 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2398 else 2399 return new ICmpInst(CmpInst::ICMP_UGT, X, 2400 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2401 } 2402 2403 if (Shr->hasOneUse()) { 2404 // Canonicalize the shift into an 'and': 2405 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2406 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2407 Constant *Mask = ConstantInt::get(ShrTy, Val); 2408 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2409 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2410 } 2411 2412 return nullptr; 2413 } 2414 2415 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2416 BinaryOperator *SRem, 2417 const APInt &C) { 2418 // Match an 'is positive' or 'is negative' comparison of remainder by a 2419 // constant power-of-2 value: 2420 // (X % pow2C) sgt/slt 0 2421 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2422 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT && 2423 Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2424 return nullptr; 2425 2426 // TODO: The one-use check is standard because we do not typically want to 2427 // create longer instruction sequences, but this might be a special-case 2428 // because srem is not good for analysis or codegen. 2429 if (!SRem->hasOneUse()) 2430 return nullptr; 2431 2432 const APInt *DivisorC; 2433 if (!match(SRem->getOperand(1), m_Power2(DivisorC))) 2434 return nullptr; 2435 2436 // For cmp_sgt/cmp_slt only zero valued C is handled. 2437 // For cmp_eq/cmp_ne only positive valued C is handled. 2438 if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) && 2439 !C.isZero()) || 2440 ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2441 !C.isStrictlyPositive())) 2442 return nullptr; 2443 2444 // Mask off the sign bit and the modulo bits (low-bits). 2445 Type *Ty = SRem->getType(); 2446 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2447 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2448 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2449 2450 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 2451 return new ICmpInst(Pred, And, ConstantInt::get(Ty, C)); 2452 2453 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2454 // bit is set. Example: 2455 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2456 if (Pred == ICmpInst::ICMP_SGT) 2457 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2458 2459 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2460 // bit is set. Example: 2461 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2462 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2463 } 2464 2465 /// Fold icmp (udiv X, Y), C. 2466 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2467 BinaryOperator *UDiv, 2468 const APInt &C) { 2469 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2470 Value *X = UDiv->getOperand(0); 2471 Value *Y = UDiv->getOperand(1); 2472 Type *Ty = UDiv->getType(); 2473 2474 const APInt *C2; 2475 if (!match(X, m_APInt(C2))) 2476 return nullptr; 2477 2478 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2479 2480 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2481 if (Pred == ICmpInst::ICMP_UGT) { 2482 assert(!C.isMaxValue() && 2483 "icmp ugt X, UINT_MAX should have been simplified already."); 2484 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2485 ConstantInt::get(Ty, C2->udiv(C + 1))); 2486 } 2487 2488 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2489 if (Pred == ICmpInst::ICMP_ULT) { 2490 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2491 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2492 ConstantInt::get(Ty, C2->udiv(C))); 2493 } 2494 2495 return nullptr; 2496 } 2497 2498 /// Fold icmp ({su}div X, Y), C. 2499 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2500 BinaryOperator *Div, 2501 const APInt &C) { 2502 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2503 Value *X = Div->getOperand(0); 2504 Value *Y = Div->getOperand(1); 2505 Type *Ty = Div->getType(); 2506 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2507 2508 // If unsigned division and the compare constant is bigger than 2509 // UMAX/2 (negative), there's only one pair of values that satisfies an 2510 // equality check, so eliminate the division: 2511 // (X u/ Y) == C --> (X == C) && (Y == 1) 2512 // (X u/ Y) != C --> (X != C) || (Y != 1) 2513 // Similarly, if signed division and the compare constant is exactly SMIN: 2514 // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1) 2515 // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1) 2516 if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() && 2517 (!DivIsSigned || C.isMinSignedValue())) { 2518 Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C)); 2519 Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1)); 2520 auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2521 return BinaryOperator::Create(Logic, XBig, YOne); 2522 } 2523 2524 // Fold: icmp pred ([us]div X, C2), C -> range test 2525 // Fold this div into the comparison, producing a range check. 2526 // Determine, based on the divide type, what the range is being 2527 // checked. If there is an overflow on the low or high side, remember 2528 // it, otherwise compute the range [low, hi) bounding the new value. 2529 // See: InsertRangeTest above for the kinds of replacements possible. 2530 const APInt *C2; 2531 if (!match(Y, m_APInt(C2))) 2532 return nullptr; 2533 2534 // FIXME: If the operand types don't match the type of the divide 2535 // then don't attempt this transform. The code below doesn't have the 2536 // logic to deal with a signed divide and an unsigned compare (and 2537 // vice versa). This is because (x /s C2) <s C produces different 2538 // results than (x /s C2) <u C or (x /u C2) <s C or even 2539 // (x /u C2) <u C. Simply casting the operands and result won't 2540 // work. :( The if statement below tests that condition and bails 2541 // if it finds it. 2542 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2543 return nullptr; 2544 2545 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2546 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2547 // division-by-constant cases should be present, we can not assert that they 2548 // have happened before we reach this icmp instruction. 2549 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2550 return nullptr; 2551 2552 // Compute Prod = C * C2. We are essentially solving an equation of 2553 // form X / C2 = C. We solve for X by multiplying C2 and C. 2554 // By solving for X, we can turn this into a range check instead of computing 2555 // a divide. 2556 APInt Prod = C * *C2; 2557 2558 // Determine if the product overflows by seeing if the product is not equal to 2559 // the divide. Make sure we do the same kind of divide as in the LHS 2560 // instruction that we're folding. 2561 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2562 2563 // If the division is known to be exact, then there is no remainder from the 2564 // divide, so the covered range size is unit, otherwise it is the divisor. 2565 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2566 2567 // Figure out the interval that is being checked. For example, a comparison 2568 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2569 // Compute this interval based on the constants involved and the signedness of 2570 // the compare/divide. This computes a half-open interval, keeping track of 2571 // whether either value in the interval overflows. After analysis each 2572 // overflow variable is set to 0 if it's corresponding bound variable is valid 2573 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2574 int LoOverflow = 0, HiOverflow = 0; 2575 APInt LoBound, HiBound; 2576 2577 if (!DivIsSigned) { // udiv 2578 // e.g. X/5 op 3 --> [15, 20) 2579 LoBound = Prod; 2580 HiOverflow = LoOverflow = ProdOV; 2581 if (!HiOverflow) { 2582 // If this is not an exact divide, then many values in the range collapse 2583 // to the same result value. 2584 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2585 } 2586 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2587 if (C.isZero()) { // (X / pos) op 0 2588 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2589 LoBound = -(RangeSize - 1); 2590 HiBound = RangeSize; 2591 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2592 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2593 HiOverflow = LoOverflow = ProdOV; 2594 if (!HiOverflow) 2595 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2596 } else { // (X / pos) op neg 2597 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2598 HiBound = Prod + 1; 2599 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2600 if (!LoOverflow) { 2601 APInt DivNeg = -RangeSize; 2602 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2603 } 2604 } 2605 } else if (C2->isNegative()) { // Divisor is < 0. 2606 if (Div->isExact()) 2607 RangeSize.negate(); 2608 if (C.isZero()) { // (X / neg) op 0 2609 // e.g. X/-5 op 0 --> [-4, 5) 2610 LoBound = RangeSize + 1; 2611 HiBound = -RangeSize; 2612 if (HiBound == *C2) { // -INTMIN = INTMIN 2613 HiOverflow = 1; // [INTMIN+1, overflow) 2614 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2615 } 2616 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2617 // e.g. X/-5 op 3 --> [-19, -14) 2618 HiBound = Prod + 1; 2619 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2620 if (!LoOverflow) 2621 LoOverflow = 2622 addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0; 2623 } else { // (X / neg) op neg 2624 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2625 LoOverflow = HiOverflow = ProdOV; 2626 if (!HiOverflow) 2627 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2628 } 2629 2630 // Dividing by a negative swaps the condition. LT <-> GT 2631 Pred = ICmpInst::getSwappedPredicate(Pred); 2632 } 2633 2634 switch (Pred) { 2635 default: 2636 llvm_unreachable("Unhandled icmp predicate!"); 2637 case ICmpInst::ICMP_EQ: 2638 if (LoOverflow && HiOverflow) 2639 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2640 if (HiOverflow) 2641 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2642 X, ConstantInt::get(Ty, LoBound)); 2643 if (LoOverflow) 2644 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2645 X, ConstantInt::get(Ty, HiBound)); 2646 return replaceInstUsesWith( 2647 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2648 case ICmpInst::ICMP_NE: 2649 if (LoOverflow && HiOverflow) 2650 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2651 if (HiOverflow) 2652 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2653 X, ConstantInt::get(Ty, LoBound)); 2654 if (LoOverflow) 2655 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2656 X, ConstantInt::get(Ty, HiBound)); 2657 return replaceInstUsesWith( 2658 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false)); 2659 case ICmpInst::ICMP_ULT: 2660 case ICmpInst::ICMP_SLT: 2661 if (LoOverflow == +1) // Low bound is greater than input range. 2662 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2663 if (LoOverflow == -1) // Low bound is less than input range. 2664 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2665 return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound)); 2666 case ICmpInst::ICMP_UGT: 2667 case ICmpInst::ICMP_SGT: 2668 if (HiOverflow == +1) // High bound greater than input range. 2669 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2670 if (HiOverflow == -1) // High bound less than input range. 2671 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2672 if (Pred == ICmpInst::ICMP_UGT) 2673 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound)); 2674 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound)); 2675 } 2676 2677 return nullptr; 2678 } 2679 2680 /// Fold icmp (sub X, Y), C. 2681 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2682 BinaryOperator *Sub, 2683 const APInt &C) { 2684 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2685 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2686 Type *Ty = Sub->getType(); 2687 2688 // (SubC - Y) == C) --> Y == (SubC - C) 2689 // (SubC - Y) != C) --> Y != (SubC - C) 2690 Constant *SubC; 2691 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2692 return new ICmpInst(Pred, Y, 2693 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2694 } 2695 2696 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2697 const APInt *C2; 2698 APInt SubResult; 2699 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2700 bool HasNSW = Sub->hasNoSignedWrap(); 2701 bool HasNUW = Sub->hasNoUnsignedWrap(); 2702 if (match(X, m_APInt(C2)) && 2703 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2704 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2705 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2706 2707 // X - Y == 0 --> X == Y. 2708 // X - Y != 0 --> X != Y. 2709 // TODO: We allow this with multiple uses as long as the other uses are not 2710 // in phis. The phi use check is guarding against a codegen regression 2711 // for a loop test. If the backend could undo this (and possibly 2712 // subsequent transforms), we would not need this hack. 2713 if (Cmp.isEquality() && C.isZero() && 2714 none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); })) 2715 return new ICmpInst(Pred, X, Y); 2716 2717 // The following transforms are only worth it if the only user of the subtract 2718 // is the icmp. 2719 // TODO: This is an artificial restriction for all of the transforms below 2720 // that only need a single replacement icmp. Can these use the phi test 2721 // like the transform above here? 2722 if (!Sub->hasOneUse()) 2723 return nullptr; 2724 2725 if (Sub->hasNoSignedWrap()) { 2726 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2727 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2728 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2729 2730 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2731 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2732 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2733 2734 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2735 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2736 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2737 2738 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2739 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2740 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2741 } 2742 2743 if (!match(X, m_APInt(C2))) 2744 return nullptr; 2745 2746 // C2 - Y <u C -> (Y | (C - 1)) == C2 2747 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2748 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2749 (*C2 & (C - 1)) == (C - 1)) 2750 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2751 2752 // C2 - Y >u C -> (Y | C) != C2 2753 // iff C2 & C == C and C + 1 is a power of 2 2754 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2755 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2756 2757 // We have handled special cases that reduce. 2758 // Canonicalize any remaining sub to add as: 2759 // (C2 - Y) > C --> (Y + ~C2) < ~C 2760 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2761 HasNUW, HasNSW); 2762 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2763 } 2764 2765 /// Fold icmp (add X, Y), C. 2766 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2767 BinaryOperator *Add, 2768 const APInt &C) { 2769 Value *Y = Add->getOperand(1); 2770 const APInt *C2; 2771 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2772 return nullptr; 2773 2774 // Fold icmp pred (add X, C2), C. 2775 Value *X = Add->getOperand(0); 2776 Type *Ty = Add->getType(); 2777 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2778 2779 // If the add does not wrap, we can always adjust the compare by subtracting 2780 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2781 // are canonicalized to SGT/SLT/UGT/ULT. 2782 if ((Add->hasNoSignedWrap() && 2783 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2784 (Add->hasNoUnsignedWrap() && 2785 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2786 bool Overflow; 2787 APInt NewC = 2788 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2789 // If there is overflow, the result must be true or false. 2790 // TODO: Can we assert there is no overflow because InstSimplify always 2791 // handles those cases? 2792 if (!Overflow) 2793 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2794 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2795 } 2796 2797 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2798 const APInt &Upper = CR.getUpper(); 2799 const APInt &Lower = CR.getLower(); 2800 if (Cmp.isSigned()) { 2801 if (Lower.isSignMask()) 2802 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2803 if (Upper.isSignMask()) 2804 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2805 } else { 2806 if (Lower.isMinValue()) 2807 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2808 if (Upper.isMinValue()) 2809 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2810 } 2811 2812 // This set of folds is intentionally placed after folds that use no-wrapping 2813 // flags because those folds are likely better for later analysis/codegen. 2814 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2815 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2816 2817 // Fold compare with offset to opposite sign compare if it eliminates offset: 2818 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2819 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2820 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2821 2822 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2823 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2824 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2825 2826 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2827 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2828 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2829 2830 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2831 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2832 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2833 2834 if (!Add->hasOneUse()) 2835 return nullptr; 2836 2837 // X+C <u C2 -> (X & -C2) == C 2838 // iff C & (C2-1) == 0 2839 // C2 is a power of 2 2840 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2841 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2842 ConstantExpr::getNeg(cast<Constant>(Y))); 2843 2844 // X+C >u C2 -> (X & ~C2) != C 2845 // iff C & C2 == 0 2846 // C2+1 is a power of 2 2847 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2848 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2849 ConstantExpr::getNeg(cast<Constant>(Y))); 2850 2851 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2852 // to the ult form. 2853 // X+C2 >u C -> X+(C2-C-1) <u ~C 2854 if (Pred == ICmpInst::ICMP_UGT) 2855 return new ICmpInst(ICmpInst::ICMP_ULT, 2856 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2857 ConstantInt::get(Ty, ~C)); 2858 2859 return nullptr; 2860 } 2861 2862 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2863 Value *&RHS, ConstantInt *&Less, 2864 ConstantInt *&Equal, 2865 ConstantInt *&Greater) { 2866 // TODO: Generalize this to work with other comparison idioms or ensure 2867 // they get canonicalized into this form. 2868 2869 // select i1 (a == b), 2870 // i32 Equal, 2871 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2872 // where Equal, Less and Greater are placeholders for any three constants. 2873 ICmpInst::Predicate PredA; 2874 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2875 !ICmpInst::isEquality(PredA)) 2876 return false; 2877 Value *EqualVal = SI->getTrueValue(); 2878 Value *UnequalVal = SI->getFalseValue(); 2879 // We still can get non-canonical predicate here, so canonicalize. 2880 if (PredA == ICmpInst::ICMP_NE) 2881 std::swap(EqualVal, UnequalVal); 2882 if (!match(EqualVal, m_ConstantInt(Equal))) 2883 return false; 2884 ICmpInst::Predicate PredB; 2885 Value *LHS2, *RHS2; 2886 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2887 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2888 return false; 2889 // We can get predicate mismatch here, so canonicalize if possible: 2890 // First, ensure that 'LHS' match. 2891 if (LHS2 != LHS) { 2892 // x sgt y <--> y slt x 2893 std::swap(LHS2, RHS2); 2894 PredB = ICmpInst::getSwappedPredicate(PredB); 2895 } 2896 if (LHS2 != LHS) 2897 return false; 2898 // We also need to canonicalize 'RHS'. 2899 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2900 // x sgt C-1 <--> x sge C <--> not(x slt C) 2901 auto FlippedStrictness = 2902 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2903 PredB, cast<Constant>(RHS2)); 2904 if (!FlippedStrictness) 2905 return false; 2906 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 2907 "basic correctness failure"); 2908 RHS2 = FlippedStrictness->second; 2909 // And kind-of perform the result swap. 2910 std::swap(Less, Greater); 2911 PredB = ICmpInst::ICMP_SLT; 2912 } 2913 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2914 } 2915 2916 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 2917 SelectInst *Select, 2918 ConstantInt *C) { 2919 2920 assert(C && "Cmp RHS should be a constant int!"); 2921 // If we're testing a constant value against the result of a three way 2922 // comparison, the result can be expressed directly in terms of the 2923 // original values being compared. Note: We could possibly be more 2924 // aggressive here and remove the hasOneUse test. The original select is 2925 // really likely to simplify or sink when we remove a test of the result. 2926 Value *OrigLHS, *OrigRHS; 2927 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2928 if (Cmp.hasOneUse() && 2929 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2930 C3GreaterThan)) { 2931 assert(C1LessThan && C2Equal && C3GreaterThan); 2932 2933 bool TrueWhenLessThan = 2934 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2935 ->isAllOnesValue(); 2936 bool TrueWhenEqual = 2937 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2938 ->isAllOnesValue(); 2939 bool TrueWhenGreaterThan = 2940 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2941 ->isAllOnesValue(); 2942 2943 // This generates the new instruction that will replace the original Cmp 2944 // Instruction. Instead of enumerating the various combinations when 2945 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2946 // false, we rely on chaining of ORs and future passes of InstCombine to 2947 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2948 2949 // When none of the three constants satisfy the predicate for the RHS (C), 2950 // the entire original Cmp can be simplified to a false. 2951 Value *Cond = Builder.getFalse(); 2952 if (TrueWhenLessThan) 2953 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2954 OrigLHS, OrigRHS)); 2955 if (TrueWhenEqual) 2956 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2957 OrigLHS, OrigRHS)); 2958 if (TrueWhenGreaterThan) 2959 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2960 OrigLHS, OrigRHS)); 2961 2962 return replaceInstUsesWith(Cmp, Cond); 2963 } 2964 return nullptr; 2965 } 2966 2967 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 2968 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2969 if (!Bitcast) 2970 return nullptr; 2971 2972 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2973 Value *Op1 = Cmp.getOperand(1); 2974 Value *BCSrcOp = Bitcast->getOperand(0); 2975 Type *SrcType = Bitcast->getSrcTy(); 2976 Type *DstType = Bitcast->getType(); 2977 2978 // Make sure the bitcast doesn't change between scalar and vector and 2979 // doesn't change the number of vector elements. 2980 if (SrcType->isVectorTy() == DstType->isVectorTy() && 2981 SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) { 2982 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2983 Value *X; 2984 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2985 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2986 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2987 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2988 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2989 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2990 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2991 match(Op1, m_Zero())) 2992 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2993 2994 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2995 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2996 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2997 2998 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2999 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 3000 return new ICmpInst(Pred, X, 3001 ConstantInt::getAllOnesValue(X->getType())); 3002 } 3003 3004 // Zero-equality checks are preserved through unsigned floating-point casts: 3005 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 3006 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 3007 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 3008 if (Cmp.isEquality() && match(Op1, m_Zero())) 3009 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 3010 3011 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 3012 // the FP extend/truncate because that cast does not change the sign-bit. 3013 // This is true for all standard IEEE-754 types and the X86 80-bit type. 3014 // The sign-bit is always the most significant bit in those types. 3015 const APInt *C; 3016 bool TrueIfSigned; 3017 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 3018 isSignBitCheck(Pred, *C, TrueIfSigned)) { 3019 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 3020 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 3021 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 3022 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 3023 Type *XType = X->getType(); 3024 3025 // We can't currently handle Power style floating point operations here. 3026 if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) { 3027 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 3028 if (auto *XVTy = dyn_cast<VectorType>(XType)) 3029 NewType = VectorType::get(NewType, XVTy->getElementCount()); 3030 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 3031 if (TrueIfSigned) 3032 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 3033 ConstantInt::getNullValue(NewType)); 3034 else 3035 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 3036 ConstantInt::getAllOnesValue(NewType)); 3037 } 3038 } 3039 } 3040 } 3041 3042 // Test to see if the operands of the icmp are casted versions of other 3043 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 3044 if (DstType->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 3045 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 3046 // so eliminate it as well. 3047 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 3048 Op1 = BC2->getOperand(0); 3049 3050 Op1 = Builder.CreateBitCast(Op1, SrcType); 3051 return new ICmpInst(Pred, BCSrcOp, Op1); 3052 } 3053 3054 const APInt *C; 3055 if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() || 3056 !SrcType->isIntOrIntVectorTy()) 3057 return nullptr; 3058 3059 // If this is checking if all elements of a vector compare are set or not, 3060 // invert the casted vector equality compare and test if all compare 3061 // elements are clear or not. Compare against zero is generally easier for 3062 // analysis and codegen. 3063 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 3064 // Example: are all elements equal? --> are zero elements not equal? 3065 // TODO: Try harder to reduce compare of 2 freely invertible operands? 3066 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 3067 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 3068 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), DstType); 3069 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType)); 3070 } 3071 3072 // If this is checking if all elements of an extended vector are clear or not, 3073 // compare in a narrow type to eliminate the extend: 3074 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 3075 Value *X; 3076 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 3077 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 3078 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 3079 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 3080 Value *NewCast = Builder.CreateBitCast(X, NewType); 3081 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 3082 } 3083 } 3084 3085 // Folding: icmp <pred> iN X, C 3086 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 3087 // and C is a splat of a K-bit pattern 3088 // and SC is a constant vector = <C', C', C', ..., C'> 3089 // Into: 3090 // %E = extractelement <M x iK> %vec, i32 C' 3091 // icmp <pred> iK %E, trunc(C) 3092 Value *Vec; 3093 ArrayRef<int> Mask; 3094 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 3095 // Check whether every element of Mask is the same constant 3096 if (is_splat(Mask)) { 3097 auto *VecTy = cast<VectorType>(SrcType); 3098 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 3099 if (C->isSplat(EltTy->getBitWidth())) { 3100 // Fold the icmp based on the value of C 3101 // If C is M copies of an iK sized bit pattern, 3102 // then: 3103 // => %E = extractelement <N x iK> %vec, i32 Elem 3104 // icmp <pred> iK %SplatVal, <pattern> 3105 Value *Elem = Builder.getInt32(Mask[0]); 3106 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 3107 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 3108 return new ICmpInst(Pred, Extract, NewC); 3109 } 3110 } 3111 } 3112 return nullptr; 3113 } 3114 3115 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3116 /// where X is some kind of instruction. 3117 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3118 const APInt *C; 3119 3120 if (match(Cmp.getOperand(1), m_APInt(C))) { 3121 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) 3122 if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C)) 3123 return I; 3124 3125 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) 3126 // For now, we only support constant integers while folding the 3127 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3128 // similar to the cases handled by binary ops above. 3129 if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3130 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3131 return I; 3132 3133 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) 3134 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3135 return I; 3136 3137 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3138 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3139 return I; 3140 } 3141 3142 if (match(Cmp.getOperand(1), m_APIntAllowUndef(C))) 3143 return foldICmpInstWithConstantAllowUndef(Cmp, *C); 3144 3145 return nullptr; 3146 } 3147 3148 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3149 /// icmp eq/ne BO, C. 3150 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3151 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3152 // TODO: Some of these folds could work with arbitrary constants, but this 3153 // function is limited to scalar and vector splat constants. 3154 if (!Cmp.isEquality()) 3155 return nullptr; 3156 3157 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3158 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3159 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3160 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3161 3162 switch (BO->getOpcode()) { 3163 case Instruction::SRem: 3164 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3165 if (C.isZero() && BO->hasOneUse()) { 3166 const APInt *BOC; 3167 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3168 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3169 return new ICmpInst(Pred, NewRem, 3170 Constant::getNullValue(BO->getType())); 3171 } 3172 } 3173 break; 3174 case Instruction::Add: { 3175 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 3176 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3177 if (BO->hasOneUse()) 3178 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 3179 } else if (C.isZero()) { 3180 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3181 // efficiently invertible, or if the add has just this one use. 3182 if (Value *NegVal = dyn_castNegVal(BOp1)) 3183 return new ICmpInst(Pred, BOp0, NegVal); 3184 if (Value *NegVal = dyn_castNegVal(BOp0)) 3185 return new ICmpInst(Pred, NegVal, BOp1); 3186 if (BO->hasOneUse()) { 3187 Value *Neg = Builder.CreateNeg(BOp1); 3188 Neg->takeName(BO); 3189 return new ICmpInst(Pred, BOp0, Neg); 3190 } 3191 } 3192 break; 3193 } 3194 case Instruction::Xor: 3195 if (BO->hasOneUse()) { 3196 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3197 // For the xor case, we can xor two constants together, eliminating 3198 // the explicit xor. 3199 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3200 } else if (C.isZero()) { 3201 // Replace ((xor A, B) != 0) with (A != B) 3202 return new ICmpInst(Pred, BOp0, BOp1); 3203 } 3204 } 3205 break; 3206 case Instruction::Or: { 3207 const APInt *BOC; 3208 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3209 // Comparing if all bits outside of a constant mask are set? 3210 // Replace (X | C) == -1 with (X & ~C) == ~C. 3211 // This removes the -1 constant. 3212 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3213 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3214 return new ICmpInst(Pred, And, NotBOC); 3215 } 3216 break; 3217 } 3218 case Instruction::And: { 3219 const APInt *BOC; 3220 if (match(BOp1, m_APInt(BOC))) { 3221 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3222 if (C == *BOC && C.isPowerOf2()) 3223 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3224 BO, Constant::getNullValue(RHS->getType())); 3225 } 3226 break; 3227 } 3228 case Instruction::UDiv: 3229 if (C.isZero()) { 3230 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3231 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3232 return new ICmpInst(NewPred, BOp1, BOp0); 3233 } 3234 break; 3235 default: 3236 break; 3237 } 3238 return nullptr; 3239 } 3240 3241 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3242 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3243 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3244 Type *Ty = II->getType(); 3245 unsigned BitWidth = C.getBitWidth(); 3246 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3247 3248 switch (II->getIntrinsicID()) { 3249 case Intrinsic::abs: 3250 // abs(A) == 0 -> A == 0 3251 // abs(A) == INT_MIN -> A == INT_MIN 3252 if (C.isZero() || C.isMinSignedValue()) 3253 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3254 break; 3255 3256 case Intrinsic::bswap: 3257 // bswap(A) == C -> A == bswap(C) 3258 return new ICmpInst(Pred, II->getArgOperand(0), 3259 ConstantInt::get(Ty, C.byteSwap())); 3260 3261 case Intrinsic::ctlz: 3262 case Intrinsic::cttz: { 3263 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3264 if (C == BitWidth) 3265 return new ICmpInst(Pred, II->getArgOperand(0), 3266 ConstantInt::getNullValue(Ty)); 3267 3268 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3269 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3270 // Limit to one use to ensure we don't increase instruction count. 3271 unsigned Num = C.getLimitedValue(BitWidth); 3272 if (Num != BitWidth && II->hasOneUse()) { 3273 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3274 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3275 : APInt::getHighBitsSet(BitWidth, Num + 1); 3276 APInt Mask2 = IsTrailing 3277 ? APInt::getOneBitSet(BitWidth, Num) 3278 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3279 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3280 ConstantInt::get(Ty, Mask2)); 3281 } 3282 break; 3283 } 3284 3285 case Intrinsic::ctpop: { 3286 // popcount(A) == 0 -> A == 0 and likewise for != 3287 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3288 bool IsZero = C.isZero(); 3289 if (IsZero || C == BitWidth) 3290 return new ICmpInst(Pred, II->getArgOperand(0), 3291 IsZero ? Constant::getNullValue(Ty) 3292 : Constant::getAllOnesValue(Ty)); 3293 3294 break; 3295 } 3296 3297 case Intrinsic::fshl: 3298 case Intrinsic::fshr: 3299 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3300 const APInt *RotAmtC; 3301 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3302 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3303 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3304 return new ICmpInst(Pred, II->getArgOperand(0), 3305 II->getIntrinsicID() == Intrinsic::fshl 3306 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3307 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3308 } 3309 break; 3310 3311 case Intrinsic::uadd_sat: { 3312 // uadd.sat(a, b) == 0 -> (a | b) == 0 3313 if (C.isZero()) { 3314 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3315 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3316 } 3317 break; 3318 } 3319 3320 case Intrinsic::usub_sat: { 3321 // usub.sat(a, b) == 0 -> a <= b 3322 if (C.isZero()) { 3323 ICmpInst::Predicate NewPred = 3324 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3325 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3326 } 3327 break; 3328 } 3329 default: 3330 break; 3331 } 3332 3333 return nullptr; 3334 } 3335 3336 /// Fold an icmp with LLVM intrinsics 3337 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) { 3338 assert(Cmp.isEquality()); 3339 3340 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3341 Value *Op0 = Cmp.getOperand(0); 3342 Value *Op1 = Cmp.getOperand(1); 3343 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3344 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3345 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3346 return nullptr; 3347 3348 switch (IIOp0->getIntrinsicID()) { 3349 case Intrinsic::bswap: 3350 case Intrinsic::bitreverse: 3351 // If both operands are byte-swapped or bit-reversed, just compare the 3352 // original values. 3353 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3354 case Intrinsic::fshl: 3355 case Intrinsic::fshr: 3356 // If both operands are rotated by same amount, just compare the 3357 // original values. 3358 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3359 break; 3360 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3361 break; 3362 if (IIOp0->getOperand(2) != IIOp1->getOperand(2)) 3363 break; 3364 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3365 default: 3366 break; 3367 } 3368 3369 return nullptr; 3370 } 3371 3372 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3373 /// where X is some kind of instruction and C is AllowUndef. 3374 /// TODO: Move more folds which allow undef to this function. 3375 Instruction * 3376 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp, 3377 const APInt &C) { 3378 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3379 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) { 3380 switch (II->getIntrinsicID()) { 3381 default: 3382 break; 3383 case Intrinsic::fshl: 3384 case Intrinsic::fshr: 3385 if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) { 3386 // (rot X, ?) == 0/-1 --> X == 0/-1 3387 if (C.isZero() || C.isAllOnes()) 3388 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3389 } 3390 break; 3391 } 3392 } 3393 3394 return nullptr; 3395 } 3396 3397 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C. 3398 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp, 3399 BinaryOperator *BO, 3400 const APInt &C) { 3401 switch (BO->getOpcode()) { 3402 case Instruction::Xor: 3403 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C)) 3404 return I; 3405 break; 3406 case Instruction::And: 3407 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C)) 3408 return I; 3409 break; 3410 case Instruction::Or: 3411 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C)) 3412 return I; 3413 break; 3414 case Instruction::Mul: 3415 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C)) 3416 return I; 3417 break; 3418 case Instruction::Shl: 3419 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C)) 3420 return I; 3421 break; 3422 case Instruction::LShr: 3423 case Instruction::AShr: 3424 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C)) 3425 return I; 3426 break; 3427 case Instruction::SRem: 3428 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C)) 3429 return I; 3430 break; 3431 case Instruction::UDiv: 3432 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C)) 3433 return I; 3434 LLVM_FALLTHROUGH; 3435 case Instruction::SDiv: 3436 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C)) 3437 return I; 3438 break; 3439 case Instruction::Sub: 3440 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C)) 3441 return I; 3442 break; 3443 case Instruction::Add: 3444 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C)) 3445 return I; 3446 break; 3447 default: 3448 break; 3449 } 3450 3451 // TODO: These folds could be refactored to be part of the above calls. 3452 return foldICmpBinOpEqualityWithConstant(Cmp, BO, C); 3453 } 3454 3455 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3456 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3457 IntrinsicInst *II, 3458 const APInt &C) { 3459 if (Cmp.isEquality()) 3460 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3461 3462 Type *Ty = II->getType(); 3463 unsigned BitWidth = C.getBitWidth(); 3464 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3465 switch (II->getIntrinsicID()) { 3466 case Intrinsic::ctpop: { 3467 // (ctpop X > BitWidth - 1) --> X == -1 3468 Value *X = II->getArgOperand(0); 3469 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3470 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3471 ConstantInt::getAllOnesValue(Ty)); 3472 // (ctpop X < BitWidth) --> X != -1 3473 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3474 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3475 ConstantInt::getAllOnesValue(Ty)); 3476 break; 3477 } 3478 case Intrinsic::ctlz: { 3479 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3480 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3481 unsigned Num = C.getLimitedValue(); 3482 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3483 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3484 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3485 } 3486 3487 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3488 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3489 unsigned Num = C.getLimitedValue(); 3490 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3491 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3492 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3493 } 3494 break; 3495 } 3496 case Intrinsic::cttz: { 3497 // Limit to one use to ensure we don't increase instruction count. 3498 if (!II->hasOneUse()) 3499 return nullptr; 3500 3501 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3502 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3503 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3504 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3505 Builder.CreateAnd(II->getArgOperand(0), Mask), 3506 ConstantInt::getNullValue(Ty)); 3507 } 3508 3509 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3510 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3511 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3512 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3513 Builder.CreateAnd(II->getArgOperand(0), Mask), 3514 ConstantInt::getNullValue(Ty)); 3515 } 3516 break; 3517 } 3518 default: 3519 break; 3520 } 3521 3522 return nullptr; 3523 } 3524 3525 /// Handle icmp with constant (but not simple integer constant) RHS. 3526 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3527 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3528 Constant *RHSC = dyn_cast<Constant>(Op1); 3529 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3530 if (!RHSC || !LHSI) 3531 return nullptr; 3532 3533 switch (LHSI->getOpcode()) { 3534 case Instruction::GetElementPtr: 3535 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3536 if (RHSC->isNullValue() && 3537 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3538 return new ICmpInst( 3539 I.getPredicate(), LHSI->getOperand(0), 3540 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3541 break; 3542 case Instruction::PHI: 3543 // Only fold icmp into the PHI if the phi and icmp are in the same 3544 // block. If in the same block, we're encouraging jump threading. If 3545 // not, we are just pessimizing the code by making an i1 phi. 3546 if (LHSI->getParent() == I.getParent()) 3547 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3548 return NV; 3549 break; 3550 case Instruction::IntToPtr: 3551 // icmp pred inttoptr(X), null -> icmp pred X, 0 3552 if (RHSC->isNullValue() && 3553 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3554 return new ICmpInst( 3555 I.getPredicate(), LHSI->getOperand(0), 3556 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3557 break; 3558 3559 case Instruction::Load: 3560 // Try to optimize things like "A[i] > 4" to index computations. 3561 if (GetElementPtrInst *GEP = 3562 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 3563 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3564 if (Instruction *Res = 3565 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I)) 3566 return Res; 3567 break; 3568 } 3569 3570 return nullptr; 3571 } 3572 3573 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred, 3574 SelectInst *SI, Value *RHS, 3575 const ICmpInst &I) { 3576 // Try to fold the comparison into the select arms, which will cause the 3577 // select to be converted into a logical and/or. 3578 auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * { 3579 if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ)) 3580 return Res; 3581 if (Optional<bool> Impl = isImpliedCondition(SI->getCondition(), Pred, Op, 3582 RHS, DL, SelectCondIsTrue)) 3583 return ConstantInt::get(I.getType(), *Impl); 3584 return nullptr; 3585 }; 3586 3587 ConstantInt *CI = nullptr; 3588 Value *Op1 = SimplifyOp(SI->getOperand(1), true); 3589 if (Op1) 3590 CI = dyn_cast<ConstantInt>(Op1); 3591 3592 Value *Op2 = SimplifyOp(SI->getOperand(2), false); 3593 if (Op2) 3594 CI = dyn_cast<ConstantInt>(Op2); 3595 3596 // We only want to perform this transformation if it will not lead to 3597 // additional code. This is true if either both sides of the select 3598 // fold to a constant (in which case the icmp is replaced with a select 3599 // which will usually simplify) or this is the only user of the 3600 // select (in which case we are trading a select+icmp for a simpler 3601 // select+icmp) or all uses of the select can be replaced based on 3602 // dominance information ("Global cases"). 3603 bool Transform = false; 3604 if (Op1 && Op2) 3605 Transform = true; 3606 else if (Op1 || Op2) { 3607 // Local case 3608 if (SI->hasOneUse()) 3609 Transform = true; 3610 // Global cases 3611 else if (CI && !CI->isZero()) 3612 // When Op1 is constant try replacing select with second operand. 3613 // Otherwise Op2 is constant and try replacing select with first 3614 // operand. 3615 Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1); 3616 } 3617 if (Transform) { 3618 if (!Op1) 3619 Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName()); 3620 if (!Op2) 3621 Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName()); 3622 return SelectInst::Create(SI->getOperand(0), Op1, Op2); 3623 } 3624 3625 return nullptr; 3626 } 3627 3628 /// Some comparisons can be simplified. 3629 /// In this case, we are looking for comparisons that look like 3630 /// a check for a lossy truncation. 3631 /// Folds: 3632 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3633 /// Where Mask is some pattern that produces all-ones in low bits: 3634 /// (-1 >> y) 3635 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3636 /// ~(-1 << y) 3637 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3638 /// The Mask can be a constant, too. 3639 /// For some predicates, the operands are commutative. 3640 /// For others, x can only be on a specific side. 3641 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3642 InstCombiner::BuilderTy &Builder) { 3643 ICmpInst::Predicate SrcPred; 3644 Value *X, *M, *Y; 3645 auto m_VariableMask = m_CombineOr( 3646 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3647 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3648 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3649 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3650 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3651 if (!match(&I, m_c_ICmp(SrcPred, 3652 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3653 m_Deferred(X)))) 3654 return nullptr; 3655 3656 ICmpInst::Predicate DstPred; 3657 switch (SrcPred) { 3658 case ICmpInst::Predicate::ICMP_EQ: 3659 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3660 DstPred = ICmpInst::Predicate::ICMP_ULE; 3661 break; 3662 case ICmpInst::Predicate::ICMP_NE: 3663 // x & (-1 >> y) != x -> x u> (-1 >> y) 3664 DstPred = ICmpInst::Predicate::ICMP_UGT; 3665 break; 3666 case ICmpInst::Predicate::ICMP_ULT: 3667 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3668 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3669 DstPred = ICmpInst::Predicate::ICMP_UGT; 3670 break; 3671 case ICmpInst::Predicate::ICMP_UGE: 3672 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3673 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3674 DstPred = ICmpInst::Predicate::ICMP_ULE; 3675 break; 3676 case ICmpInst::Predicate::ICMP_SLT: 3677 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3678 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3679 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3680 return nullptr; 3681 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3682 return nullptr; 3683 DstPred = ICmpInst::Predicate::ICMP_SGT; 3684 break; 3685 case ICmpInst::Predicate::ICMP_SGE: 3686 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3687 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3688 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3689 return nullptr; 3690 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3691 return nullptr; 3692 DstPred = ICmpInst::Predicate::ICMP_SLE; 3693 break; 3694 case ICmpInst::Predicate::ICMP_SGT: 3695 case ICmpInst::Predicate::ICMP_SLE: 3696 return nullptr; 3697 case ICmpInst::Predicate::ICMP_UGT: 3698 case ICmpInst::Predicate::ICMP_ULE: 3699 llvm_unreachable("Instsimplify took care of commut. variant"); 3700 break; 3701 default: 3702 llvm_unreachable("All possible folds are handled."); 3703 } 3704 3705 // The mask value may be a vector constant that has undefined elements. But it 3706 // may not be safe to propagate those undefs into the new compare, so replace 3707 // those elements by copying an existing, defined, and safe scalar constant. 3708 Type *OpTy = M->getType(); 3709 auto *VecC = dyn_cast<Constant>(M); 3710 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 3711 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 3712 Constant *SafeReplacementConstant = nullptr; 3713 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3714 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3715 SafeReplacementConstant = VecC->getAggregateElement(i); 3716 break; 3717 } 3718 } 3719 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3720 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3721 } 3722 3723 return Builder.CreateICmp(DstPred, X, M); 3724 } 3725 3726 /// Some comparisons can be simplified. 3727 /// In this case, we are looking for comparisons that look like 3728 /// a check for a lossy signed truncation. 3729 /// Folds: (MaskedBits is a constant.) 3730 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3731 /// Into: 3732 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3733 /// Where KeptBits = bitwidth(%x) - MaskedBits 3734 static Value * 3735 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3736 InstCombiner::BuilderTy &Builder) { 3737 ICmpInst::Predicate SrcPred; 3738 Value *X; 3739 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3740 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3741 if (!match(&I, m_c_ICmp(SrcPred, 3742 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3743 m_APInt(C1))), 3744 m_Deferred(X)))) 3745 return nullptr; 3746 3747 // Potential handling of non-splats: for each element: 3748 // * if both are undef, replace with constant 0. 3749 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3750 // * if both are not undef, and are different, bailout. 3751 // * else, only one is undef, then pick the non-undef one. 3752 3753 // The shift amount must be equal. 3754 if (*C0 != *C1) 3755 return nullptr; 3756 const APInt &MaskedBits = *C0; 3757 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3758 3759 ICmpInst::Predicate DstPred; 3760 switch (SrcPred) { 3761 case ICmpInst::Predicate::ICMP_EQ: 3762 // ((%x << MaskedBits) a>> MaskedBits) == %x 3763 // => 3764 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3765 DstPred = ICmpInst::Predicate::ICMP_ULT; 3766 break; 3767 case ICmpInst::Predicate::ICMP_NE: 3768 // ((%x << MaskedBits) a>> MaskedBits) != %x 3769 // => 3770 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3771 DstPred = ICmpInst::Predicate::ICMP_UGE; 3772 break; 3773 // FIXME: are more folds possible? 3774 default: 3775 return nullptr; 3776 } 3777 3778 auto *XType = X->getType(); 3779 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3780 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3781 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3782 3783 // KeptBits = bitwidth(%x) - MaskedBits 3784 const APInt KeptBits = BitWidth - MaskedBits; 3785 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3786 // ICmpCst = (1 << KeptBits) 3787 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3788 assert(ICmpCst.isPowerOf2()); 3789 // AddCst = (1 << (KeptBits-1)) 3790 const APInt AddCst = ICmpCst.lshr(1); 3791 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3792 3793 // T0 = add %x, AddCst 3794 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3795 // T1 = T0 DstPred ICmpCst 3796 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3797 3798 return T1; 3799 } 3800 3801 // Given pattern: 3802 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3803 // we should move shifts to the same hand of 'and', i.e. rewrite as 3804 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3805 // We are only interested in opposite logical shifts here. 3806 // One of the shifts can be truncated. 3807 // If we can, we want to end up creating 'lshr' shift. 3808 static Value * 3809 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3810 InstCombiner::BuilderTy &Builder) { 3811 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3812 !I.getOperand(0)->hasOneUse()) 3813 return nullptr; 3814 3815 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3816 3817 // Look for an 'and' of two logical shifts, one of which may be truncated. 3818 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3819 Instruction *XShift, *MaybeTruncation, *YShift; 3820 if (!match( 3821 I.getOperand(0), 3822 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3823 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3824 m_AnyLogicalShift, m_Instruction(YShift))), 3825 m_Instruction(MaybeTruncation))))) 3826 return nullptr; 3827 3828 // We potentially looked past 'trunc', but only when matching YShift, 3829 // therefore YShift must have the widest type. 3830 Instruction *WidestShift = YShift; 3831 // Therefore XShift must have the shallowest type. 3832 // Or they both have identical types if there was no truncation. 3833 Instruction *NarrowestShift = XShift; 3834 3835 Type *WidestTy = WidestShift->getType(); 3836 Type *NarrowestTy = NarrowestShift->getType(); 3837 assert(NarrowestTy == I.getOperand(0)->getType() && 3838 "We did not look past any shifts while matching XShift though."); 3839 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3840 3841 // If YShift is a 'lshr', swap the shifts around. 3842 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3843 std::swap(XShift, YShift); 3844 3845 // The shifts must be in opposite directions. 3846 auto XShiftOpcode = XShift->getOpcode(); 3847 if (XShiftOpcode == YShift->getOpcode()) 3848 return nullptr; // Do not care about same-direction shifts here. 3849 3850 Value *X, *XShAmt, *Y, *YShAmt; 3851 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3852 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3853 3854 // If one of the values being shifted is a constant, then we will end with 3855 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3856 // however, we will need to ensure that we won't increase instruction count. 3857 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3858 // At least one of the hands of the 'and' should be one-use shift. 3859 if (!match(I.getOperand(0), 3860 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3861 return nullptr; 3862 if (HadTrunc) { 3863 // Due to the 'trunc', we will need to widen X. For that either the old 3864 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3865 if (!MaybeTruncation->hasOneUse() && 3866 !NarrowestShift->getOperand(1)->hasOneUse()) 3867 return nullptr; 3868 } 3869 } 3870 3871 // We have two shift amounts from two different shifts. The types of those 3872 // shift amounts may not match. If that's the case let's bailout now. 3873 if (XShAmt->getType() != YShAmt->getType()) 3874 return nullptr; 3875 3876 // As input, we have the following pattern: 3877 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3878 // We want to rewrite that as: 3879 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3880 // While we know that originally (Q+K) would not overflow 3881 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3882 // shift amounts. so it may now overflow in smaller bitwidth. 3883 // To ensure that does not happen, we need to ensure that the total maximal 3884 // shift amount is still representable in that smaller bit width. 3885 unsigned MaximalPossibleTotalShiftAmount = 3886 (WidestTy->getScalarSizeInBits() - 1) + 3887 (NarrowestTy->getScalarSizeInBits() - 1); 3888 APInt MaximalRepresentableShiftAmount = 3889 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 3890 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3891 return nullptr; 3892 3893 // Can we fold (XShAmt+YShAmt) ? 3894 auto *NewShAmt = dyn_cast_or_null<Constant>( 3895 simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3896 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3897 if (!NewShAmt) 3898 return nullptr; 3899 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3900 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3901 3902 // Is the new shift amount smaller than the bit width? 3903 // FIXME: could also rely on ConstantRange. 3904 if (!match(NewShAmt, 3905 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3906 APInt(WidestBitWidth, WidestBitWidth)))) 3907 return nullptr; 3908 3909 // An extra legality check is needed if we had trunc-of-lshr. 3910 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3911 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3912 WidestShift]() { 3913 // It isn't obvious whether it's worth it to analyze non-constants here. 3914 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3915 // If *any* of these preconditions matches we can perform the fold. 3916 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3917 ? NewShAmt->getSplatValue() 3918 : NewShAmt; 3919 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3920 if (NewShAmtSplat && 3921 (NewShAmtSplat->isNullValue() || 3922 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3923 return true; 3924 // We consider *min* leading zeros so a single outlier 3925 // blocks the transform as opposed to allowing it. 3926 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3927 KnownBits Known = computeKnownBits(C, SQ.DL); 3928 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3929 // If the value being shifted has at most lowest bit set we can fold. 3930 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3931 if (MaxActiveBits <= 1) 3932 return true; 3933 // Precondition: NewShAmt u<= countLeadingZeros(C) 3934 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3935 return true; 3936 } 3937 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3938 KnownBits Known = computeKnownBits(C, SQ.DL); 3939 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3940 // If the value being shifted has at most lowest bit set we can fold. 3941 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3942 if (MaxActiveBits <= 1) 3943 return true; 3944 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3945 if (NewShAmtSplat) { 3946 APInt AdjNewShAmt = 3947 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3948 if (AdjNewShAmt.ule(MinLeadZero)) 3949 return true; 3950 } 3951 } 3952 return false; // Can't tell if it's ok. 3953 }; 3954 if (!CanFold()) 3955 return nullptr; 3956 } 3957 3958 // All good, we can do this fold. 3959 X = Builder.CreateZExt(X, WidestTy); 3960 Y = Builder.CreateZExt(Y, WidestTy); 3961 // The shift is the same that was for X. 3962 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3963 ? Builder.CreateLShr(X, NewShAmt) 3964 : Builder.CreateShl(X, NewShAmt); 3965 Value *T1 = Builder.CreateAnd(T0, Y); 3966 return Builder.CreateICmp(I.getPredicate(), T1, 3967 Constant::getNullValue(WidestTy)); 3968 } 3969 3970 /// Fold 3971 /// (-1 u/ x) u< y 3972 /// ((x * y) ?/ x) != y 3973 /// to 3974 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 3975 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3976 /// will mean that we are looking for the opposite answer. 3977 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 3978 ICmpInst::Predicate Pred; 3979 Value *X, *Y; 3980 Instruction *Mul; 3981 Instruction *Div; 3982 bool NeedNegation; 3983 // Look for: (-1 u/ x) u</u>= y 3984 if (!I.isEquality() && 3985 match(&I, m_c_ICmp(Pred, 3986 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3987 m_Instruction(Div)), 3988 m_Value(Y)))) { 3989 Mul = nullptr; 3990 3991 // Are we checking that overflow does not happen, or does happen? 3992 switch (Pred) { 3993 case ICmpInst::Predicate::ICMP_ULT: 3994 NeedNegation = false; 3995 break; // OK 3996 case ICmpInst::Predicate::ICMP_UGE: 3997 NeedNegation = true; 3998 break; // OK 3999 default: 4000 return nullptr; // Wrong predicate. 4001 } 4002 } else // Look for: ((x * y) / x) !=/== y 4003 if (I.isEquality() && 4004 match(&I, 4005 m_c_ICmp(Pred, m_Value(Y), 4006 m_CombineAnd( 4007 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 4008 m_Value(X)), 4009 m_Instruction(Mul)), 4010 m_Deferred(X))), 4011 m_Instruction(Div))))) { 4012 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 4013 } else 4014 return nullptr; 4015 4016 BuilderTy::InsertPointGuard Guard(Builder); 4017 // If the pattern included (x * y), we'll want to insert new instructions 4018 // right before that original multiplication so that we can replace it. 4019 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 4020 if (MulHadOtherUses) 4021 Builder.SetInsertPoint(Mul); 4022 4023 Function *F = Intrinsic::getDeclaration(I.getModule(), 4024 Div->getOpcode() == Instruction::UDiv 4025 ? Intrinsic::umul_with_overflow 4026 : Intrinsic::smul_with_overflow, 4027 X->getType()); 4028 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 4029 4030 // If the multiplication was used elsewhere, to ensure that we don't leave 4031 // "duplicate" instructions, replace uses of that original multiplication 4032 // with the multiplication result from the with.overflow intrinsic. 4033 if (MulHadOtherUses) 4034 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 4035 4036 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 4037 if (NeedNegation) // This technically increases instruction count. 4038 Res = Builder.CreateNot(Res, "mul.not.ov"); 4039 4040 // If we replaced the mul, erase it. Do this after all uses of Builder, 4041 // as the mul is used as insertion point. 4042 if (MulHadOtherUses) 4043 eraseInstFromFunction(*Mul); 4044 4045 return Res; 4046 } 4047 4048 static Instruction *foldICmpXNegX(ICmpInst &I) { 4049 CmpInst::Predicate Pred; 4050 Value *X; 4051 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) 4052 return nullptr; 4053 4054 if (ICmpInst::isSigned(Pred)) 4055 Pred = ICmpInst::getSwappedPredicate(Pred); 4056 else if (ICmpInst::isUnsigned(Pred)) 4057 Pred = ICmpInst::getSignedPredicate(Pred); 4058 // else for equality-comparisons just keep the predicate. 4059 4060 return ICmpInst::Create(Instruction::ICmp, Pred, X, 4061 Constant::getNullValue(X->getType()), I.getName()); 4062 } 4063 4064 /// Try to fold icmp (binop), X or icmp X, (binop). 4065 /// TODO: A large part of this logic is duplicated in InstSimplify's 4066 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 4067 /// duplication. 4068 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 4069 const SimplifyQuery &SQ) { 4070 const SimplifyQuery Q = SQ.getWithInstruction(&I); 4071 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4072 4073 // Special logic for binary operators. 4074 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 4075 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 4076 if (!BO0 && !BO1) 4077 return nullptr; 4078 4079 if (Instruction *NewICmp = foldICmpXNegX(I)) 4080 return NewICmp; 4081 4082 const CmpInst::Predicate Pred = I.getPredicate(); 4083 Value *X; 4084 4085 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 4086 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 4087 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 4088 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4089 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 4090 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 4091 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 4092 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4093 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 4094 4095 { 4096 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1 4097 Constant *C; 4098 if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)), 4099 m_ImmConstant(C)))) && 4100 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 4101 Constant *C2 = ConstantExpr::getNot(C); 4102 return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1); 4103 } 4104 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X 4105 if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)), 4106 m_ImmConstant(C)))) && 4107 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) { 4108 Constant *C2 = ConstantExpr::getNot(C); 4109 return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X)); 4110 } 4111 } 4112 4113 { 4114 // Similar to above: an unsigned overflow comparison may use offset + mask: 4115 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 4116 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 4117 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 4118 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 4119 BinaryOperator *BO; 4120 const APInt *C; 4121 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 4122 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4123 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 4124 CmpInst::Predicate NewPred = 4125 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4126 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4127 return new ICmpInst(NewPred, Op1, Zero); 4128 } 4129 4130 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 4131 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4132 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 4133 CmpInst::Predicate NewPred = 4134 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4135 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4136 return new ICmpInst(NewPred, Op0, Zero); 4137 } 4138 } 4139 4140 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 4141 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 4142 NoOp0WrapProblem = 4143 ICmpInst::isEquality(Pred) || 4144 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 4145 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 4146 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 4147 NoOp1WrapProblem = 4148 ICmpInst::isEquality(Pred) || 4149 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 4150 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 4151 4152 // Analyze the case when either Op0 or Op1 is an add instruction. 4153 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 4154 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 4155 if (BO0 && BO0->getOpcode() == Instruction::Add) { 4156 A = BO0->getOperand(0); 4157 B = BO0->getOperand(1); 4158 } 4159 if (BO1 && BO1->getOpcode() == Instruction::Add) { 4160 C = BO1->getOperand(0); 4161 D = BO1->getOperand(1); 4162 } 4163 4164 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4165 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4166 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4167 return new ICmpInst(Pred, A == Op1 ? B : A, 4168 Constant::getNullValue(Op1->getType())); 4169 4170 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4171 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4172 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4173 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4174 C == Op0 ? D : C); 4175 4176 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4177 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4178 NoOp1WrapProblem) { 4179 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4180 Value *Y, *Z; 4181 if (A == C) { 4182 // C + B == C + D -> B == D 4183 Y = B; 4184 Z = D; 4185 } else if (A == D) { 4186 // D + B == C + D -> B == C 4187 Y = B; 4188 Z = C; 4189 } else if (B == C) { 4190 // A + C == C + D -> A == D 4191 Y = A; 4192 Z = D; 4193 } else { 4194 assert(B == D); 4195 // A + D == C + D -> A == C 4196 Y = A; 4197 Z = C; 4198 } 4199 return new ICmpInst(Pred, Y, Z); 4200 } 4201 4202 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4203 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4204 match(B, m_AllOnes())) 4205 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4206 4207 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4208 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4209 match(B, m_AllOnes())) 4210 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4211 4212 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4213 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4214 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4215 4216 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4217 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4218 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4219 4220 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4221 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4222 match(D, m_AllOnes())) 4223 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4224 4225 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4226 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4227 match(D, m_AllOnes())) 4228 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4229 4230 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4231 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4232 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4233 4234 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4235 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4236 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4237 4238 // TODO: The subtraction-related identities shown below also hold, but 4239 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4240 // wouldn't happen even if they were implemented. 4241 // 4242 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4243 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4244 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4245 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4246 4247 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4248 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4249 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4250 4251 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4252 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4253 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4254 4255 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4256 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4257 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4258 4259 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4260 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4261 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4262 4263 // if C1 has greater magnitude than C2: 4264 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4265 // s.t. C3 = C1 - C2 4266 // 4267 // if C2 has greater magnitude than C1: 4268 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4269 // s.t. C3 = C2 - C1 4270 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4271 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { 4272 const APInt *AP1, *AP2; 4273 // TODO: Support non-uniform vectors. 4274 // TODO: Allow undef passthrough if B AND D's element is undef. 4275 if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) && 4276 AP1->isNegative() == AP2->isNegative()) { 4277 APInt AP1Abs = AP1->abs(); 4278 APInt AP2Abs = AP2->abs(); 4279 if (AP1Abs.uge(AP2Abs)) { 4280 APInt Diff = *AP1 - *AP2; 4281 bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1); 4282 bool HasNSW = BO0->hasNoSignedWrap(); 4283 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4284 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4285 return new ICmpInst(Pred, NewAdd, C); 4286 } else { 4287 APInt Diff = *AP2 - *AP1; 4288 bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2); 4289 bool HasNSW = BO1->hasNoSignedWrap(); 4290 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4291 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4292 return new ICmpInst(Pred, A, NewAdd); 4293 } 4294 } 4295 Constant *Cst1, *Cst2; 4296 if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) && 4297 ICmpInst::isEquality(Pred)) { 4298 Constant *Diff = ConstantExpr::getSub(Cst2, Cst1); 4299 Value *NewAdd = Builder.CreateAdd(C, Diff); 4300 return new ICmpInst(Pred, A, NewAdd); 4301 } 4302 } 4303 4304 // Analyze the case when either Op0 or Op1 is a sub instruction. 4305 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4306 A = nullptr; 4307 B = nullptr; 4308 C = nullptr; 4309 D = nullptr; 4310 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4311 A = BO0->getOperand(0); 4312 B = BO0->getOperand(1); 4313 } 4314 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4315 C = BO1->getOperand(0); 4316 D = BO1->getOperand(1); 4317 } 4318 4319 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4320 if (A == Op1 && NoOp0WrapProblem) 4321 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4322 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4323 if (C == Op0 && NoOp1WrapProblem) 4324 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4325 4326 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4327 // (A - B) u>/u<= A --> B u>/u<= A 4328 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4329 return new ICmpInst(Pred, B, A); 4330 // C u</u>= (C - D) --> C u</u>= D 4331 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4332 return new ICmpInst(Pred, C, D); 4333 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4334 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4335 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4336 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4337 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4338 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4339 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4340 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4341 4342 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4343 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4344 return new ICmpInst(Pred, A, C); 4345 4346 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4347 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4348 return new ICmpInst(Pred, D, B); 4349 4350 // icmp (0-X) < cst --> x > -cst 4351 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4352 Value *X; 4353 if (match(BO0, m_Neg(m_Value(X)))) 4354 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4355 if (RHSC->isNotMinSignedValue()) 4356 return new ICmpInst(I.getSwappedPredicate(), X, 4357 ConstantExpr::getNeg(RHSC)); 4358 } 4359 4360 { 4361 // Try to remove shared constant multiplier from equality comparison: 4362 // X * C == Y * C (with no overflowing/aliasing) --> X == Y 4363 Value *X, *Y; 4364 const APInt *C; 4365 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && 4366 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) 4367 if (!C->countTrailingZeros() || 4368 (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || 4369 (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) 4370 return new ICmpInst(Pred, X, Y); 4371 } 4372 4373 BinaryOperator *SRem = nullptr; 4374 // icmp (srem X, Y), Y 4375 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4376 SRem = BO0; 4377 // icmp Y, (srem X, Y) 4378 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4379 Op0 == BO1->getOperand(1)) 4380 SRem = BO1; 4381 if (SRem) { 4382 // We don't check hasOneUse to avoid increasing register pressure because 4383 // the value we use is the same value this instruction was already using. 4384 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4385 default: 4386 break; 4387 case ICmpInst::ICMP_EQ: 4388 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4389 case ICmpInst::ICMP_NE: 4390 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4391 case ICmpInst::ICMP_SGT: 4392 case ICmpInst::ICMP_SGE: 4393 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4394 Constant::getAllOnesValue(SRem->getType())); 4395 case ICmpInst::ICMP_SLT: 4396 case ICmpInst::ICMP_SLE: 4397 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4398 Constant::getNullValue(SRem->getType())); 4399 } 4400 } 4401 4402 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4403 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4404 switch (BO0->getOpcode()) { 4405 default: 4406 break; 4407 case Instruction::Add: 4408 case Instruction::Sub: 4409 case Instruction::Xor: { 4410 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4411 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4412 4413 const APInt *C; 4414 if (match(BO0->getOperand(1), m_APInt(C))) { 4415 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4416 if (C->isSignMask()) { 4417 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4418 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4419 } 4420 4421 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4422 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4423 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4424 NewPred = I.getSwappedPredicate(NewPred); 4425 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4426 } 4427 } 4428 break; 4429 } 4430 case Instruction::Mul: { 4431 if (!I.isEquality()) 4432 break; 4433 4434 const APInt *C; 4435 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4436 !C->isOne()) { 4437 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4438 // Mask = -1 >> count-trailing-zeros(C). 4439 if (unsigned TZs = C->countTrailingZeros()) { 4440 Constant *Mask = ConstantInt::get( 4441 BO0->getType(), 4442 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4443 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4444 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4445 return new ICmpInst(Pred, And1, And2); 4446 } 4447 } 4448 break; 4449 } 4450 case Instruction::UDiv: 4451 case Instruction::LShr: 4452 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4453 break; 4454 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4455 4456 case Instruction::SDiv: 4457 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4458 break; 4459 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4460 4461 case Instruction::AShr: 4462 if (!BO0->isExact() || !BO1->isExact()) 4463 break; 4464 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4465 4466 case Instruction::Shl: { 4467 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4468 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4469 if (!NUW && !NSW) 4470 break; 4471 if (!NSW && I.isSigned()) 4472 break; 4473 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4474 } 4475 } 4476 } 4477 4478 if (BO0) { 4479 // Transform A & (L - 1) `ult` L --> L != 0 4480 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4481 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4482 4483 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4484 auto *Zero = Constant::getNullValue(BO0->getType()); 4485 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4486 } 4487 } 4488 4489 if (Value *V = foldMultiplicationOverflowCheck(I)) 4490 return replaceInstUsesWith(I, V); 4491 4492 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4493 return replaceInstUsesWith(I, V); 4494 4495 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4496 return replaceInstUsesWith(I, V); 4497 4498 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4499 return replaceInstUsesWith(I, V); 4500 4501 return nullptr; 4502 } 4503 4504 /// Fold icmp Pred min|max(X, Y), X. 4505 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4506 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4507 Value *Op0 = Cmp.getOperand(0); 4508 Value *X = Cmp.getOperand(1); 4509 4510 // Canonicalize minimum or maximum operand to LHS of the icmp. 4511 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4512 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4513 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4514 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4515 std::swap(Op0, X); 4516 Pred = Cmp.getSwappedPredicate(); 4517 } 4518 4519 Value *Y; 4520 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4521 // smin(X, Y) == X --> X s<= Y 4522 // smin(X, Y) s>= X --> X s<= Y 4523 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4524 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4525 4526 // smin(X, Y) != X --> X s> Y 4527 // smin(X, Y) s< X --> X s> Y 4528 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4529 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4530 4531 // These cases should be handled in InstSimplify: 4532 // smin(X, Y) s<= X --> true 4533 // smin(X, Y) s> X --> false 4534 return nullptr; 4535 } 4536 4537 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4538 // smax(X, Y) == X --> X s>= Y 4539 // smax(X, Y) s<= X --> X s>= Y 4540 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4541 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4542 4543 // smax(X, Y) != X --> X s< Y 4544 // smax(X, Y) s> X --> X s< Y 4545 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4546 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4547 4548 // These cases should be handled in InstSimplify: 4549 // smax(X, Y) s>= X --> true 4550 // smax(X, Y) s< X --> false 4551 return nullptr; 4552 } 4553 4554 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4555 // umin(X, Y) == X --> X u<= Y 4556 // umin(X, Y) u>= X --> X u<= Y 4557 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4558 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4559 4560 // umin(X, Y) != X --> X u> Y 4561 // umin(X, Y) u< X --> X u> Y 4562 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4563 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4564 4565 // These cases should be handled in InstSimplify: 4566 // umin(X, Y) u<= X --> true 4567 // umin(X, Y) u> X --> false 4568 return nullptr; 4569 } 4570 4571 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4572 // umax(X, Y) == X --> X u>= Y 4573 // umax(X, Y) u<= X --> X u>= Y 4574 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4575 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4576 4577 // umax(X, Y) != X --> X u< Y 4578 // umax(X, Y) u> X --> X u< Y 4579 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4580 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4581 4582 // These cases should be handled in InstSimplify: 4583 // umax(X, Y) u>= X --> true 4584 // umax(X, Y) u< X --> false 4585 return nullptr; 4586 } 4587 4588 return nullptr; 4589 } 4590 4591 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 4592 if (!I.isEquality()) 4593 return nullptr; 4594 4595 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4596 const CmpInst::Predicate Pred = I.getPredicate(); 4597 Value *A, *B, *C, *D; 4598 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4599 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4600 Value *OtherVal = A == Op1 ? B : A; 4601 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4602 } 4603 4604 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4605 // A^c1 == C^c2 --> A == C^(c1^c2) 4606 ConstantInt *C1, *C2; 4607 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4608 Op1->hasOneUse()) { 4609 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4610 Value *Xor = Builder.CreateXor(C, NC); 4611 return new ICmpInst(Pred, A, Xor); 4612 } 4613 4614 // A^B == A^D -> B == D 4615 if (A == C) 4616 return new ICmpInst(Pred, B, D); 4617 if (A == D) 4618 return new ICmpInst(Pred, B, C); 4619 if (B == C) 4620 return new ICmpInst(Pred, A, D); 4621 if (B == D) 4622 return new ICmpInst(Pred, A, C); 4623 } 4624 } 4625 4626 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4627 // A == (A^B) -> B == 0 4628 Value *OtherVal = A == Op0 ? B : A; 4629 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4630 } 4631 4632 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4633 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4634 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4635 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4636 4637 if (A == C) { 4638 X = B; 4639 Y = D; 4640 Z = A; 4641 } else if (A == D) { 4642 X = B; 4643 Y = C; 4644 Z = A; 4645 } else if (B == C) { 4646 X = A; 4647 Y = D; 4648 Z = B; 4649 } else if (B == D) { 4650 X = A; 4651 Y = C; 4652 Z = B; 4653 } 4654 4655 if (X) { // Build (X^Y) & Z 4656 Op1 = Builder.CreateXor(X, Y); 4657 Op1 = Builder.CreateAnd(Op1, Z); 4658 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4659 } 4660 } 4661 4662 { 4663 // Similar to above, but specialized for constant because invert is needed: 4664 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 4665 Value *X, *Y; 4666 Constant *C; 4667 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 4668 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 4669 Value *Xor = Builder.CreateXor(X, Y); 4670 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 4671 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 4672 } 4673 } 4674 4675 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4676 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4677 ConstantInt *Cst1; 4678 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4679 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4680 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4681 match(Op1, m_ZExt(m_Value(A))))) { 4682 APInt Pow2 = Cst1->getValue() + 1; 4683 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4684 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4685 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4686 } 4687 4688 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4689 // For lshr and ashr pairs. 4690 const APInt *AP1, *AP2; 4691 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowUndef(AP1)))) && 4692 match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowUndef(AP2))))) || 4693 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowUndef(AP1)))) && 4694 match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowUndef(AP2)))))) { 4695 if (AP1 != AP2) 4696 return nullptr; 4697 unsigned TypeBits = AP1->getBitWidth(); 4698 unsigned ShAmt = AP1->getLimitedValue(TypeBits); 4699 if (ShAmt < TypeBits && ShAmt != 0) { 4700 ICmpInst::Predicate NewPred = 4701 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4702 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4703 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4704 return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal)); 4705 } 4706 } 4707 4708 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4709 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4710 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4711 unsigned TypeBits = Cst1->getBitWidth(); 4712 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4713 if (ShAmt < TypeBits && ShAmt != 0) { 4714 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4715 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4716 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4717 I.getName() + ".mask"); 4718 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4719 } 4720 } 4721 4722 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4723 // "icmp (and X, mask), cst" 4724 uint64_t ShAmt = 0; 4725 if (Op0->hasOneUse() && 4726 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4727 match(Op1, m_ConstantInt(Cst1)) && 4728 // Only do this when A has multiple uses. This is most important to do 4729 // when it exposes other optimizations. 4730 !A->hasOneUse()) { 4731 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4732 4733 if (ShAmt < ASize) { 4734 APInt MaskV = 4735 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4736 MaskV <<= ShAmt; 4737 4738 APInt CmpV = Cst1->getValue().zext(ASize); 4739 CmpV <<= ShAmt; 4740 4741 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4742 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4743 } 4744 } 4745 4746 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I)) 4747 return ICmp; 4748 4749 // Canonicalize checking for a power-of-2-or-zero value: 4750 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4751 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4752 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4753 m_Deferred(A)))) || 4754 !match(Op1, m_ZeroInt())) 4755 A = nullptr; 4756 4757 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4758 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4759 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4760 A = Op1; 4761 else if (match(Op1, 4762 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4763 A = Op0; 4764 4765 if (A) { 4766 Type *Ty = A->getType(); 4767 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4768 return Pred == ICmpInst::ICMP_EQ 4769 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4770 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4771 } 4772 4773 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 4774 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 4775 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 4776 // of instcombine. 4777 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 4778 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 4779 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 4780 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 4781 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 4782 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 4783 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 4784 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 4785 : ICmpInst::ICMP_UGE, 4786 Add, ConstantInt::get(A->getType(), C.shl(1))); 4787 } 4788 4789 return nullptr; 4790 } 4791 4792 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp, 4793 InstCombiner::BuilderTy &Builder) { 4794 ICmpInst::Predicate Pred = ICmp.getPredicate(); 4795 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 4796 4797 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 4798 // The trunc masks high bits while the compare may effectively mask low bits. 4799 Value *X; 4800 const APInt *C; 4801 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 4802 return nullptr; 4803 4804 // This matches patterns corresponding to tests of the signbit as well as: 4805 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 4806 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 4807 APInt Mask; 4808 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 4809 Value *And = Builder.CreateAnd(X, Mask); 4810 Constant *Zero = ConstantInt::getNullValue(X->getType()); 4811 return new ICmpInst(Pred, And, Zero); 4812 } 4813 4814 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 4815 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 4816 // If C is a negative power-of-2 (high-bit mask): 4817 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 4818 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 4819 Value *And = Builder.CreateAnd(X, MaskC); 4820 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 4821 } 4822 4823 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 4824 // If C is not-of-power-of-2 (one clear bit): 4825 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 4826 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 4827 Value *And = Builder.CreateAnd(X, MaskC); 4828 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 4829 } 4830 4831 return nullptr; 4832 } 4833 4834 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) { 4835 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4836 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4837 Value *X; 4838 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4839 return nullptr; 4840 4841 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4842 bool IsSignedCmp = ICmp.isSigned(); 4843 4844 // icmp Pred (ext X), (ext Y) 4845 Value *Y; 4846 if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) { 4847 bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0)); 4848 bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1)); 4849 4850 // If we have mismatched casts, treat the zext of a non-negative source as 4851 // a sext to simulate matching casts. Otherwise, we are done. 4852 // TODO: Can we handle some predicates (equality) without non-negative? 4853 if (IsZext0 != IsZext1) { 4854 if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) || 4855 (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT))) 4856 IsSignedExt = true; 4857 else 4858 return nullptr; 4859 } 4860 4861 // Not an extension from the same type? 4862 Type *XTy = X->getType(), *YTy = Y->getType(); 4863 if (XTy != YTy) { 4864 // One of the casts must have one use because we are creating a new cast. 4865 if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse()) 4866 return nullptr; 4867 // Extend the narrower operand to the type of the wider operand. 4868 CastInst::CastOps CastOpcode = 4869 IsSignedExt ? Instruction::SExt : Instruction::ZExt; 4870 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4871 X = Builder.CreateCast(CastOpcode, X, YTy); 4872 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4873 Y = Builder.CreateCast(CastOpcode, Y, XTy); 4874 else 4875 return nullptr; 4876 } 4877 4878 // (zext X) == (zext Y) --> X == Y 4879 // (sext X) == (sext Y) --> X == Y 4880 if (ICmp.isEquality()) 4881 return new ICmpInst(ICmp.getPredicate(), X, Y); 4882 4883 // A signed comparison of sign extended values simplifies into a 4884 // signed comparison. 4885 if (IsSignedCmp && IsSignedExt) 4886 return new ICmpInst(ICmp.getPredicate(), X, Y); 4887 4888 // The other three cases all fold into an unsigned comparison. 4889 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4890 } 4891 4892 // Below here, we are only folding a compare with constant. 4893 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4894 if (!C) 4895 return nullptr; 4896 4897 // Compute the constant that would happen if we truncated to SrcTy then 4898 // re-extended to DestTy. 4899 Type *SrcTy = CastOp0->getSrcTy(); 4900 Type *DestTy = CastOp0->getDestTy(); 4901 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4902 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4903 4904 // If the re-extended constant didn't change... 4905 if (Res2 == C) { 4906 if (ICmp.isEquality()) 4907 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4908 4909 // A signed comparison of sign extended values simplifies into a 4910 // signed comparison. 4911 if (IsSignedExt && IsSignedCmp) 4912 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4913 4914 // The other three cases all fold into an unsigned comparison. 4915 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4916 } 4917 4918 // The re-extended constant changed, partly changed (in the case of a vector), 4919 // or could not be determined to be equal (in the case of a constant 4920 // expression), so the constant cannot be represented in the shorter type. 4921 // All the cases that fold to true or false will have already been handled 4922 // by simplifyICmpInst, so only deal with the tricky case. 4923 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4924 return nullptr; 4925 4926 // Is source op positive? 4927 // icmp ult (sext X), C --> icmp sgt X, -1 4928 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4929 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4930 4931 // Is source op negative? 4932 // icmp ugt (sext X), C --> icmp slt X, 0 4933 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4934 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4935 } 4936 4937 /// Handle icmp (cast x), (cast or constant). 4938 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 4939 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 4940 // icmp compares only pointer's value. 4941 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 4942 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 4943 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 4944 if (SimplifiedOp0 || SimplifiedOp1) 4945 return new ICmpInst(ICmp.getPredicate(), 4946 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 4947 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 4948 4949 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4950 if (!CastOp0) 4951 return nullptr; 4952 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4953 return nullptr; 4954 4955 Value *Op0Src = CastOp0->getOperand(0); 4956 Type *SrcTy = CastOp0->getSrcTy(); 4957 Type *DestTy = CastOp0->getDestTy(); 4958 4959 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4960 // integer type is the same size as the pointer type. 4961 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4962 if (isa<VectorType>(SrcTy)) { 4963 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4964 DestTy = cast<VectorType>(DestTy)->getElementType(); 4965 } 4966 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4967 }; 4968 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4969 CompatibleSizes(SrcTy, DestTy)) { 4970 Value *NewOp1 = nullptr; 4971 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4972 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4973 if (PtrSrc->getType()->getPointerAddressSpace() == 4974 Op0Src->getType()->getPointerAddressSpace()) { 4975 NewOp1 = PtrToIntOp1->getOperand(0); 4976 // If the pointer types don't match, insert a bitcast. 4977 if (Op0Src->getType() != NewOp1->getType()) 4978 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4979 } 4980 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4981 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4982 } 4983 4984 if (NewOp1) 4985 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4986 } 4987 4988 if (Instruction *R = foldICmpWithTrunc(ICmp, Builder)) 4989 return R; 4990 4991 return foldICmpWithZextOrSext(ICmp); 4992 } 4993 4994 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4995 switch (BinaryOp) { 4996 default: 4997 llvm_unreachable("Unsupported binary op"); 4998 case Instruction::Add: 4999 case Instruction::Sub: 5000 return match(RHS, m_Zero()); 5001 case Instruction::Mul: 5002 return match(RHS, m_One()); 5003 } 5004 } 5005 5006 OverflowResult 5007 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 5008 bool IsSigned, Value *LHS, Value *RHS, 5009 Instruction *CxtI) const { 5010 switch (BinaryOp) { 5011 default: 5012 llvm_unreachable("Unsupported binary op"); 5013 case Instruction::Add: 5014 if (IsSigned) 5015 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 5016 else 5017 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 5018 case Instruction::Sub: 5019 if (IsSigned) 5020 return computeOverflowForSignedSub(LHS, RHS, CxtI); 5021 else 5022 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 5023 case Instruction::Mul: 5024 if (IsSigned) 5025 return computeOverflowForSignedMul(LHS, RHS, CxtI); 5026 else 5027 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 5028 } 5029 } 5030 5031 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 5032 bool IsSigned, Value *LHS, 5033 Value *RHS, Instruction &OrigI, 5034 Value *&Result, 5035 Constant *&Overflow) { 5036 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 5037 std::swap(LHS, RHS); 5038 5039 // If the overflow check was an add followed by a compare, the insertion point 5040 // may be pointing to the compare. We want to insert the new instructions 5041 // before the add in case there are uses of the add between the add and the 5042 // compare. 5043 Builder.SetInsertPoint(&OrigI); 5044 5045 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 5046 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 5047 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 5048 5049 if (isNeutralValue(BinaryOp, RHS)) { 5050 Result = LHS; 5051 Overflow = ConstantInt::getFalse(OverflowTy); 5052 return true; 5053 } 5054 5055 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 5056 case OverflowResult::MayOverflow: 5057 return false; 5058 case OverflowResult::AlwaysOverflowsLow: 5059 case OverflowResult::AlwaysOverflowsHigh: 5060 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 5061 Result->takeName(&OrigI); 5062 Overflow = ConstantInt::getTrue(OverflowTy); 5063 return true; 5064 case OverflowResult::NeverOverflows: 5065 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 5066 Result->takeName(&OrigI); 5067 Overflow = ConstantInt::getFalse(OverflowTy); 5068 if (auto *Inst = dyn_cast<Instruction>(Result)) { 5069 if (IsSigned) 5070 Inst->setHasNoSignedWrap(); 5071 else 5072 Inst->setHasNoUnsignedWrap(); 5073 } 5074 return true; 5075 } 5076 5077 llvm_unreachable("Unexpected overflow result"); 5078 } 5079 5080 /// Recognize and process idiom involving test for multiplication 5081 /// overflow. 5082 /// 5083 /// The caller has matched a pattern of the form: 5084 /// I = cmp u (mul(zext A, zext B), V 5085 /// The function checks if this is a test for overflow and if so replaces 5086 /// multiplication with call to 'mul.with.overflow' intrinsic. 5087 /// 5088 /// \param I Compare instruction. 5089 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 5090 /// the compare instruction. Must be of integer type. 5091 /// \param OtherVal The other argument of compare instruction. 5092 /// \returns Instruction which must replace the compare instruction, NULL if no 5093 /// replacement required. 5094 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 5095 Value *OtherVal, 5096 InstCombinerImpl &IC) { 5097 // Don't bother doing this transformation for pointers, don't do it for 5098 // vectors. 5099 if (!isa<IntegerType>(MulVal->getType())) 5100 return nullptr; 5101 5102 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 5103 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 5104 auto *MulInstr = dyn_cast<Instruction>(MulVal); 5105 if (!MulInstr) 5106 return nullptr; 5107 assert(MulInstr->getOpcode() == Instruction::Mul); 5108 5109 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 5110 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 5111 assert(LHS->getOpcode() == Instruction::ZExt); 5112 assert(RHS->getOpcode() == Instruction::ZExt); 5113 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 5114 5115 // Calculate type and width of the result produced by mul.with.overflow. 5116 Type *TyA = A->getType(), *TyB = B->getType(); 5117 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 5118 WidthB = TyB->getPrimitiveSizeInBits(); 5119 unsigned MulWidth; 5120 Type *MulType; 5121 if (WidthB > WidthA) { 5122 MulWidth = WidthB; 5123 MulType = TyB; 5124 } else { 5125 MulWidth = WidthA; 5126 MulType = TyA; 5127 } 5128 5129 // In order to replace the original mul with a narrower mul.with.overflow, 5130 // all uses must ignore upper bits of the product. The number of used low 5131 // bits must be not greater than the width of mul.with.overflow. 5132 if (MulVal->hasNUsesOrMore(2)) 5133 for (User *U : MulVal->users()) { 5134 if (U == &I) 5135 continue; 5136 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5137 // Check if truncation ignores bits above MulWidth. 5138 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 5139 if (TruncWidth > MulWidth) 5140 return nullptr; 5141 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5142 // Check if AND ignores bits above MulWidth. 5143 if (BO->getOpcode() != Instruction::And) 5144 return nullptr; 5145 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 5146 const APInt &CVal = CI->getValue(); 5147 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 5148 return nullptr; 5149 } else { 5150 // In this case we could have the operand of the binary operation 5151 // being defined in another block, and performing the replacement 5152 // could break the dominance relation. 5153 return nullptr; 5154 } 5155 } else { 5156 // Other uses prohibit this transformation. 5157 return nullptr; 5158 } 5159 } 5160 5161 // Recognize patterns 5162 switch (I.getPredicate()) { 5163 case ICmpInst::ICMP_EQ: 5164 case ICmpInst::ICMP_NE: 5165 // Recognize pattern: 5166 // mulval = mul(zext A, zext B) 5167 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 5168 ConstantInt *CI; 5169 Value *ValToMask; 5170 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 5171 if (ValToMask != MulVal) 5172 return nullptr; 5173 const APInt &CVal = CI->getValue() + 1; 5174 if (CVal.isPowerOf2()) { 5175 unsigned MaskWidth = CVal.logBase2(); 5176 if (MaskWidth == MulWidth) 5177 break; // Recognized 5178 } 5179 } 5180 return nullptr; 5181 5182 case ICmpInst::ICMP_UGT: 5183 // Recognize pattern: 5184 // mulval = mul(zext A, zext B) 5185 // cmp ugt mulval, max 5186 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5187 APInt MaxVal = APInt::getMaxValue(MulWidth); 5188 MaxVal = MaxVal.zext(CI->getBitWidth()); 5189 if (MaxVal.eq(CI->getValue())) 5190 break; // Recognized 5191 } 5192 return nullptr; 5193 5194 case ICmpInst::ICMP_UGE: 5195 // Recognize pattern: 5196 // mulval = mul(zext A, zext B) 5197 // cmp uge mulval, max+1 5198 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5199 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5200 if (MaxVal.eq(CI->getValue())) 5201 break; // Recognized 5202 } 5203 return nullptr; 5204 5205 case ICmpInst::ICMP_ULE: 5206 // Recognize pattern: 5207 // mulval = mul(zext A, zext B) 5208 // cmp ule mulval, max 5209 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5210 APInt MaxVal = APInt::getMaxValue(MulWidth); 5211 MaxVal = MaxVal.zext(CI->getBitWidth()); 5212 if (MaxVal.eq(CI->getValue())) 5213 break; // Recognized 5214 } 5215 return nullptr; 5216 5217 case ICmpInst::ICMP_ULT: 5218 // Recognize pattern: 5219 // mulval = mul(zext A, zext B) 5220 // cmp ule mulval, max + 1 5221 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5222 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5223 if (MaxVal.eq(CI->getValue())) 5224 break; // Recognized 5225 } 5226 return nullptr; 5227 5228 default: 5229 return nullptr; 5230 } 5231 5232 InstCombiner::BuilderTy &Builder = IC.Builder; 5233 Builder.SetInsertPoint(MulInstr); 5234 5235 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5236 Value *MulA = A, *MulB = B; 5237 if (WidthA < MulWidth) 5238 MulA = Builder.CreateZExt(A, MulType); 5239 if (WidthB < MulWidth) 5240 MulB = Builder.CreateZExt(B, MulType); 5241 Function *F = Intrinsic::getDeclaration( 5242 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5243 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5244 IC.addToWorklist(MulInstr); 5245 5246 // If there are uses of mul result other than the comparison, we know that 5247 // they are truncation or binary AND. Change them to use result of 5248 // mul.with.overflow and adjust properly mask/size. 5249 if (MulVal->hasNUsesOrMore(2)) { 5250 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5251 for (User *U : make_early_inc_range(MulVal->users())) { 5252 if (U == &I || U == OtherVal) 5253 continue; 5254 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5255 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5256 IC.replaceInstUsesWith(*TI, Mul); 5257 else 5258 TI->setOperand(0, Mul); 5259 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5260 assert(BO->getOpcode() == Instruction::And); 5261 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5262 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5263 APInt ShortMask = CI->getValue().trunc(MulWidth); 5264 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5265 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5266 IC.replaceInstUsesWith(*BO, Zext); 5267 } else { 5268 llvm_unreachable("Unexpected Binary operation"); 5269 } 5270 IC.addToWorklist(cast<Instruction>(U)); 5271 } 5272 } 5273 if (isa<Instruction>(OtherVal)) 5274 IC.addToWorklist(cast<Instruction>(OtherVal)); 5275 5276 // The original icmp gets replaced with the overflow value, maybe inverted 5277 // depending on predicate. 5278 bool Inverse = false; 5279 switch (I.getPredicate()) { 5280 case ICmpInst::ICMP_NE: 5281 break; 5282 case ICmpInst::ICMP_EQ: 5283 Inverse = true; 5284 break; 5285 case ICmpInst::ICMP_UGT: 5286 case ICmpInst::ICMP_UGE: 5287 if (I.getOperand(0) == MulVal) 5288 break; 5289 Inverse = true; 5290 break; 5291 case ICmpInst::ICMP_ULT: 5292 case ICmpInst::ICMP_ULE: 5293 if (I.getOperand(1) == MulVal) 5294 break; 5295 Inverse = true; 5296 break; 5297 default: 5298 llvm_unreachable("Unexpected predicate"); 5299 } 5300 if (Inverse) { 5301 Value *Res = Builder.CreateExtractValue(Call, 1); 5302 return BinaryOperator::CreateNot(Res); 5303 } 5304 5305 return ExtractValueInst::Create(Call, 1); 5306 } 5307 5308 /// When performing a comparison against a constant, it is possible that not all 5309 /// the bits in the LHS are demanded. This helper method computes the mask that 5310 /// IS demanded. 5311 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5312 const APInt *RHS; 5313 if (!match(I.getOperand(1), m_APInt(RHS))) 5314 return APInt::getAllOnes(BitWidth); 5315 5316 // If this is a normal comparison, it demands all bits. If it is a sign bit 5317 // comparison, it only demands the sign bit. 5318 bool UnusedBit; 5319 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5320 return APInt::getSignMask(BitWidth); 5321 5322 switch (I.getPredicate()) { 5323 // For a UGT comparison, we don't care about any bits that 5324 // correspond to the trailing ones of the comparand. The value of these 5325 // bits doesn't impact the outcome of the comparison, because any value 5326 // greater than the RHS must differ in a bit higher than these due to carry. 5327 case ICmpInst::ICMP_UGT: 5328 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 5329 5330 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5331 // Any value less than the RHS must differ in a higher bit because of carries. 5332 case ICmpInst::ICMP_ULT: 5333 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 5334 5335 default: 5336 return APInt::getAllOnes(BitWidth); 5337 } 5338 } 5339 5340 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 5341 /// should be swapped. 5342 /// The decision is based on how many times these two operands are reused 5343 /// as subtract operands and their positions in those instructions. 5344 /// The rationale is that several architectures use the same instruction for 5345 /// both subtract and cmp. Thus, it is better if the order of those operands 5346 /// match. 5347 /// \return true if Op0 and Op1 should be swapped. 5348 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 5349 // Filter out pointer values as those cannot appear directly in subtract. 5350 // FIXME: we may want to go through inttoptrs or bitcasts. 5351 if (Op0->getType()->isPointerTy()) 5352 return false; 5353 // If a subtract already has the same operands as a compare, swapping would be 5354 // bad. If a subtract has the same operands as a compare but in reverse order, 5355 // then swapping is good. 5356 int GoodToSwap = 0; 5357 for (const User *U : Op0->users()) { 5358 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 5359 GoodToSwap++; 5360 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 5361 GoodToSwap--; 5362 } 5363 return GoodToSwap > 0; 5364 } 5365 5366 /// Check that one use is in the same block as the definition and all 5367 /// other uses are in blocks dominated by a given block. 5368 /// 5369 /// \param DI Definition 5370 /// \param UI Use 5371 /// \param DB Block that must dominate all uses of \p DI outside 5372 /// the parent block 5373 /// \return true when \p UI is the only use of \p DI in the parent block 5374 /// and all other uses of \p DI are in blocks dominated by \p DB. 5375 /// 5376 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5377 const Instruction *UI, 5378 const BasicBlock *DB) const { 5379 assert(DI && UI && "Instruction not defined\n"); 5380 // Ignore incomplete definitions. 5381 if (!DI->getParent()) 5382 return false; 5383 // DI and UI must be in the same block. 5384 if (DI->getParent() != UI->getParent()) 5385 return false; 5386 // Protect from self-referencing blocks. 5387 if (DI->getParent() == DB) 5388 return false; 5389 for (const User *U : DI->users()) { 5390 auto *Usr = cast<Instruction>(U); 5391 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5392 return false; 5393 } 5394 return true; 5395 } 5396 5397 /// Return true when the instruction sequence within a block is select-cmp-br. 5398 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5399 const BasicBlock *BB = SI->getParent(); 5400 if (!BB) 5401 return false; 5402 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5403 if (!BI || BI->getNumSuccessors() != 2) 5404 return false; 5405 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5406 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5407 return false; 5408 return true; 5409 } 5410 5411 /// True when a select result is replaced by one of its operands 5412 /// in select-icmp sequence. This will eventually result in the elimination 5413 /// of the select. 5414 /// 5415 /// \param SI Select instruction 5416 /// \param Icmp Compare instruction 5417 /// \param SIOpd Operand that replaces the select 5418 /// 5419 /// Notes: 5420 /// - The replacement is global and requires dominator information 5421 /// - The caller is responsible for the actual replacement 5422 /// 5423 /// Example: 5424 /// 5425 /// entry: 5426 /// %4 = select i1 %3, %C* %0, %C* null 5427 /// %5 = icmp eq %C* %4, null 5428 /// br i1 %5, label %9, label %7 5429 /// ... 5430 /// ; <label>:7 ; preds = %entry 5431 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5432 /// ... 5433 /// 5434 /// can be transformed to 5435 /// 5436 /// %5 = icmp eq %C* %0, null 5437 /// %6 = select i1 %3, i1 %5, i1 true 5438 /// br i1 %6, label %9, label %7 5439 /// ... 5440 /// ; <label>:7 ; preds = %entry 5441 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5442 /// 5443 /// Similar when the first operand of the select is a constant or/and 5444 /// the compare is for not equal rather than equal. 5445 /// 5446 /// NOTE: The function is only called when the select and compare constants 5447 /// are equal, the optimization can work only for EQ predicates. This is not a 5448 /// major restriction since a NE compare should be 'normalized' to an equal 5449 /// compare, which usually happens in the combiner and test case 5450 /// select-cmp-br.ll checks for it. 5451 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5452 const ICmpInst *Icmp, 5453 const unsigned SIOpd) { 5454 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5455 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5456 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5457 // The check for the single predecessor is not the best that can be 5458 // done. But it protects efficiently against cases like when SI's 5459 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5460 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5461 // replaced can be reached on either path. So the uniqueness check 5462 // guarantees that the path all uses of SI (outside SI's parent) are on 5463 // is disjoint from all other paths out of SI. But that information 5464 // is more expensive to compute, and the trade-off here is in favor 5465 // of compile-time. It should also be noticed that we check for a single 5466 // predecessor and not only uniqueness. This to handle the situation when 5467 // Succ and Succ1 points to the same basic block. 5468 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5469 NumSel++; 5470 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5471 return true; 5472 } 5473 } 5474 return false; 5475 } 5476 5477 /// Try to fold the comparison based on range information we can get by checking 5478 /// whether bits are known to be zero or one in the inputs. 5479 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 5480 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5481 Type *Ty = Op0->getType(); 5482 ICmpInst::Predicate Pred = I.getPredicate(); 5483 5484 // Get scalar or pointer size. 5485 unsigned BitWidth = Ty->isIntOrIntVectorTy() 5486 ? Ty->getScalarSizeInBits() 5487 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 5488 5489 if (!BitWidth) 5490 return nullptr; 5491 5492 KnownBits Op0Known(BitWidth); 5493 KnownBits Op1Known(BitWidth); 5494 5495 if (SimplifyDemandedBits(&I, 0, 5496 getDemandedBitsLHSMask(I, BitWidth), 5497 Op0Known, 0)) 5498 return &I; 5499 5500 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 5501 return &I; 5502 5503 // Given the known and unknown bits, compute a range that the LHS could be 5504 // in. Compute the Min, Max and RHS values based on the known bits. For the 5505 // EQ and NE we use unsigned values. 5506 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 5507 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 5508 if (I.isSigned()) { 5509 Op0Min = Op0Known.getSignedMinValue(); 5510 Op0Max = Op0Known.getSignedMaxValue(); 5511 Op1Min = Op1Known.getSignedMinValue(); 5512 Op1Max = Op1Known.getSignedMaxValue(); 5513 } else { 5514 Op0Min = Op0Known.getMinValue(); 5515 Op0Max = Op0Known.getMaxValue(); 5516 Op1Min = Op1Known.getMinValue(); 5517 Op1Max = Op1Known.getMaxValue(); 5518 } 5519 5520 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5521 // out that the LHS or RHS is a constant. Constant fold this now, so that 5522 // code below can assume that Min != Max. 5523 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5524 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5525 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5526 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5527 5528 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 5529 // min/max canonical compare with some other compare. That could lead to 5530 // conflict with select canonicalization and infinite looping. 5531 // FIXME: This constraint may go away if min/max intrinsics are canonical. 5532 auto isMinMaxCmp = [&](Instruction &Cmp) { 5533 if (!Cmp.hasOneUse()) 5534 return false; 5535 Value *A, *B; 5536 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 5537 if (!SelectPatternResult::isMinOrMax(SPF)) 5538 return false; 5539 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 5540 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 5541 }; 5542 if (!isMinMaxCmp(I)) { 5543 switch (Pred) { 5544 default: 5545 break; 5546 case ICmpInst::ICMP_ULT: { 5547 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5548 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5549 const APInt *CmpC; 5550 if (match(Op1, m_APInt(CmpC))) { 5551 // A <u C -> A == C-1 if min(A)+1 == C 5552 if (*CmpC == Op0Min + 1) 5553 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5554 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5555 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5556 // exceeds the log2 of C. 5557 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5558 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5559 Constant::getNullValue(Op1->getType())); 5560 } 5561 break; 5562 } 5563 case ICmpInst::ICMP_UGT: { 5564 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5565 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5566 const APInt *CmpC; 5567 if (match(Op1, m_APInt(CmpC))) { 5568 // A >u C -> A == C+1 if max(a)-1 == C 5569 if (*CmpC == Op0Max - 1) 5570 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5571 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5572 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5573 // exceeds the log2 of C. 5574 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5575 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5576 Constant::getNullValue(Op1->getType())); 5577 } 5578 break; 5579 } 5580 case ICmpInst::ICMP_SLT: { 5581 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5582 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5583 const APInt *CmpC; 5584 if (match(Op1, m_APInt(CmpC))) { 5585 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5586 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5587 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5588 } 5589 break; 5590 } 5591 case ICmpInst::ICMP_SGT: { 5592 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5593 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5594 const APInt *CmpC; 5595 if (match(Op1, m_APInt(CmpC))) { 5596 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5597 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5598 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5599 } 5600 break; 5601 } 5602 } 5603 } 5604 5605 // Based on the range information we know about the LHS, see if we can 5606 // simplify this comparison. For example, (x&4) < 8 is always true. 5607 switch (Pred) { 5608 default: 5609 llvm_unreachable("Unknown icmp opcode!"); 5610 case ICmpInst::ICMP_EQ: 5611 case ICmpInst::ICMP_NE: { 5612 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 5613 return replaceInstUsesWith( 5614 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 5615 5616 // If all bits are known zero except for one, then we know at most one bit 5617 // is set. If the comparison is against zero, then this is a check to see if 5618 // *that* bit is set. 5619 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5620 if (Op1Known.isZero()) { 5621 // If the LHS is an AND with the same constant, look through it. 5622 Value *LHS = nullptr; 5623 const APInt *LHSC; 5624 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5625 *LHSC != Op0KnownZeroInverted) 5626 LHS = Op0; 5627 5628 Value *X; 5629 const APInt *C1; 5630 if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) { 5631 Type *XTy = X->getType(); 5632 unsigned Log2C1 = C1->countTrailingZeros(); 5633 APInt C2 = Op0KnownZeroInverted; 5634 APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1; 5635 if (C2Pow2.isPowerOf2()) { 5636 // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2): 5637 // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1)) 5638 // ((C1 << X) & C2) != 0 -> X < (Log2(C2+C1) - Log2(C1)) 5639 unsigned Log2C2 = C2Pow2.countTrailingZeros(); 5640 auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1); 5641 auto NewPred = 5642 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5643 return new ICmpInst(NewPred, X, CmpC); 5644 } 5645 } 5646 } 5647 break; 5648 } 5649 case ICmpInst::ICMP_ULT: { 5650 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5651 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5652 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5653 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5654 break; 5655 } 5656 case ICmpInst::ICMP_UGT: { 5657 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5658 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5659 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5660 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5661 break; 5662 } 5663 case ICmpInst::ICMP_SLT: { 5664 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5665 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5666 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5667 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5668 break; 5669 } 5670 case ICmpInst::ICMP_SGT: { 5671 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5672 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5673 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5674 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5675 break; 5676 } 5677 case ICmpInst::ICMP_SGE: 5678 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5679 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5680 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5681 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5682 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5683 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5684 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5685 break; 5686 case ICmpInst::ICMP_SLE: 5687 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5688 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5689 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5690 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5691 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5692 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5693 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5694 break; 5695 case ICmpInst::ICMP_UGE: 5696 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5697 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5698 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5699 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5700 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5701 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5702 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5703 break; 5704 case ICmpInst::ICMP_ULE: 5705 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5706 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5707 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5708 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5709 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5710 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5711 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5712 break; 5713 } 5714 5715 // Turn a signed comparison into an unsigned one if both operands are known to 5716 // have the same sign. 5717 if (I.isSigned() && 5718 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5719 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5720 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5721 5722 return nullptr; 5723 } 5724 5725 /// If one operand of an icmp is effectively a bool (value range of {0,1}), 5726 /// then try to reduce patterns based on that limit. 5727 static Instruction *foldICmpUsingBoolRange(ICmpInst &I, 5728 InstCombiner::BuilderTy &Builder) { 5729 Value *X, *Y; 5730 ICmpInst::Predicate Pred; 5731 5732 // X must be 0 and bool must be true for "ULT": 5733 // X <u (zext i1 Y) --> (X == 0) & Y 5734 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) && 5735 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT) 5736 return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y); 5737 5738 // X must be 0 or bool must be true for "ULE": 5739 // X <=u (sext i1 Y) --> (X == 0) | Y 5740 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) && 5741 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE) 5742 return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y); 5743 5744 return nullptr; 5745 } 5746 5747 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5748 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5749 Constant *C) { 5750 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5751 "Only for relational integer predicates."); 5752 5753 Type *Type = C->getType(); 5754 bool IsSigned = ICmpInst::isSigned(Pred); 5755 5756 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5757 bool WillIncrement = 5758 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5759 5760 // Check if the constant operand can be safely incremented/decremented 5761 // without overflowing/underflowing. 5762 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5763 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5764 }; 5765 5766 Constant *SafeReplacementConstant = nullptr; 5767 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5768 // Bail out if the constant can't be safely incremented/decremented. 5769 if (!ConstantIsOk(CI)) 5770 return llvm::None; 5771 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 5772 unsigned NumElts = FVTy->getNumElements(); 5773 for (unsigned i = 0; i != NumElts; ++i) { 5774 Constant *Elt = C->getAggregateElement(i); 5775 if (!Elt) 5776 return llvm::None; 5777 5778 if (isa<UndefValue>(Elt)) 5779 continue; 5780 5781 // Bail out if we can't determine if this constant is min/max or if we 5782 // know that this constant is min/max. 5783 auto *CI = dyn_cast<ConstantInt>(Elt); 5784 if (!CI || !ConstantIsOk(CI)) 5785 return llvm::None; 5786 5787 if (!SafeReplacementConstant) 5788 SafeReplacementConstant = CI; 5789 } 5790 } else { 5791 // ConstantExpr? 5792 return llvm::None; 5793 } 5794 5795 // It may not be safe to change a compare predicate in the presence of 5796 // undefined elements, so replace those elements with the first safe constant 5797 // that we found. 5798 // TODO: in case of poison, it is safe; let's replace undefs only. 5799 if (C->containsUndefOrPoisonElement()) { 5800 assert(SafeReplacementConstant && "Replacement constant not set"); 5801 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5802 } 5803 5804 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5805 5806 // Increment or decrement the constant. 5807 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5808 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5809 5810 return std::make_pair(NewPred, NewC); 5811 } 5812 5813 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5814 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5815 /// allows them to be folded in visitICmpInst. 5816 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5817 ICmpInst::Predicate Pred = I.getPredicate(); 5818 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5819 InstCombiner::isCanonicalPredicate(Pred)) 5820 return nullptr; 5821 5822 Value *Op0 = I.getOperand(0); 5823 Value *Op1 = I.getOperand(1); 5824 auto *Op1C = dyn_cast<Constant>(Op1); 5825 if (!Op1C) 5826 return nullptr; 5827 5828 auto FlippedStrictness = 5829 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5830 if (!FlippedStrictness) 5831 return nullptr; 5832 5833 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5834 } 5835 5836 /// If we have a comparison with a non-canonical predicate, if we can update 5837 /// all the users, invert the predicate and adjust all the users. 5838 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 5839 // Is the predicate already canonical? 5840 CmpInst::Predicate Pred = I.getPredicate(); 5841 if (InstCombiner::isCanonicalPredicate(Pred)) 5842 return nullptr; 5843 5844 // Can all users be adjusted to predicate inversion? 5845 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5846 return nullptr; 5847 5848 // Ok, we can canonicalize comparison! 5849 // Let's first invert the comparison's predicate. 5850 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5851 I.setName(I.getName() + ".not"); 5852 5853 // And, adapt users. 5854 freelyInvertAllUsersOf(&I); 5855 5856 return &I; 5857 } 5858 5859 /// Integer compare with boolean values can always be turned into bitwise ops. 5860 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5861 InstCombiner::BuilderTy &Builder) { 5862 Value *A = I.getOperand(0), *B = I.getOperand(1); 5863 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5864 5865 // A boolean compared to true/false can be simplified to Op0/true/false in 5866 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5867 // Cases not handled by InstSimplify are always 'not' of Op0. 5868 if (match(B, m_Zero())) { 5869 switch (I.getPredicate()) { 5870 case CmpInst::ICMP_EQ: // A == 0 -> !A 5871 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5872 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5873 return BinaryOperator::CreateNot(A); 5874 default: 5875 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5876 } 5877 } else if (match(B, m_One())) { 5878 switch (I.getPredicate()) { 5879 case CmpInst::ICMP_NE: // A != 1 -> !A 5880 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5881 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5882 return BinaryOperator::CreateNot(A); 5883 default: 5884 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5885 } 5886 } 5887 5888 switch (I.getPredicate()) { 5889 default: 5890 llvm_unreachable("Invalid icmp instruction!"); 5891 case ICmpInst::ICMP_EQ: 5892 // icmp eq i1 A, B -> ~(A ^ B) 5893 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5894 5895 case ICmpInst::ICMP_NE: 5896 // icmp ne i1 A, B -> A ^ B 5897 return BinaryOperator::CreateXor(A, B); 5898 5899 case ICmpInst::ICMP_UGT: 5900 // icmp ugt -> icmp ult 5901 std::swap(A, B); 5902 LLVM_FALLTHROUGH; 5903 case ICmpInst::ICMP_ULT: 5904 // icmp ult i1 A, B -> ~A & B 5905 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5906 5907 case ICmpInst::ICMP_SGT: 5908 // icmp sgt -> icmp slt 5909 std::swap(A, B); 5910 LLVM_FALLTHROUGH; 5911 case ICmpInst::ICMP_SLT: 5912 // icmp slt i1 A, B -> A & ~B 5913 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5914 5915 case ICmpInst::ICMP_UGE: 5916 // icmp uge -> icmp ule 5917 std::swap(A, B); 5918 LLVM_FALLTHROUGH; 5919 case ICmpInst::ICMP_ULE: 5920 // icmp ule i1 A, B -> ~A | B 5921 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5922 5923 case ICmpInst::ICMP_SGE: 5924 // icmp sge -> icmp sle 5925 std::swap(A, B); 5926 LLVM_FALLTHROUGH; 5927 case ICmpInst::ICMP_SLE: 5928 // icmp sle i1 A, B -> A | ~B 5929 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5930 } 5931 } 5932 5933 // Transform pattern like: 5934 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5935 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5936 // Into: 5937 // (X l>> Y) != 0 5938 // (X l>> Y) == 0 5939 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5940 InstCombiner::BuilderTy &Builder) { 5941 ICmpInst::Predicate Pred, NewPred; 5942 Value *X, *Y; 5943 if (match(&Cmp, 5944 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5945 switch (Pred) { 5946 case ICmpInst::ICMP_ULE: 5947 NewPred = ICmpInst::ICMP_NE; 5948 break; 5949 case ICmpInst::ICMP_UGT: 5950 NewPred = ICmpInst::ICMP_EQ; 5951 break; 5952 default: 5953 return nullptr; 5954 } 5955 } else if (match(&Cmp, m_c_ICmp(Pred, 5956 m_OneUse(m_CombineOr( 5957 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5958 m_Add(m_Shl(m_One(), m_Value(Y)), 5959 m_AllOnes()))), 5960 m_Value(X)))) { 5961 // The variant with 'add' is not canonical, (the variant with 'not' is) 5962 // we only get it because it has extra uses, and can't be canonicalized, 5963 5964 switch (Pred) { 5965 case ICmpInst::ICMP_ULT: 5966 NewPred = ICmpInst::ICMP_NE; 5967 break; 5968 case ICmpInst::ICMP_UGE: 5969 NewPred = ICmpInst::ICMP_EQ; 5970 break; 5971 default: 5972 return nullptr; 5973 } 5974 } else 5975 return nullptr; 5976 5977 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5978 Constant *Zero = Constant::getNullValue(NewX->getType()); 5979 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5980 } 5981 5982 static Instruction *foldVectorCmp(CmpInst &Cmp, 5983 InstCombiner::BuilderTy &Builder) { 5984 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5985 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5986 Value *V1, *V2; 5987 ArrayRef<int> M; 5988 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5989 return nullptr; 5990 5991 // If both arguments of the cmp are shuffles that use the same mask and 5992 // shuffle within a single vector, move the shuffle after the cmp: 5993 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5994 Type *V1Ty = V1->getType(); 5995 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5996 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5997 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5998 return new ShuffleVectorInst(NewCmp, M); 5999 } 6000 6001 // Try to canonicalize compare with splatted operand and splat constant. 6002 // TODO: We could generalize this for more than splats. See/use the code in 6003 // InstCombiner::foldVectorBinop(). 6004 Constant *C; 6005 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 6006 return nullptr; 6007 6008 // Length-changing splats are ok, so adjust the constants as needed: 6009 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 6010 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 6011 int MaskSplatIndex; 6012 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 6013 // We allow undefs in matching, but this transform removes those for safety. 6014 // Demanded elements analysis should be able to recover some/all of that. 6015 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 6016 ScalarC); 6017 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 6018 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 6019 return new ShuffleVectorInst(NewCmp, NewM); 6020 } 6021 6022 return nullptr; 6023 } 6024 6025 // extract(uadd.with.overflow(A, B), 0) ult A 6026 // -> extract(uadd.with.overflow(A, B), 1) 6027 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 6028 CmpInst::Predicate Pred = I.getPredicate(); 6029 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6030 6031 Value *UAddOv; 6032 Value *A, *B; 6033 auto UAddOvResultPat = m_ExtractValue<0>( 6034 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 6035 if (match(Op0, UAddOvResultPat) && 6036 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 6037 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 6038 (match(A, m_One()) || match(B, m_One()))) || 6039 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 6040 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 6041 // extract(uadd.with.overflow(A, B), 0) < A 6042 // extract(uadd.with.overflow(A, 1), 0) == 0 6043 // extract(uadd.with.overflow(A, -1), 0) != -1 6044 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 6045 else if (match(Op1, UAddOvResultPat) && 6046 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 6047 // A > extract(uadd.with.overflow(A, B), 0) 6048 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 6049 else 6050 return nullptr; 6051 6052 return ExtractValueInst::Create(UAddOv, 1); 6053 } 6054 6055 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 6056 if (!I.getOperand(0)->getType()->isPointerTy() || 6057 NullPointerIsDefined( 6058 I.getParent()->getParent(), 6059 I.getOperand(0)->getType()->getPointerAddressSpace())) { 6060 return nullptr; 6061 } 6062 Instruction *Op; 6063 if (match(I.getOperand(0), m_Instruction(Op)) && 6064 match(I.getOperand(1), m_Zero()) && 6065 Op->isLaunderOrStripInvariantGroup()) { 6066 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 6067 Op->getOperand(0), I.getOperand(1)); 6068 } 6069 return nullptr; 6070 } 6071 6072 /// This function folds patterns produced by lowering of reduce idioms, such as 6073 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 6074 /// attempts to generate fewer number of scalar comparisons instead of vector 6075 /// comparisons when possible. 6076 static Instruction *foldReductionIdiom(ICmpInst &I, 6077 InstCombiner::BuilderTy &Builder, 6078 const DataLayout &DL) { 6079 if (I.getType()->isVectorTy()) 6080 return nullptr; 6081 ICmpInst::Predicate OuterPred, InnerPred; 6082 Value *LHS, *RHS; 6083 6084 // Match lowering of @llvm.vector.reduce.and. Turn 6085 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 6086 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 6087 /// %res = icmp <pred> i8 %scalar_ne, 0 6088 /// 6089 /// into 6090 /// 6091 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 6092 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 6093 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 6094 /// 6095 /// for <pred> in {ne, eq}. 6096 if (!match(&I, m_ICmp(OuterPred, 6097 m_OneUse(m_BitCast(m_OneUse( 6098 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 6099 m_Zero()))) 6100 return nullptr; 6101 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 6102 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 6103 return nullptr; 6104 unsigned NumBits = 6105 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 6106 // TODO: Relax this to "not wider than max legal integer type"? 6107 if (!DL.isLegalInteger(NumBits)) 6108 return nullptr; 6109 6110 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 6111 auto *ScalarTy = Builder.getIntNTy(NumBits); 6112 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 6113 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 6114 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 6115 I.getName()); 6116 } 6117 6118 return nullptr; 6119 } 6120 6121 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 6122 bool Changed = false; 6123 const SimplifyQuery Q = SQ.getWithInstruction(&I); 6124 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6125 unsigned Op0Cplxity = getComplexity(Op0); 6126 unsigned Op1Cplxity = getComplexity(Op1); 6127 6128 /// Orders the operands of the compare so that they are listed from most 6129 /// complex to least complex. This puts constants before unary operators, 6130 /// before binary operators. 6131 if (Op0Cplxity < Op1Cplxity || 6132 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 6133 I.swapOperands(); 6134 std::swap(Op0, Op1); 6135 Changed = true; 6136 } 6137 6138 if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 6139 return replaceInstUsesWith(I, V); 6140 6141 // Comparing -val or val with non-zero is the same as just comparing val 6142 // ie, abs(val) != 0 -> val != 0 6143 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 6144 Value *Cond, *SelectTrue, *SelectFalse; 6145 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 6146 m_Value(SelectFalse)))) { 6147 if (Value *V = dyn_castNegVal(SelectTrue)) { 6148 if (V == SelectFalse) 6149 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6150 } 6151 else if (Value *V = dyn_castNegVal(SelectFalse)) { 6152 if (V == SelectTrue) 6153 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6154 } 6155 } 6156 } 6157 6158 if (Op0->getType()->isIntOrIntVectorTy(1)) 6159 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 6160 return Res; 6161 6162 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 6163 return Res; 6164 6165 if (Instruction *Res = canonicalizeICmpPredicate(I)) 6166 return Res; 6167 6168 if (Instruction *Res = foldICmpWithConstant(I)) 6169 return Res; 6170 6171 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 6172 return Res; 6173 6174 if (Instruction *Res = foldICmpUsingBoolRange(I, Builder)) 6175 return Res; 6176 6177 if (Instruction *Res = foldICmpUsingKnownBits(I)) 6178 return Res; 6179 6180 // Test if the ICmpInst instruction is used exclusively by a select as 6181 // part of a minimum or maximum operation. If so, refrain from doing 6182 // any other folding. This helps out other analyses which understand 6183 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6184 // and CodeGen. And in this case, at least one of the comparison 6185 // operands has at least one user besides the compare (the select), 6186 // which would often largely negate the benefit of folding anyway. 6187 // 6188 // Do the same for the other patterns recognized by matchSelectPattern. 6189 if (I.hasOneUse()) 6190 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6191 Value *A, *B; 6192 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6193 if (SPR.Flavor != SPF_UNKNOWN) 6194 return nullptr; 6195 } 6196 6197 // Do this after checking for min/max to prevent infinite looping. 6198 if (Instruction *Res = foldICmpWithZero(I)) 6199 return Res; 6200 6201 // FIXME: We only do this after checking for min/max to prevent infinite 6202 // looping caused by a reverse canonicalization of these patterns for min/max. 6203 // FIXME: The organization of folds is a mess. These would naturally go into 6204 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 6205 // down here after the min/max restriction. 6206 ICmpInst::Predicate Pred = I.getPredicate(); 6207 const APInt *C; 6208 if (match(Op1, m_APInt(C))) { 6209 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 6210 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 6211 Constant *Zero = Constant::getNullValue(Op0->getType()); 6212 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 6213 } 6214 6215 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 6216 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 6217 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 6218 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 6219 } 6220 } 6221 6222 // The folds in here may rely on wrapping flags and special constants, so 6223 // they can break up min/max idioms in some cases but not seemingly similar 6224 // patterns. 6225 // FIXME: It may be possible to enhance select folding to make this 6226 // unnecessary. It may also be moot if we canonicalize to min/max 6227 // intrinsics. 6228 if (Instruction *Res = foldICmpBinOp(I, Q)) 6229 return Res; 6230 6231 if (Instruction *Res = foldICmpInstWithConstant(I)) 6232 return Res; 6233 6234 // Try to match comparison as a sign bit test. Intentionally do this after 6235 // foldICmpInstWithConstant() to potentially let other folds to happen first. 6236 if (Instruction *New = foldSignBitTest(I)) 6237 return New; 6238 6239 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 6240 return Res; 6241 6242 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6243 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6244 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6245 return NI; 6246 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6247 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6248 return NI; 6249 6250 if (auto *SI = dyn_cast<SelectInst>(Op0)) 6251 if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I)) 6252 return NI; 6253 if (auto *SI = dyn_cast<SelectInst>(Op1)) 6254 if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I)) 6255 return NI; 6256 6257 // Try to optimize equality comparisons against alloca-based pointers. 6258 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6259 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6260 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6261 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6262 return New; 6263 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6264 if (Instruction *New = foldAllocaCmp(I, Alloca)) 6265 return New; 6266 } 6267 6268 if (Instruction *Res = foldICmpBitCast(I)) 6269 return Res; 6270 6271 // TODO: Hoist this above the min/max bailout. 6272 if (Instruction *R = foldICmpWithCastOp(I)) 6273 return R; 6274 6275 if (Instruction *Res = foldICmpWithMinMax(I)) 6276 return Res; 6277 6278 { 6279 Value *A, *B; 6280 // Transform (A & ~B) == 0 --> (A & B) != 0 6281 // and (A & ~B) != 0 --> (A & B) == 0 6282 // if A is a power of 2. 6283 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6284 match(Op1, m_Zero()) && 6285 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6286 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6287 Op1); 6288 6289 // ~X < ~Y --> Y < X 6290 // ~X < C --> X > ~C 6291 if (match(Op0, m_Not(m_Value(A)))) { 6292 if (match(Op1, m_Not(m_Value(B)))) 6293 return new ICmpInst(I.getPredicate(), B, A); 6294 6295 const APInt *C; 6296 if (match(Op1, m_APInt(C))) 6297 return new ICmpInst(I.getSwappedPredicate(), A, 6298 ConstantInt::get(Op1->getType(), ~(*C))); 6299 } 6300 6301 Instruction *AddI = nullptr; 6302 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6303 m_Instruction(AddI))) && 6304 isa<IntegerType>(A->getType())) { 6305 Value *Result; 6306 Constant *Overflow; 6307 // m_UAddWithOverflow can match patterns that do not include an explicit 6308 // "add" instruction, so check the opcode of the matched op. 6309 if (AddI->getOpcode() == Instruction::Add && 6310 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6311 Result, Overflow)) { 6312 replaceInstUsesWith(*AddI, Result); 6313 eraseInstFromFunction(*AddI); 6314 return replaceInstUsesWith(I, Overflow); 6315 } 6316 } 6317 6318 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6319 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6320 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6321 return R; 6322 } 6323 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6324 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6325 return R; 6326 } 6327 } 6328 6329 if (Instruction *Res = foldICmpEquality(I)) 6330 return Res; 6331 6332 if (Instruction *Res = foldICmpOfUAddOv(I)) 6333 return Res; 6334 6335 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6336 // an i1 which indicates whether or not we successfully did the swap. 6337 // 6338 // Replace comparisons between the old value and the expected value with the 6339 // indicator that 'cmpxchg' returns. 6340 // 6341 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6342 // spuriously fail. In those cases, the old value may equal the expected 6343 // value but it is possible for the swap to not occur. 6344 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6345 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6346 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6347 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6348 !ACXI->isWeak()) 6349 return ExtractValueInst::Create(ACXI, 1); 6350 6351 { 6352 Value *X; 6353 const APInt *C; 6354 // icmp X+Cst, X 6355 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6356 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6357 6358 // icmp X, X+Cst 6359 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 6360 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 6361 } 6362 6363 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 6364 return Res; 6365 6366 if (I.getType()->isVectorTy()) 6367 if (Instruction *Res = foldVectorCmp(I, Builder)) 6368 return Res; 6369 6370 if (Instruction *Res = foldICmpInvariantGroup(I)) 6371 return Res; 6372 6373 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 6374 return Res; 6375 6376 return Changed ? &I : nullptr; 6377 } 6378 6379 /// Fold fcmp ([us]itofp x, cst) if possible. 6380 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 6381 Instruction *LHSI, 6382 Constant *RHSC) { 6383 if (!isa<ConstantFP>(RHSC)) return nullptr; 6384 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 6385 6386 // Get the width of the mantissa. We don't want to hack on conversions that 6387 // might lose information from the integer, e.g. "i64 -> float" 6388 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 6389 if (MantissaWidth == -1) return nullptr; // Unknown. 6390 6391 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 6392 6393 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 6394 6395 if (I.isEquality()) { 6396 FCmpInst::Predicate P = I.getPredicate(); 6397 bool IsExact = false; 6398 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 6399 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 6400 6401 // If the floating point constant isn't an integer value, we know if we will 6402 // ever compare equal / not equal to it. 6403 if (!IsExact) { 6404 // TODO: Can never be -0.0 and other non-representable values 6405 APFloat RHSRoundInt(RHS); 6406 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 6407 if (RHS != RHSRoundInt) { 6408 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 6409 return replaceInstUsesWith(I, Builder.getFalse()); 6410 6411 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 6412 return replaceInstUsesWith(I, Builder.getTrue()); 6413 } 6414 } 6415 6416 // TODO: If the constant is exactly representable, is it always OK to do 6417 // equality compares as integer? 6418 } 6419 6420 // Check to see that the input is converted from an integer type that is small 6421 // enough that preserves all bits. TODO: check here for "known" sign bits. 6422 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 6423 unsigned InputSize = IntTy->getScalarSizeInBits(); 6424 6425 // Following test does NOT adjust InputSize downwards for signed inputs, 6426 // because the most negative value still requires all the mantissa bits 6427 // to distinguish it from one less than that value. 6428 if ((int)InputSize > MantissaWidth) { 6429 // Conversion would lose accuracy. Check if loss can impact comparison. 6430 int Exp = ilogb(RHS); 6431 if (Exp == APFloat::IEK_Inf) { 6432 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 6433 if (MaxExponent < (int)InputSize - !LHSUnsigned) 6434 // Conversion could create infinity. 6435 return nullptr; 6436 } else { 6437 // Note that if RHS is zero or NaN, then Exp is negative 6438 // and first condition is trivially false. 6439 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 6440 // Conversion could affect comparison. 6441 return nullptr; 6442 } 6443 } 6444 6445 // Otherwise, we can potentially simplify the comparison. We know that it 6446 // will always come through as an integer value and we know the constant is 6447 // not a NAN (it would have been previously simplified). 6448 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 6449 6450 ICmpInst::Predicate Pred; 6451 switch (I.getPredicate()) { 6452 default: llvm_unreachable("Unexpected predicate!"); 6453 case FCmpInst::FCMP_UEQ: 6454 case FCmpInst::FCMP_OEQ: 6455 Pred = ICmpInst::ICMP_EQ; 6456 break; 6457 case FCmpInst::FCMP_UGT: 6458 case FCmpInst::FCMP_OGT: 6459 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 6460 break; 6461 case FCmpInst::FCMP_UGE: 6462 case FCmpInst::FCMP_OGE: 6463 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 6464 break; 6465 case FCmpInst::FCMP_ULT: 6466 case FCmpInst::FCMP_OLT: 6467 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 6468 break; 6469 case FCmpInst::FCMP_ULE: 6470 case FCmpInst::FCMP_OLE: 6471 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 6472 break; 6473 case FCmpInst::FCMP_UNE: 6474 case FCmpInst::FCMP_ONE: 6475 Pred = ICmpInst::ICMP_NE; 6476 break; 6477 case FCmpInst::FCMP_ORD: 6478 return replaceInstUsesWith(I, Builder.getTrue()); 6479 case FCmpInst::FCMP_UNO: 6480 return replaceInstUsesWith(I, Builder.getFalse()); 6481 } 6482 6483 // Now we know that the APFloat is a normal number, zero or inf. 6484 6485 // See if the FP constant is too large for the integer. For example, 6486 // comparing an i8 to 300.0. 6487 unsigned IntWidth = IntTy->getScalarSizeInBits(); 6488 6489 if (!LHSUnsigned) { 6490 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 6491 // and large values. 6492 APFloat SMax(RHS.getSemantics()); 6493 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 6494 APFloat::rmNearestTiesToEven); 6495 if (SMax < RHS) { // smax < 13123.0 6496 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 6497 Pred == ICmpInst::ICMP_SLE) 6498 return replaceInstUsesWith(I, Builder.getTrue()); 6499 return replaceInstUsesWith(I, Builder.getFalse()); 6500 } 6501 } else { 6502 // If the RHS value is > UnsignedMax, fold the comparison. This handles 6503 // +INF and large values. 6504 APFloat UMax(RHS.getSemantics()); 6505 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 6506 APFloat::rmNearestTiesToEven); 6507 if (UMax < RHS) { // umax < 13123.0 6508 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 6509 Pred == ICmpInst::ICMP_ULE) 6510 return replaceInstUsesWith(I, Builder.getTrue()); 6511 return replaceInstUsesWith(I, Builder.getFalse()); 6512 } 6513 } 6514 6515 if (!LHSUnsigned) { 6516 // See if the RHS value is < SignedMin. 6517 APFloat SMin(RHS.getSemantics()); 6518 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 6519 APFloat::rmNearestTiesToEven); 6520 if (SMin > RHS) { // smin > 12312.0 6521 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 6522 Pred == ICmpInst::ICMP_SGE) 6523 return replaceInstUsesWith(I, Builder.getTrue()); 6524 return replaceInstUsesWith(I, Builder.getFalse()); 6525 } 6526 } else { 6527 // See if the RHS value is < UnsignedMin. 6528 APFloat UMin(RHS.getSemantics()); 6529 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 6530 APFloat::rmNearestTiesToEven); 6531 if (UMin > RHS) { // umin > 12312.0 6532 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 6533 Pred == ICmpInst::ICMP_UGE) 6534 return replaceInstUsesWith(I, Builder.getTrue()); 6535 return replaceInstUsesWith(I, Builder.getFalse()); 6536 } 6537 } 6538 6539 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 6540 // [0, UMAX], but it may still be fractional. See if it is fractional by 6541 // casting the FP value to the integer value and back, checking for equality. 6542 // Don't do this for zero, because -0.0 is not fractional. 6543 Constant *RHSInt = LHSUnsigned 6544 ? ConstantExpr::getFPToUI(RHSC, IntTy) 6545 : ConstantExpr::getFPToSI(RHSC, IntTy); 6546 if (!RHS.isZero()) { 6547 bool Equal = LHSUnsigned 6548 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 6549 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 6550 if (!Equal) { 6551 // If we had a comparison against a fractional value, we have to adjust 6552 // the compare predicate and sometimes the value. RHSC is rounded towards 6553 // zero at this point. 6554 switch (Pred) { 6555 default: llvm_unreachable("Unexpected integer comparison!"); 6556 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 6557 return replaceInstUsesWith(I, Builder.getTrue()); 6558 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 6559 return replaceInstUsesWith(I, Builder.getFalse()); 6560 case ICmpInst::ICMP_ULE: 6561 // (float)int <= 4.4 --> int <= 4 6562 // (float)int <= -4.4 --> false 6563 if (RHS.isNegative()) 6564 return replaceInstUsesWith(I, Builder.getFalse()); 6565 break; 6566 case ICmpInst::ICMP_SLE: 6567 // (float)int <= 4.4 --> int <= 4 6568 // (float)int <= -4.4 --> int < -4 6569 if (RHS.isNegative()) 6570 Pred = ICmpInst::ICMP_SLT; 6571 break; 6572 case ICmpInst::ICMP_ULT: 6573 // (float)int < -4.4 --> false 6574 // (float)int < 4.4 --> int <= 4 6575 if (RHS.isNegative()) 6576 return replaceInstUsesWith(I, Builder.getFalse()); 6577 Pred = ICmpInst::ICMP_ULE; 6578 break; 6579 case ICmpInst::ICMP_SLT: 6580 // (float)int < -4.4 --> int < -4 6581 // (float)int < 4.4 --> int <= 4 6582 if (!RHS.isNegative()) 6583 Pred = ICmpInst::ICMP_SLE; 6584 break; 6585 case ICmpInst::ICMP_UGT: 6586 // (float)int > 4.4 --> int > 4 6587 // (float)int > -4.4 --> true 6588 if (RHS.isNegative()) 6589 return replaceInstUsesWith(I, Builder.getTrue()); 6590 break; 6591 case ICmpInst::ICMP_SGT: 6592 // (float)int > 4.4 --> int > 4 6593 // (float)int > -4.4 --> int >= -4 6594 if (RHS.isNegative()) 6595 Pred = ICmpInst::ICMP_SGE; 6596 break; 6597 case ICmpInst::ICMP_UGE: 6598 // (float)int >= -4.4 --> true 6599 // (float)int >= 4.4 --> int > 4 6600 if (RHS.isNegative()) 6601 return replaceInstUsesWith(I, Builder.getTrue()); 6602 Pred = ICmpInst::ICMP_UGT; 6603 break; 6604 case ICmpInst::ICMP_SGE: 6605 // (float)int >= -4.4 --> int >= -4 6606 // (float)int >= 4.4 --> int > 4 6607 if (!RHS.isNegative()) 6608 Pred = ICmpInst::ICMP_SGT; 6609 break; 6610 } 6611 } 6612 } 6613 6614 // Lower this FP comparison into an appropriate integer version of the 6615 // comparison. 6616 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 6617 } 6618 6619 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 6620 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 6621 Constant *RHSC) { 6622 // When C is not 0.0 and infinities are not allowed: 6623 // (C / X) < 0.0 is a sign-bit test of X 6624 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 6625 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 6626 // 6627 // Proof: 6628 // Multiply (C / X) < 0.0 by X * X / C. 6629 // - X is non zero, if it is the flag 'ninf' is violated. 6630 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6631 // the predicate. C is also non zero by definition. 6632 // 6633 // Thus X * X / C is non zero and the transformation is valid. [qed] 6634 6635 FCmpInst::Predicate Pred = I.getPredicate(); 6636 6637 // Check that predicates are valid. 6638 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6639 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6640 return nullptr; 6641 6642 // Check that RHS operand is zero. 6643 if (!match(RHSC, m_AnyZeroFP())) 6644 return nullptr; 6645 6646 // Check fastmath flags ('ninf'). 6647 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6648 return nullptr; 6649 6650 // Check the properties of the dividend. It must not be zero to avoid a 6651 // division by zero (see Proof). 6652 const APFloat *C; 6653 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6654 return nullptr; 6655 6656 if (C->isZero()) 6657 return nullptr; 6658 6659 // Get swapped predicate if necessary. 6660 if (C->isNegative()) 6661 Pred = I.getSwappedPredicate(); 6662 6663 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6664 } 6665 6666 /// Optimize fabs(X) compared with zero. 6667 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 6668 Value *X; 6669 if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || 6670 !match(I.getOperand(1), m_PosZeroFP())) 6671 return nullptr; 6672 6673 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6674 I->setPredicate(P); 6675 return IC.replaceOperand(*I, 0, X); 6676 }; 6677 6678 switch (I.getPredicate()) { 6679 case FCmpInst::FCMP_UGE: 6680 case FCmpInst::FCMP_OLT: 6681 // fabs(X) >= 0.0 --> true 6682 // fabs(X) < 0.0 --> false 6683 llvm_unreachable("fcmp should have simplified"); 6684 6685 case FCmpInst::FCMP_OGT: 6686 // fabs(X) > 0.0 --> X != 0.0 6687 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6688 6689 case FCmpInst::FCMP_UGT: 6690 // fabs(X) u> 0.0 --> X u!= 0.0 6691 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6692 6693 case FCmpInst::FCMP_OLE: 6694 // fabs(X) <= 0.0 --> X == 0.0 6695 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6696 6697 case FCmpInst::FCMP_ULE: 6698 // fabs(X) u<= 0.0 --> X u== 0.0 6699 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6700 6701 case FCmpInst::FCMP_OGE: 6702 // fabs(X) >= 0.0 --> !isnan(X) 6703 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6704 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6705 6706 case FCmpInst::FCMP_ULT: 6707 // fabs(X) u< 0.0 --> isnan(X) 6708 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6709 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6710 6711 case FCmpInst::FCMP_OEQ: 6712 case FCmpInst::FCMP_UEQ: 6713 case FCmpInst::FCMP_ONE: 6714 case FCmpInst::FCMP_UNE: 6715 case FCmpInst::FCMP_ORD: 6716 case FCmpInst::FCMP_UNO: 6717 // Look through the fabs() because it doesn't change anything but the sign. 6718 // fabs(X) == 0.0 --> X == 0.0, 6719 // fabs(X) != 0.0 --> X != 0.0 6720 // isnan(fabs(X)) --> isnan(X) 6721 // !isnan(fabs(X) --> !isnan(X) 6722 return replacePredAndOp0(&I, I.getPredicate(), X); 6723 6724 default: 6725 return nullptr; 6726 } 6727 } 6728 6729 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) { 6730 CmpInst::Predicate Pred = I.getPredicate(); 6731 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6732 6733 // Canonicalize fneg as Op1. 6734 if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) { 6735 std::swap(Op0, Op1); 6736 Pred = I.getSwappedPredicate(); 6737 } 6738 6739 if (!match(Op1, m_FNeg(m_Specific(Op0)))) 6740 return nullptr; 6741 6742 // Replace the negated operand with 0.0: 6743 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0 6744 Constant *Zero = ConstantFP::getNullValue(Op0->getType()); 6745 return new FCmpInst(Pred, Op0, Zero, "", &I); 6746 } 6747 6748 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 6749 bool Changed = false; 6750 6751 /// Orders the operands of the compare so that they are listed from most 6752 /// complex to least complex. This puts constants before unary operators, 6753 /// before binary operators. 6754 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6755 I.swapOperands(); 6756 Changed = true; 6757 } 6758 6759 const CmpInst::Predicate Pred = I.getPredicate(); 6760 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6761 if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6762 SQ.getWithInstruction(&I))) 6763 return replaceInstUsesWith(I, V); 6764 6765 // Simplify 'fcmp pred X, X' 6766 Type *OpType = Op0->getType(); 6767 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6768 if (Op0 == Op1) { 6769 switch (Pred) { 6770 default: break; 6771 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6772 case FCmpInst::FCMP_ULT: // True if unordered or less than 6773 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6774 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6775 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6776 I.setPredicate(FCmpInst::FCMP_UNO); 6777 I.setOperand(1, Constant::getNullValue(OpType)); 6778 return &I; 6779 6780 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6781 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6782 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6783 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6784 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6785 I.setPredicate(FCmpInst::FCMP_ORD); 6786 I.setOperand(1, Constant::getNullValue(OpType)); 6787 return &I; 6788 } 6789 } 6790 6791 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6792 // then canonicalize the operand to 0.0. 6793 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6794 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6795 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6796 6797 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6798 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6799 } 6800 6801 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6802 Value *X, *Y; 6803 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6804 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6805 6806 if (Instruction *R = foldFCmpFNegCommonOp(I)) 6807 return R; 6808 6809 // Test if the FCmpInst instruction is used exclusively by a select as 6810 // part of a minimum or maximum operation. If so, refrain from doing 6811 // any other folding. This helps out other analyses which understand 6812 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6813 // and CodeGen. And in this case, at least one of the comparison 6814 // operands has at least one user besides the compare (the select), 6815 // which would often largely negate the benefit of folding anyway. 6816 if (I.hasOneUse()) 6817 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6818 Value *A, *B; 6819 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6820 if (SPR.Flavor != SPF_UNKNOWN) 6821 return nullptr; 6822 } 6823 6824 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6825 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6826 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6827 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6828 6829 // Handle fcmp with instruction LHS and constant RHS. 6830 Instruction *LHSI; 6831 Constant *RHSC; 6832 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6833 switch (LHSI->getOpcode()) { 6834 case Instruction::PHI: 6835 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6836 // block. If in the same block, we're encouraging jump threading. If 6837 // not, we are just pessimizing the code by making an i1 phi. 6838 if (LHSI->getParent() == I.getParent()) 6839 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6840 return NV; 6841 break; 6842 case Instruction::SIToFP: 6843 case Instruction::UIToFP: 6844 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6845 return NV; 6846 break; 6847 case Instruction::FDiv: 6848 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6849 return NV; 6850 break; 6851 case Instruction::Load: 6852 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6853 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6854 if (Instruction *Res = foldCmpLoadFromIndexedGlobal( 6855 cast<LoadInst>(LHSI), GEP, GV, I)) 6856 return Res; 6857 break; 6858 } 6859 } 6860 6861 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6862 return R; 6863 6864 if (match(Op0, m_FNeg(m_Value(X)))) { 6865 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6866 Constant *C; 6867 if (match(Op1, m_Constant(C))) { 6868 Constant *NegC = ConstantExpr::getFNeg(C); 6869 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6870 } 6871 } 6872 6873 if (match(Op0, m_FPExt(m_Value(X)))) { 6874 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6875 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6876 return new FCmpInst(Pred, X, Y, "", &I); 6877 6878 const APFloat *C; 6879 if (match(Op1, m_APFloat(C))) { 6880 const fltSemantics &FPSem = 6881 X->getType()->getScalarType()->getFltSemantics(); 6882 bool Lossy; 6883 APFloat TruncC = *C; 6884 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6885 6886 if (Lossy) { 6887 // X can't possibly equal the higher-precision constant, so reduce any 6888 // equality comparison. 6889 // TODO: Other predicates can be handled via getFCmpCode(). 6890 switch (Pred) { 6891 case FCmpInst::FCMP_OEQ: 6892 // X is ordered and equal to an impossible constant --> false 6893 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6894 case FCmpInst::FCMP_ONE: 6895 // X is ordered and not equal to an impossible constant --> ordered 6896 return new FCmpInst(FCmpInst::FCMP_ORD, X, 6897 ConstantFP::getNullValue(X->getType())); 6898 case FCmpInst::FCMP_UEQ: 6899 // X is unordered or equal to an impossible constant --> unordered 6900 return new FCmpInst(FCmpInst::FCMP_UNO, X, 6901 ConstantFP::getNullValue(X->getType())); 6902 case FCmpInst::FCMP_UNE: 6903 // X is unordered or not equal to an impossible constant --> true 6904 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6905 default: 6906 break; 6907 } 6908 } 6909 6910 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6911 // Avoid lossy conversions and denormals. 6912 // Zero is a special case that's OK to convert. 6913 APFloat Fabs = TruncC; 6914 Fabs.clearSign(); 6915 if (!Lossy && 6916 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6917 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6918 return new FCmpInst(Pred, X, NewC, "", &I); 6919 } 6920 } 6921 } 6922 6923 // Convert a sign-bit test of an FP value into a cast and integer compare. 6924 // TODO: Simplify if the copysign constant is 0.0 or NaN. 6925 // TODO: Handle non-zero compare constants. 6926 // TODO: Handle other predicates. 6927 const APFloat *C; 6928 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 6929 m_Value(X)))) && 6930 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 6931 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 6932 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 6933 IntType = VectorType::get(IntType, VecTy->getElementCount()); 6934 6935 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 6936 if (Pred == FCmpInst::FCMP_OLT) { 6937 Value *IntX = Builder.CreateBitCast(X, IntType); 6938 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 6939 ConstantInt::getNullValue(IntType)); 6940 } 6941 } 6942 6943 if (I.getType()->isVectorTy()) 6944 if (Instruction *Res = foldVectorCmp(I, Builder)) 6945 return Res; 6946 6947 return Changed ? &I : nullptr; 6948 } 6949