1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/CaptureTracking.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/Utils/Local.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/ConstantRange.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/KnownBits.h" 30 #include "llvm/Transforms/InstCombine/InstCombiner.h" 31 #include <bitset> 32 33 using namespace llvm; 34 using namespace PatternMatch; 35 36 #define DEBUG_TYPE "instcombine" 37 38 // How many times is a select replaced by one of its operands? 39 STATISTIC(NumSel, "Number of select opts"); 40 41 42 /// Compute Result = In1+In2, returning true if the result overflowed for this 43 /// type. 44 static bool addWithOverflow(APInt &Result, const APInt &In1, 45 const APInt &In2, bool IsSigned = false) { 46 bool Overflow; 47 if (IsSigned) 48 Result = In1.sadd_ov(In2, Overflow); 49 else 50 Result = In1.uadd_ov(In2, Overflow); 51 52 return Overflow; 53 } 54 55 /// Compute Result = In1-In2, returning true if the result overflowed for this 56 /// type. 57 static bool subWithOverflow(APInt &Result, const APInt &In1, 58 const APInt &In2, bool IsSigned = false) { 59 bool Overflow; 60 if (IsSigned) 61 Result = In1.ssub_ov(In2, Overflow); 62 else 63 Result = In1.usub_ov(In2, Overflow); 64 65 return Overflow; 66 } 67 68 /// Given an icmp instruction, return true if any use of this comparison is a 69 /// branch on sign bit comparison. 70 static bool hasBranchUse(ICmpInst &I) { 71 for (auto *U : I.users()) 72 if (isa<BranchInst>(U)) 73 return true; 74 return false; 75 } 76 77 /// Returns true if the exploded icmp can be expressed as a signed comparison 78 /// to zero and updates the predicate accordingly. 79 /// The signedness of the comparison is preserved. 80 /// TODO: Refactor with decomposeBitTestICmp()? 81 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 82 if (!ICmpInst::isSigned(Pred)) 83 return false; 84 85 if (C.isZero()) 86 return ICmpInst::isRelational(Pred); 87 88 if (C.isOne()) { 89 if (Pred == ICmpInst::ICMP_SLT) { 90 Pred = ICmpInst::ICMP_SLE; 91 return true; 92 } 93 } else if (C.isAllOnes()) { 94 if (Pred == ICmpInst::ICMP_SGT) { 95 Pred = ICmpInst::ICMP_SGE; 96 return true; 97 } 98 } 99 100 return false; 101 } 102 103 /// This is called when we see this pattern: 104 /// cmp pred (load (gep GV, ...)), cmpcst 105 /// where GV is a global variable with a constant initializer. Try to simplify 106 /// this into some simple computation that does not need the load. For example 107 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 108 /// 109 /// If AndCst is non-null, then the loaded value is masked with that constant 110 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 111 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( 112 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, 113 ConstantInt *AndCst) { 114 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || 115 GV->getValueType() != GEP->getSourceElementType() || !GV->isConstant() || 116 !GV->hasDefinitiveInitializer()) 117 return nullptr; 118 119 Constant *Init = GV->getInitializer(); 120 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 121 return nullptr; 122 123 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 124 // Don't blow up on huge arrays. 125 if (ArrayElementCount > MaxArraySizeForCombine) 126 return nullptr; 127 128 // There are many forms of this optimization we can handle, for now, just do 129 // the simple index into a single-dimensional array. 130 // 131 // Require: GEP GV, 0, i {{, constant indices}} 132 if (GEP->getNumOperands() < 3 || !isa<ConstantInt>(GEP->getOperand(1)) || 133 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 134 isa<Constant>(GEP->getOperand(2))) 135 return nullptr; 136 137 // Check that indices after the variable are constants and in-range for the 138 // type they index. Collect the indices. This is typically for arrays of 139 // structs. 140 SmallVector<unsigned, 4> LaterIndices; 141 142 Type *EltTy = Init->getType()->getArrayElementType(); 143 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 144 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 145 if (!Idx) 146 return nullptr; // Variable index. 147 148 uint64_t IdxVal = Idx->getZExtValue(); 149 if ((unsigned)IdxVal != IdxVal) 150 return nullptr; // Too large array index. 151 152 if (StructType *STy = dyn_cast<StructType>(EltTy)) 153 EltTy = STy->getElementType(IdxVal); 154 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 155 if (IdxVal >= ATy->getNumElements()) 156 return nullptr; 157 EltTy = ATy->getElementType(); 158 } else { 159 return nullptr; // Unknown type. 160 } 161 162 LaterIndices.push_back(IdxVal); 163 } 164 165 enum { Overdefined = -3, Undefined = -2 }; 166 167 // Variables for our state machines. 168 169 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 170 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 171 // and 87 is the second (and last) index. FirstTrueElement is -2 when 172 // undefined, otherwise set to the first true element. SecondTrueElement is 173 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 174 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 175 176 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 177 // form "i != 47 & i != 87". Same state transitions as for true elements. 178 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 179 180 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 181 /// define a state machine that triggers for ranges of values that the index 182 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 183 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 184 /// index in the range (inclusive). We use -2 for undefined here because we 185 /// use relative comparisons and don't want 0-1 to match -1. 186 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 187 188 // MagicBitvector - This is a magic bitvector where we set a bit if the 189 // comparison is true for element 'i'. If there are 64 elements or less in 190 // the array, this will fully represent all the comparison results. 191 uint64_t MagicBitvector = 0; 192 193 // Scan the array and see if one of our patterns matches. 194 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 195 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 196 Constant *Elt = Init->getAggregateElement(i); 197 if (!Elt) 198 return nullptr; 199 200 // If this is indexing an array of structures, get the structure element. 201 if (!LaterIndices.empty()) { 202 Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices); 203 if (!Elt) 204 return nullptr; 205 } 206 207 // If the element is masked, handle it. 208 if (AndCst) { 209 Elt = ConstantFoldBinaryOpOperands(Instruction::And, Elt, AndCst, DL); 210 if (!Elt) 211 return nullptr; 212 } 213 214 // Find out if the comparison would be true or false for the i'th element. 215 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 216 CompareRHS, DL, &TLI); 217 if (!C) 218 return nullptr; 219 220 // If the result is undef for this element, ignore it. 221 if (isa<UndefValue>(C)) { 222 // Extend range state machines to cover this element in case there is an 223 // undef in the middle of the range. 224 if (TrueRangeEnd == (int)i - 1) 225 TrueRangeEnd = i; 226 if (FalseRangeEnd == (int)i - 1) 227 FalseRangeEnd = i; 228 continue; 229 } 230 231 // If we can't compute the result for any of the elements, we have to give 232 // up evaluating the entire conditional. 233 if (!isa<ConstantInt>(C)) 234 return nullptr; 235 236 // Otherwise, we know if the comparison is true or false for this element, 237 // update our state machines. 238 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 239 240 // State machine for single/double/range index comparison. 241 if (IsTrueForElt) { 242 // Update the TrueElement state machine. 243 if (FirstTrueElement == Undefined) 244 FirstTrueElement = TrueRangeEnd = i; // First true element. 245 else { 246 // Update double-compare state machine. 247 if (SecondTrueElement == Undefined) 248 SecondTrueElement = i; 249 else 250 SecondTrueElement = Overdefined; 251 252 // Update range state machine. 253 if (TrueRangeEnd == (int)i - 1) 254 TrueRangeEnd = i; 255 else 256 TrueRangeEnd = Overdefined; 257 } 258 } else { 259 // Update the FalseElement state machine. 260 if (FirstFalseElement == Undefined) 261 FirstFalseElement = FalseRangeEnd = i; // First false element. 262 else { 263 // Update double-compare state machine. 264 if (SecondFalseElement == Undefined) 265 SecondFalseElement = i; 266 else 267 SecondFalseElement = Overdefined; 268 269 // Update range state machine. 270 if (FalseRangeEnd == (int)i - 1) 271 FalseRangeEnd = i; 272 else 273 FalseRangeEnd = Overdefined; 274 } 275 } 276 277 // If this element is in range, update our magic bitvector. 278 if (i < 64 && IsTrueForElt) 279 MagicBitvector |= 1ULL << i; 280 281 // If all of our states become overdefined, bail out early. Since the 282 // predicate is expensive, only check it every 8 elements. This is only 283 // really useful for really huge arrays. 284 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 285 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 286 FalseRangeEnd == Overdefined) 287 return nullptr; 288 } 289 290 // Now that we've scanned the entire array, emit our new comparison(s). We 291 // order the state machines in complexity of the generated code. 292 Value *Idx = GEP->getOperand(2); 293 294 // If the index is larger than the pointer offset size of the target, truncate 295 // the index down like the GEP would do implicitly. We don't have to do this 296 // for an inbounds GEP because the index can't be out of range. 297 if (!GEP->isInBounds()) { 298 Type *PtrIdxTy = DL.getIndexType(GEP->getType()); 299 unsigned OffsetSize = PtrIdxTy->getIntegerBitWidth(); 300 if (Idx->getType()->getPrimitiveSizeInBits().getFixedValue() > OffsetSize) 301 Idx = Builder.CreateTrunc(Idx, PtrIdxTy); 302 } 303 304 // If inbounds keyword is not present, Idx * ElementSize can overflow. 305 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 306 // Then, there are two possible values for Idx to match offset 0: 307 // 0x00..00, 0x80..00. 308 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 309 // comparison is false if Idx was 0x80..00. 310 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 311 unsigned ElementSize = 312 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 313 auto MaskIdx = [&](Value *Idx) { 314 if (!GEP->isInBounds() && llvm::countr_zero(ElementSize) != 0) { 315 Value *Mask = ConstantInt::get(Idx->getType(), -1); 316 Mask = Builder.CreateLShr(Mask, llvm::countr_zero(ElementSize)); 317 Idx = Builder.CreateAnd(Idx, Mask); 318 } 319 return Idx; 320 }; 321 322 // If the comparison is only true for one or two elements, emit direct 323 // comparisons. 324 if (SecondTrueElement != Overdefined) { 325 Idx = MaskIdx(Idx); 326 // None true -> false. 327 if (FirstTrueElement == Undefined) 328 return replaceInstUsesWith(ICI, Builder.getFalse()); 329 330 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 331 332 // True for one element -> 'i == 47'. 333 if (SecondTrueElement == Undefined) 334 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 335 336 // True for two elements -> 'i == 47 | i == 72'. 337 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 338 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 339 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 340 return BinaryOperator::CreateOr(C1, C2); 341 } 342 343 // If the comparison is only false for one or two elements, emit direct 344 // comparisons. 345 if (SecondFalseElement != Overdefined) { 346 Idx = MaskIdx(Idx); 347 // None false -> true. 348 if (FirstFalseElement == Undefined) 349 return replaceInstUsesWith(ICI, Builder.getTrue()); 350 351 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 352 353 // False for one element -> 'i != 47'. 354 if (SecondFalseElement == Undefined) 355 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 356 357 // False for two elements -> 'i != 47 & i != 72'. 358 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 359 Value *SecondFalseIdx = 360 ConstantInt::get(Idx->getType(), SecondFalseElement); 361 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 362 return BinaryOperator::CreateAnd(C1, C2); 363 } 364 365 // If the comparison can be replaced with a range comparison for the elements 366 // where it is true, emit the range check. 367 if (TrueRangeEnd != Overdefined) { 368 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 369 Idx = MaskIdx(Idx); 370 371 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 372 if (FirstTrueElement) { 373 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 374 Idx = Builder.CreateAdd(Idx, Offs); 375 } 376 377 Value *End = 378 ConstantInt::get(Idx->getType(), TrueRangeEnd - FirstTrueElement + 1); 379 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 380 } 381 382 // False range check. 383 if (FalseRangeEnd != Overdefined) { 384 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 385 Idx = MaskIdx(Idx); 386 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 387 if (FirstFalseElement) { 388 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 389 Idx = Builder.CreateAdd(Idx, Offs); 390 } 391 392 Value *End = 393 ConstantInt::get(Idx->getType(), FalseRangeEnd - FirstFalseElement); 394 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 395 } 396 397 // If a magic bitvector captures the entire comparison state 398 // of this load, replace it with computation that does: 399 // ((magic_cst >> i) & 1) != 0 400 { 401 Type *Ty = nullptr; 402 403 // Look for an appropriate type: 404 // - The type of Idx if the magic fits 405 // - The smallest fitting legal type 406 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 407 Ty = Idx->getType(); 408 else 409 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 410 411 if (Ty) { 412 Idx = MaskIdx(Idx); 413 Value *V = Builder.CreateIntCast(Idx, Ty, false); 414 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 415 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 416 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 417 } 418 } 419 420 return nullptr; 421 } 422 423 /// Returns true if we can rewrite Start as a GEP with pointer Base 424 /// and some integer offset. The nodes that need to be re-written 425 /// for this transformation will be added to Explored. 426 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 427 const DataLayout &DL, 428 SetVector<Value *> &Explored) { 429 SmallVector<Value *, 16> WorkList(1, Start); 430 Explored.insert(Base); 431 432 // The following traversal gives us an order which can be used 433 // when doing the final transformation. Since in the final 434 // transformation we create the PHI replacement instructions first, 435 // we don't have to get them in any particular order. 436 // 437 // However, for other instructions we will have to traverse the 438 // operands of an instruction first, which means that we have to 439 // do a post-order traversal. 440 while (!WorkList.empty()) { 441 SetVector<PHINode *> PHIs; 442 443 while (!WorkList.empty()) { 444 if (Explored.size() >= 100) 445 return false; 446 447 Value *V = WorkList.back(); 448 449 if (Explored.contains(V)) { 450 WorkList.pop_back(); 451 continue; 452 } 453 454 if (!isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 455 // We've found some value that we can't explore which is different from 456 // the base. Therefore we can't do this transformation. 457 return false; 458 459 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 460 // Only allow inbounds GEPs with at most one variable offset. 461 auto IsNonConst = [](Value *V) { return !isa<ConstantInt>(V); }; 462 if (!GEP->isInBounds() || count_if(GEP->indices(), IsNonConst) > 1) 463 return false; 464 465 if (!Explored.contains(GEP->getOperand(0))) 466 WorkList.push_back(GEP->getOperand(0)); 467 } 468 469 if (WorkList.back() == V) { 470 WorkList.pop_back(); 471 // We've finished visiting this node, mark it as such. 472 Explored.insert(V); 473 } 474 475 if (auto *PN = dyn_cast<PHINode>(V)) { 476 // We cannot transform PHIs on unsplittable basic blocks. 477 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 478 return false; 479 Explored.insert(PN); 480 PHIs.insert(PN); 481 } 482 } 483 484 // Explore the PHI nodes further. 485 for (auto *PN : PHIs) 486 for (Value *Op : PN->incoming_values()) 487 if (!Explored.contains(Op)) 488 WorkList.push_back(Op); 489 } 490 491 // Make sure that we can do this. Since we can't insert GEPs in a basic 492 // block before a PHI node, we can't easily do this transformation if 493 // we have PHI node users of transformed instructions. 494 for (Value *Val : Explored) { 495 for (Value *Use : Val->uses()) { 496 497 auto *PHI = dyn_cast<PHINode>(Use); 498 auto *Inst = dyn_cast<Instruction>(Val); 499 500 if (Inst == Base || Inst == PHI || !Inst || !PHI || 501 !Explored.contains(PHI)) 502 continue; 503 504 if (PHI->getParent() == Inst->getParent()) 505 return false; 506 } 507 } 508 return true; 509 } 510 511 // Sets the appropriate insert point on Builder where we can add 512 // a replacement Instruction for V (if that is possible). 513 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 514 bool Before = true) { 515 if (auto *PHI = dyn_cast<PHINode>(V)) { 516 BasicBlock *Parent = PHI->getParent(); 517 Builder.SetInsertPoint(Parent, Parent->getFirstInsertionPt()); 518 return; 519 } 520 if (auto *I = dyn_cast<Instruction>(V)) { 521 if (!Before) 522 I = &*std::next(I->getIterator()); 523 Builder.SetInsertPoint(I); 524 return; 525 } 526 if (auto *A = dyn_cast<Argument>(V)) { 527 // Set the insertion point in the entry block. 528 BasicBlock &Entry = A->getParent()->getEntryBlock(); 529 Builder.SetInsertPoint(&Entry, Entry.getFirstInsertionPt()); 530 return; 531 } 532 // Otherwise, this is a constant and we don't need to set a new 533 // insertion point. 534 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 535 } 536 537 /// Returns a re-written value of Start as an indexed GEP using Base as a 538 /// pointer. 539 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 540 const DataLayout &DL, 541 SetVector<Value *> &Explored, 542 InstCombiner &IC) { 543 // Perform all the substitutions. This is a bit tricky because we can 544 // have cycles in our use-def chains. 545 // 1. Create the PHI nodes without any incoming values. 546 // 2. Create all the other values. 547 // 3. Add the edges for the PHI nodes. 548 // 4. Emit GEPs to get the original pointers. 549 // 5. Remove the original instructions. 550 Type *IndexType = IntegerType::get( 551 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 552 553 DenseMap<Value *, Value *> NewInsts; 554 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 555 556 // Create the new PHI nodes, without adding any incoming values. 557 for (Value *Val : Explored) { 558 if (Val == Base) 559 continue; 560 // Create empty phi nodes. This avoids cyclic dependencies when creating 561 // the remaining instructions. 562 if (auto *PHI = dyn_cast<PHINode>(Val)) 563 NewInsts[PHI] = 564 PHINode::Create(IndexType, PHI->getNumIncomingValues(), 565 PHI->getName() + ".idx", PHI->getIterator()); 566 } 567 IRBuilder<> Builder(Base->getContext()); 568 569 // Create all the other instructions. 570 for (Value *Val : Explored) { 571 if (NewInsts.contains(Val)) 572 continue; 573 574 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 575 setInsertionPoint(Builder, GEP); 576 Value *Op = NewInsts[GEP->getOperand(0)]; 577 Value *OffsetV = emitGEPOffset(&Builder, DL, GEP); 578 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 579 NewInsts[GEP] = OffsetV; 580 else 581 NewInsts[GEP] = Builder.CreateNSWAdd( 582 Op, OffsetV, GEP->getOperand(0)->getName() + ".add"); 583 continue; 584 } 585 if (isa<PHINode>(Val)) 586 continue; 587 588 llvm_unreachable("Unexpected instruction type"); 589 } 590 591 // Add the incoming values to the PHI nodes. 592 for (Value *Val : Explored) { 593 if (Val == Base) 594 continue; 595 // All the instructions have been created, we can now add edges to the 596 // phi nodes. 597 if (auto *PHI = dyn_cast<PHINode>(Val)) { 598 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 599 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 600 Value *NewIncoming = PHI->getIncomingValue(I); 601 602 if (NewInsts.contains(NewIncoming)) 603 NewIncoming = NewInsts[NewIncoming]; 604 605 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 606 } 607 } 608 } 609 610 for (Value *Val : Explored) { 611 if (Val == Base) 612 continue; 613 614 setInsertionPoint(Builder, Val, false); 615 // Create GEP for external users. 616 Value *NewVal = Builder.CreateInBoundsGEP( 617 Builder.getInt8Ty(), Base, NewInsts[Val], Val->getName() + ".ptr"); 618 IC.replaceInstUsesWith(*cast<Instruction>(Val), NewVal); 619 // Add old instruction to worklist for DCE. We don't directly remove it 620 // here because the original compare is one of the users. 621 IC.addToWorklist(cast<Instruction>(Val)); 622 } 623 624 return NewInsts[Start]; 625 } 626 627 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 628 /// We can look through PHIs, GEPs and casts in order to determine a common base 629 /// between GEPLHS and RHS. 630 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 631 ICmpInst::Predicate Cond, 632 const DataLayout &DL, 633 InstCombiner &IC) { 634 // FIXME: Support vector of pointers. 635 if (GEPLHS->getType()->isVectorTy()) 636 return nullptr; 637 638 if (!GEPLHS->hasAllConstantIndices()) 639 return nullptr; 640 641 APInt Offset(DL.getIndexTypeSizeInBits(GEPLHS->getType()), 0); 642 Value *PtrBase = 643 GEPLHS->stripAndAccumulateConstantOffsets(DL, Offset, 644 /*AllowNonInbounds*/ false); 645 646 // Bail if we looked through addrspacecast. 647 if (PtrBase->getType() != GEPLHS->getType()) 648 return nullptr; 649 650 // The set of nodes that will take part in this transformation. 651 SetVector<Value *> Nodes; 652 653 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 654 return nullptr; 655 656 // We know we can re-write this as 657 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 658 // Since we've only looked through inbouds GEPs we know that we 659 // can't have overflow on either side. We can therefore re-write 660 // this as: 661 // OFFSET1 cmp OFFSET2 662 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes, IC); 663 664 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 665 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 666 // offset. Since Index is the offset of LHS to the base pointer, we will now 667 // compare the offsets instead of comparing the pointers. 668 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), 669 IC.Builder.getInt(Offset), NewRHS); 670 } 671 672 /// Fold comparisons between a GEP instruction and something else. At this point 673 /// we know that the GEP is on the LHS of the comparison. 674 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 675 ICmpInst::Predicate Cond, 676 Instruction &I) { 677 // Don't transform signed compares of GEPs into index compares. Even if the 678 // GEP is inbounds, the final add of the base pointer can have signed overflow 679 // and would change the result of the icmp. 680 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 681 // the maximum signed value for the pointer type. 682 if (ICmpInst::isSigned(Cond)) 683 return nullptr; 684 685 // Look through bitcasts and addrspacecasts. We do not however want to remove 686 // 0 GEPs. 687 if (!isa<GetElementPtrInst>(RHS)) 688 RHS = RHS->stripPointerCasts(); 689 690 Value *PtrBase = GEPLHS->getOperand(0); 691 if (PtrBase == RHS && (GEPLHS->isInBounds() || ICmpInst::isEquality(Cond))) { 692 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 693 Value *Offset = EmitGEPOffset(GEPLHS); 694 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 695 Constant::getNullValue(Offset->getType())); 696 } 697 698 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 699 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 700 !NullPointerIsDefined(I.getFunction(), 701 RHS->getType()->getPointerAddressSpace())) { 702 // For most address spaces, an allocation can't be placed at null, but null 703 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 704 // the only valid inbounds address derived from null, is null itself. 705 // Thus, we have four cases to consider: 706 // 1) Base == nullptr, Offset == 0 -> inbounds, null 707 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 708 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 709 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 710 // 711 // (Note if we're indexing a type of size 0, that simply collapses into one 712 // of the buckets above.) 713 // 714 // In general, we're allowed to make values less poison (i.e. remove 715 // sources of full UB), so in this case, we just select between the two 716 // non-poison cases (1 and 4 above). 717 // 718 // For vectors, we apply the same reasoning on a per-lane basis. 719 auto *Base = GEPLHS->getPointerOperand(); 720 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 721 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 722 Base = Builder.CreateVectorSplat(EC, Base); 723 } 724 return new ICmpInst(Cond, Base, 725 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 726 cast<Constant>(RHS), Base->getType())); 727 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 728 // If the base pointers are different, but the indices are the same, just 729 // compare the base pointer. 730 if (PtrBase != GEPRHS->getOperand(0)) { 731 bool IndicesTheSame = 732 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 733 GEPLHS->getPointerOperand()->getType() == 734 GEPRHS->getPointerOperand()->getType() && 735 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 736 if (IndicesTheSame) 737 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 738 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 739 IndicesTheSame = false; 740 break; 741 } 742 743 // If all indices are the same, just compare the base pointers. 744 Type *BaseType = GEPLHS->getOperand(0)->getType(); 745 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 746 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 747 748 // If we're comparing GEPs with two base pointers that only differ in type 749 // and both GEPs have only constant indices or just one use, then fold 750 // the compare with the adjusted indices. 751 // FIXME: Support vector of pointers. 752 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 753 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 754 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 755 PtrBase->stripPointerCasts() == 756 GEPRHS->getOperand(0)->stripPointerCasts() && 757 !GEPLHS->getType()->isVectorTy()) { 758 Value *LOffset = EmitGEPOffset(GEPLHS); 759 Value *ROffset = EmitGEPOffset(GEPRHS); 760 761 // If we looked through an addrspacecast between different sized address 762 // spaces, the LHS and RHS pointers are different sized 763 // integers. Truncate to the smaller one. 764 Type *LHSIndexTy = LOffset->getType(); 765 Type *RHSIndexTy = ROffset->getType(); 766 if (LHSIndexTy != RHSIndexTy) { 767 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedValue() < 768 RHSIndexTy->getPrimitiveSizeInBits().getFixedValue()) { 769 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 770 } else 771 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 772 } 773 774 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 775 LOffset, ROffset); 776 return replaceInstUsesWith(I, Cmp); 777 } 778 779 // Otherwise, the base pointers are different and the indices are 780 // different. Try convert this to an indexed compare by looking through 781 // PHIs/casts. 782 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this); 783 } 784 785 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 786 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 787 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { 788 // If the GEPs only differ by one index, compare it. 789 unsigned NumDifferences = 0; // Keep track of # differences. 790 unsigned DiffOperand = 0; // The operand that differs. 791 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 792 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 793 Type *LHSType = GEPLHS->getOperand(i)->getType(); 794 Type *RHSType = GEPRHS->getOperand(i)->getType(); 795 // FIXME: Better support for vector of pointers. 796 if (LHSType->getPrimitiveSizeInBits() != 797 RHSType->getPrimitiveSizeInBits() || 798 (GEPLHS->getType()->isVectorTy() && 799 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 800 // Irreconcilable differences. 801 NumDifferences = 2; 802 break; 803 } 804 805 if (NumDifferences++) break; 806 DiffOperand = i; 807 } 808 809 if (NumDifferences == 0) // SAME GEP? 810 return replaceInstUsesWith(I, // No comparison is needed here. 811 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 812 813 else if (NumDifferences == 1 && GEPsInBounds) { 814 Value *LHSV = GEPLHS->getOperand(DiffOperand); 815 Value *RHSV = GEPRHS->getOperand(DiffOperand); 816 // Make sure we do a signed comparison here. 817 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 818 } 819 } 820 821 if (GEPsInBounds || CmpInst::isEquality(Cond)) { 822 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 823 Value *L = EmitGEPOffset(GEPLHS, /*RewriteGEP=*/true); 824 Value *R = EmitGEPOffset(GEPRHS, /*RewriteGEP=*/true); 825 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 826 } 827 } 828 829 // Try convert this to an indexed compare by looking through PHIs/casts as a 830 // last resort. 831 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this); 832 } 833 834 bool InstCombinerImpl::foldAllocaCmp(AllocaInst *Alloca) { 835 // It would be tempting to fold away comparisons between allocas and any 836 // pointer not based on that alloca (e.g. an argument). However, even 837 // though such pointers cannot alias, they can still compare equal. 838 // 839 // But LLVM doesn't specify where allocas get their memory, so if the alloca 840 // doesn't escape we can argue that it's impossible to guess its value, and we 841 // can therefore act as if any such guesses are wrong. 842 // 843 // However, we need to ensure that this folding is consistent: We can't fold 844 // one comparison to false, and then leave a different comparison against the 845 // same value alone (as it might evaluate to true at runtime, leading to a 846 // contradiction). As such, this code ensures that all comparisons are folded 847 // at the same time, and there are no other escapes. 848 849 struct CmpCaptureTracker : public CaptureTracker { 850 AllocaInst *Alloca; 851 bool Captured = false; 852 /// The value of the map is a bit mask of which icmp operands the alloca is 853 /// used in. 854 SmallMapVector<ICmpInst *, unsigned, 4> ICmps; 855 856 CmpCaptureTracker(AllocaInst *Alloca) : Alloca(Alloca) {} 857 858 void tooManyUses() override { Captured = true; } 859 860 bool captured(const Use *U) override { 861 auto *ICmp = dyn_cast<ICmpInst>(U->getUser()); 862 // We need to check that U is based *only* on the alloca, and doesn't 863 // have other contributions from a select/phi operand. 864 // TODO: We could check whether getUnderlyingObjects() reduces to one 865 // object, which would allow looking through phi nodes. 866 if (ICmp && ICmp->isEquality() && getUnderlyingObject(*U) == Alloca) { 867 // Collect equality icmps of the alloca, and don't treat them as 868 // captures. 869 auto Res = ICmps.insert({ICmp, 0}); 870 Res.first->second |= 1u << U->getOperandNo(); 871 return false; 872 } 873 874 Captured = true; 875 return true; 876 } 877 }; 878 879 CmpCaptureTracker Tracker(Alloca); 880 PointerMayBeCaptured(Alloca, &Tracker); 881 if (Tracker.Captured) 882 return false; 883 884 bool Changed = false; 885 for (auto [ICmp, Operands] : Tracker.ICmps) { 886 switch (Operands) { 887 case 1: 888 case 2: { 889 // The alloca is only used in one icmp operand. Assume that the 890 // equality is false. 891 auto *Res = ConstantInt::get( 892 ICmp->getType(), ICmp->getPredicate() == ICmpInst::ICMP_NE); 893 replaceInstUsesWith(*ICmp, Res); 894 eraseInstFromFunction(*ICmp); 895 Changed = true; 896 break; 897 } 898 case 3: 899 // Both icmp operands are based on the alloca, so this is comparing 900 // pointer offsets, without leaking any information about the address 901 // of the alloca. Ignore such comparisons. 902 break; 903 default: 904 llvm_unreachable("Cannot happen"); 905 } 906 } 907 908 return Changed; 909 } 910 911 /// Fold "icmp pred (X+C), X". 912 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 913 ICmpInst::Predicate Pred) { 914 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 915 // so the values can never be equal. Similarly for all other "or equals" 916 // operators. 917 assert(!!C && "C should not be zero!"); 918 919 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 920 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 921 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 922 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 923 Constant *R = ConstantInt::get(X->getType(), 924 APInt::getMaxValue(C.getBitWidth()) - C); 925 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 926 } 927 928 // (X+1) >u X --> X <u (0-1) --> X != 255 929 // (X+2) >u X --> X <u (0-2) --> X <u 254 930 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 931 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 932 return new ICmpInst(ICmpInst::ICMP_ULT, X, 933 ConstantInt::get(X->getType(), -C)); 934 935 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 936 937 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 938 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 939 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 940 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 941 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 942 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 943 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 944 return new ICmpInst(ICmpInst::ICMP_SGT, X, 945 ConstantInt::get(X->getType(), SMax - C)); 946 947 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 948 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 949 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 950 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 951 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 952 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 953 954 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 955 return new ICmpInst(ICmpInst::ICMP_SLT, X, 956 ConstantInt::get(X->getType(), SMax - (C - 1))); 957 } 958 959 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 960 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 961 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 962 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 963 const APInt &AP1, 964 const APInt &AP2) { 965 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 966 967 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 968 if (I.getPredicate() == I.ICMP_NE) 969 Pred = CmpInst::getInversePredicate(Pred); 970 return new ICmpInst(Pred, LHS, RHS); 971 }; 972 973 // Don't bother doing any work for cases which InstSimplify handles. 974 if (AP2.isZero()) 975 return nullptr; 976 977 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 978 if (IsAShr) { 979 if (AP2.isAllOnes()) 980 return nullptr; 981 if (AP2.isNegative() != AP1.isNegative()) 982 return nullptr; 983 if (AP2.sgt(AP1)) 984 return nullptr; 985 } 986 987 if (!AP1) 988 // 'A' must be large enough to shift out the highest set bit. 989 return getICmp(I.ICMP_UGT, A, 990 ConstantInt::get(A->getType(), AP2.logBase2())); 991 992 if (AP1 == AP2) 993 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 994 995 int Shift; 996 if (IsAShr && AP1.isNegative()) 997 Shift = AP1.countl_one() - AP2.countl_one(); 998 else 999 Shift = AP1.countl_zero() - AP2.countl_zero(); 1000 1001 if (Shift > 0) { 1002 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1003 // There are multiple solutions if we are comparing against -1 and the LHS 1004 // of the ashr is not a power of two. 1005 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1006 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1007 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1008 } else if (AP1 == AP2.lshr(Shift)) { 1009 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1010 } 1011 } 1012 1013 // Shifting const2 will never be equal to const1. 1014 // FIXME: This should always be handled by InstSimplify? 1015 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1016 return replaceInstUsesWith(I, TorF); 1017 } 1018 1019 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1020 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1021 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1022 const APInt &AP1, 1023 const APInt &AP2) { 1024 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1025 1026 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1027 if (I.getPredicate() == I.ICMP_NE) 1028 Pred = CmpInst::getInversePredicate(Pred); 1029 return new ICmpInst(Pred, LHS, RHS); 1030 }; 1031 1032 // Don't bother doing any work for cases which InstSimplify handles. 1033 if (AP2.isZero()) 1034 return nullptr; 1035 1036 unsigned AP2TrailingZeros = AP2.countr_zero(); 1037 1038 if (!AP1 && AP2TrailingZeros != 0) 1039 return getICmp( 1040 I.ICMP_UGE, A, 1041 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1042 1043 if (AP1 == AP2) 1044 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1045 1046 // Get the distance between the lowest bits that are set. 1047 int Shift = AP1.countr_zero() - AP2TrailingZeros; 1048 1049 if (Shift > 0 && AP2.shl(Shift) == AP1) 1050 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1051 1052 // Shifting const2 will never be equal to const1. 1053 // FIXME: This should always be handled by InstSimplify? 1054 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1055 return replaceInstUsesWith(I, TorF); 1056 } 1057 1058 /// The caller has matched a pattern of the form: 1059 /// I = icmp ugt (add (add A, B), CI2), CI1 1060 /// If this is of the form: 1061 /// sum = a + b 1062 /// if (sum+128 >u 255) 1063 /// Then replace it with llvm.sadd.with.overflow.i8. 1064 /// 1065 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1066 ConstantInt *CI2, ConstantInt *CI1, 1067 InstCombinerImpl &IC) { 1068 // The transformation we're trying to do here is to transform this into an 1069 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1070 // with a narrower add, and discard the add-with-constant that is part of the 1071 // range check (if we can't eliminate it, this isn't profitable). 1072 1073 // In order to eliminate the add-with-constant, the compare can be its only 1074 // use. 1075 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1076 if (!AddWithCst->hasOneUse()) 1077 return nullptr; 1078 1079 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1080 if (!CI2->getValue().isPowerOf2()) 1081 return nullptr; 1082 unsigned NewWidth = CI2->getValue().countr_zero(); 1083 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1084 return nullptr; 1085 1086 // The width of the new add formed is 1 more than the bias. 1087 ++NewWidth; 1088 1089 // Check to see that CI1 is an all-ones value with NewWidth bits. 1090 if (CI1->getBitWidth() == NewWidth || 1091 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1092 return nullptr; 1093 1094 // This is only really a signed overflow check if the inputs have been 1095 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1096 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1097 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1098 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1099 return nullptr; 1100 1101 // In order to replace the original add with a narrower 1102 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1103 // and truncates that discard the high bits of the add. Verify that this is 1104 // the case. 1105 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1106 for (User *U : OrigAdd->users()) { 1107 if (U == AddWithCst) 1108 continue; 1109 1110 // Only accept truncates for now. We would really like a nice recursive 1111 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1112 // chain to see which bits of a value are actually demanded. If the 1113 // original add had another add which was then immediately truncated, we 1114 // could still do the transformation. 1115 TruncInst *TI = dyn_cast<TruncInst>(U); 1116 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1117 return nullptr; 1118 } 1119 1120 // If the pattern matches, truncate the inputs to the narrower type and 1121 // use the sadd_with_overflow intrinsic to efficiently compute both the 1122 // result and the overflow bit. 1123 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1124 Function *F = Intrinsic::getDeclaration( 1125 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1126 1127 InstCombiner::BuilderTy &Builder = IC.Builder; 1128 1129 // Put the new code above the original add, in case there are any uses of the 1130 // add between the add and the compare. 1131 Builder.SetInsertPoint(OrigAdd); 1132 1133 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1134 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1135 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1136 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1137 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1138 1139 // The inner add was the result of the narrow add, zero extended to the 1140 // wider type. Replace it with the result computed by the intrinsic. 1141 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1142 IC.eraseInstFromFunction(*OrigAdd); 1143 1144 // The original icmp gets replaced with the overflow value. 1145 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1146 } 1147 1148 /// If we have: 1149 /// icmp eq/ne (urem/srem %x, %y), 0 1150 /// iff %y is a power-of-two, we can replace this with a bit test: 1151 /// icmp eq/ne (and %x, (add %y, -1)), 0 1152 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1153 // This fold is only valid for equality predicates. 1154 if (!I.isEquality()) 1155 return nullptr; 1156 ICmpInst::Predicate Pred; 1157 Value *X, *Y, *Zero; 1158 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1159 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1160 return nullptr; 1161 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1162 return nullptr; 1163 // This may increase instruction count, we don't enforce that Y is a constant. 1164 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1165 Value *Masked = Builder.CreateAnd(X, Mask); 1166 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1167 } 1168 1169 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1170 /// by one-less-than-bitwidth into a sign test on the original value. 1171 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1172 Instruction *Val; 1173 ICmpInst::Predicate Pred; 1174 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1175 return nullptr; 1176 1177 Value *X; 1178 Type *XTy; 1179 1180 Constant *C; 1181 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1182 XTy = X->getType(); 1183 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1184 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1185 APInt(XBitWidth, XBitWidth - 1)))) 1186 return nullptr; 1187 } else if (isa<BinaryOperator>(Val) && 1188 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1189 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1190 /*AnalyzeForSignBitExtraction=*/true))) { 1191 XTy = X->getType(); 1192 } else 1193 return nullptr; 1194 1195 return ICmpInst::Create(Instruction::ICmp, 1196 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1197 : ICmpInst::ICMP_SLT, 1198 X, ConstantInt::getNullValue(XTy)); 1199 } 1200 1201 // Handle icmp pred X, 0 1202 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1203 CmpInst::Predicate Pred = Cmp.getPredicate(); 1204 if (!match(Cmp.getOperand(1), m_Zero())) 1205 return nullptr; 1206 1207 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1208 if (Pred == ICmpInst::ICMP_SGT) { 1209 Value *A, *B; 1210 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1211 if (isKnownPositive(A, SQ.getWithInstruction(&Cmp))) 1212 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1213 if (isKnownPositive(B, SQ.getWithInstruction(&Cmp))) 1214 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1215 } 1216 } 1217 1218 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1219 return New; 1220 1221 // Given: 1222 // icmp eq/ne (urem %x, %y), 0 1223 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1224 // icmp eq/ne %x, 0 1225 Value *X, *Y; 1226 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1227 ICmpInst::isEquality(Pred)) { 1228 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1229 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1230 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1231 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1232 } 1233 1234 // (icmp eq/ne (mul X Y)) -> (icmp eq/ne X/Y) if we know about whether X/Y are 1235 // odd/non-zero/there is no overflow. 1236 if (match(Cmp.getOperand(0), m_Mul(m_Value(X), m_Value(Y))) && 1237 ICmpInst::isEquality(Pred)) { 1238 1239 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1240 // if X % 2 != 0 1241 // (icmp eq/ne Y) 1242 if (XKnown.countMaxTrailingZeros() == 0) 1243 return new ICmpInst(Pred, Y, Cmp.getOperand(1)); 1244 1245 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1246 // if Y % 2 != 0 1247 // (icmp eq/ne X) 1248 if (YKnown.countMaxTrailingZeros() == 0) 1249 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1250 1251 auto *BO0 = cast<OverflowingBinaryOperator>(Cmp.getOperand(0)); 1252 if (BO0->hasNoUnsignedWrap() || BO0->hasNoSignedWrap()) { 1253 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); 1254 // `isKnownNonZero` does more analysis than just `!KnownBits.One.isZero()` 1255 // but to avoid unnecessary work, first just if this is an obvious case. 1256 1257 // if X non-zero and NoOverflow(X * Y) 1258 // (icmp eq/ne Y) 1259 if (!XKnown.One.isZero() || isKnownNonZero(X, Q)) 1260 return new ICmpInst(Pred, Y, Cmp.getOperand(1)); 1261 1262 // if Y non-zero and NoOverflow(X * Y) 1263 // (icmp eq/ne X) 1264 if (!YKnown.One.isZero() || isKnownNonZero(Y, Q)) 1265 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1266 } 1267 // Note, we are skipping cases: 1268 // if Y % 2 != 0 AND X % 2 != 0 1269 // (false/true) 1270 // if X non-zero and Y non-zero and NoOverflow(X * Y) 1271 // (false/true) 1272 // Those can be simplified later as we would have already replaced the (icmp 1273 // eq/ne (mul X, Y)) with (icmp eq/ne X/Y) and if X/Y is known non-zero that 1274 // will fold to a constant elsewhere. 1275 } 1276 return nullptr; 1277 } 1278 1279 /// Fold icmp Pred X, C. 1280 /// TODO: This code structure does not make sense. The saturating add fold 1281 /// should be moved to some other helper and extended as noted below (it is also 1282 /// possible that code has been made unnecessary - do we canonicalize IR to 1283 /// overflow/saturating intrinsics or not?). 1284 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1285 // Match the following pattern, which is a common idiom when writing 1286 // overflow-safe integer arithmetic functions. The source performs an addition 1287 // in wider type and explicitly checks for overflow using comparisons against 1288 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1289 // 1290 // TODO: This could probably be generalized to handle other overflow-safe 1291 // operations if we worked out the formulas to compute the appropriate magic 1292 // constants. 1293 // 1294 // sum = a + b 1295 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1296 CmpInst::Predicate Pred = Cmp.getPredicate(); 1297 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1298 Value *A, *B; 1299 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1300 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1301 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1302 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1303 return Res; 1304 1305 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1306 Constant *C = dyn_cast<Constant>(Op1); 1307 if (!C) 1308 return nullptr; 1309 1310 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1311 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1312 SmallVector<Constant *> Ops; 1313 for (Value *V : Phi->incoming_values()) { 1314 Constant *Res = 1315 ConstantFoldCompareInstOperands(Pred, cast<Constant>(V), C, DL); 1316 if (!Res) 1317 return nullptr; 1318 Ops.push_back(Res); 1319 } 1320 Builder.SetInsertPoint(Phi); 1321 PHINode *NewPhi = Builder.CreatePHI(Cmp.getType(), Phi->getNumOperands()); 1322 for (auto [V, Pred] : zip(Ops, Phi->blocks())) 1323 NewPhi->addIncoming(V, Pred); 1324 return replaceInstUsesWith(Cmp, NewPhi); 1325 } 1326 1327 if (Instruction *R = tryFoldInstWithCtpopWithNot(&Cmp)) 1328 return R; 1329 1330 return nullptr; 1331 } 1332 1333 /// Canonicalize icmp instructions based on dominating conditions. 1334 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1335 // We already checked simple implication in InstSimplify, only handle complex 1336 // cases here. 1337 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1338 const APInt *C; 1339 if (!match(Y, m_APInt(C))) 1340 return nullptr; 1341 1342 CmpInst::Predicate Pred = Cmp.getPredicate(); 1343 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1344 1345 auto handleDomCond = [&](ICmpInst::Predicate DomPred, 1346 const APInt *DomC) -> Instruction * { 1347 // We have 2 compares of a variable with constants. Calculate the constant 1348 // ranges of those compares to see if we can transform the 2nd compare: 1349 // DomBB: 1350 // DomCond = icmp DomPred X, DomC 1351 // br DomCond, CmpBB, FalseBB 1352 // CmpBB: 1353 // Cmp = icmp Pred X, C 1354 ConstantRange DominatingCR = 1355 ConstantRange::makeExactICmpRegion(DomPred, *DomC); 1356 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1357 ConstantRange Difference = DominatingCR.difference(CR); 1358 if (Intersection.isEmptySet()) 1359 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1360 if (Difference.isEmptySet()) 1361 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1362 1363 // Canonicalizing a sign bit comparison that gets used in a branch, 1364 // pessimizes codegen by generating branch on zero instruction instead 1365 // of a test and branch. So we avoid canonicalizing in such situations 1366 // because test and branch instruction has better branch displacement 1367 // than compare and branch instruction. 1368 bool UnusedBit; 1369 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1370 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1371 return nullptr; 1372 1373 // Avoid an infinite loop with min/max canonicalization. 1374 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1375 if (Cmp.hasOneUse() && 1376 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1377 return nullptr; 1378 1379 if (const APInt *EqC = Intersection.getSingleElement()) 1380 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1381 if (const APInt *NeC = Difference.getSingleElement()) 1382 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1383 return nullptr; 1384 }; 1385 1386 for (BranchInst *BI : DC.conditionsFor(X)) { 1387 ICmpInst::Predicate DomPred; 1388 const APInt *DomC; 1389 if (!match(BI->getCondition(), 1390 m_ICmp(DomPred, m_Specific(X), m_APInt(DomC)))) 1391 continue; 1392 1393 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0)); 1394 if (DT.dominates(Edge0, Cmp.getParent())) { 1395 if (auto *V = handleDomCond(DomPred, DomC)) 1396 return V; 1397 } else { 1398 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1)); 1399 if (DT.dominates(Edge1, Cmp.getParent())) 1400 if (auto *V = 1401 handleDomCond(CmpInst::getInversePredicate(DomPred), DomC)) 1402 return V; 1403 } 1404 } 1405 1406 return nullptr; 1407 } 1408 1409 /// Fold icmp (trunc X), C. 1410 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1411 TruncInst *Trunc, 1412 const APInt &C) { 1413 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1414 Value *X = Trunc->getOperand(0); 1415 Type *SrcTy = X->getType(); 1416 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1417 SrcBits = SrcTy->getScalarSizeInBits(); 1418 1419 // Match (icmp pred (trunc nuw/nsw X), C) 1420 // Which we can convert to (icmp pred X, (sext/zext C)) 1421 if (shouldChangeType(Trunc->getType(), SrcTy)) { 1422 if (Trunc->hasNoSignedWrap()) 1423 return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, C.sext(SrcBits))); 1424 if (!Cmp.isSigned() && Trunc->hasNoUnsignedWrap()) 1425 return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, C.zext(SrcBits))); 1426 } 1427 1428 if (C.isOne() && C.getBitWidth() > 1) { 1429 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1430 Value *V = nullptr; 1431 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1432 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1433 ConstantInt::get(V->getType(), 1)); 1434 } 1435 1436 // TODO: Handle any shifted constant by subtracting trailing zeros. 1437 // TODO: Handle non-equality predicates. 1438 Value *Y; 1439 if (Cmp.isEquality() && match(X, m_Shl(m_One(), m_Value(Y)))) { 1440 // (trunc (1 << Y) to iN) == 0 --> Y u>= N 1441 // (trunc (1 << Y) to iN) != 0 --> Y u< N 1442 if (C.isZero()) { 1443 auto NewPred = (Pred == Cmp.ICMP_EQ) ? Cmp.ICMP_UGE : Cmp.ICMP_ULT; 1444 return new ICmpInst(NewPred, Y, ConstantInt::get(SrcTy, DstBits)); 1445 } 1446 // (trunc (1 << Y) to iN) == 2**C --> Y == C 1447 // (trunc (1 << Y) to iN) != 2**C --> Y != C 1448 if (C.isPowerOf2()) 1449 return new ICmpInst(Pred, Y, ConstantInt::get(SrcTy, C.logBase2())); 1450 } 1451 1452 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1453 // Canonicalize to a mask and wider compare if the wide type is suitable: 1454 // (trunc X to i8) == C --> (X & 0xff) == (zext C) 1455 if (!SrcTy->isVectorTy() && shouldChangeType(DstBits, SrcBits)) { 1456 Constant *Mask = 1457 ConstantInt::get(SrcTy, APInt::getLowBitsSet(SrcBits, DstBits)); 1458 Value *And = Builder.CreateAnd(X, Mask); 1459 Constant *WideC = ConstantInt::get(SrcTy, C.zext(SrcBits)); 1460 return new ICmpInst(Pred, And, WideC); 1461 } 1462 1463 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1464 // of the high bits truncated out of x are known. 1465 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1466 1467 // If all the high bits are known, we can do this xform. 1468 if ((Known.Zero | Known.One).countl_one() >= SrcBits - DstBits) { 1469 // Pull in the high bits from known-ones set. 1470 APInt NewRHS = C.zext(SrcBits); 1471 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1472 return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, NewRHS)); 1473 } 1474 } 1475 1476 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1477 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1478 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1479 Value *ShOp; 1480 const APInt *ShAmtC; 1481 bool TrueIfSigned; 1482 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1483 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1484 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1485 return TrueIfSigned ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1486 ConstantInt::getNullValue(SrcTy)) 1487 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1488 ConstantInt::getAllOnesValue(SrcTy)); 1489 } 1490 1491 return nullptr; 1492 } 1493 1494 /// Fold icmp (trunc nuw/nsw X), (trunc nuw/nsw Y). 1495 /// Fold icmp (trunc nuw/nsw X), (zext/sext Y). 1496 Instruction * 1497 InstCombinerImpl::foldICmpTruncWithTruncOrExt(ICmpInst &Cmp, 1498 const SimplifyQuery &Q) { 1499 Value *X, *Y; 1500 ICmpInst::Predicate Pred; 1501 bool YIsSExt = false; 1502 // Try to match icmp (trunc X), (trunc Y) 1503 if (match(&Cmp, m_ICmp(Pred, m_Trunc(m_Value(X)), m_Trunc(m_Value(Y))))) { 1504 unsigned NoWrapFlags = cast<TruncInst>(Cmp.getOperand(0))->getNoWrapKind() & 1505 cast<TruncInst>(Cmp.getOperand(1))->getNoWrapKind(); 1506 if (Cmp.isSigned()) { 1507 // For signed comparisons, both truncs must be nsw. 1508 if (!(NoWrapFlags & TruncInst::NoSignedWrap)) 1509 return nullptr; 1510 } else { 1511 // For unsigned and equality comparisons, either both must be nuw or 1512 // both must be nsw, we don't care which. 1513 if (!NoWrapFlags) 1514 return nullptr; 1515 } 1516 1517 if (X->getType() != Y->getType() && 1518 (!Cmp.getOperand(0)->hasOneUse() || !Cmp.getOperand(1)->hasOneUse())) 1519 return nullptr; 1520 if (!isDesirableIntType(X->getType()->getScalarSizeInBits()) && 1521 isDesirableIntType(Y->getType()->getScalarSizeInBits())) { 1522 std::swap(X, Y); 1523 Pred = Cmp.getSwappedPredicate(Pred); 1524 } 1525 YIsSExt = !(NoWrapFlags & TruncInst::NoUnsignedWrap); 1526 } 1527 // Try to match icmp (trunc nuw X), (zext Y) 1528 else if (!Cmp.isSigned() && 1529 match(&Cmp, m_c_ICmp(Pred, m_NUWTrunc(m_Value(X)), 1530 m_OneUse(m_ZExt(m_Value(Y)))))) { 1531 // Can fold trunc nuw + zext for unsigned and equality predicates. 1532 } 1533 // Try to match icmp (trunc nsw X), (sext Y) 1534 else if (match(&Cmp, m_c_ICmp(Pred, m_NSWTrunc(m_Value(X)), 1535 m_OneUse(m_ZExtOrSExt(m_Value(Y)))))) { 1536 // Can fold trunc nsw + zext/sext for all predicates. 1537 YIsSExt = 1538 isa<SExtInst>(Cmp.getOperand(0)) || isa<SExtInst>(Cmp.getOperand(1)); 1539 } else 1540 return nullptr; 1541 1542 Type *TruncTy = Cmp.getOperand(0)->getType(); 1543 unsigned TruncBits = TruncTy->getScalarSizeInBits(); 1544 1545 // If this transform will end up changing from desirable types -> undesirable 1546 // types skip it. 1547 if (isDesirableIntType(TruncBits) && 1548 !isDesirableIntType(X->getType()->getScalarSizeInBits())) 1549 return nullptr; 1550 1551 Value *NewY = Builder.CreateIntCast(Y, X->getType(), YIsSExt); 1552 return new ICmpInst(Pred, X, NewY); 1553 } 1554 1555 /// Fold icmp (xor X, Y), C. 1556 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1557 BinaryOperator *Xor, 1558 const APInt &C) { 1559 if (Instruction *I = foldICmpXorShiftConst(Cmp, Xor, C)) 1560 return I; 1561 1562 Value *X = Xor->getOperand(0); 1563 Value *Y = Xor->getOperand(1); 1564 const APInt *XorC; 1565 if (!match(Y, m_APInt(XorC))) 1566 return nullptr; 1567 1568 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1569 // fold the xor. 1570 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1571 bool TrueIfSigned = false; 1572 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1573 1574 // If the sign bit of the XorCst is not set, there is no change to 1575 // the operation, just stop using the Xor. 1576 if (!XorC->isNegative()) 1577 return replaceOperand(Cmp, 0, X); 1578 1579 // Emit the opposite comparison. 1580 if (TrueIfSigned) 1581 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1582 ConstantInt::getAllOnesValue(X->getType())); 1583 else 1584 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1585 ConstantInt::getNullValue(X->getType())); 1586 } 1587 1588 if (Xor->hasOneUse()) { 1589 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1590 if (!Cmp.isEquality() && XorC->isSignMask()) { 1591 Pred = Cmp.getFlippedSignednessPredicate(); 1592 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1593 } 1594 1595 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1596 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1597 Pred = Cmp.getFlippedSignednessPredicate(); 1598 Pred = Cmp.getSwappedPredicate(Pred); 1599 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1600 } 1601 } 1602 1603 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1604 if (Pred == ICmpInst::ICMP_UGT) { 1605 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1606 if (*XorC == ~C && (C + 1).isPowerOf2()) 1607 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1608 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1609 if (*XorC == C && (C + 1).isPowerOf2()) 1610 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1611 } 1612 if (Pred == ICmpInst::ICMP_ULT) { 1613 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1614 if (*XorC == -C && C.isPowerOf2()) 1615 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1616 ConstantInt::get(X->getType(), ~C)); 1617 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1618 if (*XorC == C && (-C).isPowerOf2()) 1619 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1620 ConstantInt::get(X->getType(), ~C)); 1621 } 1622 return nullptr; 1623 } 1624 1625 /// For power-of-2 C: 1626 /// ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1) 1627 /// ((X s>> ShiftC) ^ X) u> (C - 1) --> (X + C) u> ((C << 1) - 1) 1628 Instruction *InstCombinerImpl::foldICmpXorShiftConst(ICmpInst &Cmp, 1629 BinaryOperator *Xor, 1630 const APInt &C) { 1631 CmpInst::Predicate Pred = Cmp.getPredicate(); 1632 APInt PowerOf2; 1633 if (Pred == ICmpInst::ICMP_ULT) 1634 PowerOf2 = C; 1635 else if (Pred == ICmpInst::ICMP_UGT && !C.isMaxValue()) 1636 PowerOf2 = C + 1; 1637 else 1638 return nullptr; 1639 if (!PowerOf2.isPowerOf2()) 1640 return nullptr; 1641 Value *X; 1642 const APInt *ShiftC; 1643 if (!match(Xor, m_OneUse(m_c_Xor(m_Value(X), 1644 m_AShr(m_Deferred(X), m_APInt(ShiftC)))))) 1645 return nullptr; 1646 uint64_t Shift = ShiftC->getLimitedValue(); 1647 Type *XType = X->getType(); 1648 if (Shift == 0 || PowerOf2.isMinSignedValue()) 1649 return nullptr; 1650 Value *Add = Builder.CreateAdd(X, ConstantInt::get(XType, PowerOf2)); 1651 APInt Bound = 1652 Pred == ICmpInst::ICMP_ULT ? PowerOf2 << 1 : ((PowerOf2 << 1) - 1); 1653 return new ICmpInst(Pred, Add, ConstantInt::get(XType, Bound)); 1654 } 1655 1656 /// Fold icmp (and (sh X, Y), C2), C1. 1657 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1658 BinaryOperator *And, 1659 const APInt &C1, 1660 const APInt &C2) { 1661 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1662 if (!Shift || !Shift->isShift()) 1663 return nullptr; 1664 1665 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1666 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1667 // code produced by the clang front-end, for bitfield access. 1668 // This seemingly simple opportunity to fold away a shift turns out to be 1669 // rather complicated. See PR17827 for details. 1670 unsigned ShiftOpcode = Shift->getOpcode(); 1671 bool IsShl = ShiftOpcode == Instruction::Shl; 1672 const APInt *C3; 1673 if (match(Shift->getOperand(1), m_APInt(C3))) { 1674 APInt NewAndCst, NewCmpCst; 1675 bool AnyCmpCstBitsShiftedOut; 1676 if (ShiftOpcode == Instruction::Shl) { 1677 // For a left shift, we can fold if the comparison is not signed. We can 1678 // also fold a signed comparison if the mask value and comparison value 1679 // are not negative. These constraints may not be obvious, but we can 1680 // prove that they are correct using an SMT solver. 1681 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1682 return nullptr; 1683 1684 NewCmpCst = C1.lshr(*C3); 1685 NewAndCst = C2.lshr(*C3); 1686 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1687 } else if (ShiftOpcode == Instruction::LShr) { 1688 // For a logical right shift, we can fold if the comparison is not signed. 1689 // We can also fold a signed comparison if the shifted mask value and the 1690 // shifted comparison value are not negative. These constraints may not be 1691 // obvious, but we can prove that they are correct using an SMT solver. 1692 NewCmpCst = C1.shl(*C3); 1693 NewAndCst = C2.shl(*C3); 1694 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1695 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1696 return nullptr; 1697 } else { 1698 // For an arithmetic shift, check that both constants don't use (in a 1699 // signed sense) the top bits being shifted out. 1700 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1701 NewCmpCst = C1.shl(*C3); 1702 NewAndCst = C2.shl(*C3); 1703 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1704 if (NewAndCst.ashr(*C3) != C2) 1705 return nullptr; 1706 } 1707 1708 if (AnyCmpCstBitsShiftedOut) { 1709 // If we shifted bits out, the fold is not going to work out. As a 1710 // special case, check to see if this means that the result is always 1711 // true or false now. 1712 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1713 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1714 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1715 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1716 } else { 1717 Value *NewAnd = Builder.CreateAnd( 1718 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1719 return new ICmpInst(Cmp.getPredicate(), 1720 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1721 } 1722 } 1723 1724 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1725 // preferable because it allows the C2 << Y expression to be hoisted out of a 1726 // loop if Y is invariant and X is not. 1727 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1728 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1729 // Compute C2 << Y. 1730 Value *NewShift = 1731 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1732 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1733 1734 // Compute X & (C2 << Y). 1735 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1736 return replaceOperand(Cmp, 0, NewAnd); 1737 } 1738 1739 return nullptr; 1740 } 1741 1742 /// Fold icmp (and X, C2), C1. 1743 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1744 BinaryOperator *And, 1745 const APInt &C1) { 1746 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1747 1748 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1749 // TODO: We canonicalize to the longer form for scalars because we have 1750 // better analysis/folds for icmp, and codegen may be better with icmp. 1751 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1752 match(And->getOperand(1), m_One())) 1753 return new TruncInst(And->getOperand(0), Cmp.getType()); 1754 1755 const APInt *C2; 1756 Value *X; 1757 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1758 return nullptr; 1759 1760 // Don't perform the following transforms if the AND has multiple uses 1761 if (!And->hasOneUse()) 1762 return nullptr; 1763 1764 if (Cmp.isEquality() && C1.isZero()) { 1765 // Restrict this fold to single-use 'and' (PR10267). 1766 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1767 if (C2->isSignMask()) { 1768 Constant *Zero = Constant::getNullValue(X->getType()); 1769 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1770 return new ICmpInst(NewPred, X, Zero); 1771 } 1772 1773 APInt NewC2 = *C2; 1774 KnownBits Know = computeKnownBits(And->getOperand(0), 0, And); 1775 // Set high zeros of C2 to allow matching negated power-of-2. 1776 NewC2 = *C2 | APInt::getHighBitsSet(C2->getBitWidth(), 1777 Know.countMinLeadingZeros()); 1778 1779 // Restrict this fold only for single-use 'and' (PR10267). 1780 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1781 if (NewC2.isNegatedPowerOf2()) { 1782 Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2); 1783 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1784 return new ICmpInst(NewPred, X, NegBOC); 1785 } 1786 } 1787 1788 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1789 // the input width without changing the value produced, eliminate the cast: 1790 // 1791 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1792 // 1793 // We can do this transformation if the constants do not have their sign bits 1794 // set or if it is an equality comparison. Extending a relational comparison 1795 // when we're checking the sign bit would not work. 1796 Value *W; 1797 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1798 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1799 // TODO: Is this a good transform for vectors? Wider types may reduce 1800 // throughput. Should this transform be limited (even for scalars) by using 1801 // shouldChangeType()? 1802 if (!Cmp.getType()->isVectorTy()) { 1803 Type *WideType = W->getType(); 1804 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1805 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1806 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1807 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1808 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1809 } 1810 } 1811 1812 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1813 return I; 1814 1815 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1816 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1817 // 1818 // iff pred isn't signed 1819 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1820 match(And->getOperand(1), m_One())) { 1821 Constant *One = cast<Constant>(And->getOperand(1)); 1822 Value *Or = And->getOperand(0); 1823 Value *A, *B, *LShr; 1824 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1825 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1826 unsigned UsesRemoved = 0; 1827 if (And->hasOneUse()) 1828 ++UsesRemoved; 1829 if (Or->hasOneUse()) 1830 ++UsesRemoved; 1831 if (LShr->hasOneUse()) 1832 ++UsesRemoved; 1833 1834 // Compute A & ((1 << B) | 1) 1835 unsigned RequireUsesRemoved = match(B, m_ImmConstant()) ? 1 : 3; 1836 if (UsesRemoved >= RequireUsesRemoved) { 1837 Value *NewOr = 1838 Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1839 /*HasNUW=*/true), 1840 One, Or->getName()); 1841 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1842 return replaceOperand(Cmp, 0, NewAnd); 1843 } 1844 } 1845 } 1846 1847 // (icmp eq (and (bitcast X to int), ExponentMask), ExponentMask) --> 1848 // llvm.is.fpclass(X, fcInf|fcNan) 1849 // (icmp ne (and (bitcast X to int), ExponentMask), ExponentMask) --> 1850 // llvm.is.fpclass(X, ~(fcInf|fcNan)) 1851 Value *V; 1852 if (!Cmp.getParent()->getParent()->hasFnAttribute( 1853 Attribute::NoImplicitFloat) && 1854 Cmp.isEquality() && 1855 match(X, m_OneUse(m_ElementWiseBitCast(m_Value(V))))) { 1856 Type *FPType = V->getType()->getScalarType(); 1857 if (FPType->isIEEELikeFPTy() && C1 == *C2) { 1858 APInt ExponentMask = 1859 APFloat::getInf(FPType->getFltSemantics()).bitcastToAPInt(); 1860 if (C1 == ExponentMask) { 1861 unsigned Mask = FPClassTest::fcNan | FPClassTest::fcInf; 1862 if (isICMP_NE) 1863 Mask = ~Mask & fcAllFlags; 1864 return replaceInstUsesWith(Cmp, Builder.createIsFPClass(V, Mask)); 1865 } 1866 } 1867 } 1868 1869 return nullptr; 1870 } 1871 1872 /// Fold icmp (and X, Y), C. 1873 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1874 BinaryOperator *And, 1875 const APInt &C) { 1876 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1877 return I; 1878 1879 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1880 bool TrueIfNeg; 1881 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1882 // ((X - 1) & ~X) < 0 --> X == 0 1883 // ((X - 1) & ~X) >= 0 --> X != 0 1884 Value *X; 1885 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1886 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1887 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1888 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1889 } 1890 // (X & -X) < 0 --> X == MinSignedC 1891 // (X & -X) > -1 --> X != MinSignedC 1892 if (match(And, m_c_And(m_Neg(m_Value(X)), m_Deferred(X)))) { 1893 Constant *MinSignedC = ConstantInt::get( 1894 X->getType(), 1895 APInt::getSignedMinValue(X->getType()->getScalarSizeInBits())); 1896 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1897 return new ICmpInst(NewPred, X, MinSignedC); 1898 } 1899 } 1900 1901 // TODO: These all require that Y is constant too, so refactor with the above. 1902 1903 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1904 Value *X = And->getOperand(0); 1905 Value *Y = And->getOperand(1); 1906 if (auto *C2 = dyn_cast<ConstantInt>(Y)) 1907 if (auto *LI = dyn_cast<LoadInst>(X)) 1908 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1909 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1910 if (Instruction *Res = 1911 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) 1912 return Res; 1913 1914 if (!Cmp.isEquality()) 1915 return nullptr; 1916 1917 // X & -C == -C -> X > u ~C 1918 // X & -C != -C -> X <= u ~C 1919 // iff C is a power of 2 1920 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1921 auto NewPred = 1922 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1923 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1924 } 1925 1926 // If we are testing the intersection of 2 select-of-nonzero-constants with no 1927 // common bits set, it's the same as checking if exactly one select condition 1928 // is set: 1929 // ((A ? TC : FC) & (B ? TC : FC)) == 0 --> xor A, B 1930 // ((A ? TC : FC) & (B ? TC : FC)) != 0 --> not(xor A, B) 1931 // TODO: Generalize for non-constant values. 1932 // TODO: Handle signed/unsigned predicates. 1933 // TODO: Handle other bitwise logic connectors. 1934 // TODO: Extend to handle a non-zero compare constant. 1935 if (C.isZero() && (Pred == CmpInst::ICMP_EQ || And->hasOneUse())) { 1936 assert(Cmp.isEquality() && "Not expecting non-equality predicates"); 1937 Value *A, *B; 1938 const APInt *TC, *FC; 1939 if (match(X, m_Select(m_Value(A), m_APInt(TC), m_APInt(FC))) && 1940 match(Y, 1941 m_Select(m_Value(B), m_SpecificInt(*TC), m_SpecificInt(*FC))) && 1942 !TC->isZero() && !FC->isZero() && !TC->intersects(*FC)) { 1943 Value *R = Builder.CreateXor(A, B); 1944 if (Pred == CmpInst::ICMP_NE) 1945 R = Builder.CreateNot(R); 1946 return replaceInstUsesWith(Cmp, R); 1947 } 1948 } 1949 1950 // ((zext i1 X) & Y) == 0 --> !((trunc Y) & X) 1951 // ((zext i1 X) & Y) != 0 --> ((trunc Y) & X) 1952 // ((zext i1 X) & Y) == 1 --> ((trunc Y) & X) 1953 // ((zext i1 X) & Y) != 1 --> !((trunc Y) & X) 1954 if (match(And, m_OneUse(m_c_And(m_OneUse(m_ZExt(m_Value(X))), m_Value(Y)))) && 1955 X->getType()->isIntOrIntVectorTy(1) && (C.isZero() || C.isOne())) { 1956 Value *TruncY = Builder.CreateTrunc(Y, X->getType()); 1957 if (C.isZero() ^ (Pred == CmpInst::ICMP_NE)) { 1958 Value *And = Builder.CreateAnd(TruncY, X); 1959 return BinaryOperator::CreateNot(And); 1960 } 1961 return BinaryOperator::CreateAnd(TruncY, X); 1962 } 1963 1964 // (icmp eq/ne (and (shl -1, X), Y), 0) 1965 // -> (icmp eq/ne (lshr Y, X), 0) 1966 // We could technically handle any C == 0 or (C < 0 && isOdd(C)) but it seems 1967 // highly unlikely the non-zero case will ever show up in code. 1968 if (C.isZero() && 1969 match(And, m_OneUse(m_c_And(m_OneUse(m_Shl(m_AllOnes(), m_Value(X))), 1970 m_Value(Y))))) { 1971 Value *LShr = Builder.CreateLShr(Y, X); 1972 return new ICmpInst(Pred, LShr, Constant::getNullValue(LShr->getType())); 1973 } 1974 1975 return nullptr; 1976 } 1977 1978 /// Fold icmp eq/ne (or (xor/sub (X1, X2), xor/sub (X3, X4))), 0. 1979 static Value *foldICmpOrXorSubChain(ICmpInst &Cmp, BinaryOperator *Or, 1980 InstCombiner::BuilderTy &Builder) { 1981 // Are we using xors or subs to bitwise check for a pair or pairs of 1982 // (in)equalities? Convert to a shorter form that has more potential to be 1983 // folded even further. 1984 // ((X1 ^/- X2) || (X3 ^/- X4)) == 0 --> (X1 == X2) && (X3 == X4) 1985 // ((X1 ^/- X2) || (X3 ^/- X4)) != 0 --> (X1 != X2) || (X3 != X4) 1986 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) == 0 --> 1987 // (X1 == X2) && (X3 == X4) && (X5 == X6) 1988 // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) != 0 --> 1989 // (X1 != X2) || (X3 != X4) || (X5 != X6) 1990 SmallVector<std::pair<Value *, Value *>, 2> CmpValues; 1991 SmallVector<Value *, 16> WorkList(1, Or); 1992 1993 while (!WorkList.empty()) { 1994 auto MatchOrOperatorArgument = [&](Value *OrOperatorArgument) { 1995 Value *Lhs, *Rhs; 1996 1997 if (match(OrOperatorArgument, 1998 m_OneUse(m_Xor(m_Value(Lhs), m_Value(Rhs))))) { 1999 CmpValues.emplace_back(Lhs, Rhs); 2000 return; 2001 } 2002 2003 if (match(OrOperatorArgument, 2004 m_OneUse(m_Sub(m_Value(Lhs), m_Value(Rhs))))) { 2005 CmpValues.emplace_back(Lhs, Rhs); 2006 return; 2007 } 2008 2009 WorkList.push_back(OrOperatorArgument); 2010 }; 2011 2012 Value *CurrentValue = WorkList.pop_back_val(); 2013 Value *OrOperatorLhs, *OrOperatorRhs; 2014 2015 if (!match(CurrentValue, 2016 m_Or(m_Value(OrOperatorLhs), m_Value(OrOperatorRhs)))) { 2017 return nullptr; 2018 } 2019 2020 MatchOrOperatorArgument(OrOperatorRhs); 2021 MatchOrOperatorArgument(OrOperatorLhs); 2022 } 2023 2024 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2025 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2026 Value *LhsCmp = Builder.CreateICmp(Pred, CmpValues.rbegin()->first, 2027 CmpValues.rbegin()->second); 2028 2029 for (auto It = CmpValues.rbegin() + 1; It != CmpValues.rend(); ++It) { 2030 Value *RhsCmp = Builder.CreateICmp(Pred, It->first, It->second); 2031 LhsCmp = Builder.CreateBinOp(BOpc, LhsCmp, RhsCmp); 2032 } 2033 2034 return LhsCmp; 2035 } 2036 2037 /// Fold icmp (or X, Y), C. 2038 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 2039 BinaryOperator *Or, 2040 const APInt &C) { 2041 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2042 if (C.isOne()) { 2043 // icmp slt signum(V) 1 --> icmp slt V, 1 2044 Value *V = nullptr; 2045 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 2046 return new ICmpInst(ICmpInst::ICMP_SLT, V, 2047 ConstantInt::get(V->getType(), 1)); 2048 } 2049 2050 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 2051 2052 // (icmp eq/ne (or disjoint x, C0), C1) 2053 // -> (icmp eq/ne x, C0^C1) 2054 if (Cmp.isEquality() && match(OrOp1, m_ImmConstant()) && 2055 cast<PossiblyDisjointInst>(Or)->isDisjoint()) { 2056 Value *NewC = 2057 Builder.CreateXor(OrOp1, ConstantInt::get(OrOp1->getType(), C)); 2058 return new ICmpInst(Pred, OrOp0, NewC); 2059 } 2060 2061 const APInt *MaskC; 2062 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 2063 if (*MaskC == C && (C + 1).isPowerOf2()) { 2064 // X | C == C --> X <=u C 2065 // X | C != C --> X >u C 2066 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 2067 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 2068 return new ICmpInst(Pred, OrOp0, OrOp1); 2069 } 2070 2071 // More general: canonicalize 'equality with set bits mask' to 2072 // 'equality with clear bits mask'. 2073 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 2074 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 2075 if (Or->hasOneUse()) { 2076 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 2077 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 2078 return new ICmpInst(Pred, And, NewC); 2079 } 2080 } 2081 2082 // (X | (X-1)) s< 0 --> X s< 1 2083 // (X | (X-1)) s> -1 --> X s> 0 2084 Value *X; 2085 bool TrueIfSigned; 2086 if (isSignBitCheck(Pred, C, TrueIfSigned) && 2087 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 2088 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 2089 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 2090 return new ICmpInst(NewPred, X, NewC); 2091 } 2092 2093 const APInt *OrC; 2094 // icmp(X | OrC, C) --> icmp(X, 0) 2095 if (C.isNonNegative() && match(Or, m_Or(m_Value(X), m_APInt(OrC)))) { 2096 switch (Pred) { 2097 // X | OrC s< C --> X s< 0 iff OrC s>= C s>= 0 2098 case ICmpInst::ICMP_SLT: 2099 // X | OrC s>= C --> X s>= 0 iff OrC s>= C s>= 0 2100 case ICmpInst::ICMP_SGE: 2101 if (OrC->sge(C)) 2102 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2103 break; 2104 // X | OrC s<= C --> X s< 0 iff OrC s> C s>= 0 2105 case ICmpInst::ICMP_SLE: 2106 // X | OrC s> C --> X s>= 0 iff OrC s> C s>= 0 2107 case ICmpInst::ICMP_SGT: 2108 if (OrC->sgt(C)) 2109 return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred), X, 2110 ConstantInt::getNullValue(X->getType())); 2111 break; 2112 default: 2113 break; 2114 } 2115 } 2116 2117 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 2118 return nullptr; 2119 2120 Value *P, *Q; 2121 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 2122 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 2123 // -> and (icmp eq P, null), (icmp eq Q, null). 2124 Value *CmpP = 2125 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 2126 Value *CmpQ = 2127 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 2128 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2129 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 2130 } 2131 2132 if (Value *V = foldICmpOrXorSubChain(Cmp, Or, Builder)) 2133 return replaceInstUsesWith(Cmp, V); 2134 2135 return nullptr; 2136 } 2137 2138 /// Fold icmp (mul X, Y), C. 2139 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 2140 BinaryOperator *Mul, 2141 const APInt &C) { 2142 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2143 Type *MulTy = Mul->getType(); 2144 Value *X = Mul->getOperand(0); 2145 2146 // If there's no overflow: 2147 // X * X == 0 --> X == 0 2148 // X * X != 0 --> X != 0 2149 if (Cmp.isEquality() && C.isZero() && X == Mul->getOperand(1) && 2150 (Mul->hasNoUnsignedWrap() || Mul->hasNoSignedWrap())) 2151 return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy)); 2152 2153 const APInt *MulC; 2154 if (!match(Mul->getOperand(1), m_APInt(MulC))) 2155 return nullptr; 2156 2157 // If this is a test of the sign bit and the multiply is sign-preserving with 2158 // a constant operand, use the multiply LHS operand instead: 2159 // (X * +MulC) < 0 --> X < 0 2160 // (X * -MulC) < 0 --> X > 0 2161 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 2162 if (MulC->isNegative()) 2163 Pred = ICmpInst::getSwappedPredicate(Pred); 2164 return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy)); 2165 } 2166 2167 if (MulC->isZero()) 2168 return nullptr; 2169 2170 // If the multiply does not wrap or the constant is odd, try to divide the 2171 // compare constant by the multiplication factor. 2172 if (Cmp.isEquality()) { 2173 // (mul nsw X, MulC) eq/ne C --> X eq/ne C /s MulC 2174 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 2175 Constant *NewC = ConstantInt::get(MulTy, C.sdiv(*MulC)); 2176 return new ICmpInst(Pred, X, NewC); 2177 } 2178 2179 // C % MulC == 0 is weaker than we could use if MulC is odd because it 2180 // correct to transform if MulC * N == C including overflow. I.e with i8 2181 // (icmp eq (mul X, 5), 101) -> (icmp eq X, 225) but since 101 % 5 != 0, we 2182 // miss that case. 2183 if (C.urem(*MulC).isZero()) { 2184 // (mul nuw X, MulC) eq/ne C --> X eq/ne C /u MulC 2185 // (mul X, OddC) eq/ne N * C --> X eq/ne N 2186 if ((*MulC & 1).isOne() || Mul->hasNoUnsignedWrap()) { 2187 Constant *NewC = ConstantInt::get(MulTy, C.udiv(*MulC)); 2188 return new ICmpInst(Pred, X, NewC); 2189 } 2190 } 2191 } 2192 2193 // With a matching no-overflow guarantee, fold the constants: 2194 // (X * MulC) < C --> X < (C / MulC) 2195 // (X * MulC) > C --> X > (C / MulC) 2196 // TODO: Assert that Pred is not equal to SGE, SLE, UGE, ULE? 2197 Constant *NewC = nullptr; 2198 if (Mul->hasNoSignedWrap() && ICmpInst::isSigned(Pred)) { 2199 // MININT / -1 --> overflow. 2200 if (C.isMinSignedValue() && MulC->isAllOnes()) 2201 return nullptr; 2202 if (MulC->isNegative()) 2203 Pred = ICmpInst::getSwappedPredicate(Pred); 2204 2205 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2206 NewC = ConstantInt::get( 2207 MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::UP)); 2208 } else { 2209 assert((Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGT) && 2210 "Unexpected predicate"); 2211 NewC = ConstantInt::get( 2212 MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::DOWN)); 2213 } 2214 } else if (Mul->hasNoUnsignedWrap() && ICmpInst::isUnsigned(Pred)) { 2215 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) { 2216 NewC = ConstantInt::get( 2217 MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::UP)); 2218 } else { 2219 assert((Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 2220 "Unexpected predicate"); 2221 NewC = ConstantInt::get( 2222 MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::DOWN)); 2223 } 2224 } 2225 2226 return NewC ? new ICmpInst(Pred, X, NewC) : nullptr; 2227 } 2228 2229 /// Fold icmp (shl 1, Y), C. 2230 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2231 const APInt &C) { 2232 Value *Y; 2233 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2234 return nullptr; 2235 2236 Type *ShiftType = Shl->getType(); 2237 unsigned TypeBits = C.getBitWidth(); 2238 bool CIsPowerOf2 = C.isPowerOf2(); 2239 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2240 if (Cmp.isUnsigned()) { 2241 // (1 << Y) pred C -> Y pred Log2(C) 2242 if (!CIsPowerOf2) { 2243 // (1 << Y) < 30 -> Y <= 4 2244 // (1 << Y) <= 30 -> Y <= 4 2245 // (1 << Y) >= 30 -> Y > 4 2246 // (1 << Y) > 30 -> Y > 4 2247 if (Pred == ICmpInst::ICMP_ULT) 2248 Pred = ICmpInst::ICMP_ULE; 2249 else if (Pred == ICmpInst::ICMP_UGE) 2250 Pred = ICmpInst::ICMP_UGT; 2251 } 2252 2253 unsigned CLog2 = C.logBase2(); 2254 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2255 } else if (Cmp.isSigned()) { 2256 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2257 // (1 << Y) > 0 -> Y != 31 2258 // (1 << Y) > C -> Y != 31 if C is negative. 2259 if (Pred == ICmpInst::ICMP_SGT && C.sle(0)) 2260 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2261 2262 // (1 << Y) < 0 -> Y == 31 2263 // (1 << Y) < 1 -> Y == 31 2264 // (1 << Y) < C -> Y == 31 if C is negative and not signed min. 2265 // Exclude signed min by subtracting 1 and lower the upper bound to 0. 2266 if (Pred == ICmpInst::ICMP_SLT && (C-1).sle(0)) 2267 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2268 } 2269 2270 return nullptr; 2271 } 2272 2273 /// Fold icmp (shl X, Y), C. 2274 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2275 BinaryOperator *Shl, 2276 const APInt &C) { 2277 const APInt *ShiftVal; 2278 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2279 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2280 2281 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2282 // (icmp pred (shl nuw&nsw X, Y), Csle0) 2283 // -> (icmp pred X, Csle0) 2284 // 2285 // The idea is the nuw/nsw essentially freeze the sign bit for the shift op 2286 // so X's must be what is used. 2287 if (C.sle(0) && Shl->hasNoUnsignedWrap() && Shl->hasNoSignedWrap()) 2288 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); 2289 2290 // (icmp eq/ne (shl nuw|nsw X, Y), 0) 2291 // -> (icmp eq/ne X, 0) 2292 if (ICmpInst::isEquality(Pred) && C.isZero() && 2293 (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap())) 2294 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); 2295 2296 // (icmp slt (shl nsw X, Y), 0/1) 2297 // -> (icmp slt X, 0/1) 2298 // (icmp sgt (shl nsw X, Y), 0/-1) 2299 // -> (icmp sgt X, 0/-1) 2300 // 2301 // NB: sge/sle with a constant will canonicalize to sgt/slt. 2302 if (Shl->hasNoSignedWrap() && 2303 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) 2304 if (C.isZero() || (Pred == ICmpInst::ICMP_SGT ? C.isAllOnes() : C.isOne())) 2305 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); 2306 2307 const APInt *ShiftAmt; 2308 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2309 return foldICmpShlOne(Cmp, Shl, C); 2310 2311 // Check that the shift amount is in range. If not, don't perform undefined 2312 // shifts. When the shift is visited, it will be simplified. 2313 unsigned TypeBits = C.getBitWidth(); 2314 if (ShiftAmt->uge(TypeBits)) 2315 return nullptr; 2316 2317 Value *X = Shl->getOperand(0); 2318 Type *ShType = Shl->getType(); 2319 2320 // NSW guarantees that we are only shifting out sign bits from the high bits, 2321 // so we can ASHR the compare constant without needing a mask and eliminate 2322 // the shift. 2323 if (Shl->hasNoSignedWrap()) { 2324 if (Pred == ICmpInst::ICMP_SGT) { 2325 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2326 APInt ShiftedC = C.ashr(*ShiftAmt); 2327 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2328 } 2329 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2330 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2331 APInt ShiftedC = C.ashr(*ShiftAmt); 2332 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2333 } 2334 if (Pred == ICmpInst::ICMP_SLT) { 2335 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2336 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2337 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2338 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2339 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2340 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2341 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2342 } 2343 } 2344 2345 // NUW guarantees that we are only shifting out zero bits from the high bits, 2346 // so we can LSHR the compare constant without needing a mask and eliminate 2347 // the shift. 2348 if (Shl->hasNoUnsignedWrap()) { 2349 if (Pred == ICmpInst::ICMP_UGT) { 2350 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2351 APInt ShiftedC = C.lshr(*ShiftAmt); 2352 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2353 } 2354 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2355 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2356 APInt ShiftedC = C.lshr(*ShiftAmt); 2357 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2358 } 2359 if (Pred == ICmpInst::ICMP_ULT) { 2360 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2361 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2362 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2363 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2364 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2365 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2366 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2367 } 2368 } 2369 2370 if (Cmp.isEquality() && Shl->hasOneUse()) { 2371 // Strength-reduce the shift into an 'and'. 2372 Constant *Mask = ConstantInt::get( 2373 ShType, 2374 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2375 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2376 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2377 return new ICmpInst(Pred, And, LShrC); 2378 } 2379 2380 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2381 bool TrueIfSigned = false; 2382 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2383 // (X << 31) <s 0 --> (X & 1) != 0 2384 Constant *Mask = ConstantInt::get( 2385 ShType, 2386 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2387 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2388 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2389 And, Constant::getNullValue(ShType)); 2390 } 2391 2392 // Simplify 'shl' inequality test into 'and' equality test. 2393 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2394 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2395 if ((C + 1).isPowerOf2() && 2396 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2397 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2398 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2399 : ICmpInst::ICMP_NE, 2400 And, Constant::getNullValue(ShType)); 2401 } 2402 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2403 if (C.isPowerOf2() && 2404 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2405 Value *And = 2406 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2407 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2408 : ICmpInst::ICMP_NE, 2409 And, Constant::getNullValue(ShType)); 2410 } 2411 } 2412 2413 // Transform (icmp pred iM (shl iM %v, N), C) 2414 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2415 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2416 // This enables us to get rid of the shift in favor of a trunc that may be 2417 // free on the target. It has the additional benefit of comparing to a 2418 // smaller constant that may be more target-friendly. 2419 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2420 if (Shl->hasOneUse() && Amt != 0 && 2421 shouldChangeType(ShType->getScalarSizeInBits(), TypeBits - Amt)) { 2422 ICmpInst::Predicate CmpPred = Pred; 2423 APInt RHSC = C; 2424 2425 if (RHSC.countr_zero() < Amt && ICmpInst::isStrictPredicate(CmpPred)) { 2426 // Try the flipped strictness predicate. 2427 // e.g.: 2428 // icmp ult i64 (shl X, 32), 8589934593 -> 2429 // icmp ule i64 (shl X, 32), 8589934592 -> 2430 // icmp ule i32 (trunc X, i32), 2 -> 2431 // icmp ult i32 (trunc X, i32), 3 2432 if (auto FlippedStrictness = 2433 InstCombiner::getFlippedStrictnessPredicateAndConstant( 2434 Pred, ConstantInt::get(ShType->getContext(), C))) { 2435 CmpPred = FlippedStrictness->first; 2436 RHSC = cast<ConstantInt>(FlippedStrictness->second)->getValue(); 2437 } 2438 } 2439 2440 if (RHSC.countr_zero() >= Amt) { 2441 Type *TruncTy = ShType->getWithNewBitWidth(TypeBits - Amt); 2442 Constant *NewC = 2443 ConstantInt::get(TruncTy, RHSC.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2444 return new ICmpInst(CmpPred, 2445 Builder.CreateTrunc(X, TruncTy, "", /*IsNUW=*/false, 2446 Shl->hasNoSignedWrap()), 2447 NewC); 2448 } 2449 } 2450 2451 return nullptr; 2452 } 2453 2454 /// Fold icmp ({al}shr X, Y), C. 2455 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2456 BinaryOperator *Shr, 2457 const APInt &C) { 2458 // An exact shr only shifts out zero bits, so: 2459 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2460 Value *X = Shr->getOperand(0); 2461 CmpInst::Predicate Pred = Cmp.getPredicate(); 2462 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2463 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2464 2465 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2466 const APInt *ShiftValC; 2467 if (match(X, m_APInt(ShiftValC))) { 2468 if (Cmp.isEquality()) 2469 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC); 2470 2471 // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0 2472 // (ShiftValC >> Y) <s 0 --> Y == 0 with ShiftValC < 0 2473 bool TrueIfSigned; 2474 if (!IsAShr && ShiftValC->isNegative() && 2475 isSignBitCheck(Pred, C, TrueIfSigned)) 2476 return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE, 2477 Shr->getOperand(1), 2478 ConstantInt::getNullValue(X->getType())); 2479 2480 // If the shifted constant is a power-of-2, test the shift amount directly: 2481 // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC)) 2482 // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC)) 2483 if (!IsAShr && ShiftValC->isPowerOf2() && 2484 (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) { 2485 bool IsUGT = Pred == CmpInst::ICMP_UGT; 2486 assert(ShiftValC->uge(C) && "Expected simplify of compare"); 2487 assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify"); 2488 2489 unsigned CmpLZ = IsUGT ? C.countl_zero() : (C - 1).countl_zero(); 2490 unsigned ShiftLZ = ShiftValC->countl_zero(); 2491 Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ); 2492 auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 2493 return new ICmpInst(NewPred, Shr->getOperand(1), NewC); 2494 } 2495 } 2496 2497 const APInt *ShiftAmtC; 2498 if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC))) 2499 return nullptr; 2500 2501 // Check that the shift amount is in range. If not, don't perform undefined 2502 // shifts. When the shift is visited it will be simplified. 2503 unsigned TypeBits = C.getBitWidth(); 2504 unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits); 2505 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2506 return nullptr; 2507 2508 bool IsExact = Shr->isExact(); 2509 Type *ShrTy = Shr->getType(); 2510 // TODO: If we could guarantee that InstSimplify would handle all of the 2511 // constant-value-based preconditions in the folds below, then we could assert 2512 // those conditions rather than checking them. This is difficult because of 2513 // undef/poison (PR34838). 2514 if (IsAShr && Shr->hasOneUse()) { 2515 if (IsExact && (Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) && 2516 (C - 1).isPowerOf2() && C.countLeadingZeros() > ShAmtVal) { 2517 // When C - 1 is a power of two and the transform can be legally 2518 // performed, prefer this form so the produced constant is close to a 2519 // power of two. 2520 // icmp slt/ult (ashr exact X, ShAmtC), C 2521 // --> icmp slt/ult X, (C - 1) << ShAmtC) + 1 2522 APInt ShiftedC = (C - 1).shl(ShAmtVal) + 1; 2523 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2524 } 2525 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2526 // When ShAmtC can be shifted losslessly: 2527 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2528 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2529 APInt ShiftedC = C.shl(ShAmtVal); 2530 if (ShiftedC.ashr(ShAmtVal) == C) 2531 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2532 } 2533 if (Pred == CmpInst::ICMP_SGT) { 2534 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2535 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2536 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2537 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2538 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2539 } 2540 if (Pred == CmpInst::ICMP_UGT) { 2541 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2542 // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd 2543 // clause accounts for that pattern. 2544 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2545 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) || 2546 (C + 1).shl(ShAmtVal).isMinSignedValue()) 2547 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2548 } 2549 2550 // If the compare constant has significant bits above the lowest sign-bit, 2551 // then convert an unsigned cmp to a test of the sign-bit: 2552 // (ashr X, ShiftC) u> C --> X s< 0 2553 // (ashr X, ShiftC) u< C --> X s> -1 2554 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2555 if (Pred == CmpInst::ICMP_UGT) { 2556 return new ICmpInst(CmpInst::ICMP_SLT, X, 2557 ConstantInt::getNullValue(ShrTy)); 2558 } 2559 if (Pred == CmpInst::ICMP_ULT) { 2560 return new ICmpInst(CmpInst::ICMP_SGT, X, 2561 ConstantInt::getAllOnesValue(ShrTy)); 2562 } 2563 } 2564 } else if (!IsAShr) { 2565 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2566 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2567 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2568 APInt ShiftedC = C.shl(ShAmtVal); 2569 if (ShiftedC.lshr(ShAmtVal) == C) 2570 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2571 } 2572 if (Pred == CmpInst::ICMP_UGT) { 2573 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2574 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2575 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2576 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2577 } 2578 } 2579 2580 if (!Cmp.isEquality()) 2581 return nullptr; 2582 2583 // Handle equality comparisons of shift-by-constant. 2584 2585 // If the comparison constant changes with the shift, the comparison cannot 2586 // succeed (bits of the comparison constant cannot match the shifted value). 2587 // This should be known by InstSimplify and already be folded to true/false. 2588 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2589 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2590 "Expected icmp+shr simplify did not occur."); 2591 2592 // If the bits shifted out are known zero, compare the unshifted value: 2593 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2594 if (Shr->isExact()) 2595 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2596 2597 if (C.isZero()) { 2598 // == 0 is u< 1. 2599 if (Pred == CmpInst::ICMP_EQ) 2600 return new ICmpInst(CmpInst::ICMP_ULT, X, 2601 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2602 else 2603 return new ICmpInst(CmpInst::ICMP_UGT, X, 2604 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2605 } 2606 2607 if (Shr->hasOneUse()) { 2608 // Canonicalize the shift into an 'and': 2609 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2610 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2611 Constant *Mask = ConstantInt::get(ShrTy, Val); 2612 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2613 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2614 } 2615 2616 return nullptr; 2617 } 2618 2619 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2620 BinaryOperator *SRem, 2621 const APInt &C) { 2622 // Match an 'is positive' or 'is negative' comparison of remainder by a 2623 // constant power-of-2 value: 2624 // (X % pow2C) sgt/slt 0 2625 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2626 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT && 2627 Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2628 return nullptr; 2629 2630 // TODO: The one-use check is standard because we do not typically want to 2631 // create longer instruction sequences, but this might be a special-case 2632 // because srem is not good for analysis or codegen. 2633 if (!SRem->hasOneUse()) 2634 return nullptr; 2635 2636 const APInt *DivisorC; 2637 if (!match(SRem->getOperand(1), m_Power2(DivisorC))) 2638 return nullptr; 2639 2640 // For cmp_sgt/cmp_slt only zero valued C is handled. 2641 // For cmp_eq/cmp_ne only positive valued C is handled. 2642 if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) && 2643 !C.isZero()) || 2644 ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2645 !C.isStrictlyPositive())) 2646 return nullptr; 2647 2648 // Mask off the sign bit and the modulo bits (low-bits). 2649 Type *Ty = SRem->getType(); 2650 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2651 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2652 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2653 2654 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 2655 return new ICmpInst(Pred, And, ConstantInt::get(Ty, C)); 2656 2657 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2658 // bit is set. Example: 2659 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2660 if (Pred == ICmpInst::ICMP_SGT) 2661 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2662 2663 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2664 // bit is set. Example: 2665 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2666 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2667 } 2668 2669 /// Fold icmp (udiv X, Y), C. 2670 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2671 BinaryOperator *UDiv, 2672 const APInt &C) { 2673 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2674 Value *X = UDiv->getOperand(0); 2675 Value *Y = UDiv->getOperand(1); 2676 Type *Ty = UDiv->getType(); 2677 2678 const APInt *C2; 2679 if (!match(X, m_APInt(C2))) 2680 return nullptr; 2681 2682 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2683 2684 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2685 if (Pred == ICmpInst::ICMP_UGT) { 2686 assert(!C.isMaxValue() && 2687 "icmp ugt X, UINT_MAX should have been simplified already."); 2688 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2689 ConstantInt::get(Ty, C2->udiv(C + 1))); 2690 } 2691 2692 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2693 if (Pred == ICmpInst::ICMP_ULT) { 2694 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2695 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2696 ConstantInt::get(Ty, C2->udiv(C))); 2697 } 2698 2699 return nullptr; 2700 } 2701 2702 /// Fold icmp ({su}div X, Y), C. 2703 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2704 BinaryOperator *Div, 2705 const APInt &C) { 2706 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2707 Value *X = Div->getOperand(0); 2708 Value *Y = Div->getOperand(1); 2709 Type *Ty = Div->getType(); 2710 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2711 2712 // If unsigned division and the compare constant is bigger than 2713 // UMAX/2 (negative), there's only one pair of values that satisfies an 2714 // equality check, so eliminate the division: 2715 // (X u/ Y) == C --> (X == C) && (Y == 1) 2716 // (X u/ Y) != C --> (X != C) || (Y != 1) 2717 // Similarly, if signed division and the compare constant is exactly SMIN: 2718 // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1) 2719 // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1) 2720 if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() && 2721 (!DivIsSigned || C.isMinSignedValue())) { 2722 Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C)); 2723 Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1)); 2724 auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2725 return BinaryOperator::Create(Logic, XBig, YOne); 2726 } 2727 2728 // Fold: icmp pred ([us]div X, C2), C -> range test 2729 // Fold this div into the comparison, producing a range check. 2730 // Determine, based on the divide type, what the range is being 2731 // checked. If there is an overflow on the low or high side, remember 2732 // it, otherwise compute the range [low, hi) bounding the new value. 2733 // See: InsertRangeTest above for the kinds of replacements possible. 2734 const APInt *C2; 2735 if (!match(Y, m_APInt(C2))) 2736 return nullptr; 2737 2738 // FIXME: If the operand types don't match the type of the divide 2739 // then don't attempt this transform. The code below doesn't have the 2740 // logic to deal with a signed divide and an unsigned compare (and 2741 // vice versa). This is because (x /s C2) <s C produces different 2742 // results than (x /s C2) <u C or (x /u C2) <s C or even 2743 // (x /u C2) <u C. Simply casting the operands and result won't 2744 // work. :( The if statement below tests that condition and bails 2745 // if it finds it. 2746 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2747 return nullptr; 2748 2749 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2750 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2751 // division-by-constant cases should be present, we can not assert that they 2752 // have happened before we reach this icmp instruction. 2753 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2754 return nullptr; 2755 2756 // Compute Prod = C * C2. We are essentially solving an equation of 2757 // form X / C2 = C. We solve for X by multiplying C2 and C. 2758 // By solving for X, we can turn this into a range check instead of computing 2759 // a divide. 2760 APInt Prod = C * *C2; 2761 2762 // Determine if the product overflows by seeing if the product is not equal to 2763 // the divide. Make sure we do the same kind of divide as in the LHS 2764 // instruction that we're folding. 2765 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2766 2767 // If the division is known to be exact, then there is no remainder from the 2768 // divide, so the covered range size is unit, otherwise it is the divisor. 2769 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2770 2771 // Figure out the interval that is being checked. For example, a comparison 2772 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2773 // Compute this interval based on the constants involved and the signedness of 2774 // the compare/divide. This computes a half-open interval, keeping track of 2775 // whether either value in the interval overflows. After analysis each 2776 // overflow variable is set to 0 if it's corresponding bound variable is valid 2777 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2778 int LoOverflow = 0, HiOverflow = 0; 2779 APInt LoBound, HiBound; 2780 2781 if (!DivIsSigned) { // udiv 2782 // e.g. X/5 op 3 --> [15, 20) 2783 LoBound = Prod; 2784 HiOverflow = LoOverflow = ProdOV; 2785 if (!HiOverflow) { 2786 // If this is not an exact divide, then many values in the range collapse 2787 // to the same result value. 2788 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2789 } 2790 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2791 if (C.isZero()) { // (X / pos) op 0 2792 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2793 LoBound = -(RangeSize - 1); 2794 HiBound = RangeSize; 2795 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2796 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2797 HiOverflow = LoOverflow = ProdOV; 2798 if (!HiOverflow) 2799 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2800 } else { // (X / pos) op neg 2801 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2802 HiBound = Prod + 1; 2803 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2804 if (!LoOverflow) { 2805 APInt DivNeg = -RangeSize; 2806 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2807 } 2808 } 2809 } else if (C2->isNegative()) { // Divisor is < 0. 2810 if (Div->isExact()) 2811 RangeSize.negate(); 2812 if (C.isZero()) { // (X / neg) op 0 2813 // e.g. X/-5 op 0 --> [-4, 5) 2814 LoBound = RangeSize + 1; 2815 HiBound = -RangeSize; 2816 if (HiBound == *C2) { // -INTMIN = INTMIN 2817 HiOverflow = 1; // [INTMIN+1, overflow) 2818 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2819 } 2820 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2821 // e.g. X/-5 op 3 --> [-19, -14) 2822 HiBound = Prod + 1; 2823 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2824 if (!LoOverflow) 2825 LoOverflow = 2826 addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0; 2827 } else { // (X / neg) op neg 2828 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2829 LoOverflow = HiOverflow = ProdOV; 2830 if (!HiOverflow) 2831 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2832 } 2833 2834 // Dividing by a negative swaps the condition. LT <-> GT 2835 Pred = ICmpInst::getSwappedPredicate(Pred); 2836 } 2837 2838 switch (Pred) { 2839 default: 2840 llvm_unreachable("Unhandled icmp predicate!"); 2841 case ICmpInst::ICMP_EQ: 2842 if (LoOverflow && HiOverflow) 2843 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2844 if (HiOverflow) 2845 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2846 X, ConstantInt::get(Ty, LoBound)); 2847 if (LoOverflow) 2848 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2849 X, ConstantInt::get(Ty, HiBound)); 2850 return replaceInstUsesWith( 2851 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2852 case ICmpInst::ICMP_NE: 2853 if (LoOverflow && HiOverflow) 2854 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2855 if (HiOverflow) 2856 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2857 X, ConstantInt::get(Ty, LoBound)); 2858 if (LoOverflow) 2859 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2860 X, ConstantInt::get(Ty, HiBound)); 2861 return replaceInstUsesWith( 2862 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false)); 2863 case ICmpInst::ICMP_ULT: 2864 case ICmpInst::ICMP_SLT: 2865 if (LoOverflow == +1) // Low bound is greater than input range. 2866 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2867 if (LoOverflow == -1) // Low bound is less than input range. 2868 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2869 return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound)); 2870 case ICmpInst::ICMP_UGT: 2871 case ICmpInst::ICMP_SGT: 2872 if (HiOverflow == +1) // High bound greater than input range. 2873 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2874 if (HiOverflow == -1) // High bound less than input range. 2875 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2876 if (Pred == ICmpInst::ICMP_UGT) 2877 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound)); 2878 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound)); 2879 } 2880 2881 return nullptr; 2882 } 2883 2884 /// Fold icmp (sub X, Y), C. 2885 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2886 BinaryOperator *Sub, 2887 const APInt &C) { 2888 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2889 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2890 Type *Ty = Sub->getType(); 2891 2892 // (SubC - Y) == C) --> Y == (SubC - C) 2893 // (SubC - Y) != C) --> Y != (SubC - C) 2894 Constant *SubC; 2895 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2896 return new ICmpInst(Pred, Y, 2897 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2898 } 2899 2900 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2901 const APInt *C2; 2902 APInt SubResult; 2903 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2904 bool HasNSW = Sub->hasNoSignedWrap(); 2905 bool HasNUW = Sub->hasNoUnsignedWrap(); 2906 if (match(X, m_APInt(C2)) && 2907 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2908 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2909 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2910 2911 // X - Y == 0 --> X == Y. 2912 // X - Y != 0 --> X != Y. 2913 // TODO: We allow this with multiple uses as long as the other uses are not 2914 // in phis. The phi use check is guarding against a codegen regression 2915 // for a loop test. If the backend could undo this (and possibly 2916 // subsequent transforms), we would not need this hack. 2917 if (Cmp.isEquality() && C.isZero() && 2918 none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); })) 2919 return new ICmpInst(Pred, X, Y); 2920 2921 // The following transforms are only worth it if the only user of the subtract 2922 // is the icmp. 2923 // TODO: This is an artificial restriction for all of the transforms below 2924 // that only need a single replacement icmp. Can these use the phi test 2925 // like the transform above here? 2926 if (!Sub->hasOneUse()) 2927 return nullptr; 2928 2929 if (Sub->hasNoSignedWrap()) { 2930 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2931 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2932 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2933 2934 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2935 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2936 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2937 2938 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2939 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2940 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2941 2942 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2943 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2944 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2945 } 2946 2947 if (!match(X, m_APInt(C2))) 2948 return nullptr; 2949 2950 // C2 - Y <u C -> (Y | (C - 1)) == C2 2951 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2952 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2953 (*C2 & (C - 1)) == (C - 1)) 2954 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2955 2956 // C2 - Y >u C -> (Y | C) != C2 2957 // iff C2 & C == C and C + 1 is a power of 2 2958 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2959 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2960 2961 // We have handled special cases that reduce. 2962 // Canonicalize any remaining sub to add as: 2963 // (C2 - Y) > C --> (Y + ~C2) < ~C 2964 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2965 HasNUW, HasNSW); 2966 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2967 } 2968 2969 static Value *createLogicFromTable(const std::bitset<4> &Table, Value *Op0, 2970 Value *Op1, IRBuilderBase &Builder, 2971 bool HasOneUse) { 2972 auto FoldConstant = [&](bool Val) { 2973 Constant *Res = Val ? Builder.getTrue() : Builder.getFalse(); 2974 if (Op0->getType()->isVectorTy()) 2975 Res = ConstantVector::getSplat( 2976 cast<VectorType>(Op0->getType())->getElementCount(), Res); 2977 return Res; 2978 }; 2979 2980 switch (Table.to_ulong()) { 2981 case 0: // 0 0 0 0 2982 return FoldConstant(false); 2983 case 1: // 0 0 0 1 2984 return HasOneUse ? Builder.CreateNot(Builder.CreateOr(Op0, Op1)) : nullptr; 2985 case 2: // 0 0 1 0 2986 return HasOneUse ? Builder.CreateAnd(Builder.CreateNot(Op0), Op1) : nullptr; 2987 case 3: // 0 0 1 1 2988 return Builder.CreateNot(Op0); 2989 case 4: // 0 1 0 0 2990 return HasOneUse ? Builder.CreateAnd(Op0, Builder.CreateNot(Op1)) : nullptr; 2991 case 5: // 0 1 0 1 2992 return Builder.CreateNot(Op1); 2993 case 6: // 0 1 1 0 2994 return Builder.CreateXor(Op0, Op1); 2995 case 7: // 0 1 1 1 2996 return HasOneUse ? Builder.CreateNot(Builder.CreateAnd(Op0, Op1)) : nullptr; 2997 case 8: // 1 0 0 0 2998 return Builder.CreateAnd(Op0, Op1); 2999 case 9: // 1 0 0 1 3000 return HasOneUse ? Builder.CreateNot(Builder.CreateXor(Op0, Op1)) : nullptr; 3001 case 10: // 1 0 1 0 3002 return Op1; 3003 case 11: // 1 0 1 1 3004 return HasOneUse ? Builder.CreateOr(Builder.CreateNot(Op0), Op1) : nullptr; 3005 case 12: // 1 1 0 0 3006 return Op0; 3007 case 13: // 1 1 0 1 3008 return HasOneUse ? Builder.CreateOr(Op0, Builder.CreateNot(Op1)) : nullptr; 3009 case 14: // 1 1 1 0 3010 return Builder.CreateOr(Op0, Op1); 3011 case 15: // 1 1 1 1 3012 return FoldConstant(true); 3013 default: 3014 llvm_unreachable("Invalid Operation"); 3015 } 3016 return nullptr; 3017 } 3018 3019 /// Fold icmp (add X, Y), C. 3020 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 3021 BinaryOperator *Add, 3022 const APInt &C) { 3023 Value *Y = Add->getOperand(1); 3024 Value *X = Add->getOperand(0); 3025 3026 Value *Op0, *Op1; 3027 Instruction *Ext0, *Ext1; 3028 const CmpInst::Predicate Pred = Cmp.getPredicate(); 3029 if (match(Add, 3030 m_Add(m_CombineAnd(m_Instruction(Ext0), m_ZExtOrSExt(m_Value(Op0))), 3031 m_CombineAnd(m_Instruction(Ext1), 3032 m_ZExtOrSExt(m_Value(Op1))))) && 3033 Op0->getType()->isIntOrIntVectorTy(1) && 3034 Op1->getType()->isIntOrIntVectorTy(1)) { 3035 unsigned BW = C.getBitWidth(); 3036 std::bitset<4> Table; 3037 auto ComputeTable = [&](bool Op0Val, bool Op1Val) { 3038 int Res = 0; 3039 if (Op0Val) 3040 Res += isa<ZExtInst>(Ext0) ? 1 : -1; 3041 if (Op1Val) 3042 Res += isa<ZExtInst>(Ext1) ? 1 : -1; 3043 return ICmpInst::compare(APInt(BW, Res, true), C, Pred); 3044 }; 3045 3046 Table[0] = ComputeTable(false, false); 3047 Table[1] = ComputeTable(false, true); 3048 Table[2] = ComputeTable(true, false); 3049 Table[3] = ComputeTable(true, true); 3050 if (auto *Cond = 3051 createLogicFromTable(Table, Op0, Op1, Builder, Add->hasOneUse())) 3052 return replaceInstUsesWith(Cmp, Cond); 3053 } 3054 const APInt *C2; 3055 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 3056 return nullptr; 3057 3058 // Fold icmp pred (add X, C2), C. 3059 Type *Ty = Add->getType(); 3060 3061 // If the add does not wrap, we can always adjust the compare by subtracting 3062 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 3063 // are canonicalized to SGT/SLT/UGT/ULT. 3064 if ((Add->hasNoSignedWrap() && 3065 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 3066 (Add->hasNoUnsignedWrap() && 3067 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 3068 bool Overflow; 3069 APInt NewC = 3070 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 3071 // If there is overflow, the result must be true or false. 3072 // TODO: Can we assert there is no overflow because InstSimplify always 3073 // handles those cases? 3074 if (!Overflow) 3075 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 3076 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 3077 } 3078 3079 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 3080 const APInt &Upper = CR.getUpper(); 3081 const APInt &Lower = CR.getLower(); 3082 if (Cmp.isSigned()) { 3083 if (Lower.isSignMask()) 3084 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 3085 if (Upper.isSignMask()) 3086 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 3087 } else { 3088 if (Lower.isMinValue()) 3089 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 3090 if (Upper.isMinValue()) 3091 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 3092 } 3093 3094 // This set of folds is intentionally placed after folds that use no-wrapping 3095 // flags because those folds are likely better for later analysis/codegen. 3096 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 3097 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 3098 3099 // Fold compare with offset to opposite sign compare if it eliminates offset: 3100 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 3101 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 3102 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 3103 3104 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 3105 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 3106 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 3107 3108 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 3109 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 3110 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 3111 3112 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 3113 if (Pred == CmpInst::ICMP_SLT && C == *C2) 3114 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 3115 3116 // (X + -1) <u C --> X <=u C (if X is never null) 3117 if (Pred == CmpInst::ICMP_ULT && C2->isAllOnes()) { 3118 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); 3119 if (llvm::isKnownNonZero(X, Q)) 3120 return new ICmpInst(ICmpInst::ICMP_ULE, X, ConstantInt::get(Ty, C)); 3121 } 3122 3123 if (!Add->hasOneUse()) 3124 return nullptr; 3125 3126 // X+C <u C2 -> (X & -C2) == C 3127 // iff C & (C2-1) == 0 3128 // C2 is a power of 2 3129 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 3130 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 3131 ConstantExpr::getNeg(cast<Constant>(Y))); 3132 3133 // X+C2 <u C -> (X & C) == 2C 3134 // iff C == -(C2) 3135 // C2 is a power of 2 3136 if (Pred == ICmpInst::ICMP_ULT && C2->isPowerOf2() && C == -*C2) 3137 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, C), 3138 ConstantInt::get(Ty, C * 2)); 3139 3140 // X+C >u C2 -> (X & ~C2) != C 3141 // iff C & C2 == 0 3142 // C2+1 is a power of 2 3143 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 3144 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 3145 ConstantExpr::getNeg(cast<Constant>(Y))); 3146 3147 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 3148 // to the ult form. 3149 // X+C2 >u C -> X+(C2-C-1) <u ~C 3150 if (Pred == ICmpInst::ICMP_UGT) 3151 return new ICmpInst(ICmpInst::ICMP_ULT, 3152 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 3153 ConstantInt::get(Ty, ~C)); 3154 3155 return nullptr; 3156 } 3157 3158 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 3159 Value *&RHS, ConstantInt *&Less, 3160 ConstantInt *&Equal, 3161 ConstantInt *&Greater) { 3162 // TODO: Generalize this to work with other comparison idioms or ensure 3163 // they get canonicalized into this form. 3164 3165 // select i1 (a == b), 3166 // i32 Equal, 3167 // i32 (select i1 (a < b), i32 Less, i32 Greater) 3168 // where Equal, Less and Greater are placeholders for any three constants. 3169 ICmpInst::Predicate PredA; 3170 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 3171 !ICmpInst::isEquality(PredA)) 3172 return false; 3173 Value *EqualVal = SI->getTrueValue(); 3174 Value *UnequalVal = SI->getFalseValue(); 3175 // We still can get non-canonical predicate here, so canonicalize. 3176 if (PredA == ICmpInst::ICMP_NE) 3177 std::swap(EqualVal, UnequalVal); 3178 if (!match(EqualVal, m_ConstantInt(Equal))) 3179 return false; 3180 ICmpInst::Predicate PredB; 3181 Value *LHS2, *RHS2; 3182 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 3183 m_ConstantInt(Less), m_ConstantInt(Greater)))) 3184 return false; 3185 // We can get predicate mismatch here, so canonicalize if possible: 3186 // First, ensure that 'LHS' match. 3187 if (LHS2 != LHS) { 3188 // x sgt y <--> y slt x 3189 std::swap(LHS2, RHS2); 3190 PredB = ICmpInst::getSwappedPredicate(PredB); 3191 } 3192 if (LHS2 != LHS) 3193 return false; 3194 // We also need to canonicalize 'RHS'. 3195 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 3196 // x sgt C-1 <--> x sge C <--> not(x slt C) 3197 auto FlippedStrictness = 3198 InstCombiner::getFlippedStrictnessPredicateAndConstant( 3199 PredB, cast<Constant>(RHS2)); 3200 if (!FlippedStrictness) 3201 return false; 3202 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 3203 "basic correctness failure"); 3204 RHS2 = FlippedStrictness->second; 3205 // And kind-of perform the result swap. 3206 std::swap(Less, Greater); 3207 PredB = ICmpInst::ICMP_SLT; 3208 } 3209 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 3210 } 3211 3212 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 3213 SelectInst *Select, 3214 ConstantInt *C) { 3215 3216 assert(C && "Cmp RHS should be a constant int!"); 3217 // If we're testing a constant value against the result of a three way 3218 // comparison, the result can be expressed directly in terms of the 3219 // original values being compared. Note: We could possibly be more 3220 // aggressive here and remove the hasOneUse test. The original select is 3221 // really likely to simplify or sink when we remove a test of the result. 3222 Value *OrigLHS, *OrigRHS; 3223 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 3224 if (Cmp.hasOneUse() && 3225 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 3226 C3GreaterThan)) { 3227 assert(C1LessThan && C2Equal && C3GreaterThan); 3228 3229 bool TrueWhenLessThan = ICmpInst::compare( 3230 C1LessThan->getValue(), C->getValue(), Cmp.getPredicate()); 3231 bool TrueWhenEqual = ICmpInst::compare(C2Equal->getValue(), C->getValue(), 3232 Cmp.getPredicate()); 3233 bool TrueWhenGreaterThan = ICmpInst::compare( 3234 C3GreaterThan->getValue(), C->getValue(), Cmp.getPredicate()); 3235 3236 // This generates the new instruction that will replace the original Cmp 3237 // Instruction. Instead of enumerating the various combinations when 3238 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 3239 // false, we rely on chaining of ORs and future passes of InstCombine to 3240 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 3241 3242 // When none of the three constants satisfy the predicate for the RHS (C), 3243 // the entire original Cmp can be simplified to a false. 3244 Value *Cond = Builder.getFalse(); 3245 if (TrueWhenLessThan) 3246 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 3247 OrigLHS, OrigRHS)); 3248 if (TrueWhenEqual) 3249 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 3250 OrigLHS, OrigRHS)); 3251 if (TrueWhenGreaterThan) 3252 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 3253 OrigLHS, OrigRHS)); 3254 3255 return replaceInstUsesWith(Cmp, Cond); 3256 } 3257 return nullptr; 3258 } 3259 3260 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 3261 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 3262 if (!Bitcast) 3263 return nullptr; 3264 3265 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3266 Value *Op1 = Cmp.getOperand(1); 3267 Value *BCSrcOp = Bitcast->getOperand(0); 3268 Type *SrcType = Bitcast->getSrcTy(); 3269 Type *DstType = Bitcast->getType(); 3270 3271 // Make sure the bitcast doesn't change between scalar and vector and 3272 // doesn't change the number of vector elements. 3273 if (SrcType->isVectorTy() == DstType->isVectorTy() && 3274 SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) { 3275 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 3276 Value *X; 3277 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 3278 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 3279 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 3280 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 3281 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 3282 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 3283 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 3284 match(Op1, m_Zero())) 3285 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 3286 3287 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 3288 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 3289 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 3290 3291 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 3292 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 3293 return new ICmpInst(Pred, X, 3294 ConstantInt::getAllOnesValue(X->getType())); 3295 } 3296 3297 // Zero-equality checks are preserved through unsigned floating-point casts: 3298 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 3299 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 3300 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 3301 if (Cmp.isEquality() && match(Op1, m_Zero())) 3302 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 3303 3304 const APInt *C; 3305 bool TrueIfSigned; 3306 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse()) { 3307 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 3308 // the FP extend/truncate because that cast does not change the sign-bit. 3309 // This is true for all standard IEEE-754 types and the X86 80-bit type. 3310 // The sign-bit is always the most significant bit in those types. 3311 if (isSignBitCheck(Pred, *C, TrueIfSigned) && 3312 (match(BCSrcOp, m_FPExt(m_Value(X))) || 3313 match(BCSrcOp, m_FPTrunc(m_Value(X))))) { 3314 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 3315 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 3316 Type *XType = X->getType(); 3317 3318 // We can't currently handle Power style floating point operations here. 3319 if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) { 3320 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 3321 if (auto *XVTy = dyn_cast<VectorType>(XType)) 3322 NewType = VectorType::get(NewType, XVTy->getElementCount()); 3323 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 3324 if (TrueIfSigned) 3325 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 3326 ConstantInt::getNullValue(NewType)); 3327 else 3328 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 3329 ConstantInt::getAllOnesValue(NewType)); 3330 } 3331 } 3332 3333 // icmp eq/ne (bitcast X to int), special fp -> llvm.is.fpclass(X, class) 3334 Type *FPType = SrcType->getScalarType(); 3335 if (!Cmp.getParent()->getParent()->hasFnAttribute( 3336 Attribute::NoImplicitFloat) && 3337 Cmp.isEquality() && FPType->isIEEELikeFPTy()) { 3338 FPClassTest Mask = APFloat(FPType->getFltSemantics(), *C).classify(); 3339 if (Mask & (fcInf | fcZero)) { 3340 if (Pred == ICmpInst::ICMP_NE) 3341 Mask = ~Mask; 3342 return replaceInstUsesWith(Cmp, 3343 Builder.createIsFPClass(BCSrcOp, Mask)); 3344 } 3345 } 3346 } 3347 } 3348 3349 const APInt *C; 3350 if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() || 3351 !SrcType->isIntOrIntVectorTy()) 3352 return nullptr; 3353 3354 // If this is checking if all elements of a vector compare are set or not, 3355 // invert the casted vector equality compare and test if all compare 3356 // elements are clear or not. Compare against zero is generally easier for 3357 // analysis and codegen. 3358 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 3359 // Example: are all elements equal? --> are zero elements not equal? 3360 // TODO: Try harder to reduce compare of 2 freely invertible operands? 3361 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse()) { 3362 if (Value *NotBCSrcOp = 3363 getFreelyInverted(BCSrcOp, BCSrcOp->hasOneUse(), &Builder)) { 3364 Value *Cast = Builder.CreateBitCast(NotBCSrcOp, DstType); 3365 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType)); 3366 } 3367 } 3368 3369 // If this is checking if all elements of an extended vector are clear or not, 3370 // compare in a narrow type to eliminate the extend: 3371 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 3372 Value *X; 3373 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 3374 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 3375 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 3376 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 3377 Value *NewCast = Builder.CreateBitCast(X, NewType); 3378 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 3379 } 3380 } 3381 3382 // Folding: icmp <pred> iN X, C 3383 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 3384 // and C is a splat of a K-bit pattern 3385 // and SC is a constant vector = <C', C', C', ..., C'> 3386 // Into: 3387 // %E = extractelement <M x iK> %vec, i32 C' 3388 // icmp <pred> iK %E, trunc(C) 3389 Value *Vec; 3390 ArrayRef<int> Mask; 3391 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 3392 // Check whether every element of Mask is the same constant 3393 if (all_equal(Mask)) { 3394 auto *VecTy = cast<VectorType>(SrcType); 3395 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 3396 if (C->isSplat(EltTy->getBitWidth())) { 3397 // Fold the icmp based on the value of C 3398 // If C is M copies of an iK sized bit pattern, 3399 // then: 3400 // => %E = extractelement <N x iK> %vec, i32 Elem 3401 // icmp <pred> iK %SplatVal, <pattern> 3402 Value *Elem = Builder.getInt32(Mask[0]); 3403 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 3404 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 3405 return new ICmpInst(Pred, Extract, NewC); 3406 } 3407 } 3408 } 3409 return nullptr; 3410 } 3411 3412 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3413 /// where X is some kind of instruction. 3414 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3415 const APInt *C; 3416 3417 if (match(Cmp.getOperand(1), m_APInt(C))) { 3418 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) 3419 if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C)) 3420 return I; 3421 3422 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) 3423 // For now, we only support constant integers while folding the 3424 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3425 // similar to the cases handled by binary ops above. 3426 if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3427 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3428 return I; 3429 3430 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) 3431 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3432 return I; 3433 3434 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3435 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3436 return I; 3437 3438 // (extractval ([s/u]subo X, Y), 0) == 0 --> X == Y 3439 // (extractval ([s/u]subo X, Y), 0) != 0 --> X != Y 3440 // TODO: This checks one-use, but that is not strictly necessary. 3441 Value *Cmp0 = Cmp.getOperand(0); 3442 Value *X, *Y; 3443 if (C->isZero() && Cmp.isEquality() && Cmp0->hasOneUse() && 3444 (match(Cmp0, 3445 m_ExtractValue<0>(m_Intrinsic<Intrinsic::ssub_with_overflow>( 3446 m_Value(X), m_Value(Y)))) || 3447 match(Cmp0, 3448 m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 3449 m_Value(X), m_Value(Y)))))) 3450 return new ICmpInst(Cmp.getPredicate(), X, Y); 3451 } 3452 3453 if (match(Cmp.getOperand(1), m_APIntAllowPoison(C))) 3454 return foldICmpInstWithConstantAllowPoison(Cmp, *C); 3455 3456 return nullptr; 3457 } 3458 3459 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3460 /// icmp eq/ne BO, C. 3461 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3462 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3463 // TODO: Some of these folds could work with arbitrary constants, but this 3464 // function is limited to scalar and vector splat constants. 3465 if (!Cmp.isEquality()) 3466 return nullptr; 3467 3468 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3469 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3470 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3471 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3472 3473 switch (BO->getOpcode()) { 3474 case Instruction::SRem: 3475 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3476 if (C.isZero() && BO->hasOneUse()) { 3477 const APInt *BOC; 3478 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3479 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3480 return new ICmpInst(Pred, NewRem, 3481 Constant::getNullValue(BO->getType())); 3482 } 3483 } 3484 break; 3485 case Instruction::Add: { 3486 // (A + C2) == C --> A == (C - C2) 3487 // (A + C2) != C --> A != (C - C2) 3488 // TODO: Remove the one-use limitation? See discussion in D58633. 3489 if (Constant *C2 = dyn_cast<Constant>(BOp1)) { 3490 if (BO->hasOneUse()) 3491 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, C2)); 3492 } else if (C.isZero()) { 3493 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3494 // efficiently invertible, or if the add has just this one use. 3495 if (Value *NegVal = dyn_castNegVal(BOp1)) 3496 return new ICmpInst(Pred, BOp0, NegVal); 3497 if (Value *NegVal = dyn_castNegVal(BOp0)) 3498 return new ICmpInst(Pred, NegVal, BOp1); 3499 if (BO->hasOneUse()) { 3500 // (add nuw A, B) != 0 -> (or A, B) != 0 3501 if (match(BO, m_NUWAdd(m_Value(), m_Value()))) { 3502 Value *Or = Builder.CreateOr(BOp0, BOp1); 3503 return new ICmpInst(Pred, Or, Constant::getNullValue(BO->getType())); 3504 } 3505 Value *Neg = Builder.CreateNeg(BOp1); 3506 Neg->takeName(BO); 3507 return new ICmpInst(Pred, BOp0, Neg); 3508 } 3509 } 3510 break; 3511 } 3512 case Instruction::Xor: 3513 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3514 // For the xor case, we can xor two constants together, eliminating 3515 // the explicit xor. 3516 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3517 } else if (C.isZero()) { 3518 // Replace ((xor A, B) != 0) with (A != B) 3519 return new ICmpInst(Pred, BOp0, BOp1); 3520 } 3521 break; 3522 case Instruction::Or: { 3523 const APInt *BOC; 3524 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3525 // Comparing if all bits outside of a constant mask are set? 3526 // Replace (X | C) == -1 with (X & ~C) == ~C. 3527 // This removes the -1 constant. 3528 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3529 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3530 return new ICmpInst(Pred, And, NotBOC); 3531 } 3532 break; 3533 } 3534 case Instruction::UDiv: 3535 case Instruction::SDiv: 3536 if (BO->isExact()) { 3537 // div exact X, Y eq/ne 0 -> X eq/ne 0 3538 // div exact X, Y eq/ne 1 -> X eq/ne Y 3539 // div exact X, Y eq/ne C -> 3540 // if Y * C never-overflow && OneUse: 3541 // -> Y * C eq/ne X 3542 if (C.isZero()) 3543 return new ICmpInst(Pred, BOp0, Constant::getNullValue(BO->getType())); 3544 else if (C.isOne()) 3545 return new ICmpInst(Pred, BOp0, BOp1); 3546 else if (BO->hasOneUse()) { 3547 OverflowResult OR = computeOverflow( 3548 Instruction::Mul, BO->getOpcode() == Instruction::SDiv, BOp1, 3549 Cmp.getOperand(1), BO); 3550 if (OR == OverflowResult::NeverOverflows) { 3551 Value *YC = 3552 Builder.CreateMul(BOp1, ConstantInt::get(BO->getType(), C)); 3553 return new ICmpInst(Pred, YC, BOp0); 3554 } 3555 } 3556 } 3557 if (BO->getOpcode() == Instruction::UDiv && C.isZero()) { 3558 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3559 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3560 return new ICmpInst(NewPred, BOp1, BOp0); 3561 } 3562 break; 3563 default: 3564 break; 3565 } 3566 return nullptr; 3567 } 3568 3569 static Instruction *foldCtpopPow2Test(ICmpInst &I, IntrinsicInst *CtpopLhs, 3570 const APInt &CRhs, 3571 InstCombiner::BuilderTy &Builder, 3572 const SimplifyQuery &Q) { 3573 assert(CtpopLhs->getIntrinsicID() == Intrinsic::ctpop && 3574 "Non-ctpop intrin in ctpop fold"); 3575 if (!CtpopLhs->hasOneUse()) 3576 return nullptr; 3577 3578 // Power of 2 test: 3579 // isPow2OrZero : ctpop(X) u< 2 3580 // isPow2 : ctpop(X) == 1 3581 // NotPow2OrZero: ctpop(X) u> 1 3582 // NotPow2 : ctpop(X) != 1 3583 // If we know any bit of X can be folded to: 3584 // IsPow2 : X & (~Bit) == 0 3585 // NotPow2 : X & (~Bit) != 0 3586 const ICmpInst::Predicate Pred = I.getPredicate(); 3587 if (((I.isEquality() || Pred == ICmpInst::ICMP_UGT) && CRhs == 1) || 3588 (Pred == ICmpInst::ICMP_ULT && CRhs == 2)) { 3589 Value *Op = CtpopLhs->getArgOperand(0); 3590 KnownBits OpKnown = computeKnownBits(Op, Q.DL, 3591 /*Depth*/ 0, Q.AC, Q.CxtI, Q.DT); 3592 // No need to check for count > 1, that should be already constant folded. 3593 if (OpKnown.countMinPopulation() == 1) { 3594 Value *And = Builder.CreateAnd( 3595 Op, Constant::getIntegerValue(Op->getType(), ~(OpKnown.One))); 3596 return new ICmpInst( 3597 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_ULT) 3598 ? ICmpInst::ICMP_EQ 3599 : ICmpInst::ICMP_NE, 3600 And, Constant::getNullValue(Op->getType())); 3601 } 3602 } 3603 3604 return nullptr; 3605 } 3606 3607 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3608 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3609 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3610 Type *Ty = II->getType(); 3611 unsigned BitWidth = C.getBitWidth(); 3612 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3613 3614 switch (II->getIntrinsicID()) { 3615 case Intrinsic::abs: 3616 // abs(A) == 0 -> A == 0 3617 // abs(A) == INT_MIN -> A == INT_MIN 3618 if (C.isZero() || C.isMinSignedValue()) 3619 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3620 break; 3621 3622 case Intrinsic::bswap: 3623 // bswap(A) == C -> A == bswap(C) 3624 return new ICmpInst(Pred, II->getArgOperand(0), 3625 ConstantInt::get(Ty, C.byteSwap())); 3626 3627 case Intrinsic::bitreverse: 3628 // bitreverse(A) == C -> A == bitreverse(C) 3629 return new ICmpInst(Pred, II->getArgOperand(0), 3630 ConstantInt::get(Ty, C.reverseBits())); 3631 3632 case Intrinsic::ctlz: 3633 case Intrinsic::cttz: { 3634 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3635 if (C == BitWidth) 3636 return new ICmpInst(Pred, II->getArgOperand(0), 3637 ConstantInt::getNullValue(Ty)); 3638 3639 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3640 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3641 // Limit to one use to ensure we don't increase instruction count. 3642 unsigned Num = C.getLimitedValue(BitWidth); 3643 if (Num != BitWidth && II->hasOneUse()) { 3644 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3645 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3646 : APInt::getHighBitsSet(BitWidth, Num + 1); 3647 APInt Mask2 = IsTrailing 3648 ? APInt::getOneBitSet(BitWidth, Num) 3649 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3650 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3651 ConstantInt::get(Ty, Mask2)); 3652 } 3653 break; 3654 } 3655 3656 case Intrinsic::ctpop: { 3657 // popcount(A) == 0 -> A == 0 and likewise for != 3658 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3659 bool IsZero = C.isZero(); 3660 if (IsZero || C == BitWidth) 3661 return new ICmpInst(Pred, II->getArgOperand(0), 3662 IsZero ? Constant::getNullValue(Ty) 3663 : Constant::getAllOnesValue(Ty)); 3664 3665 break; 3666 } 3667 3668 case Intrinsic::fshl: 3669 case Intrinsic::fshr: 3670 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3671 const APInt *RotAmtC; 3672 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3673 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3674 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3675 return new ICmpInst(Pred, II->getArgOperand(0), 3676 II->getIntrinsicID() == Intrinsic::fshl 3677 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3678 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3679 } 3680 break; 3681 3682 case Intrinsic::umax: 3683 case Intrinsic::uadd_sat: { 3684 // uadd.sat(a, b) == 0 -> (a | b) == 0 3685 // umax(a, b) == 0 -> (a | b) == 0 3686 if (C.isZero() && II->hasOneUse()) { 3687 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3688 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3689 } 3690 break; 3691 } 3692 3693 case Intrinsic::ssub_sat: 3694 // ssub.sat(a, b) == 0 -> a == b 3695 if (C.isZero()) 3696 return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1)); 3697 break; 3698 case Intrinsic::usub_sat: { 3699 // usub.sat(a, b) == 0 -> a <= b 3700 if (C.isZero()) { 3701 ICmpInst::Predicate NewPred = 3702 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3703 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3704 } 3705 break; 3706 } 3707 default: 3708 break; 3709 } 3710 3711 return nullptr; 3712 } 3713 3714 /// Fold an icmp with LLVM intrinsics 3715 static Instruction * 3716 foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp, 3717 InstCombiner::BuilderTy &Builder) { 3718 assert(Cmp.isEquality()); 3719 3720 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3721 Value *Op0 = Cmp.getOperand(0); 3722 Value *Op1 = Cmp.getOperand(1); 3723 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3724 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3725 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3726 return nullptr; 3727 3728 switch (IIOp0->getIntrinsicID()) { 3729 case Intrinsic::bswap: 3730 case Intrinsic::bitreverse: 3731 // If both operands are byte-swapped or bit-reversed, just compare the 3732 // original values. 3733 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3734 case Intrinsic::fshl: 3735 case Intrinsic::fshr: { 3736 // If both operands are rotated by same amount, just compare the 3737 // original values. 3738 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3739 break; 3740 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3741 break; 3742 if (IIOp0->getOperand(2) == IIOp1->getOperand(2)) 3743 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3744 3745 // rotate(X, AmtX) == rotate(Y, AmtY) 3746 // -> rotate(X, AmtX - AmtY) == Y 3747 // Do this if either both rotates have one use or if only one has one use 3748 // and AmtX/AmtY are constants. 3749 unsigned OneUses = IIOp0->hasOneUse() + IIOp1->hasOneUse(); 3750 if (OneUses == 2 || 3751 (OneUses == 1 && match(IIOp0->getOperand(2), m_ImmConstant()) && 3752 match(IIOp1->getOperand(2), m_ImmConstant()))) { 3753 Value *SubAmt = 3754 Builder.CreateSub(IIOp0->getOperand(2), IIOp1->getOperand(2)); 3755 Value *CombinedRotate = Builder.CreateIntrinsic( 3756 Op0->getType(), IIOp0->getIntrinsicID(), 3757 {IIOp0->getOperand(0), IIOp0->getOperand(0), SubAmt}); 3758 return new ICmpInst(Pred, IIOp1->getOperand(0), CombinedRotate); 3759 } 3760 } break; 3761 default: 3762 break; 3763 } 3764 3765 return nullptr; 3766 } 3767 3768 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3769 /// where X is some kind of instruction and C is AllowPoison. 3770 /// TODO: Move more folds which allow poison to this function. 3771 Instruction * 3772 InstCombinerImpl::foldICmpInstWithConstantAllowPoison(ICmpInst &Cmp, 3773 const APInt &C) { 3774 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3775 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) { 3776 switch (II->getIntrinsicID()) { 3777 default: 3778 break; 3779 case Intrinsic::fshl: 3780 case Intrinsic::fshr: 3781 if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) { 3782 // (rot X, ?) == 0/-1 --> X == 0/-1 3783 if (C.isZero() || C.isAllOnes()) 3784 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3785 } 3786 break; 3787 } 3788 } 3789 3790 return nullptr; 3791 } 3792 3793 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C. 3794 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp, 3795 BinaryOperator *BO, 3796 const APInt &C) { 3797 switch (BO->getOpcode()) { 3798 case Instruction::Xor: 3799 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C)) 3800 return I; 3801 break; 3802 case Instruction::And: 3803 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C)) 3804 return I; 3805 break; 3806 case Instruction::Or: 3807 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C)) 3808 return I; 3809 break; 3810 case Instruction::Mul: 3811 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C)) 3812 return I; 3813 break; 3814 case Instruction::Shl: 3815 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C)) 3816 return I; 3817 break; 3818 case Instruction::LShr: 3819 case Instruction::AShr: 3820 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C)) 3821 return I; 3822 break; 3823 case Instruction::SRem: 3824 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C)) 3825 return I; 3826 break; 3827 case Instruction::UDiv: 3828 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C)) 3829 return I; 3830 [[fallthrough]]; 3831 case Instruction::SDiv: 3832 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C)) 3833 return I; 3834 break; 3835 case Instruction::Sub: 3836 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C)) 3837 return I; 3838 break; 3839 case Instruction::Add: 3840 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C)) 3841 return I; 3842 break; 3843 default: 3844 break; 3845 } 3846 3847 // TODO: These folds could be refactored to be part of the above calls. 3848 return foldICmpBinOpEqualityWithConstant(Cmp, BO, C); 3849 } 3850 3851 static Instruction * 3852 foldICmpUSubSatOrUAddSatWithConstant(ICmpInst::Predicate Pred, 3853 SaturatingInst *II, const APInt &C, 3854 InstCombiner::BuilderTy &Builder) { 3855 // This transform may end up producing more than one instruction for the 3856 // intrinsic, so limit it to one user of the intrinsic. 3857 if (!II->hasOneUse()) 3858 return nullptr; 3859 3860 // Let Y = [add/sub]_sat(X, C) pred C2 3861 // SatVal = The saturating value for the operation 3862 // WillWrap = Whether or not the operation will underflow / overflow 3863 // => Y = (WillWrap ? SatVal : (X binop C)) pred C2 3864 // => Y = WillWrap ? (SatVal pred C2) : ((X binop C) pred C2) 3865 // 3866 // When (SatVal pred C2) is true, then 3867 // Y = WillWrap ? true : ((X binop C) pred C2) 3868 // => Y = WillWrap || ((X binop C) pred C2) 3869 // else 3870 // Y = WillWrap ? false : ((X binop C) pred C2) 3871 // => Y = !WillWrap ? ((X binop C) pred C2) : false 3872 // => Y = !WillWrap && ((X binop C) pred C2) 3873 Value *Op0 = II->getOperand(0); 3874 Value *Op1 = II->getOperand(1); 3875 3876 const APInt *COp1; 3877 // This transform only works when the intrinsic has an integral constant or 3878 // splat vector as the second operand. 3879 if (!match(Op1, m_APInt(COp1))) 3880 return nullptr; 3881 3882 APInt SatVal; 3883 switch (II->getIntrinsicID()) { 3884 default: 3885 llvm_unreachable( 3886 "This function only works with usub_sat and uadd_sat for now!"); 3887 case Intrinsic::uadd_sat: 3888 SatVal = APInt::getAllOnes(C.getBitWidth()); 3889 break; 3890 case Intrinsic::usub_sat: 3891 SatVal = APInt::getZero(C.getBitWidth()); 3892 break; 3893 } 3894 3895 // Check (SatVal pred C2) 3896 bool SatValCheck = ICmpInst::compare(SatVal, C, Pred); 3897 3898 // !WillWrap. 3899 ConstantRange C1 = ConstantRange::makeExactNoWrapRegion( 3900 II->getBinaryOp(), *COp1, II->getNoWrapKind()); 3901 3902 // WillWrap. 3903 if (SatValCheck) 3904 C1 = C1.inverse(); 3905 3906 ConstantRange C2 = ConstantRange::makeExactICmpRegion(Pred, C); 3907 if (II->getBinaryOp() == Instruction::Add) 3908 C2 = C2.sub(*COp1); 3909 else 3910 C2 = C2.add(*COp1); 3911 3912 Instruction::BinaryOps CombiningOp = 3913 SatValCheck ? Instruction::BinaryOps::Or : Instruction::BinaryOps::And; 3914 3915 std::optional<ConstantRange> Combination; 3916 if (CombiningOp == Instruction::BinaryOps::Or) 3917 Combination = C1.exactUnionWith(C2); 3918 else /* CombiningOp == Instruction::BinaryOps::And */ 3919 Combination = C1.exactIntersectWith(C2); 3920 3921 if (!Combination) 3922 return nullptr; 3923 3924 CmpInst::Predicate EquivPred; 3925 APInt EquivInt; 3926 APInt EquivOffset; 3927 3928 Combination->getEquivalentICmp(EquivPred, EquivInt, EquivOffset); 3929 3930 return new ICmpInst( 3931 EquivPred, 3932 Builder.CreateAdd(Op0, ConstantInt::get(Op1->getType(), EquivOffset)), 3933 ConstantInt::get(Op1->getType(), EquivInt)); 3934 } 3935 3936 static Instruction * 3937 foldICmpOfCmpIntrinsicWithConstant(ICmpInst::Predicate Pred, IntrinsicInst *I, 3938 const APInt &C, 3939 InstCombiner::BuilderTy &Builder) { 3940 std::optional<ICmpInst::Predicate> NewPredicate = std::nullopt; 3941 switch (Pred) { 3942 case ICmpInst::ICMP_EQ: 3943 case ICmpInst::ICMP_NE: 3944 if (C.isZero()) 3945 NewPredicate = Pred; 3946 else if (C.isOne()) 3947 NewPredicate = 3948 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE; 3949 else if (C.isAllOnes()) 3950 NewPredicate = 3951 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 3952 break; 3953 3954 case ICmpInst::ICMP_SGT: 3955 if (C.isAllOnes()) 3956 NewPredicate = ICmpInst::ICMP_UGE; 3957 else if (C.isZero()) 3958 NewPredicate = ICmpInst::ICMP_UGT; 3959 break; 3960 3961 case ICmpInst::ICMP_SLT: 3962 if (C.isZero()) 3963 NewPredicate = ICmpInst::ICMP_ULT; 3964 else if (C.isOne()) 3965 NewPredicate = ICmpInst::ICMP_ULE; 3966 break; 3967 3968 default: 3969 break; 3970 } 3971 3972 if (!NewPredicate) 3973 return nullptr; 3974 3975 if (I->getIntrinsicID() == Intrinsic::scmp) 3976 NewPredicate = ICmpInst::getSignedPredicate(*NewPredicate); 3977 Value *LHS = I->getOperand(0); 3978 Value *RHS = I->getOperand(1); 3979 return new ICmpInst(*NewPredicate, LHS, RHS); 3980 } 3981 3982 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3983 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3984 IntrinsicInst *II, 3985 const APInt &C) { 3986 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3987 3988 // Handle folds that apply for any kind of icmp. 3989 switch (II->getIntrinsicID()) { 3990 default: 3991 break; 3992 case Intrinsic::uadd_sat: 3993 case Intrinsic::usub_sat: 3994 if (auto *Folded = foldICmpUSubSatOrUAddSatWithConstant( 3995 Pred, cast<SaturatingInst>(II), C, Builder)) 3996 return Folded; 3997 break; 3998 case Intrinsic::ctpop: { 3999 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); 4000 if (Instruction *R = foldCtpopPow2Test(Cmp, II, C, Builder, Q)) 4001 return R; 4002 } break; 4003 case Intrinsic::scmp: 4004 case Intrinsic::ucmp: 4005 if (auto *Folded = foldICmpOfCmpIntrinsicWithConstant(Pred, II, C, Builder)) 4006 return Folded; 4007 break; 4008 } 4009 4010 if (Cmp.isEquality()) 4011 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 4012 4013 Type *Ty = II->getType(); 4014 unsigned BitWidth = C.getBitWidth(); 4015 switch (II->getIntrinsicID()) { 4016 case Intrinsic::ctpop: { 4017 // (ctpop X > BitWidth - 1) --> X == -1 4018 Value *X = II->getArgOperand(0); 4019 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 4020 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 4021 ConstantInt::getAllOnesValue(Ty)); 4022 // (ctpop X < BitWidth) --> X != -1 4023 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 4024 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 4025 ConstantInt::getAllOnesValue(Ty)); 4026 break; 4027 } 4028 case Intrinsic::ctlz: { 4029 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 4030 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 4031 unsigned Num = C.getLimitedValue(); 4032 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 4033 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 4034 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 4035 } 4036 4037 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 4038 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 4039 unsigned Num = C.getLimitedValue(); 4040 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 4041 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 4042 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 4043 } 4044 break; 4045 } 4046 case Intrinsic::cttz: { 4047 // Limit to one use to ensure we don't increase instruction count. 4048 if (!II->hasOneUse()) 4049 return nullptr; 4050 4051 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 4052 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 4053 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 4054 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 4055 Builder.CreateAnd(II->getArgOperand(0), Mask), 4056 ConstantInt::getNullValue(Ty)); 4057 } 4058 4059 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 4060 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 4061 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 4062 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 4063 Builder.CreateAnd(II->getArgOperand(0), Mask), 4064 ConstantInt::getNullValue(Ty)); 4065 } 4066 break; 4067 } 4068 case Intrinsic::ssub_sat: 4069 // ssub.sat(a, b) spred 0 -> a spred b 4070 if (ICmpInst::isSigned(Pred)) { 4071 if (C.isZero()) 4072 return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1)); 4073 // X s<= 0 is cannonicalized to X s< 1 4074 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 4075 return new ICmpInst(ICmpInst::ICMP_SLE, II->getArgOperand(0), 4076 II->getArgOperand(1)); 4077 // X s>= 0 is cannonicalized to X s> -1 4078 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 4079 return new ICmpInst(ICmpInst::ICMP_SGE, II->getArgOperand(0), 4080 II->getArgOperand(1)); 4081 } 4082 break; 4083 default: 4084 break; 4085 } 4086 4087 return nullptr; 4088 } 4089 4090 /// Handle icmp with constant (but not simple integer constant) RHS. 4091 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 4092 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4093 Constant *RHSC = dyn_cast<Constant>(Op1); 4094 Instruction *LHSI = dyn_cast<Instruction>(Op0); 4095 if (!RHSC || !LHSI) 4096 return nullptr; 4097 4098 switch (LHSI->getOpcode()) { 4099 case Instruction::PHI: 4100 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 4101 return NV; 4102 break; 4103 case Instruction::IntToPtr: 4104 // icmp pred inttoptr(X), null -> icmp pred X, 0 4105 if (RHSC->isNullValue() && 4106 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 4107 return new ICmpInst( 4108 I.getPredicate(), LHSI->getOperand(0), 4109 Constant::getNullValue(LHSI->getOperand(0)->getType())); 4110 break; 4111 4112 case Instruction::Load: 4113 // Try to optimize things like "A[i] > 4" to index computations. 4114 if (GetElementPtrInst *GEP = 4115 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 4116 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 4117 if (Instruction *Res = 4118 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I)) 4119 return Res; 4120 break; 4121 } 4122 4123 return nullptr; 4124 } 4125 4126 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred, 4127 SelectInst *SI, Value *RHS, 4128 const ICmpInst &I) { 4129 // Try to fold the comparison into the select arms, which will cause the 4130 // select to be converted into a logical and/or. 4131 auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * { 4132 if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ)) 4133 return Res; 4134 if (std::optional<bool> Impl = isImpliedCondition( 4135 SI->getCondition(), Pred, Op, RHS, DL, SelectCondIsTrue)) 4136 return ConstantInt::get(I.getType(), *Impl); 4137 return nullptr; 4138 }; 4139 4140 ConstantInt *CI = nullptr; 4141 Value *Op1 = SimplifyOp(SI->getOperand(1), true); 4142 if (Op1) 4143 CI = dyn_cast<ConstantInt>(Op1); 4144 4145 Value *Op2 = SimplifyOp(SI->getOperand(2), false); 4146 if (Op2) 4147 CI = dyn_cast<ConstantInt>(Op2); 4148 4149 // We only want to perform this transformation if it will not lead to 4150 // additional code. This is true if either both sides of the select 4151 // fold to a constant (in which case the icmp is replaced with a select 4152 // which will usually simplify) or this is the only user of the 4153 // select (in which case we are trading a select+icmp for a simpler 4154 // select+icmp) or all uses of the select can be replaced based on 4155 // dominance information ("Global cases"). 4156 bool Transform = false; 4157 if (Op1 && Op2) 4158 Transform = true; 4159 else if (Op1 || Op2) { 4160 // Local case 4161 if (SI->hasOneUse()) 4162 Transform = true; 4163 // Global cases 4164 else if (CI && !CI->isZero()) 4165 // When Op1 is constant try replacing select with second operand. 4166 // Otherwise Op2 is constant and try replacing select with first 4167 // operand. 4168 Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1); 4169 } 4170 if (Transform) { 4171 if (!Op1) 4172 Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName()); 4173 if (!Op2) 4174 Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName()); 4175 return SelectInst::Create(SI->getOperand(0), Op1, Op2); 4176 } 4177 4178 return nullptr; 4179 } 4180 4181 // Returns whether V is a Mask ((X + 1) & X == 0) or ~Mask (-Pow2OrZero) 4182 static bool isMaskOrZero(const Value *V, bool Not, const SimplifyQuery &Q, 4183 unsigned Depth = 0) { 4184 if (Not ? match(V, m_NegatedPower2OrZero()) : match(V, m_LowBitMaskOrZero())) 4185 return true; 4186 if (V->getType()->getScalarSizeInBits() == 1) 4187 return true; 4188 if (Depth++ >= MaxAnalysisRecursionDepth) 4189 return false; 4190 Value *X; 4191 const Instruction *I = dyn_cast<Instruction>(V); 4192 if (!I) 4193 return false; 4194 switch (I->getOpcode()) { 4195 case Instruction::ZExt: 4196 // ZExt(Mask) is a Mask. 4197 return !Not && isMaskOrZero(I->getOperand(0), Not, Q, Depth); 4198 case Instruction::SExt: 4199 // SExt(Mask) is a Mask. 4200 // SExt(~Mask) is a ~Mask. 4201 return isMaskOrZero(I->getOperand(0), Not, Q, Depth); 4202 case Instruction::And: 4203 case Instruction::Or: 4204 // Mask0 | Mask1 is a Mask. 4205 // Mask0 & Mask1 is a Mask. 4206 // ~Mask0 | ~Mask1 is a ~Mask. 4207 // ~Mask0 & ~Mask1 is a ~Mask. 4208 return isMaskOrZero(I->getOperand(1), Not, Q, Depth) && 4209 isMaskOrZero(I->getOperand(0), Not, Q, Depth); 4210 case Instruction::Xor: 4211 if (match(V, m_Not(m_Value(X)))) 4212 return isMaskOrZero(X, !Not, Q, Depth); 4213 4214 // (X ^ -X) is a ~Mask 4215 if (Not) 4216 return match(V, m_c_Xor(m_Value(X), m_Neg(m_Deferred(X)))); 4217 // (X ^ (X - 1)) is a Mask 4218 else 4219 return match(V, m_c_Xor(m_Value(X), m_Add(m_Deferred(X), m_AllOnes()))); 4220 case Instruction::Select: 4221 // c ? Mask0 : Mask1 is a Mask. 4222 return isMaskOrZero(I->getOperand(1), Not, Q, Depth) && 4223 isMaskOrZero(I->getOperand(2), Not, Q, Depth); 4224 case Instruction::Shl: 4225 // (~Mask) << X is a ~Mask. 4226 return Not && isMaskOrZero(I->getOperand(0), Not, Q, Depth); 4227 case Instruction::LShr: 4228 // Mask >> X is a Mask. 4229 return !Not && isMaskOrZero(I->getOperand(0), Not, Q, Depth); 4230 case Instruction::AShr: 4231 // Mask s>> X is a Mask. 4232 // ~Mask s>> X is a ~Mask. 4233 return isMaskOrZero(I->getOperand(0), Not, Q, Depth); 4234 case Instruction::Add: 4235 // Pow2 - 1 is a Mask. 4236 if (!Not && match(I->getOperand(1), m_AllOnes())) 4237 return isKnownToBeAPowerOfTwo(I->getOperand(0), Q.DL, /*OrZero*/ true, 4238 Depth, Q.AC, Q.CxtI, Q.DT); 4239 break; 4240 case Instruction::Sub: 4241 // -Pow2 is a ~Mask. 4242 if (Not && match(I->getOperand(0), m_Zero())) 4243 return isKnownToBeAPowerOfTwo(I->getOperand(1), Q.DL, /*OrZero*/ true, 4244 Depth, Q.AC, Q.CxtI, Q.DT); 4245 break; 4246 case Instruction::Call: { 4247 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4248 switch (II->getIntrinsicID()) { 4249 // min/max(Mask0, Mask1) is a Mask. 4250 // min/max(~Mask0, ~Mask1) is a ~Mask. 4251 case Intrinsic::umax: 4252 case Intrinsic::smax: 4253 case Intrinsic::umin: 4254 case Intrinsic::smin: 4255 return isMaskOrZero(II->getArgOperand(1), Not, Q, Depth) && 4256 isMaskOrZero(II->getArgOperand(0), Not, Q, Depth); 4257 4258 // In the context of masks, bitreverse(Mask) == ~Mask 4259 case Intrinsic::bitreverse: 4260 return isMaskOrZero(II->getArgOperand(0), !Not, Q, Depth); 4261 default: 4262 break; 4263 } 4264 } 4265 break; 4266 } 4267 default: 4268 break; 4269 } 4270 return false; 4271 } 4272 4273 /// Some comparisons can be simplified. 4274 /// In this case, we are looking for comparisons that look like 4275 /// a check for a lossy truncation. 4276 /// Folds: 4277 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 4278 /// icmp SrcPred (x & ~Mask), ~Mask to icmp DstPred x, ~Mask 4279 /// icmp eq/ne (x & ~Mask), 0 to icmp DstPred x, Mask 4280 /// icmp eq/ne (~x | Mask), -1 to icmp DstPred x, Mask 4281 /// Where Mask is some pattern that produces all-ones in low bits: 4282 /// (-1 >> y) 4283 /// ((-1 << y) >> y) <- non-canonical, has extra uses 4284 /// ~(-1 << y) 4285 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 4286 /// The Mask can be a constant, too. 4287 /// For some predicates, the operands are commutative. 4288 /// For others, x can only be on a specific side. 4289 static Value *foldICmpWithLowBitMaskedVal(ICmpInst::Predicate Pred, Value *Op0, 4290 Value *Op1, const SimplifyQuery &Q, 4291 InstCombiner &IC) { 4292 4293 ICmpInst::Predicate DstPred; 4294 switch (Pred) { 4295 case ICmpInst::Predicate::ICMP_EQ: 4296 // x & Mask == x 4297 // x & ~Mask == 0 4298 // ~x | Mask == -1 4299 // -> x u<= Mask 4300 // x & ~Mask == ~Mask 4301 // -> ~Mask u<= x 4302 DstPred = ICmpInst::Predicate::ICMP_ULE; 4303 break; 4304 case ICmpInst::Predicate::ICMP_NE: 4305 // x & Mask != x 4306 // x & ~Mask != 0 4307 // ~x | Mask != -1 4308 // -> x u> Mask 4309 // x & ~Mask != ~Mask 4310 // -> ~Mask u> x 4311 DstPred = ICmpInst::Predicate::ICMP_UGT; 4312 break; 4313 case ICmpInst::Predicate::ICMP_ULT: 4314 // x & Mask u< x 4315 // -> x u> Mask 4316 // x & ~Mask u< ~Mask 4317 // -> ~Mask u> x 4318 DstPred = ICmpInst::Predicate::ICMP_UGT; 4319 break; 4320 case ICmpInst::Predicate::ICMP_UGE: 4321 // x & Mask u>= x 4322 // -> x u<= Mask 4323 // x & ~Mask u>= ~Mask 4324 // -> ~Mask u<= x 4325 DstPred = ICmpInst::Predicate::ICMP_ULE; 4326 break; 4327 case ICmpInst::Predicate::ICMP_SLT: 4328 // x & Mask s< x [iff Mask s>= 0] 4329 // -> x s> Mask 4330 // x & ~Mask s< ~Mask [iff ~Mask != 0] 4331 // -> ~Mask s> x 4332 DstPred = ICmpInst::Predicate::ICMP_SGT; 4333 break; 4334 case ICmpInst::Predicate::ICMP_SGE: 4335 // x & Mask s>= x [iff Mask s>= 0] 4336 // -> x s<= Mask 4337 // x & ~Mask s>= ~Mask [iff ~Mask != 0] 4338 // -> ~Mask s<= x 4339 DstPred = ICmpInst::Predicate::ICMP_SLE; 4340 break; 4341 default: 4342 // We don't support sgt,sle 4343 // ult/ugt are simplified to true/false respectively. 4344 return nullptr; 4345 } 4346 4347 Value *X, *M; 4348 // Put search code in lambda for early positive returns. 4349 auto IsLowBitMask = [&]() { 4350 if (match(Op0, m_c_And(m_Specific(Op1), m_Value(M)))) { 4351 X = Op1; 4352 // Look for: x & Mask pred x 4353 if (isMaskOrZero(M, /*Not=*/false, Q)) { 4354 return !ICmpInst::isSigned(Pred) || 4355 (match(M, m_NonNegative()) || isKnownNonNegative(M, Q)); 4356 } 4357 4358 // Look for: x & ~Mask pred ~Mask 4359 if (isMaskOrZero(X, /*Not=*/true, Q)) { 4360 return !ICmpInst::isSigned(Pred) || isKnownNonZero(X, Q); 4361 } 4362 return false; 4363 } 4364 if (ICmpInst::isEquality(Pred) && match(Op1, m_AllOnes()) && 4365 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(M))))) { 4366 4367 auto Check = [&]() { 4368 // Look for: ~x | Mask == -1 4369 if (isMaskOrZero(M, /*Not=*/false, Q)) { 4370 if (Value *NotX = 4371 IC.getFreelyInverted(X, X->hasOneUse(), &IC.Builder)) { 4372 X = NotX; 4373 return true; 4374 } 4375 } 4376 return false; 4377 }; 4378 if (Check()) 4379 return true; 4380 std::swap(X, M); 4381 return Check(); 4382 } 4383 if (ICmpInst::isEquality(Pred) && match(Op1, m_Zero()) && 4384 match(Op0, m_OneUse(m_And(m_Value(X), m_Value(M))))) { 4385 auto Check = [&]() { 4386 // Look for: x & ~Mask == 0 4387 if (isMaskOrZero(M, /*Not=*/true, Q)) { 4388 if (Value *NotM = 4389 IC.getFreelyInverted(M, M->hasOneUse(), &IC.Builder)) { 4390 M = NotM; 4391 return true; 4392 } 4393 } 4394 return false; 4395 }; 4396 if (Check()) 4397 return true; 4398 std::swap(X, M); 4399 return Check(); 4400 } 4401 return false; 4402 }; 4403 4404 if (!IsLowBitMask()) 4405 return nullptr; 4406 4407 return IC.Builder.CreateICmp(DstPred, X, M); 4408 } 4409 4410 /// Some comparisons can be simplified. 4411 /// In this case, we are looking for comparisons that look like 4412 /// a check for a lossy signed truncation. 4413 /// Folds: (MaskedBits is a constant.) 4414 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 4415 /// Into: 4416 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 4417 /// Where KeptBits = bitwidth(%x) - MaskedBits 4418 static Value * 4419 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 4420 InstCombiner::BuilderTy &Builder) { 4421 ICmpInst::Predicate SrcPred; 4422 Value *X; 4423 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 4424 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 4425 if (!match(&I, m_c_ICmp(SrcPred, 4426 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 4427 m_APInt(C1))), 4428 m_Deferred(X)))) 4429 return nullptr; 4430 4431 // Potential handling of non-splats: for each element: 4432 // * if both are undef, replace with constant 0. 4433 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 4434 // * if both are not undef, and are different, bailout. 4435 // * else, only one is undef, then pick the non-undef one. 4436 4437 // The shift amount must be equal. 4438 if (*C0 != *C1) 4439 return nullptr; 4440 const APInt &MaskedBits = *C0; 4441 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 4442 4443 ICmpInst::Predicate DstPred; 4444 switch (SrcPred) { 4445 case ICmpInst::Predicate::ICMP_EQ: 4446 // ((%x << MaskedBits) a>> MaskedBits) == %x 4447 // => 4448 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 4449 DstPred = ICmpInst::Predicate::ICMP_ULT; 4450 break; 4451 case ICmpInst::Predicate::ICMP_NE: 4452 // ((%x << MaskedBits) a>> MaskedBits) != %x 4453 // => 4454 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 4455 DstPred = ICmpInst::Predicate::ICMP_UGE; 4456 break; 4457 // FIXME: are more folds possible? 4458 default: 4459 return nullptr; 4460 } 4461 4462 auto *XType = X->getType(); 4463 const unsigned XBitWidth = XType->getScalarSizeInBits(); 4464 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 4465 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 4466 4467 // KeptBits = bitwidth(%x) - MaskedBits 4468 const APInt KeptBits = BitWidth - MaskedBits; 4469 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 4470 // ICmpCst = (1 << KeptBits) 4471 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 4472 assert(ICmpCst.isPowerOf2()); 4473 // AddCst = (1 << (KeptBits-1)) 4474 const APInt AddCst = ICmpCst.lshr(1); 4475 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 4476 4477 // T0 = add %x, AddCst 4478 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 4479 // T1 = T0 DstPred ICmpCst 4480 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 4481 4482 return T1; 4483 } 4484 4485 // Given pattern: 4486 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 4487 // we should move shifts to the same hand of 'and', i.e. rewrite as 4488 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 4489 // We are only interested in opposite logical shifts here. 4490 // One of the shifts can be truncated. 4491 // If we can, we want to end up creating 'lshr' shift. 4492 static Value * 4493 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 4494 InstCombiner::BuilderTy &Builder) { 4495 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 4496 !I.getOperand(0)->hasOneUse()) 4497 return nullptr; 4498 4499 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 4500 4501 // Look for an 'and' of two logical shifts, one of which may be truncated. 4502 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 4503 Instruction *XShift, *MaybeTruncation, *YShift; 4504 if (!match( 4505 I.getOperand(0), 4506 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 4507 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 4508 m_AnyLogicalShift, m_Instruction(YShift))), 4509 m_Instruction(MaybeTruncation))))) 4510 return nullptr; 4511 4512 // We potentially looked past 'trunc', but only when matching YShift, 4513 // therefore YShift must have the widest type. 4514 Instruction *WidestShift = YShift; 4515 // Therefore XShift must have the shallowest type. 4516 // Or they both have identical types if there was no truncation. 4517 Instruction *NarrowestShift = XShift; 4518 4519 Type *WidestTy = WidestShift->getType(); 4520 Type *NarrowestTy = NarrowestShift->getType(); 4521 assert(NarrowestTy == I.getOperand(0)->getType() && 4522 "We did not look past any shifts while matching XShift though."); 4523 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 4524 4525 // If YShift is a 'lshr', swap the shifts around. 4526 if (match(YShift, m_LShr(m_Value(), m_Value()))) 4527 std::swap(XShift, YShift); 4528 4529 // The shifts must be in opposite directions. 4530 auto XShiftOpcode = XShift->getOpcode(); 4531 if (XShiftOpcode == YShift->getOpcode()) 4532 return nullptr; // Do not care about same-direction shifts here. 4533 4534 Value *X, *XShAmt, *Y, *YShAmt; 4535 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 4536 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 4537 4538 // If one of the values being shifted is a constant, then we will end with 4539 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 4540 // however, we will need to ensure that we won't increase instruction count. 4541 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 4542 // At least one of the hands of the 'and' should be one-use shift. 4543 if (!match(I.getOperand(0), 4544 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 4545 return nullptr; 4546 if (HadTrunc) { 4547 // Due to the 'trunc', we will need to widen X. For that either the old 4548 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 4549 if (!MaybeTruncation->hasOneUse() && 4550 !NarrowestShift->getOperand(1)->hasOneUse()) 4551 return nullptr; 4552 } 4553 } 4554 4555 // We have two shift amounts from two different shifts. The types of those 4556 // shift amounts may not match. If that's the case let's bailout now. 4557 if (XShAmt->getType() != YShAmt->getType()) 4558 return nullptr; 4559 4560 // As input, we have the following pattern: 4561 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 4562 // We want to rewrite that as: 4563 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 4564 // While we know that originally (Q+K) would not overflow 4565 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 4566 // shift amounts. so it may now overflow in smaller bitwidth. 4567 // To ensure that does not happen, we need to ensure that the total maximal 4568 // shift amount is still representable in that smaller bit width. 4569 unsigned MaximalPossibleTotalShiftAmount = 4570 (WidestTy->getScalarSizeInBits() - 1) + 4571 (NarrowestTy->getScalarSizeInBits() - 1); 4572 APInt MaximalRepresentableShiftAmount = 4573 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 4574 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 4575 return nullptr; 4576 4577 // Can we fold (XShAmt+YShAmt) ? 4578 auto *NewShAmt = dyn_cast_or_null<Constant>( 4579 simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 4580 /*isNUW=*/false, SQ.getWithInstruction(&I))); 4581 if (!NewShAmt) 4582 return nullptr; 4583 if (NewShAmt->getType() != WidestTy) { 4584 NewShAmt = 4585 ConstantFoldCastOperand(Instruction::ZExt, NewShAmt, WidestTy, SQ.DL); 4586 if (!NewShAmt) 4587 return nullptr; 4588 } 4589 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 4590 4591 // Is the new shift amount smaller than the bit width? 4592 // FIXME: could also rely on ConstantRange. 4593 if (!match(NewShAmt, 4594 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 4595 APInt(WidestBitWidth, WidestBitWidth)))) 4596 return nullptr; 4597 4598 // An extra legality check is needed if we had trunc-of-lshr. 4599 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 4600 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 4601 WidestShift]() { 4602 // It isn't obvious whether it's worth it to analyze non-constants here. 4603 // Also, let's basically give up on non-splat cases, pessimizing vectors. 4604 // If *any* of these preconditions matches we can perform the fold. 4605 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 4606 ? NewShAmt->getSplatValue() 4607 : NewShAmt; 4608 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 4609 if (NewShAmtSplat && 4610 (NewShAmtSplat->isNullValue() || 4611 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 4612 return true; 4613 // We consider *min* leading zeros so a single outlier 4614 // blocks the transform as opposed to allowing it. 4615 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 4616 KnownBits Known = computeKnownBits(C, SQ.DL); 4617 unsigned MinLeadZero = Known.countMinLeadingZeros(); 4618 // If the value being shifted has at most lowest bit set we can fold. 4619 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 4620 if (MaxActiveBits <= 1) 4621 return true; 4622 // Precondition: NewShAmt u<= countLeadingZeros(C) 4623 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 4624 return true; 4625 } 4626 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 4627 KnownBits Known = computeKnownBits(C, SQ.DL); 4628 unsigned MinLeadZero = Known.countMinLeadingZeros(); 4629 // If the value being shifted has at most lowest bit set we can fold. 4630 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 4631 if (MaxActiveBits <= 1) 4632 return true; 4633 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 4634 if (NewShAmtSplat) { 4635 APInt AdjNewShAmt = 4636 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 4637 if (AdjNewShAmt.ule(MinLeadZero)) 4638 return true; 4639 } 4640 } 4641 return false; // Can't tell if it's ok. 4642 }; 4643 if (!CanFold()) 4644 return nullptr; 4645 } 4646 4647 // All good, we can do this fold. 4648 X = Builder.CreateZExt(X, WidestTy); 4649 Y = Builder.CreateZExt(Y, WidestTy); 4650 // The shift is the same that was for X. 4651 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 4652 ? Builder.CreateLShr(X, NewShAmt) 4653 : Builder.CreateShl(X, NewShAmt); 4654 Value *T1 = Builder.CreateAnd(T0, Y); 4655 return Builder.CreateICmp(I.getPredicate(), T1, 4656 Constant::getNullValue(WidestTy)); 4657 } 4658 4659 /// Fold 4660 /// (-1 u/ x) u< y 4661 /// ((x * y) ?/ x) != y 4662 /// to 4663 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 4664 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 4665 /// will mean that we are looking for the opposite answer. 4666 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 4667 ICmpInst::Predicate Pred; 4668 Value *X, *Y; 4669 Instruction *Mul; 4670 Instruction *Div; 4671 bool NeedNegation; 4672 // Look for: (-1 u/ x) u</u>= y 4673 if (!I.isEquality() && 4674 match(&I, m_c_ICmp(Pred, 4675 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 4676 m_Instruction(Div)), 4677 m_Value(Y)))) { 4678 Mul = nullptr; 4679 4680 // Are we checking that overflow does not happen, or does happen? 4681 switch (Pred) { 4682 case ICmpInst::Predicate::ICMP_ULT: 4683 NeedNegation = false; 4684 break; // OK 4685 case ICmpInst::Predicate::ICMP_UGE: 4686 NeedNegation = true; 4687 break; // OK 4688 default: 4689 return nullptr; // Wrong predicate. 4690 } 4691 } else // Look for: ((x * y) / x) !=/== y 4692 if (I.isEquality() && 4693 match(&I, 4694 m_c_ICmp(Pred, m_Value(Y), 4695 m_CombineAnd( 4696 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 4697 m_Value(X)), 4698 m_Instruction(Mul)), 4699 m_Deferred(X))), 4700 m_Instruction(Div))))) { 4701 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 4702 } else 4703 return nullptr; 4704 4705 BuilderTy::InsertPointGuard Guard(Builder); 4706 // If the pattern included (x * y), we'll want to insert new instructions 4707 // right before that original multiplication so that we can replace it. 4708 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 4709 if (MulHadOtherUses) 4710 Builder.SetInsertPoint(Mul); 4711 4712 Function *F = Intrinsic::getDeclaration(I.getModule(), 4713 Div->getOpcode() == Instruction::UDiv 4714 ? Intrinsic::umul_with_overflow 4715 : Intrinsic::smul_with_overflow, 4716 X->getType()); 4717 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 4718 4719 // If the multiplication was used elsewhere, to ensure that we don't leave 4720 // "duplicate" instructions, replace uses of that original multiplication 4721 // with the multiplication result from the with.overflow intrinsic. 4722 if (MulHadOtherUses) 4723 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 4724 4725 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 4726 if (NeedNegation) // This technically increases instruction count. 4727 Res = Builder.CreateNot(Res, "mul.not.ov"); 4728 4729 // If we replaced the mul, erase it. Do this after all uses of Builder, 4730 // as the mul is used as insertion point. 4731 if (MulHadOtherUses) 4732 eraseInstFromFunction(*Mul); 4733 4734 return Res; 4735 } 4736 4737 static Instruction *foldICmpXNegX(ICmpInst &I, 4738 InstCombiner::BuilderTy &Builder) { 4739 CmpInst::Predicate Pred; 4740 Value *X; 4741 if (match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) { 4742 4743 if (ICmpInst::isSigned(Pred)) 4744 Pred = ICmpInst::getSwappedPredicate(Pred); 4745 else if (ICmpInst::isUnsigned(Pred)) 4746 Pred = ICmpInst::getSignedPredicate(Pred); 4747 // else for equality-comparisons just keep the predicate. 4748 4749 return ICmpInst::Create(Instruction::ICmp, Pred, X, 4750 Constant::getNullValue(X->getType()), I.getName()); 4751 } 4752 4753 // A value is not equal to its negation unless that value is 0 or 4754 // MinSignedValue, ie: a != -a --> (a & MaxSignedVal) != 0 4755 if (match(&I, m_c_ICmp(Pred, m_OneUse(m_Neg(m_Value(X))), m_Deferred(X))) && 4756 ICmpInst::isEquality(Pred)) { 4757 Type *Ty = X->getType(); 4758 uint32_t BitWidth = Ty->getScalarSizeInBits(); 4759 Constant *MaxSignedVal = 4760 ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth)); 4761 Value *And = Builder.CreateAnd(X, MaxSignedVal); 4762 Constant *Zero = Constant::getNullValue(Ty); 4763 return CmpInst::Create(Instruction::ICmp, Pred, And, Zero); 4764 } 4765 4766 return nullptr; 4767 } 4768 4769 static Instruction *foldICmpAndXX(ICmpInst &I, const SimplifyQuery &Q, 4770 InstCombinerImpl &IC) { 4771 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A; 4772 // Normalize and operand as operand 0. 4773 CmpInst::Predicate Pred = I.getPredicate(); 4774 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) { 4775 std::swap(Op0, Op1); 4776 Pred = ICmpInst::getSwappedPredicate(Pred); 4777 } 4778 4779 if (!match(Op0, m_c_And(m_Specific(Op1), m_Value(A)))) 4780 return nullptr; 4781 4782 // (icmp (X & Y) u< X --> (X & Y) != X 4783 if (Pred == ICmpInst::ICMP_ULT) 4784 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4785 4786 // (icmp (X & Y) u>= X --> (X & Y) == X 4787 if (Pred == ICmpInst::ICMP_UGE) 4788 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4789 4790 if (ICmpInst::isEquality(Pred) && Op0->hasOneUse()) { 4791 // icmp (X & Y) eq/ne Y --> (X | ~Y) eq/ne -1 if Y is freely invertible and 4792 // Y is non-constant. If Y is constant the `X & C == C` form is preferable 4793 // so don't do this fold. 4794 if (!match(Op1, m_ImmConstant())) 4795 if (auto *NotOp1 = 4796 IC.getFreelyInverted(Op1, !Op1->hasNUsesOrMore(3), &IC.Builder)) 4797 return new ICmpInst(Pred, IC.Builder.CreateOr(A, NotOp1), 4798 Constant::getAllOnesValue(Op1->getType())); 4799 // icmp (X & Y) eq/ne Y --> (~X & Y) eq/ne 0 if X is freely invertible. 4800 if (auto *NotA = IC.getFreelyInverted(A, A->hasOneUse(), &IC.Builder)) 4801 return new ICmpInst(Pred, IC.Builder.CreateAnd(Op1, NotA), 4802 Constant::getNullValue(Op1->getType())); 4803 } 4804 4805 if (!ICmpInst::isSigned(Pred)) 4806 return nullptr; 4807 4808 KnownBits KnownY = IC.computeKnownBits(A, /*Depth=*/0, &I); 4809 // (X & NegY) spred X --> (X & NegY) upred X 4810 if (KnownY.isNegative()) 4811 return new ICmpInst(ICmpInst::getUnsignedPredicate(Pred), Op0, Op1); 4812 4813 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGT) 4814 return nullptr; 4815 4816 if (KnownY.isNonNegative()) 4817 // (X & PosY) s<= X --> X s>= 0 4818 // (X & PosY) s> X --> X s< 0 4819 return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1, 4820 Constant::getNullValue(Op1->getType())); 4821 4822 if (isKnownNegative(Op1, IC.getSimplifyQuery().getWithInstruction(&I))) 4823 // (NegX & Y) s<= NegX --> Y s< 0 4824 // (NegX & Y) s> NegX --> Y s>= 0 4825 return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred), A, 4826 Constant::getNullValue(A->getType())); 4827 4828 return nullptr; 4829 } 4830 4831 static Instruction *foldICmpOrXX(ICmpInst &I, const SimplifyQuery &Q, 4832 InstCombinerImpl &IC) { 4833 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A; 4834 4835 // Normalize or operand as operand 0. 4836 CmpInst::Predicate Pred = I.getPredicate(); 4837 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value(A)))) { 4838 std::swap(Op0, Op1); 4839 Pred = ICmpInst::getSwappedPredicate(Pred); 4840 } else if (!match(Op0, m_c_Or(m_Specific(Op1), m_Value(A)))) { 4841 return nullptr; 4842 } 4843 4844 // icmp (X | Y) u<= X --> (X | Y) == X 4845 if (Pred == ICmpInst::ICMP_ULE) 4846 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 4847 4848 // icmp (X | Y) u> X --> (X | Y) != X 4849 if (Pred == ICmpInst::ICMP_UGT) 4850 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 4851 4852 if (ICmpInst::isEquality(Pred) && Op0->hasOneUse()) { 4853 // icmp (X | Y) eq/ne Y --> (X & ~Y) eq/ne 0 if Y is freely invertible 4854 if (Value *NotOp1 = 4855 IC.getFreelyInverted(Op1, !Op1->hasNUsesOrMore(3), &IC.Builder)) 4856 return new ICmpInst(Pred, IC.Builder.CreateAnd(A, NotOp1), 4857 Constant::getNullValue(Op1->getType())); 4858 // icmp (X | Y) eq/ne Y --> (~X | Y) eq/ne -1 if X is freely invertible. 4859 if (Value *NotA = IC.getFreelyInverted(A, A->hasOneUse(), &IC.Builder)) 4860 return new ICmpInst(Pred, IC.Builder.CreateOr(Op1, NotA), 4861 Constant::getAllOnesValue(Op1->getType())); 4862 } 4863 return nullptr; 4864 } 4865 4866 static Instruction *foldICmpXorXX(ICmpInst &I, const SimplifyQuery &Q, 4867 InstCombinerImpl &IC) { 4868 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A; 4869 // Normalize xor operand as operand 0. 4870 CmpInst::Predicate Pred = I.getPredicate(); 4871 if (match(Op1, m_c_Xor(m_Specific(Op0), m_Value()))) { 4872 std::swap(Op0, Op1); 4873 Pred = ICmpInst::getSwappedPredicate(Pred); 4874 } 4875 if (!match(Op0, m_c_Xor(m_Specific(Op1), m_Value(A)))) 4876 return nullptr; 4877 4878 // icmp (X ^ Y_NonZero) u>= X --> icmp (X ^ Y_NonZero) u> X 4879 // icmp (X ^ Y_NonZero) u<= X --> icmp (X ^ Y_NonZero) u< X 4880 // icmp (X ^ Y_NonZero) s>= X --> icmp (X ^ Y_NonZero) s> X 4881 // icmp (X ^ Y_NonZero) s<= X --> icmp (X ^ Y_NonZero) s< X 4882 CmpInst::Predicate PredOut = CmpInst::getStrictPredicate(Pred); 4883 if (PredOut != Pred && isKnownNonZero(A, Q)) 4884 return new ICmpInst(PredOut, Op0, Op1); 4885 4886 return nullptr; 4887 } 4888 4889 /// Try to fold icmp (binop), X or icmp X, (binop). 4890 /// TODO: A large part of this logic is duplicated in InstSimplify's 4891 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 4892 /// duplication. 4893 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 4894 const SimplifyQuery &SQ) { 4895 const SimplifyQuery Q = SQ.getWithInstruction(&I); 4896 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4897 4898 // Special logic for binary operators. 4899 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 4900 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 4901 if (!BO0 && !BO1) 4902 return nullptr; 4903 4904 if (Instruction *NewICmp = foldICmpXNegX(I, Builder)) 4905 return NewICmp; 4906 4907 const CmpInst::Predicate Pred = I.getPredicate(); 4908 Value *X; 4909 4910 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 4911 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 4912 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 4913 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4914 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 4915 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 4916 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 4917 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4918 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 4919 4920 { 4921 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1 4922 Constant *C; 4923 if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)), 4924 m_ImmConstant(C)))) && 4925 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 4926 Constant *C2 = ConstantExpr::getNot(C); 4927 return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1); 4928 } 4929 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X 4930 if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)), 4931 m_ImmConstant(C)))) && 4932 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) { 4933 Constant *C2 = ConstantExpr::getNot(C); 4934 return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X)); 4935 } 4936 } 4937 4938 { 4939 // Similar to above: an unsigned overflow comparison may use offset + mask: 4940 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 4941 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 4942 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 4943 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 4944 BinaryOperator *BO; 4945 const APInt *C; 4946 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 4947 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4948 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowPoison(*C)))) { 4949 CmpInst::Predicate NewPred = 4950 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4951 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4952 return new ICmpInst(NewPred, Op1, Zero); 4953 } 4954 4955 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 4956 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4957 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowPoison(*C)))) { 4958 CmpInst::Predicate NewPred = 4959 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4960 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4961 return new ICmpInst(NewPred, Op0, Zero); 4962 } 4963 } 4964 4965 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 4966 bool Op0HasNUW = false, Op1HasNUW = false; 4967 bool Op0HasNSW = false, Op1HasNSW = false; 4968 // Analyze the case when either Op0 or Op1 is an add instruction. 4969 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 4970 auto hasNoWrapProblem = [](const BinaryOperator &BO, CmpInst::Predicate Pred, 4971 bool &HasNSW, bool &HasNUW) -> bool { 4972 if (isa<OverflowingBinaryOperator>(BO)) { 4973 HasNUW = BO.hasNoUnsignedWrap(); 4974 HasNSW = BO.hasNoSignedWrap(); 4975 return ICmpInst::isEquality(Pred) || 4976 (CmpInst::isUnsigned(Pred) && HasNUW) || 4977 (CmpInst::isSigned(Pred) && HasNSW); 4978 } else if (BO.getOpcode() == Instruction::Or) { 4979 HasNUW = true; 4980 HasNSW = true; 4981 return true; 4982 } else { 4983 return false; 4984 } 4985 }; 4986 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 4987 4988 if (BO0) { 4989 match(BO0, m_AddLike(m_Value(A), m_Value(B))); 4990 NoOp0WrapProblem = hasNoWrapProblem(*BO0, Pred, Op0HasNSW, Op0HasNUW); 4991 } 4992 if (BO1) { 4993 match(BO1, m_AddLike(m_Value(C), m_Value(D))); 4994 NoOp1WrapProblem = hasNoWrapProblem(*BO1, Pred, Op1HasNSW, Op1HasNUW); 4995 } 4996 4997 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4998 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4999 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 5000 return new ICmpInst(Pred, A == Op1 ? B : A, 5001 Constant::getNullValue(Op1->getType())); 5002 5003 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 5004 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 5005 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 5006 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 5007 C == Op0 ? D : C); 5008 5009 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 5010 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 5011 NoOp1WrapProblem) { 5012 // Determine Y and Z in the form icmp (X+Y), (X+Z). 5013 Value *Y, *Z; 5014 if (A == C) { 5015 // C + B == C + D -> B == D 5016 Y = B; 5017 Z = D; 5018 } else if (A == D) { 5019 // D + B == C + D -> B == C 5020 Y = B; 5021 Z = C; 5022 } else if (B == C) { 5023 // A + C == C + D -> A == D 5024 Y = A; 5025 Z = D; 5026 } else { 5027 assert(B == D); 5028 // A + D == C + D -> A == C 5029 Y = A; 5030 Z = C; 5031 } 5032 return new ICmpInst(Pred, Y, Z); 5033 } 5034 5035 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 5036 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 5037 match(B, m_AllOnes())) 5038 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 5039 5040 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 5041 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 5042 match(B, m_AllOnes())) 5043 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 5044 5045 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 5046 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 5047 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 5048 5049 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 5050 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 5051 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 5052 5053 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 5054 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 5055 match(D, m_AllOnes())) 5056 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 5057 5058 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 5059 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 5060 match(D, m_AllOnes())) 5061 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 5062 5063 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 5064 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 5065 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 5066 5067 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 5068 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 5069 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 5070 5071 // TODO: The subtraction-related identities shown below also hold, but 5072 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 5073 // wouldn't happen even if they were implemented. 5074 // 5075 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 5076 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 5077 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 5078 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 5079 5080 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 5081 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 5082 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 5083 5084 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 5085 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 5086 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 5087 5088 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 5089 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 5090 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 5091 5092 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 5093 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 5094 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 5095 5096 // if C1 has greater magnitude than C2: 5097 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 5098 // s.t. C3 = C1 - C2 5099 // 5100 // if C2 has greater magnitude than C1: 5101 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 5102 // s.t. C3 = C2 - C1 5103 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 5104 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { 5105 const APInt *AP1, *AP2; 5106 // TODO: Support non-uniform vectors. 5107 // TODO: Allow poison passthrough if B or D's element is poison. 5108 if (match(B, m_APIntAllowPoison(AP1)) && 5109 match(D, m_APIntAllowPoison(AP2)) && 5110 AP1->isNegative() == AP2->isNegative()) { 5111 APInt AP1Abs = AP1->abs(); 5112 APInt AP2Abs = AP2->abs(); 5113 if (AP1Abs.uge(AP2Abs)) { 5114 APInt Diff = *AP1 - *AP2; 5115 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 5116 Value *NewAdd = Builder.CreateAdd( 5117 A, C3, "", Op0HasNUW && Diff.ule(*AP1), Op0HasNSW); 5118 return new ICmpInst(Pred, NewAdd, C); 5119 } else { 5120 APInt Diff = *AP2 - *AP1; 5121 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 5122 Value *NewAdd = Builder.CreateAdd( 5123 C, C3, "", Op1HasNUW && Diff.ule(*AP2), Op1HasNSW); 5124 return new ICmpInst(Pred, A, NewAdd); 5125 } 5126 } 5127 Constant *Cst1, *Cst2; 5128 if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) && 5129 ICmpInst::isEquality(Pred)) { 5130 Constant *Diff = ConstantExpr::getSub(Cst2, Cst1); 5131 Value *NewAdd = Builder.CreateAdd(C, Diff); 5132 return new ICmpInst(Pred, A, NewAdd); 5133 } 5134 } 5135 5136 // Analyze the case when either Op0 or Op1 is a sub instruction. 5137 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 5138 A = nullptr; 5139 B = nullptr; 5140 C = nullptr; 5141 D = nullptr; 5142 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 5143 A = BO0->getOperand(0); 5144 B = BO0->getOperand(1); 5145 } 5146 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 5147 C = BO1->getOperand(0); 5148 D = BO1->getOperand(1); 5149 } 5150 5151 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 5152 if (A == Op1 && NoOp0WrapProblem) 5153 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 5154 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 5155 if (C == Op0 && NoOp1WrapProblem) 5156 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 5157 5158 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 5159 // (A - B) u>/u<= A --> B u>/u<= A 5160 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 5161 return new ICmpInst(Pred, B, A); 5162 // C u</u>= (C - D) --> C u</u>= D 5163 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 5164 return new ICmpInst(Pred, C, D); 5165 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 5166 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 5167 isKnownNonZero(B, Q)) 5168 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 5169 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 5170 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 5171 isKnownNonZero(D, Q)) 5172 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 5173 5174 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 5175 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 5176 return new ICmpInst(Pred, A, C); 5177 5178 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 5179 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 5180 return new ICmpInst(Pred, D, B); 5181 5182 // icmp (0-X) < cst --> x > -cst 5183 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 5184 Value *X; 5185 if (match(BO0, m_Neg(m_Value(X)))) 5186 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 5187 if (RHSC->isNotMinSignedValue()) 5188 return new ICmpInst(I.getSwappedPredicate(), X, 5189 ConstantExpr::getNeg(RHSC)); 5190 } 5191 5192 if (Instruction * R = foldICmpXorXX(I, Q, *this)) 5193 return R; 5194 if (Instruction *R = foldICmpOrXX(I, Q, *this)) 5195 return R; 5196 5197 { 5198 // Try to remove shared multiplier from comparison: 5199 // X * Z u{lt/le/gt/ge}/eq/ne Y * Z 5200 Value *X, *Y, *Z; 5201 if (Pred == ICmpInst::getUnsignedPredicate(Pred) && 5202 ((match(Op0, m_Mul(m_Value(X), m_Value(Z))) && 5203 match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))) || 5204 (match(Op0, m_Mul(m_Value(Z), m_Value(X))) && 5205 match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))))) { 5206 bool NonZero; 5207 if (ICmpInst::isEquality(Pred)) { 5208 KnownBits ZKnown = computeKnownBits(Z, 0, &I); 5209 // if Z % 2 != 0 5210 // X * Z eq/ne Y * Z -> X eq/ne Y 5211 if (ZKnown.countMaxTrailingZeros() == 0) 5212 return new ICmpInst(Pred, X, Y); 5213 NonZero = !ZKnown.One.isZero() || isKnownNonZero(Z, Q); 5214 // if Z != 0 and nsw(X * Z) and nsw(Y * Z) 5215 // X * Z eq/ne Y * Z -> X eq/ne Y 5216 if (NonZero && BO0 && BO1 && Op0HasNSW && Op1HasNSW) 5217 return new ICmpInst(Pred, X, Y); 5218 } else 5219 NonZero = isKnownNonZero(Z, Q); 5220 5221 // If Z != 0 and nuw(X * Z) and nuw(Y * Z) 5222 // X * Z u{lt/le/gt/ge}/eq/ne Y * Z -> X u{lt/le/gt/ge}/eq/ne Y 5223 if (NonZero && BO0 && BO1 && Op0HasNUW && Op1HasNUW) 5224 return new ICmpInst(Pred, X, Y); 5225 } 5226 } 5227 5228 BinaryOperator *SRem = nullptr; 5229 // icmp (srem X, Y), Y 5230 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 5231 SRem = BO0; 5232 // icmp Y, (srem X, Y) 5233 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 5234 Op0 == BO1->getOperand(1)) 5235 SRem = BO1; 5236 if (SRem) { 5237 // We don't check hasOneUse to avoid increasing register pressure because 5238 // the value we use is the same value this instruction was already using. 5239 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 5240 default: 5241 break; 5242 case ICmpInst::ICMP_EQ: 5243 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5244 case ICmpInst::ICMP_NE: 5245 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5246 case ICmpInst::ICMP_SGT: 5247 case ICmpInst::ICMP_SGE: 5248 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 5249 Constant::getAllOnesValue(SRem->getType())); 5250 case ICmpInst::ICMP_SLT: 5251 case ICmpInst::ICMP_SLE: 5252 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 5253 Constant::getNullValue(SRem->getType())); 5254 } 5255 } 5256 5257 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && 5258 (BO0->hasOneUse() || BO1->hasOneUse()) && 5259 BO0->getOperand(1) == BO1->getOperand(1)) { 5260 switch (BO0->getOpcode()) { 5261 default: 5262 break; 5263 case Instruction::Add: 5264 case Instruction::Sub: 5265 case Instruction::Xor: { 5266 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 5267 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 5268 5269 const APInt *C; 5270 if (match(BO0->getOperand(1), m_APInt(C))) { 5271 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 5272 if (C->isSignMask()) { 5273 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 5274 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 5275 } 5276 5277 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 5278 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 5279 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 5280 NewPred = I.getSwappedPredicate(NewPred); 5281 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 5282 } 5283 } 5284 break; 5285 } 5286 case Instruction::Mul: { 5287 if (!I.isEquality()) 5288 break; 5289 5290 const APInt *C; 5291 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 5292 !C->isOne()) { 5293 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 5294 // Mask = -1 >> count-trailing-zeros(C). 5295 if (unsigned TZs = C->countr_zero()) { 5296 Constant *Mask = ConstantInt::get( 5297 BO0->getType(), 5298 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 5299 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 5300 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 5301 return new ICmpInst(Pred, And1, And2); 5302 } 5303 } 5304 break; 5305 } 5306 case Instruction::UDiv: 5307 case Instruction::LShr: 5308 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 5309 break; 5310 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 5311 5312 case Instruction::SDiv: 5313 if (!(I.isEquality() || match(BO0->getOperand(1), m_NonNegative())) || 5314 !BO0->isExact() || !BO1->isExact()) 5315 break; 5316 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 5317 5318 case Instruction::AShr: 5319 if (!BO0->isExact() || !BO1->isExact()) 5320 break; 5321 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 5322 5323 case Instruction::Shl: { 5324 bool NUW = Op0HasNUW && Op1HasNUW; 5325 bool NSW = Op0HasNSW && Op1HasNSW; 5326 if (!NUW && !NSW) 5327 break; 5328 if (!NSW && I.isSigned()) 5329 break; 5330 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 5331 } 5332 } 5333 } 5334 5335 if (BO0) { 5336 // Transform A & (L - 1) `ult` L --> L != 0 5337 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 5338 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 5339 5340 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 5341 auto *Zero = Constant::getNullValue(BO0->getType()); 5342 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 5343 } 5344 } 5345 5346 // For unsigned predicates / eq / ne: 5347 // icmp pred (x << 1), x --> icmp getSignedPredicate(pred) x, 0 5348 // icmp pred x, (x << 1) --> icmp getSignedPredicate(pred) 0, x 5349 if (!ICmpInst::isSigned(Pred)) { 5350 if (match(Op0, m_Shl(m_Specific(Op1), m_One()))) 5351 return new ICmpInst(ICmpInst::getSignedPredicate(Pred), Op1, 5352 Constant::getNullValue(Op1->getType())); 5353 else if (match(Op1, m_Shl(m_Specific(Op0), m_One()))) 5354 return new ICmpInst(ICmpInst::getSignedPredicate(Pred), 5355 Constant::getNullValue(Op0->getType()), Op0); 5356 } 5357 5358 if (Value *V = foldMultiplicationOverflowCheck(I)) 5359 return replaceInstUsesWith(I, V); 5360 5361 if (Instruction *R = foldICmpAndXX(I, Q, *this)) 5362 return R; 5363 5364 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 5365 return replaceInstUsesWith(I, V); 5366 5367 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 5368 return replaceInstUsesWith(I, V); 5369 5370 return nullptr; 5371 } 5372 5373 /// Fold icmp Pred min|max(X, Y), Z. 5374 Instruction *InstCombinerImpl::foldICmpWithMinMax(Instruction &I, 5375 MinMaxIntrinsic *MinMax, 5376 Value *Z, 5377 ICmpInst::Predicate Pred) { 5378 Value *X = MinMax->getLHS(); 5379 Value *Y = MinMax->getRHS(); 5380 if (ICmpInst::isSigned(Pred) && !MinMax->isSigned()) 5381 return nullptr; 5382 if (ICmpInst::isUnsigned(Pred) && MinMax->isSigned()) { 5383 // Revert the transform signed pred -> unsigned pred 5384 // TODO: We can flip the signedness of predicate if both operands of icmp 5385 // are negative. 5386 if (isKnownNonNegative(Z, SQ.getWithInstruction(&I)) && 5387 isKnownNonNegative(MinMax, SQ.getWithInstruction(&I))) { 5388 Pred = ICmpInst::getFlippedSignednessPredicate(Pred); 5389 } else 5390 return nullptr; 5391 } 5392 SimplifyQuery Q = SQ.getWithInstruction(&I); 5393 auto IsCondKnownTrue = [](Value *Val) -> std::optional<bool> { 5394 if (!Val) 5395 return std::nullopt; 5396 if (match(Val, m_One())) 5397 return true; 5398 if (match(Val, m_Zero())) 5399 return false; 5400 return std::nullopt; 5401 }; 5402 auto CmpXZ = IsCondKnownTrue(simplifyICmpInst(Pred, X, Z, Q)); 5403 auto CmpYZ = IsCondKnownTrue(simplifyICmpInst(Pred, Y, Z, Q)); 5404 if (!CmpXZ.has_value() && !CmpYZ.has_value()) 5405 return nullptr; 5406 if (!CmpXZ.has_value()) { 5407 std::swap(X, Y); 5408 std::swap(CmpXZ, CmpYZ); 5409 } 5410 5411 auto FoldIntoCmpYZ = [&]() -> Instruction * { 5412 if (CmpYZ.has_value()) 5413 return replaceInstUsesWith(I, ConstantInt::getBool(I.getType(), *CmpYZ)); 5414 return ICmpInst::Create(Instruction::ICmp, Pred, Y, Z); 5415 }; 5416 5417 switch (Pred) { 5418 case ICmpInst::ICMP_EQ: 5419 case ICmpInst::ICMP_NE: { 5420 // If X == Z: 5421 // Expr Result 5422 // min(X, Y) == Z X <= Y 5423 // max(X, Y) == Z X >= Y 5424 // min(X, Y) != Z X > Y 5425 // max(X, Y) != Z X < Y 5426 if ((Pred == ICmpInst::ICMP_EQ) == *CmpXZ) { 5427 ICmpInst::Predicate NewPred = 5428 ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 5429 if (Pred == ICmpInst::ICMP_NE) 5430 NewPred = ICmpInst::getInversePredicate(NewPred); 5431 return ICmpInst::Create(Instruction::ICmp, NewPred, X, Y); 5432 } 5433 // Otherwise (X != Z): 5434 ICmpInst::Predicate NewPred = MinMax->getPredicate(); 5435 auto MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q)); 5436 if (!MinMaxCmpXZ.has_value()) { 5437 std::swap(X, Y); 5438 std::swap(CmpXZ, CmpYZ); 5439 // Re-check pre-condition X != Z 5440 if (!CmpXZ.has_value() || (Pred == ICmpInst::ICMP_EQ) == *CmpXZ) 5441 break; 5442 MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q)); 5443 } 5444 if (!MinMaxCmpXZ.has_value()) 5445 break; 5446 if (*MinMaxCmpXZ) { 5447 // Expr Fact Result 5448 // min(X, Y) == Z X < Z false 5449 // max(X, Y) == Z X > Z false 5450 // min(X, Y) != Z X < Z true 5451 // max(X, Y) != Z X > Z true 5452 return replaceInstUsesWith( 5453 I, ConstantInt::getBool(I.getType(), Pred == ICmpInst::ICMP_NE)); 5454 } else { 5455 // Expr Fact Result 5456 // min(X, Y) == Z X > Z Y == Z 5457 // max(X, Y) == Z X < Z Y == Z 5458 // min(X, Y) != Z X > Z Y != Z 5459 // max(X, Y) != Z X < Z Y != Z 5460 return FoldIntoCmpYZ(); 5461 } 5462 break; 5463 } 5464 case ICmpInst::ICMP_SLT: 5465 case ICmpInst::ICMP_ULT: 5466 case ICmpInst::ICMP_SLE: 5467 case ICmpInst::ICMP_ULE: 5468 case ICmpInst::ICMP_SGT: 5469 case ICmpInst::ICMP_UGT: 5470 case ICmpInst::ICMP_SGE: 5471 case ICmpInst::ICMP_UGE: { 5472 bool IsSame = MinMax->getPredicate() == ICmpInst::getStrictPredicate(Pred); 5473 if (*CmpXZ) { 5474 if (IsSame) { 5475 // Expr Fact Result 5476 // min(X, Y) < Z X < Z true 5477 // min(X, Y) <= Z X <= Z true 5478 // max(X, Y) > Z X > Z true 5479 // max(X, Y) >= Z X >= Z true 5480 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5481 } else { 5482 // Expr Fact Result 5483 // max(X, Y) < Z X < Z Y < Z 5484 // max(X, Y) <= Z X <= Z Y <= Z 5485 // min(X, Y) > Z X > Z Y > Z 5486 // min(X, Y) >= Z X >= Z Y >= Z 5487 return FoldIntoCmpYZ(); 5488 } 5489 } else { 5490 if (IsSame) { 5491 // Expr Fact Result 5492 // min(X, Y) < Z X >= Z Y < Z 5493 // min(X, Y) <= Z X > Z Y <= Z 5494 // max(X, Y) > Z X <= Z Y > Z 5495 // max(X, Y) >= Z X < Z Y >= Z 5496 return FoldIntoCmpYZ(); 5497 } else { 5498 // Expr Fact Result 5499 // max(X, Y) < Z X >= Z false 5500 // max(X, Y) <= Z X > Z false 5501 // min(X, Y) > Z X <= Z false 5502 // min(X, Y) >= Z X < Z false 5503 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5504 } 5505 } 5506 break; 5507 } 5508 default: 5509 break; 5510 } 5511 5512 return nullptr; 5513 } 5514 5515 // Canonicalize checking for a power-of-2-or-zero value: 5516 static Instruction *foldICmpPow2Test(ICmpInst &I, 5517 InstCombiner::BuilderTy &Builder) { 5518 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5519 const CmpInst::Predicate Pred = I.getPredicate(); 5520 Value *A = nullptr; 5521 bool CheckIs; 5522 if (I.isEquality()) { 5523 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 5524 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 5525 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 5526 m_Deferred(A)))) || 5527 !match(Op1, m_ZeroInt())) 5528 A = nullptr; 5529 5530 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 5531 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 5532 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 5533 A = Op1; 5534 else if (match(Op1, 5535 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 5536 A = Op0; 5537 5538 CheckIs = Pred == ICmpInst::ICMP_EQ; 5539 } else if (ICmpInst::isUnsigned(Pred)) { 5540 // (A ^ (A-1)) u>= A --> ctpop(A) < 2 (two commuted variants) 5541 // ((A-1) ^ A) u< A --> ctpop(A) > 1 (two commuted variants) 5542 5543 if ((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 5544 match(Op0, m_OneUse(m_c_Xor(m_Add(m_Specific(Op1), m_AllOnes()), 5545 m_Specific(Op1))))) { 5546 A = Op1; 5547 CheckIs = Pred == ICmpInst::ICMP_UGE; 5548 } else if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 5549 match(Op1, m_OneUse(m_c_Xor(m_Add(m_Specific(Op0), m_AllOnes()), 5550 m_Specific(Op0))))) { 5551 A = Op0; 5552 CheckIs = Pred == ICmpInst::ICMP_ULE; 5553 } 5554 } 5555 5556 if (A) { 5557 Type *Ty = A->getType(); 5558 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 5559 return CheckIs ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, 5560 ConstantInt::get(Ty, 2)) 5561 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, 5562 ConstantInt::get(Ty, 1)); 5563 } 5564 5565 return nullptr; 5566 } 5567 5568 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 5569 if (!I.isEquality()) 5570 return nullptr; 5571 5572 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5573 const CmpInst::Predicate Pred = I.getPredicate(); 5574 Value *A, *B, *C, *D; 5575 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 5576 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 5577 Value *OtherVal = A == Op1 ? B : A; 5578 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 5579 } 5580 5581 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 5582 // A^c1 == C^c2 --> A == C^(c1^c2) 5583 ConstantInt *C1, *C2; 5584 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 5585 Op1->hasOneUse()) { 5586 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 5587 Value *Xor = Builder.CreateXor(C, NC); 5588 return new ICmpInst(Pred, A, Xor); 5589 } 5590 5591 // A^B == A^D -> B == D 5592 if (A == C) 5593 return new ICmpInst(Pred, B, D); 5594 if (A == D) 5595 return new ICmpInst(Pred, B, C); 5596 if (B == C) 5597 return new ICmpInst(Pred, A, D); 5598 if (B == D) 5599 return new ICmpInst(Pred, A, C); 5600 } 5601 } 5602 5603 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 5604 // A == (A^B) -> B == 0 5605 Value *OtherVal = A == Op0 ? B : A; 5606 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 5607 } 5608 5609 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 5610 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 5611 match(Op1, m_And(m_Value(C), m_Value(D)))) { 5612 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 5613 5614 if (A == C) { 5615 X = B; 5616 Y = D; 5617 Z = A; 5618 } else if (A == D) { 5619 X = B; 5620 Y = C; 5621 Z = A; 5622 } else if (B == C) { 5623 X = A; 5624 Y = D; 5625 Z = B; 5626 } else if (B == D) { 5627 X = A; 5628 Y = C; 5629 Z = B; 5630 } 5631 5632 if (X) { 5633 // If X^Y is a negative power of two, then `icmp eq/ne (Z & NegP2), 0` 5634 // will fold to `icmp ult/uge Z, -NegP2` incurringb no additional 5635 // instructions. 5636 const APInt *C0, *C1; 5637 bool XorIsNegP2 = match(X, m_APInt(C0)) && match(Y, m_APInt(C1)) && 5638 (*C0 ^ *C1).isNegatedPowerOf2(); 5639 5640 // If either Op0/Op1 are both one use or X^Y will constant fold and one of 5641 // Op0/Op1 are one use, proceed. In those cases we are instruction neutral 5642 // but `icmp eq/ne A, 0` is easier to analyze than `icmp eq/ne A, B`. 5643 int UseCnt = 5644 int(Op0->hasOneUse()) + int(Op1->hasOneUse()) + 5645 (int(match(X, m_ImmConstant()) && match(Y, m_ImmConstant()))); 5646 if (XorIsNegP2 || UseCnt >= 2) { 5647 // Build (X^Y) & Z 5648 Op1 = Builder.CreateXor(X, Y); 5649 Op1 = Builder.CreateAnd(Op1, Z); 5650 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 5651 } 5652 } 5653 } 5654 5655 { 5656 // Similar to above, but specialized for constant because invert is needed: 5657 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 5658 Value *X, *Y; 5659 Constant *C; 5660 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 5661 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 5662 Value *Xor = Builder.CreateXor(X, Y); 5663 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 5664 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 5665 } 5666 } 5667 5668 if (match(Op1, m_ZExt(m_Value(A))) && 5669 (Op0->hasOneUse() || Op1->hasOneUse())) { 5670 // (B & (Pow2C-1)) == zext A --> A == trunc B 5671 // (B & (Pow2C-1)) != zext A --> A != trunc B 5672 const APInt *MaskC; 5673 if (match(Op0, m_And(m_Value(B), m_LowBitMask(MaskC))) && 5674 MaskC->countr_one() == A->getType()->getScalarSizeInBits()) 5675 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 5676 } 5677 5678 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 5679 // For lshr and ashr pairs. 5680 const APInt *AP1, *AP2; 5681 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowPoison(AP1)))) && 5682 match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowPoison(AP2))))) || 5683 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowPoison(AP1)))) && 5684 match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowPoison(AP2)))))) { 5685 if (AP1 != AP2) 5686 return nullptr; 5687 unsigned TypeBits = AP1->getBitWidth(); 5688 unsigned ShAmt = AP1->getLimitedValue(TypeBits); 5689 if (ShAmt < TypeBits && ShAmt != 0) { 5690 ICmpInst::Predicate NewPred = 5691 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 5692 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 5693 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 5694 return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal)); 5695 } 5696 } 5697 5698 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 5699 ConstantInt *Cst1; 5700 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 5701 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 5702 unsigned TypeBits = Cst1->getBitWidth(); 5703 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 5704 if (ShAmt < TypeBits && ShAmt != 0) { 5705 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 5706 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 5707 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 5708 I.getName() + ".mask"); 5709 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 5710 } 5711 } 5712 5713 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 5714 // "icmp (and X, mask), cst" 5715 uint64_t ShAmt = 0; 5716 if (Op0->hasOneUse() && 5717 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 5718 match(Op1, m_ConstantInt(Cst1)) && 5719 // Only do this when A has multiple uses. This is most important to do 5720 // when it exposes other optimizations. 5721 !A->hasOneUse()) { 5722 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 5723 5724 if (ShAmt < ASize) { 5725 APInt MaskV = 5726 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 5727 MaskV <<= ShAmt; 5728 5729 APInt CmpV = Cst1->getValue().zext(ASize); 5730 CmpV <<= ShAmt; 5731 5732 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 5733 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 5734 } 5735 } 5736 5737 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I, Builder)) 5738 return ICmp; 5739 5740 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 5741 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 5742 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 5743 // of instcombine. 5744 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5745 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 5746 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 5747 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 5748 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 5749 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 5750 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 5751 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 5752 : ICmpInst::ICMP_UGE, 5753 Add, ConstantInt::get(A->getType(), C.shl(1))); 5754 } 5755 5756 // Canonicalize: 5757 // Assume B_Pow2 != 0 5758 // 1. A & B_Pow2 != B_Pow2 -> A & B_Pow2 == 0 5759 // 2. A & B_Pow2 == B_Pow2 -> A & B_Pow2 != 0 5760 if (match(Op0, m_c_And(m_Specific(Op1), m_Value())) && 5761 isKnownToBeAPowerOfTwo(Op1, /* OrZero */ false, 0, &I)) 5762 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0, 5763 ConstantInt::getNullValue(Op0->getType())); 5764 5765 if (match(Op1, m_c_And(m_Specific(Op0), m_Value())) && 5766 isKnownToBeAPowerOfTwo(Op0, /* OrZero */ false, 0, &I)) 5767 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op1, 5768 ConstantInt::getNullValue(Op1->getType())); 5769 5770 // Canonicalize: 5771 // icmp eq/ne X, OneUse(rotate-right(X)) 5772 // -> icmp eq/ne X, rotate-left(X) 5773 // We generally try to convert rotate-right -> rotate-left, this just 5774 // canonicalizes another case. 5775 CmpInst::Predicate PredUnused = Pred; 5776 if (match(&I, m_c_ICmp(PredUnused, m_Value(A), 5777 m_OneUse(m_Intrinsic<Intrinsic::fshr>( 5778 m_Deferred(A), m_Deferred(A), m_Value(B)))))) 5779 return new ICmpInst( 5780 Pred, A, 5781 Builder.CreateIntrinsic(Op0->getType(), Intrinsic::fshl, {A, A, B})); 5782 5783 // Canonicalize: 5784 // icmp eq/ne OneUse(A ^ Cst), B --> icmp eq/ne (A ^ B), Cst 5785 Constant *Cst; 5786 if (match(&I, m_c_ICmp(PredUnused, 5787 m_OneUse(m_Xor(m_Value(A), m_ImmConstant(Cst))), 5788 m_CombineAnd(m_Value(B), m_Unless(m_ImmConstant()))))) 5789 return new ICmpInst(Pred, Builder.CreateXor(A, B), Cst); 5790 5791 { 5792 // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2) 5793 auto m_Matcher = 5794 m_CombineOr(m_CombineOr(m_c_Add(m_Value(B), m_Deferred(A)), 5795 m_c_Xor(m_Value(B), m_Deferred(A))), 5796 m_Sub(m_Value(B), m_Deferred(A))); 5797 std::optional<bool> IsZero = std::nullopt; 5798 if (match(&I, m_c_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)), 5799 m_Deferred(A)))) 5800 IsZero = false; 5801 // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0) 5802 else if (match(&I, 5803 m_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)), 5804 m_Zero()))) 5805 IsZero = true; 5806 5807 if (IsZero && isKnownToBeAPowerOfTwo(A, /* OrZero */ true, /*Depth*/ 0, &I)) 5808 // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2) 5809 // -> (icmp eq/ne (and X, P2), 0) 5810 // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0) 5811 // -> (icmp eq/ne (and X, P2), P2) 5812 return new ICmpInst(Pred, Builder.CreateAnd(B, A), 5813 *IsZero ? A 5814 : ConstantInt::getNullValue(A->getType())); 5815 } 5816 5817 return nullptr; 5818 } 5819 5820 Instruction *InstCombinerImpl::foldICmpWithTrunc(ICmpInst &ICmp) { 5821 ICmpInst::Predicate Pred = ICmp.getPredicate(); 5822 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 5823 5824 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 5825 // The trunc masks high bits while the compare may effectively mask low bits. 5826 Value *X; 5827 const APInt *C; 5828 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 5829 return nullptr; 5830 5831 // This matches patterns corresponding to tests of the signbit as well as: 5832 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 5833 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 5834 APInt Mask; 5835 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 5836 Value *And = Builder.CreateAnd(X, Mask); 5837 Constant *Zero = ConstantInt::getNullValue(X->getType()); 5838 return new ICmpInst(Pred, And, Zero); 5839 } 5840 5841 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 5842 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 5843 // If C is a negative power-of-2 (high-bit mask): 5844 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 5845 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 5846 Value *And = Builder.CreateAnd(X, MaskC); 5847 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 5848 } 5849 5850 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 5851 // If C is not-of-power-of-2 (one clear bit): 5852 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 5853 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 5854 Value *And = Builder.CreateAnd(X, MaskC); 5855 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 5856 } 5857 5858 if (auto *II = dyn_cast<IntrinsicInst>(X)) { 5859 if (II->getIntrinsicID() == Intrinsic::cttz || 5860 II->getIntrinsicID() == Intrinsic::ctlz) { 5861 unsigned MaxRet = SrcBits; 5862 // If the "is_zero_poison" argument is set, then we know at least 5863 // one bit is set in the input, so the result is always at least one 5864 // less than the full bitwidth of that input. 5865 if (match(II->getArgOperand(1), m_One())) 5866 MaxRet--; 5867 5868 // Make sure the destination is wide enough to hold the largest output of 5869 // the intrinsic. 5870 if (llvm::Log2_32(MaxRet) + 1 <= Op0->getType()->getScalarSizeInBits()) 5871 if (Instruction *I = 5872 foldICmpIntrinsicWithConstant(ICmp, II, C->zext(SrcBits))) 5873 return I; 5874 } 5875 } 5876 5877 return nullptr; 5878 } 5879 5880 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) { 5881 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 5882 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 5883 Value *X; 5884 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 5885 return nullptr; 5886 5887 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 5888 bool IsSignedCmp = ICmp.isSigned(); 5889 5890 // icmp Pred (ext X), (ext Y) 5891 Value *Y; 5892 if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) { 5893 bool IsZext0 = isa<ZExtInst>(ICmp.getOperand(0)); 5894 bool IsZext1 = isa<ZExtInst>(ICmp.getOperand(1)); 5895 5896 if (IsZext0 != IsZext1) { 5897 // If X and Y and both i1 5898 // (icmp eq/ne (zext X) (sext Y)) 5899 // eq -> (icmp eq (or X, Y), 0) 5900 // ne -> (icmp ne (or X, Y), 0) 5901 if (ICmp.isEquality() && X->getType()->isIntOrIntVectorTy(1) && 5902 Y->getType()->isIntOrIntVectorTy(1)) 5903 return new ICmpInst(ICmp.getPredicate(), Builder.CreateOr(X, Y), 5904 Constant::getNullValue(X->getType())); 5905 5906 // If we have mismatched casts and zext has the nneg flag, we can 5907 // treat the "zext nneg" as "sext". Otherwise, we cannot fold and quit. 5908 5909 auto *NonNegInst0 = dyn_cast<PossiblyNonNegInst>(ICmp.getOperand(0)); 5910 auto *NonNegInst1 = dyn_cast<PossiblyNonNegInst>(ICmp.getOperand(1)); 5911 5912 bool IsNonNeg0 = NonNegInst0 && NonNegInst0->hasNonNeg(); 5913 bool IsNonNeg1 = NonNegInst1 && NonNegInst1->hasNonNeg(); 5914 5915 if ((IsZext0 && IsNonNeg0) || (IsZext1 && IsNonNeg1)) 5916 IsSignedExt = true; 5917 else 5918 return nullptr; 5919 } 5920 5921 // Not an extension from the same type? 5922 Type *XTy = X->getType(), *YTy = Y->getType(); 5923 if (XTy != YTy) { 5924 // One of the casts must have one use because we are creating a new cast. 5925 if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse()) 5926 return nullptr; 5927 // Extend the narrower operand to the type of the wider operand. 5928 CastInst::CastOps CastOpcode = 5929 IsSignedExt ? Instruction::SExt : Instruction::ZExt; 5930 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 5931 X = Builder.CreateCast(CastOpcode, X, YTy); 5932 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 5933 Y = Builder.CreateCast(CastOpcode, Y, XTy); 5934 else 5935 return nullptr; 5936 } 5937 5938 // (zext X) == (zext Y) --> X == Y 5939 // (sext X) == (sext Y) --> X == Y 5940 if (ICmp.isEquality()) 5941 return new ICmpInst(ICmp.getPredicate(), X, Y); 5942 5943 // A signed comparison of sign extended values simplifies into a 5944 // signed comparison. 5945 if (IsSignedCmp && IsSignedExt) 5946 return new ICmpInst(ICmp.getPredicate(), X, Y); 5947 5948 // The other three cases all fold into an unsigned comparison. 5949 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 5950 } 5951 5952 // Below here, we are only folding a compare with constant. 5953 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 5954 if (!C) 5955 return nullptr; 5956 5957 // If a lossless truncate is possible... 5958 Type *SrcTy = CastOp0->getSrcTy(); 5959 Constant *Res = getLosslessTrunc(C, SrcTy, CastOp0->getOpcode()); 5960 if (Res) { 5961 if (ICmp.isEquality()) 5962 return new ICmpInst(ICmp.getPredicate(), X, Res); 5963 5964 // A signed comparison of sign extended values simplifies into a 5965 // signed comparison. 5966 if (IsSignedExt && IsSignedCmp) 5967 return new ICmpInst(ICmp.getPredicate(), X, Res); 5968 5969 // The other three cases all fold into an unsigned comparison. 5970 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res); 5971 } 5972 5973 // The re-extended constant changed, partly changed (in the case of a vector), 5974 // or could not be determined to be equal (in the case of a constant 5975 // expression), so the constant cannot be represented in the shorter type. 5976 // All the cases that fold to true or false will have already been handled 5977 // by simplifyICmpInst, so only deal with the tricky case. 5978 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 5979 return nullptr; 5980 5981 // Is source op positive? 5982 // icmp ult (sext X), C --> icmp sgt X, -1 5983 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 5984 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 5985 5986 // Is source op negative? 5987 // icmp ugt (sext X), C --> icmp slt X, 0 5988 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 5989 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 5990 } 5991 5992 /// Handle icmp (cast x), (cast or constant). 5993 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 5994 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 5995 // icmp compares only pointer's value. 5996 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 5997 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 5998 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 5999 if (SimplifiedOp0 || SimplifiedOp1) 6000 return new ICmpInst(ICmp.getPredicate(), 6001 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 6002 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 6003 6004 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 6005 if (!CastOp0) 6006 return nullptr; 6007 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 6008 return nullptr; 6009 6010 Value *Op0Src = CastOp0->getOperand(0); 6011 Type *SrcTy = CastOp0->getSrcTy(); 6012 Type *DestTy = CastOp0->getDestTy(); 6013 6014 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 6015 // integer type is the same size as the pointer type. 6016 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 6017 if (isa<VectorType>(SrcTy)) { 6018 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 6019 DestTy = cast<VectorType>(DestTy)->getElementType(); 6020 } 6021 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 6022 }; 6023 if (CastOp0->getOpcode() == Instruction::PtrToInt && 6024 CompatibleSizes(SrcTy, DestTy)) { 6025 Value *NewOp1 = nullptr; 6026 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 6027 Value *PtrSrc = PtrToIntOp1->getOperand(0); 6028 if (PtrSrc->getType() == Op0Src->getType()) 6029 NewOp1 = PtrToIntOp1->getOperand(0); 6030 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 6031 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 6032 } 6033 6034 if (NewOp1) 6035 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 6036 } 6037 6038 if (Instruction *R = foldICmpWithTrunc(ICmp)) 6039 return R; 6040 6041 return foldICmpWithZextOrSext(ICmp); 6042 } 6043 6044 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS, bool IsSigned) { 6045 switch (BinaryOp) { 6046 default: 6047 llvm_unreachable("Unsupported binary op"); 6048 case Instruction::Add: 6049 case Instruction::Sub: 6050 return match(RHS, m_Zero()); 6051 case Instruction::Mul: 6052 return !(RHS->getType()->isIntOrIntVectorTy(1) && IsSigned) && 6053 match(RHS, m_One()); 6054 } 6055 } 6056 6057 OverflowResult 6058 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 6059 bool IsSigned, Value *LHS, Value *RHS, 6060 Instruction *CxtI) const { 6061 switch (BinaryOp) { 6062 default: 6063 llvm_unreachable("Unsupported binary op"); 6064 case Instruction::Add: 6065 if (IsSigned) 6066 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 6067 else 6068 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 6069 case Instruction::Sub: 6070 if (IsSigned) 6071 return computeOverflowForSignedSub(LHS, RHS, CxtI); 6072 else 6073 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 6074 case Instruction::Mul: 6075 if (IsSigned) 6076 return computeOverflowForSignedMul(LHS, RHS, CxtI); 6077 else 6078 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 6079 } 6080 } 6081 6082 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 6083 bool IsSigned, Value *LHS, 6084 Value *RHS, Instruction &OrigI, 6085 Value *&Result, 6086 Constant *&Overflow) { 6087 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 6088 std::swap(LHS, RHS); 6089 6090 // If the overflow check was an add followed by a compare, the insertion point 6091 // may be pointing to the compare. We want to insert the new instructions 6092 // before the add in case there are uses of the add between the add and the 6093 // compare. 6094 Builder.SetInsertPoint(&OrigI); 6095 6096 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 6097 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 6098 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 6099 6100 if (isNeutralValue(BinaryOp, RHS, IsSigned)) { 6101 Result = LHS; 6102 Overflow = ConstantInt::getFalse(OverflowTy); 6103 return true; 6104 } 6105 6106 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 6107 case OverflowResult::MayOverflow: 6108 return false; 6109 case OverflowResult::AlwaysOverflowsLow: 6110 case OverflowResult::AlwaysOverflowsHigh: 6111 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 6112 Result->takeName(&OrigI); 6113 Overflow = ConstantInt::getTrue(OverflowTy); 6114 return true; 6115 case OverflowResult::NeverOverflows: 6116 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 6117 Result->takeName(&OrigI); 6118 Overflow = ConstantInt::getFalse(OverflowTy); 6119 if (auto *Inst = dyn_cast<Instruction>(Result)) { 6120 if (IsSigned) 6121 Inst->setHasNoSignedWrap(); 6122 else 6123 Inst->setHasNoUnsignedWrap(); 6124 } 6125 return true; 6126 } 6127 6128 llvm_unreachable("Unexpected overflow result"); 6129 } 6130 6131 /// Recognize and process idiom involving test for multiplication 6132 /// overflow. 6133 /// 6134 /// The caller has matched a pattern of the form: 6135 /// I = cmp u (mul(zext A, zext B), V 6136 /// The function checks if this is a test for overflow and if so replaces 6137 /// multiplication with call to 'mul.with.overflow' intrinsic. 6138 /// 6139 /// \param I Compare instruction. 6140 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 6141 /// the compare instruction. Must be of integer type. 6142 /// \param OtherVal The other argument of compare instruction. 6143 /// \returns Instruction which must replace the compare instruction, NULL if no 6144 /// replacement required. 6145 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 6146 const APInt *OtherVal, 6147 InstCombinerImpl &IC) { 6148 // Don't bother doing this transformation for pointers, don't do it for 6149 // vectors. 6150 if (!isa<IntegerType>(MulVal->getType())) 6151 return nullptr; 6152 6153 auto *MulInstr = dyn_cast<Instruction>(MulVal); 6154 if (!MulInstr) 6155 return nullptr; 6156 assert(MulInstr->getOpcode() == Instruction::Mul); 6157 6158 auto *LHS = cast<ZExtInst>(MulInstr->getOperand(0)), 6159 *RHS = cast<ZExtInst>(MulInstr->getOperand(1)); 6160 assert(LHS->getOpcode() == Instruction::ZExt); 6161 assert(RHS->getOpcode() == Instruction::ZExt); 6162 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 6163 6164 // Calculate type and width of the result produced by mul.with.overflow. 6165 Type *TyA = A->getType(), *TyB = B->getType(); 6166 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 6167 WidthB = TyB->getPrimitiveSizeInBits(); 6168 unsigned MulWidth; 6169 Type *MulType; 6170 if (WidthB > WidthA) { 6171 MulWidth = WidthB; 6172 MulType = TyB; 6173 } else { 6174 MulWidth = WidthA; 6175 MulType = TyA; 6176 } 6177 6178 // In order to replace the original mul with a narrower mul.with.overflow, 6179 // all uses must ignore upper bits of the product. The number of used low 6180 // bits must be not greater than the width of mul.with.overflow. 6181 if (MulVal->hasNUsesOrMore(2)) 6182 for (User *U : MulVal->users()) { 6183 if (U == &I) 6184 continue; 6185 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 6186 // Check if truncation ignores bits above MulWidth. 6187 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 6188 if (TruncWidth > MulWidth) 6189 return nullptr; 6190 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 6191 // Check if AND ignores bits above MulWidth. 6192 if (BO->getOpcode() != Instruction::And) 6193 return nullptr; 6194 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 6195 const APInt &CVal = CI->getValue(); 6196 if (CVal.getBitWidth() - CVal.countl_zero() > MulWidth) 6197 return nullptr; 6198 } else { 6199 // In this case we could have the operand of the binary operation 6200 // being defined in another block, and performing the replacement 6201 // could break the dominance relation. 6202 return nullptr; 6203 } 6204 } else { 6205 // Other uses prohibit this transformation. 6206 return nullptr; 6207 } 6208 } 6209 6210 // Recognize patterns 6211 switch (I.getPredicate()) { 6212 case ICmpInst::ICMP_UGT: { 6213 // Recognize pattern: 6214 // mulval = mul(zext A, zext B) 6215 // cmp ugt mulval, max 6216 APInt MaxVal = APInt::getMaxValue(MulWidth); 6217 MaxVal = MaxVal.zext(OtherVal->getBitWidth()); 6218 if (MaxVal.eq(*OtherVal)) 6219 break; // Recognized 6220 return nullptr; 6221 } 6222 6223 case ICmpInst::ICMP_ULT: { 6224 // Recognize pattern: 6225 // mulval = mul(zext A, zext B) 6226 // cmp ule mulval, max + 1 6227 APInt MaxVal = APInt::getOneBitSet(OtherVal->getBitWidth(), MulWidth); 6228 if (MaxVal.eq(*OtherVal)) 6229 break; // Recognized 6230 return nullptr; 6231 } 6232 6233 default: 6234 return nullptr; 6235 } 6236 6237 InstCombiner::BuilderTy &Builder = IC.Builder; 6238 Builder.SetInsertPoint(MulInstr); 6239 6240 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 6241 Value *MulA = A, *MulB = B; 6242 if (WidthA < MulWidth) 6243 MulA = Builder.CreateZExt(A, MulType); 6244 if (WidthB < MulWidth) 6245 MulB = Builder.CreateZExt(B, MulType); 6246 Function *F = Intrinsic::getDeclaration( 6247 I.getModule(), Intrinsic::umul_with_overflow, MulType); 6248 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 6249 IC.addToWorklist(MulInstr); 6250 6251 // If there are uses of mul result other than the comparison, we know that 6252 // they are truncation or binary AND. Change them to use result of 6253 // mul.with.overflow and adjust properly mask/size. 6254 if (MulVal->hasNUsesOrMore(2)) { 6255 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 6256 for (User *U : make_early_inc_range(MulVal->users())) { 6257 if (U == &I) 6258 continue; 6259 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 6260 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 6261 IC.replaceInstUsesWith(*TI, Mul); 6262 else 6263 TI->setOperand(0, Mul); 6264 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 6265 assert(BO->getOpcode() == Instruction::And); 6266 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 6267 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 6268 APInt ShortMask = CI->getValue().trunc(MulWidth); 6269 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 6270 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 6271 IC.replaceInstUsesWith(*BO, Zext); 6272 } else { 6273 llvm_unreachable("Unexpected Binary operation"); 6274 } 6275 IC.addToWorklist(cast<Instruction>(U)); 6276 } 6277 } 6278 6279 // The original icmp gets replaced with the overflow value, maybe inverted 6280 // depending on predicate. 6281 if (I.getPredicate() == ICmpInst::ICMP_ULT) { 6282 Value *Res = Builder.CreateExtractValue(Call, 1); 6283 return BinaryOperator::CreateNot(Res); 6284 } 6285 6286 return ExtractValueInst::Create(Call, 1); 6287 } 6288 6289 /// When performing a comparison against a constant, it is possible that not all 6290 /// the bits in the LHS are demanded. This helper method computes the mask that 6291 /// IS demanded. 6292 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 6293 const APInt *RHS; 6294 if (!match(I.getOperand(1), m_APInt(RHS))) 6295 return APInt::getAllOnes(BitWidth); 6296 6297 // If this is a normal comparison, it demands all bits. If it is a sign bit 6298 // comparison, it only demands the sign bit. 6299 bool UnusedBit; 6300 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 6301 return APInt::getSignMask(BitWidth); 6302 6303 switch (I.getPredicate()) { 6304 // For a UGT comparison, we don't care about any bits that 6305 // correspond to the trailing ones of the comparand. The value of these 6306 // bits doesn't impact the outcome of the comparison, because any value 6307 // greater than the RHS must differ in a bit higher than these due to carry. 6308 case ICmpInst::ICMP_UGT: 6309 return APInt::getBitsSetFrom(BitWidth, RHS->countr_one()); 6310 6311 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 6312 // Any value less than the RHS must differ in a higher bit because of carries. 6313 case ICmpInst::ICMP_ULT: 6314 return APInt::getBitsSetFrom(BitWidth, RHS->countr_zero()); 6315 6316 default: 6317 return APInt::getAllOnes(BitWidth); 6318 } 6319 } 6320 6321 /// Check that one use is in the same block as the definition and all 6322 /// other uses are in blocks dominated by a given block. 6323 /// 6324 /// \param DI Definition 6325 /// \param UI Use 6326 /// \param DB Block that must dominate all uses of \p DI outside 6327 /// the parent block 6328 /// \return true when \p UI is the only use of \p DI in the parent block 6329 /// and all other uses of \p DI are in blocks dominated by \p DB. 6330 /// 6331 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 6332 const Instruction *UI, 6333 const BasicBlock *DB) const { 6334 assert(DI && UI && "Instruction not defined\n"); 6335 // Ignore incomplete definitions. 6336 if (!DI->getParent()) 6337 return false; 6338 // DI and UI must be in the same block. 6339 if (DI->getParent() != UI->getParent()) 6340 return false; 6341 // Protect from self-referencing blocks. 6342 if (DI->getParent() == DB) 6343 return false; 6344 for (const User *U : DI->users()) { 6345 auto *Usr = cast<Instruction>(U); 6346 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 6347 return false; 6348 } 6349 return true; 6350 } 6351 6352 /// Return true when the instruction sequence within a block is select-cmp-br. 6353 static bool isChainSelectCmpBranch(const SelectInst *SI) { 6354 const BasicBlock *BB = SI->getParent(); 6355 if (!BB) 6356 return false; 6357 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 6358 if (!BI || BI->getNumSuccessors() != 2) 6359 return false; 6360 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 6361 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 6362 return false; 6363 return true; 6364 } 6365 6366 /// True when a select result is replaced by one of its operands 6367 /// in select-icmp sequence. This will eventually result in the elimination 6368 /// of the select. 6369 /// 6370 /// \param SI Select instruction 6371 /// \param Icmp Compare instruction 6372 /// \param SIOpd Operand that replaces the select 6373 /// 6374 /// Notes: 6375 /// - The replacement is global and requires dominator information 6376 /// - The caller is responsible for the actual replacement 6377 /// 6378 /// Example: 6379 /// 6380 /// entry: 6381 /// %4 = select i1 %3, %C* %0, %C* null 6382 /// %5 = icmp eq %C* %4, null 6383 /// br i1 %5, label %9, label %7 6384 /// ... 6385 /// ; <label>:7 ; preds = %entry 6386 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 6387 /// ... 6388 /// 6389 /// can be transformed to 6390 /// 6391 /// %5 = icmp eq %C* %0, null 6392 /// %6 = select i1 %3, i1 %5, i1 true 6393 /// br i1 %6, label %9, label %7 6394 /// ... 6395 /// ; <label>:7 ; preds = %entry 6396 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 6397 /// 6398 /// Similar when the first operand of the select is a constant or/and 6399 /// the compare is for not equal rather than equal. 6400 /// 6401 /// NOTE: The function is only called when the select and compare constants 6402 /// are equal, the optimization can work only for EQ predicates. This is not a 6403 /// major restriction since a NE compare should be 'normalized' to an equal 6404 /// compare, which usually happens in the combiner and test case 6405 /// select-cmp-br.ll checks for it. 6406 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 6407 const ICmpInst *Icmp, 6408 const unsigned SIOpd) { 6409 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 6410 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 6411 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 6412 // The check for the single predecessor is not the best that can be 6413 // done. But it protects efficiently against cases like when SI's 6414 // home block has two successors, Succ and Succ1, and Succ1 predecessor 6415 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 6416 // replaced can be reached on either path. So the uniqueness check 6417 // guarantees that the path all uses of SI (outside SI's parent) are on 6418 // is disjoint from all other paths out of SI. But that information 6419 // is more expensive to compute, and the trade-off here is in favor 6420 // of compile-time. It should also be noticed that we check for a single 6421 // predecessor and not only uniqueness. This to handle the situation when 6422 // Succ and Succ1 points to the same basic block. 6423 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 6424 NumSel++; 6425 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 6426 return true; 6427 } 6428 } 6429 return false; 6430 } 6431 6432 /// Try to fold the comparison based on range information we can get by checking 6433 /// whether bits are known to be zero or one in the inputs. 6434 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 6435 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6436 Type *Ty = Op0->getType(); 6437 ICmpInst::Predicate Pred = I.getPredicate(); 6438 6439 // Get scalar or pointer size. 6440 unsigned BitWidth = Ty->isIntOrIntVectorTy() 6441 ? Ty->getScalarSizeInBits() 6442 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 6443 6444 if (!BitWidth) 6445 return nullptr; 6446 6447 KnownBits Op0Known(BitWidth); 6448 KnownBits Op1Known(BitWidth); 6449 6450 { 6451 // Don't use dominating conditions when folding icmp using known bits. This 6452 // may convert signed into unsigned predicates in ways that other passes 6453 // (especially IndVarSimplify) may not be able to reliably undo. 6454 SimplifyQuery Q = SQ.getWithoutDomCondCache().getWithInstruction(&I); 6455 if (SimplifyDemandedBits(&I, 0, getDemandedBitsLHSMask(I, BitWidth), 6456 Op0Known, /*Depth=*/0, Q)) 6457 return &I; 6458 6459 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 6460 /*Depth=*/0, Q)) 6461 return &I; 6462 } 6463 6464 // Given the known and unknown bits, compute a range that the LHS could be 6465 // in. Compute the Min, Max and RHS values based on the known bits. For the 6466 // EQ and NE we use unsigned values. 6467 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 6468 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 6469 if (I.isSigned()) { 6470 Op0Min = Op0Known.getSignedMinValue(); 6471 Op0Max = Op0Known.getSignedMaxValue(); 6472 Op1Min = Op1Known.getSignedMinValue(); 6473 Op1Max = Op1Known.getSignedMaxValue(); 6474 } else { 6475 Op0Min = Op0Known.getMinValue(); 6476 Op0Max = Op0Known.getMaxValue(); 6477 Op1Min = Op1Known.getMinValue(); 6478 Op1Max = Op1Known.getMaxValue(); 6479 } 6480 6481 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 6482 // out that the LHS or RHS is a constant. Constant fold this now, so that 6483 // code below can assume that Min != Max. 6484 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 6485 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 6486 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 6487 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 6488 6489 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 6490 // min/max canonical compare with some other compare. That could lead to 6491 // conflict with select canonicalization and infinite looping. 6492 // FIXME: This constraint may go away if min/max intrinsics are canonical. 6493 auto isMinMaxCmp = [&](Instruction &Cmp) { 6494 if (!Cmp.hasOneUse()) 6495 return false; 6496 Value *A, *B; 6497 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 6498 if (!SelectPatternResult::isMinOrMax(SPF)) 6499 return false; 6500 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 6501 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 6502 }; 6503 if (!isMinMaxCmp(I)) { 6504 switch (Pred) { 6505 default: 6506 break; 6507 case ICmpInst::ICMP_ULT: { 6508 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 6509 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6510 const APInt *CmpC; 6511 if (match(Op1, m_APInt(CmpC))) { 6512 // A <u C -> A == C-1 if min(A)+1 == C 6513 if (*CmpC == Op0Min + 1) 6514 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6515 ConstantInt::get(Op1->getType(), *CmpC - 1)); 6516 // X <u C --> X == 0, if the number of zero bits in the bottom of X 6517 // exceeds the log2 of C. 6518 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 6519 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6520 Constant::getNullValue(Op1->getType())); 6521 } 6522 break; 6523 } 6524 case ICmpInst::ICMP_UGT: { 6525 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 6526 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6527 const APInt *CmpC; 6528 if (match(Op1, m_APInt(CmpC))) { 6529 // A >u C -> A == C+1 if max(a)-1 == C 6530 if (*CmpC == Op0Max - 1) 6531 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6532 ConstantInt::get(Op1->getType(), *CmpC + 1)); 6533 // X >u C --> X != 0, if the number of zero bits in the bottom of X 6534 // exceeds the log2 of C. 6535 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 6536 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 6537 Constant::getNullValue(Op1->getType())); 6538 } 6539 break; 6540 } 6541 case ICmpInst::ICMP_SLT: { 6542 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 6543 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6544 const APInt *CmpC; 6545 if (match(Op1, m_APInt(CmpC))) { 6546 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 6547 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6548 ConstantInt::get(Op1->getType(), *CmpC - 1)); 6549 } 6550 break; 6551 } 6552 case ICmpInst::ICMP_SGT: { 6553 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 6554 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6555 const APInt *CmpC; 6556 if (match(Op1, m_APInt(CmpC))) { 6557 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 6558 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6559 ConstantInt::get(Op1->getType(), *CmpC + 1)); 6560 } 6561 break; 6562 } 6563 } 6564 } 6565 6566 // Based on the range information we know about the LHS, see if we can 6567 // simplify this comparison. For example, (x&4) < 8 is always true. 6568 switch (Pred) { 6569 default: 6570 llvm_unreachable("Unknown icmp opcode!"); 6571 case ICmpInst::ICMP_EQ: 6572 case ICmpInst::ICMP_NE: { 6573 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 6574 return replaceInstUsesWith( 6575 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 6576 6577 // If all bits are known zero except for one, then we know at most one bit 6578 // is set. If the comparison is against zero, then this is a check to see if 6579 // *that* bit is set. 6580 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 6581 if (Op1Known.isZero()) { 6582 // If the LHS is an AND with the same constant, look through it. 6583 Value *LHS = nullptr; 6584 const APInt *LHSC; 6585 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 6586 *LHSC != Op0KnownZeroInverted) 6587 LHS = Op0; 6588 6589 Value *X; 6590 const APInt *C1; 6591 if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) { 6592 Type *XTy = X->getType(); 6593 unsigned Log2C1 = C1->countr_zero(); 6594 APInt C2 = Op0KnownZeroInverted; 6595 APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1; 6596 if (C2Pow2.isPowerOf2()) { 6597 // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2): 6598 // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1)) 6599 // ((C1 << X) & C2) != 0 -> X < (Log2(C2+C1) - Log2(C1)) 6600 unsigned Log2C2 = C2Pow2.countr_zero(); 6601 auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1); 6602 auto NewPred = 6603 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 6604 return new ICmpInst(NewPred, X, CmpC); 6605 } 6606 } 6607 } 6608 6609 // Op0 eq C_Pow2 -> Op0 ne 0 if Op0 is known to be C_Pow2 or zero. 6610 if (Op1Known.isConstant() && Op1Known.getConstant().isPowerOf2() && 6611 (Op0Known & Op1Known) == Op0Known) 6612 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0, 6613 ConstantInt::getNullValue(Op1->getType())); 6614 break; 6615 } 6616 case ICmpInst::ICMP_ULT: { 6617 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 6618 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6619 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 6620 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6621 break; 6622 } 6623 case ICmpInst::ICMP_UGT: { 6624 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 6625 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6626 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 6627 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6628 break; 6629 } 6630 case ICmpInst::ICMP_SLT: { 6631 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 6632 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6633 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 6634 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6635 break; 6636 } 6637 case ICmpInst::ICMP_SGT: { 6638 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 6639 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6640 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 6641 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6642 break; 6643 } 6644 case ICmpInst::ICMP_SGE: 6645 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 6646 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 6647 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6648 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 6649 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6650 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 6651 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6652 break; 6653 case ICmpInst::ICMP_SLE: 6654 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 6655 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 6656 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6657 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 6658 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6659 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 6660 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6661 break; 6662 case ICmpInst::ICMP_UGE: 6663 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 6664 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 6665 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6666 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 6667 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6668 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 6669 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6670 break; 6671 case ICmpInst::ICMP_ULE: 6672 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 6673 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 6674 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6675 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 6676 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6677 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 6678 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6679 break; 6680 } 6681 6682 // Turn a signed comparison into an unsigned one if both operands are known to 6683 // have the same sign. 6684 if (I.isSigned() && 6685 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 6686 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 6687 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 6688 6689 return nullptr; 6690 } 6691 6692 /// If one operand of an icmp is effectively a bool (value range of {0,1}), 6693 /// then try to reduce patterns based on that limit. 6694 Instruction *InstCombinerImpl::foldICmpUsingBoolRange(ICmpInst &I) { 6695 Value *X, *Y; 6696 ICmpInst::Predicate Pred; 6697 6698 // X must be 0 and bool must be true for "ULT": 6699 // X <u (zext i1 Y) --> (X == 0) & Y 6700 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) && 6701 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT) 6702 return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y); 6703 6704 // X must be 0 or bool must be true for "ULE": 6705 // X <=u (sext i1 Y) --> (X == 0) | Y 6706 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) && 6707 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE) 6708 return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y); 6709 6710 // icmp eq/ne X, (zext/sext (icmp eq/ne X, C)) 6711 ICmpInst::Predicate Pred1, Pred2; 6712 const APInt *C; 6713 Instruction *ExtI; 6714 if (match(&I, m_c_ICmp(Pred1, m_Value(X), 6715 m_CombineAnd(m_Instruction(ExtI), 6716 m_ZExtOrSExt(m_ICmp(Pred2, m_Deferred(X), 6717 m_APInt(C)))))) && 6718 ICmpInst::isEquality(Pred1) && ICmpInst::isEquality(Pred2)) { 6719 bool IsSExt = ExtI->getOpcode() == Instruction::SExt; 6720 bool HasOneUse = ExtI->hasOneUse() && ExtI->getOperand(0)->hasOneUse(); 6721 auto CreateRangeCheck = [&] { 6722 Value *CmpV1 = 6723 Builder.CreateICmp(Pred1, X, Constant::getNullValue(X->getType())); 6724 Value *CmpV2 = Builder.CreateICmp( 6725 Pred1, X, ConstantInt::getSigned(X->getType(), IsSExt ? -1 : 1)); 6726 return BinaryOperator::Create( 6727 Pred1 == ICmpInst::ICMP_EQ ? Instruction::Or : Instruction::And, 6728 CmpV1, CmpV2); 6729 }; 6730 if (C->isZero()) { 6731 if (Pred2 == ICmpInst::ICMP_EQ) { 6732 // icmp eq X, (zext/sext (icmp eq X, 0)) --> false 6733 // icmp ne X, (zext/sext (icmp eq X, 0)) --> true 6734 return replaceInstUsesWith( 6735 I, ConstantInt::getBool(I.getType(), Pred1 == ICmpInst::ICMP_NE)); 6736 } else if (!IsSExt || HasOneUse) { 6737 // icmp eq X, (zext (icmp ne X, 0)) --> X == 0 || X == 1 6738 // icmp ne X, (zext (icmp ne X, 0)) --> X != 0 && X != 1 6739 // icmp eq X, (sext (icmp ne X, 0)) --> X == 0 || X == -1 6740 // icmp ne X, (sext (icmp ne X, 0)) --> X != 0 && X == -1 6741 return CreateRangeCheck(); 6742 } 6743 } else if (IsSExt ? C->isAllOnes() : C->isOne()) { 6744 if (Pred2 == ICmpInst::ICMP_NE) { 6745 // icmp eq X, (zext (icmp ne X, 1)) --> false 6746 // icmp ne X, (zext (icmp ne X, 1)) --> true 6747 // icmp eq X, (sext (icmp ne X, -1)) --> false 6748 // icmp ne X, (sext (icmp ne X, -1)) --> true 6749 return replaceInstUsesWith( 6750 I, ConstantInt::getBool(I.getType(), Pred1 == ICmpInst::ICMP_NE)); 6751 } else if (!IsSExt || HasOneUse) { 6752 // icmp eq X, (zext (icmp eq X, 1)) --> X == 0 || X == 1 6753 // icmp ne X, (zext (icmp eq X, 1)) --> X != 0 && X != 1 6754 // icmp eq X, (sext (icmp eq X, -1)) --> X == 0 || X == -1 6755 // icmp ne X, (sext (icmp eq X, -1)) --> X != 0 && X == -1 6756 return CreateRangeCheck(); 6757 } 6758 } else { 6759 // when C != 0 && C != 1: 6760 // icmp eq X, (zext (icmp eq X, C)) --> icmp eq X, 0 6761 // icmp eq X, (zext (icmp ne X, C)) --> icmp eq X, 1 6762 // icmp ne X, (zext (icmp eq X, C)) --> icmp ne X, 0 6763 // icmp ne X, (zext (icmp ne X, C)) --> icmp ne X, 1 6764 // when C != 0 && C != -1: 6765 // icmp eq X, (sext (icmp eq X, C)) --> icmp eq X, 0 6766 // icmp eq X, (sext (icmp ne X, C)) --> icmp eq X, -1 6767 // icmp ne X, (sext (icmp eq X, C)) --> icmp ne X, 0 6768 // icmp ne X, (sext (icmp ne X, C)) --> icmp ne X, -1 6769 return ICmpInst::Create( 6770 Instruction::ICmp, Pred1, X, 6771 ConstantInt::getSigned(X->getType(), Pred2 == ICmpInst::ICMP_NE 6772 ? (IsSExt ? -1 : 1) 6773 : 0)); 6774 } 6775 } 6776 6777 return nullptr; 6778 } 6779 6780 std::optional<std::pair<CmpInst::Predicate, Constant *>> 6781 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 6782 Constant *C) { 6783 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 6784 "Only for relational integer predicates."); 6785 6786 Type *Type = C->getType(); 6787 bool IsSigned = ICmpInst::isSigned(Pred); 6788 6789 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 6790 bool WillIncrement = 6791 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 6792 6793 // Check if the constant operand can be safely incremented/decremented 6794 // without overflowing/underflowing. 6795 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 6796 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 6797 }; 6798 6799 Constant *SafeReplacementConstant = nullptr; 6800 if (auto *CI = dyn_cast<ConstantInt>(C)) { 6801 // Bail out if the constant can't be safely incremented/decremented. 6802 if (!ConstantIsOk(CI)) 6803 return std::nullopt; 6804 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 6805 unsigned NumElts = FVTy->getNumElements(); 6806 for (unsigned i = 0; i != NumElts; ++i) { 6807 Constant *Elt = C->getAggregateElement(i); 6808 if (!Elt) 6809 return std::nullopt; 6810 6811 if (isa<UndefValue>(Elt)) 6812 continue; 6813 6814 // Bail out if we can't determine if this constant is min/max or if we 6815 // know that this constant is min/max. 6816 auto *CI = dyn_cast<ConstantInt>(Elt); 6817 if (!CI || !ConstantIsOk(CI)) 6818 return std::nullopt; 6819 6820 if (!SafeReplacementConstant) 6821 SafeReplacementConstant = CI; 6822 } 6823 } else if (isa<VectorType>(C->getType())) { 6824 // Handle scalable splat 6825 Value *SplatC = C->getSplatValue(); 6826 auto *CI = dyn_cast_or_null<ConstantInt>(SplatC); 6827 // Bail out if the constant can't be safely incremented/decremented. 6828 if (!CI || !ConstantIsOk(CI)) 6829 return std::nullopt; 6830 } else { 6831 // ConstantExpr? 6832 return std::nullopt; 6833 } 6834 6835 // It may not be safe to change a compare predicate in the presence of 6836 // undefined elements, so replace those elements with the first safe constant 6837 // that we found. 6838 // TODO: in case of poison, it is safe; let's replace undefs only. 6839 if (C->containsUndefOrPoisonElement()) { 6840 assert(SafeReplacementConstant && "Replacement constant not set"); 6841 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 6842 } 6843 6844 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 6845 6846 // Increment or decrement the constant. 6847 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 6848 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 6849 6850 return std::make_pair(NewPred, NewC); 6851 } 6852 6853 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 6854 /// it into the appropriate icmp lt or icmp gt instruction. This transform 6855 /// allows them to be folded in visitICmpInst. 6856 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 6857 ICmpInst::Predicate Pred = I.getPredicate(); 6858 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 6859 InstCombiner::isCanonicalPredicate(Pred)) 6860 return nullptr; 6861 6862 Value *Op0 = I.getOperand(0); 6863 Value *Op1 = I.getOperand(1); 6864 auto *Op1C = dyn_cast<Constant>(Op1); 6865 if (!Op1C) 6866 return nullptr; 6867 6868 auto FlippedStrictness = 6869 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 6870 if (!FlippedStrictness) 6871 return nullptr; 6872 6873 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 6874 } 6875 6876 /// If we have a comparison with a non-canonical predicate, if we can update 6877 /// all the users, invert the predicate and adjust all the users. 6878 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 6879 // Is the predicate already canonical? 6880 CmpInst::Predicate Pred = I.getPredicate(); 6881 if (InstCombiner::isCanonicalPredicate(Pred)) 6882 return nullptr; 6883 6884 // Can all users be adjusted to predicate inversion? 6885 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 6886 return nullptr; 6887 6888 // Ok, we can canonicalize comparison! 6889 // Let's first invert the comparison's predicate. 6890 I.setPredicate(CmpInst::getInversePredicate(Pred)); 6891 I.setName(I.getName() + ".not"); 6892 6893 // And, adapt users. 6894 freelyInvertAllUsersOf(&I); 6895 6896 return &I; 6897 } 6898 6899 /// Integer compare with boolean values can always be turned into bitwise ops. 6900 static Instruction *canonicalizeICmpBool(ICmpInst &I, 6901 InstCombiner::BuilderTy &Builder) { 6902 Value *A = I.getOperand(0), *B = I.getOperand(1); 6903 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 6904 6905 // A boolean compared to true/false can be simplified to Op0/true/false in 6906 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 6907 // Cases not handled by InstSimplify are always 'not' of Op0. 6908 if (match(B, m_Zero())) { 6909 switch (I.getPredicate()) { 6910 case CmpInst::ICMP_EQ: // A == 0 -> !A 6911 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 6912 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 6913 return BinaryOperator::CreateNot(A); 6914 default: 6915 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 6916 } 6917 } else if (match(B, m_One())) { 6918 switch (I.getPredicate()) { 6919 case CmpInst::ICMP_NE: // A != 1 -> !A 6920 case CmpInst::ICMP_ULT: // A <u 1 -> !A 6921 case CmpInst::ICMP_SGT: // A >s -1 -> !A 6922 return BinaryOperator::CreateNot(A); 6923 default: 6924 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 6925 } 6926 } 6927 6928 switch (I.getPredicate()) { 6929 default: 6930 llvm_unreachable("Invalid icmp instruction!"); 6931 case ICmpInst::ICMP_EQ: 6932 // icmp eq i1 A, B -> ~(A ^ B) 6933 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 6934 6935 case ICmpInst::ICMP_NE: 6936 // icmp ne i1 A, B -> A ^ B 6937 return BinaryOperator::CreateXor(A, B); 6938 6939 case ICmpInst::ICMP_UGT: 6940 // icmp ugt -> icmp ult 6941 std::swap(A, B); 6942 [[fallthrough]]; 6943 case ICmpInst::ICMP_ULT: 6944 // icmp ult i1 A, B -> ~A & B 6945 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 6946 6947 case ICmpInst::ICMP_SGT: 6948 // icmp sgt -> icmp slt 6949 std::swap(A, B); 6950 [[fallthrough]]; 6951 case ICmpInst::ICMP_SLT: 6952 // icmp slt i1 A, B -> A & ~B 6953 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 6954 6955 case ICmpInst::ICMP_UGE: 6956 // icmp uge -> icmp ule 6957 std::swap(A, B); 6958 [[fallthrough]]; 6959 case ICmpInst::ICMP_ULE: 6960 // icmp ule i1 A, B -> ~A | B 6961 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 6962 6963 case ICmpInst::ICMP_SGE: 6964 // icmp sge -> icmp sle 6965 std::swap(A, B); 6966 [[fallthrough]]; 6967 case ICmpInst::ICMP_SLE: 6968 // icmp sle i1 A, B -> A | ~B 6969 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 6970 } 6971 } 6972 6973 // Transform pattern like: 6974 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 6975 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 6976 // Into: 6977 // (X l>> Y) != 0 6978 // (X l>> Y) == 0 6979 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 6980 InstCombiner::BuilderTy &Builder) { 6981 ICmpInst::Predicate Pred, NewPred; 6982 Value *X, *Y; 6983 if (match(&Cmp, 6984 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 6985 switch (Pred) { 6986 case ICmpInst::ICMP_ULE: 6987 NewPred = ICmpInst::ICMP_NE; 6988 break; 6989 case ICmpInst::ICMP_UGT: 6990 NewPred = ICmpInst::ICMP_EQ; 6991 break; 6992 default: 6993 return nullptr; 6994 } 6995 } else if (match(&Cmp, m_c_ICmp(Pred, 6996 m_OneUse(m_CombineOr( 6997 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 6998 m_Add(m_Shl(m_One(), m_Value(Y)), 6999 m_AllOnes()))), 7000 m_Value(X)))) { 7001 // The variant with 'add' is not canonical, (the variant with 'not' is) 7002 // we only get it because it has extra uses, and can't be canonicalized, 7003 7004 switch (Pred) { 7005 case ICmpInst::ICMP_ULT: 7006 NewPred = ICmpInst::ICMP_NE; 7007 break; 7008 case ICmpInst::ICMP_UGE: 7009 NewPred = ICmpInst::ICMP_EQ; 7010 break; 7011 default: 7012 return nullptr; 7013 } 7014 } else 7015 return nullptr; 7016 7017 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 7018 Constant *Zero = Constant::getNullValue(NewX->getType()); 7019 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 7020 } 7021 7022 static Instruction *foldVectorCmp(CmpInst &Cmp, 7023 InstCombiner::BuilderTy &Builder) { 7024 const CmpInst::Predicate Pred = Cmp.getPredicate(); 7025 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 7026 Value *V1, *V2; 7027 7028 auto createCmpReverse = [&](CmpInst::Predicate Pred, Value *X, Value *Y) { 7029 Value *V = Builder.CreateCmp(Pred, X, Y, Cmp.getName()); 7030 if (auto *I = dyn_cast<Instruction>(V)) 7031 I->copyIRFlags(&Cmp); 7032 Module *M = Cmp.getModule(); 7033 Function *F = 7034 Intrinsic::getDeclaration(M, Intrinsic::vector_reverse, V->getType()); 7035 return CallInst::Create(F, V); 7036 }; 7037 7038 if (match(LHS, m_VecReverse(m_Value(V1)))) { 7039 // cmp Pred, rev(V1), rev(V2) --> rev(cmp Pred, V1, V2) 7040 if (match(RHS, m_VecReverse(m_Value(V2))) && 7041 (LHS->hasOneUse() || RHS->hasOneUse())) 7042 return createCmpReverse(Pred, V1, V2); 7043 7044 // cmp Pred, rev(V1), RHSSplat --> rev(cmp Pred, V1, RHSSplat) 7045 if (LHS->hasOneUse() && isSplatValue(RHS)) 7046 return createCmpReverse(Pred, V1, RHS); 7047 } 7048 // cmp Pred, LHSSplat, rev(V2) --> rev(cmp Pred, LHSSplat, V2) 7049 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2))))) 7050 return createCmpReverse(Pred, LHS, V2); 7051 7052 ArrayRef<int> M; 7053 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 7054 return nullptr; 7055 7056 // If both arguments of the cmp are shuffles that use the same mask and 7057 // shuffle within a single vector, move the shuffle after the cmp: 7058 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 7059 Type *V1Ty = V1->getType(); 7060 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 7061 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 7062 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 7063 return new ShuffleVectorInst(NewCmp, M); 7064 } 7065 7066 // Try to canonicalize compare with splatted operand and splat constant. 7067 // TODO: We could generalize this for more than splats. See/use the code in 7068 // InstCombiner::foldVectorBinop(). 7069 Constant *C; 7070 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 7071 return nullptr; 7072 7073 // Length-changing splats are ok, so adjust the constants as needed: 7074 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 7075 Constant *ScalarC = C->getSplatValue(/* AllowPoison */ true); 7076 int MaskSplatIndex; 7077 if (ScalarC && match(M, m_SplatOrPoisonMask(MaskSplatIndex))) { 7078 // We allow poison in matching, but this transform removes it for safety. 7079 // Demanded elements analysis should be able to recover some/all of that. 7080 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 7081 ScalarC); 7082 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 7083 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 7084 return new ShuffleVectorInst(NewCmp, NewM); 7085 } 7086 7087 return nullptr; 7088 } 7089 7090 // extract(uadd.with.overflow(A, B), 0) ult A 7091 // -> extract(uadd.with.overflow(A, B), 1) 7092 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 7093 CmpInst::Predicate Pred = I.getPredicate(); 7094 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 7095 7096 Value *UAddOv; 7097 Value *A, *B; 7098 auto UAddOvResultPat = m_ExtractValue<0>( 7099 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 7100 if (match(Op0, UAddOvResultPat) && 7101 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 7102 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 7103 (match(A, m_One()) || match(B, m_One()))) || 7104 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 7105 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 7106 // extract(uadd.with.overflow(A, B), 0) < A 7107 // extract(uadd.with.overflow(A, 1), 0) == 0 7108 // extract(uadd.with.overflow(A, -1), 0) != -1 7109 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 7110 else if (match(Op1, UAddOvResultPat) && 7111 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 7112 // A > extract(uadd.with.overflow(A, B), 0) 7113 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 7114 else 7115 return nullptr; 7116 7117 return ExtractValueInst::Create(UAddOv, 1); 7118 } 7119 7120 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 7121 if (!I.getOperand(0)->getType()->isPointerTy() || 7122 NullPointerIsDefined( 7123 I.getParent()->getParent(), 7124 I.getOperand(0)->getType()->getPointerAddressSpace())) { 7125 return nullptr; 7126 } 7127 Instruction *Op; 7128 if (match(I.getOperand(0), m_Instruction(Op)) && 7129 match(I.getOperand(1), m_Zero()) && 7130 Op->isLaunderOrStripInvariantGroup()) { 7131 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 7132 Op->getOperand(0), I.getOperand(1)); 7133 } 7134 return nullptr; 7135 } 7136 7137 /// This function folds patterns produced by lowering of reduce idioms, such as 7138 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 7139 /// attempts to generate fewer number of scalar comparisons instead of vector 7140 /// comparisons when possible. 7141 static Instruction *foldReductionIdiom(ICmpInst &I, 7142 InstCombiner::BuilderTy &Builder, 7143 const DataLayout &DL) { 7144 if (I.getType()->isVectorTy()) 7145 return nullptr; 7146 ICmpInst::Predicate OuterPred, InnerPred; 7147 Value *LHS, *RHS; 7148 7149 // Match lowering of @llvm.vector.reduce.and. Turn 7150 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 7151 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 7152 /// %res = icmp <pred> i8 %scalar_ne, 0 7153 /// 7154 /// into 7155 /// 7156 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 7157 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 7158 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 7159 /// 7160 /// for <pred> in {ne, eq}. 7161 if (!match(&I, m_ICmp(OuterPred, 7162 m_OneUse(m_BitCast(m_OneUse( 7163 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 7164 m_Zero()))) 7165 return nullptr; 7166 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 7167 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 7168 return nullptr; 7169 unsigned NumBits = 7170 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 7171 // TODO: Relax this to "not wider than max legal integer type"? 7172 if (!DL.isLegalInteger(NumBits)) 7173 return nullptr; 7174 7175 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 7176 auto *ScalarTy = Builder.getIntNTy(NumBits); 7177 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 7178 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 7179 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 7180 I.getName()); 7181 } 7182 7183 return nullptr; 7184 } 7185 7186 // This helper will be called with icmp operands in both orders. 7187 Instruction *InstCombinerImpl::foldICmpCommutative(ICmpInst::Predicate Pred, 7188 Value *Op0, Value *Op1, 7189 ICmpInst &CxtI) { 7190 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 7191 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 7192 if (Instruction *NI = foldGEPICmp(GEP, Op1, Pred, CxtI)) 7193 return NI; 7194 7195 if (auto *SI = dyn_cast<SelectInst>(Op0)) 7196 if (Instruction *NI = foldSelectICmp(Pred, SI, Op1, CxtI)) 7197 return NI; 7198 7199 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op0)) 7200 if (Instruction *Res = foldICmpWithMinMax(CxtI, MinMax, Op1, Pred)) 7201 return Res; 7202 7203 { 7204 Value *X; 7205 const APInt *C; 7206 // icmp X+Cst, X 7207 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 7208 return foldICmpAddOpConst(X, *C, Pred); 7209 } 7210 7211 // abs(X) >= X --> true 7212 // abs(X) u<= X --> true 7213 // abs(X) < X --> false 7214 // abs(X) u> X --> false 7215 // abs(X) u>= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN` 7216 // abs(X) <= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN` 7217 // abs(X) == X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN` 7218 // abs(X) u< X --> IsIntMinPosion ? `X < 0` : `X > INTMIN` 7219 // abs(X) > X --> IsIntMinPosion ? `X < 0` : `X > INTMIN` 7220 // abs(X) != X --> IsIntMinPosion ? `X < 0` : `X > INTMIN` 7221 { 7222 Value *X; 7223 Constant *C; 7224 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X), m_Constant(C))) && 7225 match(Op1, m_Specific(X))) { 7226 Value *NullValue = Constant::getNullValue(X->getType()); 7227 Value *AllOnesValue = Constant::getAllOnesValue(X->getType()); 7228 const APInt SMin = 7229 APInt::getSignedMinValue(X->getType()->getScalarSizeInBits()); 7230 bool IsIntMinPosion = C->isAllOnesValue(); 7231 switch (Pred) { 7232 case CmpInst::ICMP_ULE: 7233 case CmpInst::ICMP_SGE: 7234 return replaceInstUsesWith(CxtI, ConstantInt::getTrue(CxtI.getType())); 7235 case CmpInst::ICMP_UGT: 7236 case CmpInst::ICMP_SLT: 7237 return replaceInstUsesWith(CxtI, ConstantInt::getFalse(CxtI.getType())); 7238 case CmpInst::ICMP_UGE: 7239 case CmpInst::ICMP_SLE: 7240 case CmpInst::ICMP_EQ: { 7241 return replaceInstUsesWith( 7242 CxtI, IsIntMinPosion 7243 ? Builder.CreateICmpSGT(X, AllOnesValue) 7244 : Builder.CreateICmpULT( 7245 X, ConstantInt::get(X->getType(), SMin + 1))); 7246 } 7247 case CmpInst::ICMP_ULT: 7248 case CmpInst::ICMP_SGT: 7249 case CmpInst::ICMP_NE: { 7250 return replaceInstUsesWith( 7251 CxtI, IsIntMinPosion 7252 ? Builder.CreateICmpSLT(X, NullValue) 7253 : Builder.CreateICmpUGT( 7254 X, ConstantInt::get(X->getType(), SMin))); 7255 } 7256 default: 7257 llvm_unreachable("Invalid predicate!"); 7258 } 7259 } 7260 } 7261 7262 const SimplifyQuery Q = SQ.getWithInstruction(&CxtI); 7263 if (Value *V = foldICmpWithLowBitMaskedVal(Pred, Op0, Op1, Q, *this)) 7264 return replaceInstUsesWith(CxtI, V); 7265 7266 // Folding (X / Y) pred X => X swap(pred) 0 for constant Y other than 0 or 1 7267 auto CheckUGT1 = [](const APInt &Divisor) { return Divisor.ugt(1); }; 7268 { 7269 if (match(Op0, m_UDiv(m_Specific(Op1), m_CheckedInt(CheckUGT1)))) { 7270 return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1, 7271 Constant::getNullValue(Op1->getType())); 7272 } 7273 7274 if (!ICmpInst::isUnsigned(Pred) && 7275 match(Op0, m_SDiv(m_Specific(Op1), m_CheckedInt(CheckUGT1)))) { 7276 return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1, 7277 Constant::getNullValue(Op1->getType())); 7278 } 7279 } 7280 7281 // Another case of this fold is (X >> Y) pred X => X swap(pred) 0 if Y != 0 7282 auto CheckNE0 = [](const APInt &Shift) { return !Shift.isZero(); }; 7283 { 7284 if (match(Op0, m_LShr(m_Specific(Op1), m_CheckedInt(CheckNE0)))) { 7285 return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1, 7286 Constant::getNullValue(Op1->getType())); 7287 } 7288 7289 if ((Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SGE) && 7290 match(Op0, m_AShr(m_Specific(Op1), m_CheckedInt(CheckNE0)))) { 7291 return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1, 7292 Constant::getNullValue(Op1->getType())); 7293 } 7294 } 7295 7296 return nullptr; 7297 } 7298 7299 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 7300 bool Changed = false; 7301 const SimplifyQuery Q = SQ.getWithInstruction(&I); 7302 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 7303 unsigned Op0Cplxity = getComplexity(Op0); 7304 unsigned Op1Cplxity = getComplexity(Op1); 7305 7306 /// Orders the operands of the compare so that they are listed from most 7307 /// complex to least complex. This puts constants before unary operators, 7308 /// before binary operators. 7309 if (Op0Cplxity < Op1Cplxity) { 7310 I.swapOperands(); 7311 std::swap(Op0, Op1); 7312 Changed = true; 7313 } 7314 7315 if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 7316 return replaceInstUsesWith(I, V); 7317 7318 // Comparing -val or val with non-zero is the same as just comparing val 7319 // ie, abs(val) != 0 -> val != 0 7320 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 7321 Value *Cond, *SelectTrue, *SelectFalse; 7322 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 7323 m_Value(SelectFalse)))) { 7324 if (Value *V = dyn_castNegVal(SelectTrue)) { 7325 if (V == SelectFalse) 7326 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 7327 } 7328 else if (Value *V = dyn_castNegVal(SelectFalse)) { 7329 if (V == SelectTrue) 7330 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 7331 } 7332 } 7333 } 7334 7335 if (Op0->getType()->isIntOrIntVectorTy(1)) 7336 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 7337 return Res; 7338 7339 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 7340 return Res; 7341 7342 if (Instruction *Res = canonicalizeICmpPredicate(I)) 7343 return Res; 7344 7345 if (Instruction *Res = foldICmpWithConstant(I)) 7346 return Res; 7347 7348 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 7349 return Res; 7350 7351 if (Instruction *Res = foldICmpUsingBoolRange(I)) 7352 return Res; 7353 7354 if (Instruction *Res = foldICmpUsingKnownBits(I)) 7355 return Res; 7356 7357 if (Instruction *Res = foldICmpTruncWithTruncOrExt(I, Q)) 7358 return Res; 7359 7360 // Test if the ICmpInst instruction is used exclusively by a select as 7361 // part of a minimum or maximum operation. If so, refrain from doing 7362 // any other folding. This helps out other analyses which understand 7363 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 7364 // and CodeGen. And in this case, at least one of the comparison 7365 // operands has at least one user besides the compare (the select), 7366 // which would often largely negate the benefit of folding anyway. 7367 // 7368 // Do the same for the other patterns recognized by matchSelectPattern. 7369 if (I.hasOneUse()) 7370 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 7371 Value *A, *B; 7372 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 7373 if (SPR.Flavor != SPF_UNKNOWN) 7374 return nullptr; 7375 } 7376 7377 // Do this after checking for min/max to prevent infinite looping. 7378 if (Instruction *Res = foldICmpWithZero(I)) 7379 return Res; 7380 7381 // FIXME: We only do this after checking for min/max to prevent infinite 7382 // looping caused by a reverse canonicalization of these patterns for min/max. 7383 // FIXME: The organization of folds is a mess. These would naturally go into 7384 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 7385 // down here after the min/max restriction. 7386 ICmpInst::Predicate Pred = I.getPredicate(); 7387 const APInt *C; 7388 if (match(Op1, m_APInt(C))) { 7389 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 7390 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 7391 Constant *Zero = Constant::getNullValue(Op0->getType()); 7392 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 7393 } 7394 7395 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 7396 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 7397 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 7398 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 7399 } 7400 } 7401 7402 // The folds in here may rely on wrapping flags and special constants, so 7403 // they can break up min/max idioms in some cases but not seemingly similar 7404 // patterns. 7405 // FIXME: It may be possible to enhance select folding to make this 7406 // unnecessary. It may also be moot if we canonicalize to min/max 7407 // intrinsics. 7408 if (Instruction *Res = foldICmpBinOp(I, Q)) 7409 return Res; 7410 7411 if (Instruction *Res = foldICmpInstWithConstant(I)) 7412 return Res; 7413 7414 // Try to match comparison as a sign bit test. Intentionally do this after 7415 // foldICmpInstWithConstant() to potentially let other folds to happen first. 7416 if (Instruction *New = foldSignBitTest(I)) 7417 return New; 7418 7419 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 7420 return Res; 7421 7422 if (Instruction *Res = foldICmpCommutative(I.getPredicate(), Op0, Op1, I)) 7423 return Res; 7424 if (Instruction *Res = 7425 foldICmpCommutative(I.getSwappedPredicate(), Op1, Op0, I)) 7426 return Res; 7427 7428 if (I.isCommutative()) { 7429 if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) { 7430 replaceOperand(I, 0, Pair->first); 7431 replaceOperand(I, 1, Pair->second); 7432 return &I; 7433 } 7434 } 7435 7436 // In case of a comparison with two select instructions having the same 7437 // condition, check whether one of the resulting branches can be simplified. 7438 // If so, just compare the other branch and select the appropriate result. 7439 // For example: 7440 // %tmp1 = select i1 %cmp, i32 %y, i32 %x 7441 // %tmp2 = select i1 %cmp, i32 %z, i32 %x 7442 // %cmp2 = icmp slt i32 %tmp2, %tmp1 7443 // The icmp will result false for the false value of selects and the result 7444 // will depend upon the comparison of true values of selects if %cmp is 7445 // true. Thus, transform this into: 7446 // %cmp = icmp slt i32 %y, %z 7447 // %sel = select i1 %cond, i1 %cmp, i1 false 7448 // This handles similar cases to transform. 7449 { 7450 Value *Cond, *A, *B, *C, *D; 7451 if (match(Op0, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) && 7452 match(Op1, m_Select(m_Specific(Cond), m_Value(C), m_Value(D))) && 7453 (Op0->hasOneUse() || Op1->hasOneUse())) { 7454 // Check whether comparison of TrueValues can be simplified 7455 if (Value *Res = simplifyICmpInst(Pred, A, C, SQ)) { 7456 Value *NewICMP = Builder.CreateICmp(Pred, B, D); 7457 return SelectInst::Create(Cond, Res, NewICMP); 7458 } 7459 // Check whether comparison of FalseValues can be simplified 7460 if (Value *Res = simplifyICmpInst(Pred, B, D, SQ)) { 7461 Value *NewICMP = Builder.CreateICmp(Pred, A, C); 7462 return SelectInst::Create(Cond, NewICMP, Res); 7463 } 7464 } 7465 } 7466 7467 // Try to optimize equality comparisons against alloca-based pointers. 7468 if (Op0->getType()->isPointerTy() && I.isEquality()) { 7469 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 7470 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 7471 if (foldAllocaCmp(Alloca)) 7472 return nullptr; 7473 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 7474 if (foldAllocaCmp(Alloca)) 7475 return nullptr; 7476 } 7477 7478 if (Instruction *Res = foldICmpBitCast(I)) 7479 return Res; 7480 7481 // TODO: Hoist this above the min/max bailout. 7482 if (Instruction *R = foldICmpWithCastOp(I)) 7483 return R; 7484 7485 { 7486 Value *X, *Y; 7487 // Transform (X & ~Y) == 0 --> (X & Y) != 0 7488 // and (X & ~Y) != 0 --> (X & Y) == 0 7489 // if A is a power of 2. 7490 if (match(Op0, m_And(m_Value(X), m_Not(m_Value(Y)))) && 7491 match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(X, false, 0, &I) && 7492 I.isEquality()) 7493 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(X, Y), 7494 Op1); 7495 7496 // Op0 pred Op1 -> ~Op1 pred ~Op0, if this allows us to drop an instruction. 7497 if (Op0->getType()->isIntOrIntVectorTy()) { 7498 bool ConsumesOp0, ConsumesOp1; 7499 if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) && 7500 isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) && 7501 (ConsumesOp0 || ConsumesOp1)) { 7502 Value *InvOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder); 7503 Value *InvOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder); 7504 assert(InvOp0 && InvOp1 && 7505 "Mismatch between isFreeToInvert and getFreelyInverted"); 7506 return new ICmpInst(I.getSwappedPredicate(), InvOp0, InvOp1); 7507 } 7508 } 7509 7510 Instruction *AddI = nullptr; 7511 if (match(&I, m_UAddWithOverflow(m_Value(X), m_Value(Y), 7512 m_Instruction(AddI))) && 7513 isa<IntegerType>(X->getType())) { 7514 Value *Result; 7515 Constant *Overflow; 7516 // m_UAddWithOverflow can match patterns that do not include an explicit 7517 // "add" instruction, so check the opcode of the matched op. 7518 if (AddI->getOpcode() == Instruction::Add && 7519 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, X, Y, *AddI, 7520 Result, Overflow)) { 7521 replaceInstUsesWith(*AddI, Result); 7522 eraseInstFromFunction(*AddI); 7523 return replaceInstUsesWith(I, Overflow); 7524 } 7525 } 7526 7527 // (zext X) * (zext Y) --> llvm.umul.with.overflow. 7528 if (match(Op0, m_NUWMul(m_ZExt(m_Value(X)), m_ZExt(m_Value(Y)))) && 7529 match(Op1, m_APInt(C))) { 7530 if (Instruction *R = processUMulZExtIdiom(I, Op0, C, *this)) 7531 return R; 7532 } 7533 7534 // Signbit test folds 7535 // Fold (X u>> BitWidth - 1 Pred ZExt(i1)) --> X s< 0 Pred i1 7536 // Fold (X s>> BitWidth - 1 Pred SExt(i1)) --> X s< 0 Pred i1 7537 Instruction *ExtI; 7538 if ((I.isUnsigned() || I.isEquality()) && 7539 match(Op1, 7540 m_CombineAnd(m_Instruction(ExtI), m_ZExtOrSExt(m_Value(Y)))) && 7541 Y->getType()->getScalarSizeInBits() == 1 && 7542 (Op0->hasOneUse() || Op1->hasOneUse())) { 7543 unsigned OpWidth = Op0->getType()->getScalarSizeInBits(); 7544 Instruction *ShiftI; 7545 if (match(Op0, m_CombineAnd(m_Instruction(ShiftI), 7546 m_Shr(m_Value(X), m_SpecificIntAllowPoison( 7547 OpWidth - 1))))) { 7548 unsigned ExtOpc = ExtI->getOpcode(); 7549 unsigned ShiftOpc = ShiftI->getOpcode(); 7550 if ((ExtOpc == Instruction::ZExt && ShiftOpc == Instruction::LShr) || 7551 (ExtOpc == Instruction::SExt && ShiftOpc == Instruction::AShr)) { 7552 Value *SLTZero = 7553 Builder.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 7554 Value *Cmp = Builder.CreateICmp(Pred, SLTZero, Y, I.getName()); 7555 return replaceInstUsesWith(I, Cmp); 7556 } 7557 } 7558 } 7559 } 7560 7561 if (Instruction *Res = foldICmpEquality(I)) 7562 return Res; 7563 7564 if (Instruction *Res = foldICmpPow2Test(I, Builder)) 7565 return Res; 7566 7567 if (Instruction *Res = foldICmpOfUAddOv(I)) 7568 return Res; 7569 7570 // The 'cmpxchg' instruction returns an aggregate containing the old value and 7571 // an i1 which indicates whether or not we successfully did the swap. 7572 // 7573 // Replace comparisons between the old value and the expected value with the 7574 // indicator that 'cmpxchg' returns. 7575 // 7576 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 7577 // spuriously fail. In those cases, the old value may equal the expected 7578 // value but it is possible for the swap to not occur. 7579 if (I.getPredicate() == ICmpInst::ICMP_EQ) 7580 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 7581 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 7582 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 7583 !ACXI->isWeak()) 7584 return ExtractValueInst::Create(ACXI, 1); 7585 7586 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 7587 return Res; 7588 7589 if (I.getType()->isVectorTy()) 7590 if (Instruction *Res = foldVectorCmp(I, Builder)) 7591 return Res; 7592 7593 if (Instruction *Res = foldICmpInvariantGroup(I)) 7594 return Res; 7595 7596 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 7597 return Res; 7598 7599 return Changed ? &I : nullptr; 7600 } 7601 7602 /// Fold fcmp ([us]itofp x, cst) if possible. 7603 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 7604 Instruction *LHSI, 7605 Constant *RHSC) { 7606 const APFloat *RHS; 7607 if (!match(RHSC, m_APFloat(RHS))) 7608 return nullptr; 7609 7610 // Get the width of the mantissa. We don't want to hack on conversions that 7611 // might lose information from the integer, e.g. "i64 -> float" 7612 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 7613 if (MantissaWidth == -1) return nullptr; // Unknown. 7614 7615 Type *IntTy = LHSI->getOperand(0)->getType(); 7616 unsigned IntWidth = IntTy->getScalarSizeInBits(); 7617 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 7618 7619 if (I.isEquality()) { 7620 FCmpInst::Predicate P = I.getPredicate(); 7621 bool IsExact = false; 7622 APSInt RHSCvt(IntWidth, LHSUnsigned); 7623 RHS->convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 7624 7625 // If the floating point constant isn't an integer value, we know if we will 7626 // ever compare equal / not equal to it. 7627 if (!IsExact) { 7628 // TODO: Can never be -0.0 and other non-representable values 7629 APFloat RHSRoundInt(*RHS); 7630 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 7631 if (*RHS != RHSRoundInt) { 7632 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 7633 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 7634 7635 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 7636 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 7637 } 7638 } 7639 7640 // TODO: If the constant is exactly representable, is it always OK to do 7641 // equality compares as integer? 7642 } 7643 7644 // Check to see that the input is converted from an integer type that is small 7645 // enough that preserves all bits. TODO: check here for "known" sign bits. 7646 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 7647 7648 // Following test does NOT adjust IntWidth downwards for signed inputs, 7649 // because the most negative value still requires all the mantissa bits 7650 // to distinguish it from one less than that value. 7651 if ((int)IntWidth > MantissaWidth) { 7652 // Conversion would lose accuracy. Check if loss can impact comparison. 7653 int Exp = ilogb(*RHS); 7654 if (Exp == APFloat::IEK_Inf) { 7655 int MaxExponent = ilogb(APFloat::getLargest(RHS->getSemantics())); 7656 if (MaxExponent < (int)IntWidth - !LHSUnsigned) 7657 // Conversion could create infinity. 7658 return nullptr; 7659 } else { 7660 // Note that if RHS is zero or NaN, then Exp is negative 7661 // and first condition is trivially false. 7662 if (MantissaWidth <= Exp && Exp <= (int)IntWidth - !LHSUnsigned) 7663 // Conversion could affect comparison. 7664 return nullptr; 7665 } 7666 } 7667 7668 // Otherwise, we can potentially simplify the comparison. We know that it 7669 // will always come through as an integer value and we know the constant is 7670 // not a NAN (it would have been previously simplified). 7671 assert(!RHS->isNaN() && "NaN comparison not already folded!"); 7672 7673 ICmpInst::Predicate Pred; 7674 switch (I.getPredicate()) { 7675 default: llvm_unreachable("Unexpected predicate!"); 7676 case FCmpInst::FCMP_UEQ: 7677 case FCmpInst::FCMP_OEQ: 7678 Pred = ICmpInst::ICMP_EQ; 7679 break; 7680 case FCmpInst::FCMP_UGT: 7681 case FCmpInst::FCMP_OGT: 7682 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 7683 break; 7684 case FCmpInst::FCMP_UGE: 7685 case FCmpInst::FCMP_OGE: 7686 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 7687 break; 7688 case FCmpInst::FCMP_ULT: 7689 case FCmpInst::FCMP_OLT: 7690 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 7691 break; 7692 case FCmpInst::FCMP_ULE: 7693 case FCmpInst::FCMP_OLE: 7694 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 7695 break; 7696 case FCmpInst::FCMP_UNE: 7697 case FCmpInst::FCMP_ONE: 7698 Pred = ICmpInst::ICMP_NE; 7699 break; 7700 case FCmpInst::FCMP_ORD: 7701 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 7702 case FCmpInst::FCMP_UNO: 7703 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 7704 } 7705 7706 // Now we know that the APFloat is a normal number, zero or inf. 7707 7708 // See if the FP constant is too large for the integer. For example, 7709 // comparing an i8 to 300.0. 7710 if (!LHSUnsigned) { 7711 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 7712 // and large values. 7713 APFloat SMax(RHS->getSemantics()); 7714 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 7715 APFloat::rmNearestTiesToEven); 7716 if (SMax < *RHS) { // smax < 13123.0 7717 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 7718 Pred == ICmpInst::ICMP_SLE) 7719 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 7720 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 7721 } 7722 } else { 7723 // If the RHS value is > UnsignedMax, fold the comparison. This handles 7724 // +INF and large values. 7725 APFloat UMax(RHS->getSemantics()); 7726 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 7727 APFloat::rmNearestTiesToEven); 7728 if (UMax < *RHS) { // umax < 13123.0 7729 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 7730 Pred == ICmpInst::ICMP_ULE) 7731 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 7732 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 7733 } 7734 } 7735 7736 if (!LHSUnsigned) { 7737 // See if the RHS value is < SignedMin. 7738 APFloat SMin(RHS->getSemantics()); 7739 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 7740 APFloat::rmNearestTiesToEven); 7741 if (SMin > *RHS) { // smin > 12312.0 7742 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 7743 Pred == ICmpInst::ICMP_SGE) 7744 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 7745 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 7746 } 7747 } else { 7748 // See if the RHS value is < UnsignedMin. 7749 APFloat UMin(RHS->getSemantics()); 7750 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 7751 APFloat::rmNearestTiesToEven); 7752 if (UMin > *RHS) { // umin > 12312.0 7753 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 7754 Pred == ICmpInst::ICMP_UGE) 7755 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 7756 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 7757 } 7758 } 7759 7760 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 7761 // [0, UMAX], but it may still be fractional. Check whether this is the case 7762 // using the IsExact flag. 7763 // Don't do this for zero, because -0.0 is not fractional. 7764 APSInt RHSInt(IntWidth, LHSUnsigned); 7765 bool IsExact; 7766 RHS->convertToInteger(RHSInt, APFloat::rmTowardZero, &IsExact); 7767 if (!RHS->isZero()) { 7768 if (!IsExact) { 7769 // If we had a comparison against a fractional value, we have to adjust 7770 // the compare predicate and sometimes the value. RHSC is rounded towards 7771 // zero at this point. 7772 switch (Pred) { 7773 default: llvm_unreachable("Unexpected integer comparison!"); 7774 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 7775 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 7776 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 7777 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 7778 case ICmpInst::ICMP_ULE: 7779 // (float)int <= 4.4 --> int <= 4 7780 // (float)int <= -4.4 --> false 7781 if (RHS->isNegative()) 7782 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 7783 break; 7784 case ICmpInst::ICMP_SLE: 7785 // (float)int <= 4.4 --> int <= 4 7786 // (float)int <= -4.4 --> int < -4 7787 if (RHS->isNegative()) 7788 Pred = ICmpInst::ICMP_SLT; 7789 break; 7790 case ICmpInst::ICMP_ULT: 7791 // (float)int < -4.4 --> false 7792 // (float)int < 4.4 --> int <= 4 7793 if (RHS->isNegative()) 7794 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 7795 Pred = ICmpInst::ICMP_ULE; 7796 break; 7797 case ICmpInst::ICMP_SLT: 7798 // (float)int < -4.4 --> int < -4 7799 // (float)int < 4.4 --> int <= 4 7800 if (!RHS->isNegative()) 7801 Pred = ICmpInst::ICMP_SLE; 7802 break; 7803 case ICmpInst::ICMP_UGT: 7804 // (float)int > 4.4 --> int > 4 7805 // (float)int > -4.4 --> true 7806 if (RHS->isNegative()) 7807 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 7808 break; 7809 case ICmpInst::ICMP_SGT: 7810 // (float)int > 4.4 --> int > 4 7811 // (float)int > -4.4 --> int >= -4 7812 if (RHS->isNegative()) 7813 Pred = ICmpInst::ICMP_SGE; 7814 break; 7815 case ICmpInst::ICMP_UGE: 7816 // (float)int >= -4.4 --> true 7817 // (float)int >= 4.4 --> int > 4 7818 if (RHS->isNegative()) 7819 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 7820 Pred = ICmpInst::ICMP_UGT; 7821 break; 7822 case ICmpInst::ICMP_SGE: 7823 // (float)int >= -4.4 --> int >= -4 7824 // (float)int >= 4.4 --> int > 4 7825 if (!RHS->isNegative()) 7826 Pred = ICmpInst::ICMP_SGT; 7827 break; 7828 } 7829 } 7830 } 7831 7832 // Lower this FP comparison into an appropriate integer version of the 7833 // comparison. 7834 return new ICmpInst(Pred, LHSI->getOperand(0), 7835 ConstantInt::get(LHSI->getOperand(0)->getType(), RHSInt)); 7836 } 7837 7838 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 7839 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 7840 Constant *RHSC) { 7841 // When C is not 0.0 and infinities are not allowed: 7842 // (C / X) < 0.0 is a sign-bit test of X 7843 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 7844 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 7845 // 7846 // Proof: 7847 // Multiply (C / X) < 0.0 by X * X / C. 7848 // - X is non zero, if it is the flag 'ninf' is violated. 7849 // - C defines the sign of X * X * C. Thus it also defines whether to swap 7850 // the predicate. C is also non zero by definition. 7851 // 7852 // Thus X * X / C is non zero and the transformation is valid. [qed] 7853 7854 FCmpInst::Predicate Pred = I.getPredicate(); 7855 7856 // Check that predicates are valid. 7857 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 7858 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 7859 return nullptr; 7860 7861 // Check that RHS operand is zero. 7862 if (!match(RHSC, m_AnyZeroFP())) 7863 return nullptr; 7864 7865 // Check fastmath flags ('ninf'). 7866 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 7867 return nullptr; 7868 7869 // Check the properties of the dividend. It must not be zero to avoid a 7870 // division by zero (see Proof). 7871 const APFloat *C; 7872 if (!match(LHSI->getOperand(0), m_APFloat(C))) 7873 return nullptr; 7874 7875 if (C->isZero()) 7876 return nullptr; 7877 7878 // Get swapped predicate if necessary. 7879 if (C->isNegative()) 7880 Pred = I.getSwappedPredicate(); 7881 7882 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 7883 } 7884 7885 /// Optimize fabs(X) compared with zero. 7886 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 7887 Value *X; 7888 if (!match(I.getOperand(0), m_FAbs(m_Value(X)))) 7889 return nullptr; 7890 7891 const APFloat *C; 7892 if (!match(I.getOperand(1), m_APFloat(C))) 7893 return nullptr; 7894 7895 if (!C->isPosZero()) { 7896 if (!C->isSmallestNormalized()) 7897 return nullptr; 7898 7899 const Function *F = I.getFunction(); 7900 DenormalMode Mode = F->getDenormalMode(C->getSemantics()); 7901 if (Mode.Input == DenormalMode::PreserveSign || 7902 Mode.Input == DenormalMode::PositiveZero) { 7903 7904 auto replaceFCmp = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 7905 Constant *Zero = ConstantFP::getZero(X->getType()); 7906 return new FCmpInst(P, X, Zero, "", I); 7907 }; 7908 7909 switch (I.getPredicate()) { 7910 case FCmpInst::FCMP_OLT: 7911 // fcmp olt fabs(x), smallest_normalized_number -> fcmp oeq x, 0.0 7912 return replaceFCmp(&I, FCmpInst::FCMP_OEQ, X); 7913 case FCmpInst::FCMP_UGE: 7914 // fcmp uge fabs(x), smallest_normalized_number -> fcmp une x, 0.0 7915 return replaceFCmp(&I, FCmpInst::FCMP_UNE, X); 7916 case FCmpInst::FCMP_OGE: 7917 // fcmp oge fabs(x), smallest_normalized_number -> fcmp one x, 0.0 7918 return replaceFCmp(&I, FCmpInst::FCMP_ONE, X); 7919 case FCmpInst::FCMP_ULT: 7920 // fcmp ult fabs(x), smallest_normalized_number -> fcmp ueq x, 0.0 7921 return replaceFCmp(&I, FCmpInst::FCMP_UEQ, X); 7922 default: 7923 break; 7924 } 7925 } 7926 7927 return nullptr; 7928 } 7929 7930 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 7931 I->setPredicate(P); 7932 return IC.replaceOperand(*I, 0, X); 7933 }; 7934 7935 switch (I.getPredicate()) { 7936 case FCmpInst::FCMP_UGE: 7937 case FCmpInst::FCMP_OLT: 7938 // fabs(X) >= 0.0 --> true 7939 // fabs(X) < 0.0 --> false 7940 llvm_unreachable("fcmp should have simplified"); 7941 7942 case FCmpInst::FCMP_OGT: 7943 // fabs(X) > 0.0 --> X != 0.0 7944 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 7945 7946 case FCmpInst::FCMP_UGT: 7947 // fabs(X) u> 0.0 --> X u!= 0.0 7948 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 7949 7950 case FCmpInst::FCMP_OLE: 7951 // fabs(X) <= 0.0 --> X == 0.0 7952 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 7953 7954 case FCmpInst::FCMP_ULE: 7955 // fabs(X) u<= 0.0 --> X u== 0.0 7956 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 7957 7958 case FCmpInst::FCMP_OGE: 7959 // fabs(X) >= 0.0 --> !isnan(X) 7960 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 7961 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 7962 7963 case FCmpInst::FCMP_ULT: 7964 // fabs(X) u< 0.0 --> isnan(X) 7965 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 7966 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 7967 7968 case FCmpInst::FCMP_OEQ: 7969 case FCmpInst::FCMP_UEQ: 7970 case FCmpInst::FCMP_ONE: 7971 case FCmpInst::FCMP_UNE: 7972 case FCmpInst::FCMP_ORD: 7973 case FCmpInst::FCMP_UNO: 7974 // Look through the fabs() because it doesn't change anything but the sign. 7975 // fabs(X) == 0.0 --> X == 0.0, 7976 // fabs(X) != 0.0 --> X != 0.0 7977 // isnan(fabs(X)) --> isnan(X) 7978 // !isnan(fabs(X) --> !isnan(X) 7979 return replacePredAndOp0(&I, I.getPredicate(), X); 7980 7981 default: 7982 return nullptr; 7983 } 7984 } 7985 7986 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) { 7987 CmpInst::Predicate Pred = I.getPredicate(); 7988 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 7989 7990 // Canonicalize fneg as Op1. 7991 if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) { 7992 std::swap(Op0, Op1); 7993 Pred = I.getSwappedPredicate(); 7994 } 7995 7996 if (!match(Op1, m_FNeg(m_Specific(Op0)))) 7997 return nullptr; 7998 7999 // Replace the negated operand with 0.0: 8000 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0 8001 Constant *Zero = ConstantFP::getZero(Op0->getType()); 8002 return new FCmpInst(Pred, Op0, Zero, "", &I); 8003 } 8004 8005 static Instruction *foldFCmpFSubIntoFCmp(FCmpInst &I, Instruction *LHSI, 8006 Constant *RHSC, InstCombinerImpl &CI) { 8007 const CmpInst::Predicate Pred = I.getPredicate(); 8008 Value *X = LHSI->getOperand(0); 8009 Value *Y = LHSI->getOperand(1); 8010 switch (Pred) { 8011 default: 8012 break; 8013 case FCmpInst::FCMP_UGT: 8014 case FCmpInst::FCMP_ULT: 8015 case FCmpInst::FCMP_UNE: 8016 case FCmpInst::FCMP_OEQ: 8017 case FCmpInst::FCMP_OGE: 8018 case FCmpInst::FCMP_OLE: 8019 // The optimization is not valid if X and Y are infinities of the same 8020 // sign, i.e. the inf - inf = nan case. If the fsub has the ninf or nnan 8021 // flag then we can assume we do not have that case. Otherwise we might be 8022 // able to prove that either X or Y is not infinity. 8023 if (!LHSI->hasNoNaNs() && !LHSI->hasNoInfs() && 8024 !isKnownNeverInfinity(Y, /*Depth=*/0, 8025 CI.getSimplifyQuery().getWithInstruction(&I)) && 8026 !isKnownNeverInfinity(X, /*Depth=*/0, 8027 CI.getSimplifyQuery().getWithInstruction(&I))) 8028 break; 8029 8030 [[fallthrough]]; 8031 case FCmpInst::FCMP_OGT: 8032 case FCmpInst::FCMP_OLT: 8033 case FCmpInst::FCMP_ONE: 8034 case FCmpInst::FCMP_UEQ: 8035 case FCmpInst::FCMP_UGE: 8036 case FCmpInst::FCMP_ULE: 8037 // fcmp pred (x - y), 0 --> fcmp pred x, y 8038 if (match(RHSC, m_AnyZeroFP()) && 8039 I.getFunction()->getDenormalMode( 8040 LHSI->getType()->getScalarType()->getFltSemantics()) == 8041 DenormalMode::getIEEE()) { 8042 CI.replaceOperand(I, 0, X); 8043 CI.replaceOperand(I, 1, Y); 8044 return &I; 8045 } 8046 break; 8047 } 8048 8049 return nullptr; 8050 } 8051 8052 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 8053 bool Changed = false; 8054 8055 /// Orders the operands of the compare so that they are listed from most 8056 /// complex to least complex. This puts constants before unary operators, 8057 /// before binary operators. 8058 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 8059 I.swapOperands(); 8060 Changed = true; 8061 } 8062 8063 const CmpInst::Predicate Pred = I.getPredicate(); 8064 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 8065 if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 8066 SQ.getWithInstruction(&I))) 8067 return replaceInstUsesWith(I, V); 8068 8069 // Simplify 'fcmp pred X, X' 8070 Type *OpType = Op0->getType(); 8071 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 8072 if (Op0 == Op1) { 8073 switch (Pred) { 8074 default: break; 8075 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 8076 case FCmpInst::FCMP_ULT: // True if unordered or less than 8077 case FCmpInst::FCMP_UGT: // True if unordered or greater than 8078 case FCmpInst::FCMP_UNE: // True if unordered or not equal 8079 // Canonicalize these to be 'fcmp uno %X, 0.0'. 8080 I.setPredicate(FCmpInst::FCMP_UNO); 8081 I.setOperand(1, Constant::getNullValue(OpType)); 8082 return &I; 8083 8084 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 8085 case FCmpInst::FCMP_OEQ: // True if ordered and equal 8086 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 8087 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 8088 // Canonicalize these to be 'fcmp ord %X, 0.0'. 8089 I.setPredicate(FCmpInst::FCMP_ORD); 8090 I.setOperand(1, Constant::getNullValue(OpType)); 8091 return &I; 8092 } 8093 } 8094 8095 if (I.isCommutative()) { 8096 if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) { 8097 replaceOperand(I, 0, Pair->first); 8098 replaceOperand(I, 1, Pair->second); 8099 return &I; 8100 } 8101 } 8102 8103 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 8104 // then canonicalize the operand to 0.0. 8105 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 8106 if (!match(Op0, m_PosZeroFP()) && 8107 isKnownNeverNaN(Op0, 0, getSimplifyQuery().getWithInstruction(&I))) 8108 return replaceOperand(I, 0, ConstantFP::getZero(OpType)); 8109 8110 if (!match(Op1, m_PosZeroFP()) && 8111 isKnownNeverNaN(Op1, 0, getSimplifyQuery().getWithInstruction(&I))) 8112 return replaceOperand(I, 1, ConstantFP::getZero(OpType)); 8113 } 8114 8115 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 8116 Value *X, *Y; 8117 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 8118 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 8119 8120 if (Instruction *R = foldFCmpFNegCommonOp(I)) 8121 return R; 8122 8123 // Test if the FCmpInst instruction is used exclusively by a select as 8124 // part of a minimum or maximum operation. If so, refrain from doing 8125 // any other folding. This helps out other analyses which understand 8126 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 8127 // and CodeGen. And in this case, at least one of the comparison 8128 // operands has at least one user besides the compare (the select), 8129 // which would often largely negate the benefit of folding anyway. 8130 if (I.hasOneUse()) 8131 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 8132 Value *A, *B; 8133 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 8134 if (SPR.Flavor != SPF_UNKNOWN) 8135 return nullptr; 8136 } 8137 8138 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 8139 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 8140 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 8141 return replaceOperand(I, 1, ConstantFP::getZero(OpType)); 8142 8143 // Canonicalize: 8144 // fcmp olt X, +inf -> fcmp one X, +inf 8145 // fcmp ole X, +inf -> fcmp ord X, 0 8146 // fcmp ogt X, +inf -> false 8147 // fcmp oge X, +inf -> fcmp oeq X, +inf 8148 // fcmp ult X, +inf -> fcmp une X, +inf 8149 // fcmp ule X, +inf -> true 8150 // fcmp ugt X, +inf -> fcmp uno X, 0 8151 // fcmp uge X, +inf -> fcmp ueq X, +inf 8152 // fcmp olt X, -inf -> false 8153 // fcmp ole X, -inf -> fcmp oeq X, -inf 8154 // fcmp ogt X, -inf -> fcmp one X, -inf 8155 // fcmp oge X, -inf -> fcmp ord X, 0 8156 // fcmp ult X, -inf -> fcmp uno X, 0 8157 // fcmp ule X, -inf -> fcmp ueq X, -inf 8158 // fcmp ugt X, -inf -> fcmp une X, -inf 8159 // fcmp uge X, -inf -> true 8160 const APFloat *C; 8161 if (match(Op1, m_APFloat(C)) && C->isInfinity()) { 8162 switch (C->isNegative() ? FCmpInst::getSwappedPredicate(Pred) : Pred) { 8163 default: 8164 break; 8165 case FCmpInst::FCMP_ORD: 8166 case FCmpInst::FCMP_UNO: 8167 case FCmpInst::FCMP_TRUE: 8168 case FCmpInst::FCMP_FALSE: 8169 case FCmpInst::FCMP_OGT: 8170 case FCmpInst::FCMP_ULE: 8171 llvm_unreachable("Should be simplified by InstSimplify"); 8172 case FCmpInst::FCMP_OLT: 8173 return new FCmpInst(FCmpInst::FCMP_ONE, Op0, Op1, "", &I); 8174 case FCmpInst::FCMP_OLE: 8175 return new FCmpInst(FCmpInst::FCMP_ORD, Op0, ConstantFP::getZero(OpType), 8176 "", &I); 8177 case FCmpInst::FCMP_OGE: 8178 return new FCmpInst(FCmpInst::FCMP_OEQ, Op0, Op1, "", &I); 8179 case FCmpInst::FCMP_ULT: 8180 return new FCmpInst(FCmpInst::FCMP_UNE, Op0, Op1, "", &I); 8181 case FCmpInst::FCMP_UGT: 8182 return new FCmpInst(FCmpInst::FCMP_UNO, Op0, ConstantFP::getZero(OpType), 8183 "", &I); 8184 case FCmpInst::FCMP_UGE: 8185 return new FCmpInst(FCmpInst::FCMP_UEQ, Op0, Op1, "", &I); 8186 } 8187 } 8188 8189 // Ignore signbit of bitcasted int when comparing equality to FP 0.0: 8190 // fcmp oeq/une (bitcast X), 0.0 --> (and X, SignMaskC) ==/!= 0 8191 if (match(Op1, m_PosZeroFP()) && 8192 match(Op0, m_OneUse(m_ElementWiseBitCast(m_Value(X))))) { 8193 ICmpInst::Predicate IntPred = ICmpInst::BAD_ICMP_PREDICATE; 8194 if (Pred == FCmpInst::FCMP_OEQ) 8195 IntPred = ICmpInst::ICMP_EQ; 8196 else if (Pred == FCmpInst::FCMP_UNE) 8197 IntPred = ICmpInst::ICMP_NE; 8198 8199 if (IntPred != ICmpInst::BAD_ICMP_PREDICATE) { 8200 Type *IntTy = X->getType(); 8201 const APInt &SignMask = ~APInt::getSignMask(IntTy->getScalarSizeInBits()); 8202 Value *MaskX = Builder.CreateAnd(X, ConstantInt::get(IntTy, SignMask)); 8203 return new ICmpInst(IntPred, MaskX, ConstantInt::getNullValue(IntTy)); 8204 } 8205 } 8206 8207 // Handle fcmp with instruction LHS and constant RHS. 8208 Instruction *LHSI; 8209 Constant *RHSC; 8210 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 8211 switch (LHSI->getOpcode()) { 8212 case Instruction::Select: 8213 // fcmp eq (cond ? x : -x), 0 --> fcmp eq x, 0 8214 if (FCmpInst::isEquality(Pred) && match(RHSC, m_AnyZeroFP()) && 8215 (match(LHSI, 8216 m_Select(m_Value(), m_Value(X), m_FNeg(m_Deferred(X)))) || 8217 match(LHSI, m_Select(m_Value(), m_FNeg(m_Value(X)), m_Deferred(X))))) 8218 return replaceOperand(I, 0, X); 8219 if (Instruction *NV = FoldOpIntoSelect(I, cast<SelectInst>(LHSI))) 8220 return NV; 8221 break; 8222 case Instruction::FSub: 8223 if (LHSI->hasOneUse()) 8224 if (Instruction *NV = foldFCmpFSubIntoFCmp(I, LHSI, RHSC, *this)) 8225 return NV; 8226 break; 8227 case Instruction::PHI: 8228 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 8229 return NV; 8230 break; 8231 case Instruction::SIToFP: 8232 case Instruction::UIToFP: 8233 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 8234 return NV; 8235 break; 8236 case Instruction::FDiv: 8237 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 8238 return NV; 8239 break; 8240 case Instruction::Load: 8241 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 8242 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 8243 if (Instruction *Res = foldCmpLoadFromIndexedGlobal( 8244 cast<LoadInst>(LHSI), GEP, GV, I)) 8245 return Res; 8246 break; 8247 } 8248 } 8249 8250 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 8251 return R; 8252 8253 if (match(Op0, m_FNeg(m_Value(X)))) { 8254 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 8255 Constant *C; 8256 if (match(Op1, m_Constant(C))) 8257 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 8258 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 8259 } 8260 8261 // fcmp (fadd X, 0.0), Y --> fcmp X, Y 8262 if (match(Op0, m_FAdd(m_Value(X), m_AnyZeroFP()))) 8263 return new FCmpInst(Pred, X, Op1, "", &I); 8264 8265 // fcmp X, (fadd Y, 0.0) --> fcmp X, Y 8266 if (match(Op1, m_FAdd(m_Value(Y), m_AnyZeroFP()))) 8267 return new FCmpInst(Pred, Op0, Y, "", &I); 8268 8269 if (match(Op0, m_FPExt(m_Value(X)))) { 8270 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 8271 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 8272 return new FCmpInst(Pred, X, Y, "", &I); 8273 8274 const APFloat *C; 8275 if (match(Op1, m_APFloat(C))) { 8276 const fltSemantics &FPSem = 8277 X->getType()->getScalarType()->getFltSemantics(); 8278 bool Lossy; 8279 APFloat TruncC = *C; 8280 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 8281 8282 if (Lossy) { 8283 // X can't possibly equal the higher-precision constant, so reduce any 8284 // equality comparison. 8285 // TODO: Other predicates can be handled via getFCmpCode(). 8286 switch (Pred) { 8287 case FCmpInst::FCMP_OEQ: 8288 // X is ordered and equal to an impossible constant --> false 8289 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 8290 case FCmpInst::FCMP_ONE: 8291 // X is ordered and not equal to an impossible constant --> ordered 8292 return new FCmpInst(FCmpInst::FCMP_ORD, X, 8293 ConstantFP::getZero(X->getType())); 8294 case FCmpInst::FCMP_UEQ: 8295 // X is unordered or equal to an impossible constant --> unordered 8296 return new FCmpInst(FCmpInst::FCMP_UNO, X, 8297 ConstantFP::getZero(X->getType())); 8298 case FCmpInst::FCMP_UNE: 8299 // X is unordered or not equal to an impossible constant --> true 8300 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 8301 default: 8302 break; 8303 } 8304 } 8305 8306 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 8307 // Avoid lossy conversions and denormals. 8308 // Zero is a special case that's OK to convert. 8309 APFloat Fabs = TruncC; 8310 Fabs.clearSign(); 8311 if (!Lossy && 8312 (Fabs.isZero() || !(Fabs < APFloat::getSmallestNormalized(FPSem)))) { 8313 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 8314 return new FCmpInst(Pred, X, NewC, "", &I); 8315 } 8316 } 8317 } 8318 8319 // Convert a sign-bit test of an FP value into a cast and integer compare. 8320 // TODO: Simplify if the copysign constant is 0.0 or NaN. 8321 // TODO: Handle non-zero compare constants. 8322 // TODO: Handle other predicates. 8323 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 8324 m_Value(X)))) && 8325 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 8326 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 8327 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 8328 IntType = VectorType::get(IntType, VecTy->getElementCount()); 8329 8330 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 8331 if (Pred == FCmpInst::FCMP_OLT) { 8332 Value *IntX = Builder.CreateBitCast(X, IntType); 8333 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 8334 ConstantInt::getNullValue(IntType)); 8335 } 8336 } 8337 8338 { 8339 Value *CanonLHS = nullptr, *CanonRHS = nullptr; 8340 match(Op0, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonLHS))); 8341 match(Op1, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonRHS))); 8342 8343 // (canonicalize(x) == x) => (x == x) 8344 if (CanonLHS == Op1) 8345 return new FCmpInst(Pred, Op1, Op1, "", &I); 8346 8347 // (x == canonicalize(x)) => (x == x) 8348 if (CanonRHS == Op0) 8349 return new FCmpInst(Pred, Op0, Op0, "", &I); 8350 8351 // (canonicalize(x) == canonicalize(y)) => (x == y) 8352 if (CanonLHS && CanonRHS) 8353 return new FCmpInst(Pred, CanonLHS, CanonRHS, "", &I); 8354 } 8355 8356 if (I.getType()->isVectorTy()) 8357 if (Instruction *Res = foldVectorCmp(I, Builder)) 8358 return Res; 8359 8360 return Changed ? &I : nullptr; 8361 } 8362