1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Returns true if the exploded icmp can be expressed as a signed comparison 73 /// to zero and updates the predicate accordingly. 74 /// The signedness of the comparison is preserved. 75 /// TODO: Refactor with decomposeBitTestICmp()? 76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 77 if (!ICmpInst::isSigned(Pred)) 78 return false; 79 80 if (C.isNullValue()) 81 return ICmpInst::isRelational(Pred); 82 83 if (C.isOneValue()) { 84 if (Pred == ICmpInst::ICMP_SLT) { 85 Pred = ICmpInst::ICMP_SLE; 86 return true; 87 } 88 } else if (C.isAllOnesValue()) { 89 if (Pred == ICmpInst::ICMP_SGT) { 90 Pred = ICmpInst::ICMP_SGE; 91 return true; 92 } 93 } 94 95 return false; 96 } 97 98 /// Given a signed integer type and a set of known zero and one bits, compute 99 /// the maximum and minimum values that could have the specified known zero and 100 /// known one bits, returning them in Min/Max. 101 /// TODO: Move to method on KnownBits struct? 102 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 103 APInt &Min, APInt &Max) { 104 assert(Known.getBitWidth() == Min.getBitWidth() && 105 Known.getBitWidth() == Max.getBitWidth() && 106 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 107 APInt UnknownBits = ~(Known.Zero|Known.One); 108 109 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 110 // bit if it is unknown. 111 Min = Known.One; 112 Max = Known.One|UnknownBits; 113 114 if (UnknownBits.isNegative()) { // Sign bit is unknown 115 Min.setSignBit(); 116 Max.clearSignBit(); 117 } 118 } 119 120 /// Given an unsigned integer type and a set of known zero and one bits, compute 121 /// the maximum and minimum values that could have the specified known zero and 122 /// known one bits, returning them in Min/Max. 123 /// TODO: Move to method on KnownBits struct? 124 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 125 APInt &Min, APInt &Max) { 126 assert(Known.getBitWidth() == Min.getBitWidth() && 127 Known.getBitWidth() == Max.getBitWidth() && 128 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 129 APInt UnknownBits = ~(Known.Zero|Known.One); 130 131 // The minimum value is when the unknown bits are all zeros. 132 Min = Known.One; 133 // The maximum value is when the unknown bits are all ones. 134 Max = Known.One|UnknownBits; 135 } 136 137 /// This is called when we see this pattern: 138 /// cmp pred (load (gep GV, ...)), cmpcst 139 /// where GV is a global variable with a constant initializer. Try to simplify 140 /// this into some simple computation that does not need the load. For example 141 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 142 /// 143 /// If AndCst is non-null, then the loaded value is masked with that constant 144 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 145 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 146 GlobalVariable *GV, 147 CmpInst &ICI, 148 ConstantInt *AndCst) { 149 Constant *Init = GV->getInitializer(); 150 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 151 return nullptr; 152 153 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 154 // Don't blow up on huge arrays. 155 if (ArrayElementCount > MaxArraySizeForCombine) 156 return nullptr; 157 158 // There are many forms of this optimization we can handle, for now, just do 159 // the simple index into a single-dimensional array. 160 // 161 // Require: GEP GV, 0, i {{, constant indices}} 162 if (GEP->getNumOperands() < 3 || 163 !isa<ConstantInt>(GEP->getOperand(1)) || 164 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 165 isa<Constant>(GEP->getOperand(2))) 166 return nullptr; 167 168 // Check that indices after the variable are constants and in-range for the 169 // type they index. Collect the indices. This is typically for arrays of 170 // structs. 171 SmallVector<unsigned, 4> LaterIndices; 172 173 Type *EltTy = Init->getType()->getArrayElementType(); 174 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 175 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 176 if (!Idx) return nullptr; // Variable index. 177 178 uint64_t IdxVal = Idx->getZExtValue(); 179 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 180 181 if (StructType *STy = dyn_cast<StructType>(EltTy)) 182 EltTy = STy->getElementType(IdxVal); 183 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 184 if (IdxVal >= ATy->getNumElements()) return nullptr; 185 EltTy = ATy->getElementType(); 186 } else { 187 return nullptr; // Unknown type. 188 } 189 190 LaterIndices.push_back(IdxVal); 191 } 192 193 enum { Overdefined = -3, Undefined = -2 }; 194 195 // Variables for our state machines. 196 197 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 198 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 199 // and 87 is the second (and last) index. FirstTrueElement is -2 when 200 // undefined, otherwise set to the first true element. SecondTrueElement is 201 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 202 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 203 204 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 205 // form "i != 47 & i != 87". Same state transitions as for true elements. 206 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 207 208 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 209 /// define a state machine that triggers for ranges of values that the index 210 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 211 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 212 /// index in the range (inclusive). We use -2 for undefined here because we 213 /// use relative comparisons and don't want 0-1 to match -1. 214 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 215 216 // MagicBitvector - This is a magic bitvector where we set a bit if the 217 // comparison is true for element 'i'. If there are 64 elements or less in 218 // the array, this will fully represent all the comparison results. 219 uint64_t MagicBitvector = 0; 220 221 // Scan the array and see if one of our patterns matches. 222 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 223 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 224 Constant *Elt = Init->getAggregateElement(i); 225 if (!Elt) return nullptr; 226 227 // If this is indexing an array of structures, get the structure element. 228 if (!LaterIndices.empty()) 229 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 230 231 // If the element is masked, handle it. 232 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 233 234 // Find out if the comparison would be true or false for the i'th element. 235 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 236 CompareRHS, DL, &TLI); 237 // If the result is undef for this element, ignore it. 238 if (isa<UndefValue>(C)) { 239 // Extend range state machines to cover this element in case there is an 240 // undef in the middle of the range. 241 if (TrueRangeEnd == (int)i-1) 242 TrueRangeEnd = i; 243 if (FalseRangeEnd == (int)i-1) 244 FalseRangeEnd = i; 245 continue; 246 } 247 248 // If we can't compute the result for any of the elements, we have to give 249 // up evaluating the entire conditional. 250 if (!isa<ConstantInt>(C)) return nullptr; 251 252 // Otherwise, we know if the comparison is true or false for this element, 253 // update our state machines. 254 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 255 256 // State machine for single/double/range index comparison. 257 if (IsTrueForElt) { 258 // Update the TrueElement state machine. 259 if (FirstTrueElement == Undefined) 260 FirstTrueElement = TrueRangeEnd = i; // First true element. 261 else { 262 // Update double-compare state machine. 263 if (SecondTrueElement == Undefined) 264 SecondTrueElement = i; 265 else 266 SecondTrueElement = Overdefined; 267 268 // Update range state machine. 269 if (TrueRangeEnd == (int)i-1) 270 TrueRangeEnd = i; 271 else 272 TrueRangeEnd = Overdefined; 273 } 274 } else { 275 // Update the FalseElement state machine. 276 if (FirstFalseElement == Undefined) 277 FirstFalseElement = FalseRangeEnd = i; // First false element. 278 else { 279 // Update double-compare state machine. 280 if (SecondFalseElement == Undefined) 281 SecondFalseElement = i; 282 else 283 SecondFalseElement = Overdefined; 284 285 // Update range state machine. 286 if (FalseRangeEnd == (int)i-1) 287 FalseRangeEnd = i; 288 else 289 FalseRangeEnd = Overdefined; 290 } 291 } 292 293 // If this element is in range, update our magic bitvector. 294 if (i < 64 && IsTrueForElt) 295 MagicBitvector |= 1ULL << i; 296 297 // If all of our states become overdefined, bail out early. Since the 298 // predicate is expensive, only check it every 8 elements. This is only 299 // really useful for really huge arrays. 300 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 301 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 302 FalseRangeEnd == Overdefined) 303 return nullptr; 304 } 305 306 // Now that we've scanned the entire array, emit our new comparison(s). We 307 // order the state machines in complexity of the generated code. 308 Value *Idx = GEP->getOperand(2); 309 310 // If the index is larger than the pointer size of the target, truncate the 311 // index down like the GEP would do implicitly. We don't have to do this for 312 // an inbounds GEP because the index can't be out of range. 313 if (!GEP->isInBounds()) { 314 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 315 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 316 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 317 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 318 } 319 320 // If the comparison is only true for one or two elements, emit direct 321 // comparisons. 322 if (SecondTrueElement != Overdefined) { 323 // None true -> false. 324 if (FirstTrueElement == Undefined) 325 return replaceInstUsesWith(ICI, Builder.getFalse()); 326 327 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 328 329 // True for one element -> 'i == 47'. 330 if (SecondTrueElement == Undefined) 331 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 332 333 // True for two elements -> 'i == 47 | i == 72'. 334 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 335 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 336 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 337 return BinaryOperator::CreateOr(C1, C2); 338 } 339 340 // If the comparison is only false for one or two elements, emit direct 341 // comparisons. 342 if (SecondFalseElement != Overdefined) { 343 // None false -> true. 344 if (FirstFalseElement == Undefined) 345 return replaceInstUsesWith(ICI, Builder.getTrue()); 346 347 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 348 349 // False for one element -> 'i != 47'. 350 if (SecondFalseElement == Undefined) 351 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 352 353 // False for two elements -> 'i != 47 & i != 72'. 354 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 355 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 356 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 357 return BinaryOperator::CreateAnd(C1, C2); 358 } 359 360 // If the comparison can be replaced with a range comparison for the elements 361 // where it is true, emit the range check. 362 if (TrueRangeEnd != Overdefined) { 363 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 364 365 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 366 if (FirstTrueElement) { 367 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 368 Idx = Builder.CreateAdd(Idx, Offs); 369 } 370 371 Value *End = ConstantInt::get(Idx->getType(), 372 TrueRangeEnd-FirstTrueElement+1); 373 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 374 } 375 376 // False range check. 377 if (FalseRangeEnd != Overdefined) { 378 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 379 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 380 if (FirstFalseElement) { 381 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 382 Idx = Builder.CreateAdd(Idx, Offs); 383 } 384 385 Value *End = ConstantInt::get(Idx->getType(), 386 FalseRangeEnd-FirstFalseElement); 387 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 388 } 389 390 // If a magic bitvector captures the entire comparison state 391 // of this load, replace it with computation that does: 392 // ((magic_cst >> i) & 1) != 0 393 { 394 Type *Ty = nullptr; 395 396 // Look for an appropriate type: 397 // - The type of Idx if the magic fits 398 // - The smallest fitting legal type 399 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 400 Ty = Idx->getType(); 401 else 402 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 403 404 if (Ty) { 405 Value *V = Builder.CreateIntCast(Idx, Ty, false); 406 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 407 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 408 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 409 } 410 } 411 412 return nullptr; 413 } 414 415 /// Return a value that can be used to compare the *offset* implied by a GEP to 416 /// zero. For example, if we have &A[i], we want to return 'i' for 417 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 418 /// are involved. The above expression would also be legal to codegen as 419 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 420 /// This latter form is less amenable to optimization though, and we are allowed 421 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 422 /// 423 /// If we can't emit an optimized form for this expression, this returns null. 424 /// 425 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 426 const DataLayout &DL) { 427 gep_type_iterator GTI = gep_type_begin(GEP); 428 429 // Check to see if this gep only has a single variable index. If so, and if 430 // any constant indices are a multiple of its scale, then we can compute this 431 // in terms of the scale of the variable index. For example, if the GEP 432 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 433 // because the expression will cross zero at the same point. 434 unsigned i, e = GEP->getNumOperands(); 435 int64_t Offset = 0; 436 for (i = 1; i != e; ++i, ++GTI) { 437 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 438 // Compute the aggregate offset of constant indices. 439 if (CI->isZero()) continue; 440 441 // Handle a struct index, which adds its field offset to the pointer. 442 if (StructType *STy = GTI.getStructTypeOrNull()) { 443 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 444 } else { 445 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 446 Offset += Size*CI->getSExtValue(); 447 } 448 } else { 449 // Found our variable index. 450 break; 451 } 452 } 453 454 // If there are no variable indices, we must have a constant offset, just 455 // evaluate it the general way. 456 if (i == e) return nullptr; 457 458 Value *VariableIdx = GEP->getOperand(i); 459 // Determine the scale factor of the variable element. For example, this is 460 // 4 if the variable index is into an array of i32. 461 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 462 463 // Verify that there are no other variable indices. If so, emit the hard way. 464 for (++i, ++GTI; i != e; ++i, ++GTI) { 465 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 466 if (!CI) return nullptr; 467 468 // Compute the aggregate offset of constant indices. 469 if (CI->isZero()) continue; 470 471 // Handle a struct index, which adds its field offset to the pointer. 472 if (StructType *STy = GTI.getStructTypeOrNull()) { 473 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 474 } else { 475 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 476 Offset += Size*CI->getSExtValue(); 477 } 478 } 479 480 // Okay, we know we have a single variable index, which must be a 481 // pointer/array/vector index. If there is no offset, life is simple, return 482 // the index. 483 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 484 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 485 if (Offset == 0) { 486 // Cast to intptrty in case a truncation occurs. If an extension is needed, 487 // we don't need to bother extending: the extension won't affect where the 488 // computation crosses zero. 489 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 490 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 491 } 492 return VariableIdx; 493 } 494 495 // Otherwise, there is an index. The computation we will do will be modulo 496 // the pointer size. 497 Offset = SignExtend64(Offset, IntPtrWidth); 498 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 499 500 // To do this transformation, any constant index must be a multiple of the 501 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 502 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 503 // multiple of the variable scale. 504 int64_t NewOffs = Offset / (int64_t)VariableScale; 505 if (Offset != NewOffs*(int64_t)VariableScale) 506 return nullptr; 507 508 // Okay, we can do this evaluation. Start by converting the index to intptr. 509 if (VariableIdx->getType() != IntPtrTy) 510 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 511 true /*Signed*/); 512 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 513 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 514 } 515 516 /// Returns true if we can rewrite Start as a GEP with pointer Base 517 /// and some integer offset. The nodes that need to be re-written 518 /// for this transformation will be added to Explored. 519 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 520 const DataLayout &DL, 521 SetVector<Value *> &Explored) { 522 SmallVector<Value *, 16> WorkList(1, Start); 523 Explored.insert(Base); 524 525 // The following traversal gives us an order which can be used 526 // when doing the final transformation. Since in the final 527 // transformation we create the PHI replacement instructions first, 528 // we don't have to get them in any particular order. 529 // 530 // However, for other instructions we will have to traverse the 531 // operands of an instruction first, which means that we have to 532 // do a post-order traversal. 533 while (!WorkList.empty()) { 534 SetVector<PHINode *> PHIs; 535 536 while (!WorkList.empty()) { 537 if (Explored.size() >= 100) 538 return false; 539 540 Value *V = WorkList.back(); 541 542 if (Explored.count(V) != 0) { 543 WorkList.pop_back(); 544 continue; 545 } 546 547 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 548 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 549 // We've found some value that we can't explore which is different from 550 // the base. Therefore we can't do this transformation. 551 return false; 552 553 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 554 auto *CI = dyn_cast<CastInst>(V); 555 if (!CI->isNoopCast(DL)) 556 return false; 557 558 if (Explored.count(CI->getOperand(0)) == 0) 559 WorkList.push_back(CI->getOperand(0)); 560 } 561 562 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 563 // We're limiting the GEP to having one index. This will preserve 564 // the original pointer type. We could handle more cases in the 565 // future. 566 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 567 GEP->getType() != Start->getType()) 568 return false; 569 570 if (Explored.count(GEP->getOperand(0)) == 0) 571 WorkList.push_back(GEP->getOperand(0)); 572 } 573 574 if (WorkList.back() == V) { 575 WorkList.pop_back(); 576 // We've finished visiting this node, mark it as such. 577 Explored.insert(V); 578 } 579 580 if (auto *PN = dyn_cast<PHINode>(V)) { 581 // We cannot transform PHIs on unsplittable basic blocks. 582 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 583 return false; 584 Explored.insert(PN); 585 PHIs.insert(PN); 586 } 587 } 588 589 // Explore the PHI nodes further. 590 for (auto *PN : PHIs) 591 for (Value *Op : PN->incoming_values()) 592 if (Explored.count(Op) == 0) 593 WorkList.push_back(Op); 594 } 595 596 // Make sure that we can do this. Since we can't insert GEPs in a basic 597 // block before a PHI node, we can't easily do this transformation if 598 // we have PHI node users of transformed instructions. 599 for (Value *Val : Explored) { 600 for (Value *Use : Val->uses()) { 601 602 auto *PHI = dyn_cast<PHINode>(Use); 603 auto *Inst = dyn_cast<Instruction>(Val); 604 605 if (Inst == Base || Inst == PHI || !Inst || !PHI || 606 Explored.count(PHI) == 0) 607 continue; 608 609 if (PHI->getParent() == Inst->getParent()) 610 return false; 611 } 612 } 613 return true; 614 } 615 616 // Sets the appropriate insert point on Builder where we can add 617 // a replacement Instruction for V (if that is possible). 618 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 619 bool Before = true) { 620 if (auto *PHI = dyn_cast<PHINode>(V)) { 621 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 622 return; 623 } 624 if (auto *I = dyn_cast<Instruction>(V)) { 625 if (!Before) 626 I = &*std::next(I->getIterator()); 627 Builder.SetInsertPoint(I); 628 return; 629 } 630 if (auto *A = dyn_cast<Argument>(V)) { 631 // Set the insertion point in the entry block. 632 BasicBlock &Entry = A->getParent()->getEntryBlock(); 633 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 634 return; 635 } 636 // Otherwise, this is a constant and we don't need to set a new 637 // insertion point. 638 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 639 } 640 641 /// Returns a re-written value of Start as an indexed GEP using Base as a 642 /// pointer. 643 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 644 const DataLayout &DL, 645 SetVector<Value *> &Explored) { 646 // Perform all the substitutions. This is a bit tricky because we can 647 // have cycles in our use-def chains. 648 // 1. Create the PHI nodes without any incoming values. 649 // 2. Create all the other values. 650 // 3. Add the edges for the PHI nodes. 651 // 4. Emit GEPs to get the original pointers. 652 // 5. Remove the original instructions. 653 Type *IndexType = IntegerType::get( 654 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 655 656 DenseMap<Value *, Value *> NewInsts; 657 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 658 659 // Create the new PHI nodes, without adding any incoming values. 660 for (Value *Val : Explored) { 661 if (Val == Base) 662 continue; 663 // Create empty phi nodes. This avoids cyclic dependencies when creating 664 // the remaining instructions. 665 if (auto *PHI = dyn_cast<PHINode>(Val)) 666 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 667 PHI->getName() + ".idx", PHI); 668 } 669 IRBuilder<> Builder(Base->getContext()); 670 671 // Create all the other instructions. 672 for (Value *Val : Explored) { 673 674 if (NewInsts.find(Val) != NewInsts.end()) 675 continue; 676 677 if (auto *CI = dyn_cast<CastInst>(Val)) { 678 // Don't get rid of the intermediate variable here; the store can grow 679 // the map which will invalidate the reference to the input value. 680 Value *V = NewInsts[CI->getOperand(0)]; 681 NewInsts[CI] = V; 682 continue; 683 } 684 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 685 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 686 : GEP->getOperand(1); 687 setInsertionPoint(Builder, GEP); 688 // Indices might need to be sign extended. GEPs will magically do 689 // this, but we need to do it ourselves here. 690 if (Index->getType()->getScalarSizeInBits() != 691 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 692 Index = Builder.CreateSExtOrTrunc( 693 Index, NewInsts[GEP->getOperand(0)]->getType(), 694 GEP->getOperand(0)->getName() + ".sext"); 695 } 696 697 auto *Op = NewInsts[GEP->getOperand(0)]; 698 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 699 NewInsts[GEP] = Index; 700 else 701 NewInsts[GEP] = Builder.CreateNSWAdd( 702 Op, Index, GEP->getOperand(0)->getName() + ".add"); 703 continue; 704 } 705 if (isa<PHINode>(Val)) 706 continue; 707 708 llvm_unreachable("Unexpected instruction type"); 709 } 710 711 // Add the incoming values to the PHI nodes. 712 for (Value *Val : Explored) { 713 if (Val == Base) 714 continue; 715 // All the instructions have been created, we can now add edges to the 716 // phi nodes. 717 if (auto *PHI = dyn_cast<PHINode>(Val)) { 718 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 719 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 720 Value *NewIncoming = PHI->getIncomingValue(I); 721 722 if (NewInsts.find(NewIncoming) != NewInsts.end()) 723 NewIncoming = NewInsts[NewIncoming]; 724 725 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 726 } 727 } 728 } 729 730 for (Value *Val : Explored) { 731 if (Val == Base) 732 continue; 733 734 // Depending on the type, for external users we have to emit 735 // a GEP or a GEP + ptrtoint. 736 setInsertionPoint(Builder, Val, false); 737 738 // If required, create an inttoptr instruction for Base. 739 Value *NewBase = Base; 740 if (!Base->getType()->isPointerTy()) 741 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 742 Start->getName() + "to.ptr"); 743 744 Value *GEP = Builder.CreateInBoundsGEP( 745 Start->getType()->getPointerElementType(), NewBase, 746 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 747 748 if (!Val->getType()->isPointerTy()) { 749 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 750 Val->getName() + ".conv"); 751 GEP = Cast; 752 } 753 Val->replaceAllUsesWith(GEP); 754 } 755 756 return NewInsts[Start]; 757 } 758 759 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 760 /// the input Value as a constant indexed GEP. Returns a pair containing 761 /// the GEPs Pointer and Index. 762 static std::pair<Value *, Value *> 763 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 764 Type *IndexType = IntegerType::get(V->getContext(), 765 DL.getIndexTypeSizeInBits(V->getType())); 766 767 Constant *Index = ConstantInt::getNullValue(IndexType); 768 while (true) { 769 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 770 // We accept only inbouds GEPs here to exclude the possibility of 771 // overflow. 772 if (!GEP->isInBounds()) 773 break; 774 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 775 GEP->getType() == V->getType()) { 776 V = GEP->getOperand(0); 777 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 778 Index = ConstantExpr::getAdd( 779 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 780 continue; 781 } 782 break; 783 } 784 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 785 if (!CI->isNoopCast(DL)) 786 break; 787 V = CI->getOperand(0); 788 continue; 789 } 790 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 791 if (!CI->isNoopCast(DL)) 792 break; 793 V = CI->getOperand(0); 794 continue; 795 } 796 break; 797 } 798 return {V, Index}; 799 } 800 801 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 802 /// We can look through PHIs, GEPs and casts in order to determine a common base 803 /// between GEPLHS and RHS. 804 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 805 ICmpInst::Predicate Cond, 806 const DataLayout &DL) { 807 // FIXME: Support vector of pointers. 808 if (GEPLHS->getType()->isVectorTy()) 809 return nullptr; 810 811 if (!GEPLHS->hasAllConstantIndices()) 812 return nullptr; 813 814 // Make sure the pointers have the same type. 815 if (GEPLHS->getType() != RHS->getType()) 816 return nullptr; 817 818 Value *PtrBase, *Index; 819 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 820 821 // The set of nodes that will take part in this transformation. 822 SetVector<Value *> Nodes; 823 824 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 825 return nullptr; 826 827 // We know we can re-write this as 828 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 829 // Since we've only looked through inbouds GEPs we know that we 830 // can't have overflow on either side. We can therefore re-write 831 // this as: 832 // OFFSET1 cmp OFFSET2 833 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 834 835 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 836 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 837 // offset. Since Index is the offset of LHS to the base pointer, we will now 838 // compare the offsets instead of comparing the pointers. 839 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 840 } 841 842 /// Fold comparisons between a GEP instruction and something else. At this point 843 /// we know that the GEP is on the LHS of the comparison. 844 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 845 ICmpInst::Predicate Cond, 846 Instruction &I) { 847 // Don't transform signed compares of GEPs into index compares. Even if the 848 // GEP is inbounds, the final add of the base pointer can have signed overflow 849 // and would change the result of the icmp. 850 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 851 // the maximum signed value for the pointer type. 852 if (ICmpInst::isSigned(Cond)) 853 return nullptr; 854 855 // Look through bitcasts and addrspacecasts. We do not however want to remove 856 // 0 GEPs. 857 if (!isa<GetElementPtrInst>(RHS)) 858 RHS = RHS->stripPointerCasts(); 859 860 Value *PtrBase = GEPLHS->getOperand(0); 861 // FIXME: Support vector pointer GEPs. 862 if (PtrBase == RHS && GEPLHS->isInBounds() && 863 !GEPLHS->getType()->isVectorTy()) { 864 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 865 // This transformation (ignoring the base and scales) is valid because we 866 // know pointers can't overflow since the gep is inbounds. See if we can 867 // output an optimized form. 868 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 869 870 // If not, synthesize the offset the hard way. 871 if (!Offset) 872 Offset = EmitGEPOffset(GEPLHS); 873 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 874 Constant::getNullValue(Offset->getType())); 875 } 876 877 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 878 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 879 !NullPointerIsDefined(I.getFunction(), 880 RHS->getType()->getPointerAddressSpace())) { 881 // For most address spaces, an allocation can't be placed at null, but null 882 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 883 // the only valid inbounds address derived from null, is null itself. 884 // Thus, we have four cases to consider: 885 // 1) Base == nullptr, Offset == 0 -> inbounds, null 886 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 887 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 888 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 889 // 890 // (Note if we're indexing a type of size 0, that simply collapses into one 891 // of the buckets above.) 892 // 893 // In general, we're allowed to make values less poison (i.e. remove 894 // sources of full UB), so in this case, we just select between the two 895 // non-poison cases (1 and 4 above). 896 // 897 // For vectors, we apply the same reasoning on a per-lane basis. 898 auto *Base = GEPLHS->getPointerOperand(); 899 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 900 int NumElts = GEPLHS->getType()->getVectorNumElements(); 901 Base = Builder.CreateVectorSplat(NumElts, Base); 902 } 903 return new ICmpInst(Cond, Base, 904 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 905 cast<Constant>(RHS), Base->getType())); 906 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 907 // If the base pointers are different, but the indices are the same, just 908 // compare the base pointer. 909 if (PtrBase != GEPRHS->getOperand(0)) { 910 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 911 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 912 GEPRHS->getOperand(0)->getType(); 913 if (IndicesTheSame) 914 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 915 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 916 IndicesTheSame = false; 917 break; 918 } 919 920 // If all indices are the same, just compare the base pointers. 921 Type *BaseType = GEPLHS->getOperand(0)->getType(); 922 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 923 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 924 925 // If we're comparing GEPs with two base pointers that only differ in type 926 // and both GEPs have only constant indices or just one use, then fold 927 // the compare with the adjusted indices. 928 // FIXME: Support vector of pointers. 929 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 930 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 931 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 932 PtrBase->stripPointerCasts() == 933 GEPRHS->getOperand(0)->stripPointerCasts() && 934 !GEPLHS->getType()->isVectorTy()) { 935 Value *LOffset = EmitGEPOffset(GEPLHS); 936 Value *ROffset = EmitGEPOffset(GEPRHS); 937 938 // If we looked through an addrspacecast between different sized address 939 // spaces, the LHS and RHS pointers are different sized 940 // integers. Truncate to the smaller one. 941 Type *LHSIndexTy = LOffset->getType(); 942 Type *RHSIndexTy = ROffset->getType(); 943 if (LHSIndexTy != RHSIndexTy) { 944 if (LHSIndexTy->getPrimitiveSizeInBits() < 945 RHSIndexTy->getPrimitiveSizeInBits()) { 946 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 947 } else 948 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 949 } 950 951 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 952 LOffset, ROffset); 953 return replaceInstUsesWith(I, Cmp); 954 } 955 956 // Otherwise, the base pointers are different and the indices are 957 // different. Try convert this to an indexed compare by looking through 958 // PHIs/casts. 959 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 960 } 961 962 // If one of the GEPs has all zero indices, recurse. 963 // FIXME: Handle vector of pointers. 964 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 965 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 966 ICmpInst::getSwappedPredicate(Cond), I); 967 968 // If the other GEP has all zero indices, recurse. 969 // FIXME: Handle vector of pointers. 970 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 971 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 972 973 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 974 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 975 // If the GEPs only differ by one index, compare it. 976 unsigned NumDifferences = 0; // Keep track of # differences. 977 unsigned DiffOperand = 0; // The operand that differs. 978 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 979 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 980 Type *LHSType = GEPLHS->getOperand(i)->getType(); 981 Type *RHSType = GEPRHS->getOperand(i)->getType(); 982 // FIXME: Better support for vector of pointers. 983 if (LHSType->getPrimitiveSizeInBits() != 984 RHSType->getPrimitiveSizeInBits() || 985 (GEPLHS->getType()->isVectorTy() && 986 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 987 // Irreconcilable differences. 988 NumDifferences = 2; 989 break; 990 } 991 992 if (NumDifferences++) break; 993 DiffOperand = i; 994 } 995 996 if (NumDifferences == 0) // SAME GEP? 997 return replaceInstUsesWith(I, // No comparison is needed here. 998 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 999 1000 else if (NumDifferences == 1 && GEPsInBounds) { 1001 Value *LHSV = GEPLHS->getOperand(DiffOperand); 1002 Value *RHSV = GEPRHS->getOperand(DiffOperand); 1003 // Make sure we do a signed comparison here. 1004 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 1005 } 1006 } 1007 1008 // Only lower this if the icmp is the only user of the GEP or if we expect 1009 // the result to fold to a constant! 1010 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 1011 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 1012 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1013 Value *L = EmitGEPOffset(GEPLHS); 1014 Value *R = EmitGEPOffset(GEPRHS); 1015 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1016 } 1017 } 1018 1019 // Try convert this to an indexed compare by looking through PHIs/casts as a 1020 // last resort. 1021 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1022 } 1023 1024 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1025 const AllocaInst *Alloca, 1026 const Value *Other) { 1027 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1028 1029 // It would be tempting to fold away comparisons between allocas and any 1030 // pointer not based on that alloca (e.g. an argument). However, even 1031 // though such pointers cannot alias, they can still compare equal. 1032 // 1033 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1034 // doesn't escape we can argue that it's impossible to guess its value, and we 1035 // can therefore act as if any such guesses are wrong. 1036 // 1037 // The code below checks that the alloca doesn't escape, and that it's only 1038 // used in a comparison once (the current instruction). The 1039 // single-comparison-use condition ensures that we're trivially folding all 1040 // comparisons against the alloca consistently, and avoids the risk of 1041 // erroneously folding a comparison of the pointer with itself. 1042 1043 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1044 1045 SmallVector<const Use *, 32> Worklist; 1046 for (const Use &U : Alloca->uses()) { 1047 if (Worklist.size() >= MaxIter) 1048 return nullptr; 1049 Worklist.push_back(&U); 1050 } 1051 1052 unsigned NumCmps = 0; 1053 while (!Worklist.empty()) { 1054 assert(Worklist.size() <= MaxIter); 1055 const Use *U = Worklist.pop_back_val(); 1056 const Value *V = U->getUser(); 1057 --MaxIter; 1058 1059 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1060 isa<SelectInst>(V)) { 1061 // Track the uses. 1062 } else if (isa<LoadInst>(V)) { 1063 // Loading from the pointer doesn't escape it. 1064 continue; 1065 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1066 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1067 if (SI->getValueOperand() == U->get()) 1068 return nullptr; 1069 continue; 1070 } else if (isa<ICmpInst>(V)) { 1071 if (NumCmps++) 1072 return nullptr; // Found more than one cmp. 1073 continue; 1074 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1075 switch (Intrin->getIntrinsicID()) { 1076 // These intrinsics don't escape or compare the pointer. Memset is safe 1077 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1078 // we don't allow stores, so src cannot point to V. 1079 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1080 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1081 continue; 1082 default: 1083 return nullptr; 1084 } 1085 } else { 1086 return nullptr; 1087 } 1088 for (const Use &U : V->uses()) { 1089 if (Worklist.size() >= MaxIter) 1090 return nullptr; 1091 Worklist.push_back(&U); 1092 } 1093 } 1094 1095 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1096 return replaceInstUsesWith( 1097 ICI, 1098 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1099 } 1100 1101 /// Fold "icmp pred (X+C), X". 1102 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, 1103 ICmpInst::Predicate Pred) { 1104 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1105 // so the values can never be equal. Similarly for all other "or equals" 1106 // operators. 1107 assert(!!C && "C should not be zero!"); 1108 1109 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1110 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1111 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1112 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1113 Constant *R = ConstantInt::get(X->getType(), 1114 APInt::getMaxValue(C.getBitWidth()) - C); 1115 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1116 } 1117 1118 // (X+1) >u X --> X <u (0-1) --> X != 255 1119 // (X+2) >u X --> X <u (0-2) --> X <u 254 1120 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1121 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1122 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1123 ConstantInt::get(X->getType(), -C)); 1124 1125 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1126 1127 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1128 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1129 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1130 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1131 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1132 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1133 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1134 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1135 ConstantInt::get(X->getType(), SMax - C)); 1136 1137 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1138 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1139 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1140 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1141 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1142 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1143 1144 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1145 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1146 ConstantInt::get(X->getType(), SMax - (C - 1))); 1147 } 1148 1149 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1150 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1151 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1152 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1153 const APInt &AP1, 1154 const APInt &AP2) { 1155 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1156 1157 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1158 if (I.getPredicate() == I.ICMP_NE) 1159 Pred = CmpInst::getInversePredicate(Pred); 1160 return new ICmpInst(Pred, LHS, RHS); 1161 }; 1162 1163 // Don't bother doing any work for cases which InstSimplify handles. 1164 if (AP2.isNullValue()) 1165 return nullptr; 1166 1167 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1168 if (IsAShr) { 1169 if (AP2.isAllOnesValue()) 1170 return nullptr; 1171 if (AP2.isNegative() != AP1.isNegative()) 1172 return nullptr; 1173 if (AP2.sgt(AP1)) 1174 return nullptr; 1175 } 1176 1177 if (!AP1) 1178 // 'A' must be large enough to shift out the highest set bit. 1179 return getICmp(I.ICMP_UGT, A, 1180 ConstantInt::get(A->getType(), AP2.logBase2())); 1181 1182 if (AP1 == AP2) 1183 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1184 1185 int Shift; 1186 if (IsAShr && AP1.isNegative()) 1187 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1188 else 1189 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1190 1191 if (Shift > 0) { 1192 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1193 // There are multiple solutions if we are comparing against -1 and the LHS 1194 // of the ashr is not a power of two. 1195 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1196 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1197 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1198 } else if (AP1 == AP2.lshr(Shift)) { 1199 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1200 } 1201 } 1202 1203 // Shifting const2 will never be equal to const1. 1204 // FIXME: This should always be handled by InstSimplify? 1205 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1206 return replaceInstUsesWith(I, TorF); 1207 } 1208 1209 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1210 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1211 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1212 const APInt &AP1, 1213 const APInt &AP2) { 1214 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1215 1216 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1217 if (I.getPredicate() == I.ICMP_NE) 1218 Pred = CmpInst::getInversePredicate(Pred); 1219 return new ICmpInst(Pred, LHS, RHS); 1220 }; 1221 1222 // Don't bother doing any work for cases which InstSimplify handles. 1223 if (AP2.isNullValue()) 1224 return nullptr; 1225 1226 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1227 1228 if (!AP1 && AP2TrailingZeros != 0) 1229 return getICmp( 1230 I.ICMP_UGE, A, 1231 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1232 1233 if (AP1 == AP2) 1234 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1235 1236 // Get the distance between the lowest bits that are set. 1237 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1238 1239 if (Shift > 0 && AP2.shl(Shift) == AP1) 1240 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1241 1242 // Shifting const2 will never be equal to const1. 1243 // FIXME: This should always be handled by InstSimplify? 1244 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1245 return replaceInstUsesWith(I, TorF); 1246 } 1247 1248 /// The caller has matched a pattern of the form: 1249 /// I = icmp ugt (add (add A, B), CI2), CI1 1250 /// If this is of the form: 1251 /// sum = a + b 1252 /// if (sum+128 >u 255) 1253 /// Then replace it with llvm.sadd.with.overflow.i8. 1254 /// 1255 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1256 ConstantInt *CI2, ConstantInt *CI1, 1257 InstCombiner &IC) { 1258 // The transformation we're trying to do here is to transform this into an 1259 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1260 // with a narrower add, and discard the add-with-constant that is part of the 1261 // range check (if we can't eliminate it, this isn't profitable). 1262 1263 // In order to eliminate the add-with-constant, the compare can be its only 1264 // use. 1265 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1266 if (!AddWithCst->hasOneUse()) 1267 return nullptr; 1268 1269 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1270 if (!CI2->getValue().isPowerOf2()) 1271 return nullptr; 1272 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1273 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1274 return nullptr; 1275 1276 // The width of the new add formed is 1 more than the bias. 1277 ++NewWidth; 1278 1279 // Check to see that CI1 is an all-ones value with NewWidth bits. 1280 if (CI1->getBitWidth() == NewWidth || 1281 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1282 return nullptr; 1283 1284 // This is only really a signed overflow check if the inputs have been 1285 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1286 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1287 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1288 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1289 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1290 return nullptr; 1291 1292 // In order to replace the original add with a narrower 1293 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1294 // and truncates that discard the high bits of the add. Verify that this is 1295 // the case. 1296 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1297 for (User *U : OrigAdd->users()) { 1298 if (U == AddWithCst) 1299 continue; 1300 1301 // Only accept truncates for now. We would really like a nice recursive 1302 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1303 // chain to see which bits of a value are actually demanded. If the 1304 // original add had another add which was then immediately truncated, we 1305 // could still do the transformation. 1306 TruncInst *TI = dyn_cast<TruncInst>(U); 1307 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1308 return nullptr; 1309 } 1310 1311 // If the pattern matches, truncate the inputs to the narrower type and 1312 // use the sadd_with_overflow intrinsic to efficiently compute both the 1313 // result and the overflow bit. 1314 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1315 Function *F = Intrinsic::getDeclaration( 1316 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1317 1318 InstCombiner::BuilderTy &Builder = IC.Builder; 1319 1320 // Put the new code above the original add, in case there are any uses of the 1321 // add between the add and the compare. 1322 Builder.SetInsertPoint(OrigAdd); 1323 1324 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1325 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1326 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1327 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1328 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1329 1330 // The inner add was the result of the narrow add, zero extended to the 1331 // wider type. Replace it with the result computed by the intrinsic. 1332 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1333 1334 // The original icmp gets replaced with the overflow value. 1335 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1336 } 1337 1338 /// If we have: 1339 /// icmp eq/ne (urem/srem %x, %y), 0 1340 /// iff %y is a power-of-two, we can replace this with a bit test: 1341 /// icmp eq/ne (and %x, (add %y, -1)), 0 1342 Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1343 // This fold is only valid for equality predicates. 1344 if (!I.isEquality()) 1345 return nullptr; 1346 ICmpInst::Predicate Pred; 1347 Value *X, *Y, *Zero; 1348 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1349 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1350 return nullptr; 1351 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1352 return nullptr; 1353 // This may increase instruction count, we don't enforce that Y is a constant. 1354 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1355 Value *Masked = Builder.CreateAnd(X, Mask); 1356 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1357 } 1358 1359 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1360 /// by one-less-than-bitwidth into a sign test on the original value. 1361 Instruction *InstCombiner::foldSignBitTest(ICmpInst &I) { 1362 Instruction *Val; 1363 ICmpInst::Predicate Pred; 1364 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1365 return nullptr; 1366 1367 Value *X; 1368 Type *XTy; 1369 1370 Constant *C; 1371 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1372 XTy = X->getType(); 1373 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1374 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1375 APInt(XBitWidth, XBitWidth - 1)))) 1376 return nullptr; 1377 } else if (isa<BinaryOperator>(Val) && 1378 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1379 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1380 /*AnalyzeForSignBitExtraction=*/true))) { 1381 XTy = X->getType(); 1382 } else 1383 return nullptr; 1384 1385 return ICmpInst::Create(Instruction::ICmp, 1386 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1387 : ICmpInst::ICMP_SLT, 1388 X, ConstantInt::getNullValue(XTy)); 1389 } 1390 1391 // Handle icmp pred X, 0 1392 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { 1393 CmpInst::Predicate Pred = Cmp.getPredicate(); 1394 if (!match(Cmp.getOperand(1), m_Zero())) 1395 return nullptr; 1396 1397 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1398 if (Pred == ICmpInst::ICMP_SGT) { 1399 Value *A, *B; 1400 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1401 if (SPR.Flavor == SPF_SMIN) { 1402 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1403 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1404 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1405 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1406 } 1407 } 1408 1409 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1410 return New; 1411 1412 // Given: 1413 // icmp eq/ne (urem %x, %y), 0 1414 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1415 // icmp eq/ne %x, 0 1416 Value *X, *Y; 1417 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1418 ICmpInst::isEquality(Pred)) { 1419 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1420 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1421 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1422 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1423 } 1424 1425 return nullptr; 1426 } 1427 1428 /// Fold icmp Pred X, C. 1429 /// TODO: This code structure does not make sense. The saturating add fold 1430 /// should be moved to some other helper and extended as noted below (it is also 1431 /// possible that code has been made unnecessary - do we canonicalize IR to 1432 /// overflow/saturating intrinsics or not?). 1433 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1434 // Match the following pattern, which is a common idiom when writing 1435 // overflow-safe integer arithmetic functions. The source performs an addition 1436 // in wider type and explicitly checks for overflow using comparisons against 1437 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1438 // 1439 // TODO: This could probably be generalized to handle other overflow-safe 1440 // operations if we worked out the formulas to compute the appropriate magic 1441 // constants. 1442 // 1443 // sum = a + b 1444 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1445 CmpInst::Predicate Pred = Cmp.getPredicate(); 1446 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1447 Value *A, *B; 1448 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1449 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1450 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1451 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1452 return Res; 1453 1454 return nullptr; 1455 } 1456 1457 /// Canonicalize icmp instructions based on dominating conditions. 1458 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1459 // This is a cheap/incomplete check for dominance - just match a single 1460 // predecessor with a conditional branch. 1461 BasicBlock *CmpBB = Cmp.getParent(); 1462 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1463 if (!DomBB) 1464 return nullptr; 1465 1466 Value *DomCond; 1467 BasicBlock *TrueBB, *FalseBB; 1468 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1469 return nullptr; 1470 1471 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1472 "Predecessor block does not point to successor?"); 1473 1474 // The branch should get simplified. Don't bother simplifying this condition. 1475 if (TrueBB == FalseBB) 1476 return nullptr; 1477 1478 // Try to simplify this compare to T/F based on the dominating condition. 1479 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1480 if (Imp) 1481 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1482 1483 CmpInst::Predicate Pred = Cmp.getPredicate(); 1484 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1485 ICmpInst::Predicate DomPred; 1486 const APInt *C, *DomC; 1487 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1488 match(Y, m_APInt(C))) { 1489 // We have 2 compares of a variable with constants. Calculate the constant 1490 // ranges of those compares to see if we can transform the 2nd compare: 1491 // DomBB: 1492 // DomCond = icmp DomPred X, DomC 1493 // br DomCond, CmpBB, FalseBB 1494 // CmpBB: 1495 // Cmp = icmp Pred X, C 1496 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1497 ConstantRange DominatingCR = 1498 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1499 : ConstantRange::makeExactICmpRegion( 1500 CmpInst::getInversePredicate(DomPred), *DomC); 1501 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1502 ConstantRange Difference = DominatingCR.difference(CR); 1503 if (Intersection.isEmptySet()) 1504 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1505 if (Difference.isEmptySet()) 1506 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1507 1508 // Canonicalizing a sign bit comparison that gets used in a branch, 1509 // pessimizes codegen by generating branch on zero instruction instead 1510 // of a test and branch. So we avoid canonicalizing in such situations 1511 // because test and branch instruction has better branch displacement 1512 // than compare and branch instruction. 1513 bool UnusedBit; 1514 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1515 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1516 return nullptr; 1517 1518 if (const APInt *EqC = Intersection.getSingleElement()) 1519 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1520 if (const APInt *NeC = Difference.getSingleElement()) 1521 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1522 } 1523 1524 return nullptr; 1525 } 1526 1527 /// Fold icmp (trunc X, Y), C. 1528 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1529 TruncInst *Trunc, 1530 const APInt &C) { 1531 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1532 Value *X = Trunc->getOperand(0); 1533 if (C.isOneValue() && C.getBitWidth() > 1) { 1534 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1535 Value *V = nullptr; 1536 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1537 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1538 ConstantInt::get(V->getType(), 1)); 1539 } 1540 1541 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1542 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1543 // of the high bits truncated out of x are known. 1544 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1545 SrcBits = X->getType()->getScalarSizeInBits(); 1546 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1547 1548 // If all the high bits are known, we can do this xform. 1549 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1550 // Pull in the high bits from known-ones set. 1551 APInt NewRHS = C.zext(SrcBits); 1552 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1553 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1554 } 1555 } 1556 1557 return nullptr; 1558 } 1559 1560 /// Fold icmp (xor X, Y), C. 1561 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1562 BinaryOperator *Xor, 1563 const APInt &C) { 1564 Value *X = Xor->getOperand(0); 1565 Value *Y = Xor->getOperand(1); 1566 const APInt *XorC; 1567 if (!match(Y, m_APInt(XorC))) 1568 return nullptr; 1569 1570 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1571 // fold the xor. 1572 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1573 bool TrueIfSigned = false; 1574 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1575 1576 // If the sign bit of the XorCst is not set, there is no change to 1577 // the operation, just stop using the Xor. 1578 if (!XorC->isNegative()) { 1579 Cmp.setOperand(0, X); 1580 Worklist.Add(Xor); 1581 return &Cmp; 1582 } 1583 1584 // Emit the opposite comparison. 1585 if (TrueIfSigned) 1586 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1587 ConstantInt::getAllOnesValue(X->getType())); 1588 else 1589 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1590 ConstantInt::getNullValue(X->getType())); 1591 } 1592 1593 if (Xor->hasOneUse()) { 1594 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1595 if (!Cmp.isEquality() && XorC->isSignMask()) { 1596 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1597 : Cmp.getSignedPredicate(); 1598 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1599 } 1600 1601 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1602 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1603 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1604 : Cmp.getSignedPredicate(); 1605 Pred = Cmp.getSwappedPredicate(Pred); 1606 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1607 } 1608 } 1609 1610 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1611 if (Pred == ICmpInst::ICMP_UGT) { 1612 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1613 if (*XorC == ~C && (C + 1).isPowerOf2()) 1614 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1615 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1616 if (*XorC == C && (C + 1).isPowerOf2()) 1617 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1618 } 1619 if (Pred == ICmpInst::ICMP_ULT) { 1620 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1621 if (*XorC == -C && C.isPowerOf2()) 1622 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1623 ConstantInt::get(X->getType(), ~C)); 1624 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1625 if (*XorC == C && (-C).isPowerOf2()) 1626 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1627 ConstantInt::get(X->getType(), ~C)); 1628 } 1629 return nullptr; 1630 } 1631 1632 /// Fold icmp (and (sh X, Y), C2), C1. 1633 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1634 const APInt &C1, const APInt &C2) { 1635 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1636 if (!Shift || !Shift->isShift()) 1637 return nullptr; 1638 1639 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1640 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1641 // code produced by the clang front-end, for bitfield access. 1642 // This seemingly simple opportunity to fold away a shift turns out to be 1643 // rather complicated. See PR17827 for details. 1644 unsigned ShiftOpcode = Shift->getOpcode(); 1645 bool IsShl = ShiftOpcode == Instruction::Shl; 1646 const APInt *C3; 1647 if (match(Shift->getOperand(1), m_APInt(C3))) { 1648 bool CanFold = false; 1649 if (ShiftOpcode == Instruction::Shl) { 1650 // For a left shift, we can fold if the comparison is not signed. We can 1651 // also fold a signed comparison if the mask value and comparison value 1652 // are not negative. These constraints may not be obvious, but we can 1653 // prove that they are correct using an SMT solver. 1654 if (!Cmp.isSigned() || (!C2.isNegative() && !C1.isNegative())) 1655 CanFold = true; 1656 } else { 1657 bool IsAshr = ShiftOpcode == Instruction::AShr; 1658 // For a logical right shift, we can fold if the comparison is not signed. 1659 // We can also fold a signed comparison if the shifted mask value and the 1660 // shifted comparison value are not negative. These constraints may not be 1661 // obvious, but we can prove that they are correct using an SMT solver. 1662 // For an arithmetic shift right we can do the same, if we ensure 1663 // the And doesn't use any bits being shifted in. Normally these would 1664 // be turned into lshr by SimplifyDemandedBits, but not if there is an 1665 // additional user. 1666 if (!IsAshr || (C2.shl(*C3).lshr(*C3) == C2)) { 1667 if (!Cmp.isSigned() || 1668 (!C2.shl(*C3).isNegative() && !C1.shl(*C3).isNegative())) 1669 CanFold = true; 1670 } 1671 } 1672 1673 if (CanFold) { 1674 APInt NewCst = IsShl ? C1.lshr(*C3) : C1.shl(*C3); 1675 APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3); 1676 // Check to see if we are shifting out any of the bits being compared. 1677 if (SameAsC1 != C1) { 1678 // If we shifted bits out, the fold is not going to work out. As a 1679 // special case, check to see if this means that the result is always 1680 // true or false now. 1681 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1682 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1683 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1684 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1685 } else { 1686 Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst)); 1687 APInt NewAndCst = IsShl ? C2.lshr(*C3) : C2.shl(*C3); 1688 And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst)); 1689 And->setOperand(0, Shift->getOperand(0)); 1690 Worklist.Add(Shift); // Shift is dead. 1691 return &Cmp; 1692 } 1693 } 1694 } 1695 1696 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1697 // preferable because it allows the C2 << Y expression to be hoisted out of a 1698 // loop if Y is invariant and X is not. 1699 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1700 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1701 // Compute C2 << Y. 1702 Value *NewShift = 1703 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1704 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1705 1706 // Compute X & (C2 << Y). 1707 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1708 Cmp.setOperand(0, NewAnd); 1709 return &Cmp; 1710 } 1711 1712 return nullptr; 1713 } 1714 1715 /// Fold icmp (and X, C2), C1. 1716 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1717 BinaryOperator *And, 1718 const APInt &C1) { 1719 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1720 1721 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1722 // TODO: We canonicalize to the longer form for scalars because we have 1723 // better analysis/folds for icmp, and codegen may be better with icmp. 1724 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1725 match(And->getOperand(1), m_One())) 1726 return new TruncInst(And->getOperand(0), Cmp.getType()); 1727 1728 const APInt *C2; 1729 Value *X; 1730 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1731 return nullptr; 1732 1733 // Don't perform the following transforms if the AND has multiple uses 1734 if (!And->hasOneUse()) 1735 return nullptr; 1736 1737 if (Cmp.isEquality() && C1.isNullValue()) { 1738 // Restrict this fold to single-use 'and' (PR10267). 1739 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1740 if (C2->isSignMask()) { 1741 Constant *Zero = Constant::getNullValue(X->getType()); 1742 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1743 return new ICmpInst(NewPred, X, Zero); 1744 } 1745 1746 // Restrict this fold only for single-use 'and' (PR10267). 1747 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1748 if ((~(*C2) + 1).isPowerOf2()) { 1749 Constant *NegBOC = 1750 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1751 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1752 return new ICmpInst(NewPred, X, NegBOC); 1753 } 1754 } 1755 1756 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1757 // the input width without changing the value produced, eliminate the cast: 1758 // 1759 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1760 // 1761 // We can do this transformation if the constants do not have their sign bits 1762 // set or if it is an equality comparison. Extending a relational comparison 1763 // when we're checking the sign bit would not work. 1764 Value *W; 1765 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1766 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1767 // TODO: Is this a good transform for vectors? Wider types may reduce 1768 // throughput. Should this transform be limited (even for scalars) by using 1769 // shouldChangeType()? 1770 if (!Cmp.getType()->isVectorTy()) { 1771 Type *WideType = W->getType(); 1772 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1773 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1774 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1775 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1776 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1777 } 1778 } 1779 1780 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1781 return I; 1782 1783 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1784 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1785 // 1786 // iff pred isn't signed 1787 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1788 match(And->getOperand(1), m_One())) { 1789 Constant *One = cast<Constant>(And->getOperand(1)); 1790 Value *Or = And->getOperand(0); 1791 Value *A, *B, *LShr; 1792 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1793 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1794 unsigned UsesRemoved = 0; 1795 if (And->hasOneUse()) 1796 ++UsesRemoved; 1797 if (Or->hasOneUse()) 1798 ++UsesRemoved; 1799 if (LShr->hasOneUse()) 1800 ++UsesRemoved; 1801 1802 // Compute A & ((1 << B) | 1) 1803 Value *NewOr = nullptr; 1804 if (auto *C = dyn_cast<Constant>(B)) { 1805 if (UsesRemoved >= 1) 1806 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1807 } else { 1808 if (UsesRemoved >= 3) 1809 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1810 /*HasNUW=*/true), 1811 One, Or->getName()); 1812 } 1813 if (NewOr) { 1814 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1815 Cmp.setOperand(0, NewAnd); 1816 return &Cmp; 1817 } 1818 } 1819 } 1820 1821 return nullptr; 1822 } 1823 1824 /// Fold icmp (and X, Y), C. 1825 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1826 BinaryOperator *And, 1827 const APInt &C) { 1828 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1829 return I; 1830 1831 // TODO: These all require that Y is constant too, so refactor with the above. 1832 1833 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1834 Value *X = And->getOperand(0); 1835 Value *Y = And->getOperand(1); 1836 if (auto *LI = dyn_cast<LoadInst>(X)) 1837 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1838 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1839 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1840 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1841 ConstantInt *C2 = cast<ConstantInt>(Y); 1842 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1843 return Res; 1844 } 1845 1846 if (!Cmp.isEquality()) 1847 return nullptr; 1848 1849 // X & -C == -C -> X > u ~C 1850 // X & -C != -C -> X <= u ~C 1851 // iff C is a power of 2 1852 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1853 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1854 : CmpInst::ICMP_ULE; 1855 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1856 } 1857 1858 // (X & C2) == 0 -> (trunc X) >= 0 1859 // (X & C2) != 0 -> (trunc X) < 0 1860 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1861 const APInt *C2; 1862 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1863 int32_t ExactLogBase2 = C2->exactLogBase2(); 1864 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1865 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1866 if (And->getType()->isVectorTy()) 1867 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements()); 1868 Value *Trunc = Builder.CreateTrunc(X, NTy); 1869 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1870 : CmpInst::ICMP_SLT; 1871 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1872 } 1873 } 1874 1875 return nullptr; 1876 } 1877 1878 /// Fold icmp (or X, Y), C. 1879 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1880 const APInt &C) { 1881 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1882 if (C.isOneValue()) { 1883 // icmp slt signum(V) 1 --> icmp slt V, 1 1884 Value *V = nullptr; 1885 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1886 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1887 ConstantInt::get(V->getType(), 1)); 1888 } 1889 1890 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1891 if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) { 1892 // X | C == C --> X <=u C 1893 // X | C != C --> X >u C 1894 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1895 if ((C + 1).isPowerOf2()) { 1896 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1897 return new ICmpInst(Pred, OrOp0, OrOp1); 1898 } 1899 // More general: are all bits outside of a mask constant set or not set? 1900 // X | C == C --> (X & ~C) == 0 1901 // X | C != C --> (X & ~C) != 0 1902 if (Or->hasOneUse()) { 1903 Value *A = Builder.CreateAnd(OrOp0, ~C); 1904 return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType())); 1905 } 1906 } 1907 1908 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1909 return nullptr; 1910 1911 Value *P, *Q; 1912 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1913 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1914 // -> and (icmp eq P, null), (icmp eq Q, null). 1915 Value *CmpP = 1916 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1917 Value *CmpQ = 1918 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1919 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1920 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1921 } 1922 1923 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1924 // a shorter form that has more potential to be folded even further. 1925 Value *X1, *X2, *X3, *X4; 1926 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1927 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1928 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1929 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1930 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1931 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1932 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1933 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1934 } 1935 1936 return nullptr; 1937 } 1938 1939 /// Fold icmp (mul X, Y), C. 1940 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1941 BinaryOperator *Mul, 1942 const APInt &C) { 1943 const APInt *MulC; 1944 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1945 return nullptr; 1946 1947 // If this is a test of the sign bit and the multiply is sign-preserving with 1948 // a constant operand, use the multiply LHS operand instead. 1949 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1950 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1951 if (MulC->isNegative()) 1952 Pred = ICmpInst::getSwappedPredicate(Pred); 1953 return new ICmpInst(Pred, Mul->getOperand(0), 1954 Constant::getNullValue(Mul->getType())); 1955 } 1956 1957 return nullptr; 1958 } 1959 1960 /// Fold icmp (shl 1, Y), C. 1961 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1962 const APInt &C) { 1963 Value *Y; 1964 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1965 return nullptr; 1966 1967 Type *ShiftType = Shl->getType(); 1968 unsigned TypeBits = C.getBitWidth(); 1969 bool CIsPowerOf2 = C.isPowerOf2(); 1970 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1971 if (Cmp.isUnsigned()) { 1972 // (1 << Y) pred C -> Y pred Log2(C) 1973 if (!CIsPowerOf2) { 1974 // (1 << Y) < 30 -> Y <= 4 1975 // (1 << Y) <= 30 -> Y <= 4 1976 // (1 << Y) >= 30 -> Y > 4 1977 // (1 << Y) > 30 -> Y > 4 1978 if (Pred == ICmpInst::ICMP_ULT) 1979 Pred = ICmpInst::ICMP_ULE; 1980 else if (Pred == ICmpInst::ICMP_UGE) 1981 Pred = ICmpInst::ICMP_UGT; 1982 } 1983 1984 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 1985 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 1986 unsigned CLog2 = C.logBase2(); 1987 if (CLog2 == TypeBits - 1) { 1988 if (Pred == ICmpInst::ICMP_UGE) 1989 Pred = ICmpInst::ICMP_EQ; 1990 else if (Pred == ICmpInst::ICMP_ULT) 1991 Pred = ICmpInst::ICMP_NE; 1992 } 1993 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 1994 } else if (Cmp.isSigned()) { 1995 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 1996 if (C.isAllOnesValue()) { 1997 // (1 << Y) <= -1 -> Y == 31 1998 if (Pred == ICmpInst::ICMP_SLE) 1999 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2000 2001 // (1 << Y) > -1 -> Y != 31 2002 if (Pred == ICmpInst::ICMP_SGT) 2003 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2004 } else if (!C) { 2005 // (1 << Y) < 0 -> Y == 31 2006 // (1 << Y) <= 0 -> Y == 31 2007 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2008 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2009 2010 // (1 << Y) >= 0 -> Y != 31 2011 // (1 << Y) > 0 -> Y != 31 2012 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2013 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2014 } 2015 } else if (Cmp.isEquality() && CIsPowerOf2) { 2016 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2017 } 2018 2019 return nullptr; 2020 } 2021 2022 /// Fold icmp (shl X, Y), C. 2023 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 2024 BinaryOperator *Shl, 2025 const APInt &C) { 2026 const APInt *ShiftVal; 2027 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2028 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2029 2030 const APInt *ShiftAmt; 2031 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2032 return foldICmpShlOne(Cmp, Shl, C); 2033 2034 // Check that the shift amount is in range. If not, don't perform undefined 2035 // shifts. When the shift is visited, it will be simplified. 2036 unsigned TypeBits = C.getBitWidth(); 2037 if (ShiftAmt->uge(TypeBits)) 2038 return nullptr; 2039 2040 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2041 Value *X = Shl->getOperand(0); 2042 Type *ShType = Shl->getType(); 2043 2044 // NSW guarantees that we are only shifting out sign bits from the high bits, 2045 // so we can ASHR the compare constant without needing a mask and eliminate 2046 // the shift. 2047 if (Shl->hasNoSignedWrap()) { 2048 if (Pred == ICmpInst::ICMP_SGT) { 2049 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2050 APInt ShiftedC = C.ashr(*ShiftAmt); 2051 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2052 } 2053 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2054 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2055 APInt ShiftedC = C.ashr(*ShiftAmt); 2056 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2057 } 2058 if (Pred == ICmpInst::ICMP_SLT) { 2059 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2060 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2061 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2062 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2063 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2064 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2065 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2066 } 2067 // If this is a signed comparison to 0 and the shift is sign preserving, 2068 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2069 // do that if we're sure to not continue on in this function. 2070 if (isSignTest(Pred, C)) 2071 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2072 } 2073 2074 // NUW guarantees that we are only shifting out zero bits from the high bits, 2075 // so we can LSHR the compare constant without needing a mask and eliminate 2076 // the shift. 2077 if (Shl->hasNoUnsignedWrap()) { 2078 if (Pred == ICmpInst::ICMP_UGT) { 2079 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2080 APInt ShiftedC = C.lshr(*ShiftAmt); 2081 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2082 } 2083 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2084 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2085 APInt ShiftedC = C.lshr(*ShiftAmt); 2086 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2087 } 2088 if (Pred == ICmpInst::ICMP_ULT) { 2089 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2090 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2091 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2092 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2093 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2094 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2095 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2096 } 2097 } 2098 2099 if (Cmp.isEquality() && Shl->hasOneUse()) { 2100 // Strength-reduce the shift into an 'and'. 2101 Constant *Mask = ConstantInt::get( 2102 ShType, 2103 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2104 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2105 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2106 return new ICmpInst(Pred, And, LShrC); 2107 } 2108 2109 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2110 bool TrueIfSigned = false; 2111 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2112 // (X << 31) <s 0 --> (X & 1) != 0 2113 Constant *Mask = ConstantInt::get( 2114 ShType, 2115 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2116 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2117 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2118 And, Constant::getNullValue(ShType)); 2119 } 2120 2121 // Simplify 'shl' inequality test into 'and' equality test. 2122 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2123 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2124 if ((C + 1).isPowerOf2() && 2125 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2126 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2127 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2128 : ICmpInst::ICMP_NE, 2129 And, Constant::getNullValue(ShType)); 2130 } 2131 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2132 if (C.isPowerOf2() && 2133 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2134 Value *And = 2135 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2136 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2137 : ICmpInst::ICMP_NE, 2138 And, Constant::getNullValue(ShType)); 2139 } 2140 } 2141 2142 // Transform (icmp pred iM (shl iM %v, N), C) 2143 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2144 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2145 // This enables us to get rid of the shift in favor of a trunc that may be 2146 // free on the target. It has the additional benefit of comparing to a 2147 // smaller constant that may be more target-friendly. 2148 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2149 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2150 DL.isLegalInteger(TypeBits - Amt)) { 2151 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2152 if (ShType->isVectorTy()) 2153 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements()); 2154 Constant *NewC = 2155 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2156 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2157 } 2158 2159 return nullptr; 2160 } 2161 2162 /// Fold icmp ({al}shr X, Y), C. 2163 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 2164 BinaryOperator *Shr, 2165 const APInt &C) { 2166 // An exact shr only shifts out zero bits, so: 2167 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2168 Value *X = Shr->getOperand(0); 2169 CmpInst::Predicate Pred = Cmp.getPredicate(); 2170 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2171 C.isNullValue()) 2172 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2173 2174 const APInt *ShiftVal; 2175 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2176 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2177 2178 const APInt *ShiftAmt; 2179 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2180 return nullptr; 2181 2182 // Check that the shift amount is in range. If not, don't perform undefined 2183 // shifts. When the shift is visited it will be simplified. 2184 unsigned TypeBits = C.getBitWidth(); 2185 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2186 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2187 return nullptr; 2188 2189 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2190 bool IsExact = Shr->isExact(); 2191 Type *ShrTy = Shr->getType(); 2192 // TODO: If we could guarantee that InstSimplify would handle all of the 2193 // constant-value-based preconditions in the folds below, then we could assert 2194 // those conditions rather than checking them. This is difficult because of 2195 // undef/poison (PR34838). 2196 if (IsAShr) { 2197 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2198 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2199 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2200 APInt ShiftedC = C.shl(ShAmtVal); 2201 if (ShiftedC.ashr(ShAmtVal) == C) 2202 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2203 } 2204 if (Pred == CmpInst::ICMP_SGT) { 2205 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2206 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2207 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2208 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2209 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2210 } 2211 } else { 2212 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2213 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2214 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2215 APInt ShiftedC = C.shl(ShAmtVal); 2216 if (ShiftedC.lshr(ShAmtVal) == C) 2217 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2218 } 2219 if (Pred == CmpInst::ICMP_UGT) { 2220 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2221 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2222 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2223 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2224 } 2225 } 2226 2227 if (!Cmp.isEquality()) 2228 return nullptr; 2229 2230 // Handle equality comparisons of shift-by-constant. 2231 2232 // If the comparison constant changes with the shift, the comparison cannot 2233 // succeed (bits of the comparison constant cannot match the shifted value). 2234 // This should be known by InstSimplify and already be folded to true/false. 2235 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2236 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2237 "Expected icmp+shr simplify did not occur."); 2238 2239 // If the bits shifted out are known zero, compare the unshifted value: 2240 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2241 if (Shr->isExact()) 2242 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2243 2244 if (Shr->hasOneUse()) { 2245 // Canonicalize the shift into an 'and': 2246 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2247 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2248 Constant *Mask = ConstantInt::get(ShrTy, Val); 2249 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2250 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2251 } 2252 2253 return nullptr; 2254 } 2255 2256 Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp, 2257 BinaryOperator *SRem, 2258 const APInt &C) { 2259 // Match an 'is positive' or 'is negative' comparison of remainder by a 2260 // constant power-of-2 value: 2261 // (X % pow2C) sgt/slt 0 2262 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2263 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2264 return nullptr; 2265 2266 // TODO: The one-use check is standard because we do not typically want to 2267 // create longer instruction sequences, but this might be a special-case 2268 // because srem is not good for analysis or codegen. 2269 if (!SRem->hasOneUse()) 2270 return nullptr; 2271 2272 const APInt *DivisorC; 2273 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2274 return nullptr; 2275 2276 // Mask off the sign bit and the modulo bits (low-bits). 2277 Type *Ty = SRem->getType(); 2278 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2279 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2280 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2281 2282 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2283 // bit is set. Example: 2284 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2285 if (Pred == ICmpInst::ICMP_SGT) 2286 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2287 2288 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2289 // bit is set. Example: 2290 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2291 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2292 } 2293 2294 /// Fold icmp (udiv X, Y), C. 2295 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2296 BinaryOperator *UDiv, 2297 const APInt &C) { 2298 const APInt *C2; 2299 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2300 return nullptr; 2301 2302 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2303 2304 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2305 Value *Y = UDiv->getOperand(1); 2306 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2307 assert(!C.isMaxValue() && 2308 "icmp ugt X, UINT_MAX should have been simplified already."); 2309 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2310 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2311 } 2312 2313 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2314 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2315 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2316 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2317 ConstantInt::get(Y->getType(), C2->udiv(C))); 2318 } 2319 2320 return nullptr; 2321 } 2322 2323 /// Fold icmp ({su}div X, Y), C. 2324 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2325 BinaryOperator *Div, 2326 const APInt &C) { 2327 // Fold: icmp pred ([us]div X, C2), C -> range test 2328 // Fold this div into the comparison, producing a range check. 2329 // Determine, based on the divide type, what the range is being 2330 // checked. If there is an overflow on the low or high side, remember 2331 // it, otherwise compute the range [low, hi) bounding the new value. 2332 // See: InsertRangeTest above for the kinds of replacements possible. 2333 const APInt *C2; 2334 if (!match(Div->getOperand(1), m_APInt(C2))) 2335 return nullptr; 2336 2337 // FIXME: If the operand types don't match the type of the divide 2338 // then don't attempt this transform. The code below doesn't have the 2339 // logic to deal with a signed divide and an unsigned compare (and 2340 // vice versa). This is because (x /s C2) <s C produces different 2341 // results than (x /s C2) <u C or (x /u C2) <s C or even 2342 // (x /u C2) <u C. Simply casting the operands and result won't 2343 // work. :( The if statement below tests that condition and bails 2344 // if it finds it. 2345 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2346 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2347 return nullptr; 2348 2349 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2350 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2351 // division-by-constant cases should be present, we can not assert that they 2352 // have happened before we reach this icmp instruction. 2353 if (C2->isNullValue() || C2->isOneValue() || 2354 (DivIsSigned && C2->isAllOnesValue())) 2355 return nullptr; 2356 2357 // Compute Prod = C * C2. We are essentially solving an equation of 2358 // form X / C2 = C. We solve for X by multiplying C2 and C. 2359 // By solving for X, we can turn this into a range check instead of computing 2360 // a divide. 2361 APInt Prod = C * *C2; 2362 2363 // Determine if the product overflows by seeing if the product is not equal to 2364 // the divide. Make sure we do the same kind of divide as in the LHS 2365 // instruction that we're folding. 2366 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2367 2368 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2369 2370 // If the division is known to be exact, then there is no remainder from the 2371 // divide, so the covered range size is unit, otherwise it is the divisor. 2372 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2373 2374 // Figure out the interval that is being checked. For example, a comparison 2375 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2376 // Compute this interval based on the constants involved and the signedness of 2377 // the compare/divide. This computes a half-open interval, keeping track of 2378 // whether either value in the interval overflows. After analysis each 2379 // overflow variable is set to 0 if it's corresponding bound variable is valid 2380 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2381 int LoOverflow = 0, HiOverflow = 0; 2382 APInt LoBound, HiBound; 2383 2384 if (!DivIsSigned) { // udiv 2385 // e.g. X/5 op 3 --> [15, 20) 2386 LoBound = Prod; 2387 HiOverflow = LoOverflow = ProdOV; 2388 if (!HiOverflow) { 2389 // If this is not an exact divide, then many values in the range collapse 2390 // to the same result value. 2391 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2392 } 2393 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2394 if (C.isNullValue()) { // (X / pos) op 0 2395 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2396 LoBound = -(RangeSize - 1); 2397 HiBound = RangeSize; 2398 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2399 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2400 HiOverflow = LoOverflow = ProdOV; 2401 if (!HiOverflow) 2402 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2403 } else { // (X / pos) op neg 2404 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2405 HiBound = Prod + 1; 2406 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2407 if (!LoOverflow) { 2408 APInt DivNeg = -RangeSize; 2409 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2410 } 2411 } 2412 } else if (C2->isNegative()) { // Divisor is < 0. 2413 if (Div->isExact()) 2414 RangeSize.negate(); 2415 if (C.isNullValue()) { // (X / neg) op 0 2416 // e.g. X/-5 op 0 --> [-4, 5) 2417 LoBound = RangeSize + 1; 2418 HiBound = -RangeSize; 2419 if (HiBound == *C2) { // -INTMIN = INTMIN 2420 HiOverflow = 1; // [INTMIN+1, overflow) 2421 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2422 } 2423 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2424 // e.g. X/-5 op 3 --> [-19, -14) 2425 HiBound = Prod + 1; 2426 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2427 if (!LoOverflow) 2428 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2429 } else { // (X / neg) op neg 2430 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2431 LoOverflow = HiOverflow = ProdOV; 2432 if (!HiOverflow) 2433 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2434 } 2435 2436 // Dividing by a negative swaps the condition. LT <-> GT 2437 Pred = ICmpInst::getSwappedPredicate(Pred); 2438 } 2439 2440 Value *X = Div->getOperand(0); 2441 switch (Pred) { 2442 default: llvm_unreachable("Unhandled icmp opcode!"); 2443 case ICmpInst::ICMP_EQ: 2444 if (LoOverflow && HiOverflow) 2445 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2446 if (HiOverflow) 2447 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2448 ICmpInst::ICMP_UGE, X, 2449 ConstantInt::get(Div->getType(), LoBound)); 2450 if (LoOverflow) 2451 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2452 ICmpInst::ICMP_ULT, X, 2453 ConstantInt::get(Div->getType(), HiBound)); 2454 return replaceInstUsesWith( 2455 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2456 case ICmpInst::ICMP_NE: 2457 if (LoOverflow && HiOverflow) 2458 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2459 if (HiOverflow) 2460 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2461 ICmpInst::ICMP_ULT, X, 2462 ConstantInt::get(Div->getType(), LoBound)); 2463 if (LoOverflow) 2464 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2465 ICmpInst::ICMP_UGE, X, 2466 ConstantInt::get(Div->getType(), HiBound)); 2467 return replaceInstUsesWith(Cmp, 2468 insertRangeTest(X, LoBound, HiBound, 2469 DivIsSigned, false)); 2470 case ICmpInst::ICMP_ULT: 2471 case ICmpInst::ICMP_SLT: 2472 if (LoOverflow == +1) // Low bound is greater than input range. 2473 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2474 if (LoOverflow == -1) // Low bound is less than input range. 2475 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2476 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2477 case ICmpInst::ICMP_UGT: 2478 case ICmpInst::ICMP_SGT: 2479 if (HiOverflow == +1) // High bound greater than input range. 2480 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2481 if (HiOverflow == -1) // High bound less than input range. 2482 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2483 if (Pred == ICmpInst::ICMP_UGT) 2484 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2485 ConstantInt::get(Div->getType(), HiBound)); 2486 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2487 ConstantInt::get(Div->getType(), HiBound)); 2488 } 2489 2490 return nullptr; 2491 } 2492 2493 /// Fold icmp (sub X, Y), C. 2494 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2495 BinaryOperator *Sub, 2496 const APInt &C) { 2497 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2498 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2499 const APInt *C2; 2500 APInt SubResult; 2501 2502 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0 2503 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) 2504 return new ICmpInst(Cmp.getPredicate(), Y, 2505 ConstantInt::get(Y->getType(), 0)); 2506 2507 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2508 if (match(X, m_APInt(C2)) && 2509 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2510 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2511 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2512 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2513 ConstantInt::get(Y->getType(), SubResult)); 2514 2515 // The following transforms are only worth it if the only user of the subtract 2516 // is the icmp. 2517 if (!Sub->hasOneUse()) 2518 return nullptr; 2519 2520 if (Sub->hasNoSignedWrap()) { 2521 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2522 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2523 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2524 2525 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2526 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2527 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2528 2529 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2530 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2531 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2532 2533 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2534 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2535 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2536 } 2537 2538 if (!match(X, m_APInt(C2))) 2539 return nullptr; 2540 2541 // C2 - Y <u C -> (Y | (C - 1)) == C2 2542 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2543 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2544 (*C2 & (C - 1)) == (C - 1)) 2545 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2546 2547 // C2 - Y >u C -> (Y | C) != C2 2548 // iff C2 & C == C and C + 1 is a power of 2 2549 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2550 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2551 2552 return nullptr; 2553 } 2554 2555 /// Fold icmp (add X, Y), C. 2556 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2557 BinaryOperator *Add, 2558 const APInt &C) { 2559 Value *Y = Add->getOperand(1); 2560 const APInt *C2; 2561 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2562 return nullptr; 2563 2564 // Fold icmp pred (add X, C2), C. 2565 Value *X = Add->getOperand(0); 2566 Type *Ty = Add->getType(); 2567 CmpInst::Predicate Pred = Cmp.getPredicate(); 2568 2569 // If the add does not wrap, we can always adjust the compare by subtracting 2570 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2571 // are canonicalized to SGT/SLT/UGT/ULT. 2572 if ((Add->hasNoSignedWrap() && 2573 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2574 (Add->hasNoUnsignedWrap() && 2575 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2576 bool Overflow; 2577 APInt NewC = 2578 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2579 // If there is overflow, the result must be true or false. 2580 // TODO: Can we assert there is no overflow because InstSimplify always 2581 // handles those cases? 2582 if (!Overflow) 2583 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2584 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2585 } 2586 2587 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2588 const APInt &Upper = CR.getUpper(); 2589 const APInt &Lower = CR.getLower(); 2590 if (Cmp.isSigned()) { 2591 if (Lower.isSignMask()) 2592 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2593 if (Upper.isSignMask()) 2594 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2595 } else { 2596 if (Lower.isMinValue()) 2597 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2598 if (Upper.isMinValue()) 2599 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2600 } 2601 2602 if (!Add->hasOneUse()) 2603 return nullptr; 2604 2605 // X+C <u C2 -> (X & -C2) == C 2606 // iff C & (C2-1) == 0 2607 // C2 is a power of 2 2608 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2609 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2610 ConstantExpr::getNeg(cast<Constant>(Y))); 2611 2612 // X+C >u C2 -> (X & ~C2) != C 2613 // iff C & C2 == 0 2614 // C2+1 is a power of 2 2615 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2616 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2617 ConstantExpr::getNeg(cast<Constant>(Y))); 2618 2619 return nullptr; 2620 } 2621 2622 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2623 Value *&RHS, ConstantInt *&Less, 2624 ConstantInt *&Equal, 2625 ConstantInt *&Greater) { 2626 // TODO: Generalize this to work with other comparison idioms or ensure 2627 // they get canonicalized into this form. 2628 2629 // select i1 (a == b), 2630 // i32 Equal, 2631 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2632 // where Equal, Less and Greater are placeholders for any three constants. 2633 ICmpInst::Predicate PredA; 2634 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2635 !ICmpInst::isEquality(PredA)) 2636 return false; 2637 Value *EqualVal = SI->getTrueValue(); 2638 Value *UnequalVal = SI->getFalseValue(); 2639 // We still can get non-canonical predicate here, so canonicalize. 2640 if (PredA == ICmpInst::ICMP_NE) 2641 std::swap(EqualVal, UnequalVal); 2642 if (!match(EqualVal, m_ConstantInt(Equal))) 2643 return false; 2644 ICmpInst::Predicate PredB; 2645 Value *LHS2, *RHS2; 2646 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2647 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2648 return false; 2649 // We can get predicate mismatch here, so canonicalize if possible: 2650 // First, ensure that 'LHS' match. 2651 if (LHS2 != LHS) { 2652 // x sgt y <--> y slt x 2653 std::swap(LHS2, RHS2); 2654 PredB = ICmpInst::getSwappedPredicate(PredB); 2655 } 2656 if (LHS2 != LHS) 2657 return false; 2658 // We also need to canonicalize 'RHS'. 2659 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2660 // x sgt C-1 <--> x sge C <--> not(x slt C) 2661 auto FlippedStrictness = 2662 getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2)); 2663 if (!FlippedStrictness) 2664 return false; 2665 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); 2666 RHS2 = FlippedStrictness->second; 2667 // And kind-of perform the result swap. 2668 std::swap(Less, Greater); 2669 PredB = ICmpInst::ICMP_SLT; 2670 } 2671 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2672 } 2673 2674 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, 2675 SelectInst *Select, 2676 ConstantInt *C) { 2677 2678 assert(C && "Cmp RHS should be a constant int!"); 2679 // If we're testing a constant value against the result of a three way 2680 // comparison, the result can be expressed directly in terms of the 2681 // original values being compared. Note: We could possibly be more 2682 // aggressive here and remove the hasOneUse test. The original select is 2683 // really likely to simplify or sink when we remove a test of the result. 2684 Value *OrigLHS, *OrigRHS; 2685 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2686 if (Cmp.hasOneUse() && 2687 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2688 C3GreaterThan)) { 2689 assert(C1LessThan && C2Equal && C3GreaterThan); 2690 2691 bool TrueWhenLessThan = 2692 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2693 ->isAllOnesValue(); 2694 bool TrueWhenEqual = 2695 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2696 ->isAllOnesValue(); 2697 bool TrueWhenGreaterThan = 2698 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2699 ->isAllOnesValue(); 2700 2701 // This generates the new instruction that will replace the original Cmp 2702 // Instruction. Instead of enumerating the various combinations when 2703 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2704 // false, we rely on chaining of ORs and future passes of InstCombine to 2705 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2706 2707 // When none of the three constants satisfy the predicate for the RHS (C), 2708 // the entire original Cmp can be simplified to a false. 2709 Value *Cond = Builder.getFalse(); 2710 if (TrueWhenLessThan) 2711 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2712 OrigLHS, OrigRHS)); 2713 if (TrueWhenEqual) 2714 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2715 OrigLHS, OrigRHS)); 2716 if (TrueWhenGreaterThan) 2717 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2718 OrigLHS, OrigRHS)); 2719 2720 return replaceInstUsesWith(Cmp, Cond); 2721 } 2722 return nullptr; 2723 } 2724 2725 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2726 InstCombiner::BuilderTy &Builder) { 2727 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2728 if (!Bitcast) 2729 return nullptr; 2730 2731 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2732 Value *Op1 = Cmp.getOperand(1); 2733 Value *BCSrcOp = Bitcast->getOperand(0); 2734 2735 // Make sure the bitcast doesn't change the number of vector elements. 2736 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2737 Bitcast->getDestTy()->getScalarSizeInBits()) { 2738 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2739 Value *X; 2740 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2741 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2742 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2743 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2744 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2745 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2746 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2747 match(Op1, m_Zero())) 2748 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2749 2750 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2751 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2752 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2753 2754 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2755 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2756 return new ICmpInst(Pred, X, 2757 ConstantInt::getAllOnesValue(X->getType())); 2758 } 2759 2760 // Zero-equality checks are preserved through unsigned floating-point casts: 2761 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2762 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2763 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2764 if (Cmp.isEquality() && match(Op1, m_Zero())) 2765 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2766 } 2767 2768 // Test to see if the operands of the icmp are casted versions of other 2769 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2770 if (Bitcast->getType()->isPointerTy() && 2771 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2772 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2773 // so eliminate it as well. 2774 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2775 Op1 = BC2->getOperand(0); 2776 2777 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2778 return new ICmpInst(Pred, BCSrcOp, Op1); 2779 } 2780 2781 // Folding: icmp <pred> iN X, C 2782 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2783 // and C is a splat of a K-bit pattern 2784 // and SC is a constant vector = <C', C', C', ..., C'> 2785 // Into: 2786 // %E = extractelement <M x iK> %vec, i32 C' 2787 // icmp <pred> iK %E, trunc(C) 2788 const APInt *C; 2789 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2790 !Bitcast->getType()->isIntegerTy() || 2791 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2792 return nullptr; 2793 2794 Value *Vec; 2795 Constant *Mask; 2796 if (match(BCSrcOp, 2797 m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) { 2798 // Check whether every element of Mask is the same constant 2799 if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) { 2800 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2801 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2802 if (C->isSplat(EltTy->getBitWidth())) { 2803 // Fold the icmp based on the value of C 2804 // If C is M copies of an iK sized bit pattern, 2805 // then: 2806 // => %E = extractelement <N x iK> %vec, i32 Elem 2807 // icmp <pred> iK %SplatVal, <pattern> 2808 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2809 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2810 return new ICmpInst(Pred, Extract, NewC); 2811 } 2812 } 2813 } 2814 return nullptr; 2815 } 2816 2817 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2818 /// where X is some kind of instruction. 2819 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2820 const APInt *C; 2821 if (!match(Cmp.getOperand(1), m_APInt(C))) 2822 return nullptr; 2823 2824 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2825 switch (BO->getOpcode()) { 2826 case Instruction::Xor: 2827 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2828 return I; 2829 break; 2830 case Instruction::And: 2831 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2832 return I; 2833 break; 2834 case Instruction::Or: 2835 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2836 return I; 2837 break; 2838 case Instruction::Mul: 2839 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2840 return I; 2841 break; 2842 case Instruction::Shl: 2843 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2844 return I; 2845 break; 2846 case Instruction::LShr: 2847 case Instruction::AShr: 2848 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2849 return I; 2850 break; 2851 case Instruction::SRem: 2852 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 2853 return I; 2854 break; 2855 case Instruction::UDiv: 2856 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2857 return I; 2858 LLVM_FALLTHROUGH; 2859 case Instruction::SDiv: 2860 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2861 return I; 2862 break; 2863 case Instruction::Sub: 2864 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2865 return I; 2866 break; 2867 case Instruction::Add: 2868 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2869 return I; 2870 break; 2871 default: 2872 break; 2873 } 2874 // TODO: These folds could be refactored to be part of the above calls. 2875 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2876 return I; 2877 } 2878 2879 // Match against CmpInst LHS being instructions other than binary operators. 2880 2881 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2882 // For now, we only support constant integers while folding the 2883 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2884 // similar to the cases handled by binary ops above. 2885 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2886 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2887 return I; 2888 } 2889 2890 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2891 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2892 return I; 2893 } 2894 2895 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2896 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2897 return I; 2898 2899 return nullptr; 2900 } 2901 2902 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2903 /// icmp eq/ne BO, C. 2904 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2905 BinaryOperator *BO, 2906 const APInt &C) { 2907 // TODO: Some of these folds could work with arbitrary constants, but this 2908 // function is limited to scalar and vector splat constants. 2909 if (!Cmp.isEquality()) 2910 return nullptr; 2911 2912 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2913 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2914 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2915 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2916 2917 switch (BO->getOpcode()) { 2918 case Instruction::SRem: 2919 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2920 if (C.isNullValue() && BO->hasOneUse()) { 2921 const APInt *BOC; 2922 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2923 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2924 return new ICmpInst(Pred, NewRem, 2925 Constant::getNullValue(BO->getType())); 2926 } 2927 } 2928 break; 2929 case Instruction::Add: { 2930 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2931 const APInt *BOC; 2932 if (match(BOp1, m_APInt(BOC))) { 2933 if (BO->hasOneUse()) { 2934 Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1)); 2935 return new ICmpInst(Pred, BOp0, SubC); 2936 } 2937 } else if (C.isNullValue()) { 2938 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2939 // efficiently invertible, or if the add has just this one use. 2940 if (Value *NegVal = dyn_castNegVal(BOp1)) 2941 return new ICmpInst(Pred, BOp0, NegVal); 2942 if (Value *NegVal = dyn_castNegVal(BOp0)) 2943 return new ICmpInst(Pred, NegVal, BOp1); 2944 if (BO->hasOneUse()) { 2945 Value *Neg = Builder.CreateNeg(BOp1); 2946 Neg->takeName(BO); 2947 return new ICmpInst(Pred, BOp0, Neg); 2948 } 2949 } 2950 break; 2951 } 2952 case Instruction::Xor: 2953 if (BO->hasOneUse()) { 2954 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2955 // For the xor case, we can xor two constants together, eliminating 2956 // the explicit xor. 2957 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 2958 } else if (C.isNullValue()) { 2959 // Replace ((xor A, B) != 0) with (A != B) 2960 return new ICmpInst(Pred, BOp0, BOp1); 2961 } 2962 } 2963 break; 2964 case Instruction::Sub: 2965 if (BO->hasOneUse()) { 2966 const APInt *BOC; 2967 if (match(BOp0, m_APInt(BOC))) { 2968 // Replace ((sub BOC, B) != C) with (B != BOC-C). 2969 Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS); 2970 return new ICmpInst(Pred, BOp1, SubC); 2971 } else if (C.isNullValue()) { 2972 // Replace ((sub A, B) != 0) with (A != B). 2973 return new ICmpInst(Pred, BOp0, BOp1); 2974 } 2975 } 2976 break; 2977 case Instruction::Or: { 2978 const APInt *BOC; 2979 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 2980 // Comparing if all bits outside of a constant mask are set? 2981 // Replace (X | C) == -1 with (X & ~C) == ~C. 2982 // This removes the -1 constant. 2983 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 2984 Value *And = Builder.CreateAnd(BOp0, NotBOC); 2985 return new ICmpInst(Pred, And, NotBOC); 2986 } 2987 break; 2988 } 2989 case Instruction::And: { 2990 const APInt *BOC; 2991 if (match(BOp1, m_APInt(BOC))) { 2992 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2993 if (C == *BOC && C.isPowerOf2()) 2994 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 2995 BO, Constant::getNullValue(RHS->getType())); 2996 } 2997 break; 2998 } 2999 case Instruction::Mul: 3000 if (C.isNullValue() && BO->hasNoSignedWrap()) { 3001 const APInt *BOC; 3002 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { 3003 // The trivial case (mul X, 0) is handled by InstSimplify. 3004 // General case : (mul X, C) != 0 iff X != 0 3005 // (mul X, C) == 0 iff X == 0 3006 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 3007 } 3008 } 3009 break; 3010 case Instruction::UDiv: 3011 if (C.isNullValue()) { 3012 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3013 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3014 return new ICmpInst(NewPred, BOp1, BOp0); 3015 } 3016 break; 3017 default: 3018 break; 3019 } 3020 return nullptr; 3021 } 3022 3023 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3024 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp, 3025 IntrinsicInst *II, 3026 const APInt &C) { 3027 Type *Ty = II->getType(); 3028 unsigned BitWidth = C.getBitWidth(); 3029 switch (II->getIntrinsicID()) { 3030 case Intrinsic::bswap: 3031 Worklist.Add(II); 3032 Cmp.setOperand(0, II->getArgOperand(0)); 3033 Cmp.setOperand(1, ConstantInt::get(Ty, C.byteSwap())); 3034 return &Cmp; 3035 3036 case Intrinsic::ctlz: 3037 case Intrinsic::cttz: { 3038 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3039 if (C == BitWidth) { 3040 Worklist.Add(II); 3041 Cmp.setOperand(0, II->getArgOperand(0)); 3042 Cmp.setOperand(1, ConstantInt::getNullValue(Ty)); 3043 return &Cmp; 3044 } 3045 3046 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3047 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3048 // Limit to one use to ensure we don't increase instruction count. 3049 unsigned Num = C.getLimitedValue(BitWidth); 3050 if (Num != BitWidth && II->hasOneUse()) { 3051 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3052 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3053 : APInt::getHighBitsSet(BitWidth, Num + 1); 3054 APInt Mask2 = IsTrailing 3055 ? APInt::getOneBitSet(BitWidth, Num) 3056 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3057 Cmp.setOperand(0, Builder.CreateAnd(II->getArgOperand(0), Mask1)); 3058 Cmp.setOperand(1, ConstantInt::get(Ty, Mask2)); 3059 Worklist.Add(II); 3060 return &Cmp; 3061 } 3062 break; 3063 } 3064 3065 case Intrinsic::ctpop: { 3066 // popcount(A) == 0 -> A == 0 and likewise for != 3067 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3068 bool IsZero = C.isNullValue(); 3069 if (IsZero || C == BitWidth) { 3070 Worklist.Add(II); 3071 Cmp.setOperand(0, II->getArgOperand(0)); 3072 auto *NewOp = 3073 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty); 3074 Cmp.setOperand(1, NewOp); 3075 return &Cmp; 3076 } 3077 break; 3078 } 3079 3080 case Intrinsic::uadd_sat: { 3081 // uadd.sat(a, b) == 0 -> (a | b) == 0 3082 if (C.isNullValue()) { 3083 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3084 return replaceInstUsesWith(Cmp, Builder.CreateICmp( 3085 Cmp.getPredicate(), Or, Constant::getNullValue(Ty))); 3086 3087 } 3088 break; 3089 } 3090 3091 case Intrinsic::usub_sat: { 3092 // usub.sat(a, b) == 0 -> a <= b 3093 if (C.isNullValue()) { 3094 ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ 3095 ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3096 return ICmpInst::Create(Instruction::ICmp, NewPred, 3097 II->getArgOperand(0), II->getArgOperand(1)); 3098 } 3099 break; 3100 } 3101 default: 3102 break; 3103 } 3104 3105 return nullptr; 3106 } 3107 3108 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3109 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3110 IntrinsicInst *II, 3111 const APInt &C) { 3112 if (Cmp.isEquality()) 3113 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3114 3115 Type *Ty = II->getType(); 3116 unsigned BitWidth = C.getBitWidth(); 3117 switch (II->getIntrinsicID()) { 3118 case Intrinsic::ctlz: { 3119 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3120 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3121 unsigned Num = C.getLimitedValue(); 3122 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3123 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3124 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3125 } 3126 3127 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3128 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 3129 C.uge(1) && C.ule(BitWidth)) { 3130 unsigned Num = C.getLimitedValue(); 3131 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3132 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3133 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3134 } 3135 break; 3136 } 3137 case Intrinsic::cttz: { 3138 // Limit to one use to ensure we don't increase instruction count. 3139 if (!II->hasOneUse()) 3140 return nullptr; 3141 3142 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3143 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3144 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3145 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3146 Builder.CreateAnd(II->getArgOperand(0), Mask), 3147 ConstantInt::getNullValue(Ty)); 3148 } 3149 3150 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3151 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 3152 C.uge(1) && C.ule(BitWidth)) { 3153 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3154 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3155 Builder.CreateAnd(II->getArgOperand(0), Mask), 3156 ConstantInt::getNullValue(Ty)); 3157 } 3158 break; 3159 } 3160 default: 3161 break; 3162 } 3163 3164 return nullptr; 3165 } 3166 3167 /// Handle icmp with constant (but not simple integer constant) RHS. 3168 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3169 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3170 Constant *RHSC = dyn_cast<Constant>(Op1); 3171 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3172 if (!RHSC || !LHSI) 3173 return nullptr; 3174 3175 switch (LHSI->getOpcode()) { 3176 case Instruction::GetElementPtr: 3177 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3178 if (RHSC->isNullValue() && 3179 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3180 return new ICmpInst( 3181 I.getPredicate(), LHSI->getOperand(0), 3182 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3183 break; 3184 case Instruction::PHI: 3185 // Only fold icmp into the PHI if the phi and icmp are in the same 3186 // block. If in the same block, we're encouraging jump threading. If 3187 // not, we are just pessimizing the code by making an i1 phi. 3188 if (LHSI->getParent() == I.getParent()) 3189 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3190 return NV; 3191 break; 3192 case Instruction::Select: { 3193 // If either operand of the select is a constant, we can fold the 3194 // comparison into the select arms, which will cause one to be 3195 // constant folded and the select turned into a bitwise or. 3196 Value *Op1 = nullptr, *Op2 = nullptr; 3197 ConstantInt *CI = nullptr; 3198 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3199 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3200 CI = dyn_cast<ConstantInt>(Op1); 3201 } 3202 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3203 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3204 CI = dyn_cast<ConstantInt>(Op2); 3205 } 3206 3207 // We only want to perform this transformation if it will not lead to 3208 // additional code. This is true if either both sides of the select 3209 // fold to a constant (in which case the icmp is replaced with a select 3210 // which will usually simplify) or this is the only user of the 3211 // select (in which case we are trading a select+icmp for a simpler 3212 // select+icmp) or all uses of the select can be replaced based on 3213 // dominance information ("Global cases"). 3214 bool Transform = false; 3215 if (Op1 && Op2) 3216 Transform = true; 3217 else if (Op1 || Op2) { 3218 // Local case 3219 if (LHSI->hasOneUse()) 3220 Transform = true; 3221 // Global cases 3222 else if (CI && !CI->isZero()) 3223 // When Op1 is constant try replacing select with second operand. 3224 // Otherwise Op2 is constant and try replacing select with first 3225 // operand. 3226 Transform = 3227 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3228 } 3229 if (Transform) { 3230 if (!Op1) 3231 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3232 I.getName()); 3233 if (!Op2) 3234 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3235 I.getName()); 3236 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3237 } 3238 break; 3239 } 3240 case Instruction::IntToPtr: 3241 // icmp pred inttoptr(X), null -> icmp pred X, 0 3242 if (RHSC->isNullValue() && 3243 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3244 return new ICmpInst( 3245 I.getPredicate(), LHSI->getOperand(0), 3246 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3247 break; 3248 3249 case Instruction::Load: 3250 // Try to optimize things like "A[i] > 4" to index computations. 3251 if (GetElementPtrInst *GEP = 3252 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3253 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3254 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3255 !cast<LoadInst>(LHSI)->isVolatile()) 3256 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3257 return Res; 3258 } 3259 break; 3260 } 3261 3262 return nullptr; 3263 } 3264 3265 /// Some comparisons can be simplified. 3266 /// In this case, we are looking for comparisons that look like 3267 /// a check for a lossy truncation. 3268 /// Folds: 3269 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3270 /// Where Mask is some pattern that produces all-ones in low bits: 3271 /// (-1 >> y) 3272 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3273 /// ~(-1 << y) 3274 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3275 /// The Mask can be a constant, too. 3276 /// For some predicates, the operands are commutative. 3277 /// For others, x can only be on a specific side. 3278 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3279 InstCombiner::BuilderTy &Builder) { 3280 ICmpInst::Predicate SrcPred; 3281 Value *X, *M, *Y; 3282 auto m_VariableMask = m_CombineOr( 3283 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3284 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3285 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3286 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3287 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3288 if (!match(&I, m_c_ICmp(SrcPred, 3289 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3290 m_Deferred(X)))) 3291 return nullptr; 3292 3293 ICmpInst::Predicate DstPred; 3294 switch (SrcPred) { 3295 case ICmpInst::Predicate::ICMP_EQ: 3296 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3297 DstPred = ICmpInst::Predicate::ICMP_ULE; 3298 break; 3299 case ICmpInst::Predicate::ICMP_NE: 3300 // x & (-1 >> y) != x -> x u> (-1 >> y) 3301 DstPred = ICmpInst::Predicate::ICMP_UGT; 3302 break; 3303 case ICmpInst::Predicate::ICMP_UGT: 3304 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3305 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3306 DstPred = ICmpInst::Predicate::ICMP_UGT; 3307 break; 3308 case ICmpInst::Predicate::ICMP_UGE: 3309 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3310 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3311 DstPred = ICmpInst::Predicate::ICMP_ULE; 3312 break; 3313 case ICmpInst::Predicate::ICMP_ULT: 3314 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3315 assert(X == I.getOperand(1) && "instsimplify took care of commut. variant"); 3316 DstPred = ICmpInst::Predicate::ICMP_UGT; 3317 break; 3318 case ICmpInst::Predicate::ICMP_ULE: 3319 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3320 assert(X == I.getOperand(0) && "instsimplify took care of commut. variant"); 3321 DstPred = ICmpInst::Predicate::ICMP_ULE; 3322 break; 3323 case ICmpInst::Predicate::ICMP_SGT: 3324 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3325 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3326 return nullptr; // Ignore the other case. 3327 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3328 return nullptr; 3329 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3330 return nullptr; 3331 DstPred = ICmpInst::Predicate::ICMP_SGT; 3332 break; 3333 case ICmpInst::Predicate::ICMP_SGE: 3334 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3335 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3336 return nullptr; // Ignore the other case. 3337 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3338 return nullptr; 3339 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3340 return nullptr; 3341 DstPred = ICmpInst::Predicate::ICMP_SLE; 3342 break; 3343 case ICmpInst::Predicate::ICMP_SLT: 3344 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3345 if (X != I.getOperand(1)) // X must be on RHS of comparison! 3346 return nullptr; // Ignore the other case. 3347 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3348 return nullptr; 3349 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3350 return nullptr; 3351 DstPred = ICmpInst::Predicate::ICMP_SGT; 3352 break; 3353 case ICmpInst::Predicate::ICMP_SLE: 3354 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3355 if (X != I.getOperand(0)) // X must be on LHS of comparison! 3356 return nullptr; // Ignore the other case. 3357 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3358 return nullptr; 3359 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3360 return nullptr; 3361 DstPred = ICmpInst::Predicate::ICMP_SLE; 3362 break; 3363 default: 3364 llvm_unreachable("All possible folds are handled."); 3365 } 3366 3367 // The mask value may be a vector constant that has undefined elements. But it 3368 // may not be safe to propagate those undefs into the new compare, so replace 3369 // those elements by copying an existing, defined, and safe scalar constant. 3370 Type *OpTy = M->getType(); 3371 auto *VecC = dyn_cast<Constant>(M); 3372 if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) { 3373 Constant *SafeReplacementConstant = nullptr; 3374 for (unsigned i = 0, e = OpTy->getVectorNumElements(); i != e; ++i) { 3375 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3376 SafeReplacementConstant = VecC->getAggregateElement(i); 3377 break; 3378 } 3379 } 3380 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3381 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3382 } 3383 3384 return Builder.CreateICmp(DstPred, X, M); 3385 } 3386 3387 /// Some comparisons can be simplified. 3388 /// In this case, we are looking for comparisons that look like 3389 /// a check for a lossy signed truncation. 3390 /// Folds: (MaskedBits is a constant.) 3391 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3392 /// Into: 3393 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3394 /// Where KeptBits = bitwidth(%x) - MaskedBits 3395 static Value * 3396 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3397 InstCombiner::BuilderTy &Builder) { 3398 ICmpInst::Predicate SrcPred; 3399 Value *X; 3400 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3401 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3402 if (!match(&I, m_c_ICmp(SrcPred, 3403 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3404 m_APInt(C1))), 3405 m_Deferred(X)))) 3406 return nullptr; 3407 3408 // Potential handling of non-splats: for each element: 3409 // * if both are undef, replace with constant 0. 3410 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3411 // * if both are not undef, and are different, bailout. 3412 // * else, only one is undef, then pick the non-undef one. 3413 3414 // The shift amount must be equal. 3415 if (*C0 != *C1) 3416 return nullptr; 3417 const APInt &MaskedBits = *C0; 3418 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3419 3420 ICmpInst::Predicate DstPred; 3421 switch (SrcPred) { 3422 case ICmpInst::Predicate::ICMP_EQ: 3423 // ((%x << MaskedBits) a>> MaskedBits) == %x 3424 // => 3425 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3426 DstPred = ICmpInst::Predicate::ICMP_ULT; 3427 break; 3428 case ICmpInst::Predicate::ICMP_NE: 3429 // ((%x << MaskedBits) a>> MaskedBits) != %x 3430 // => 3431 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3432 DstPred = ICmpInst::Predicate::ICMP_UGE; 3433 break; 3434 // FIXME: are more folds possible? 3435 default: 3436 return nullptr; 3437 } 3438 3439 auto *XType = X->getType(); 3440 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3441 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3442 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3443 3444 // KeptBits = bitwidth(%x) - MaskedBits 3445 const APInt KeptBits = BitWidth - MaskedBits; 3446 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3447 // ICmpCst = (1 << KeptBits) 3448 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3449 assert(ICmpCst.isPowerOf2()); 3450 // AddCst = (1 << (KeptBits-1)) 3451 const APInt AddCst = ICmpCst.lshr(1); 3452 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3453 3454 // T0 = add %x, AddCst 3455 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3456 // T1 = T0 DstPred ICmpCst 3457 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3458 3459 return T1; 3460 } 3461 3462 // Given pattern: 3463 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3464 // we should move shifts to the same hand of 'and', i.e. rewrite as 3465 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3466 // We are only interested in opposite logical shifts here. 3467 // One of the shifts can be truncated. 3468 // If we can, we want to end up creating 'lshr' shift. 3469 static Value * 3470 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3471 InstCombiner::BuilderTy &Builder) { 3472 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3473 !I.getOperand(0)->hasOneUse()) 3474 return nullptr; 3475 3476 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3477 3478 // Look for an 'and' of two logical shifts, one of which may be truncated. 3479 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3480 Instruction *XShift, *MaybeTruncation, *YShift; 3481 if (!match( 3482 I.getOperand(0), 3483 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3484 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3485 m_AnyLogicalShift, m_Instruction(YShift))), 3486 m_Instruction(MaybeTruncation))))) 3487 return nullptr; 3488 3489 // We potentially looked past 'trunc', but only when matching YShift, 3490 // therefore YShift must have the widest type. 3491 Instruction *WidestShift = YShift; 3492 // Therefore XShift must have the shallowest type. 3493 // Or they both have identical types if there was no truncation. 3494 Instruction *NarrowestShift = XShift; 3495 3496 Type *WidestTy = WidestShift->getType(); 3497 Type *NarrowestTy = NarrowestShift->getType(); 3498 assert(NarrowestTy == I.getOperand(0)->getType() && 3499 "We did not look past any shifts while matching XShift though."); 3500 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3501 3502 // If YShift is a 'lshr', swap the shifts around. 3503 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3504 std::swap(XShift, YShift); 3505 3506 // The shifts must be in opposite directions. 3507 auto XShiftOpcode = XShift->getOpcode(); 3508 if (XShiftOpcode == YShift->getOpcode()) 3509 return nullptr; // Do not care about same-direction shifts here. 3510 3511 Value *X, *XShAmt, *Y, *YShAmt; 3512 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3513 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3514 3515 // If one of the values being shifted is a constant, then we will end with 3516 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3517 // however, we will need to ensure that we won't increase instruction count. 3518 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3519 // At least one of the hands of the 'and' should be one-use shift. 3520 if (!match(I.getOperand(0), 3521 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3522 return nullptr; 3523 if (HadTrunc) { 3524 // Due to the 'trunc', we will need to widen X. For that either the old 3525 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3526 if (!MaybeTruncation->hasOneUse() && 3527 !NarrowestShift->getOperand(1)->hasOneUse()) 3528 return nullptr; 3529 } 3530 } 3531 3532 // We have two shift amounts from two different shifts. The types of those 3533 // shift amounts may not match. If that's the case let's bailout now. 3534 if (XShAmt->getType() != YShAmt->getType()) 3535 return nullptr; 3536 3537 // As input, we have the following pattern: 3538 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3539 // We want to rewrite that as: 3540 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3541 // While we know that originally (Q+K) would not overflow 3542 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3543 // shift amounts. so it may now overflow in smaller bitwidth. 3544 // To ensure that does not happen, we need to ensure that the total maximal 3545 // shift amount is still representable in that smaller bit width. 3546 unsigned MaximalPossibleTotalShiftAmount = 3547 (WidestTy->getScalarSizeInBits() - 1) + 3548 (NarrowestTy->getScalarSizeInBits() - 1); 3549 APInt MaximalRepresentableShiftAmount = 3550 APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits()); 3551 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3552 return nullptr; 3553 3554 // Can we fold (XShAmt+YShAmt) ? 3555 auto *NewShAmt = dyn_cast_or_null<Constant>( 3556 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3557 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3558 if (!NewShAmt) 3559 return nullptr; 3560 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3561 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3562 3563 // Is the new shift amount smaller than the bit width? 3564 // FIXME: could also rely on ConstantRange. 3565 if (!match(NewShAmt, 3566 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3567 APInt(WidestBitWidth, WidestBitWidth)))) 3568 return nullptr; 3569 3570 // An extra legality check is needed if we had trunc-of-lshr. 3571 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3572 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3573 WidestShift]() { 3574 // It isn't obvious whether it's worth it to analyze non-constants here. 3575 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3576 // If *any* of these preconditions matches we can perform the fold. 3577 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3578 ? NewShAmt->getSplatValue() 3579 : NewShAmt; 3580 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3581 if (NewShAmtSplat && 3582 (NewShAmtSplat->isNullValue() || 3583 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3584 return true; 3585 // We consider *min* leading zeros so a single outlier 3586 // blocks the transform as opposed to allowing it. 3587 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3588 KnownBits Known = computeKnownBits(C, SQ.DL); 3589 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3590 // If the value being shifted has at most lowest bit set we can fold. 3591 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3592 if (MaxActiveBits <= 1) 3593 return true; 3594 // Precondition: NewShAmt u<= countLeadingZeros(C) 3595 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3596 return true; 3597 } 3598 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3599 KnownBits Known = computeKnownBits(C, SQ.DL); 3600 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3601 // If the value being shifted has at most lowest bit set we can fold. 3602 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3603 if (MaxActiveBits <= 1) 3604 return true; 3605 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3606 if (NewShAmtSplat) { 3607 APInt AdjNewShAmt = 3608 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3609 if (AdjNewShAmt.ule(MinLeadZero)) 3610 return true; 3611 } 3612 } 3613 return false; // Can't tell if it's ok. 3614 }; 3615 if (!CanFold()) 3616 return nullptr; 3617 } 3618 3619 // All good, we can do this fold. 3620 X = Builder.CreateZExt(X, WidestTy); 3621 Y = Builder.CreateZExt(Y, WidestTy); 3622 // The shift is the same that was for X. 3623 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3624 ? Builder.CreateLShr(X, NewShAmt) 3625 : Builder.CreateShl(X, NewShAmt); 3626 Value *T1 = Builder.CreateAnd(T0, Y); 3627 return Builder.CreateICmp(I.getPredicate(), T1, 3628 Constant::getNullValue(WidestTy)); 3629 } 3630 3631 /// Fold 3632 /// (-1 u/ x) u< y 3633 /// ((x * y) u/ x) != y 3634 /// to 3635 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit 3636 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3637 /// will mean that we are looking for the opposite answer. 3638 Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) { 3639 ICmpInst::Predicate Pred; 3640 Value *X, *Y; 3641 Instruction *Mul; 3642 bool NeedNegation; 3643 // Look for: (-1 u/ x) u</u>= y 3644 if (!I.isEquality() && 3645 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3646 m_Value(Y)))) { 3647 Mul = nullptr; 3648 // Canonicalize as-if y was on RHS. 3649 if (I.getOperand(1) != Y) 3650 Pred = I.getSwappedPredicate(); 3651 3652 // Are we checking that overflow does not happen, or does happen? 3653 switch (Pred) { 3654 case ICmpInst::Predicate::ICMP_ULT: 3655 NeedNegation = false; 3656 break; // OK 3657 case ICmpInst::Predicate::ICMP_UGE: 3658 NeedNegation = true; 3659 break; // OK 3660 default: 3661 return nullptr; // Wrong predicate. 3662 } 3663 } else // Look for: ((x * y) u/ x) !=/== y 3664 if (I.isEquality() && 3665 match(&I, m_c_ICmp(Pred, m_Value(Y), 3666 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3667 m_Value(X)), 3668 m_Instruction(Mul)), 3669 m_Deferred(X)))))) { 3670 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3671 } else 3672 return nullptr; 3673 3674 BuilderTy::InsertPointGuard Guard(Builder); 3675 // If the pattern included (x * y), we'll want to insert new instructions 3676 // right before that original multiplication so that we can replace it. 3677 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3678 if (MulHadOtherUses) 3679 Builder.SetInsertPoint(Mul); 3680 3681 Function *F = Intrinsic::getDeclaration( 3682 I.getModule(), Intrinsic::umul_with_overflow, X->getType()); 3683 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul"); 3684 3685 // If the multiplication was used elsewhere, to ensure that we don't leave 3686 // "duplicate" instructions, replace uses of that original multiplication 3687 // with the multiplication result from the with.overflow intrinsic. 3688 if (MulHadOtherUses) 3689 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val")); 3690 3691 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov"); 3692 if (NeedNegation) // This technically increases instruction count. 3693 Res = Builder.CreateNot(Res, "umul.not.ov"); 3694 3695 return Res; 3696 } 3697 3698 /// Try to fold icmp (binop), X or icmp X, (binop). 3699 /// TODO: A large part of this logic is duplicated in InstSimplify's 3700 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3701 /// duplication. 3702 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) { 3703 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3704 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3705 3706 // Special logic for binary operators. 3707 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3708 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3709 if (!BO0 && !BO1) 3710 return nullptr; 3711 3712 const CmpInst::Predicate Pred = I.getPredicate(); 3713 Value *X; 3714 3715 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3716 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3717 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3718 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3719 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3720 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3721 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3722 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3723 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3724 3725 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3726 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3727 NoOp0WrapProblem = 3728 ICmpInst::isEquality(Pred) || 3729 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3730 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3731 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3732 NoOp1WrapProblem = 3733 ICmpInst::isEquality(Pred) || 3734 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3735 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3736 3737 // Analyze the case when either Op0 or Op1 is an add instruction. 3738 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3739 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3740 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3741 A = BO0->getOperand(0); 3742 B = BO0->getOperand(1); 3743 } 3744 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3745 C = BO1->getOperand(0); 3746 D = BO1->getOperand(1); 3747 } 3748 3749 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 3750 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 3751 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3752 return new ICmpInst(Pred, A == Op1 ? B : A, 3753 Constant::getNullValue(Op1->getType())); 3754 3755 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 3756 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 3757 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3758 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3759 C == Op0 ? D : C); 3760 3761 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 3762 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3763 NoOp1WrapProblem) { 3764 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3765 Value *Y, *Z; 3766 if (A == C) { 3767 // C + B == C + D -> B == D 3768 Y = B; 3769 Z = D; 3770 } else if (A == D) { 3771 // D + B == C + D -> B == C 3772 Y = B; 3773 Z = C; 3774 } else if (B == C) { 3775 // A + C == C + D -> A == D 3776 Y = A; 3777 Z = D; 3778 } else { 3779 assert(B == D); 3780 // A + D == C + D -> A == C 3781 Y = A; 3782 Z = C; 3783 } 3784 return new ICmpInst(Pred, Y, Z); 3785 } 3786 3787 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 3788 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3789 match(B, m_AllOnes())) 3790 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3791 3792 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 3793 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3794 match(B, m_AllOnes())) 3795 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3796 3797 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 3798 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3799 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3800 3801 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 3802 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3803 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3804 3805 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 3806 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3807 match(D, m_AllOnes())) 3808 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3809 3810 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 3811 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3812 match(D, m_AllOnes())) 3813 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3814 3815 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 3816 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3817 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3818 3819 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 3820 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3821 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3822 3823 // TODO: The subtraction-related identities shown below also hold, but 3824 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3825 // wouldn't happen even if they were implemented. 3826 // 3827 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 3828 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 3829 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 3830 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 3831 3832 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 3833 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3834 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3835 3836 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 3837 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3838 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3839 3840 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 3841 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3842 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3843 3844 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 3845 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3846 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3847 3848 // if C1 has greater magnitude than C2: 3849 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 3850 // s.t. C3 = C1 - C2 3851 // 3852 // if C2 has greater magnitude than C1: 3853 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 3854 // s.t. C3 = C2 - C1 3855 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3856 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3857 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3858 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3859 const APInt &AP1 = C1->getValue(); 3860 const APInt &AP2 = C2->getValue(); 3861 if (AP1.isNegative() == AP2.isNegative()) { 3862 APInt AP1Abs = C1->getValue().abs(); 3863 APInt AP2Abs = C2->getValue().abs(); 3864 if (AP1Abs.uge(AP2Abs)) { 3865 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3866 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3867 return new ICmpInst(Pred, NewAdd, C); 3868 } else { 3869 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3870 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3871 return new ICmpInst(Pred, A, NewAdd); 3872 } 3873 } 3874 } 3875 3876 // Analyze the case when either Op0 or Op1 is a sub instruction. 3877 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3878 A = nullptr; 3879 B = nullptr; 3880 C = nullptr; 3881 D = nullptr; 3882 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3883 A = BO0->getOperand(0); 3884 B = BO0->getOperand(1); 3885 } 3886 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3887 C = BO1->getOperand(0); 3888 D = BO1->getOperand(1); 3889 } 3890 3891 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 3892 if (A == Op1 && NoOp0WrapProblem) 3893 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3894 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 3895 if (C == Op0 && NoOp1WrapProblem) 3896 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3897 3898 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 3899 // (A - B) u>/u<= A --> B u>/u<= A 3900 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3901 return new ICmpInst(Pred, B, A); 3902 // C u</u>= (C - D) --> C u</u>= D 3903 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3904 return new ICmpInst(Pred, C, D); 3905 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 3906 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 3907 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3908 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 3909 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 3910 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 3911 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3912 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 3913 3914 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 3915 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 3916 return new ICmpInst(Pred, A, C); 3917 3918 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 3919 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 3920 return new ICmpInst(Pred, D, B); 3921 3922 // icmp (0-X) < cst --> x > -cst 3923 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3924 Value *X; 3925 if (match(BO0, m_Neg(m_Value(X)))) 3926 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3927 if (RHSC->isNotMinSignedValue()) 3928 return new ICmpInst(I.getSwappedPredicate(), X, 3929 ConstantExpr::getNeg(RHSC)); 3930 } 3931 3932 BinaryOperator *SRem = nullptr; 3933 // icmp (srem X, Y), Y 3934 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3935 SRem = BO0; 3936 // icmp Y, (srem X, Y) 3937 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3938 Op0 == BO1->getOperand(1)) 3939 SRem = BO1; 3940 if (SRem) { 3941 // We don't check hasOneUse to avoid increasing register pressure because 3942 // the value we use is the same value this instruction was already using. 3943 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3944 default: 3945 break; 3946 case ICmpInst::ICMP_EQ: 3947 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3948 case ICmpInst::ICMP_NE: 3949 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3950 case ICmpInst::ICMP_SGT: 3951 case ICmpInst::ICMP_SGE: 3952 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3953 Constant::getAllOnesValue(SRem->getType())); 3954 case ICmpInst::ICMP_SLT: 3955 case ICmpInst::ICMP_SLE: 3956 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3957 Constant::getNullValue(SRem->getType())); 3958 } 3959 } 3960 3961 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3962 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3963 switch (BO0->getOpcode()) { 3964 default: 3965 break; 3966 case Instruction::Add: 3967 case Instruction::Sub: 3968 case Instruction::Xor: { 3969 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3970 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3971 3972 const APInt *C; 3973 if (match(BO0->getOperand(1), m_APInt(C))) { 3974 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 3975 if (C->isSignMask()) { 3976 ICmpInst::Predicate NewPred = 3977 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3978 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3979 } 3980 3981 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 3982 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 3983 ICmpInst::Predicate NewPred = 3984 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3985 NewPred = I.getSwappedPredicate(NewPred); 3986 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3987 } 3988 } 3989 break; 3990 } 3991 case Instruction::Mul: { 3992 if (!I.isEquality()) 3993 break; 3994 3995 const APInt *C; 3996 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 3997 !C->isOneValue()) { 3998 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 3999 // Mask = -1 >> count-trailing-zeros(C). 4000 if (unsigned TZs = C->countTrailingZeros()) { 4001 Constant *Mask = ConstantInt::get( 4002 BO0->getType(), 4003 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4004 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4005 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4006 return new ICmpInst(Pred, And1, And2); 4007 } 4008 // If there are no trailing zeros in the multiplier, just eliminate 4009 // the multiplies (no masking is needed): 4010 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 4011 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4012 } 4013 break; 4014 } 4015 case Instruction::UDiv: 4016 case Instruction::LShr: 4017 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4018 break; 4019 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4020 4021 case Instruction::SDiv: 4022 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4023 break; 4024 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4025 4026 case Instruction::AShr: 4027 if (!BO0->isExact() || !BO1->isExact()) 4028 break; 4029 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4030 4031 case Instruction::Shl: { 4032 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4033 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4034 if (!NUW && !NSW) 4035 break; 4036 if (!NSW && I.isSigned()) 4037 break; 4038 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4039 } 4040 } 4041 } 4042 4043 if (BO0) { 4044 // Transform A & (L - 1) `ult` L --> L != 0 4045 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4046 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4047 4048 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4049 auto *Zero = Constant::getNullValue(BO0->getType()); 4050 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4051 } 4052 } 4053 4054 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I)) 4055 return replaceInstUsesWith(I, V); 4056 4057 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4058 return replaceInstUsesWith(I, V); 4059 4060 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4061 return replaceInstUsesWith(I, V); 4062 4063 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4064 return replaceInstUsesWith(I, V); 4065 4066 return nullptr; 4067 } 4068 4069 /// Fold icmp Pred min|max(X, Y), X. 4070 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4071 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4072 Value *Op0 = Cmp.getOperand(0); 4073 Value *X = Cmp.getOperand(1); 4074 4075 // Canonicalize minimum or maximum operand to LHS of the icmp. 4076 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4077 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4078 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4079 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4080 std::swap(Op0, X); 4081 Pred = Cmp.getSwappedPredicate(); 4082 } 4083 4084 Value *Y; 4085 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4086 // smin(X, Y) == X --> X s<= Y 4087 // smin(X, Y) s>= X --> X s<= Y 4088 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4089 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4090 4091 // smin(X, Y) != X --> X s> Y 4092 // smin(X, Y) s< X --> X s> Y 4093 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4094 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4095 4096 // These cases should be handled in InstSimplify: 4097 // smin(X, Y) s<= X --> true 4098 // smin(X, Y) s> X --> false 4099 return nullptr; 4100 } 4101 4102 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4103 // smax(X, Y) == X --> X s>= Y 4104 // smax(X, Y) s<= X --> X s>= Y 4105 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4106 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4107 4108 // smax(X, Y) != X --> X s< Y 4109 // smax(X, Y) s> X --> X s< Y 4110 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4111 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4112 4113 // These cases should be handled in InstSimplify: 4114 // smax(X, Y) s>= X --> true 4115 // smax(X, Y) s< X --> false 4116 return nullptr; 4117 } 4118 4119 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4120 // umin(X, Y) == X --> X u<= Y 4121 // umin(X, Y) u>= X --> X u<= Y 4122 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4123 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4124 4125 // umin(X, Y) != X --> X u> Y 4126 // umin(X, Y) u< X --> X u> Y 4127 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4128 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4129 4130 // These cases should be handled in InstSimplify: 4131 // umin(X, Y) u<= X --> true 4132 // umin(X, Y) u> X --> false 4133 return nullptr; 4134 } 4135 4136 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4137 // umax(X, Y) == X --> X u>= Y 4138 // umax(X, Y) u<= X --> X u>= Y 4139 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4140 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4141 4142 // umax(X, Y) != X --> X u< Y 4143 // umax(X, Y) u> X --> X u< Y 4144 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4145 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4146 4147 // These cases should be handled in InstSimplify: 4148 // umax(X, Y) u>= X --> true 4149 // umax(X, Y) u< X --> false 4150 return nullptr; 4151 } 4152 4153 return nullptr; 4154 } 4155 4156 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 4157 if (!I.isEquality()) 4158 return nullptr; 4159 4160 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4161 const CmpInst::Predicate Pred = I.getPredicate(); 4162 Value *A, *B, *C, *D; 4163 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4164 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4165 Value *OtherVal = A == Op1 ? B : A; 4166 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4167 } 4168 4169 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4170 // A^c1 == C^c2 --> A == C^(c1^c2) 4171 ConstantInt *C1, *C2; 4172 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4173 Op1->hasOneUse()) { 4174 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4175 Value *Xor = Builder.CreateXor(C, NC); 4176 return new ICmpInst(Pred, A, Xor); 4177 } 4178 4179 // A^B == A^D -> B == D 4180 if (A == C) 4181 return new ICmpInst(Pred, B, D); 4182 if (A == D) 4183 return new ICmpInst(Pred, B, C); 4184 if (B == C) 4185 return new ICmpInst(Pred, A, D); 4186 if (B == D) 4187 return new ICmpInst(Pred, A, C); 4188 } 4189 } 4190 4191 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4192 // A == (A^B) -> B == 0 4193 Value *OtherVal = A == Op0 ? B : A; 4194 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4195 } 4196 4197 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4198 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4199 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4200 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4201 4202 if (A == C) { 4203 X = B; 4204 Y = D; 4205 Z = A; 4206 } else if (A == D) { 4207 X = B; 4208 Y = C; 4209 Z = A; 4210 } else if (B == C) { 4211 X = A; 4212 Y = D; 4213 Z = B; 4214 } else if (B == D) { 4215 X = A; 4216 Y = C; 4217 Z = B; 4218 } 4219 4220 if (X) { // Build (X^Y) & Z 4221 Op1 = Builder.CreateXor(X, Y); 4222 Op1 = Builder.CreateAnd(Op1, Z); 4223 I.setOperand(0, Op1); 4224 I.setOperand(1, Constant::getNullValue(Op1->getType())); 4225 return &I; 4226 } 4227 } 4228 4229 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4230 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4231 ConstantInt *Cst1; 4232 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4233 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4234 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4235 match(Op1, m_ZExt(m_Value(A))))) { 4236 APInt Pow2 = Cst1->getValue() + 1; 4237 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4238 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4239 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4240 } 4241 4242 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4243 // For lshr and ashr pairs. 4244 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4245 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4246 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4247 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4248 unsigned TypeBits = Cst1->getBitWidth(); 4249 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4250 if (ShAmt < TypeBits && ShAmt != 0) { 4251 ICmpInst::Predicate NewPred = 4252 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4253 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4254 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4255 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4256 } 4257 } 4258 4259 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4260 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4261 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4262 unsigned TypeBits = Cst1->getBitWidth(); 4263 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4264 if (ShAmt < TypeBits && ShAmt != 0) { 4265 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4266 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4267 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4268 I.getName() + ".mask"); 4269 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4270 } 4271 } 4272 4273 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4274 // "icmp (and X, mask), cst" 4275 uint64_t ShAmt = 0; 4276 if (Op0->hasOneUse() && 4277 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4278 match(Op1, m_ConstantInt(Cst1)) && 4279 // Only do this when A has multiple uses. This is most important to do 4280 // when it exposes other optimizations. 4281 !A->hasOneUse()) { 4282 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4283 4284 if (ShAmt < ASize) { 4285 APInt MaskV = 4286 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4287 MaskV <<= ShAmt; 4288 4289 APInt CmpV = Cst1->getValue().zext(ASize); 4290 CmpV <<= ShAmt; 4291 4292 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4293 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4294 } 4295 } 4296 4297 // If both operands are byte-swapped or bit-reversed, just compare the 4298 // original values. 4299 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 4300 // and handle more intrinsics. 4301 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 4302 (match(Op0, m_BitReverse(m_Value(A))) && 4303 match(Op1, m_BitReverse(m_Value(B))))) 4304 return new ICmpInst(Pred, A, B); 4305 4306 // Canonicalize checking for a power-of-2-or-zero value: 4307 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4308 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4309 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4310 m_Deferred(A)))) || 4311 !match(Op1, m_ZeroInt())) 4312 A = nullptr; 4313 4314 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4315 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4316 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4317 A = Op1; 4318 else if (match(Op1, 4319 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4320 A = Op0; 4321 4322 if (A) { 4323 Type *Ty = A->getType(); 4324 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4325 return Pred == ICmpInst::ICMP_EQ 4326 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4327 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4328 } 4329 4330 return nullptr; 4331 } 4332 4333 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4334 InstCombiner::BuilderTy &Builder) { 4335 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4336 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4337 Value *X; 4338 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4339 return nullptr; 4340 4341 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4342 bool IsSignedCmp = ICmp.isSigned(); 4343 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4344 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4345 // and the other is a zext), then we can't handle this. 4346 // TODO: This is too strict. We can handle some predicates (equality?). 4347 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4348 return nullptr; 4349 4350 // Not an extension from the same type? 4351 Value *Y = CastOp1->getOperand(0); 4352 Type *XTy = X->getType(), *YTy = Y->getType(); 4353 if (XTy != YTy) { 4354 // One of the casts must have one use because we are creating a new cast. 4355 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4356 return nullptr; 4357 // Extend the narrower operand to the type of the wider operand. 4358 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4359 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4360 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4361 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4362 else 4363 return nullptr; 4364 } 4365 4366 // (zext X) == (zext Y) --> X == Y 4367 // (sext X) == (sext Y) --> X == Y 4368 if (ICmp.isEquality()) 4369 return new ICmpInst(ICmp.getPredicate(), X, Y); 4370 4371 // A signed comparison of sign extended values simplifies into a 4372 // signed comparison. 4373 if (IsSignedCmp && IsSignedExt) 4374 return new ICmpInst(ICmp.getPredicate(), X, Y); 4375 4376 // The other three cases all fold into an unsigned comparison. 4377 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4378 } 4379 4380 // Below here, we are only folding a compare with constant. 4381 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4382 if (!C) 4383 return nullptr; 4384 4385 // Compute the constant that would happen if we truncated to SrcTy then 4386 // re-extended to DestTy. 4387 Type *SrcTy = CastOp0->getSrcTy(); 4388 Type *DestTy = CastOp0->getDestTy(); 4389 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4390 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4391 4392 // If the re-extended constant didn't change... 4393 if (Res2 == C) { 4394 if (ICmp.isEquality()) 4395 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4396 4397 // A signed comparison of sign extended values simplifies into a 4398 // signed comparison. 4399 if (IsSignedExt && IsSignedCmp) 4400 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4401 4402 // The other three cases all fold into an unsigned comparison. 4403 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4404 } 4405 4406 // The re-extended constant changed, partly changed (in the case of a vector), 4407 // or could not be determined to be equal (in the case of a constant 4408 // expression), so the constant cannot be represented in the shorter type. 4409 // All the cases that fold to true or false will have already been handled 4410 // by SimplifyICmpInst, so only deal with the tricky case. 4411 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4412 return nullptr; 4413 4414 // Is source op positive? 4415 // icmp ult (sext X), C --> icmp sgt X, -1 4416 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4417 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4418 4419 // Is source op negative? 4420 // icmp ugt (sext X), C --> icmp slt X, 0 4421 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4422 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4423 } 4424 4425 /// Handle icmp (cast x), (cast or constant). 4426 Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) { 4427 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4428 if (!CastOp0) 4429 return nullptr; 4430 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4431 return nullptr; 4432 4433 Value *Op0Src = CastOp0->getOperand(0); 4434 Type *SrcTy = CastOp0->getSrcTy(); 4435 Type *DestTy = CastOp0->getDestTy(); 4436 4437 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4438 // integer type is the same size as the pointer type. 4439 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4440 if (isa<VectorType>(SrcTy)) { 4441 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4442 DestTy = cast<VectorType>(DestTy)->getElementType(); 4443 } 4444 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4445 }; 4446 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4447 CompatibleSizes(SrcTy, DestTy)) { 4448 Value *NewOp1 = nullptr; 4449 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4450 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4451 if (PtrSrc->getType()->getPointerAddressSpace() == 4452 Op0Src->getType()->getPointerAddressSpace()) { 4453 NewOp1 = PtrToIntOp1->getOperand(0); 4454 // If the pointer types don't match, insert a bitcast. 4455 if (Op0Src->getType() != NewOp1->getType()) 4456 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4457 } 4458 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4459 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4460 } 4461 4462 if (NewOp1) 4463 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4464 } 4465 4466 return foldICmpWithZextOrSext(ICmp, Builder); 4467 } 4468 4469 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4470 switch (BinaryOp) { 4471 default: 4472 llvm_unreachable("Unsupported binary op"); 4473 case Instruction::Add: 4474 case Instruction::Sub: 4475 return match(RHS, m_Zero()); 4476 case Instruction::Mul: 4477 return match(RHS, m_One()); 4478 } 4479 } 4480 4481 OverflowResult InstCombiner::computeOverflow( 4482 Instruction::BinaryOps BinaryOp, bool IsSigned, 4483 Value *LHS, Value *RHS, Instruction *CxtI) const { 4484 switch (BinaryOp) { 4485 default: 4486 llvm_unreachable("Unsupported binary op"); 4487 case Instruction::Add: 4488 if (IsSigned) 4489 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4490 else 4491 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4492 case Instruction::Sub: 4493 if (IsSigned) 4494 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4495 else 4496 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4497 case Instruction::Mul: 4498 if (IsSigned) 4499 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4500 else 4501 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4502 } 4503 } 4504 4505 bool InstCombiner::OptimizeOverflowCheck( 4506 Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, 4507 Instruction &OrigI, Value *&Result, Constant *&Overflow) { 4508 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4509 std::swap(LHS, RHS); 4510 4511 // If the overflow check was an add followed by a compare, the insertion point 4512 // may be pointing to the compare. We want to insert the new instructions 4513 // before the add in case there are uses of the add between the add and the 4514 // compare. 4515 Builder.SetInsertPoint(&OrigI); 4516 4517 if (isNeutralValue(BinaryOp, RHS)) { 4518 Result = LHS; 4519 Overflow = Builder.getFalse(); 4520 return true; 4521 } 4522 4523 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4524 case OverflowResult::MayOverflow: 4525 return false; 4526 case OverflowResult::AlwaysOverflowsLow: 4527 case OverflowResult::AlwaysOverflowsHigh: 4528 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4529 Result->takeName(&OrigI); 4530 Overflow = Builder.getTrue(); 4531 return true; 4532 case OverflowResult::NeverOverflows: 4533 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4534 Result->takeName(&OrigI); 4535 Overflow = Builder.getFalse(); 4536 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4537 if (IsSigned) 4538 Inst->setHasNoSignedWrap(); 4539 else 4540 Inst->setHasNoUnsignedWrap(); 4541 } 4542 return true; 4543 } 4544 4545 llvm_unreachable("Unexpected overflow result"); 4546 } 4547 4548 /// Recognize and process idiom involving test for multiplication 4549 /// overflow. 4550 /// 4551 /// The caller has matched a pattern of the form: 4552 /// I = cmp u (mul(zext A, zext B), V 4553 /// The function checks if this is a test for overflow and if so replaces 4554 /// multiplication with call to 'mul.with.overflow' intrinsic. 4555 /// 4556 /// \param I Compare instruction. 4557 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4558 /// the compare instruction. Must be of integer type. 4559 /// \param OtherVal The other argument of compare instruction. 4560 /// \returns Instruction which must replace the compare instruction, NULL if no 4561 /// replacement required. 4562 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4563 Value *OtherVal, InstCombiner &IC) { 4564 // Don't bother doing this transformation for pointers, don't do it for 4565 // vectors. 4566 if (!isa<IntegerType>(MulVal->getType())) 4567 return nullptr; 4568 4569 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4570 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4571 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4572 if (!MulInstr) 4573 return nullptr; 4574 assert(MulInstr->getOpcode() == Instruction::Mul); 4575 4576 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4577 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4578 assert(LHS->getOpcode() == Instruction::ZExt); 4579 assert(RHS->getOpcode() == Instruction::ZExt); 4580 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4581 4582 // Calculate type and width of the result produced by mul.with.overflow. 4583 Type *TyA = A->getType(), *TyB = B->getType(); 4584 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4585 WidthB = TyB->getPrimitiveSizeInBits(); 4586 unsigned MulWidth; 4587 Type *MulType; 4588 if (WidthB > WidthA) { 4589 MulWidth = WidthB; 4590 MulType = TyB; 4591 } else { 4592 MulWidth = WidthA; 4593 MulType = TyA; 4594 } 4595 4596 // In order to replace the original mul with a narrower mul.with.overflow, 4597 // all uses must ignore upper bits of the product. The number of used low 4598 // bits must be not greater than the width of mul.with.overflow. 4599 if (MulVal->hasNUsesOrMore(2)) 4600 for (User *U : MulVal->users()) { 4601 if (U == &I) 4602 continue; 4603 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4604 // Check if truncation ignores bits above MulWidth. 4605 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4606 if (TruncWidth > MulWidth) 4607 return nullptr; 4608 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4609 // Check if AND ignores bits above MulWidth. 4610 if (BO->getOpcode() != Instruction::And) 4611 return nullptr; 4612 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4613 const APInt &CVal = CI->getValue(); 4614 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4615 return nullptr; 4616 } else { 4617 // In this case we could have the operand of the binary operation 4618 // being defined in another block, and performing the replacement 4619 // could break the dominance relation. 4620 return nullptr; 4621 } 4622 } else { 4623 // Other uses prohibit this transformation. 4624 return nullptr; 4625 } 4626 } 4627 4628 // Recognize patterns 4629 switch (I.getPredicate()) { 4630 case ICmpInst::ICMP_EQ: 4631 case ICmpInst::ICMP_NE: 4632 // Recognize pattern: 4633 // mulval = mul(zext A, zext B) 4634 // cmp eq/neq mulval, zext trunc mulval 4635 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 4636 if (Zext->hasOneUse()) { 4637 Value *ZextArg = Zext->getOperand(0); 4638 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 4639 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 4640 break; //Recognized 4641 } 4642 4643 // Recognize pattern: 4644 // mulval = mul(zext A, zext B) 4645 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4646 ConstantInt *CI; 4647 Value *ValToMask; 4648 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4649 if (ValToMask != MulVal) 4650 return nullptr; 4651 const APInt &CVal = CI->getValue() + 1; 4652 if (CVal.isPowerOf2()) { 4653 unsigned MaskWidth = CVal.logBase2(); 4654 if (MaskWidth == MulWidth) 4655 break; // Recognized 4656 } 4657 } 4658 return nullptr; 4659 4660 case ICmpInst::ICMP_UGT: 4661 // Recognize pattern: 4662 // mulval = mul(zext A, zext B) 4663 // cmp ugt mulval, max 4664 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4665 APInt MaxVal = APInt::getMaxValue(MulWidth); 4666 MaxVal = MaxVal.zext(CI->getBitWidth()); 4667 if (MaxVal.eq(CI->getValue())) 4668 break; // Recognized 4669 } 4670 return nullptr; 4671 4672 case ICmpInst::ICMP_UGE: 4673 // Recognize pattern: 4674 // mulval = mul(zext A, zext B) 4675 // cmp uge mulval, max+1 4676 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4677 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4678 if (MaxVal.eq(CI->getValue())) 4679 break; // Recognized 4680 } 4681 return nullptr; 4682 4683 case ICmpInst::ICMP_ULE: 4684 // Recognize pattern: 4685 // mulval = mul(zext A, zext B) 4686 // cmp ule mulval, max 4687 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4688 APInt MaxVal = APInt::getMaxValue(MulWidth); 4689 MaxVal = MaxVal.zext(CI->getBitWidth()); 4690 if (MaxVal.eq(CI->getValue())) 4691 break; // Recognized 4692 } 4693 return nullptr; 4694 4695 case ICmpInst::ICMP_ULT: 4696 // Recognize pattern: 4697 // mulval = mul(zext A, zext B) 4698 // cmp ule mulval, max + 1 4699 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4700 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4701 if (MaxVal.eq(CI->getValue())) 4702 break; // Recognized 4703 } 4704 return nullptr; 4705 4706 default: 4707 return nullptr; 4708 } 4709 4710 InstCombiner::BuilderTy &Builder = IC.Builder; 4711 Builder.SetInsertPoint(MulInstr); 4712 4713 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4714 Value *MulA = A, *MulB = B; 4715 if (WidthA < MulWidth) 4716 MulA = Builder.CreateZExt(A, MulType); 4717 if (WidthB < MulWidth) 4718 MulB = Builder.CreateZExt(B, MulType); 4719 Function *F = Intrinsic::getDeclaration( 4720 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4721 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4722 IC.Worklist.Add(MulInstr); 4723 4724 // If there are uses of mul result other than the comparison, we know that 4725 // they are truncation or binary AND. Change them to use result of 4726 // mul.with.overflow and adjust properly mask/size. 4727 if (MulVal->hasNUsesOrMore(2)) { 4728 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4729 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4730 User *U = *UI++; 4731 if (U == &I || U == OtherVal) 4732 continue; 4733 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4734 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4735 IC.replaceInstUsesWith(*TI, Mul); 4736 else 4737 TI->setOperand(0, Mul); 4738 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4739 assert(BO->getOpcode() == Instruction::And); 4740 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4741 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4742 APInt ShortMask = CI->getValue().trunc(MulWidth); 4743 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4744 Instruction *Zext = 4745 cast<Instruction>(Builder.CreateZExt(ShortAnd, BO->getType())); 4746 IC.Worklist.Add(Zext); 4747 IC.replaceInstUsesWith(*BO, Zext); 4748 } else { 4749 llvm_unreachable("Unexpected Binary operation"); 4750 } 4751 IC.Worklist.Add(cast<Instruction>(U)); 4752 } 4753 } 4754 if (isa<Instruction>(OtherVal)) 4755 IC.Worklist.Add(cast<Instruction>(OtherVal)); 4756 4757 // The original icmp gets replaced with the overflow value, maybe inverted 4758 // depending on predicate. 4759 bool Inverse = false; 4760 switch (I.getPredicate()) { 4761 case ICmpInst::ICMP_NE: 4762 break; 4763 case ICmpInst::ICMP_EQ: 4764 Inverse = true; 4765 break; 4766 case ICmpInst::ICMP_UGT: 4767 case ICmpInst::ICMP_UGE: 4768 if (I.getOperand(0) == MulVal) 4769 break; 4770 Inverse = true; 4771 break; 4772 case ICmpInst::ICMP_ULT: 4773 case ICmpInst::ICMP_ULE: 4774 if (I.getOperand(1) == MulVal) 4775 break; 4776 Inverse = true; 4777 break; 4778 default: 4779 llvm_unreachable("Unexpected predicate"); 4780 } 4781 if (Inverse) { 4782 Value *Res = Builder.CreateExtractValue(Call, 1); 4783 return BinaryOperator::CreateNot(Res); 4784 } 4785 4786 return ExtractValueInst::Create(Call, 1); 4787 } 4788 4789 /// When performing a comparison against a constant, it is possible that not all 4790 /// the bits in the LHS are demanded. This helper method computes the mask that 4791 /// IS demanded. 4792 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4793 const APInt *RHS; 4794 if (!match(I.getOperand(1), m_APInt(RHS))) 4795 return APInt::getAllOnesValue(BitWidth); 4796 4797 // If this is a normal comparison, it demands all bits. If it is a sign bit 4798 // comparison, it only demands the sign bit. 4799 bool UnusedBit; 4800 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4801 return APInt::getSignMask(BitWidth); 4802 4803 switch (I.getPredicate()) { 4804 // For a UGT comparison, we don't care about any bits that 4805 // correspond to the trailing ones of the comparand. The value of these 4806 // bits doesn't impact the outcome of the comparison, because any value 4807 // greater than the RHS must differ in a bit higher than these due to carry. 4808 case ICmpInst::ICMP_UGT: 4809 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4810 4811 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4812 // Any value less than the RHS must differ in a higher bit because of carries. 4813 case ICmpInst::ICMP_ULT: 4814 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4815 4816 default: 4817 return APInt::getAllOnesValue(BitWidth); 4818 } 4819 } 4820 4821 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4822 /// should be swapped. 4823 /// The decision is based on how many times these two operands are reused 4824 /// as subtract operands and their positions in those instructions. 4825 /// The rationale is that several architectures use the same instruction for 4826 /// both subtract and cmp. Thus, it is better if the order of those operands 4827 /// match. 4828 /// \return true if Op0 and Op1 should be swapped. 4829 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4830 // Filter out pointer values as those cannot appear directly in subtract. 4831 // FIXME: we may want to go through inttoptrs or bitcasts. 4832 if (Op0->getType()->isPointerTy()) 4833 return false; 4834 // If a subtract already has the same operands as a compare, swapping would be 4835 // bad. If a subtract has the same operands as a compare but in reverse order, 4836 // then swapping is good. 4837 int GoodToSwap = 0; 4838 for (const User *U : Op0->users()) { 4839 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4840 GoodToSwap++; 4841 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4842 GoodToSwap--; 4843 } 4844 return GoodToSwap > 0; 4845 } 4846 4847 /// Check that one use is in the same block as the definition and all 4848 /// other uses are in blocks dominated by a given block. 4849 /// 4850 /// \param DI Definition 4851 /// \param UI Use 4852 /// \param DB Block that must dominate all uses of \p DI outside 4853 /// the parent block 4854 /// \return true when \p UI is the only use of \p DI in the parent block 4855 /// and all other uses of \p DI are in blocks dominated by \p DB. 4856 /// 4857 bool InstCombiner::dominatesAllUses(const Instruction *DI, 4858 const Instruction *UI, 4859 const BasicBlock *DB) const { 4860 assert(DI && UI && "Instruction not defined\n"); 4861 // Ignore incomplete definitions. 4862 if (!DI->getParent()) 4863 return false; 4864 // DI and UI must be in the same block. 4865 if (DI->getParent() != UI->getParent()) 4866 return false; 4867 // Protect from self-referencing blocks. 4868 if (DI->getParent() == DB) 4869 return false; 4870 for (const User *U : DI->users()) { 4871 auto *Usr = cast<Instruction>(U); 4872 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4873 return false; 4874 } 4875 return true; 4876 } 4877 4878 /// Return true when the instruction sequence within a block is select-cmp-br. 4879 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4880 const BasicBlock *BB = SI->getParent(); 4881 if (!BB) 4882 return false; 4883 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4884 if (!BI || BI->getNumSuccessors() != 2) 4885 return false; 4886 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4887 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4888 return false; 4889 return true; 4890 } 4891 4892 /// True when a select result is replaced by one of its operands 4893 /// in select-icmp sequence. This will eventually result in the elimination 4894 /// of the select. 4895 /// 4896 /// \param SI Select instruction 4897 /// \param Icmp Compare instruction 4898 /// \param SIOpd Operand that replaces the select 4899 /// 4900 /// Notes: 4901 /// - The replacement is global and requires dominator information 4902 /// - The caller is responsible for the actual replacement 4903 /// 4904 /// Example: 4905 /// 4906 /// entry: 4907 /// %4 = select i1 %3, %C* %0, %C* null 4908 /// %5 = icmp eq %C* %4, null 4909 /// br i1 %5, label %9, label %7 4910 /// ... 4911 /// ; <label>:7 ; preds = %entry 4912 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4913 /// ... 4914 /// 4915 /// can be transformed to 4916 /// 4917 /// %5 = icmp eq %C* %0, null 4918 /// %6 = select i1 %3, i1 %5, i1 true 4919 /// br i1 %6, label %9, label %7 4920 /// ... 4921 /// ; <label>:7 ; preds = %entry 4922 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4923 /// 4924 /// Similar when the first operand of the select is a constant or/and 4925 /// the compare is for not equal rather than equal. 4926 /// 4927 /// NOTE: The function is only called when the select and compare constants 4928 /// are equal, the optimization can work only for EQ predicates. This is not a 4929 /// major restriction since a NE compare should be 'normalized' to an equal 4930 /// compare, which usually happens in the combiner and test case 4931 /// select-cmp-br.ll checks for it. 4932 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 4933 const ICmpInst *Icmp, 4934 const unsigned SIOpd) { 4935 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4936 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4937 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4938 // The check for the single predecessor is not the best that can be 4939 // done. But it protects efficiently against cases like when SI's 4940 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4941 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4942 // replaced can be reached on either path. So the uniqueness check 4943 // guarantees that the path all uses of SI (outside SI's parent) are on 4944 // is disjoint from all other paths out of SI. But that information 4945 // is more expensive to compute, and the trade-off here is in favor 4946 // of compile-time. It should also be noticed that we check for a single 4947 // predecessor and not only uniqueness. This to handle the situation when 4948 // Succ and Succ1 points to the same basic block. 4949 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4950 NumSel++; 4951 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4952 return true; 4953 } 4954 } 4955 return false; 4956 } 4957 4958 /// Try to fold the comparison based on range information we can get by checking 4959 /// whether bits are known to be zero or one in the inputs. 4960 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 4961 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4962 Type *Ty = Op0->getType(); 4963 ICmpInst::Predicate Pred = I.getPredicate(); 4964 4965 // Get scalar or pointer size. 4966 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4967 ? Ty->getScalarSizeInBits() 4968 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 4969 4970 if (!BitWidth) 4971 return nullptr; 4972 4973 KnownBits Op0Known(BitWidth); 4974 KnownBits Op1Known(BitWidth); 4975 4976 if (SimplifyDemandedBits(&I, 0, 4977 getDemandedBitsLHSMask(I, BitWidth), 4978 Op0Known, 0)) 4979 return &I; 4980 4981 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 4982 Op1Known, 0)) 4983 return &I; 4984 4985 // Given the known and unknown bits, compute a range that the LHS could be 4986 // in. Compute the Min, Max and RHS values based on the known bits. For the 4987 // EQ and NE we use unsigned values. 4988 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4989 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4990 if (I.isSigned()) { 4991 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4992 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4993 } else { 4994 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4995 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4996 } 4997 4998 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 4999 // out that the LHS or RHS is a constant. Constant fold this now, so that 5000 // code below can assume that Min != Max. 5001 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5002 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5003 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5004 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5005 5006 // Based on the range information we know about the LHS, see if we can 5007 // simplify this comparison. For example, (x&4) < 8 is always true. 5008 switch (Pred) { 5009 default: 5010 llvm_unreachable("Unknown icmp opcode!"); 5011 case ICmpInst::ICMP_EQ: 5012 case ICmpInst::ICMP_NE: { 5013 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 5014 return Pred == CmpInst::ICMP_EQ 5015 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 5016 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5017 } 5018 5019 // If all bits are known zero except for one, then we know at most one bit 5020 // is set. If the comparison is against zero, then this is a check to see if 5021 // *that* bit is set. 5022 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5023 if (Op1Known.isZero()) { 5024 // If the LHS is an AND with the same constant, look through it. 5025 Value *LHS = nullptr; 5026 const APInt *LHSC; 5027 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5028 *LHSC != Op0KnownZeroInverted) 5029 LHS = Op0; 5030 5031 Value *X; 5032 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5033 APInt ValToCheck = Op0KnownZeroInverted; 5034 Type *XTy = X->getType(); 5035 if (ValToCheck.isPowerOf2()) { 5036 // ((1 << X) & 8) == 0 -> X != 3 5037 // ((1 << X) & 8) != 0 -> X == 3 5038 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5039 auto NewPred = ICmpInst::getInversePredicate(Pred); 5040 return new ICmpInst(NewPred, X, CmpC); 5041 } else if ((++ValToCheck).isPowerOf2()) { 5042 // ((1 << X) & 7) == 0 -> X >= 3 5043 // ((1 << X) & 7) != 0 -> X < 3 5044 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5045 auto NewPred = 5046 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5047 return new ICmpInst(NewPred, X, CmpC); 5048 } 5049 } 5050 5051 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5052 const APInt *CI; 5053 if (Op0KnownZeroInverted.isOneValue() && 5054 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5055 // ((8 >>u X) & 1) == 0 -> X != 3 5056 // ((8 >>u X) & 1) != 0 -> X == 3 5057 unsigned CmpVal = CI->countTrailingZeros(); 5058 auto NewPred = ICmpInst::getInversePredicate(Pred); 5059 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5060 } 5061 } 5062 break; 5063 } 5064 case ICmpInst::ICMP_ULT: { 5065 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5066 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5067 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5068 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5069 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5070 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5071 5072 const APInt *CmpC; 5073 if (match(Op1, m_APInt(CmpC))) { 5074 // A <u C -> A == C-1 if min(A)+1 == C 5075 if (*CmpC == Op0Min + 1) 5076 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5077 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5078 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5079 // exceeds the log2 of C. 5080 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5081 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5082 Constant::getNullValue(Op1->getType())); 5083 } 5084 break; 5085 } 5086 case ICmpInst::ICMP_UGT: { 5087 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5088 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5089 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5090 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5091 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5092 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5093 5094 const APInt *CmpC; 5095 if (match(Op1, m_APInt(CmpC))) { 5096 // A >u C -> A == C+1 if max(a)-1 == C 5097 if (*CmpC == Op0Max - 1) 5098 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5099 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5100 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5101 // exceeds the log2 of C. 5102 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5103 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5104 Constant::getNullValue(Op1->getType())); 5105 } 5106 break; 5107 } 5108 case ICmpInst::ICMP_SLT: { 5109 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5110 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5111 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5112 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5113 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5114 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5115 const APInt *CmpC; 5116 if (match(Op1, m_APInt(CmpC))) { 5117 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5118 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5119 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5120 } 5121 break; 5122 } 5123 case ICmpInst::ICMP_SGT: { 5124 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5125 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5126 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5127 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5128 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5129 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5130 const APInt *CmpC; 5131 if (match(Op1, m_APInt(CmpC))) { 5132 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5133 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5134 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5135 } 5136 break; 5137 } 5138 case ICmpInst::ICMP_SGE: 5139 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5140 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5141 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5142 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5143 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5144 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5145 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5146 break; 5147 case ICmpInst::ICMP_SLE: 5148 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5149 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5150 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5151 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5152 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5153 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5154 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5155 break; 5156 case ICmpInst::ICMP_UGE: 5157 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5158 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5159 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5160 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5161 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5162 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5163 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5164 break; 5165 case ICmpInst::ICMP_ULE: 5166 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5167 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5168 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5169 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5170 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5171 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5172 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5173 break; 5174 } 5175 5176 // Turn a signed comparison into an unsigned one if both operands are known to 5177 // have the same sign. 5178 if (I.isSigned() && 5179 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5180 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5181 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5182 5183 return nullptr; 5184 } 5185 5186 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5187 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5188 Constant *C) { 5189 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5190 "Only for relational integer predicates."); 5191 5192 Type *Type = C->getType(); 5193 bool IsSigned = ICmpInst::isSigned(Pred); 5194 5195 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5196 bool WillIncrement = 5197 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5198 5199 // Check if the constant operand can be safely incremented/decremented 5200 // without overflowing/underflowing. 5201 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5202 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5203 }; 5204 5205 Constant *SafeReplacementConstant = nullptr; 5206 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5207 // Bail out if the constant can't be safely incremented/decremented. 5208 if (!ConstantIsOk(CI)) 5209 return llvm::None; 5210 } else if (Type->isVectorTy()) { 5211 unsigned NumElts = Type->getVectorNumElements(); 5212 for (unsigned i = 0; i != NumElts; ++i) { 5213 Constant *Elt = C->getAggregateElement(i); 5214 if (!Elt) 5215 return llvm::None; 5216 5217 if (isa<UndefValue>(Elt)) 5218 continue; 5219 5220 // Bail out if we can't determine if this constant is min/max or if we 5221 // know that this constant is min/max. 5222 auto *CI = dyn_cast<ConstantInt>(Elt); 5223 if (!CI || !ConstantIsOk(CI)) 5224 return llvm::None; 5225 5226 if (!SafeReplacementConstant) 5227 SafeReplacementConstant = CI; 5228 } 5229 } else { 5230 // ConstantExpr? 5231 return llvm::None; 5232 } 5233 5234 // It may not be safe to change a compare predicate in the presence of 5235 // undefined elements, so replace those elements with the first safe constant 5236 // that we found. 5237 if (C->containsUndefElement()) { 5238 assert(SafeReplacementConstant && "Replacement constant not set"); 5239 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5240 } 5241 5242 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5243 5244 // Increment or decrement the constant. 5245 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5246 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5247 5248 return std::make_pair(NewPred, NewC); 5249 } 5250 5251 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5252 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5253 /// allows them to be folded in visitICmpInst. 5254 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5255 ICmpInst::Predicate Pred = I.getPredicate(); 5256 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5257 isCanonicalPredicate(Pred)) 5258 return nullptr; 5259 5260 Value *Op0 = I.getOperand(0); 5261 Value *Op1 = I.getOperand(1); 5262 auto *Op1C = dyn_cast<Constant>(Op1); 5263 if (!Op1C) 5264 return nullptr; 5265 5266 auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5267 if (!FlippedStrictness) 5268 return nullptr; 5269 5270 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5271 } 5272 5273 /// Integer compare with boolean values can always be turned into bitwise ops. 5274 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5275 InstCombiner::BuilderTy &Builder) { 5276 Value *A = I.getOperand(0), *B = I.getOperand(1); 5277 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5278 5279 // A boolean compared to true/false can be simplified to Op0/true/false in 5280 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5281 // Cases not handled by InstSimplify are always 'not' of Op0. 5282 if (match(B, m_Zero())) { 5283 switch (I.getPredicate()) { 5284 case CmpInst::ICMP_EQ: // A == 0 -> !A 5285 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5286 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5287 return BinaryOperator::CreateNot(A); 5288 default: 5289 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5290 } 5291 } else if (match(B, m_One())) { 5292 switch (I.getPredicate()) { 5293 case CmpInst::ICMP_NE: // A != 1 -> !A 5294 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5295 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5296 return BinaryOperator::CreateNot(A); 5297 default: 5298 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5299 } 5300 } 5301 5302 switch (I.getPredicate()) { 5303 default: 5304 llvm_unreachable("Invalid icmp instruction!"); 5305 case ICmpInst::ICMP_EQ: 5306 // icmp eq i1 A, B -> ~(A ^ B) 5307 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5308 5309 case ICmpInst::ICMP_NE: 5310 // icmp ne i1 A, B -> A ^ B 5311 return BinaryOperator::CreateXor(A, B); 5312 5313 case ICmpInst::ICMP_UGT: 5314 // icmp ugt -> icmp ult 5315 std::swap(A, B); 5316 LLVM_FALLTHROUGH; 5317 case ICmpInst::ICMP_ULT: 5318 // icmp ult i1 A, B -> ~A & B 5319 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5320 5321 case ICmpInst::ICMP_SGT: 5322 // icmp sgt -> icmp slt 5323 std::swap(A, B); 5324 LLVM_FALLTHROUGH; 5325 case ICmpInst::ICMP_SLT: 5326 // icmp slt i1 A, B -> A & ~B 5327 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5328 5329 case ICmpInst::ICMP_UGE: 5330 // icmp uge -> icmp ule 5331 std::swap(A, B); 5332 LLVM_FALLTHROUGH; 5333 case ICmpInst::ICMP_ULE: 5334 // icmp ule i1 A, B -> ~A | B 5335 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5336 5337 case ICmpInst::ICMP_SGE: 5338 // icmp sge -> icmp sle 5339 std::swap(A, B); 5340 LLVM_FALLTHROUGH; 5341 case ICmpInst::ICMP_SLE: 5342 // icmp sle i1 A, B -> A | ~B 5343 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5344 } 5345 } 5346 5347 // Transform pattern like: 5348 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5349 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5350 // Into: 5351 // (X l>> Y) != 0 5352 // (X l>> Y) == 0 5353 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5354 InstCombiner::BuilderTy &Builder) { 5355 ICmpInst::Predicate Pred, NewPred; 5356 Value *X, *Y; 5357 if (match(&Cmp, 5358 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5359 // We want X to be the icmp's second operand, so swap predicate if it isn't. 5360 if (Cmp.getOperand(0) == X) 5361 Pred = Cmp.getSwappedPredicate(); 5362 5363 switch (Pred) { 5364 case ICmpInst::ICMP_ULE: 5365 NewPred = ICmpInst::ICMP_NE; 5366 break; 5367 case ICmpInst::ICMP_UGT: 5368 NewPred = ICmpInst::ICMP_EQ; 5369 break; 5370 default: 5371 return nullptr; 5372 } 5373 } else if (match(&Cmp, m_c_ICmp(Pred, 5374 m_OneUse(m_CombineOr( 5375 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5376 m_Add(m_Shl(m_One(), m_Value(Y)), 5377 m_AllOnes()))), 5378 m_Value(X)))) { 5379 // The variant with 'add' is not canonical, (the variant with 'not' is) 5380 // we only get it because it has extra uses, and can't be canonicalized, 5381 5382 // We want X to be the icmp's second operand, so swap predicate if it isn't. 5383 if (Cmp.getOperand(0) == X) 5384 Pred = Cmp.getSwappedPredicate(); 5385 5386 switch (Pred) { 5387 case ICmpInst::ICMP_ULT: 5388 NewPred = ICmpInst::ICMP_NE; 5389 break; 5390 case ICmpInst::ICMP_UGE: 5391 NewPred = ICmpInst::ICMP_EQ; 5392 break; 5393 default: 5394 return nullptr; 5395 } 5396 } else 5397 return nullptr; 5398 5399 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5400 Constant *Zero = Constant::getNullValue(NewX->getType()); 5401 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5402 } 5403 5404 static Instruction *foldVectorCmp(CmpInst &Cmp, 5405 InstCombiner::BuilderTy &Builder) { 5406 // If both arguments of the cmp are shuffles that use the same mask and 5407 // shuffle within a single vector, move the shuffle after the cmp. 5408 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5409 Value *V1, *V2; 5410 Constant *M; 5411 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))) && 5412 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) && 5413 V1->getType() == V2->getType() && 5414 (LHS->hasOneUse() || RHS->hasOneUse())) { 5415 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5416 CmpInst::Predicate P = Cmp.getPredicate(); 5417 Value *NewCmp = isa<ICmpInst>(Cmp) ? Builder.CreateICmp(P, V1, V2) 5418 : Builder.CreateFCmp(P, V1, V2); 5419 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 5420 } 5421 return nullptr; 5422 } 5423 5424 // extract(uadd.with.overflow(A, B), 0) ult A 5425 // -> extract(uadd.with.overflow(A, B), 1) 5426 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5427 CmpInst::Predicate Pred = I.getPredicate(); 5428 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5429 5430 Value *UAddOv; 5431 Value *A, *B; 5432 auto UAddOvResultPat = m_ExtractValue<0>( 5433 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5434 if (match(Op0, UAddOvResultPat) && 5435 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5436 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5437 (match(A, m_One()) || match(B, m_One()))) || 5438 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5439 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5440 // extract(uadd.with.overflow(A, B), 0) < A 5441 // extract(uadd.with.overflow(A, 1), 0) == 0 5442 // extract(uadd.with.overflow(A, -1), 0) != -1 5443 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5444 else if (match(Op1, UAddOvResultPat) && 5445 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5446 // A > extract(uadd.with.overflow(A, B), 0) 5447 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5448 else 5449 return nullptr; 5450 5451 return ExtractValueInst::Create(UAddOv, 1); 5452 } 5453 5454 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 5455 bool Changed = false; 5456 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5457 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5458 unsigned Op0Cplxity = getComplexity(Op0); 5459 unsigned Op1Cplxity = getComplexity(Op1); 5460 5461 /// Orders the operands of the compare so that they are listed from most 5462 /// complex to least complex. This puts constants before unary operators, 5463 /// before binary operators. 5464 if (Op0Cplxity < Op1Cplxity || 5465 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5466 I.swapOperands(); 5467 std::swap(Op0, Op1); 5468 Changed = true; 5469 } 5470 5471 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5472 return replaceInstUsesWith(I, V); 5473 5474 // Comparing -val or val with non-zero is the same as just comparing val 5475 // ie, abs(val) != 0 -> val != 0 5476 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5477 Value *Cond, *SelectTrue, *SelectFalse; 5478 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5479 m_Value(SelectFalse)))) { 5480 if (Value *V = dyn_castNegVal(SelectTrue)) { 5481 if (V == SelectFalse) 5482 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5483 } 5484 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5485 if (V == SelectTrue) 5486 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5487 } 5488 } 5489 } 5490 5491 if (Op0->getType()->isIntOrIntVectorTy(1)) 5492 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5493 return Res; 5494 5495 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 5496 return NewICmp; 5497 5498 if (Instruction *Res = foldICmpWithConstant(I)) 5499 return Res; 5500 5501 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5502 return Res; 5503 5504 if (Instruction *Res = foldICmpBinOp(I, Q)) 5505 return Res; 5506 5507 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5508 return Res; 5509 5510 // Test if the ICmpInst instruction is used exclusively by a select as 5511 // part of a minimum or maximum operation. If so, refrain from doing 5512 // any other folding. This helps out other analyses which understand 5513 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5514 // and CodeGen. And in this case, at least one of the comparison 5515 // operands has at least one user besides the compare (the select), 5516 // which would often largely negate the benefit of folding anyway. 5517 // 5518 // Do the same for the other patterns recognized by matchSelectPattern. 5519 if (I.hasOneUse()) 5520 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5521 Value *A, *B; 5522 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5523 if (SPR.Flavor != SPF_UNKNOWN) 5524 return nullptr; 5525 } 5526 5527 // Do this after checking for min/max to prevent infinite looping. 5528 if (Instruction *Res = foldICmpWithZero(I)) 5529 return Res; 5530 5531 // FIXME: We only do this after checking for min/max to prevent infinite 5532 // looping caused by a reverse canonicalization of these patterns for min/max. 5533 // FIXME: The organization of folds is a mess. These would naturally go into 5534 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5535 // down here after the min/max restriction. 5536 ICmpInst::Predicate Pred = I.getPredicate(); 5537 const APInt *C; 5538 if (match(Op1, m_APInt(C))) { 5539 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5540 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5541 Constant *Zero = Constant::getNullValue(Op0->getType()); 5542 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5543 } 5544 5545 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5546 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5547 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5548 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5549 } 5550 } 5551 5552 if (Instruction *Res = foldICmpInstWithConstant(I)) 5553 return Res; 5554 5555 // Try to match comparison as a sign bit test. Intentionally do this after 5556 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5557 if (Instruction *New = foldSignBitTest(I)) 5558 return New; 5559 5560 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5561 return Res; 5562 5563 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5564 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5565 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5566 return NI; 5567 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5568 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5569 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5570 return NI; 5571 5572 // Try to optimize equality comparisons against alloca-based pointers. 5573 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5574 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5575 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 5576 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5577 return New; 5578 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 5579 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5580 return New; 5581 } 5582 5583 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5584 return Res; 5585 5586 if (Instruction *R = foldICmpWithCastOp(I)) 5587 return R; 5588 5589 if (Instruction *Res = foldICmpWithMinMax(I)) 5590 return Res; 5591 5592 { 5593 Value *A, *B; 5594 // Transform (A & ~B) == 0 --> (A & B) != 0 5595 // and (A & ~B) != 0 --> (A & B) == 0 5596 // if A is a power of 2. 5597 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5598 match(Op1, m_Zero()) && 5599 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5600 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5601 Op1); 5602 5603 // ~X < ~Y --> Y < X 5604 // ~X < C --> X > ~C 5605 if (match(Op0, m_Not(m_Value(A)))) { 5606 if (match(Op1, m_Not(m_Value(B)))) 5607 return new ICmpInst(I.getPredicate(), B, A); 5608 5609 const APInt *C; 5610 if (match(Op1, m_APInt(C))) 5611 return new ICmpInst(I.getSwappedPredicate(), A, 5612 ConstantInt::get(Op1->getType(), ~(*C))); 5613 } 5614 5615 Instruction *AddI = nullptr; 5616 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5617 m_Instruction(AddI))) && 5618 isa<IntegerType>(A->getType())) { 5619 Value *Result; 5620 Constant *Overflow; 5621 if (OptimizeOverflowCheck(Instruction::Add, /*Signed*/false, A, B, 5622 *AddI, Result, Overflow)) { 5623 replaceInstUsesWith(*AddI, Result); 5624 return replaceInstUsesWith(I, Overflow); 5625 } 5626 } 5627 5628 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5629 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5630 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5631 return R; 5632 } 5633 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5634 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5635 return R; 5636 } 5637 } 5638 5639 if (Instruction *Res = foldICmpEquality(I)) 5640 return Res; 5641 5642 if (Instruction *Res = foldICmpOfUAddOv(I)) 5643 return Res; 5644 5645 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5646 // an i1 which indicates whether or not we successfully did the swap. 5647 // 5648 // Replace comparisons between the old value and the expected value with the 5649 // indicator that 'cmpxchg' returns. 5650 // 5651 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5652 // spuriously fail. In those cases, the old value may equal the expected 5653 // value but it is possible for the swap to not occur. 5654 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5655 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5656 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5657 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5658 !ACXI->isWeak()) 5659 return ExtractValueInst::Create(ACXI, 1); 5660 5661 { 5662 Value *X; 5663 const APInt *C; 5664 // icmp X+Cst, X 5665 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5666 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5667 5668 // icmp X, X+Cst 5669 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5670 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5671 } 5672 5673 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5674 return Res; 5675 5676 if (I.getType()->isVectorTy()) 5677 if (Instruction *Res = foldVectorCmp(I, Builder)) 5678 return Res; 5679 5680 return Changed ? &I : nullptr; 5681 } 5682 5683 /// Fold fcmp ([us]itofp x, cst) if possible. 5684 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 5685 Constant *RHSC) { 5686 if (!isa<ConstantFP>(RHSC)) return nullptr; 5687 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5688 5689 // Get the width of the mantissa. We don't want to hack on conversions that 5690 // might lose information from the integer, e.g. "i64 -> float" 5691 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5692 if (MantissaWidth == -1) return nullptr; // Unknown. 5693 5694 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5695 5696 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5697 5698 if (I.isEquality()) { 5699 FCmpInst::Predicate P = I.getPredicate(); 5700 bool IsExact = false; 5701 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5702 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5703 5704 // If the floating point constant isn't an integer value, we know if we will 5705 // ever compare equal / not equal to it. 5706 if (!IsExact) { 5707 // TODO: Can never be -0.0 and other non-representable values 5708 APFloat RHSRoundInt(RHS); 5709 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5710 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 5711 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5712 return replaceInstUsesWith(I, Builder.getFalse()); 5713 5714 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5715 return replaceInstUsesWith(I, Builder.getTrue()); 5716 } 5717 } 5718 5719 // TODO: If the constant is exactly representable, is it always OK to do 5720 // equality compares as integer? 5721 } 5722 5723 // Check to see that the input is converted from an integer type that is small 5724 // enough that preserves all bits. TODO: check here for "known" sign bits. 5725 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5726 unsigned InputSize = IntTy->getScalarSizeInBits(); 5727 5728 // Following test does NOT adjust InputSize downwards for signed inputs, 5729 // because the most negative value still requires all the mantissa bits 5730 // to distinguish it from one less than that value. 5731 if ((int)InputSize > MantissaWidth) { 5732 // Conversion would lose accuracy. Check if loss can impact comparison. 5733 int Exp = ilogb(RHS); 5734 if (Exp == APFloat::IEK_Inf) { 5735 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5736 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5737 // Conversion could create infinity. 5738 return nullptr; 5739 } else { 5740 // Note that if RHS is zero or NaN, then Exp is negative 5741 // and first condition is trivially false. 5742 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5743 // Conversion could affect comparison. 5744 return nullptr; 5745 } 5746 } 5747 5748 // Otherwise, we can potentially simplify the comparison. We know that it 5749 // will always come through as an integer value and we know the constant is 5750 // not a NAN (it would have been previously simplified). 5751 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5752 5753 ICmpInst::Predicate Pred; 5754 switch (I.getPredicate()) { 5755 default: llvm_unreachable("Unexpected predicate!"); 5756 case FCmpInst::FCMP_UEQ: 5757 case FCmpInst::FCMP_OEQ: 5758 Pred = ICmpInst::ICMP_EQ; 5759 break; 5760 case FCmpInst::FCMP_UGT: 5761 case FCmpInst::FCMP_OGT: 5762 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5763 break; 5764 case FCmpInst::FCMP_UGE: 5765 case FCmpInst::FCMP_OGE: 5766 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5767 break; 5768 case FCmpInst::FCMP_ULT: 5769 case FCmpInst::FCMP_OLT: 5770 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5771 break; 5772 case FCmpInst::FCMP_ULE: 5773 case FCmpInst::FCMP_OLE: 5774 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5775 break; 5776 case FCmpInst::FCMP_UNE: 5777 case FCmpInst::FCMP_ONE: 5778 Pred = ICmpInst::ICMP_NE; 5779 break; 5780 case FCmpInst::FCMP_ORD: 5781 return replaceInstUsesWith(I, Builder.getTrue()); 5782 case FCmpInst::FCMP_UNO: 5783 return replaceInstUsesWith(I, Builder.getFalse()); 5784 } 5785 5786 // Now we know that the APFloat is a normal number, zero or inf. 5787 5788 // See if the FP constant is too large for the integer. For example, 5789 // comparing an i8 to 300.0. 5790 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5791 5792 if (!LHSUnsigned) { 5793 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5794 // and large values. 5795 APFloat SMax(RHS.getSemantics()); 5796 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5797 APFloat::rmNearestTiesToEven); 5798 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 5799 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5800 Pred == ICmpInst::ICMP_SLE) 5801 return replaceInstUsesWith(I, Builder.getTrue()); 5802 return replaceInstUsesWith(I, Builder.getFalse()); 5803 } 5804 } else { 5805 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5806 // +INF and large values. 5807 APFloat UMax(RHS.getSemantics()); 5808 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5809 APFloat::rmNearestTiesToEven); 5810 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 5811 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5812 Pred == ICmpInst::ICMP_ULE) 5813 return replaceInstUsesWith(I, Builder.getTrue()); 5814 return replaceInstUsesWith(I, Builder.getFalse()); 5815 } 5816 } 5817 5818 if (!LHSUnsigned) { 5819 // See if the RHS value is < SignedMin. 5820 APFloat SMin(RHS.getSemantics()); 5821 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5822 APFloat::rmNearestTiesToEven); 5823 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 5824 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5825 Pred == ICmpInst::ICMP_SGE) 5826 return replaceInstUsesWith(I, Builder.getTrue()); 5827 return replaceInstUsesWith(I, Builder.getFalse()); 5828 } 5829 } else { 5830 // See if the RHS value is < UnsignedMin. 5831 APFloat SMin(RHS.getSemantics()); 5832 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 5833 APFloat::rmNearestTiesToEven); 5834 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 5835 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5836 Pred == ICmpInst::ICMP_UGE) 5837 return replaceInstUsesWith(I, Builder.getTrue()); 5838 return replaceInstUsesWith(I, Builder.getFalse()); 5839 } 5840 } 5841 5842 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5843 // [0, UMAX], but it may still be fractional. See if it is fractional by 5844 // casting the FP value to the integer value and back, checking for equality. 5845 // Don't do this for zero, because -0.0 is not fractional. 5846 Constant *RHSInt = LHSUnsigned 5847 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5848 : ConstantExpr::getFPToSI(RHSC, IntTy); 5849 if (!RHS.isZero()) { 5850 bool Equal = LHSUnsigned 5851 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5852 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5853 if (!Equal) { 5854 // If we had a comparison against a fractional value, we have to adjust 5855 // the compare predicate and sometimes the value. RHSC is rounded towards 5856 // zero at this point. 5857 switch (Pred) { 5858 default: llvm_unreachable("Unexpected integer comparison!"); 5859 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5860 return replaceInstUsesWith(I, Builder.getTrue()); 5861 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5862 return replaceInstUsesWith(I, Builder.getFalse()); 5863 case ICmpInst::ICMP_ULE: 5864 // (float)int <= 4.4 --> int <= 4 5865 // (float)int <= -4.4 --> false 5866 if (RHS.isNegative()) 5867 return replaceInstUsesWith(I, Builder.getFalse()); 5868 break; 5869 case ICmpInst::ICMP_SLE: 5870 // (float)int <= 4.4 --> int <= 4 5871 // (float)int <= -4.4 --> int < -4 5872 if (RHS.isNegative()) 5873 Pred = ICmpInst::ICMP_SLT; 5874 break; 5875 case ICmpInst::ICMP_ULT: 5876 // (float)int < -4.4 --> false 5877 // (float)int < 4.4 --> int <= 4 5878 if (RHS.isNegative()) 5879 return replaceInstUsesWith(I, Builder.getFalse()); 5880 Pred = ICmpInst::ICMP_ULE; 5881 break; 5882 case ICmpInst::ICMP_SLT: 5883 // (float)int < -4.4 --> int < -4 5884 // (float)int < 4.4 --> int <= 4 5885 if (!RHS.isNegative()) 5886 Pred = ICmpInst::ICMP_SLE; 5887 break; 5888 case ICmpInst::ICMP_UGT: 5889 // (float)int > 4.4 --> int > 4 5890 // (float)int > -4.4 --> true 5891 if (RHS.isNegative()) 5892 return replaceInstUsesWith(I, Builder.getTrue()); 5893 break; 5894 case ICmpInst::ICMP_SGT: 5895 // (float)int > 4.4 --> int > 4 5896 // (float)int > -4.4 --> int >= -4 5897 if (RHS.isNegative()) 5898 Pred = ICmpInst::ICMP_SGE; 5899 break; 5900 case ICmpInst::ICMP_UGE: 5901 // (float)int >= -4.4 --> true 5902 // (float)int >= 4.4 --> int > 4 5903 if (RHS.isNegative()) 5904 return replaceInstUsesWith(I, Builder.getTrue()); 5905 Pred = ICmpInst::ICMP_UGT; 5906 break; 5907 case ICmpInst::ICMP_SGE: 5908 // (float)int >= -4.4 --> int >= -4 5909 // (float)int >= 4.4 --> int > 4 5910 if (!RHS.isNegative()) 5911 Pred = ICmpInst::ICMP_SGT; 5912 break; 5913 } 5914 } 5915 } 5916 5917 // Lower this FP comparison into an appropriate integer version of the 5918 // comparison. 5919 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 5920 } 5921 5922 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 5923 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 5924 Constant *RHSC) { 5925 // When C is not 0.0 and infinities are not allowed: 5926 // (C / X) < 0.0 is a sign-bit test of X 5927 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 5928 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 5929 // 5930 // Proof: 5931 // Multiply (C / X) < 0.0 by X * X / C. 5932 // - X is non zero, if it is the flag 'ninf' is violated. 5933 // - C defines the sign of X * X * C. Thus it also defines whether to swap 5934 // the predicate. C is also non zero by definition. 5935 // 5936 // Thus X * X / C is non zero and the transformation is valid. [qed] 5937 5938 FCmpInst::Predicate Pred = I.getPredicate(); 5939 5940 // Check that predicates are valid. 5941 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 5942 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 5943 return nullptr; 5944 5945 // Check that RHS operand is zero. 5946 if (!match(RHSC, m_AnyZeroFP())) 5947 return nullptr; 5948 5949 // Check fastmath flags ('ninf'). 5950 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 5951 return nullptr; 5952 5953 // Check the properties of the dividend. It must not be zero to avoid a 5954 // division by zero (see Proof). 5955 const APFloat *C; 5956 if (!match(LHSI->getOperand(0), m_APFloat(C))) 5957 return nullptr; 5958 5959 if (C->isZero()) 5960 return nullptr; 5961 5962 // Get swapped predicate if necessary. 5963 if (C->isNegative()) 5964 Pred = I.getSwappedPredicate(); 5965 5966 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 5967 } 5968 5969 /// Optimize fabs(X) compared with zero. 5970 static Instruction *foldFabsWithFcmpZero(FCmpInst &I) { 5971 Value *X; 5972 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || 5973 !match(I.getOperand(1), m_PosZeroFP())) 5974 return nullptr; 5975 5976 auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 5977 I->setPredicate(P); 5978 I->setOperand(0, X); 5979 return I; 5980 }; 5981 5982 switch (I.getPredicate()) { 5983 case FCmpInst::FCMP_UGE: 5984 case FCmpInst::FCMP_OLT: 5985 // fabs(X) >= 0.0 --> true 5986 // fabs(X) < 0.0 --> false 5987 llvm_unreachable("fcmp should have simplified"); 5988 5989 case FCmpInst::FCMP_OGT: 5990 // fabs(X) > 0.0 --> X != 0.0 5991 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 5992 5993 case FCmpInst::FCMP_UGT: 5994 // fabs(X) u> 0.0 --> X u!= 0.0 5995 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 5996 5997 case FCmpInst::FCMP_OLE: 5998 // fabs(X) <= 0.0 --> X == 0.0 5999 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6000 6001 case FCmpInst::FCMP_ULE: 6002 // fabs(X) u<= 0.0 --> X u== 0.0 6003 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6004 6005 case FCmpInst::FCMP_OGE: 6006 // fabs(X) >= 0.0 --> !isnan(X) 6007 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6008 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6009 6010 case FCmpInst::FCMP_ULT: 6011 // fabs(X) u< 0.0 --> isnan(X) 6012 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6013 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6014 6015 case FCmpInst::FCMP_OEQ: 6016 case FCmpInst::FCMP_UEQ: 6017 case FCmpInst::FCMP_ONE: 6018 case FCmpInst::FCMP_UNE: 6019 case FCmpInst::FCMP_ORD: 6020 case FCmpInst::FCMP_UNO: 6021 // Look through the fabs() because it doesn't change anything but the sign. 6022 // fabs(X) == 0.0 --> X == 0.0, 6023 // fabs(X) != 0.0 --> X != 0.0 6024 // isnan(fabs(X)) --> isnan(X) 6025 // !isnan(fabs(X) --> !isnan(X) 6026 return replacePredAndOp0(&I, I.getPredicate(), X); 6027 6028 default: 6029 return nullptr; 6030 } 6031 } 6032 6033 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 6034 bool Changed = false; 6035 6036 /// Orders the operands of the compare so that they are listed from most 6037 /// complex to least complex. This puts constants before unary operators, 6038 /// before binary operators. 6039 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6040 I.swapOperands(); 6041 Changed = true; 6042 } 6043 6044 const CmpInst::Predicate Pred = I.getPredicate(); 6045 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6046 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6047 SQ.getWithInstruction(&I))) 6048 return replaceInstUsesWith(I, V); 6049 6050 // Simplify 'fcmp pred X, X' 6051 Type *OpType = Op0->getType(); 6052 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6053 if (Op0 == Op1) { 6054 switch (Pred) { 6055 default: break; 6056 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6057 case FCmpInst::FCMP_ULT: // True if unordered or less than 6058 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6059 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6060 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6061 I.setPredicate(FCmpInst::FCMP_UNO); 6062 I.setOperand(1, Constant::getNullValue(OpType)); 6063 return &I; 6064 6065 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6066 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6067 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6068 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6069 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6070 I.setPredicate(FCmpInst::FCMP_ORD); 6071 I.setOperand(1, Constant::getNullValue(OpType)); 6072 return &I; 6073 } 6074 } 6075 6076 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6077 // then canonicalize the operand to 0.0. 6078 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6079 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) { 6080 I.setOperand(0, ConstantFP::getNullValue(OpType)); 6081 return &I; 6082 } 6083 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) { 6084 I.setOperand(1, ConstantFP::getNullValue(OpType)); 6085 return &I; 6086 } 6087 } 6088 6089 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6090 Value *X, *Y; 6091 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6092 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6093 6094 // Test if the FCmpInst instruction is used exclusively by a select as 6095 // part of a minimum or maximum operation. If so, refrain from doing 6096 // any other folding. This helps out other analyses which understand 6097 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6098 // and CodeGen. And in this case, at least one of the comparison 6099 // operands has at least one user besides the compare (the select), 6100 // which would often largely negate the benefit of folding anyway. 6101 if (I.hasOneUse()) 6102 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6103 Value *A, *B; 6104 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6105 if (SPR.Flavor != SPF_UNKNOWN) 6106 return nullptr; 6107 } 6108 6109 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6110 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6111 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) { 6112 I.setOperand(1, ConstantFP::getNullValue(OpType)); 6113 return &I; 6114 } 6115 6116 // Handle fcmp with instruction LHS and constant RHS. 6117 Instruction *LHSI; 6118 Constant *RHSC; 6119 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6120 switch (LHSI->getOpcode()) { 6121 case Instruction::PHI: 6122 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6123 // block. If in the same block, we're encouraging jump threading. If 6124 // not, we are just pessimizing the code by making an i1 phi. 6125 if (LHSI->getParent() == I.getParent()) 6126 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6127 return NV; 6128 break; 6129 case Instruction::SIToFP: 6130 case Instruction::UIToFP: 6131 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6132 return NV; 6133 break; 6134 case Instruction::FDiv: 6135 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6136 return NV; 6137 break; 6138 case Instruction::Load: 6139 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6140 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6141 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6142 !cast<LoadInst>(LHSI)->isVolatile()) 6143 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6144 return Res; 6145 break; 6146 } 6147 } 6148 6149 if (Instruction *R = foldFabsWithFcmpZero(I)) 6150 return R; 6151 6152 if (match(Op0, m_FNeg(m_Value(X)))) { 6153 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6154 Constant *C; 6155 if (match(Op1, m_Constant(C))) { 6156 Constant *NegC = ConstantExpr::getFNeg(C); 6157 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6158 } 6159 } 6160 6161 if (match(Op0, m_FPExt(m_Value(X)))) { 6162 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6163 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6164 return new FCmpInst(Pred, X, Y, "", &I); 6165 6166 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6167 const APFloat *C; 6168 if (match(Op1, m_APFloat(C))) { 6169 const fltSemantics &FPSem = 6170 X->getType()->getScalarType()->getFltSemantics(); 6171 bool Lossy; 6172 APFloat TruncC = *C; 6173 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6174 6175 // Avoid lossy conversions and denormals. 6176 // Zero is a special case that's OK to convert. 6177 APFloat Fabs = TruncC; 6178 Fabs.clearSign(); 6179 if (!Lossy && 6180 ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) != 6181 APFloat::cmpLessThan) || Fabs.isZero())) { 6182 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6183 return new FCmpInst(Pred, X, NewC, "", &I); 6184 } 6185 } 6186 } 6187 6188 if (I.getType()->isVectorTy()) 6189 if (Instruction *Res = foldVectorCmp(I, Builder)) 6190 return Res; 6191 6192 return Changed ? &I : nullptr; 6193 } 6194