xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp (revision b1879975794772ee51f0b4865753364c7d7626c3)
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/CaptureTracking.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/Utils/Local.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/ConstantRange.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Support/KnownBits.h"
30 #include "llvm/Transforms/InstCombine/InstCombiner.h"
31 #include <bitset>
32 
33 using namespace llvm;
34 using namespace PatternMatch;
35 
36 #define DEBUG_TYPE "instcombine"
37 
38 // How many times is a select replaced by one of its operands?
39 STATISTIC(NumSel, "Number of select opts");
40 
41 
42 /// Compute Result = In1+In2, returning true if the result overflowed for this
43 /// type.
44 static bool addWithOverflow(APInt &Result, const APInt &In1,
45                             const APInt &In2, bool IsSigned = false) {
46   bool Overflow;
47   if (IsSigned)
48     Result = In1.sadd_ov(In2, Overflow);
49   else
50     Result = In1.uadd_ov(In2, Overflow);
51 
52   return Overflow;
53 }
54 
55 /// Compute Result = In1-In2, returning true if the result overflowed for this
56 /// type.
57 static bool subWithOverflow(APInt &Result, const APInt &In1,
58                             const APInt &In2, bool IsSigned = false) {
59   bool Overflow;
60   if (IsSigned)
61     Result = In1.ssub_ov(In2, Overflow);
62   else
63     Result = In1.usub_ov(In2, Overflow);
64 
65   return Overflow;
66 }
67 
68 /// Given an icmp instruction, return true if any use of this comparison is a
69 /// branch on sign bit comparison.
70 static bool hasBranchUse(ICmpInst &I) {
71   for (auto *U : I.users())
72     if (isa<BranchInst>(U))
73       return true;
74   return false;
75 }
76 
77 /// Returns true if the exploded icmp can be expressed as a signed comparison
78 /// to zero and updates the predicate accordingly.
79 /// The signedness of the comparison is preserved.
80 /// TODO: Refactor with decomposeBitTestICmp()?
81 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
82   if (!ICmpInst::isSigned(Pred))
83     return false;
84 
85   if (C.isZero())
86     return ICmpInst::isRelational(Pred);
87 
88   if (C.isOne()) {
89     if (Pred == ICmpInst::ICMP_SLT) {
90       Pred = ICmpInst::ICMP_SLE;
91       return true;
92     }
93   } else if (C.isAllOnes()) {
94     if (Pred == ICmpInst::ICMP_SGT) {
95       Pred = ICmpInst::ICMP_SGE;
96       return true;
97     }
98   }
99 
100   return false;
101 }
102 
103 /// This is called when we see this pattern:
104 ///   cmp pred (load (gep GV, ...)), cmpcst
105 /// where GV is a global variable with a constant initializer. Try to simplify
106 /// this into some simple computation that does not need the load. For example
107 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
108 ///
109 /// If AndCst is non-null, then the loaded value is masked with that constant
110 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
111 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal(
112     LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI,
113     ConstantInt *AndCst) {
114   if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() ||
115       GV->getValueType() != GEP->getSourceElementType() || !GV->isConstant() ||
116       !GV->hasDefinitiveInitializer())
117     return nullptr;
118 
119   Constant *Init = GV->getInitializer();
120   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
121     return nullptr;
122 
123   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
124   // Don't blow up on huge arrays.
125   if (ArrayElementCount > MaxArraySizeForCombine)
126     return nullptr;
127 
128   // There are many forms of this optimization we can handle, for now, just do
129   // the simple index into a single-dimensional array.
130   //
131   // Require: GEP GV, 0, i {{, constant indices}}
132   if (GEP->getNumOperands() < 3 || !isa<ConstantInt>(GEP->getOperand(1)) ||
133       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
134       isa<Constant>(GEP->getOperand(2)))
135     return nullptr;
136 
137   // Check that indices after the variable are constants and in-range for the
138   // type they index.  Collect the indices.  This is typically for arrays of
139   // structs.
140   SmallVector<unsigned, 4> LaterIndices;
141 
142   Type *EltTy = Init->getType()->getArrayElementType();
143   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
144     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
145     if (!Idx)
146       return nullptr; // Variable index.
147 
148     uint64_t IdxVal = Idx->getZExtValue();
149     if ((unsigned)IdxVal != IdxVal)
150       return nullptr; // Too large array index.
151 
152     if (StructType *STy = dyn_cast<StructType>(EltTy))
153       EltTy = STy->getElementType(IdxVal);
154     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
155       if (IdxVal >= ATy->getNumElements())
156         return nullptr;
157       EltTy = ATy->getElementType();
158     } else {
159       return nullptr; // Unknown type.
160     }
161 
162     LaterIndices.push_back(IdxVal);
163   }
164 
165   enum { Overdefined = -3, Undefined = -2 };
166 
167   // Variables for our state machines.
168 
169   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
170   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
171   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
172   // undefined, otherwise set to the first true element.  SecondTrueElement is
173   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
174   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
175 
176   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
177   // form "i != 47 & i != 87".  Same state transitions as for true elements.
178   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
179 
180   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
181   /// define a state machine that triggers for ranges of values that the index
182   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
183   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
184   /// index in the range (inclusive).  We use -2 for undefined here because we
185   /// use relative comparisons and don't want 0-1 to match -1.
186   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
187 
188   // MagicBitvector - This is a magic bitvector where we set a bit if the
189   // comparison is true for element 'i'.  If there are 64 elements or less in
190   // the array, this will fully represent all the comparison results.
191   uint64_t MagicBitvector = 0;
192 
193   // Scan the array and see if one of our patterns matches.
194   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
195   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
196     Constant *Elt = Init->getAggregateElement(i);
197     if (!Elt)
198       return nullptr;
199 
200     // If this is indexing an array of structures, get the structure element.
201     if (!LaterIndices.empty()) {
202       Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices);
203       if (!Elt)
204         return nullptr;
205     }
206 
207     // If the element is masked, handle it.
208     if (AndCst) {
209       Elt = ConstantFoldBinaryOpOperands(Instruction::And, Elt, AndCst, DL);
210       if (!Elt)
211         return nullptr;
212     }
213 
214     // Find out if the comparison would be true or false for the i'th element.
215     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
216                                                   CompareRHS, DL, &TLI);
217     if (!C)
218       return nullptr;
219 
220     // If the result is undef for this element, ignore it.
221     if (isa<UndefValue>(C)) {
222       // Extend range state machines to cover this element in case there is an
223       // undef in the middle of the range.
224       if (TrueRangeEnd == (int)i - 1)
225         TrueRangeEnd = i;
226       if (FalseRangeEnd == (int)i - 1)
227         FalseRangeEnd = i;
228       continue;
229     }
230 
231     // If we can't compute the result for any of the elements, we have to give
232     // up evaluating the entire conditional.
233     if (!isa<ConstantInt>(C))
234       return nullptr;
235 
236     // Otherwise, we know if the comparison is true or false for this element,
237     // update our state machines.
238     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
239 
240     // State machine for single/double/range index comparison.
241     if (IsTrueForElt) {
242       // Update the TrueElement state machine.
243       if (FirstTrueElement == Undefined)
244         FirstTrueElement = TrueRangeEnd = i; // First true element.
245       else {
246         // Update double-compare state machine.
247         if (SecondTrueElement == Undefined)
248           SecondTrueElement = i;
249         else
250           SecondTrueElement = Overdefined;
251 
252         // Update range state machine.
253         if (TrueRangeEnd == (int)i - 1)
254           TrueRangeEnd = i;
255         else
256           TrueRangeEnd = Overdefined;
257       }
258     } else {
259       // Update the FalseElement state machine.
260       if (FirstFalseElement == Undefined)
261         FirstFalseElement = FalseRangeEnd = i; // First false element.
262       else {
263         // Update double-compare state machine.
264         if (SecondFalseElement == Undefined)
265           SecondFalseElement = i;
266         else
267           SecondFalseElement = Overdefined;
268 
269         // Update range state machine.
270         if (FalseRangeEnd == (int)i - 1)
271           FalseRangeEnd = i;
272         else
273           FalseRangeEnd = Overdefined;
274       }
275     }
276 
277     // If this element is in range, update our magic bitvector.
278     if (i < 64 && IsTrueForElt)
279       MagicBitvector |= 1ULL << i;
280 
281     // If all of our states become overdefined, bail out early.  Since the
282     // predicate is expensive, only check it every 8 elements.  This is only
283     // really useful for really huge arrays.
284     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
285         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
286         FalseRangeEnd == Overdefined)
287       return nullptr;
288   }
289 
290   // Now that we've scanned the entire array, emit our new comparison(s).  We
291   // order the state machines in complexity of the generated code.
292   Value *Idx = GEP->getOperand(2);
293 
294   // If the index is larger than the pointer offset size of the target, truncate
295   // the index down like the GEP would do implicitly.  We don't have to do this
296   // for an inbounds GEP because the index can't be out of range.
297   if (!GEP->isInBounds()) {
298     Type *PtrIdxTy = DL.getIndexType(GEP->getType());
299     unsigned OffsetSize = PtrIdxTy->getIntegerBitWidth();
300     if (Idx->getType()->getPrimitiveSizeInBits().getFixedValue() > OffsetSize)
301       Idx = Builder.CreateTrunc(Idx, PtrIdxTy);
302   }
303 
304   // If inbounds keyword is not present, Idx * ElementSize can overflow.
305   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
306   // Then, there are two possible values for Idx to match offset 0:
307   // 0x00..00, 0x80..00.
308   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
309   // comparison is false if Idx was 0x80..00.
310   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
311   unsigned ElementSize =
312       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
313   auto MaskIdx = [&](Value *Idx) {
314     if (!GEP->isInBounds() && llvm::countr_zero(ElementSize) != 0) {
315       Value *Mask = ConstantInt::get(Idx->getType(), -1);
316       Mask = Builder.CreateLShr(Mask, llvm::countr_zero(ElementSize));
317       Idx = Builder.CreateAnd(Idx, Mask);
318     }
319     return Idx;
320   };
321 
322   // If the comparison is only true for one or two elements, emit direct
323   // comparisons.
324   if (SecondTrueElement != Overdefined) {
325     Idx = MaskIdx(Idx);
326     // None true -> false.
327     if (FirstTrueElement == Undefined)
328       return replaceInstUsesWith(ICI, Builder.getFalse());
329 
330     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
331 
332     // True for one element -> 'i == 47'.
333     if (SecondTrueElement == Undefined)
334       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
335 
336     // True for two elements -> 'i == 47 | i == 72'.
337     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
338     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
339     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
340     return BinaryOperator::CreateOr(C1, C2);
341   }
342 
343   // If the comparison is only false for one or two elements, emit direct
344   // comparisons.
345   if (SecondFalseElement != Overdefined) {
346     Idx = MaskIdx(Idx);
347     // None false -> true.
348     if (FirstFalseElement == Undefined)
349       return replaceInstUsesWith(ICI, Builder.getTrue());
350 
351     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
352 
353     // False for one element -> 'i != 47'.
354     if (SecondFalseElement == Undefined)
355       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
356 
357     // False for two elements -> 'i != 47 & i != 72'.
358     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
359     Value *SecondFalseIdx =
360         ConstantInt::get(Idx->getType(), SecondFalseElement);
361     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
362     return BinaryOperator::CreateAnd(C1, C2);
363   }
364 
365   // If the comparison can be replaced with a range comparison for the elements
366   // where it is true, emit the range check.
367   if (TrueRangeEnd != Overdefined) {
368     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
369     Idx = MaskIdx(Idx);
370 
371     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
372     if (FirstTrueElement) {
373       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
374       Idx = Builder.CreateAdd(Idx, Offs);
375     }
376 
377     Value *End =
378         ConstantInt::get(Idx->getType(), TrueRangeEnd - FirstTrueElement + 1);
379     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
380   }
381 
382   // False range check.
383   if (FalseRangeEnd != Overdefined) {
384     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
385     Idx = MaskIdx(Idx);
386     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
387     if (FirstFalseElement) {
388       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
389       Idx = Builder.CreateAdd(Idx, Offs);
390     }
391 
392     Value *End =
393         ConstantInt::get(Idx->getType(), FalseRangeEnd - FirstFalseElement);
394     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
395   }
396 
397   // If a magic bitvector captures the entire comparison state
398   // of this load, replace it with computation that does:
399   //   ((magic_cst >> i) & 1) != 0
400   {
401     Type *Ty = nullptr;
402 
403     // Look for an appropriate type:
404     // - The type of Idx if the magic fits
405     // - The smallest fitting legal type
406     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
407       Ty = Idx->getType();
408     else
409       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
410 
411     if (Ty) {
412       Idx = MaskIdx(Idx);
413       Value *V = Builder.CreateIntCast(Idx, Ty, false);
414       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
415       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
416       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
417     }
418   }
419 
420   return nullptr;
421 }
422 
423 /// Returns true if we can rewrite Start as a GEP with pointer Base
424 /// and some integer offset. The nodes that need to be re-written
425 /// for this transformation will be added to Explored.
426 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
427                                   const DataLayout &DL,
428                                   SetVector<Value *> &Explored) {
429   SmallVector<Value *, 16> WorkList(1, Start);
430   Explored.insert(Base);
431 
432   // The following traversal gives us an order which can be used
433   // when doing the final transformation. Since in the final
434   // transformation we create the PHI replacement instructions first,
435   // we don't have to get them in any particular order.
436   //
437   // However, for other instructions we will have to traverse the
438   // operands of an instruction first, which means that we have to
439   // do a post-order traversal.
440   while (!WorkList.empty()) {
441     SetVector<PHINode *> PHIs;
442 
443     while (!WorkList.empty()) {
444       if (Explored.size() >= 100)
445         return false;
446 
447       Value *V = WorkList.back();
448 
449       if (Explored.contains(V)) {
450         WorkList.pop_back();
451         continue;
452       }
453 
454       if (!isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
455         // We've found some value that we can't explore which is different from
456         // the base. Therefore we can't do this transformation.
457         return false;
458 
459       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
460         // Only allow inbounds GEPs with at most one variable offset.
461         auto IsNonConst = [](Value *V) { return !isa<ConstantInt>(V); };
462         if (!GEP->isInBounds() || count_if(GEP->indices(), IsNonConst) > 1)
463           return false;
464 
465         if (!Explored.contains(GEP->getOperand(0)))
466           WorkList.push_back(GEP->getOperand(0));
467       }
468 
469       if (WorkList.back() == V) {
470         WorkList.pop_back();
471         // We've finished visiting this node, mark it as such.
472         Explored.insert(V);
473       }
474 
475       if (auto *PN = dyn_cast<PHINode>(V)) {
476         // We cannot transform PHIs on unsplittable basic blocks.
477         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
478           return false;
479         Explored.insert(PN);
480         PHIs.insert(PN);
481       }
482     }
483 
484     // Explore the PHI nodes further.
485     for (auto *PN : PHIs)
486       for (Value *Op : PN->incoming_values())
487         if (!Explored.contains(Op))
488           WorkList.push_back(Op);
489   }
490 
491   // Make sure that we can do this. Since we can't insert GEPs in a basic
492   // block before a PHI node, we can't easily do this transformation if
493   // we have PHI node users of transformed instructions.
494   for (Value *Val : Explored) {
495     for (Value *Use : Val->uses()) {
496 
497       auto *PHI = dyn_cast<PHINode>(Use);
498       auto *Inst = dyn_cast<Instruction>(Val);
499 
500       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
501           !Explored.contains(PHI))
502         continue;
503 
504       if (PHI->getParent() == Inst->getParent())
505         return false;
506     }
507   }
508   return true;
509 }
510 
511 // Sets the appropriate insert point on Builder where we can add
512 // a replacement Instruction for V (if that is possible).
513 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
514                               bool Before = true) {
515   if (auto *PHI = dyn_cast<PHINode>(V)) {
516     BasicBlock *Parent = PHI->getParent();
517     Builder.SetInsertPoint(Parent, Parent->getFirstInsertionPt());
518     return;
519   }
520   if (auto *I = dyn_cast<Instruction>(V)) {
521     if (!Before)
522       I = &*std::next(I->getIterator());
523     Builder.SetInsertPoint(I);
524     return;
525   }
526   if (auto *A = dyn_cast<Argument>(V)) {
527     // Set the insertion point in the entry block.
528     BasicBlock &Entry = A->getParent()->getEntryBlock();
529     Builder.SetInsertPoint(&Entry, Entry.getFirstInsertionPt());
530     return;
531   }
532   // Otherwise, this is a constant and we don't need to set a new
533   // insertion point.
534   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
535 }
536 
537 /// Returns a re-written value of Start as an indexed GEP using Base as a
538 /// pointer.
539 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
540                                  const DataLayout &DL,
541                                  SetVector<Value *> &Explored,
542                                  InstCombiner &IC) {
543   // Perform all the substitutions. This is a bit tricky because we can
544   // have cycles in our use-def chains.
545   // 1. Create the PHI nodes without any incoming values.
546   // 2. Create all the other values.
547   // 3. Add the edges for the PHI nodes.
548   // 4. Emit GEPs to get the original pointers.
549   // 5. Remove the original instructions.
550   Type *IndexType = IntegerType::get(
551       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
552 
553   DenseMap<Value *, Value *> NewInsts;
554   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
555 
556   // Create the new PHI nodes, without adding any incoming values.
557   for (Value *Val : Explored) {
558     if (Val == Base)
559       continue;
560     // Create empty phi nodes. This avoids cyclic dependencies when creating
561     // the remaining instructions.
562     if (auto *PHI = dyn_cast<PHINode>(Val))
563       NewInsts[PHI] =
564           PHINode::Create(IndexType, PHI->getNumIncomingValues(),
565                           PHI->getName() + ".idx", PHI->getIterator());
566   }
567   IRBuilder<> Builder(Base->getContext());
568 
569   // Create all the other instructions.
570   for (Value *Val : Explored) {
571     if (NewInsts.contains(Val))
572       continue;
573 
574     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
575       setInsertionPoint(Builder, GEP);
576       Value *Op = NewInsts[GEP->getOperand(0)];
577       Value *OffsetV = emitGEPOffset(&Builder, DL, GEP);
578       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
579         NewInsts[GEP] = OffsetV;
580       else
581         NewInsts[GEP] = Builder.CreateNSWAdd(
582             Op, OffsetV, GEP->getOperand(0)->getName() + ".add");
583       continue;
584     }
585     if (isa<PHINode>(Val))
586       continue;
587 
588     llvm_unreachable("Unexpected instruction type");
589   }
590 
591   // Add the incoming values to the PHI nodes.
592   for (Value *Val : Explored) {
593     if (Val == Base)
594       continue;
595     // All the instructions have been created, we can now add edges to the
596     // phi nodes.
597     if (auto *PHI = dyn_cast<PHINode>(Val)) {
598       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
599       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
600         Value *NewIncoming = PHI->getIncomingValue(I);
601 
602         if (NewInsts.contains(NewIncoming))
603           NewIncoming = NewInsts[NewIncoming];
604 
605         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
606       }
607     }
608   }
609 
610   for (Value *Val : Explored) {
611     if (Val == Base)
612       continue;
613 
614     setInsertionPoint(Builder, Val, false);
615     // Create GEP for external users.
616     Value *NewVal = Builder.CreateInBoundsGEP(
617         Builder.getInt8Ty(), Base, NewInsts[Val], Val->getName() + ".ptr");
618     IC.replaceInstUsesWith(*cast<Instruction>(Val), NewVal);
619     // Add old instruction to worklist for DCE. We don't directly remove it
620     // here because the original compare is one of the users.
621     IC.addToWorklist(cast<Instruction>(Val));
622   }
623 
624   return NewInsts[Start];
625 }
626 
627 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
628 /// We can look through PHIs, GEPs and casts in order to determine a common base
629 /// between GEPLHS and RHS.
630 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
631                                               ICmpInst::Predicate Cond,
632                                               const DataLayout &DL,
633                                               InstCombiner &IC) {
634   // FIXME: Support vector of pointers.
635   if (GEPLHS->getType()->isVectorTy())
636     return nullptr;
637 
638   if (!GEPLHS->hasAllConstantIndices())
639     return nullptr;
640 
641   APInt Offset(DL.getIndexTypeSizeInBits(GEPLHS->getType()), 0);
642   Value *PtrBase =
643       GEPLHS->stripAndAccumulateConstantOffsets(DL, Offset,
644                                                 /*AllowNonInbounds*/ false);
645 
646   // Bail if we looked through addrspacecast.
647   if (PtrBase->getType() != GEPLHS->getType())
648     return nullptr;
649 
650   // The set of nodes that will take part in this transformation.
651   SetVector<Value *> Nodes;
652 
653   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
654     return nullptr;
655 
656   // We know we can re-write this as
657   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
658   // Since we've only looked through inbouds GEPs we know that we
659   // can't have overflow on either side. We can therefore re-write
660   // this as:
661   //   OFFSET1 cmp OFFSET2
662   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes, IC);
663 
664   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
665   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
666   // offset. Since Index is the offset of LHS to the base pointer, we will now
667   // compare the offsets instead of comparing the pointers.
668   return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
669                       IC.Builder.getInt(Offset), NewRHS);
670 }
671 
672 /// Fold comparisons between a GEP instruction and something else. At this point
673 /// we know that the GEP is on the LHS of the comparison.
674 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
675                                            ICmpInst::Predicate Cond,
676                                            Instruction &I) {
677   // Don't transform signed compares of GEPs into index compares. Even if the
678   // GEP is inbounds, the final add of the base pointer can have signed overflow
679   // and would change the result of the icmp.
680   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
681   // the maximum signed value for the pointer type.
682   if (ICmpInst::isSigned(Cond))
683     return nullptr;
684 
685   // Look through bitcasts and addrspacecasts. We do not however want to remove
686   // 0 GEPs.
687   if (!isa<GetElementPtrInst>(RHS))
688     RHS = RHS->stripPointerCasts();
689 
690   Value *PtrBase = GEPLHS->getOperand(0);
691   if (PtrBase == RHS && (GEPLHS->isInBounds() || ICmpInst::isEquality(Cond))) {
692     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
693     Value *Offset = EmitGEPOffset(GEPLHS);
694     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
695                         Constant::getNullValue(Offset->getType()));
696   }
697 
698   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
699       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
700       !NullPointerIsDefined(I.getFunction(),
701                             RHS->getType()->getPointerAddressSpace())) {
702     // For most address spaces, an allocation can't be placed at null, but null
703     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
704     // the only valid inbounds address derived from null, is null itself.
705     // Thus, we have four cases to consider:
706     // 1) Base == nullptr, Offset == 0 -> inbounds, null
707     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
708     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
709     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
710     //
711     // (Note if we're indexing a type of size 0, that simply collapses into one
712     //  of the buckets above.)
713     //
714     // In general, we're allowed to make values less poison (i.e. remove
715     //   sources of full UB), so in this case, we just select between the two
716     //   non-poison cases (1 and 4 above).
717     //
718     // For vectors, we apply the same reasoning on a per-lane basis.
719     auto *Base = GEPLHS->getPointerOperand();
720     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
721       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
722       Base = Builder.CreateVectorSplat(EC, Base);
723     }
724     return new ICmpInst(Cond, Base,
725                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
726                             cast<Constant>(RHS), Base->getType()));
727   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
728     // If the base pointers are different, but the indices are the same, just
729     // compare the base pointer.
730     if (PtrBase != GEPRHS->getOperand(0)) {
731       bool IndicesTheSame =
732           GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
733           GEPLHS->getPointerOperand()->getType() ==
734               GEPRHS->getPointerOperand()->getType() &&
735           GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
736       if (IndicesTheSame)
737         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
738           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
739             IndicesTheSame = false;
740             break;
741           }
742 
743       // If all indices are the same, just compare the base pointers.
744       Type *BaseType = GEPLHS->getOperand(0)->getType();
745       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
746         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
747 
748       // If we're comparing GEPs with two base pointers that only differ in type
749       // and both GEPs have only constant indices or just one use, then fold
750       // the compare with the adjusted indices.
751       // FIXME: Support vector of pointers.
752       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
753           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
754           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
755           PtrBase->stripPointerCasts() ==
756               GEPRHS->getOperand(0)->stripPointerCasts() &&
757           !GEPLHS->getType()->isVectorTy()) {
758         Value *LOffset = EmitGEPOffset(GEPLHS);
759         Value *ROffset = EmitGEPOffset(GEPRHS);
760 
761         // If we looked through an addrspacecast between different sized address
762         // spaces, the LHS and RHS pointers are different sized
763         // integers. Truncate to the smaller one.
764         Type *LHSIndexTy = LOffset->getType();
765         Type *RHSIndexTy = ROffset->getType();
766         if (LHSIndexTy != RHSIndexTy) {
767           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedValue() <
768               RHSIndexTy->getPrimitiveSizeInBits().getFixedValue()) {
769             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
770           } else
771             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
772         }
773 
774         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
775                                         LOffset, ROffset);
776         return replaceInstUsesWith(I, Cmp);
777       }
778 
779       // Otherwise, the base pointers are different and the indices are
780       // different. Try convert this to an indexed compare by looking through
781       // PHIs/casts.
782       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this);
783     }
784 
785     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
786     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
787         GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) {
788       // If the GEPs only differ by one index, compare it.
789       unsigned NumDifferences = 0;  // Keep track of # differences.
790       unsigned DiffOperand = 0;     // The operand that differs.
791       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
792         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
793           Type *LHSType = GEPLHS->getOperand(i)->getType();
794           Type *RHSType = GEPRHS->getOperand(i)->getType();
795           // FIXME: Better support for vector of pointers.
796           if (LHSType->getPrimitiveSizeInBits() !=
797                    RHSType->getPrimitiveSizeInBits() ||
798               (GEPLHS->getType()->isVectorTy() &&
799                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
800             // Irreconcilable differences.
801             NumDifferences = 2;
802             break;
803           }
804 
805           if (NumDifferences++) break;
806           DiffOperand = i;
807         }
808 
809       if (NumDifferences == 0)   // SAME GEP?
810         return replaceInstUsesWith(I, // No comparison is needed here.
811           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
812 
813       else if (NumDifferences == 1 && GEPsInBounds) {
814         Value *LHSV = GEPLHS->getOperand(DiffOperand);
815         Value *RHSV = GEPRHS->getOperand(DiffOperand);
816         // Make sure we do a signed comparison here.
817         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
818       }
819     }
820 
821     if (GEPsInBounds || CmpInst::isEquality(Cond)) {
822       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
823       Value *L = EmitGEPOffset(GEPLHS, /*RewriteGEP=*/true);
824       Value *R = EmitGEPOffset(GEPRHS, /*RewriteGEP=*/true);
825       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
826     }
827   }
828 
829   // Try convert this to an indexed compare by looking through PHIs/casts as a
830   // last resort.
831   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this);
832 }
833 
834 bool InstCombinerImpl::foldAllocaCmp(AllocaInst *Alloca) {
835   // It would be tempting to fold away comparisons between allocas and any
836   // pointer not based on that alloca (e.g. an argument). However, even
837   // though such pointers cannot alias, they can still compare equal.
838   //
839   // But LLVM doesn't specify where allocas get their memory, so if the alloca
840   // doesn't escape we can argue that it's impossible to guess its value, and we
841   // can therefore act as if any such guesses are wrong.
842   //
843   // However, we need to ensure that this folding is consistent: We can't fold
844   // one comparison to false, and then leave a different comparison against the
845   // same value alone (as it might evaluate to true at runtime, leading to a
846   // contradiction). As such, this code ensures that all comparisons are folded
847   // at the same time, and there are no other escapes.
848 
849   struct CmpCaptureTracker : public CaptureTracker {
850     AllocaInst *Alloca;
851     bool Captured = false;
852     /// The value of the map is a bit mask of which icmp operands the alloca is
853     /// used in.
854     SmallMapVector<ICmpInst *, unsigned, 4> ICmps;
855 
856     CmpCaptureTracker(AllocaInst *Alloca) : Alloca(Alloca) {}
857 
858     void tooManyUses() override { Captured = true; }
859 
860     bool captured(const Use *U) override {
861       auto *ICmp = dyn_cast<ICmpInst>(U->getUser());
862       // We need to check that U is based *only* on the alloca, and doesn't
863       // have other contributions from a select/phi operand.
864       // TODO: We could check whether getUnderlyingObjects() reduces to one
865       // object, which would allow looking through phi nodes.
866       if (ICmp && ICmp->isEquality() && getUnderlyingObject(*U) == Alloca) {
867         // Collect equality icmps of the alloca, and don't treat them as
868         // captures.
869         auto Res = ICmps.insert({ICmp, 0});
870         Res.first->second |= 1u << U->getOperandNo();
871         return false;
872       }
873 
874       Captured = true;
875       return true;
876     }
877   };
878 
879   CmpCaptureTracker Tracker(Alloca);
880   PointerMayBeCaptured(Alloca, &Tracker);
881   if (Tracker.Captured)
882     return false;
883 
884   bool Changed = false;
885   for (auto [ICmp, Operands] : Tracker.ICmps) {
886     switch (Operands) {
887     case 1:
888     case 2: {
889       // The alloca is only used in one icmp operand. Assume that the
890       // equality is false.
891       auto *Res = ConstantInt::get(
892           ICmp->getType(), ICmp->getPredicate() == ICmpInst::ICMP_NE);
893       replaceInstUsesWith(*ICmp, Res);
894       eraseInstFromFunction(*ICmp);
895       Changed = true;
896       break;
897     }
898     case 3:
899       // Both icmp operands are based on the alloca, so this is comparing
900       // pointer offsets, without leaking any information about the address
901       // of the alloca. Ignore such comparisons.
902       break;
903     default:
904       llvm_unreachable("Cannot happen");
905     }
906   }
907 
908   return Changed;
909 }
910 
911 /// Fold "icmp pred (X+C), X".
912 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
913                                                   ICmpInst::Predicate Pred) {
914   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
915   // so the values can never be equal.  Similarly for all other "or equals"
916   // operators.
917   assert(!!C && "C should not be zero!");
918 
919   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
920   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
921   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
922   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
923     Constant *R = ConstantInt::get(X->getType(),
924                                    APInt::getMaxValue(C.getBitWidth()) - C);
925     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
926   }
927 
928   // (X+1) >u X        --> X <u (0-1)        --> X != 255
929   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
930   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
931   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
932     return new ICmpInst(ICmpInst::ICMP_ULT, X,
933                         ConstantInt::get(X->getType(), -C));
934 
935   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
936 
937   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
938   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
939   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
940   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
941   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
942   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
943   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
944     return new ICmpInst(ICmpInst::ICMP_SGT, X,
945                         ConstantInt::get(X->getType(), SMax - C));
946 
947   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
948   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
949   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
950   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
951   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
952   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
953 
954   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
955   return new ICmpInst(ICmpInst::ICMP_SLT, X,
956                       ConstantInt::get(X->getType(), SMax - (C - 1)));
957 }
958 
959 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
960 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
961 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
962 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
963                                                      const APInt &AP1,
964                                                      const APInt &AP2) {
965   assert(I.isEquality() && "Cannot fold icmp gt/lt");
966 
967   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
968     if (I.getPredicate() == I.ICMP_NE)
969       Pred = CmpInst::getInversePredicate(Pred);
970     return new ICmpInst(Pred, LHS, RHS);
971   };
972 
973   // Don't bother doing any work for cases which InstSimplify handles.
974   if (AP2.isZero())
975     return nullptr;
976 
977   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
978   if (IsAShr) {
979     if (AP2.isAllOnes())
980       return nullptr;
981     if (AP2.isNegative() != AP1.isNegative())
982       return nullptr;
983     if (AP2.sgt(AP1))
984       return nullptr;
985   }
986 
987   if (!AP1)
988     // 'A' must be large enough to shift out the highest set bit.
989     return getICmp(I.ICMP_UGT, A,
990                    ConstantInt::get(A->getType(), AP2.logBase2()));
991 
992   if (AP1 == AP2)
993     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
994 
995   int Shift;
996   if (IsAShr && AP1.isNegative())
997     Shift = AP1.countl_one() - AP2.countl_one();
998   else
999     Shift = AP1.countl_zero() - AP2.countl_zero();
1000 
1001   if (Shift > 0) {
1002     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1003       // There are multiple solutions if we are comparing against -1 and the LHS
1004       // of the ashr is not a power of two.
1005       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1006         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1007       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1008     } else if (AP1 == AP2.lshr(Shift)) {
1009       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1010     }
1011   }
1012 
1013   // Shifting const2 will never be equal to const1.
1014   // FIXME: This should always be handled by InstSimplify?
1015   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1016   return replaceInstUsesWith(I, TorF);
1017 }
1018 
1019 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1020 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1021 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1022                                                      const APInt &AP1,
1023                                                      const APInt &AP2) {
1024   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1025 
1026   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1027     if (I.getPredicate() == I.ICMP_NE)
1028       Pred = CmpInst::getInversePredicate(Pred);
1029     return new ICmpInst(Pred, LHS, RHS);
1030   };
1031 
1032   // Don't bother doing any work for cases which InstSimplify handles.
1033   if (AP2.isZero())
1034     return nullptr;
1035 
1036   unsigned AP2TrailingZeros = AP2.countr_zero();
1037 
1038   if (!AP1 && AP2TrailingZeros != 0)
1039     return getICmp(
1040         I.ICMP_UGE, A,
1041         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1042 
1043   if (AP1 == AP2)
1044     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1045 
1046   // Get the distance between the lowest bits that are set.
1047   int Shift = AP1.countr_zero() - AP2TrailingZeros;
1048 
1049   if (Shift > 0 && AP2.shl(Shift) == AP1)
1050     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1051 
1052   // Shifting const2 will never be equal to const1.
1053   // FIXME: This should always be handled by InstSimplify?
1054   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1055   return replaceInstUsesWith(I, TorF);
1056 }
1057 
1058 /// The caller has matched a pattern of the form:
1059 ///   I = icmp ugt (add (add A, B), CI2), CI1
1060 /// If this is of the form:
1061 ///   sum = a + b
1062 ///   if (sum+128 >u 255)
1063 /// Then replace it with llvm.sadd.with.overflow.i8.
1064 ///
1065 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1066                                           ConstantInt *CI2, ConstantInt *CI1,
1067                                           InstCombinerImpl &IC) {
1068   // The transformation we're trying to do here is to transform this into an
1069   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1070   // with a narrower add, and discard the add-with-constant that is part of the
1071   // range check (if we can't eliminate it, this isn't profitable).
1072 
1073   // In order to eliminate the add-with-constant, the compare can be its only
1074   // use.
1075   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1076   if (!AddWithCst->hasOneUse())
1077     return nullptr;
1078 
1079   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1080   if (!CI2->getValue().isPowerOf2())
1081     return nullptr;
1082   unsigned NewWidth = CI2->getValue().countr_zero();
1083   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1084     return nullptr;
1085 
1086   // The width of the new add formed is 1 more than the bias.
1087   ++NewWidth;
1088 
1089   // Check to see that CI1 is an all-ones value with NewWidth bits.
1090   if (CI1->getBitWidth() == NewWidth ||
1091       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1092     return nullptr;
1093 
1094   // This is only really a signed overflow check if the inputs have been
1095   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1096   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1097   if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1098       IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1099     return nullptr;
1100 
1101   // In order to replace the original add with a narrower
1102   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1103   // and truncates that discard the high bits of the add.  Verify that this is
1104   // the case.
1105   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1106   for (User *U : OrigAdd->users()) {
1107     if (U == AddWithCst)
1108       continue;
1109 
1110     // Only accept truncates for now.  We would really like a nice recursive
1111     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1112     // chain to see which bits of a value are actually demanded.  If the
1113     // original add had another add which was then immediately truncated, we
1114     // could still do the transformation.
1115     TruncInst *TI = dyn_cast<TruncInst>(U);
1116     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1117       return nullptr;
1118   }
1119 
1120   // If the pattern matches, truncate the inputs to the narrower type and
1121   // use the sadd_with_overflow intrinsic to efficiently compute both the
1122   // result and the overflow bit.
1123   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1124   Function *F = Intrinsic::getDeclaration(
1125       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1126 
1127   InstCombiner::BuilderTy &Builder = IC.Builder;
1128 
1129   // Put the new code above the original add, in case there are any uses of the
1130   // add between the add and the compare.
1131   Builder.SetInsertPoint(OrigAdd);
1132 
1133   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1134   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1135   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1136   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1137   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1138 
1139   // The inner add was the result of the narrow add, zero extended to the
1140   // wider type.  Replace it with the result computed by the intrinsic.
1141   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1142   IC.eraseInstFromFunction(*OrigAdd);
1143 
1144   // The original icmp gets replaced with the overflow value.
1145   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1146 }
1147 
1148 /// If we have:
1149 ///   icmp eq/ne (urem/srem %x, %y), 0
1150 /// iff %y is a power-of-two, we can replace this with a bit test:
1151 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1152 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1153   // This fold is only valid for equality predicates.
1154   if (!I.isEquality())
1155     return nullptr;
1156   ICmpInst::Predicate Pred;
1157   Value *X, *Y, *Zero;
1158   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1159                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1160     return nullptr;
1161   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1162     return nullptr;
1163   // This may increase instruction count, we don't enforce that Y is a constant.
1164   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1165   Value *Masked = Builder.CreateAnd(X, Mask);
1166   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1167 }
1168 
1169 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1170 /// by one-less-than-bitwidth into a sign test on the original value.
1171 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1172   Instruction *Val;
1173   ICmpInst::Predicate Pred;
1174   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1175     return nullptr;
1176 
1177   Value *X;
1178   Type *XTy;
1179 
1180   Constant *C;
1181   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1182     XTy = X->getType();
1183     unsigned XBitWidth = XTy->getScalarSizeInBits();
1184     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1185                                      APInt(XBitWidth, XBitWidth - 1))))
1186       return nullptr;
1187   } else if (isa<BinaryOperator>(Val) &&
1188              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1189                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1190                   /*AnalyzeForSignBitExtraction=*/true))) {
1191     XTy = X->getType();
1192   } else
1193     return nullptr;
1194 
1195   return ICmpInst::Create(Instruction::ICmp,
1196                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1197                                                     : ICmpInst::ICMP_SLT,
1198                           X, ConstantInt::getNullValue(XTy));
1199 }
1200 
1201 // Handle  icmp pred X, 0
1202 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1203   CmpInst::Predicate Pred = Cmp.getPredicate();
1204   if (!match(Cmp.getOperand(1), m_Zero()))
1205     return nullptr;
1206 
1207   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1208   if (Pred == ICmpInst::ICMP_SGT) {
1209     Value *A, *B;
1210     if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) {
1211       if (isKnownPositive(A, SQ.getWithInstruction(&Cmp)))
1212         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1213       if (isKnownPositive(B, SQ.getWithInstruction(&Cmp)))
1214         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1215     }
1216   }
1217 
1218   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1219     return New;
1220 
1221   // Given:
1222   //   icmp eq/ne (urem %x, %y), 0
1223   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1224   //   icmp eq/ne %x, 0
1225   Value *X, *Y;
1226   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1227       ICmpInst::isEquality(Pred)) {
1228     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1229     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1230     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1231       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1232   }
1233 
1234   // (icmp eq/ne (mul X Y)) -> (icmp eq/ne X/Y) if we know about whether X/Y are
1235   // odd/non-zero/there is no overflow.
1236   if (match(Cmp.getOperand(0), m_Mul(m_Value(X), m_Value(Y))) &&
1237       ICmpInst::isEquality(Pred)) {
1238 
1239     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1240     // if X % 2 != 0
1241     //    (icmp eq/ne Y)
1242     if (XKnown.countMaxTrailingZeros() == 0)
1243       return new ICmpInst(Pred, Y, Cmp.getOperand(1));
1244 
1245     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1246     // if Y % 2 != 0
1247     //    (icmp eq/ne X)
1248     if (YKnown.countMaxTrailingZeros() == 0)
1249       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1250 
1251     auto *BO0 = cast<OverflowingBinaryOperator>(Cmp.getOperand(0));
1252     if (BO0->hasNoUnsignedWrap() || BO0->hasNoSignedWrap()) {
1253       const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
1254       // `isKnownNonZero` does more analysis than just `!KnownBits.One.isZero()`
1255       // but to avoid unnecessary work, first just if this is an obvious case.
1256 
1257       // if X non-zero and NoOverflow(X * Y)
1258       //    (icmp eq/ne Y)
1259       if (!XKnown.One.isZero() || isKnownNonZero(X, Q))
1260         return new ICmpInst(Pred, Y, Cmp.getOperand(1));
1261 
1262       // if Y non-zero and NoOverflow(X * Y)
1263       //    (icmp eq/ne X)
1264       if (!YKnown.One.isZero() || isKnownNonZero(Y, Q))
1265         return new ICmpInst(Pred, X, Cmp.getOperand(1));
1266     }
1267     // Note, we are skipping cases:
1268     //      if Y % 2 != 0 AND X % 2 != 0
1269     //          (false/true)
1270     //      if X non-zero and Y non-zero and NoOverflow(X * Y)
1271     //          (false/true)
1272     // Those can be simplified later as we would have already replaced the (icmp
1273     // eq/ne (mul X, Y)) with (icmp eq/ne X/Y) and if X/Y is known non-zero that
1274     // will fold to a constant elsewhere.
1275   }
1276   return nullptr;
1277 }
1278 
1279 /// Fold icmp Pred X, C.
1280 /// TODO: This code structure does not make sense. The saturating add fold
1281 /// should be moved to some other helper and extended as noted below (it is also
1282 /// possible that code has been made unnecessary - do we canonicalize IR to
1283 /// overflow/saturating intrinsics or not?).
1284 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1285   // Match the following pattern, which is a common idiom when writing
1286   // overflow-safe integer arithmetic functions. The source performs an addition
1287   // in wider type and explicitly checks for overflow using comparisons against
1288   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1289   //
1290   // TODO: This could probably be generalized to handle other overflow-safe
1291   // operations if we worked out the formulas to compute the appropriate magic
1292   // constants.
1293   //
1294   // sum = a + b
1295   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1296   CmpInst::Predicate Pred = Cmp.getPredicate();
1297   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1298   Value *A, *B;
1299   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1300   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1301       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1302     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1303       return Res;
1304 
1305   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1306   Constant *C = dyn_cast<Constant>(Op1);
1307   if (!C)
1308     return nullptr;
1309 
1310   if (auto *Phi = dyn_cast<PHINode>(Op0))
1311     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1312       SmallVector<Constant *> Ops;
1313       for (Value *V : Phi->incoming_values()) {
1314         Constant *Res =
1315             ConstantFoldCompareInstOperands(Pred, cast<Constant>(V), C, DL);
1316         if (!Res)
1317           return nullptr;
1318         Ops.push_back(Res);
1319       }
1320       Builder.SetInsertPoint(Phi);
1321       PHINode *NewPhi = Builder.CreatePHI(Cmp.getType(), Phi->getNumOperands());
1322       for (auto [V, Pred] : zip(Ops, Phi->blocks()))
1323         NewPhi->addIncoming(V, Pred);
1324       return replaceInstUsesWith(Cmp, NewPhi);
1325     }
1326 
1327   if (Instruction *R = tryFoldInstWithCtpopWithNot(&Cmp))
1328     return R;
1329 
1330   return nullptr;
1331 }
1332 
1333 /// Canonicalize icmp instructions based on dominating conditions.
1334 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1335   // We already checked simple implication in InstSimplify, only handle complex
1336   // cases here.
1337   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1338   const APInt *C;
1339   if (!match(Y, m_APInt(C)))
1340     return nullptr;
1341 
1342   CmpInst::Predicate Pred = Cmp.getPredicate();
1343   ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1344 
1345   auto handleDomCond = [&](ICmpInst::Predicate DomPred,
1346                            const APInt *DomC) -> Instruction * {
1347     // We have 2 compares of a variable with constants. Calculate the constant
1348     // ranges of those compares to see if we can transform the 2nd compare:
1349     // DomBB:
1350     //   DomCond = icmp DomPred X, DomC
1351     //   br DomCond, CmpBB, FalseBB
1352     // CmpBB:
1353     //   Cmp = icmp Pred X, C
1354     ConstantRange DominatingCR =
1355         ConstantRange::makeExactICmpRegion(DomPred, *DomC);
1356     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1357     ConstantRange Difference = DominatingCR.difference(CR);
1358     if (Intersection.isEmptySet())
1359       return replaceInstUsesWith(Cmp, Builder.getFalse());
1360     if (Difference.isEmptySet())
1361       return replaceInstUsesWith(Cmp, Builder.getTrue());
1362 
1363     // Canonicalizing a sign bit comparison that gets used in a branch,
1364     // pessimizes codegen by generating branch on zero instruction instead
1365     // of a test and branch. So we avoid canonicalizing in such situations
1366     // because test and branch instruction has better branch displacement
1367     // than compare and branch instruction.
1368     bool UnusedBit;
1369     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1370     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1371       return nullptr;
1372 
1373     // Avoid an infinite loop with min/max canonicalization.
1374     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1375     if (Cmp.hasOneUse() &&
1376         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1377       return nullptr;
1378 
1379     if (const APInt *EqC = Intersection.getSingleElement())
1380       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1381     if (const APInt *NeC = Difference.getSingleElement())
1382       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1383     return nullptr;
1384   };
1385 
1386   for (BranchInst *BI : DC.conditionsFor(X)) {
1387     ICmpInst::Predicate DomPred;
1388     const APInt *DomC;
1389     if (!match(BI->getCondition(),
1390                m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))))
1391       continue;
1392 
1393     BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
1394     if (DT.dominates(Edge0, Cmp.getParent())) {
1395       if (auto *V = handleDomCond(DomPred, DomC))
1396         return V;
1397     } else {
1398       BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
1399       if (DT.dominates(Edge1, Cmp.getParent()))
1400         if (auto *V =
1401                 handleDomCond(CmpInst::getInversePredicate(DomPred), DomC))
1402           return V;
1403     }
1404   }
1405 
1406   return nullptr;
1407 }
1408 
1409 /// Fold icmp (trunc X), C.
1410 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1411                                                      TruncInst *Trunc,
1412                                                      const APInt &C) {
1413   ICmpInst::Predicate Pred = Cmp.getPredicate();
1414   Value *X = Trunc->getOperand(0);
1415   Type *SrcTy = X->getType();
1416   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1417            SrcBits = SrcTy->getScalarSizeInBits();
1418 
1419   // Match (icmp pred (trunc nuw/nsw X), C)
1420   // Which we can convert to (icmp pred X, (sext/zext C))
1421   if (shouldChangeType(Trunc->getType(), SrcTy)) {
1422     if (Trunc->hasNoSignedWrap())
1423       return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, C.sext(SrcBits)));
1424     if (!Cmp.isSigned() && Trunc->hasNoUnsignedWrap())
1425       return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, C.zext(SrcBits)));
1426   }
1427 
1428   if (C.isOne() && C.getBitWidth() > 1) {
1429     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1430     Value *V = nullptr;
1431     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1432       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1433                           ConstantInt::get(V->getType(), 1));
1434   }
1435 
1436   // TODO: Handle any shifted constant by subtracting trailing zeros.
1437   // TODO: Handle non-equality predicates.
1438   Value *Y;
1439   if (Cmp.isEquality() && match(X, m_Shl(m_One(), m_Value(Y)))) {
1440     // (trunc (1 << Y) to iN) == 0 --> Y u>= N
1441     // (trunc (1 << Y) to iN) != 0 --> Y u<  N
1442     if (C.isZero()) {
1443       auto NewPred = (Pred == Cmp.ICMP_EQ) ? Cmp.ICMP_UGE : Cmp.ICMP_ULT;
1444       return new ICmpInst(NewPred, Y, ConstantInt::get(SrcTy, DstBits));
1445     }
1446     // (trunc (1 << Y) to iN) == 2**C --> Y == C
1447     // (trunc (1 << Y) to iN) != 2**C --> Y != C
1448     if (C.isPowerOf2())
1449       return new ICmpInst(Pred, Y, ConstantInt::get(SrcTy, C.logBase2()));
1450   }
1451 
1452   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1453     // Canonicalize to a mask and wider compare if the wide type is suitable:
1454     // (trunc X to i8) == C --> (X & 0xff) == (zext C)
1455     if (!SrcTy->isVectorTy() && shouldChangeType(DstBits, SrcBits)) {
1456       Constant *Mask =
1457           ConstantInt::get(SrcTy, APInt::getLowBitsSet(SrcBits, DstBits));
1458       Value *And = Builder.CreateAnd(X, Mask);
1459       Constant *WideC = ConstantInt::get(SrcTy, C.zext(SrcBits));
1460       return new ICmpInst(Pred, And, WideC);
1461     }
1462 
1463     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1464     // of the high bits truncated out of x are known.
1465     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1466 
1467     // If all the high bits are known, we can do this xform.
1468     if ((Known.Zero | Known.One).countl_one() >= SrcBits - DstBits) {
1469       // Pull in the high bits from known-ones set.
1470       APInt NewRHS = C.zext(SrcBits);
1471       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1472       return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, NewRHS));
1473     }
1474   }
1475 
1476   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1477   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1478   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1479   Value *ShOp;
1480   const APInt *ShAmtC;
1481   bool TrueIfSigned;
1482   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1483       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1484       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1485     return TrueIfSigned ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1486                                        ConstantInt::getNullValue(SrcTy))
1487                         : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1488                                        ConstantInt::getAllOnesValue(SrcTy));
1489   }
1490 
1491   return nullptr;
1492 }
1493 
1494 /// Fold icmp (trunc nuw/nsw X), (trunc nuw/nsw Y).
1495 /// Fold icmp (trunc nuw/nsw X), (zext/sext Y).
1496 Instruction *
1497 InstCombinerImpl::foldICmpTruncWithTruncOrExt(ICmpInst &Cmp,
1498                                               const SimplifyQuery &Q) {
1499   Value *X, *Y;
1500   ICmpInst::Predicate Pred;
1501   bool YIsSExt = false;
1502   // Try to match icmp (trunc X), (trunc Y)
1503   if (match(&Cmp, m_ICmp(Pred, m_Trunc(m_Value(X)), m_Trunc(m_Value(Y))))) {
1504     unsigned NoWrapFlags = cast<TruncInst>(Cmp.getOperand(0))->getNoWrapKind() &
1505                            cast<TruncInst>(Cmp.getOperand(1))->getNoWrapKind();
1506     if (Cmp.isSigned()) {
1507       // For signed comparisons, both truncs must be nsw.
1508       if (!(NoWrapFlags & TruncInst::NoSignedWrap))
1509         return nullptr;
1510     } else {
1511       // For unsigned and equality comparisons, either both must be nuw or
1512       // both must be nsw, we don't care which.
1513       if (!NoWrapFlags)
1514         return nullptr;
1515     }
1516 
1517     if (X->getType() != Y->getType() &&
1518         (!Cmp.getOperand(0)->hasOneUse() || !Cmp.getOperand(1)->hasOneUse()))
1519       return nullptr;
1520     if (!isDesirableIntType(X->getType()->getScalarSizeInBits()) &&
1521         isDesirableIntType(Y->getType()->getScalarSizeInBits())) {
1522       std::swap(X, Y);
1523       Pred = Cmp.getSwappedPredicate(Pred);
1524     }
1525     YIsSExt = !(NoWrapFlags & TruncInst::NoUnsignedWrap);
1526   }
1527   // Try to match icmp (trunc nuw X), (zext Y)
1528   else if (!Cmp.isSigned() &&
1529            match(&Cmp, m_c_ICmp(Pred, m_NUWTrunc(m_Value(X)),
1530                                 m_OneUse(m_ZExt(m_Value(Y)))))) {
1531     // Can fold trunc nuw + zext for unsigned and equality predicates.
1532   }
1533   // Try to match icmp (trunc nsw X), (sext Y)
1534   else if (match(&Cmp, m_c_ICmp(Pred, m_NSWTrunc(m_Value(X)),
1535                                 m_OneUse(m_ZExtOrSExt(m_Value(Y)))))) {
1536     // Can fold trunc nsw + zext/sext for all predicates.
1537     YIsSExt =
1538         isa<SExtInst>(Cmp.getOperand(0)) || isa<SExtInst>(Cmp.getOperand(1));
1539   } else
1540     return nullptr;
1541 
1542   Type *TruncTy = Cmp.getOperand(0)->getType();
1543   unsigned TruncBits = TruncTy->getScalarSizeInBits();
1544 
1545   // If this transform will end up changing from desirable types -> undesirable
1546   // types skip it.
1547   if (isDesirableIntType(TruncBits) &&
1548       !isDesirableIntType(X->getType()->getScalarSizeInBits()))
1549     return nullptr;
1550 
1551   Value *NewY = Builder.CreateIntCast(Y, X->getType(), YIsSExt);
1552   return new ICmpInst(Pred, X, NewY);
1553 }
1554 
1555 /// Fold icmp (xor X, Y), C.
1556 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1557                                                    BinaryOperator *Xor,
1558                                                    const APInt &C) {
1559   if (Instruction *I = foldICmpXorShiftConst(Cmp, Xor, C))
1560     return I;
1561 
1562   Value *X = Xor->getOperand(0);
1563   Value *Y = Xor->getOperand(1);
1564   const APInt *XorC;
1565   if (!match(Y, m_APInt(XorC)))
1566     return nullptr;
1567 
1568   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1569   // fold the xor.
1570   ICmpInst::Predicate Pred = Cmp.getPredicate();
1571   bool TrueIfSigned = false;
1572   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1573 
1574     // If the sign bit of the XorCst is not set, there is no change to
1575     // the operation, just stop using the Xor.
1576     if (!XorC->isNegative())
1577       return replaceOperand(Cmp, 0, X);
1578 
1579     // Emit the opposite comparison.
1580     if (TrueIfSigned)
1581       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1582                           ConstantInt::getAllOnesValue(X->getType()));
1583     else
1584       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1585                           ConstantInt::getNullValue(X->getType()));
1586   }
1587 
1588   if (Xor->hasOneUse()) {
1589     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1590     if (!Cmp.isEquality() && XorC->isSignMask()) {
1591       Pred = Cmp.getFlippedSignednessPredicate();
1592       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1593     }
1594 
1595     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1596     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1597       Pred = Cmp.getFlippedSignednessPredicate();
1598       Pred = Cmp.getSwappedPredicate(Pred);
1599       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1600     }
1601   }
1602 
1603   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1604   if (Pred == ICmpInst::ICMP_UGT) {
1605     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1606     if (*XorC == ~C && (C + 1).isPowerOf2())
1607       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1608     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1609     if (*XorC == C && (C + 1).isPowerOf2())
1610       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1611   }
1612   if (Pred == ICmpInst::ICMP_ULT) {
1613     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1614     if (*XorC == -C && C.isPowerOf2())
1615       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1616                           ConstantInt::get(X->getType(), ~C));
1617     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1618     if (*XorC == C && (-C).isPowerOf2())
1619       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1620                           ConstantInt::get(X->getType(), ~C));
1621   }
1622   return nullptr;
1623 }
1624 
1625 /// For power-of-2 C:
1626 /// ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1)
1627 /// ((X s>> ShiftC) ^ X) u> (C - 1) --> (X + C) u> ((C << 1) - 1)
1628 Instruction *InstCombinerImpl::foldICmpXorShiftConst(ICmpInst &Cmp,
1629                                                      BinaryOperator *Xor,
1630                                                      const APInt &C) {
1631   CmpInst::Predicate Pred = Cmp.getPredicate();
1632   APInt PowerOf2;
1633   if (Pred == ICmpInst::ICMP_ULT)
1634     PowerOf2 = C;
1635   else if (Pred == ICmpInst::ICMP_UGT && !C.isMaxValue())
1636     PowerOf2 = C + 1;
1637   else
1638     return nullptr;
1639   if (!PowerOf2.isPowerOf2())
1640     return nullptr;
1641   Value *X;
1642   const APInt *ShiftC;
1643   if (!match(Xor, m_OneUse(m_c_Xor(m_Value(X),
1644                                    m_AShr(m_Deferred(X), m_APInt(ShiftC))))))
1645     return nullptr;
1646   uint64_t Shift = ShiftC->getLimitedValue();
1647   Type *XType = X->getType();
1648   if (Shift == 0 || PowerOf2.isMinSignedValue())
1649     return nullptr;
1650   Value *Add = Builder.CreateAdd(X, ConstantInt::get(XType, PowerOf2));
1651   APInt Bound =
1652       Pred == ICmpInst::ICMP_ULT ? PowerOf2 << 1 : ((PowerOf2 << 1) - 1);
1653   return new ICmpInst(Pred, Add, ConstantInt::get(XType, Bound));
1654 }
1655 
1656 /// Fold icmp (and (sh X, Y), C2), C1.
1657 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1658                                                 BinaryOperator *And,
1659                                                 const APInt &C1,
1660                                                 const APInt &C2) {
1661   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1662   if (!Shift || !Shift->isShift())
1663     return nullptr;
1664 
1665   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1666   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1667   // code produced by the clang front-end, for bitfield access.
1668   // This seemingly simple opportunity to fold away a shift turns out to be
1669   // rather complicated. See PR17827 for details.
1670   unsigned ShiftOpcode = Shift->getOpcode();
1671   bool IsShl = ShiftOpcode == Instruction::Shl;
1672   const APInt *C3;
1673   if (match(Shift->getOperand(1), m_APInt(C3))) {
1674     APInt NewAndCst, NewCmpCst;
1675     bool AnyCmpCstBitsShiftedOut;
1676     if (ShiftOpcode == Instruction::Shl) {
1677       // For a left shift, we can fold if the comparison is not signed. We can
1678       // also fold a signed comparison if the mask value and comparison value
1679       // are not negative. These constraints may not be obvious, but we can
1680       // prove that they are correct using an SMT solver.
1681       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1682         return nullptr;
1683 
1684       NewCmpCst = C1.lshr(*C3);
1685       NewAndCst = C2.lshr(*C3);
1686       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1687     } else if (ShiftOpcode == Instruction::LShr) {
1688       // For a logical right shift, we can fold if the comparison is not signed.
1689       // We can also fold a signed comparison if the shifted mask value and the
1690       // shifted comparison value are not negative. These constraints may not be
1691       // obvious, but we can prove that they are correct using an SMT solver.
1692       NewCmpCst = C1.shl(*C3);
1693       NewAndCst = C2.shl(*C3);
1694       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1695       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1696         return nullptr;
1697     } else {
1698       // For an arithmetic shift, check that both constants don't use (in a
1699       // signed sense) the top bits being shifted out.
1700       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1701       NewCmpCst = C1.shl(*C3);
1702       NewAndCst = C2.shl(*C3);
1703       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1704       if (NewAndCst.ashr(*C3) != C2)
1705         return nullptr;
1706     }
1707 
1708     if (AnyCmpCstBitsShiftedOut) {
1709       // If we shifted bits out, the fold is not going to work out. As a
1710       // special case, check to see if this means that the result is always
1711       // true or false now.
1712       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1713         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1714       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1715         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1716     } else {
1717       Value *NewAnd = Builder.CreateAnd(
1718           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1719       return new ICmpInst(Cmp.getPredicate(),
1720           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1721     }
1722   }
1723 
1724   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1725   // preferable because it allows the C2 << Y expression to be hoisted out of a
1726   // loop if Y is invariant and X is not.
1727   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1728       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1729     // Compute C2 << Y.
1730     Value *NewShift =
1731         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1732               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1733 
1734     // Compute X & (C2 << Y).
1735     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1736     return replaceOperand(Cmp, 0, NewAnd);
1737   }
1738 
1739   return nullptr;
1740 }
1741 
1742 /// Fold icmp (and X, C2), C1.
1743 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1744                                                      BinaryOperator *And,
1745                                                      const APInt &C1) {
1746   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1747 
1748   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1749   // TODO: We canonicalize to the longer form for scalars because we have
1750   // better analysis/folds for icmp, and codegen may be better with icmp.
1751   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1752       match(And->getOperand(1), m_One()))
1753     return new TruncInst(And->getOperand(0), Cmp.getType());
1754 
1755   const APInt *C2;
1756   Value *X;
1757   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1758     return nullptr;
1759 
1760   // Don't perform the following transforms if the AND has multiple uses
1761   if (!And->hasOneUse())
1762     return nullptr;
1763 
1764   if (Cmp.isEquality() && C1.isZero()) {
1765     // Restrict this fold to single-use 'and' (PR10267).
1766     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1767     if (C2->isSignMask()) {
1768       Constant *Zero = Constant::getNullValue(X->getType());
1769       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1770       return new ICmpInst(NewPred, X, Zero);
1771     }
1772 
1773     APInt NewC2 = *C2;
1774     KnownBits Know = computeKnownBits(And->getOperand(0), 0, And);
1775     // Set high zeros of C2 to allow matching negated power-of-2.
1776     NewC2 = *C2 | APInt::getHighBitsSet(C2->getBitWidth(),
1777                                         Know.countMinLeadingZeros());
1778 
1779     // Restrict this fold only for single-use 'and' (PR10267).
1780     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1781     if (NewC2.isNegatedPowerOf2()) {
1782       Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2);
1783       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1784       return new ICmpInst(NewPred, X, NegBOC);
1785     }
1786   }
1787 
1788   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1789   // the input width without changing the value produced, eliminate the cast:
1790   //
1791   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1792   //
1793   // We can do this transformation if the constants do not have their sign bits
1794   // set or if it is an equality comparison. Extending a relational comparison
1795   // when we're checking the sign bit would not work.
1796   Value *W;
1797   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1798       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1799     // TODO: Is this a good transform for vectors? Wider types may reduce
1800     // throughput. Should this transform be limited (even for scalars) by using
1801     // shouldChangeType()?
1802     if (!Cmp.getType()->isVectorTy()) {
1803       Type *WideType = W->getType();
1804       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1805       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1806       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1807       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1808       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1809     }
1810   }
1811 
1812   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1813     return I;
1814 
1815   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1816   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1817   //
1818   // iff pred isn't signed
1819   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1820       match(And->getOperand(1), m_One())) {
1821     Constant *One = cast<Constant>(And->getOperand(1));
1822     Value *Or = And->getOperand(0);
1823     Value *A, *B, *LShr;
1824     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1825         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1826       unsigned UsesRemoved = 0;
1827       if (And->hasOneUse())
1828         ++UsesRemoved;
1829       if (Or->hasOneUse())
1830         ++UsesRemoved;
1831       if (LShr->hasOneUse())
1832         ++UsesRemoved;
1833 
1834       // Compute A & ((1 << B) | 1)
1835       unsigned RequireUsesRemoved = match(B, m_ImmConstant()) ? 1 : 3;
1836       if (UsesRemoved >= RequireUsesRemoved) {
1837         Value *NewOr =
1838             Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1839                                                /*HasNUW=*/true),
1840                              One, Or->getName());
1841         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1842         return replaceOperand(Cmp, 0, NewAnd);
1843       }
1844     }
1845   }
1846 
1847   // (icmp eq (and (bitcast X to int), ExponentMask), ExponentMask) -->
1848   // llvm.is.fpclass(X, fcInf|fcNan)
1849   // (icmp ne (and (bitcast X to int), ExponentMask), ExponentMask) -->
1850   // llvm.is.fpclass(X, ~(fcInf|fcNan))
1851   Value *V;
1852   if (!Cmp.getParent()->getParent()->hasFnAttribute(
1853           Attribute::NoImplicitFloat) &&
1854       Cmp.isEquality() &&
1855       match(X, m_OneUse(m_ElementWiseBitCast(m_Value(V))))) {
1856     Type *FPType = V->getType()->getScalarType();
1857     if (FPType->isIEEELikeFPTy() && C1 == *C2) {
1858       APInt ExponentMask =
1859           APFloat::getInf(FPType->getFltSemantics()).bitcastToAPInt();
1860       if (C1 == ExponentMask) {
1861         unsigned Mask = FPClassTest::fcNan | FPClassTest::fcInf;
1862         if (isICMP_NE)
1863           Mask = ~Mask & fcAllFlags;
1864         return replaceInstUsesWith(Cmp, Builder.createIsFPClass(V, Mask));
1865       }
1866     }
1867   }
1868 
1869   return nullptr;
1870 }
1871 
1872 /// Fold icmp (and X, Y), C.
1873 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1874                                                    BinaryOperator *And,
1875                                                    const APInt &C) {
1876   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1877     return I;
1878 
1879   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1880   bool TrueIfNeg;
1881   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1882     // ((X - 1) & ~X) <  0 --> X == 0
1883     // ((X - 1) & ~X) >= 0 --> X != 0
1884     Value *X;
1885     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1886         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1887       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1888       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1889     }
1890     // (X & -X) <  0 --> X == MinSignedC
1891     // (X & -X) > -1 --> X != MinSignedC
1892     if (match(And, m_c_And(m_Neg(m_Value(X)), m_Deferred(X)))) {
1893       Constant *MinSignedC = ConstantInt::get(
1894           X->getType(),
1895           APInt::getSignedMinValue(X->getType()->getScalarSizeInBits()));
1896       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1897       return new ICmpInst(NewPred, X, MinSignedC);
1898     }
1899   }
1900 
1901   // TODO: These all require that Y is constant too, so refactor with the above.
1902 
1903   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1904   Value *X = And->getOperand(0);
1905   Value *Y = And->getOperand(1);
1906   if (auto *C2 = dyn_cast<ConstantInt>(Y))
1907     if (auto *LI = dyn_cast<LoadInst>(X))
1908       if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1909         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1910           if (Instruction *Res =
1911                   foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2))
1912             return Res;
1913 
1914   if (!Cmp.isEquality())
1915     return nullptr;
1916 
1917   // X & -C == -C -> X >  u ~C
1918   // X & -C != -C -> X <= u ~C
1919   //   iff C is a power of 2
1920   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1921     auto NewPred =
1922         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1923     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1924   }
1925 
1926   // If we are testing the intersection of 2 select-of-nonzero-constants with no
1927   // common bits set, it's the same as checking if exactly one select condition
1928   // is set:
1929   // ((A ? TC : FC) & (B ? TC : FC)) == 0 --> xor A, B
1930   // ((A ? TC : FC) & (B ? TC : FC)) != 0 --> not(xor A, B)
1931   // TODO: Generalize for non-constant values.
1932   // TODO: Handle signed/unsigned predicates.
1933   // TODO: Handle other bitwise logic connectors.
1934   // TODO: Extend to handle a non-zero compare constant.
1935   if (C.isZero() && (Pred == CmpInst::ICMP_EQ || And->hasOneUse())) {
1936     assert(Cmp.isEquality() && "Not expecting non-equality predicates");
1937     Value *A, *B;
1938     const APInt *TC, *FC;
1939     if (match(X, m_Select(m_Value(A), m_APInt(TC), m_APInt(FC))) &&
1940         match(Y,
1941               m_Select(m_Value(B), m_SpecificInt(*TC), m_SpecificInt(*FC))) &&
1942         !TC->isZero() && !FC->isZero() && !TC->intersects(*FC)) {
1943       Value *R = Builder.CreateXor(A, B);
1944       if (Pred == CmpInst::ICMP_NE)
1945         R = Builder.CreateNot(R);
1946       return replaceInstUsesWith(Cmp, R);
1947     }
1948   }
1949 
1950   // ((zext i1 X) & Y) == 0 --> !((trunc Y) & X)
1951   // ((zext i1 X) & Y) != 0 -->  ((trunc Y) & X)
1952   // ((zext i1 X) & Y) == 1 -->  ((trunc Y) & X)
1953   // ((zext i1 X) & Y) != 1 --> !((trunc Y) & X)
1954   if (match(And, m_OneUse(m_c_And(m_OneUse(m_ZExt(m_Value(X))), m_Value(Y)))) &&
1955       X->getType()->isIntOrIntVectorTy(1) && (C.isZero() || C.isOne())) {
1956     Value *TruncY = Builder.CreateTrunc(Y, X->getType());
1957     if (C.isZero() ^ (Pred == CmpInst::ICMP_NE)) {
1958       Value *And = Builder.CreateAnd(TruncY, X);
1959       return BinaryOperator::CreateNot(And);
1960     }
1961     return BinaryOperator::CreateAnd(TruncY, X);
1962   }
1963 
1964   // (icmp eq/ne (and (shl -1, X), Y), 0)
1965   //    -> (icmp eq/ne (lshr Y, X), 0)
1966   // We could technically handle any C == 0 or (C < 0 && isOdd(C)) but it seems
1967   // highly unlikely the non-zero case will ever show up in code.
1968   if (C.isZero() &&
1969       match(And, m_OneUse(m_c_And(m_OneUse(m_Shl(m_AllOnes(), m_Value(X))),
1970                                   m_Value(Y))))) {
1971     Value *LShr = Builder.CreateLShr(Y, X);
1972     return new ICmpInst(Pred, LShr, Constant::getNullValue(LShr->getType()));
1973   }
1974 
1975   return nullptr;
1976 }
1977 
1978 /// Fold icmp eq/ne (or (xor/sub (X1, X2), xor/sub (X3, X4))), 0.
1979 static Value *foldICmpOrXorSubChain(ICmpInst &Cmp, BinaryOperator *Or,
1980                                     InstCombiner::BuilderTy &Builder) {
1981   // Are we using xors or subs to bitwise check for a pair or pairs of
1982   // (in)equalities? Convert to a shorter form that has more potential to be
1983   // folded even further.
1984   // ((X1 ^/- X2) || (X3 ^/- X4)) == 0 --> (X1 == X2) && (X3 == X4)
1985   // ((X1 ^/- X2) || (X3 ^/- X4)) != 0 --> (X1 != X2) || (X3 != X4)
1986   // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) == 0 -->
1987   // (X1 == X2) && (X3 == X4) && (X5 == X6)
1988   // ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) != 0 -->
1989   // (X1 != X2) || (X3 != X4) || (X5 != X6)
1990   SmallVector<std::pair<Value *, Value *>, 2> CmpValues;
1991   SmallVector<Value *, 16> WorkList(1, Or);
1992 
1993   while (!WorkList.empty()) {
1994     auto MatchOrOperatorArgument = [&](Value *OrOperatorArgument) {
1995       Value *Lhs, *Rhs;
1996 
1997       if (match(OrOperatorArgument,
1998                 m_OneUse(m_Xor(m_Value(Lhs), m_Value(Rhs))))) {
1999         CmpValues.emplace_back(Lhs, Rhs);
2000         return;
2001       }
2002 
2003       if (match(OrOperatorArgument,
2004                 m_OneUse(m_Sub(m_Value(Lhs), m_Value(Rhs))))) {
2005         CmpValues.emplace_back(Lhs, Rhs);
2006         return;
2007       }
2008 
2009       WorkList.push_back(OrOperatorArgument);
2010     };
2011 
2012     Value *CurrentValue = WorkList.pop_back_val();
2013     Value *OrOperatorLhs, *OrOperatorRhs;
2014 
2015     if (!match(CurrentValue,
2016                m_Or(m_Value(OrOperatorLhs), m_Value(OrOperatorRhs)))) {
2017       return nullptr;
2018     }
2019 
2020     MatchOrOperatorArgument(OrOperatorRhs);
2021     MatchOrOperatorArgument(OrOperatorLhs);
2022   }
2023 
2024   ICmpInst::Predicate Pred = Cmp.getPredicate();
2025   auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2026   Value *LhsCmp = Builder.CreateICmp(Pred, CmpValues.rbegin()->first,
2027                                      CmpValues.rbegin()->second);
2028 
2029   for (auto It = CmpValues.rbegin() + 1; It != CmpValues.rend(); ++It) {
2030     Value *RhsCmp = Builder.CreateICmp(Pred, It->first, It->second);
2031     LhsCmp = Builder.CreateBinOp(BOpc, LhsCmp, RhsCmp);
2032   }
2033 
2034   return LhsCmp;
2035 }
2036 
2037 /// Fold icmp (or X, Y), C.
2038 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
2039                                                   BinaryOperator *Or,
2040                                                   const APInt &C) {
2041   ICmpInst::Predicate Pred = Cmp.getPredicate();
2042   if (C.isOne()) {
2043     // icmp slt signum(V) 1 --> icmp slt V, 1
2044     Value *V = nullptr;
2045     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
2046       return new ICmpInst(ICmpInst::ICMP_SLT, V,
2047                           ConstantInt::get(V->getType(), 1));
2048   }
2049 
2050   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
2051 
2052   // (icmp eq/ne (or disjoint x, C0), C1)
2053   //    -> (icmp eq/ne x, C0^C1)
2054   if (Cmp.isEquality() && match(OrOp1, m_ImmConstant()) &&
2055       cast<PossiblyDisjointInst>(Or)->isDisjoint()) {
2056     Value *NewC =
2057         Builder.CreateXor(OrOp1, ConstantInt::get(OrOp1->getType(), C));
2058     return new ICmpInst(Pred, OrOp0, NewC);
2059   }
2060 
2061   const APInt *MaskC;
2062   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
2063     if (*MaskC == C && (C + 1).isPowerOf2()) {
2064       // X | C == C --> X <=u C
2065       // X | C != C --> X  >u C
2066       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
2067       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
2068       return new ICmpInst(Pred, OrOp0, OrOp1);
2069     }
2070 
2071     // More general: canonicalize 'equality with set bits mask' to
2072     // 'equality with clear bits mask'.
2073     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
2074     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
2075     if (Or->hasOneUse()) {
2076       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
2077       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
2078       return new ICmpInst(Pred, And, NewC);
2079     }
2080   }
2081 
2082   // (X | (X-1)) s<  0 --> X s< 1
2083   // (X | (X-1)) s> -1 --> X s> 0
2084   Value *X;
2085   bool TrueIfSigned;
2086   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
2087       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
2088     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
2089     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
2090     return new ICmpInst(NewPred, X, NewC);
2091   }
2092 
2093   const APInt *OrC;
2094   // icmp(X | OrC, C) --> icmp(X, 0)
2095   if (C.isNonNegative() && match(Or, m_Or(m_Value(X), m_APInt(OrC)))) {
2096     switch (Pred) {
2097     // X | OrC s< C --> X s< 0 iff OrC s>= C s>= 0
2098     case ICmpInst::ICMP_SLT:
2099     // X | OrC s>= C --> X s>= 0 iff OrC s>= C s>= 0
2100     case ICmpInst::ICMP_SGE:
2101       if (OrC->sge(C))
2102         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2103       break;
2104     // X | OrC s<= C --> X s< 0 iff OrC s> C s>= 0
2105     case ICmpInst::ICMP_SLE:
2106     // X | OrC s> C --> X s>= 0 iff OrC s> C s>= 0
2107     case ICmpInst::ICMP_SGT:
2108       if (OrC->sgt(C))
2109         return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred), X,
2110                             ConstantInt::getNullValue(X->getType()));
2111       break;
2112     default:
2113       break;
2114     }
2115   }
2116 
2117   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
2118     return nullptr;
2119 
2120   Value *P, *Q;
2121   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
2122     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
2123     // -> and (icmp eq P, null), (icmp eq Q, null).
2124     Value *CmpP =
2125         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
2126     Value *CmpQ =
2127         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
2128     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2129     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
2130   }
2131 
2132   if (Value *V = foldICmpOrXorSubChain(Cmp, Or, Builder))
2133     return replaceInstUsesWith(Cmp, V);
2134 
2135   return nullptr;
2136 }
2137 
2138 /// Fold icmp (mul X, Y), C.
2139 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
2140                                                    BinaryOperator *Mul,
2141                                                    const APInt &C) {
2142   ICmpInst::Predicate Pred = Cmp.getPredicate();
2143   Type *MulTy = Mul->getType();
2144   Value *X = Mul->getOperand(0);
2145 
2146   // If there's no overflow:
2147   // X * X == 0 --> X == 0
2148   // X * X != 0 --> X != 0
2149   if (Cmp.isEquality() && C.isZero() && X == Mul->getOperand(1) &&
2150       (Mul->hasNoUnsignedWrap() || Mul->hasNoSignedWrap()))
2151     return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy));
2152 
2153   const APInt *MulC;
2154   if (!match(Mul->getOperand(1), m_APInt(MulC)))
2155     return nullptr;
2156 
2157   // If this is a test of the sign bit and the multiply is sign-preserving with
2158   // a constant operand, use the multiply LHS operand instead:
2159   // (X * +MulC) < 0 --> X < 0
2160   // (X * -MulC) < 0 --> X > 0
2161   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
2162     if (MulC->isNegative())
2163       Pred = ICmpInst::getSwappedPredicate(Pred);
2164     return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy));
2165   }
2166 
2167   if (MulC->isZero())
2168     return nullptr;
2169 
2170   // If the multiply does not wrap or the constant is odd, try to divide the
2171   // compare constant by the multiplication factor.
2172   if (Cmp.isEquality()) {
2173     // (mul nsw X, MulC) eq/ne C --> X eq/ne C /s MulC
2174     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
2175       Constant *NewC = ConstantInt::get(MulTy, C.sdiv(*MulC));
2176       return new ICmpInst(Pred, X, NewC);
2177     }
2178 
2179     // C % MulC == 0 is weaker than we could use if MulC is odd because it
2180     // correct to transform if MulC * N == C including overflow. I.e with i8
2181     // (icmp eq (mul X, 5), 101) -> (icmp eq X, 225) but since 101 % 5 != 0, we
2182     // miss that case.
2183     if (C.urem(*MulC).isZero()) {
2184       // (mul nuw X, MulC) eq/ne C --> X eq/ne C /u MulC
2185       // (mul X, OddC) eq/ne N * C --> X eq/ne N
2186       if ((*MulC & 1).isOne() || Mul->hasNoUnsignedWrap()) {
2187         Constant *NewC = ConstantInt::get(MulTy, C.udiv(*MulC));
2188         return new ICmpInst(Pred, X, NewC);
2189       }
2190     }
2191   }
2192 
2193   // With a matching no-overflow guarantee, fold the constants:
2194   // (X * MulC) < C --> X < (C / MulC)
2195   // (X * MulC) > C --> X > (C / MulC)
2196   // TODO: Assert that Pred is not equal to SGE, SLE, UGE, ULE?
2197   Constant *NewC = nullptr;
2198   if (Mul->hasNoSignedWrap() && ICmpInst::isSigned(Pred)) {
2199     // MININT / -1 --> overflow.
2200     if (C.isMinSignedValue() && MulC->isAllOnes())
2201       return nullptr;
2202     if (MulC->isNegative())
2203       Pred = ICmpInst::getSwappedPredicate(Pred);
2204 
2205     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2206       NewC = ConstantInt::get(
2207           MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::UP));
2208     } else {
2209       assert((Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGT) &&
2210              "Unexpected predicate");
2211       NewC = ConstantInt::get(
2212           MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::DOWN));
2213     }
2214   } else if (Mul->hasNoUnsignedWrap() && ICmpInst::isUnsigned(Pred)) {
2215     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) {
2216       NewC = ConstantInt::get(
2217           MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::UP));
2218     } else {
2219       assert((Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
2220              "Unexpected predicate");
2221       NewC = ConstantInt::get(
2222           MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::DOWN));
2223     }
2224   }
2225 
2226   return NewC ? new ICmpInst(Pred, X, NewC) : nullptr;
2227 }
2228 
2229 /// Fold icmp (shl 1, Y), C.
2230 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2231                                    const APInt &C) {
2232   Value *Y;
2233   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2234     return nullptr;
2235 
2236   Type *ShiftType = Shl->getType();
2237   unsigned TypeBits = C.getBitWidth();
2238   bool CIsPowerOf2 = C.isPowerOf2();
2239   ICmpInst::Predicate Pred = Cmp.getPredicate();
2240   if (Cmp.isUnsigned()) {
2241     // (1 << Y) pred C -> Y pred Log2(C)
2242     if (!CIsPowerOf2) {
2243       // (1 << Y) <  30 -> Y <= 4
2244       // (1 << Y) <= 30 -> Y <= 4
2245       // (1 << Y) >= 30 -> Y >  4
2246       // (1 << Y) >  30 -> Y >  4
2247       if (Pred == ICmpInst::ICMP_ULT)
2248         Pred = ICmpInst::ICMP_ULE;
2249       else if (Pred == ICmpInst::ICMP_UGE)
2250         Pred = ICmpInst::ICMP_UGT;
2251     }
2252 
2253     unsigned CLog2 = C.logBase2();
2254     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2255   } else if (Cmp.isSigned()) {
2256     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2257     // (1 << Y) >  0 -> Y != 31
2258     // (1 << Y) >  C -> Y != 31 if C is negative.
2259     if (Pred == ICmpInst::ICMP_SGT && C.sle(0))
2260       return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2261 
2262     // (1 << Y) <  0 -> Y == 31
2263     // (1 << Y) <  1 -> Y == 31
2264     // (1 << Y) <  C -> Y == 31 if C is negative and not signed min.
2265     // Exclude signed min by subtracting 1 and lower the upper bound to 0.
2266     if (Pred == ICmpInst::ICMP_SLT && (C-1).sle(0))
2267       return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2268   }
2269 
2270   return nullptr;
2271 }
2272 
2273 /// Fold icmp (shl X, Y), C.
2274 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2275                                                    BinaryOperator *Shl,
2276                                                    const APInt &C) {
2277   const APInt *ShiftVal;
2278   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2279     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2280 
2281   ICmpInst::Predicate Pred = Cmp.getPredicate();
2282   // (icmp pred (shl nuw&nsw X, Y), Csle0)
2283   //      -> (icmp pred X, Csle0)
2284   //
2285   // The idea is the nuw/nsw essentially freeze the sign bit for the shift op
2286   // so X's must be what is used.
2287   if (C.sle(0) && Shl->hasNoUnsignedWrap() && Shl->hasNoSignedWrap())
2288     return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1));
2289 
2290   // (icmp eq/ne (shl nuw|nsw X, Y), 0)
2291   //      -> (icmp eq/ne X, 0)
2292   if (ICmpInst::isEquality(Pred) && C.isZero() &&
2293       (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap()))
2294     return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1));
2295 
2296   // (icmp slt (shl nsw X, Y), 0/1)
2297   //      -> (icmp slt X, 0/1)
2298   // (icmp sgt (shl nsw X, Y), 0/-1)
2299   //      -> (icmp sgt X, 0/-1)
2300   //
2301   // NB: sge/sle with a constant will canonicalize to sgt/slt.
2302   if (Shl->hasNoSignedWrap() &&
2303       (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT))
2304     if (C.isZero() || (Pred == ICmpInst::ICMP_SGT ? C.isAllOnes() : C.isOne()))
2305       return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1));
2306 
2307   const APInt *ShiftAmt;
2308   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2309     return foldICmpShlOne(Cmp, Shl, C);
2310 
2311   // Check that the shift amount is in range. If not, don't perform undefined
2312   // shifts. When the shift is visited, it will be simplified.
2313   unsigned TypeBits = C.getBitWidth();
2314   if (ShiftAmt->uge(TypeBits))
2315     return nullptr;
2316 
2317   Value *X = Shl->getOperand(0);
2318   Type *ShType = Shl->getType();
2319 
2320   // NSW guarantees that we are only shifting out sign bits from the high bits,
2321   // so we can ASHR the compare constant without needing a mask and eliminate
2322   // the shift.
2323   if (Shl->hasNoSignedWrap()) {
2324     if (Pred == ICmpInst::ICMP_SGT) {
2325       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2326       APInt ShiftedC = C.ashr(*ShiftAmt);
2327       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2328     }
2329     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2330         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2331       APInt ShiftedC = C.ashr(*ShiftAmt);
2332       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2333     }
2334     if (Pred == ICmpInst::ICMP_SLT) {
2335       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2336       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2337       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2338       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2339       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2340       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2341       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2342     }
2343   }
2344 
2345   // NUW guarantees that we are only shifting out zero bits from the high bits,
2346   // so we can LSHR the compare constant without needing a mask and eliminate
2347   // the shift.
2348   if (Shl->hasNoUnsignedWrap()) {
2349     if (Pred == ICmpInst::ICMP_UGT) {
2350       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2351       APInt ShiftedC = C.lshr(*ShiftAmt);
2352       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2353     }
2354     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2355         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2356       APInt ShiftedC = C.lshr(*ShiftAmt);
2357       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2358     }
2359     if (Pred == ICmpInst::ICMP_ULT) {
2360       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2361       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2362       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2363       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2364       assert(C.ugt(0) && "ult 0 should have been eliminated");
2365       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2366       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2367     }
2368   }
2369 
2370   if (Cmp.isEquality() && Shl->hasOneUse()) {
2371     // Strength-reduce the shift into an 'and'.
2372     Constant *Mask = ConstantInt::get(
2373         ShType,
2374         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2375     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2376     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2377     return new ICmpInst(Pred, And, LShrC);
2378   }
2379 
2380   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2381   bool TrueIfSigned = false;
2382   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2383     // (X << 31) <s 0  --> (X & 1) != 0
2384     Constant *Mask = ConstantInt::get(
2385         ShType,
2386         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2387     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2388     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2389                         And, Constant::getNullValue(ShType));
2390   }
2391 
2392   // Simplify 'shl' inequality test into 'and' equality test.
2393   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2394     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2395     if ((C + 1).isPowerOf2() &&
2396         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2397       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2398       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2399                                                      : ICmpInst::ICMP_NE,
2400                           And, Constant::getNullValue(ShType));
2401     }
2402     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2403     if (C.isPowerOf2() &&
2404         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2405       Value *And =
2406           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2407       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2408                                                      : ICmpInst::ICMP_NE,
2409                           And, Constant::getNullValue(ShType));
2410     }
2411   }
2412 
2413   // Transform (icmp pred iM (shl iM %v, N), C)
2414   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2415   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2416   // This enables us to get rid of the shift in favor of a trunc that may be
2417   // free on the target. It has the additional benefit of comparing to a
2418   // smaller constant that may be more target-friendly.
2419   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2420   if (Shl->hasOneUse() && Amt != 0 &&
2421       shouldChangeType(ShType->getScalarSizeInBits(), TypeBits - Amt)) {
2422     ICmpInst::Predicate CmpPred = Pred;
2423     APInt RHSC = C;
2424 
2425     if (RHSC.countr_zero() < Amt && ICmpInst::isStrictPredicate(CmpPred)) {
2426       // Try the flipped strictness predicate.
2427       // e.g.:
2428       // icmp ult i64 (shl X, 32), 8589934593 ->
2429       // icmp ule i64 (shl X, 32), 8589934592 ->
2430       // icmp ule i32 (trunc X, i32), 2 ->
2431       // icmp ult i32 (trunc X, i32), 3
2432       if (auto FlippedStrictness =
2433               InstCombiner::getFlippedStrictnessPredicateAndConstant(
2434                   Pred, ConstantInt::get(ShType->getContext(), C))) {
2435         CmpPred = FlippedStrictness->first;
2436         RHSC = cast<ConstantInt>(FlippedStrictness->second)->getValue();
2437       }
2438     }
2439 
2440     if (RHSC.countr_zero() >= Amt) {
2441       Type *TruncTy = ShType->getWithNewBitWidth(TypeBits - Amt);
2442       Constant *NewC =
2443           ConstantInt::get(TruncTy, RHSC.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2444       return new ICmpInst(CmpPred,
2445                           Builder.CreateTrunc(X, TruncTy, "", /*IsNUW=*/false,
2446                                               Shl->hasNoSignedWrap()),
2447                           NewC);
2448     }
2449   }
2450 
2451   return nullptr;
2452 }
2453 
2454 /// Fold icmp ({al}shr X, Y), C.
2455 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2456                                                    BinaryOperator *Shr,
2457                                                    const APInt &C) {
2458   // An exact shr only shifts out zero bits, so:
2459   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2460   Value *X = Shr->getOperand(0);
2461   CmpInst::Predicate Pred = Cmp.getPredicate();
2462   if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2463     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2464 
2465   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2466   const APInt *ShiftValC;
2467   if (match(X, m_APInt(ShiftValC))) {
2468     if (Cmp.isEquality())
2469       return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC);
2470 
2471     // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0
2472     // (ShiftValC >> Y) <s  0 --> Y == 0 with ShiftValC < 0
2473     bool TrueIfSigned;
2474     if (!IsAShr && ShiftValC->isNegative() &&
2475         isSignBitCheck(Pred, C, TrueIfSigned))
2476       return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE,
2477                           Shr->getOperand(1),
2478                           ConstantInt::getNullValue(X->getType()));
2479 
2480     // If the shifted constant is a power-of-2, test the shift amount directly:
2481     // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC))
2482     // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC))
2483     if (!IsAShr && ShiftValC->isPowerOf2() &&
2484         (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) {
2485       bool IsUGT = Pred == CmpInst::ICMP_UGT;
2486       assert(ShiftValC->uge(C) && "Expected simplify of compare");
2487       assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify");
2488 
2489       unsigned CmpLZ = IsUGT ? C.countl_zero() : (C - 1).countl_zero();
2490       unsigned ShiftLZ = ShiftValC->countl_zero();
2491       Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ);
2492       auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
2493       return new ICmpInst(NewPred, Shr->getOperand(1), NewC);
2494     }
2495   }
2496 
2497   const APInt *ShiftAmtC;
2498   if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC)))
2499     return nullptr;
2500 
2501   // Check that the shift amount is in range. If not, don't perform undefined
2502   // shifts. When the shift is visited it will be simplified.
2503   unsigned TypeBits = C.getBitWidth();
2504   unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits);
2505   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2506     return nullptr;
2507 
2508   bool IsExact = Shr->isExact();
2509   Type *ShrTy = Shr->getType();
2510   // TODO: If we could guarantee that InstSimplify would handle all of the
2511   // constant-value-based preconditions in the folds below, then we could assert
2512   // those conditions rather than checking them. This is difficult because of
2513   // undef/poison (PR34838).
2514   if (IsAShr && Shr->hasOneUse()) {
2515     if (IsExact && (Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) &&
2516         (C - 1).isPowerOf2() && C.countLeadingZeros() > ShAmtVal) {
2517       // When C - 1 is a power of two and the transform can be legally
2518       // performed, prefer this form so the produced constant is close to a
2519       // power of two.
2520       // icmp slt/ult (ashr exact X, ShAmtC), C
2521       // --> icmp slt/ult X, (C - 1) << ShAmtC) + 1
2522       APInt ShiftedC = (C - 1).shl(ShAmtVal) + 1;
2523       return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2524     }
2525     if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
2526       // When ShAmtC can be shifted losslessly:
2527       // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2528       // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2529       APInt ShiftedC = C.shl(ShAmtVal);
2530       if (ShiftedC.ashr(ShAmtVal) == C)
2531         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2532     }
2533     if (Pred == CmpInst::ICMP_SGT) {
2534       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2535       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2536       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2537           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2538         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2539     }
2540     if (Pred == CmpInst::ICMP_UGT) {
2541       // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2542       // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd
2543       // clause accounts for that pattern.
2544       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2545       if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) ||
2546           (C + 1).shl(ShAmtVal).isMinSignedValue())
2547         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2548     }
2549 
2550     // If the compare constant has significant bits above the lowest sign-bit,
2551     // then convert an unsigned cmp to a test of the sign-bit:
2552     // (ashr X, ShiftC) u> C --> X s< 0
2553     // (ashr X, ShiftC) u< C --> X s> -1
2554     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2555       if (Pred == CmpInst::ICMP_UGT) {
2556         return new ICmpInst(CmpInst::ICMP_SLT, X,
2557                             ConstantInt::getNullValue(ShrTy));
2558       }
2559       if (Pred == CmpInst::ICMP_ULT) {
2560         return new ICmpInst(CmpInst::ICMP_SGT, X,
2561                             ConstantInt::getAllOnesValue(ShrTy));
2562       }
2563     }
2564   } else if (!IsAShr) {
2565     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2566       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2567       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2568       APInt ShiftedC = C.shl(ShAmtVal);
2569       if (ShiftedC.lshr(ShAmtVal) == C)
2570         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2571     }
2572     if (Pred == CmpInst::ICMP_UGT) {
2573       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2574       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2575       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2576         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2577     }
2578   }
2579 
2580   if (!Cmp.isEquality())
2581     return nullptr;
2582 
2583   // Handle equality comparisons of shift-by-constant.
2584 
2585   // If the comparison constant changes with the shift, the comparison cannot
2586   // succeed (bits of the comparison constant cannot match the shifted value).
2587   // This should be known by InstSimplify and already be folded to true/false.
2588   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2589           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2590          "Expected icmp+shr simplify did not occur.");
2591 
2592   // If the bits shifted out are known zero, compare the unshifted value:
2593   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2594   if (Shr->isExact())
2595     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2596 
2597   if (C.isZero()) {
2598     // == 0 is u< 1.
2599     if (Pred == CmpInst::ICMP_EQ)
2600       return new ICmpInst(CmpInst::ICMP_ULT, X,
2601                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2602     else
2603       return new ICmpInst(CmpInst::ICMP_UGT, X,
2604                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2605   }
2606 
2607   if (Shr->hasOneUse()) {
2608     // Canonicalize the shift into an 'and':
2609     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2610     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2611     Constant *Mask = ConstantInt::get(ShrTy, Val);
2612     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2613     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2614   }
2615 
2616   return nullptr;
2617 }
2618 
2619 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2620                                                     BinaryOperator *SRem,
2621                                                     const APInt &C) {
2622   // Match an 'is positive' or 'is negative' comparison of remainder by a
2623   // constant power-of-2 value:
2624   // (X % pow2C) sgt/slt 0
2625   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2626   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT &&
2627       Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2628     return nullptr;
2629 
2630   // TODO: The one-use check is standard because we do not typically want to
2631   //       create longer instruction sequences, but this might be a special-case
2632   //       because srem is not good for analysis or codegen.
2633   if (!SRem->hasOneUse())
2634     return nullptr;
2635 
2636   const APInt *DivisorC;
2637   if (!match(SRem->getOperand(1), m_Power2(DivisorC)))
2638     return nullptr;
2639 
2640   // For cmp_sgt/cmp_slt only zero valued C is handled.
2641   // For cmp_eq/cmp_ne only positive valued C is handled.
2642   if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) &&
2643        !C.isZero()) ||
2644       ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2645        !C.isStrictlyPositive()))
2646     return nullptr;
2647 
2648   // Mask off the sign bit and the modulo bits (low-bits).
2649   Type *Ty = SRem->getType();
2650   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2651   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2652   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2653 
2654   if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
2655     return new ICmpInst(Pred, And, ConstantInt::get(Ty, C));
2656 
2657   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2658   // bit is set. Example:
2659   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2660   if (Pred == ICmpInst::ICMP_SGT)
2661     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2662 
2663   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2664   // bit is set. Example:
2665   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2666   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2667 }
2668 
2669 /// Fold icmp (udiv X, Y), C.
2670 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2671                                                     BinaryOperator *UDiv,
2672                                                     const APInt &C) {
2673   ICmpInst::Predicate Pred = Cmp.getPredicate();
2674   Value *X = UDiv->getOperand(0);
2675   Value *Y = UDiv->getOperand(1);
2676   Type *Ty = UDiv->getType();
2677 
2678   const APInt *C2;
2679   if (!match(X, m_APInt(C2)))
2680     return nullptr;
2681 
2682   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2683 
2684   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2685   if (Pred == ICmpInst::ICMP_UGT) {
2686     assert(!C.isMaxValue() &&
2687            "icmp ugt X, UINT_MAX should have been simplified already.");
2688     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2689                         ConstantInt::get(Ty, C2->udiv(C + 1)));
2690   }
2691 
2692   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2693   if (Pred == ICmpInst::ICMP_ULT) {
2694     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2695     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2696                         ConstantInt::get(Ty, C2->udiv(C)));
2697   }
2698 
2699   return nullptr;
2700 }
2701 
2702 /// Fold icmp ({su}div X, Y), C.
2703 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2704                                                    BinaryOperator *Div,
2705                                                    const APInt &C) {
2706   ICmpInst::Predicate Pred = Cmp.getPredicate();
2707   Value *X = Div->getOperand(0);
2708   Value *Y = Div->getOperand(1);
2709   Type *Ty = Div->getType();
2710   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2711 
2712   // If unsigned division and the compare constant is bigger than
2713   // UMAX/2 (negative), there's only one pair of values that satisfies an
2714   // equality check, so eliminate the division:
2715   // (X u/ Y) == C --> (X == C) && (Y == 1)
2716   // (X u/ Y) != C --> (X != C) || (Y != 1)
2717   // Similarly, if signed division and the compare constant is exactly SMIN:
2718   // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
2719   // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
2720   if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() &&
2721       (!DivIsSigned || C.isMinSignedValue()))   {
2722     Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C));
2723     Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1));
2724     auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2725     return BinaryOperator::Create(Logic, XBig, YOne);
2726   }
2727 
2728   // Fold: icmp pred ([us]div X, C2), C -> range test
2729   // Fold this div into the comparison, producing a range check.
2730   // Determine, based on the divide type, what the range is being
2731   // checked.  If there is an overflow on the low or high side, remember
2732   // it, otherwise compute the range [low, hi) bounding the new value.
2733   // See: InsertRangeTest above for the kinds of replacements possible.
2734   const APInt *C2;
2735   if (!match(Y, m_APInt(C2)))
2736     return nullptr;
2737 
2738   // FIXME: If the operand types don't match the type of the divide
2739   // then don't attempt this transform. The code below doesn't have the
2740   // logic to deal with a signed divide and an unsigned compare (and
2741   // vice versa). This is because (x /s C2) <s C  produces different
2742   // results than (x /s C2) <u C or (x /u C2) <s C or even
2743   // (x /u C2) <u C.  Simply casting the operands and result won't
2744   // work. :(  The if statement below tests that condition and bails
2745   // if it finds it.
2746   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2747     return nullptr;
2748 
2749   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2750   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2751   // division-by-constant cases should be present, we can not assert that they
2752   // have happened before we reach this icmp instruction.
2753   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2754     return nullptr;
2755 
2756   // Compute Prod = C * C2. We are essentially solving an equation of
2757   // form X / C2 = C. We solve for X by multiplying C2 and C.
2758   // By solving for X, we can turn this into a range check instead of computing
2759   // a divide.
2760   APInt Prod = C * *C2;
2761 
2762   // Determine if the product overflows by seeing if the product is not equal to
2763   // the divide. Make sure we do the same kind of divide as in the LHS
2764   // instruction that we're folding.
2765   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2766 
2767   // If the division is known to be exact, then there is no remainder from the
2768   // divide, so the covered range size is unit, otherwise it is the divisor.
2769   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2770 
2771   // Figure out the interval that is being checked.  For example, a comparison
2772   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2773   // Compute this interval based on the constants involved and the signedness of
2774   // the compare/divide.  This computes a half-open interval, keeping track of
2775   // whether either value in the interval overflows.  After analysis each
2776   // overflow variable is set to 0 if it's corresponding bound variable is valid
2777   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2778   int LoOverflow = 0, HiOverflow = 0;
2779   APInt LoBound, HiBound;
2780 
2781   if (!DivIsSigned) { // udiv
2782     // e.g. X/5 op 3  --> [15, 20)
2783     LoBound = Prod;
2784     HiOverflow = LoOverflow = ProdOV;
2785     if (!HiOverflow) {
2786       // If this is not an exact divide, then many values in the range collapse
2787       // to the same result value.
2788       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2789     }
2790   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2791     if (C.isZero()) {                    // (X / pos) op 0
2792       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2793       LoBound = -(RangeSize - 1);
2794       HiBound = RangeSize;
2795     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2796       LoBound = Prod;                    // e.g.   X/5 op 3 --> [15, 20)
2797       HiOverflow = LoOverflow = ProdOV;
2798       if (!HiOverflow)
2799         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2800     } else { // (X / pos) op neg
2801       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2802       HiBound = Prod + 1;
2803       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2804       if (!LoOverflow) {
2805         APInt DivNeg = -RangeSize;
2806         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2807       }
2808     }
2809   } else if (C2->isNegative()) { // Divisor is < 0.
2810     if (Div->isExact())
2811       RangeSize.negate();
2812     if (C.isZero()) { // (X / neg) op 0
2813       // e.g. X/-5 op 0  --> [-4, 5)
2814       LoBound = RangeSize + 1;
2815       HiBound = -RangeSize;
2816       if (HiBound == *C2) { // -INTMIN = INTMIN
2817         HiOverflow = 1;     // [INTMIN+1, overflow)
2818         HiBound = APInt();  // e.g. X/INTMIN = 0 --> X > INTMIN
2819       }
2820     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2821       // e.g. X/-5 op 3  --> [-19, -14)
2822       HiBound = Prod + 1;
2823       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2824       if (!LoOverflow)
2825         LoOverflow =
2826             addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0;
2827     } else {          // (X / neg) op neg
2828       LoBound = Prod; // e.g. X/-5 op -3  --> [15, 20)
2829       LoOverflow = HiOverflow = ProdOV;
2830       if (!HiOverflow)
2831         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2832     }
2833 
2834     // Dividing by a negative swaps the condition.  LT <-> GT
2835     Pred = ICmpInst::getSwappedPredicate(Pred);
2836   }
2837 
2838   switch (Pred) {
2839   default:
2840     llvm_unreachable("Unhandled icmp predicate!");
2841   case ICmpInst::ICMP_EQ:
2842     if (LoOverflow && HiOverflow)
2843       return replaceInstUsesWith(Cmp, Builder.getFalse());
2844     if (HiOverflow)
2845       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2846                           X, ConstantInt::get(Ty, LoBound));
2847     if (LoOverflow)
2848       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2849                           X, ConstantInt::get(Ty, HiBound));
2850     return replaceInstUsesWith(
2851         Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2852   case ICmpInst::ICMP_NE:
2853     if (LoOverflow && HiOverflow)
2854       return replaceInstUsesWith(Cmp, Builder.getTrue());
2855     if (HiOverflow)
2856       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2857                           X, ConstantInt::get(Ty, LoBound));
2858     if (LoOverflow)
2859       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2860                           X, ConstantInt::get(Ty, HiBound));
2861     return replaceInstUsesWith(
2862         Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false));
2863   case ICmpInst::ICMP_ULT:
2864   case ICmpInst::ICMP_SLT:
2865     if (LoOverflow == +1) // Low bound is greater than input range.
2866       return replaceInstUsesWith(Cmp, Builder.getTrue());
2867     if (LoOverflow == -1) // Low bound is less than input range.
2868       return replaceInstUsesWith(Cmp, Builder.getFalse());
2869     return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound));
2870   case ICmpInst::ICMP_UGT:
2871   case ICmpInst::ICMP_SGT:
2872     if (HiOverflow == +1) // High bound greater than input range.
2873       return replaceInstUsesWith(Cmp, Builder.getFalse());
2874     if (HiOverflow == -1) // High bound less than input range.
2875       return replaceInstUsesWith(Cmp, Builder.getTrue());
2876     if (Pred == ICmpInst::ICMP_UGT)
2877       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound));
2878     return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound));
2879   }
2880 
2881   return nullptr;
2882 }
2883 
2884 /// Fold icmp (sub X, Y), C.
2885 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2886                                                    BinaryOperator *Sub,
2887                                                    const APInt &C) {
2888   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2889   ICmpInst::Predicate Pred = Cmp.getPredicate();
2890   Type *Ty = Sub->getType();
2891 
2892   // (SubC - Y) == C) --> Y == (SubC - C)
2893   // (SubC - Y) != C) --> Y != (SubC - C)
2894   Constant *SubC;
2895   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2896     return new ICmpInst(Pred, Y,
2897                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2898   }
2899 
2900   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2901   const APInt *C2;
2902   APInt SubResult;
2903   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2904   bool HasNSW = Sub->hasNoSignedWrap();
2905   bool HasNUW = Sub->hasNoUnsignedWrap();
2906   if (match(X, m_APInt(C2)) &&
2907       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2908       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2909     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2910 
2911   // X - Y == 0 --> X == Y.
2912   // X - Y != 0 --> X != Y.
2913   // TODO: We allow this with multiple uses as long as the other uses are not
2914   //       in phis. The phi use check is guarding against a codegen regression
2915   //       for a loop test. If the backend could undo this (and possibly
2916   //       subsequent transforms), we would not need this hack.
2917   if (Cmp.isEquality() && C.isZero() &&
2918       none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); }))
2919     return new ICmpInst(Pred, X, Y);
2920 
2921   // The following transforms are only worth it if the only user of the subtract
2922   // is the icmp.
2923   // TODO: This is an artificial restriction for all of the transforms below
2924   //       that only need a single replacement icmp. Can these use the phi test
2925   //       like the transform above here?
2926   if (!Sub->hasOneUse())
2927     return nullptr;
2928 
2929   if (Sub->hasNoSignedWrap()) {
2930     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2931     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2932       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2933 
2934     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2935     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2936       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2937 
2938     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2939     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2940       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2941 
2942     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2943     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2944       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2945   }
2946 
2947   if (!match(X, m_APInt(C2)))
2948     return nullptr;
2949 
2950   // C2 - Y <u C -> (Y | (C - 1)) == C2
2951   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2952   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2953       (*C2 & (C - 1)) == (C - 1))
2954     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2955 
2956   // C2 - Y >u C -> (Y | C) != C2
2957   //   iff C2 & C == C and C + 1 is a power of 2
2958   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2959     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2960 
2961   // We have handled special cases that reduce.
2962   // Canonicalize any remaining sub to add as:
2963   // (C2 - Y) > C --> (Y + ~C2) < ~C
2964   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2965                                  HasNUW, HasNSW);
2966   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2967 }
2968 
2969 static Value *createLogicFromTable(const std::bitset<4> &Table, Value *Op0,
2970                                    Value *Op1, IRBuilderBase &Builder,
2971                                    bool HasOneUse) {
2972   auto FoldConstant = [&](bool Val) {
2973     Constant *Res = Val ? Builder.getTrue() : Builder.getFalse();
2974     if (Op0->getType()->isVectorTy())
2975       Res = ConstantVector::getSplat(
2976           cast<VectorType>(Op0->getType())->getElementCount(), Res);
2977     return Res;
2978   };
2979 
2980   switch (Table.to_ulong()) {
2981   case 0: // 0 0 0 0
2982     return FoldConstant(false);
2983   case 1: // 0 0 0 1
2984     return HasOneUse ? Builder.CreateNot(Builder.CreateOr(Op0, Op1)) : nullptr;
2985   case 2: // 0 0 1 0
2986     return HasOneUse ? Builder.CreateAnd(Builder.CreateNot(Op0), Op1) : nullptr;
2987   case 3: // 0 0 1 1
2988     return Builder.CreateNot(Op0);
2989   case 4: // 0 1 0 0
2990     return HasOneUse ? Builder.CreateAnd(Op0, Builder.CreateNot(Op1)) : nullptr;
2991   case 5: // 0 1 0 1
2992     return Builder.CreateNot(Op1);
2993   case 6: // 0 1 1 0
2994     return Builder.CreateXor(Op0, Op1);
2995   case 7: // 0 1 1 1
2996     return HasOneUse ? Builder.CreateNot(Builder.CreateAnd(Op0, Op1)) : nullptr;
2997   case 8: // 1 0 0 0
2998     return Builder.CreateAnd(Op0, Op1);
2999   case 9: // 1 0 0 1
3000     return HasOneUse ? Builder.CreateNot(Builder.CreateXor(Op0, Op1)) : nullptr;
3001   case 10: // 1 0 1 0
3002     return Op1;
3003   case 11: // 1 0 1 1
3004     return HasOneUse ? Builder.CreateOr(Builder.CreateNot(Op0), Op1) : nullptr;
3005   case 12: // 1 1 0 0
3006     return Op0;
3007   case 13: // 1 1 0 1
3008     return HasOneUse ? Builder.CreateOr(Op0, Builder.CreateNot(Op1)) : nullptr;
3009   case 14: // 1 1 1 0
3010     return Builder.CreateOr(Op0, Op1);
3011   case 15: // 1 1 1 1
3012     return FoldConstant(true);
3013   default:
3014     llvm_unreachable("Invalid Operation");
3015   }
3016   return nullptr;
3017 }
3018 
3019 /// Fold icmp (add X, Y), C.
3020 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
3021                                                    BinaryOperator *Add,
3022                                                    const APInt &C) {
3023   Value *Y = Add->getOperand(1);
3024   Value *X = Add->getOperand(0);
3025 
3026   Value *Op0, *Op1;
3027   Instruction *Ext0, *Ext1;
3028   const CmpInst::Predicate Pred = Cmp.getPredicate();
3029   if (match(Add,
3030             m_Add(m_CombineAnd(m_Instruction(Ext0), m_ZExtOrSExt(m_Value(Op0))),
3031                   m_CombineAnd(m_Instruction(Ext1),
3032                                m_ZExtOrSExt(m_Value(Op1))))) &&
3033       Op0->getType()->isIntOrIntVectorTy(1) &&
3034       Op1->getType()->isIntOrIntVectorTy(1)) {
3035     unsigned BW = C.getBitWidth();
3036     std::bitset<4> Table;
3037     auto ComputeTable = [&](bool Op0Val, bool Op1Val) {
3038       int Res = 0;
3039       if (Op0Val)
3040         Res += isa<ZExtInst>(Ext0) ? 1 : -1;
3041       if (Op1Val)
3042         Res += isa<ZExtInst>(Ext1) ? 1 : -1;
3043       return ICmpInst::compare(APInt(BW, Res, true), C, Pred);
3044     };
3045 
3046     Table[0] = ComputeTable(false, false);
3047     Table[1] = ComputeTable(false, true);
3048     Table[2] = ComputeTable(true, false);
3049     Table[3] = ComputeTable(true, true);
3050     if (auto *Cond =
3051             createLogicFromTable(Table, Op0, Op1, Builder, Add->hasOneUse()))
3052       return replaceInstUsesWith(Cmp, Cond);
3053   }
3054   const APInt *C2;
3055   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
3056     return nullptr;
3057 
3058   // Fold icmp pred (add X, C2), C.
3059   Type *Ty = Add->getType();
3060 
3061   // If the add does not wrap, we can always adjust the compare by subtracting
3062   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
3063   // are canonicalized to SGT/SLT/UGT/ULT.
3064   if ((Add->hasNoSignedWrap() &&
3065        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
3066       (Add->hasNoUnsignedWrap() &&
3067        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
3068     bool Overflow;
3069     APInt NewC =
3070         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
3071     // If there is overflow, the result must be true or false.
3072     // TODO: Can we assert there is no overflow because InstSimplify always
3073     // handles those cases?
3074     if (!Overflow)
3075       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
3076       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
3077   }
3078 
3079   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
3080   const APInt &Upper = CR.getUpper();
3081   const APInt &Lower = CR.getLower();
3082   if (Cmp.isSigned()) {
3083     if (Lower.isSignMask())
3084       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
3085     if (Upper.isSignMask())
3086       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
3087   } else {
3088     if (Lower.isMinValue())
3089       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
3090     if (Upper.isMinValue())
3091       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
3092   }
3093 
3094   // This set of folds is intentionally placed after folds that use no-wrapping
3095   // flags because those folds are likely better for later analysis/codegen.
3096   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
3097   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
3098 
3099   // Fold compare with offset to opposite sign compare if it eliminates offset:
3100   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
3101   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
3102     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
3103 
3104   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
3105   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
3106     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
3107 
3108   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
3109   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
3110     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
3111 
3112   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
3113   if (Pred == CmpInst::ICMP_SLT && C == *C2)
3114     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
3115 
3116   // (X + -1) <u C --> X <=u C (if X is never null)
3117   if (Pred == CmpInst::ICMP_ULT && C2->isAllOnes()) {
3118     const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
3119     if (llvm::isKnownNonZero(X, Q))
3120       return new ICmpInst(ICmpInst::ICMP_ULE, X, ConstantInt::get(Ty, C));
3121   }
3122 
3123   if (!Add->hasOneUse())
3124     return nullptr;
3125 
3126   // X+C <u C2 -> (X & -C2) == C
3127   //   iff C & (C2-1) == 0
3128   //       C2 is a power of 2
3129   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
3130     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
3131                         ConstantExpr::getNeg(cast<Constant>(Y)));
3132 
3133   // X+C2 <u C -> (X & C) == 2C
3134   //   iff C == -(C2)
3135   //       C2 is a power of 2
3136   if (Pred == ICmpInst::ICMP_ULT && C2->isPowerOf2() && C == -*C2)
3137     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, C),
3138                         ConstantInt::get(Ty, C * 2));
3139 
3140   // X+C >u C2 -> (X & ~C2) != C
3141   //   iff C & C2 == 0
3142   //       C2+1 is a power of 2
3143   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
3144     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
3145                         ConstantExpr::getNeg(cast<Constant>(Y)));
3146 
3147   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
3148   // to the ult form.
3149   // X+C2 >u C -> X+(C2-C-1) <u ~C
3150   if (Pred == ICmpInst::ICMP_UGT)
3151     return new ICmpInst(ICmpInst::ICMP_ULT,
3152                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
3153                         ConstantInt::get(Ty, ~C));
3154 
3155   return nullptr;
3156 }
3157 
3158 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
3159                                                Value *&RHS, ConstantInt *&Less,
3160                                                ConstantInt *&Equal,
3161                                                ConstantInt *&Greater) {
3162   // TODO: Generalize this to work with other comparison idioms or ensure
3163   // they get canonicalized into this form.
3164 
3165   // select i1 (a == b),
3166   //        i32 Equal,
3167   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
3168   // where Equal, Less and Greater are placeholders for any three constants.
3169   ICmpInst::Predicate PredA;
3170   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
3171       !ICmpInst::isEquality(PredA))
3172     return false;
3173   Value *EqualVal = SI->getTrueValue();
3174   Value *UnequalVal = SI->getFalseValue();
3175   // We still can get non-canonical predicate here, so canonicalize.
3176   if (PredA == ICmpInst::ICMP_NE)
3177     std::swap(EqualVal, UnequalVal);
3178   if (!match(EqualVal, m_ConstantInt(Equal)))
3179     return false;
3180   ICmpInst::Predicate PredB;
3181   Value *LHS2, *RHS2;
3182   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
3183                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
3184     return false;
3185   // We can get predicate mismatch here, so canonicalize if possible:
3186   // First, ensure that 'LHS' match.
3187   if (LHS2 != LHS) {
3188     // x sgt y <--> y slt x
3189     std::swap(LHS2, RHS2);
3190     PredB = ICmpInst::getSwappedPredicate(PredB);
3191   }
3192   if (LHS2 != LHS)
3193     return false;
3194   // We also need to canonicalize 'RHS'.
3195   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
3196     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
3197     auto FlippedStrictness =
3198         InstCombiner::getFlippedStrictnessPredicateAndConstant(
3199             PredB, cast<Constant>(RHS2));
3200     if (!FlippedStrictness)
3201       return false;
3202     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
3203            "basic correctness failure");
3204     RHS2 = FlippedStrictness->second;
3205     // And kind-of perform the result swap.
3206     std::swap(Less, Greater);
3207     PredB = ICmpInst::ICMP_SLT;
3208   }
3209   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
3210 }
3211 
3212 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
3213                                                       SelectInst *Select,
3214                                                       ConstantInt *C) {
3215 
3216   assert(C && "Cmp RHS should be a constant int!");
3217   // If we're testing a constant value against the result of a three way
3218   // comparison, the result can be expressed directly in terms of the
3219   // original values being compared.  Note: We could possibly be more
3220   // aggressive here and remove the hasOneUse test. The original select is
3221   // really likely to simplify or sink when we remove a test of the result.
3222   Value *OrigLHS, *OrigRHS;
3223   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
3224   if (Cmp.hasOneUse() &&
3225       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
3226                               C3GreaterThan)) {
3227     assert(C1LessThan && C2Equal && C3GreaterThan);
3228 
3229     bool TrueWhenLessThan = ICmpInst::compare(
3230         C1LessThan->getValue(), C->getValue(), Cmp.getPredicate());
3231     bool TrueWhenEqual = ICmpInst::compare(C2Equal->getValue(), C->getValue(),
3232                                            Cmp.getPredicate());
3233     bool TrueWhenGreaterThan = ICmpInst::compare(
3234         C3GreaterThan->getValue(), C->getValue(), Cmp.getPredicate());
3235 
3236     // This generates the new instruction that will replace the original Cmp
3237     // Instruction. Instead of enumerating the various combinations when
3238     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
3239     // false, we rely on chaining of ORs and future passes of InstCombine to
3240     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
3241 
3242     // When none of the three constants satisfy the predicate for the RHS (C),
3243     // the entire original Cmp can be simplified to a false.
3244     Value *Cond = Builder.getFalse();
3245     if (TrueWhenLessThan)
3246       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
3247                                                        OrigLHS, OrigRHS));
3248     if (TrueWhenEqual)
3249       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
3250                                                        OrigLHS, OrigRHS));
3251     if (TrueWhenGreaterThan)
3252       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
3253                                                        OrigLHS, OrigRHS));
3254 
3255     return replaceInstUsesWith(Cmp, Cond);
3256   }
3257   return nullptr;
3258 }
3259 
3260 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
3261   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
3262   if (!Bitcast)
3263     return nullptr;
3264 
3265   ICmpInst::Predicate Pred = Cmp.getPredicate();
3266   Value *Op1 = Cmp.getOperand(1);
3267   Value *BCSrcOp = Bitcast->getOperand(0);
3268   Type *SrcType = Bitcast->getSrcTy();
3269   Type *DstType = Bitcast->getType();
3270 
3271   // Make sure the bitcast doesn't change between scalar and vector and
3272   // doesn't change the number of vector elements.
3273   if (SrcType->isVectorTy() == DstType->isVectorTy() &&
3274       SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) {
3275     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
3276     Value *X;
3277     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
3278       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
3279       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
3280       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
3281       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
3282       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
3283            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
3284           match(Op1, m_Zero()))
3285         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
3286 
3287       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
3288       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
3289         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
3290 
3291       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
3292       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
3293         return new ICmpInst(Pred, X,
3294                             ConstantInt::getAllOnesValue(X->getType()));
3295     }
3296 
3297     // Zero-equality checks are preserved through unsigned floating-point casts:
3298     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
3299     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
3300     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
3301       if (Cmp.isEquality() && match(Op1, m_Zero()))
3302         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
3303 
3304     const APInt *C;
3305     bool TrueIfSigned;
3306     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse()) {
3307       // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
3308       // the FP extend/truncate because that cast does not change the sign-bit.
3309       // This is true for all standard IEEE-754 types and the X86 80-bit type.
3310       // The sign-bit is always the most significant bit in those types.
3311       if (isSignBitCheck(Pred, *C, TrueIfSigned) &&
3312           (match(BCSrcOp, m_FPExt(m_Value(X))) ||
3313            match(BCSrcOp, m_FPTrunc(m_Value(X))))) {
3314         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
3315         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
3316         Type *XType = X->getType();
3317 
3318         // We can't currently handle Power style floating point operations here.
3319         if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) {
3320           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
3321           if (auto *XVTy = dyn_cast<VectorType>(XType))
3322             NewType = VectorType::get(NewType, XVTy->getElementCount());
3323           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
3324           if (TrueIfSigned)
3325             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
3326                                 ConstantInt::getNullValue(NewType));
3327           else
3328             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
3329                                 ConstantInt::getAllOnesValue(NewType));
3330         }
3331       }
3332 
3333       // icmp eq/ne (bitcast X to int), special fp -> llvm.is.fpclass(X, class)
3334       Type *FPType = SrcType->getScalarType();
3335       if (!Cmp.getParent()->getParent()->hasFnAttribute(
3336               Attribute::NoImplicitFloat) &&
3337           Cmp.isEquality() && FPType->isIEEELikeFPTy()) {
3338         FPClassTest Mask = APFloat(FPType->getFltSemantics(), *C).classify();
3339         if (Mask & (fcInf | fcZero)) {
3340           if (Pred == ICmpInst::ICMP_NE)
3341             Mask = ~Mask;
3342           return replaceInstUsesWith(Cmp,
3343                                      Builder.createIsFPClass(BCSrcOp, Mask));
3344         }
3345       }
3346     }
3347   }
3348 
3349   const APInt *C;
3350   if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() ||
3351       !SrcType->isIntOrIntVectorTy())
3352     return nullptr;
3353 
3354   // If this is checking if all elements of a vector compare are set or not,
3355   // invert the casted vector equality compare and test if all compare
3356   // elements are clear or not. Compare against zero is generally easier for
3357   // analysis and codegen.
3358   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
3359   // Example: are all elements equal? --> are zero elements not equal?
3360   // TODO: Try harder to reduce compare of 2 freely invertible operands?
3361   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse()) {
3362     if (Value *NotBCSrcOp =
3363             getFreelyInverted(BCSrcOp, BCSrcOp->hasOneUse(), &Builder)) {
3364       Value *Cast = Builder.CreateBitCast(NotBCSrcOp, DstType);
3365       return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType));
3366     }
3367   }
3368 
3369   // If this is checking if all elements of an extended vector are clear or not,
3370   // compare in a narrow type to eliminate the extend:
3371   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
3372   Value *X;
3373   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
3374       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
3375     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
3376       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
3377       Value *NewCast = Builder.CreateBitCast(X, NewType);
3378       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
3379     }
3380   }
3381 
3382   // Folding: icmp <pred> iN X, C
3383   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
3384   //    and C is a splat of a K-bit pattern
3385   //    and SC is a constant vector = <C', C', C', ..., C'>
3386   // Into:
3387   //   %E = extractelement <M x iK> %vec, i32 C'
3388   //   icmp <pred> iK %E, trunc(C)
3389   Value *Vec;
3390   ArrayRef<int> Mask;
3391   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
3392     // Check whether every element of Mask is the same constant
3393     if (all_equal(Mask)) {
3394       auto *VecTy = cast<VectorType>(SrcType);
3395       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
3396       if (C->isSplat(EltTy->getBitWidth())) {
3397         // Fold the icmp based on the value of C
3398         // If C is M copies of an iK sized bit pattern,
3399         // then:
3400         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
3401         //       icmp <pred> iK %SplatVal, <pattern>
3402         Value *Elem = Builder.getInt32(Mask[0]);
3403         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
3404         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
3405         return new ICmpInst(Pred, Extract, NewC);
3406       }
3407     }
3408   }
3409   return nullptr;
3410 }
3411 
3412 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3413 /// where X is some kind of instruction.
3414 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3415   const APInt *C;
3416 
3417   if (match(Cmp.getOperand(1), m_APInt(C))) {
3418     if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0)))
3419       if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C))
3420         return I;
3421 
3422     if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0)))
3423       // For now, we only support constant integers while folding the
3424       // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3425       // similar to the cases handled by binary ops above.
3426       if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3427         if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3428           return I;
3429 
3430     if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0)))
3431       if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3432         return I;
3433 
3434     if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3435       if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3436         return I;
3437 
3438     // (extractval ([s/u]subo X, Y), 0) == 0 --> X == Y
3439     // (extractval ([s/u]subo X, Y), 0) != 0 --> X != Y
3440     // TODO: This checks one-use, but that is not strictly necessary.
3441     Value *Cmp0 = Cmp.getOperand(0);
3442     Value *X, *Y;
3443     if (C->isZero() && Cmp.isEquality() && Cmp0->hasOneUse() &&
3444         (match(Cmp0,
3445                m_ExtractValue<0>(m_Intrinsic<Intrinsic::ssub_with_overflow>(
3446                    m_Value(X), m_Value(Y)))) ||
3447          match(Cmp0,
3448                m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
3449                    m_Value(X), m_Value(Y))))))
3450       return new ICmpInst(Cmp.getPredicate(), X, Y);
3451   }
3452 
3453   if (match(Cmp.getOperand(1), m_APIntAllowPoison(C)))
3454     return foldICmpInstWithConstantAllowPoison(Cmp, *C);
3455 
3456   return nullptr;
3457 }
3458 
3459 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3460 /// icmp eq/ne BO, C.
3461 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3462     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3463   // TODO: Some of these folds could work with arbitrary constants, but this
3464   // function is limited to scalar and vector splat constants.
3465   if (!Cmp.isEquality())
3466     return nullptr;
3467 
3468   ICmpInst::Predicate Pred = Cmp.getPredicate();
3469   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3470   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3471   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3472 
3473   switch (BO->getOpcode()) {
3474   case Instruction::SRem:
3475     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3476     if (C.isZero() && BO->hasOneUse()) {
3477       const APInt *BOC;
3478       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3479         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3480         return new ICmpInst(Pred, NewRem,
3481                             Constant::getNullValue(BO->getType()));
3482       }
3483     }
3484     break;
3485   case Instruction::Add: {
3486     // (A + C2) == C --> A == (C - C2)
3487     // (A + C2) != C --> A != (C - C2)
3488     // TODO: Remove the one-use limitation? See discussion in D58633.
3489     if (Constant *C2 = dyn_cast<Constant>(BOp1)) {
3490       if (BO->hasOneUse())
3491         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, C2));
3492     } else if (C.isZero()) {
3493       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3494       // efficiently invertible, or if the add has just this one use.
3495       if (Value *NegVal = dyn_castNegVal(BOp1))
3496         return new ICmpInst(Pred, BOp0, NegVal);
3497       if (Value *NegVal = dyn_castNegVal(BOp0))
3498         return new ICmpInst(Pred, NegVal, BOp1);
3499       if (BO->hasOneUse()) {
3500         // (add nuw A, B) != 0 -> (or A, B) != 0
3501         if (match(BO, m_NUWAdd(m_Value(), m_Value()))) {
3502           Value *Or = Builder.CreateOr(BOp0, BOp1);
3503           return new ICmpInst(Pred, Or, Constant::getNullValue(BO->getType()));
3504         }
3505         Value *Neg = Builder.CreateNeg(BOp1);
3506         Neg->takeName(BO);
3507         return new ICmpInst(Pred, BOp0, Neg);
3508       }
3509     }
3510     break;
3511   }
3512   case Instruction::Xor:
3513     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3514       // For the xor case, we can xor two constants together, eliminating
3515       // the explicit xor.
3516       return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3517     } else if (C.isZero()) {
3518       // Replace ((xor A, B) != 0) with (A != B)
3519       return new ICmpInst(Pred, BOp0, BOp1);
3520     }
3521     break;
3522   case Instruction::Or: {
3523     const APInt *BOC;
3524     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3525       // Comparing if all bits outside of a constant mask are set?
3526       // Replace (X | C) == -1 with (X & ~C) == ~C.
3527       // This removes the -1 constant.
3528       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3529       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3530       return new ICmpInst(Pred, And, NotBOC);
3531     }
3532     break;
3533   }
3534   case Instruction::UDiv:
3535   case Instruction::SDiv:
3536     if (BO->isExact()) {
3537       // div exact X, Y eq/ne 0 -> X eq/ne 0
3538       // div exact X, Y eq/ne 1 -> X eq/ne Y
3539       // div exact X, Y eq/ne C ->
3540       //    if Y * C never-overflow && OneUse:
3541       //      -> Y * C eq/ne X
3542       if (C.isZero())
3543         return new ICmpInst(Pred, BOp0, Constant::getNullValue(BO->getType()));
3544       else if (C.isOne())
3545         return new ICmpInst(Pred, BOp0, BOp1);
3546       else if (BO->hasOneUse()) {
3547         OverflowResult OR = computeOverflow(
3548             Instruction::Mul, BO->getOpcode() == Instruction::SDiv, BOp1,
3549             Cmp.getOperand(1), BO);
3550         if (OR == OverflowResult::NeverOverflows) {
3551           Value *YC =
3552               Builder.CreateMul(BOp1, ConstantInt::get(BO->getType(), C));
3553           return new ICmpInst(Pred, YC, BOp0);
3554         }
3555       }
3556     }
3557     if (BO->getOpcode() == Instruction::UDiv && C.isZero()) {
3558       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3559       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3560       return new ICmpInst(NewPred, BOp1, BOp0);
3561     }
3562     break;
3563   default:
3564     break;
3565   }
3566   return nullptr;
3567 }
3568 
3569 static Instruction *foldCtpopPow2Test(ICmpInst &I, IntrinsicInst *CtpopLhs,
3570                                       const APInt &CRhs,
3571                                       InstCombiner::BuilderTy &Builder,
3572                                       const SimplifyQuery &Q) {
3573   assert(CtpopLhs->getIntrinsicID() == Intrinsic::ctpop &&
3574          "Non-ctpop intrin in ctpop fold");
3575   if (!CtpopLhs->hasOneUse())
3576     return nullptr;
3577 
3578   // Power of 2 test:
3579   //    isPow2OrZero : ctpop(X) u< 2
3580   //    isPow2       : ctpop(X) == 1
3581   //    NotPow2OrZero: ctpop(X) u> 1
3582   //    NotPow2      : ctpop(X) != 1
3583   // If we know any bit of X can be folded to:
3584   //    IsPow2       : X & (~Bit) == 0
3585   //    NotPow2      : X & (~Bit) != 0
3586   const ICmpInst::Predicate Pred = I.getPredicate();
3587   if (((I.isEquality() || Pred == ICmpInst::ICMP_UGT) && CRhs == 1) ||
3588       (Pred == ICmpInst::ICMP_ULT && CRhs == 2)) {
3589     Value *Op = CtpopLhs->getArgOperand(0);
3590     KnownBits OpKnown = computeKnownBits(Op, Q.DL,
3591                                          /*Depth*/ 0, Q.AC, Q.CxtI, Q.DT);
3592     // No need to check for count > 1, that should be already constant folded.
3593     if (OpKnown.countMinPopulation() == 1) {
3594       Value *And = Builder.CreateAnd(
3595           Op, Constant::getIntegerValue(Op->getType(), ~(OpKnown.One)));
3596       return new ICmpInst(
3597           (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_ULT)
3598               ? ICmpInst::ICMP_EQ
3599               : ICmpInst::ICMP_NE,
3600           And, Constant::getNullValue(Op->getType()));
3601     }
3602   }
3603 
3604   return nullptr;
3605 }
3606 
3607 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3608 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3609     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3610   Type *Ty = II->getType();
3611   unsigned BitWidth = C.getBitWidth();
3612   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3613 
3614   switch (II->getIntrinsicID()) {
3615   case Intrinsic::abs:
3616     // abs(A) == 0  ->  A == 0
3617     // abs(A) == INT_MIN  ->  A == INT_MIN
3618     if (C.isZero() || C.isMinSignedValue())
3619       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3620     break;
3621 
3622   case Intrinsic::bswap:
3623     // bswap(A) == C  ->  A == bswap(C)
3624     return new ICmpInst(Pred, II->getArgOperand(0),
3625                         ConstantInt::get(Ty, C.byteSwap()));
3626 
3627   case Intrinsic::bitreverse:
3628     // bitreverse(A) == C  ->  A == bitreverse(C)
3629     return new ICmpInst(Pred, II->getArgOperand(0),
3630                         ConstantInt::get(Ty, C.reverseBits()));
3631 
3632   case Intrinsic::ctlz:
3633   case Intrinsic::cttz: {
3634     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3635     if (C == BitWidth)
3636       return new ICmpInst(Pred, II->getArgOperand(0),
3637                           ConstantInt::getNullValue(Ty));
3638 
3639     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3640     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3641     // Limit to one use to ensure we don't increase instruction count.
3642     unsigned Num = C.getLimitedValue(BitWidth);
3643     if (Num != BitWidth && II->hasOneUse()) {
3644       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3645       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3646                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3647       APInt Mask2 = IsTrailing
3648         ? APInt::getOneBitSet(BitWidth, Num)
3649         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3650       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3651                           ConstantInt::get(Ty, Mask2));
3652     }
3653     break;
3654   }
3655 
3656   case Intrinsic::ctpop: {
3657     // popcount(A) == 0  ->  A == 0 and likewise for !=
3658     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3659     bool IsZero = C.isZero();
3660     if (IsZero || C == BitWidth)
3661       return new ICmpInst(Pred, II->getArgOperand(0),
3662                           IsZero ? Constant::getNullValue(Ty)
3663                                  : Constant::getAllOnesValue(Ty));
3664 
3665     break;
3666   }
3667 
3668   case Intrinsic::fshl:
3669   case Intrinsic::fshr:
3670     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3671       const APInt *RotAmtC;
3672       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3673       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3674       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3675         return new ICmpInst(Pred, II->getArgOperand(0),
3676                             II->getIntrinsicID() == Intrinsic::fshl
3677                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3678                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3679     }
3680     break;
3681 
3682   case Intrinsic::umax:
3683   case Intrinsic::uadd_sat: {
3684     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3685     // umax(a, b) == 0  ->  (a | b) == 0
3686     if (C.isZero() && II->hasOneUse()) {
3687       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3688       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3689     }
3690     break;
3691   }
3692 
3693   case Intrinsic::ssub_sat:
3694     // ssub.sat(a, b) == 0 -> a == b
3695     if (C.isZero())
3696       return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1));
3697     break;
3698   case Intrinsic::usub_sat: {
3699     // usub.sat(a, b) == 0  ->  a <= b
3700     if (C.isZero()) {
3701       ICmpInst::Predicate NewPred =
3702           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3703       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3704     }
3705     break;
3706   }
3707   default:
3708     break;
3709   }
3710 
3711   return nullptr;
3712 }
3713 
3714 /// Fold an icmp with LLVM intrinsics
3715 static Instruction *
3716 foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp,
3717                                InstCombiner::BuilderTy &Builder) {
3718   assert(Cmp.isEquality());
3719 
3720   ICmpInst::Predicate Pred = Cmp.getPredicate();
3721   Value *Op0 = Cmp.getOperand(0);
3722   Value *Op1 = Cmp.getOperand(1);
3723   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3724   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3725   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3726     return nullptr;
3727 
3728   switch (IIOp0->getIntrinsicID()) {
3729   case Intrinsic::bswap:
3730   case Intrinsic::bitreverse:
3731     // If both operands are byte-swapped or bit-reversed, just compare the
3732     // original values.
3733     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3734   case Intrinsic::fshl:
3735   case Intrinsic::fshr: {
3736     // If both operands are rotated by same amount, just compare the
3737     // original values.
3738     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3739       break;
3740     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3741       break;
3742     if (IIOp0->getOperand(2) == IIOp1->getOperand(2))
3743       return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3744 
3745     // rotate(X, AmtX) == rotate(Y, AmtY)
3746     //  -> rotate(X, AmtX - AmtY) == Y
3747     // Do this if either both rotates have one use or if only one has one use
3748     // and AmtX/AmtY are constants.
3749     unsigned OneUses = IIOp0->hasOneUse() + IIOp1->hasOneUse();
3750     if (OneUses == 2 ||
3751         (OneUses == 1 && match(IIOp0->getOperand(2), m_ImmConstant()) &&
3752          match(IIOp1->getOperand(2), m_ImmConstant()))) {
3753       Value *SubAmt =
3754           Builder.CreateSub(IIOp0->getOperand(2), IIOp1->getOperand(2));
3755       Value *CombinedRotate = Builder.CreateIntrinsic(
3756           Op0->getType(), IIOp0->getIntrinsicID(),
3757           {IIOp0->getOperand(0), IIOp0->getOperand(0), SubAmt});
3758       return new ICmpInst(Pred, IIOp1->getOperand(0), CombinedRotate);
3759     }
3760   } break;
3761   default:
3762     break;
3763   }
3764 
3765   return nullptr;
3766 }
3767 
3768 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3769 /// where X is some kind of instruction and C is AllowPoison.
3770 /// TODO: Move more folds which allow poison to this function.
3771 Instruction *
3772 InstCombinerImpl::foldICmpInstWithConstantAllowPoison(ICmpInst &Cmp,
3773                                                       const APInt &C) {
3774   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3775   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) {
3776     switch (II->getIntrinsicID()) {
3777     default:
3778       break;
3779     case Intrinsic::fshl:
3780     case Intrinsic::fshr:
3781       if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) {
3782         // (rot X, ?) == 0/-1 --> X == 0/-1
3783         if (C.isZero() || C.isAllOnes())
3784           return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3785       }
3786       break;
3787     }
3788   }
3789 
3790   return nullptr;
3791 }
3792 
3793 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C.
3794 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp,
3795                                                          BinaryOperator *BO,
3796                                                          const APInt &C) {
3797   switch (BO->getOpcode()) {
3798   case Instruction::Xor:
3799     if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
3800       return I;
3801     break;
3802   case Instruction::And:
3803     if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
3804       return I;
3805     break;
3806   case Instruction::Or:
3807     if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
3808       return I;
3809     break;
3810   case Instruction::Mul:
3811     if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
3812       return I;
3813     break;
3814   case Instruction::Shl:
3815     if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
3816       return I;
3817     break;
3818   case Instruction::LShr:
3819   case Instruction::AShr:
3820     if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
3821       return I;
3822     break;
3823   case Instruction::SRem:
3824     if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C))
3825       return I;
3826     break;
3827   case Instruction::UDiv:
3828     if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
3829       return I;
3830     [[fallthrough]];
3831   case Instruction::SDiv:
3832     if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
3833       return I;
3834     break;
3835   case Instruction::Sub:
3836     if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
3837       return I;
3838     break;
3839   case Instruction::Add:
3840     if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
3841       return I;
3842     break;
3843   default:
3844     break;
3845   }
3846 
3847   // TODO: These folds could be refactored to be part of the above calls.
3848   return foldICmpBinOpEqualityWithConstant(Cmp, BO, C);
3849 }
3850 
3851 static Instruction *
3852 foldICmpUSubSatOrUAddSatWithConstant(ICmpInst::Predicate Pred,
3853                                      SaturatingInst *II, const APInt &C,
3854                                      InstCombiner::BuilderTy &Builder) {
3855   // This transform may end up producing more than one instruction for the
3856   // intrinsic, so limit it to one user of the intrinsic.
3857   if (!II->hasOneUse())
3858     return nullptr;
3859 
3860   // Let Y        = [add/sub]_sat(X, C) pred C2
3861   //     SatVal   = The saturating value for the operation
3862   //     WillWrap = Whether or not the operation will underflow / overflow
3863   // => Y = (WillWrap ? SatVal : (X binop C)) pred C2
3864   // => Y = WillWrap ? (SatVal pred C2) : ((X binop C) pred C2)
3865   //
3866   // When (SatVal pred C2) is true, then
3867   //    Y = WillWrap ? true : ((X binop C) pred C2)
3868   // => Y = WillWrap || ((X binop C) pred C2)
3869   // else
3870   //    Y =  WillWrap ? false : ((X binop C) pred C2)
3871   // => Y = !WillWrap ?  ((X binop C) pred C2) : false
3872   // => Y = !WillWrap && ((X binop C) pred C2)
3873   Value *Op0 = II->getOperand(0);
3874   Value *Op1 = II->getOperand(1);
3875 
3876   const APInt *COp1;
3877   // This transform only works when the intrinsic has an integral constant or
3878   // splat vector as the second operand.
3879   if (!match(Op1, m_APInt(COp1)))
3880     return nullptr;
3881 
3882   APInt SatVal;
3883   switch (II->getIntrinsicID()) {
3884   default:
3885     llvm_unreachable(
3886         "This function only works with usub_sat and uadd_sat for now!");
3887   case Intrinsic::uadd_sat:
3888     SatVal = APInt::getAllOnes(C.getBitWidth());
3889     break;
3890   case Intrinsic::usub_sat:
3891     SatVal = APInt::getZero(C.getBitWidth());
3892     break;
3893   }
3894 
3895   // Check (SatVal pred C2)
3896   bool SatValCheck = ICmpInst::compare(SatVal, C, Pred);
3897 
3898   // !WillWrap.
3899   ConstantRange C1 = ConstantRange::makeExactNoWrapRegion(
3900       II->getBinaryOp(), *COp1, II->getNoWrapKind());
3901 
3902   // WillWrap.
3903   if (SatValCheck)
3904     C1 = C1.inverse();
3905 
3906   ConstantRange C2 = ConstantRange::makeExactICmpRegion(Pred, C);
3907   if (II->getBinaryOp() == Instruction::Add)
3908     C2 = C2.sub(*COp1);
3909   else
3910     C2 = C2.add(*COp1);
3911 
3912   Instruction::BinaryOps CombiningOp =
3913       SatValCheck ? Instruction::BinaryOps::Or : Instruction::BinaryOps::And;
3914 
3915   std::optional<ConstantRange> Combination;
3916   if (CombiningOp == Instruction::BinaryOps::Or)
3917     Combination = C1.exactUnionWith(C2);
3918   else /* CombiningOp == Instruction::BinaryOps::And */
3919     Combination = C1.exactIntersectWith(C2);
3920 
3921   if (!Combination)
3922     return nullptr;
3923 
3924   CmpInst::Predicate EquivPred;
3925   APInt EquivInt;
3926   APInt EquivOffset;
3927 
3928   Combination->getEquivalentICmp(EquivPred, EquivInt, EquivOffset);
3929 
3930   return new ICmpInst(
3931       EquivPred,
3932       Builder.CreateAdd(Op0, ConstantInt::get(Op1->getType(), EquivOffset)),
3933       ConstantInt::get(Op1->getType(), EquivInt));
3934 }
3935 
3936 static Instruction *
3937 foldICmpOfCmpIntrinsicWithConstant(ICmpInst::Predicate Pred, IntrinsicInst *I,
3938                                    const APInt &C,
3939                                    InstCombiner::BuilderTy &Builder) {
3940   std::optional<ICmpInst::Predicate> NewPredicate = std::nullopt;
3941   switch (Pred) {
3942   case ICmpInst::ICMP_EQ:
3943   case ICmpInst::ICMP_NE:
3944     if (C.isZero())
3945       NewPredicate = Pred;
3946     else if (C.isOne())
3947       NewPredicate =
3948           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE;
3949     else if (C.isAllOnes())
3950       NewPredicate =
3951           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
3952     break;
3953 
3954   case ICmpInst::ICMP_SGT:
3955     if (C.isAllOnes())
3956       NewPredicate = ICmpInst::ICMP_UGE;
3957     else if (C.isZero())
3958       NewPredicate = ICmpInst::ICMP_UGT;
3959     break;
3960 
3961   case ICmpInst::ICMP_SLT:
3962     if (C.isZero())
3963       NewPredicate = ICmpInst::ICMP_ULT;
3964     else if (C.isOne())
3965       NewPredicate = ICmpInst::ICMP_ULE;
3966     break;
3967 
3968   default:
3969     break;
3970   }
3971 
3972   if (!NewPredicate)
3973     return nullptr;
3974 
3975   if (I->getIntrinsicID() == Intrinsic::scmp)
3976     NewPredicate = ICmpInst::getSignedPredicate(*NewPredicate);
3977   Value *LHS = I->getOperand(0);
3978   Value *RHS = I->getOperand(1);
3979   return new ICmpInst(*NewPredicate, LHS, RHS);
3980 }
3981 
3982 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3983 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3984                                                              IntrinsicInst *II,
3985                                                              const APInt &C) {
3986   ICmpInst::Predicate Pred = Cmp.getPredicate();
3987 
3988   // Handle folds that apply for any kind of icmp.
3989   switch (II->getIntrinsicID()) {
3990   default:
3991     break;
3992   case Intrinsic::uadd_sat:
3993   case Intrinsic::usub_sat:
3994     if (auto *Folded = foldICmpUSubSatOrUAddSatWithConstant(
3995             Pred, cast<SaturatingInst>(II), C, Builder))
3996       return Folded;
3997     break;
3998   case Intrinsic::ctpop: {
3999     const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
4000     if (Instruction *R = foldCtpopPow2Test(Cmp, II, C, Builder, Q))
4001       return R;
4002   } break;
4003   case Intrinsic::scmp:
4004   case Intrinsic::ucmp:
4005     if (auto *Folded = foldICmpOfCmpIntrinsicWithConstant(Pred, II, C, Builder))
4006       return Folded;
4007     break;
4008   }
4009 
4010   if (Cmp.isEquality())
4011     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
4012 
4013   Type *Ty = II->getType();
4014   unsigned BitWidth = C.getBitWidth();
4015   switch (II->getIntrinsicID()) {
4016   case Intrinsic::ctpop: {
4017     // (ctpop X > BitWidth - 1) --> X == -1
4018     Value *X = II->getArgOperand(0);
4019     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
4020       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
4021                              ConstantInt::getAllOnesValue(Ty));
4022     // (ctpop X < BitWidth) --> X != -1
4023     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
4024       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
4025                              ConstantInt::getAllOnesValue(Ty));
4026     break;
4027   }
4028   case Intrinsic::ctlz: {
4029     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
4030     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
4031       unsigned Num = C.getLimitedValue();
4032       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
4033       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
4034                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
4035     }
4036 
4037     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
4038     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
4039       unsigned Num = C.getLimitedValue();
4040       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
4041       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
4042                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
4043     }
4044     break;
4045   }
4046   case Intrinsic::cttz: {
4047     // Limit to one use to ensure we don't increase instruction count.
4048     if (!II->hasOneUse())
4049       return nullptr;
4050 
4051     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
4052     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
4053       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
4054       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
4055                              Builder.CreateAnd(II->getArgOperand(0), Mask),
4056                              ConstantInt::getNullValue(Ty));
4057     }
4058 
4059     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
4060     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
4061       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
4062       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
4063                              Builder.CreateAnd(II->getArgOperand(0), Mask),
4064                              ConstantInt::getNullValue(Ty));
4065     }
4066     break;
4067   }
4068   case Intrinsic::ssub_sat:
4069     // ssub.sat(a, b) spred 0 -> a spred b
4070     if (ICmpInst::isSigned(Pred)) {
4071       if (C.isZero())
4072         return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1));
4073       // X s<= 0 is cannonicalized to X s< 1
4074       if (Pred == ICmpInst::ICMP_SLT && C.isOne())
4075         return new ICmpInst(ICmpInst::ICMP_SLE, II->getArgOperand(0),
4076                             II->getArgOperand(1));
4077       // X s>= 0 is cannonicalized to X s> -1
4078       if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
4079         return new ICmpInst(ICmpInst::ICMP_SGE, II->getArgOperand(0),
4080                             II->getArgOperand(1));
4081     }
4082     break;
4083   default:
4084     break;
4085   }
4086 
4087   return nullptr;
4088 }
4089 
4090 /// Handle icmp with constant (but not simple integer constant) RHS.
4091 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
4092   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4093   Constant *RHSC = dyn_cast<Constant>(Op1);
4094   Instruction *LHSI = dyn_cast<Instruction>(Op0);
4095   if (!RHSC || !LHSI)
4096     return nullptr;
4097 
4098   switch (LHSI->getOpcode()) {
4099   case Instruction::PHI:
4100     if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
4101       return NV;
4102     break;
4103   case Instruction::IntToPtr:
4104     // icmp pred inttoptr(X), null -> icmp pred X, 0
4105     if (RHSC->isNullValue() &&
4106         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
4107       return new ICmpInst(
4108           I.getPredicate(), LHSI->getOperand(0),
4109           Constant::getNullValue(LHSI->getOperand(0)->getType()));
4110     break;
4111 
4112   case Instruction::Load:
4113     // Try to optimize things like "A[i] > 4" to index computations.
4114     if (GetElementPtrInst *GEP =
4115             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
4116       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
4117         if (Instruction *Res =
4118                 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I))
4119           return Res;
4120     break;
4121   }
4122 
4123   return nullptr;
4124 }
4125 
4126 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred,
4127                                               SelectInst *SI, Value *RHS,
4128                                               const ICmpInst &I) {
4129   // Try to fold the comparison into the select arms, which will cause the
4130   // select to be converted into a logical and/or.
4131   auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * {
4132     if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ))
4133       return Res;
4134     if (std::optional<bool> Impl = isImpliedCondition(
4135             SI->getCondition(), Pred, Op, RHS, DL, SelectCondIsTrue))
4136       return ConstantInt::get(I.getType(), *Impl);
4137     return nullptr;
4138   };
4139 
4140   ConstantInt *CI = nullptr;
4141   Value *Op1 = SimplifyOp(SI->getOperand(1), true);
4142   if (Op1)
4143     CI = dyn_cast<ConstantInt>(Op1);
4144 
4145   Value *Op2 = SimplifyOp(SI->getOperand(2), false);
4146   if (Op2)
4147     CI = dyn_cast<ConstantInt>(Op2);
4148 
4149   // We only want to perform this transformation if it will not lead to
4150   // additional code. This is true if either both sides of the select
4151   // fold to a constant (in which case the icmp is replaced with a select
4152   // which will usually simplify) or this is the only user of the
4153   // select (in which case we are trading a select+icmp for a simpler
4154   // select+icmp) or all uses of the select can be replaced based on
4155   // dominance information ("Global cases").
4156   bool Transform = false;
4157   if (Op1 && Op2)
4158     Transform = true;
4159   else if (Op1 || Op2) {
4160     // Local case
4161     if (SI->hasOneUse())
4162       Transform = true;
4163     // Global cases
4164     else if (CI && !CI->isZero())
4165       // When Op1 is constant try replacing select with second operand.
4166       // Otherwise Op2 is constant and try replacing select with first
4167       // operand.
4168       Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1);
4169   }
4170   if (Transform) {
4171     if (!Op1)
4172       Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName());
4173     if (!Op2)
4174       Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName());
4175     return SelectInst::Create(SI->getOperand(0), Op1, Op2);
4176   }
4177 
4178   return nullptr;
4179 }
4180 
4181 // Returns whether V is a Mask ((X + 1) & X == 0) or ~Mask (-Pow2OrZero)
4182 static bool isMaskOrZero(const Value *V, bool Not, const SimplifyQuery &Q,
4183                          unsigned Depth = 0) {
4184   if (Not ? match(V, m_NegatedPower2OrZero()) : match(V, m_LowBitMaskOrZero()))
4185     return true;
4186   if (V->getType()->getScalarSizeInBits() == 1)
4187     return true;
4188   if (Depth++ >= MaxAnalysisRecursionDepth)
4189     return false;
4190   Value *X;
4191   const Instruction *I = dyn_cast<Instruction>(V);
4192   if (!I)
4193     return false;
4194   switch (I->getOpcode()) {
4195   case Instruction::ZExt:
4196     // ZExt(Mask) is a Mask.
4197     return !Not && isMaskOrZero(I->getOperand(0), Not, Q, Depth);
4198   case Instruction::SExt:
4199     // SExt(Mask) is a Mask.
4200     // SExt(~Mask) is a ~Mask.
4201     return isMaskOrZero(I->getOperand(0), Not, Q, Depth);
4202   case Instruction::And:
4203   case Instruction::Or:
4204     // Mask0 | Mask1 is a Mask.
4205     // Mask0 & Mask1 is a Mask.
4206     // ~Mask0 | ~Mask1 is a ~Mask.
4207     // ~Mask0 & ~Mask1 is a ~Mask.
4208     return isMaskOrZero(I->getOperand(1), Not, Q, Depth) &&
4209            isMaskOrZero(I->getOperand(0), Not, Q, Depth);
4210   case Instruction::Xor:
4211     if (match(V, m_Not(m_Value(X))))
4212       return isMaskOrZero(X, !Not, Q, Depth);
4213 
4214     // (X ^ -X) is a ~Mask
4215     if (Not)
4216       return match(V, m_c_Xor(m_Value(X), m_Neg(m_Deferred(X))));
4217     // (X ^ (X - 1)) is a Mask
4218     else
4219       return match(V, m_c_Xor(m_Value(X), m_Add(m_Deferred(X), m_AllOnes())));
4220   case Instruction::Select:
4221     // c ? Mask0 : Mask1 is a Mask.
4222     return isMaskOrZero(I->getOperand(1), Not, Q, Depth) &&
4223            isMaskOrZero(I->getOperand(2), Not, Q, Depth);
4224   case Instruction::Shl:
4225     // (~Mask) << X is a ~Mask.
4226     return Not && isMaskOrZero(I->getOperand(0), Not, Q, Depth);
4227   case Instruction::LShr:
4228     // Mask >> X is a Mask.
4229     return !Not && isMaskOrZero(I->getOperand(0), Not, Q, Depth);
4230   case Instruction::AShr:
4231     // Mask s>> X is a Mask.
4232     // ~Mask s>> X is a ~Mask.
4233     return isMaskOrZero(I->getOperand(0), Not, Q, Depth);
4234   case Instruction::Add:
4235     // Pow2 - 1 is a Mask.
4236     if (!Not && match(I->getOperand(1), m_AllOnes()))
4237       return isKnownToBeAPowerOfTwo(I->getOperand(0), Q.DL, /*OrZero*/ true,
4238                                     Depth, Q.AC, Q.CxtI, Q.DT);
4239     break;
4240   case Instruction::Sub:
4241     // -Pow2 is a ~Mask.
4242     if (Not && match(I->getOperand(0), m_Zero()))
4243       return isKnownToBeAPowerOfTwo(I->getOperand(1), Q.DL, /*OrZero*/ true,
4244                                     Depth, Q.AC, Q.CxtI, Q.DT);
4245     break;
4246   case Instruction::Call: {
4247     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
4248       switch (II->getIntrinsicID()) {
4249         // min/max(Mask0, Mask1) is a Mask.
4250         // min/max(~Mask0, ~Mask1) is a ~Mask.
4251       case Intrinsic::umax:
4252       case Intrinsic::smax:
4253       case Intrinsic::umin:
4254       case Intrinsic::smin:
4255         return isMaskOrZero(II->getArgOperand(1), Not, Q, Depth) &&
4256                isMaskOrZero(II->getArgOperand(0), Not, Q, Depth);
4257 
4258         // In the context of masks, bitreverse(Mask) == ~Mask
4259       case Intrinsic::bitreverse:
4260         return isMaskOrZero(II->getArgOperand(0), !Not, Q, Depth);
4261       default:
4262         break;
4263       }
4264     }
4265     break;
4266   }
4267   default:
4268     break;
4269   }
4270   return false;
4271 }
4272 
4273 /// Some comparisons can be simplified.
4274 /// In this case, we are looking for comparisons that look like
4275 /// a check for a lossy truncation.
4276 /// Folds:
4277 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
4278 ///   icmp SrcPred (x & ~Mask), ~Mask    to    icmp DstPred x, ~Mask
4279 ///   icmp eq/ne (x & ~Mask), 0     to    icmp DstPred x, Mask
4280 ///   icmp eq/ne (~x | Mask), -1     to    icmp DstPred x, Mask
4281 /// Where Mask is some pattern that produces all-ones in low bits:
4282 ///    (-1 >> y)
4283 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
4284 ///   ~(-1 << y)
4285 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
4286 /// The Mask can be a constant, too.
4287 /// For some predicates, the operands are commutative.
4288 /// For others, x can only be on a specific side.
4289 static Value *foldICmpWithLowBitMaskedVal(ICmpInst::Predicate Pred, Value *Op0,
4290                                           Value *Op1, const SimplifyQuery &Q,
4291                                           InstCombiner &IC) {
4292 
4293   ICmpInst::Predicate DstPred;
4294   switch (Pred) {
4295   case ICmpInst::Predicate::ICMP_EQ:
4296     //  x & Mask == x
4297     //  x & ~Mask == 0
4298     //  ~x | Mask == -1
4299     //    ->    x u<= Mask
4300     //  x & ~Mask == ~Mask
4301     //    ->    ~Mask u<= x
4302     DstPred = ICmpInst::Predicate::ICMP_ULE;
4303     break;
4304   case ICmpInst::Predicate::ICMP_NE:
4305     //  x & Mask != x
4306     //  x & ~Mask != 0
4307     //  ~x | Mask != -1
4308     //    ->    x u> Mask
4309     //  x & ~Mask != ~Mask
4310     //    ->    ~Mask u> x
4311     DstPred = ICmpInst::Predicate::ICMP_UGT;
4312     break;
4313   case ICmpInst::Predicate::ICMP_ULT:
4314     //  x & Mask u< x
4315     //    -> x u> Mask
4316     //  x & ~Mask u< ~Mask
4317     //    -> ~Mask u> x
4318     DstPred = ICmpInst::Predicate::ICMP_UGT;
4319     break;
4320   case ICmpInst::Predicate::ICMP_UGE:
4321     //  x & Mask u>= x
4322     //    -> x u<= Mask
4323     //  x & ~Mask u>= ~Mask
4324     //    -> ~Mask u<= x
4325     DstPred = ICmpInst::Predicate::ICMP_ULE;
4326     break;
4327   case ICmpInst::Predicate::ICMP_SLT:
4328     //  x & Mask s< x [iff Mask s>= 0]
4329     //    -> x s> Mask
4330     //  x & ~Mask s< ~Mask [iff ~Mask != 0]
4331     //    -> ~Mask s> x
4332     DstPred = ICmpInst::Predicate::ICMP_SGT;
4333     break;
4334   case ICmpInst::Predicate::ICMP_SGE:
4335     //  x & Mask s>= x [iff Mask s>= 0]
4336     //    -> x s<= Mask
4337     //  x & ~Mask s>= ~Mask [iff ~Mask != 0]
4338     //    -> ~Mask s<= x
4339     DstPred = ICmpInst::Predicate::ICMP_SLE;
4340     break;
4341   default:
4342     // We don't support sgt,sle
4343     // ult/ugt are simplified to true/false respectively.
4344     return nullptr;
4345   }
4346 
4347   Value *X, *M;
4348   // Put search code in lambda for early positive returns.
4349   auto IsLowBitMask = [&]() {
4350     if (match(Op0, m_c_And(m_Specific(Op1), m_Value(M)))) {
4351       X = Op1;
4352       // Look for: x & Mask pred x
4353       if (isMaskOrZero(M, /*Not=*/false, Q)) {
4354         return !ICmpInst::isSigned(Pred) ||
4355                (match(M, m_NonNegative()) || isKnownNonNegative(M, Q));
4356       }
4357 
4358       // Look for: x & ~Mask pred ~Mask
4359       if (isMaskOrZero(X, /*Not=*/true, Q)) {
4360         return !ICmpInst::isSigned(Pred) || isKnownNonZero(X, Q);
4361       }
4362       return false;
4363     }
4364     if (ICmpInst::isEquality(Pred) && match(Op1, m_AllOnes()) &&
4365         match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(M))))) {
4366 
4367       auto Check = [&]() {
4368         // Look for: ~x | Mask == -1
4369         if (isMaskOrZero(M, /*Not=*/false, Q)) {
4370           if (Value *NotX =
4371                   IC.getFreelyInverted(X, X->hasOneUse(), &IC.Builder)) {
4372             X = NotX;
4373             return true;
4374           }
4375         }
4376         return false;
4377       };
4378       if (Check())
4379         return true;
4380       std::swap(X, M);
4381       return Check();
4382     }
4383     if (ICmpInst::isEquality(Pred) && match(Op1, m_Zero()) &&
4384         match(Op0, m_OneUse(m_And(m_Value(X), m_Value(M))))) {
4385       auto Check = [&]() {
4386         // Look for: x & ~Mask == 0
4387         if (isMaskOrZero(M, /*Not=*/true, Q)) {
4388           if (Value *NotM =
4389                   IC.getFreelyInverted(M, M->hasOneUse(), &IC.Builder)) {
4390             M = NotM;
4391             return true;
4392           }
4393         }
4394         return false;
4395       };
4396       if (Check())
4397         return true;
4398       std::swap(X, M);
4399       return Check();
4400     }
4401     return false;
4402   };
4403 
4404   if (!IsLowBitMask())
4405     return nullptr;
4406 
4407   return IC.Builder.CreateICmp(DstPred, X, M);
4408 }
4409 
4410 /// Some comparisons can be simplified.
4411 /// In this case, we are looking for comparisons that look like
4412 /// a check for a lossy signed truncation.
4413 /// Folds:   (MaskedBits is a constant.)
4414 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
4415 /// Into:
4416 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
4417 /// Where  KeptBits = bitwidth(%x) - MaskedBits
4418 static Value *
4419 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
4420                                  InstCombiner::BuilderTy &Builder) {
4421   ICmpInst::Predicate SrcPred;
4422   Value *X;
4423   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
4424   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
4425   if (!match(&I, m_c_ICmp(SrcPred,
4426                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
4427                                           m_APInt(C1))),
4428                           m_Deferred(X))))
4429     return nullptr;
4430 
4431   // Potential handling of non-splats: for each element:
4432   //  * if both are undef, replace with constant 0.
4433   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
4434   //  * if both are not undef, and are different, bailout.
4435   //  * else, only one is undef, then pick the non-undef one.
4436 
4437   // The shift amount must be equal.
4438   if (*C0 != *C1)
4439     return nullptr;
4440   const APInt &MaskedBits = *C0;
4441   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
4442 
4443   ICmpInst::Predicate DstPred;
4444   switch (SrcPred) {
4445   case ICmpInst::Predicate::ICMP_EQ:
4446     // ((%x << MaskedBits) a>> MaskedBits) == %x
4447     //   =>
4448     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
4449     DstPred = ICmpInst::Predicate::ICMP_ULT;
4450     break;
4451   case ICmpInst::Predicate::ICMP_NE:
4452     // ((%x << MaskedBits) a>> MaskedBits) != %x
4453     //   =>
4454     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
4455     DstPred = ICmpInst::Predicate::ICMP_UGE;
4456     break;
4457   // FIXME: are more folds possible?
4458   default:
4459     return nullptr;
4460   }
4461 
4462   auto *XType = X->getType();
4463   const unsigned XBitWidth = XType->getScalarSizeInBits();
4464   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
4465   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
4466 
4467   // KeptBits = bitwidth(%x) - MaskedBits
4468   const APInt KeptBits = BitWidth - MaskedBits;
4469   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
4470   // ICmpCst = (1 << KeptBits)
4471   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
4472   assert(ICmpCst.isPowerOf2());
4473   // AddCst = (1 << (KeptBits-1))
4474   const APInt AddCst = ICmpCst.lshr(1);
4475   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
4476 
4477   // T0 = add %x, AddCst
4478   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
4479   // T1 = T0 DstPred ICmpCst
4480   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
4481 
4482   return T1;
4483 }
4484 
4485 // Given pattern:
4486 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
4487 // we should move shifts to the same hand of 'and', i.e. rewrite as
4488 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
4489 // We are only interested in opposite logical shifts here.
4490 // One of the shifts can be truncated.
4491 // If we can, we want to end up creating 'lshr' shift.
4492 static Value *
4493 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
4494                                            InstCombiner::BuilderTy &Builder) {
4495   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
4496       !I.getOperand(0)->hasOneUse())
4497     return nullptr;
4498 
4499   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
4500 
4501   // Look for an 'and' of two logical shifts, one of which may be truncated.
4502   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
4503   Instruction *XShift, *MaybeTruncation, *YShift;
4504   if (!match(
4505           I.getOperand(0),
4506           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
4507                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
4508                                    m_AnyLogicalShift, m_Instruction(YShift))),
4509                                m_Instruction(MaybeTruncation)))))
4510     return nullptr;
4511 
4512   // We potentially looked past 'trunc', but only when matching YShift,
4513   // therefore YShift must have the widest type.
4514   Instruction *WidestShift = YShift;
4515   // Therefore XShift must have the shallowest type.
4516   // Or they both have identical types if there was no truncation.
4517   Instruction *NarrowestShift = XShift;
4518 
4519   Type *WidestTy = WidestShift->getType();
4520   Type *NarrowestTy = NarrowestShift->getType();
4521   assert(NarrowestTy == I.getOperand(0)->getType() &&
4522          "We did not look past any shifts while matching XShift though.");
4523   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
4524 
4525   // If YShift is a 'lshr', swap the shifts around.
4526   if (match(YShift, m_LShr(m_Value(), m_Value())))
4527     std::swap(XShift, YShift);
4528 
4529   // The shifts must be in opposite directions.
4530   auto XShiftOpcode = XShift->getOpcode();
4531   if (XShiftOpcode == YShift->getOpcode())
4532     return nullptr; // Do not care about same-direction shifts here.
4533 
4534   Value *X, *XShAmt, *Y, *YShAmt;
4535   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
4536   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
4537 
4538   // If one of the values being shifted is a constant, then we will end with
4539   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
4540   // however, we will need to ensure that we won't increase instruction count.
4541   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
4542     // At least one of the hands of the 'and' should be one-use shift.
4543     if (!match(I.getOperand(0),
4544                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
4545       return nullptr;
4546     if (HadTrunc) {
4547       // Due to the 'trunc', we will need to widen X. For that either the old
4548       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
4549       if (!MaybeTruncation->hasOneUse() &&
4550           !NarrowestShift->getOperand(1)->hasOneUse())
4551         return nullptr;
4552     }
4553   }
4554 
4555   // We have two shift amounts from two different shifts. The types of those
4556   // shift amounts may not match. If that's the case let's bailout now.
4557   if (XShAmt->getType() != YShAmt->getType())
4558     return nullptr;
4559 
4560   // As input, we have the following pattern:
4561   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
4562   // We want to rewrite that as:
4563   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
4564   // While we know that originally (Q+K) would not overflow
4565   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
4566   // shift amounts. so it may now overflow in smaller bitwidth.
4567   // To ensure that does not happen, we need to ensure that the total maximal
4568   // shift amount is still representable in that smaller bit width.
4569   unsigned MaximalPossibleTotalShiftAmount =
4570       (WidestTy->getScalarSizeInBits() - 1) +
4571       (NarrowestTy->getScalarSizeInBits() - 1);
4572   APInt MaximalRepresentableShiftAmount =
4573       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
4574   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
4575     return nullptr;
4576 
4577   // Can we fold (XShAmt+YShAmt) ?
4578   auto *NewShAmt = dyn_cast_or_null<Constant>(
4579       simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
4580                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
4581   if (!NewShAmt)
4582     return nullptr;
4583   if (NewShAmt->getType() != WidestTy) {
4584     NewShAmt =
4585         ConstantFoldCastOperand(Instruction::ZExt, NewShAmt, WidestTy, SQ.DL);
4586     if (!NewShAmt)
4587       return nullptr;
4588   }
4589   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
4590 
4591   // Is the new shift amount smaller than the bit width?
4592   // FIXME: could also rely on ConstantRange.
4593   if (!match(NewShAmt,
4594              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
4595                                 APInt(WidestBitWidth, WidestBitWidth))))
4596     return nullptr;
4597 
4598   // An extra legality check is needed if we had trunc-of-lshr.
4599   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
4600     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
4601                     WidestShift]() {
4602       // It isn't obvious whether it's worth it to analyze non-constants here.
4603       // Also, let's basically give up on non-splat cases, pessimizing vectors.
4604       // If *any* of these preconditions matches we can perform the fold.
4605       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
4606                                     ? NewShAmt->getSplatValue()
4607                                     : NewShAmt;
4608       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
4609       if (NewShAmtSplat &&
4610           (NewShAmtSplat->isNullValue() ||
4611            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
4612         return true;
4613       // We consider *min* leading zeros so a single outlier
4614       // blocks the transform as opposed to allowing it.
4615       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
4616         KnownBits Known = computeKnownBits(C, SQ.DL);
4617         unsigned MinLeadZero = Known.countMinLeadingZeros();
4618         // If the value being shifted has at most lowest bit set we can fold.
4619         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
4620         if (MaxActiveBits <= 1)
4621           return true;
4622         // Precondition:  NewShAmt u<= countLeadingZeros(C)
4623         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
4624           return true;
4625       }
4626       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
4627         KnownBits Known = computeKnownBits(C, SQ.DL);
4628         unsigned MinLeadZero = Known.countMinLeadingZeros();
4629         // If the value being shifted has at most lowest bit set we can fold.
4630         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
4631         if (MaxActiveBits <= 1)
4632           return true;
4633         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
4634         if (NewShAmtSplat) {
4635           APInt AdjNewShAmt =
4636               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
4637           if (AdjNewShAmt.ule(MinLeadZero))
4638             return true;
4639         }
4640       }
4641       return false; // Can't tell if it's ok.
4642     };
4643     if (!CanFold())
4644       return nullptr;
4645   }
4646 
4647   // All good, we can do this fold.
4648   X = Builder.CreateZExt(X, WidestTy);
4649   Y = Builder.CreateZExt(Y, WidestTy);
4650   // The shift is the same that was for X.
4651   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
4652                   ? Builder.CreateLShr(X, NewShAmt)
4653                   : Builder.CreateShl(X, NewShAmt);
4654   Value *T1 = Builder.CreateAnd(T0, Y);
4655   return Builder.CreateICmp(I.getPredicate(), T1,
4656                             Constant::getNullValue(WidestTy));
4657 }
4658 
4659 /// Fold
4660 ///   (-1 u/ x) u< y
4661 ///   ((x * y) ?/ x) != y
4662 /// to
4663 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
4664 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
4665 /// will mean that we are looking for the opposite answer.
4666 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
4667   ICmpInst::Predicate Pred;
4668   Value *X, *Y;
4669   Instruction *Mul;
4670   Instruction *Div;
4671   bool NeedNegation;
4672   // Look for: (-1 u/ x) u</u>= y
4673   if (!I.isEquality() &&
4674       match(&I, m_c_ICmp(Pred,
4675                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
4676                                       m_Instruction(Div)),
4677                          m_Value(Y)))) {
4678     Mul = nullptr;
4679 
4680     // Are we checking that overflow does not happen, or does happen?
4681     switch (Pred) {
4682     case ICmpInst::Predicate::ICMP_ULT:
4683       NeedNegation = false;
4684       break; // OK
4685     case ICmpInst::Predicate::ICMP_UGE:
4686       NeedNegation = true;
4687       break; // OK
4688     default:
4689       return nullptr; // Wrong predicate.
4690     }
4691   } else // Look for: ((x * y) / x) !=/== y
4692       if (I.isEquality() &&
4693           match(&I,
4694                 m_c_ICmp(Pred, m_Value(Y),
4695                          m_CombineAnd(
4696                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
4697                                                                   m_Value(X)),
4698                                                           m_Instruction(Mul)),
4699                                              m_Deferred(X))),
4700                              m_Instruction(Div))))) {
4701     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
4702   } else
4703     return nullptr;
4704 
4705   BuilderTy::InsertPointGuard Guard(Builder);
4706   // If the pattern included (x * y), we'll want to insert new instructions
4707   // right before that original multiplication so that we can replace it.
4708   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
4709   if (MulHadOtherUses)
4710     Builder.SetInsertPoint(Mul);
4711 
4712   Function *F = Intrinsic::getDeclaration(I.getModule(),
4713                                           Div->getOpcode() == Instruction::UDiv
4714                                               ? Intrinsic::umul_with_overflow
4715                                               : Intrinsic::smul_with_overflow,
4716                                           X->getType());
4717   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
4718 
4719   // If the multiplication was used elsewhere, to ensure that we don't leave
4720   // "duplicate" instructions, replace uses of that original multiplication
4721   // with the multiplication result from the with.overflow intrinsic.
4722   if (MulHadOtherUses)
4723     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
4724 
4725   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
4726   if (NeedNegation) // This technically increases instruction count.
4727     Res = Builder.CreateNot(Res, "mul.not.ov");
4728 
4729   // If we replaced the mul, erase it. Do this after all uses of Builder,
4730   // as the mul is used as insertion point.
4731   if (MulHadOtherUses)
4732     eraseInstFromFunction(*Mul);
4733 
4734   return Res;
4735 }
4736 
4737 static Instruction *foldICmpXNegX(ICmpInst &I,
4738                                   InstCombiner::BuilderTy &Builder) {
4739   CmpInst::Predicate Pred;
4740   Value *X;
4741   if (match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) {
4742 
4743     if (ICmpInst::isSigned(Pred))
4744       Pred = ICmpInst::getSwappedPredicate(Pred);
4745     else if (ICmpInst::isUnsigned(Pred))
4746       Pred = ICmpInst::getSignedPredicate(Pred);
4747     // else for equality-comparisons just keep the predicate.
4748 
4749     return ICmpInst::Create(Instruction::ICmp, Pred, X,
4750                             Constant::getNullValue(X->getType()), I.getName());
4751   }
4752 
4753   // A value is not equal to its negation unless that value is 0 or
4754   // MinSignedValue, ie: a != -a --> (a & MaxSignedVal) != 0
4755   if (match(&I, m_c_ICmp(Pred, m_OneUse(m_Neg(m_Value(X))), m_Deferred(X))) &&
4756       ICmpInst::isEquality(Pred)) {
4757     Type *Ty = X->getType();
4758     uint32_t BitWidth = Ty->getScalarSizeInBits();
4759     Constant *MaxSignedVal =
4760         ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth));
4761     Value *And = Builder.CreateAnd(X, MaxSignedVal);
4762     Constant *Zero = Constant::getNullValue(Ty);
4763     return CmpInst::Create(Instruction::ICmp, Pred, And, Zero);
4764   }
4765 
4766   return nullptr;
4767 }
4768 
4769 static Instruction *foldICmpAndXX(ICmpInst &I, const SimplifyQuery &Q,
4770                                   InstCombinerImpl &IC) {
4771   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A;
4772   // Normalize and operand as operand 0.
4773   CmpInst::Predicate Pred = I.getPredicate();
4774   if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) {
4775     std::swap(Op0, Op1);
4776     Pred = ICmpInst::getSwappedPredicate(Pred);
4777   }
4778 
4779   if (!match(Op0, m_c_And(m_Specific(Op1), m_Value(A))))
4780     return nullptr;
4781 
4782   // (icmp (X & Y) u< X --> (X & Y) != X
4783   if (Pred == ICmpInst::ICMP_ULT)
4784     return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4785 
4786   // (icmp (X & Y) u>= X --> (X & Y) == X
4787   if (Pred == ICmpInst::ICMP_UGE)
4788     return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4789 
4790   if (ICmpInst::isEquality(Pred) && Op0->hasOneUse()) {
4791     // icmp (X & Y) eq/ne Y --> (X | ~Y) eq/ne -1 if Y is freely invertible and
4792     // Y is non-constant. If Y is constant the `X & C == C` form is preferable
4793     // so don't do this fold.
4794     if (!match(Op1, m_ImmConstant()))
4795       if (auto *NotOp1 =
4796               IC.getFreelyInverted(Op1, !Op1->hasNUsesOrMore(3), &IC.Builder))
4797         return new ICmpInst(Pred, IC.Builder.CreateOr(A, NotOp1),
4798                             Constant::getAllOnesValue(Op1->getType()));
4799     // icmp (X & Y) eq/ne Y --> (~X & Y) eq/ne 0 if X  is freely invertible.
4800     if (auto *NotA = IC.getFreelyInverted(A, A->hasOneUse(), &IC.Builder))
4801       return new ICmpInst(Pred, IC.Builder.CreateAnd(Op1, NotA),
4802                           Constant::getNullValue(Op1->getType()));
4803   }
4804 
4805   if (!ICmpInst::isSigned(Pred))
4806     return nullptr;
4807 
4808   KnownBits KnownY = IC.computeKnownBits(A, /*Depth=*/0, &I);
4809   // (X & NegY) spred X --> (X & NegY) upred X
4810   if (KnownY.isNegative())
4811     return new ICmpInst(ICmpInst::getUnsignedPredicate(Pred), Op0, Op1);
4812 
4813   if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGT)
4814     return nullptr;
4815 
4816   if (KnownY.isNonNegative())
4817     // (X & PosY) s<= X --> X s>= 0
4818     // (X & PosY) s> X --> X s< 0
4819     return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1,
4820                         Constant::getNullValue(Op1->getType()));
4821 
4822   if (isKnownNegative(Op1, IC.getSimplifyQuery().getWithInstruction(&I)))
4823     // (NegX & Y) s<= NegX --> Y s< 0
4824     // (NegX & Y) s> NegX --> Y s>= 0
4825     return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred), A,
4826                         Constant::getNullValue(A->getType()));
4827 
4828   return nullptr;
4829 }
4830 
4831 static Instruction *foldICmpOrXX(ICmpInst &I, const SimplifyQuery &Q,
4832                                  InstCombinerImpl &IC) {
4833   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A;
4834 
4835   // Normalize or operand as operand 0.
4836   CmpInst::Predicate Pred = I.getPredicate();
4837   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value(A)))) {
4838     std::swap(Op0, Op1);
4839     Pred = ICmpInst::getSwappedPredicate(Pred);
4840   } else if (!match(Op0, m_c_Or(m_Specific(Op1), m_Value(A)))) {
4841     return nullptr;
4842   }
4843 
4844   // icmp (X | Y) u<= X --> (X | Y) == X
4845   if (Pred == ICmpInst::ICMP_ULE)
4846     return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4847 
4848   // icmp (X | Y) u> X --> (X | Y) != X
4849   if (Pred == ICmpInst::ICMP_UGT)
4850     return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4851 
4852   if (ICmpInst::isEquality(Pred) && Op0->hasOneUse()) {
4853     // icmp (X | Y) eq/ne Y --> (X & ~Y) eq/ne 0 if Y is freely invertible
4854     if (Value *NotOp1 =
4855             IC.getFreelyInverted(Op1, !Op1->hasNUsesOrMore(3), &IC.Builder))
4856       return new ICmpInst(Pred, IC.Builder.CreateAnd(A, NotOp1),
4857                           Constant::getNullValue(Op1->getType()));
4858     // icmp (X | Y) eq/ne Y --> (~X | Y) eq/ne -1 if X  is freely invertible.
4859     if (Value *NotA = IC.getFreelyInverted(A, A->hasOneUse(), &IC.Builder))
4860       return new ICmpInst(Pred, IC.Builder.CreateOr(Op1, NotA),
4861                           Constant::getAllOnesValue(Op1->getType()));
4862   }
4863   return nullptr;
4864 }
4865 
4866 static Instruction *foldICmpXorXX(ICmpInst &I, const SimplifyQuery &Q,
4867                                   InstCombinerImpl &IC) {
4868   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A;
4869   // Normalize xor operand as operand 0.
4870   CmpInst::Predicate Pred = I.getPredicate();
4871   if (match(Op1, m_c_Xor(m_Specific(Op0), m_Value()))) {
4872     std::swap(Op0, Op1);
4873     Pred = ICmpInst::getSwappedPredicate(Pred);
4874   }
4875   if (!match(Op0, m_c_Xor(m_Specific(Op1), m_Value(A))))
4876     return nullptr;
4877 
4878   // icmp (X ^ Y_NonZero) u>= X --> icmp (X ^ Y_NonZero) u> X
4879   // icmp (X ^ Y_NonZero) u<= X --> icmp (X ^ Y_NonZero) u< X
4880   // icmp (X ^ Y_NonZero) s>= X --> icmp (X ^ Y_NonZero) s> X
4881   // icmp (X ^ Y_NonZero) s<= X --> icmp (X ^ Y_NonZero) s< X
4882   CmpInst::Predicate PredOut = CmpInst::getStrictPredicate(Pred);
4883   if (PredOut != Pred && isKnownNonZero(A, Q))
4884     return new ICmpInst(PredOut, Op0, Op1);
4885 
4886   return nullptr;
4887 }
4888 
4889 /// Try to fold icmp (binop), X or icmp X, (binop).
4890 /// TODO: A large part of this logic is duplicated in InstSimplify's
4891 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
4892 /// duplication.
4893 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
4894                                              const SimplifyQuery &SQ) {
4895   const SimplifyQuery Q = SQ.getWithInstruction(&I);
4896   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4897 
4898   // Special logic for binary operators.
4899   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
4900   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
4901   if (!BO0 && !BO1)
4902     return nullptr;
4903 
4904   if (Instruction *NewICmp = foldICmpXNegX(I, Builder))
4905     return NewICmp;
4906 
4907   const CmpInst::Predicate Pred = I.getPredicate();
4908   Value *X;
4909 
4910   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
4911   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
4912   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
4913       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4914     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
4915   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
4916   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
4917       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4918     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
4919 
4920   {
4921     // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1
4922     Constant *C;
4923     if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)),
4924                                   m_ImmConstant(C)))) &&
4925         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
4926       Constant *C2 = ConstantExpr::getNot(C);
4927       return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1);
4928     }
4929     // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X
4930     if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)),
4931                                   m_ImmConstant(C)))) &&
4932         (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) {
4933       Constant *C2 = ConstantExpr::getNot(C);
4934       return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X));
4935     }
4936   }
4937 
4938   {
4939     // Similar to above: an unsigned overflow comparison may use offset + mask:
4940     // ((Op1 + C) & C) u<  Op1 --> Op1 != 0
4941     // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
4942     // Op0 u>  ((Op0 + C) & C) --> Op0 != 0
4943     // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
4944     BinaryOperator *BO;
4945     const APInt *C;
4946     if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
4947         match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4948         match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowPoison(*C)))) {
4949       CmpInst::Predicate NewPred =
4950           Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4951       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4952       return new ICmpInst(NewPred, Op1, Zero);
4953     }
4954 
4955     if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
4956         match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4957         match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowPoison(*C)))) {
4958       CmpInst::Predicate NewPred =
4959           Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4960       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4961       return new ICmpInst(NewPred, Op0, Zero);
4962     }
4963   }
4964 
4965   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
4966   bool Op0HasNUW = false, Op1HasNUW = false;
4967   bool Op0HasNSW = false, Op1HasNSW = false;
4968   // Analyze the case when either Op0 or Op1 is an add instruction.
4969   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
4970   auto hasNoWrapProblem = [](const BinaryOperator &BO, CmpInst::Predicate Pred,
4971                              bool &HasNSW, bool &HasNUW) -> bool {
4972     if (isa<OverflowingBinaryOperator>(BO)) {
4973       HasNUW = BO.hasNoUnsignedWrap();
4974       HasNSW = BO.hasNoSignedWrap();
4975       return ICmpInst::isEquality(Pred) ||
4976              (CmpInst::isUnsigned(Pred) && HasNUW) ||
4977              (CmpInst::isSigned(Pred) && HasNSW);
4978     } else if (BO.getOpcode() == Instruction::Or) {
4979       HasNUW = true;
4980       HasNSW = true;
4981       return true;
4982     } else {
4983       return false;
4984     }
4985   };
4986   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
4987 
4988   if (BO0) {
4989     match(BO0, m_AddLike(m_Value(A), m_Value(B)));
4990     NoOp0WrapProblem = hasNoWrapProblem(*BO0, Pred, Op0HasNSW, Op0HasNUW);
4991   }
4992   if (BO1) {
4993     match(BO1, m_AddLike(m_Value(C), m_Value(D)));
4994     NoOp1WrapProblem = hasNoWrapProblem(*BO1, Pred, Op1HasNSW, Op1HasNUW);
4995   }
4996 
4997   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4998   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4999   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
5000     return new ICmpInst(Pred, A == Op1 ? B : A,
5001                         Constant::getNullValue(Op1->getType()));
5002 
5003   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
5004   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
5005   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
5006     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
5007                         C == Op0 ? D : C);
5008 
5009   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
5010   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
5011       NoOp1WrapProblem) {
5012     // Determine Y and Z in the form icmp (X+Y), (X+Z).
5013     Value *Y, *Z;
5014     if (A == C) {
5015       // C + B == C + D  ->  B == D
5016       Y = B;
5017       Z = D;
5018     } else if (A == D) {
5019       // D + B == C + D  ->  B == C
5020       Y = B;
5021       Z = C;
5022     } else if (B == C) {
5023       // A + C == C + D  ->  A == D
5024       Y = A;
5025       Z = D;
5026     } else {
5027       assert(B == D);
5028       // A + D == C + D  ->  A == C
5029       Y = A;
5030       Z = C;
5031     }
5032     return new ICmpInst(Pred, Y, Z);
5033   }
5034 
5035   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
5036   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
5037       match(B, m_AllOnes()))
5038     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
5039 
5040   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
5041   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
5042       match(B, m_AllOnes()))
5043     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
5044 
5045   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
5046   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
5047     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
5048 
5049   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
5050   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
5051     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
5052 
5053   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
5054   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
5055       match(D, m_AllOnes()))
5056     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
5057 
5058   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
5059   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
5060       match(D, m_AllOnes()))
5061     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
5062 
5063   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
5064   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
5065     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
5066 
5067   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
5068   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
5069     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
5070 
5071   // TODO: The subtraction-related identities shown below also hold, but
5072   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
5073   // wouldn't happen even if they were implemented.
5074   //
5075   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
5076   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
5077   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
5078   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
5079 
5080   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
5081   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
5082     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
5083 
5084   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
5085   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
5086     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
5087 
5088   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
5089   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
5090     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
5091 
5092   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
5093   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
5094     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
5095 
5096   // if C1 has greater magnitude than C2:
5097   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
5098   //  s.t. C3 = C1 - C2
5099   //
5100   // if C2 has greater magnitude than C1:
5101   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
5102   //  s.t. C3 = C2 - C1
5103   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
5104       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) {
5105     const APInt *AP1, *AP2;
5106     // TODO: Support non-uniform vectors.
5107     // TODO: Allow poison passthrough if B or D's element is poison.
5108     if (match(B, m_APIntAllowPoison(AP1)) &&
5109         match(D, m_APIntAllowPoison(AP2)) &&
5110         AP1->isNegative() == AP2->isNegative()) {
5111       APInt AP1Abs = AP1->abs();
5112       APInt AP2Abs = AP2->abs();
5113       if (AP1Abs.uge(AP2Abs)) {
5114         APInt Diff = *AP1 - *AP2;
5115         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
5116         Value *NewAdd = Builder.CreateAdd(
5117             A, C3, "", Op0HasNUW && Diff.ule(*AP1), Op0HasNSW);
5118         return new ICmpInst(Pred, NewAdd, C);
5119       } else {
5120         APInt Diff = *AP2 - *AP1;
5121         Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
5122         Value *NewAdd = Builder.CreateAdd(
5123             C, C3, "", Op1HasNUW && Diff.ule(*AP2), Op1HasNSW);
5124         return new ICmpInst(Pred, A, NewAdd);
5125       }
5126     }
5127     Constant *Cst1, *Cst2;
5128     if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) &&
5129         ICmpInst::isEquality(Pred)) {
5130       Constant *Diff = ConstantExpr::getSub(Cst2, Cst1);
5131       Value *NewAdd = Builder.CreateAdd(C, Diff);
5132       return new ICmpInst(Pred, A, NewAdd);
5133     }
5134   }
5135 
5136   // Analyze the case when either Op0 or Op1 is a sub instruction.
5137   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
5138   A = nullptr;
5139   B = nullptr;
5140   C = nullptr;
5141   D = nullptr;
5142   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
5143     A = BO0->getOperand(0);
5144     B = BO0->getOperand(1);
5145   }
5146   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
5147     C = BO1->getOperand(0);
5148     D = BO1->getOperand(1);
5149   }
5150 
5151   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
5152   if (A == Op1 && NoOp0WrapProblem)
5153     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
5154   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
5155   if (C == Op0 && NoOp1WrapProblem)
5156     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
5157 
5158   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
5159   // (A - B) u>/u<= A --> B u>/u<= A
5160   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
5161     return new ICmpInst(Pred, B, A);
5162   // C u</u>= (C - D) --> C u</u>= D
5163   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
5164     return new ICmpInst(Pred, C, D);
5165   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
5166   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
5167       isKnownNonZero(B, Q))
5168     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
5169   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
5170   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
5171       isKnownNonZero(D, Q))
5172     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
5173 
5174   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
5175   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
5176     return new ICmpInst(Pred, A, C);
5177 
5178   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
5179   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
5180     return new ICmpInst(Pred, D, B);
5181 
5182   // icmp (0-X) < cst --> x > -cst
5183   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
5184     Value *X;
5185     if (match(BO0, m_Neg(m_Value(X))))
5186       if (Constant *RHSC = dyn_cast<Constant>(Op1))
5187         if (RHSC->isNotMinSignedValue())
5188           return new ICmpInst(I.getSwappedPredicate(), X,
5189                               ConstantExpr::getNeg(RHSC));
5190   }
5191 
5192   if (Instruction * R = foldICmpXorXX(I, Q, *this))
5193     return R;
5194   if (Instruction *R = foldICmpOrXX(I, Q, *this))
5195     return R;
5196 
5197   {
5198     // Try to remove shared multiplier from comparison:
5199     // X * Z u{lt/le/gt/ge}/eq/ne Y * Z
5200     Value *X, *Y, *Z;
5201     if (Pred == ICmpInst::getUnsignedPredicate(Pred) &&
5202         ((match(Op0, m_Mul(m_Value(X), m_Value(Z))) &&
5203           match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))) ||
5204          (match(Op0, m_Mul(m_Value(Z), m_Value(X))) &&
5205           match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))))) {
5206       bool NonZero;
5207       if (ICmpInst::isEquality(Pred)) {
5208         KnownBits ZKnown = computeKnownBits(Z, 0, &I);
5209         // if Z % 2 != 0
5210         //    X * Z eq/ne Y * Z -> X eq/ne Y
5211         if (ZKnown.countMaxTrailingZeros() == 0)
5212           return new ICmpInst(Pred, X, Y);
5213         NonZero = !ZKnown.One.isZero() || isKnownNonZero(Z, Q);
5214         // if Z != 0 and nsw(X * Z) and nsw(Y * Z)
5215         //    X * Z eq/ne Y * Z -> X eq/ne Y
5216         if (NonZero && BO0 && BO1 && Op0HasNSW && Op1HasNSW)
5217           return new ICmpInst(Pred, X, Y);
5218       } else
5219         NonZero = isKnownNonZero(Z, Q);
5220 
5221       // If Z != 0 and nuw(X * Z) and nuw(Y * Z)
5222       //    X * Z u{lt/le/gt/ge}/eq/ne Y * Z -> X u{lt/le/gt/ge}/eq/ne Y
5223       if (NonZero && BO0 && BO1 && Op0HasNUW && Op1HasNUW)
5224         return new ICmpInst(Pred, X, Y);
5225     }
5226   }
5227 
5228   BinaryOperator *SRem = nullptr;
5229   // icmp (srem X, Y), Y
5230   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
5231     SRem = BO0;
5232   // icmp Y, (srem X, Y)
5233   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
5234            Op0 == BO1->getOperand(1))
5235     SRem = BO1;
5236   if (SRem) {
5237     // We don't check hasOneUse to avoid increasing register pressure because
5238     // the value we use is the same value this instruction was already using.
5239     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
5240     default:
5241       break;
5242     case ICmpInst::ICMP_EQ:
5243       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5244     case ICmpInst::ICMP_NE:
5245       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5246     case ICmpInst::ICMP_SGT:
5247     case ICmpInst::ICMP_SGE:
5248       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
5249                           Constant::getAllOnesValue(SRem->getType()));
5250     case ICmpInst::ICMP_SLT:
5251     case ICmpInst::ICMP_SLE:
5252       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
5253                           Constant::getNullValue(SRem->getType()));
5254     }
5255   }
5256 
5257   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
5258       (BO0->hasOneUse() || BO1->hasOneUse()) &&
5259       BO0->getOperand(1) == BO1->getOperand(1)) {
5260     switch (BO0->getOpcode()) {
5261     default:
5262       break;
5263     case Instruction::Add:
5264     case Instruction::Sub:
5265     case Instruction::Xor: {
5266       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
5267         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
5268 
5269       const APInt *C;
5270       if (match(BO0->getOperand(1), m_APInt(C))) {
5271         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
5272         if (C->isSignMask()) {
5273           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
5274           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
5275         }
5276 
5277         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
5278         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
5279           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
5280           NewPred = I.getSwappedPredicate(NewPred);
5281           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
5282         }
5283       }
5284       break;
5285     }
5286     case Instruction::Mul: {
5287       if (!I.isEquality())
5288         break;
5289 
5290       const APInt *C;
5291       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
5292           !C->isOne()) {
5293         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
5294         // Mask = -1 >> count-trailing-zeros(C).
5295         if (unsigned TZs = C->countr_zero()) {
5296           Constant *Mask = ConstantInt::get(
5297               BO0->getType(),
5298               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
5299           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
5300           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
5301           return new ICmpInst(Pred, And1, And2);
5302         }
5303       }
5304       break;
5305     }
5306     case Instruction::UDiv:
5307     case Instruction::LShr:
5308       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
5309         break;
5310       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
5311 
5312     case Instruction::SDiv:
5313       if (!(I.isEquality() || match(BO0->getOperand(1), m_NonNegative())) ||
5314           !BO0->isExact() || !BO1->isExact())
5315         break;
5316       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
5317 
5318     case Instruction::AShr:
5319       if (!BO0->isExact() || !BO1->isExact())
5320         break;
5321       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
5322 
5323     case Instruction::Shl: {
5324       bool NUW = Op0HasNUW && Op1HasNUW;
5325       bool NSW = Op0HasNSW && Op1HasNSW;
5326       if (!NUW && !NSW)
5327         break;
5328       if (!NSW && I.isSigned())
5329         break;
5330       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
5331     }
5332     }
5333   }
5334 
5335   if (BO0) {
5336     // Transform  A & (L - 1) `ult` L --> L != 0
5337     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
5338     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
5339 
5340     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
5341       auto *Zero = Constant::getNullValue(BO0->getType());
5342       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
5343     }
5344   }
5345 
5346   // For unsigned predicates / eq / ne:
5347   // icmp pred (x << 1), x --> icmp getSignedPredicate(pred) x, 0
5348   // icmp pred x, (x << 1) --> icmp getSignedPredicate(pred) 0, x
5349   if (!ICmpInst::isSigned(Pred)) {
5350     if (match(Op0, m_Shl(m_Specific(Op1), m_One())))
5351       return new ICmpInst(ICmpInst::getSignedPredicate(Pred), Op1,
5352                           Constant::getNullValue(Op1->getType()));
5353     else if (match(Op1, m_Shl(m_Specific(Op0), m_One())))
5354       return new ICmpInst(ICmpInst::getSignedPredicate(Pred),
5355                           Constant::getNullValue(Op0->getType()), Op0);
5356   }
5357 
5358   if (Value *V = foldMultiplicationOverflowCheck(I))
5359     return replaceInstUsesWith(I, V);
5360 
5361   if (Instruction *R = foldICmpAndXX(I, Q, *this))
5362     return R;
5363 
5364   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
5365     return replaceInstUsesWith(I, V);
5366 
5367   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
5368     return replaceInstUsesWith(I, V);
5369 
5370   return nullptr;
5371 }
5372 
5373 /// Fold icmp Pred min|max(X, Y), Z.
5374 Instruction *InstCombinerImpl::foldICmpWithMinMax(Instruction &I,
5375                                                   MinMaxIntrinsic *MinMax,
5376                                                   Value *Z,
5377                                                   ICmpInst::Predicate Pred) {
5378   Value *X = MinMax->getLHS();
5379   Value *Y = MinMax->getRHS();
5380   if (ICmpInst::isSigned(Pred) && !MinMax->isSigned())
5381     return nullptr;
5382   if (ICmpInst::isUnsigned(Pred) && MinMax->isSigned()) {
5383     // Revert the transform signed pred -> unsigned pred
5384     // TODO: We can flip the signedness of predicate if both operands of icmp
5385     // are negative.
5386     if (isKnownNonNegative(Z, SQ.getWithInstruction(&I)) &&
5387         isKnownNonNegative(MinMax, SQ.getWithInstruction(&I))) {
5388       Pred = ICmpInst::getFlippedSignednessPredicate(Pred);
5389     } else
5390       return nullptr;
5391   }
5392   SimplifyQuery Q = SQ.getWithInstruction(&I);
5393   auto IsCondKnownTrue = [](Value *Val) -> std::optional<bool> {
5394     if (!Val)
5395       return std::nullopt;
5396     if (match(Val, m_One()))
5397       return true;
5398     if (match(Val, m_Zero()))
5399       return false;
5400     return std::nullopt;
5401   };
5402   auto CmpXZ = IsCondKnownTrue(simplifyICmpInst(Pred, X, Z, Q));
5403   auto CmpYZ = IsCondKnownTrue(simplifyICmpInst(Pred, Y, Z, Q));
5404   if (!CmpXZ.has_value() && !CmpYZ.has_value())
5405     return nullptr;
5406   if (!CmpXZ.has_value()) {
5407     std::swap(X, Y);
5408     std::swap(CmpXZ, CmpYZ);
5409   }
5410 
5411   auto FoldIntoCmpYZ = [&]() -> Instruction * {
5412     if (CmpYZ.has_value())
5413       return replaceInstUsesWith(I, ConstantInt::getBool(I.getType(), *CmpYZ));
5414     return ICmpInst::Create(Instruction::ICmp, Pred, Y, Z);
5415   };
5416 
5417   switch (Pred) {
5418   case ICmpInst::ICMP_EQ:
5419   case ICmpInst::ICMP_NE: {
5420     // If X == Z:
5421     //     Expr       Result
5422     // min(X, Y) == Z X <= Y
5423     // max(X, Y) == Z X >= Y
5424     // min(X, Y) != Z X > Y
5425     // max(X, Y) != Z X < Y
5426     if ((Pred == ICmpInst::ICMP_EQ) == *CmpXZ) {
5427       ICmpInst::Predicate NewPred =
5428           ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
5429       if (Pred == ICmpInst::ICMP_NE)
5430         NewPred = ICmpInst::getInversePredicate(NewPred);
5431       return ICmpInst::Create(Instruction::ICmp, NewPred, X, Y);
5432     }
5433     // Otherwise (X != Z):
5434     ICmpInst::Predicate NewPred = MinMax->getPredicate();
5435     auto MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q));
5436     if (!MinMaxCmpXZ.has_value()) {
5437       std::swap(X, Y);
5438       std::swap(CmpXZ, CmpYZ);
5439       // Re-check pre-condition X != Z
5440       if (!CmpXZ.has_value() || (Pred == ICmpInst::ICMP_EQ) == *CmpXZ)
5441         break;
5442       MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q));
5443     }
5444     if (!MinMaxCmpXZ.has_value())
5445       break;
5446     if (*MinMaxCmpXZ) {
5447       //    Expr         Fact    Result
5448       // min(X, Y) == Z  X < Z   false
5449       // max(X, Y) == Z  X > Z   false
5450       // min(X, Y) != Z  X < Z    true
5451       // max(X, Y) != Z  X > Z    true
5452       return replaceInstUsesWith(
5453           I, ConstantInt::getBool(I.getType(), Pred == ICmpInst::ICMP_NE));
5454     } else {
5455       //    Expr         Fact    Result
5456       // min(X, Y) == Z  X > Z   Y == Z
5457       // max(X, Y) == Z  X < Z   Y == Z
5458       // min(X, Y) != Z  X > Z   Y != Z
5459       // max(X, Y) != Z  X < Z   Y != Z
5460       return FoldIntoCmpYZ();
5461     }
5462     break;
5463   }
5464   case ICmpInst::ICMP_SLT:
5465   case ICmpInst::ICMP_ULT:
5466   case ICmpInst::ICMP_SLE:
5467   case ICmpInst::ICMP_ULE:
5468   case ICmpInst::ICMP_SGT:
5469   case ICmpInst::ICMP_UGT:
5470   case ICmpInst::ICMP_SGE:
5471   case ICmpInst::ICMP_UGE: {
5472     bool IsSame = MinMax->getPredicate() == ICmpInst::getStrictPredicate(Pred);
5473     if (*CmpXZ) {
5474       if (IsSame) {
5475         //      Expr        Fact    Result
5476         // min(X, Y) < Z    X < Z   true
5477         // min(X, Y) <= Z   X <= Z  true
5478         // max(X, Y) > Z    X > Z   true
5479         // max(X, Y) >= Z   X >= Z  true
5480         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5481       } else {
5482         //      Expr        Fact    Result
5483         // max(X, Y) < Z    X < Z   Y < Z
5484         // max(X, Y) <= Z   X <= Z  Y <= Z
5485         // min(X, Y) > Z    X > Z   Y > Z
5486         // min(X, Y) >= Z   X >= Z  Y >= Z
5487         return FoldIntoCmpYZ();
5488       }
5489     } else {
5490       if (IsSame) {
5491         //      Expr        Fact    Result
5492         // min(X, Y) < Z    X >= Z  Y < Z
5493         // min(X, Y) <= Z   X > Z   Y <= Z
5494         // max(X, Y) > Z    X <= Z  Y > Z
5495         // max(X, Y) >= Z   X < Z   Y >= Z
5496         return FoldIntoCmpYZ();
5497       } else {
5498         //      Expr        Fact    Result
5499         // max(X, Y) < Z    X >= Z  false
5500         // max(X, Y) <= Z   X > Z   false
5501         // min(X, Y) > Z    X <= Z  false
5502         // min(X, Y) >= Z   X < Z   false
5503         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5504       }
5505     }
5506     break;
5507   }
5508   default:
5509     break;
5510   }
5511 
5512   return nullptr;
5513 }
5514 
5515 // Canonicalize checking for a power-of-2-or-zero value:
5516 static Instruction *foldICmpPow2Test(ICmpInst &I,
5517                                      InstCombiner::BuilderTy &Builder) {
5518   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5519   const CmpInst::Predicate Pred = I.getPredicate();
5520   Value *A = nullptr;
5521   bool CheckIs;
5522   if (I.isEquality()) {
5523     // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
5524     // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
5525     if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
5526                                      m_Deferred(A)))) ||
5527         !match(Op1, m_ZeroInt()))
5528       A = nullptr;
5529 
5530     // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
5531     // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
5532     if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
5533       A = Op1;
5534     else if (match(Op1,
5535                    m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
5536       A = Op0;
5537 
5538     CheckIs = Pred == ICmpInst::ICMP_EQ;
5539   } else if (ICmpInst::isUnsigned(Pred)) {
5540     // (A ^ (A-1)) u>= A --> ctpop(A) < 2 (two commuted variants)
5541     // ((A-1) ^ A) u< A --> ctpop(A) > 1 (two commuted variants)
5542 
5543     if ((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
5544         match(Op0, m_OneUse(m_c_Xor(m_Add(m_Specific(Op1), m_AllOnes()),
5545                                     m_Specific(Op1))))) {
5546       A = Op1;
5547       CheckIs = Pred == ICmpInst::ICMP_UGE;
5548     } else if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
5549                match(Op1, m_OneUse(m_c_Xor(m_Add(m_Specific(Op0), m_AllOnes()),
5550                                            m_Specific(Op0))))) {
5551       A = Op0;
5552       CheckIs = Pred == ICmpInst::ICMP_ULE;
5553     }
5554   }
5555 
5556   if (A) {
5557     Type *Ty = A->getType();
5558     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
5559     return CheckIs ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop,
5560                                   ConstantInt::get(Ty, 2))
5561                    : new ICmpInst(ICmpInst::ICMP_UGT, CtPop,
5562                                   ConstantInt::get(Ty, 1));
5563   }
5564 
5565   return nullptr;
5566 }
5567 
5568 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
5569   if (!I.isEquality())
5570     return nullptr;
5571 
5572   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5573   const CmpInst::Predicate Pred = I.getPredicate();
5574   Value *A, *B, *C, *D;
5575   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5576     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
5577       Value *OtherVal = A == Op1 ? B : A;
5578       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
5579     }
5580 
5581     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5582       // A^c1 == C^c2 --> A == C^(c1^c2)
5583       ConstantInt *C1, *C2;
5584       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
5585           Op1->hasOneUse()) {
5586         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
5587         Value *Xor = Builder.CreateXor(C, NC);
5588         return new ICmpInst(Pred, A, Xor);
5589       }
5590 
5591       // A^B == A^D -> B == D
5592       if (A == C)
5593         return new ICmpInst(Pred, B, D);
5594       if (A == D)
5595         return new ICmpInst(Pred, B, C);
5596       if (B == C)
5597         return new ICmpInst(Pred, A, D);
5598       if (B == D)
5599         return new ICmpInst(Pred, A, C);
5600     }
5601   }
5602 
5603   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
5604     // A == (A^B)  ->  B == 0
5605     Value *OtherVal = A == Op0 ? B : A;
5606     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
5607   }
5608 
5609   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5610   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
5611       match(Op1, m_And(m_Value(C), m_Value(D)))) {
5612     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
5613 
5614     if (A == C) {
5615       X = B;
5616       Y = D;
5617       Z = A;
5618     } else if (A == D) {
5619       X = B;
5620       Y = C;
5621       Z = A;
5622     } else if (B == C) {
5623       X = A;
5624       Y = D;
5625       Z = B;
5626     } else if (B == D) {
5627       X = A;
5628       Y = C;
5629       Z = B;
5630     }
5631 
5632     if (X) {
5633       // If X^Y is a negative power of two, then `icmp eq/ne (Z & NegP2), 0`
5634       // will fold to `icmp ult/uge Z, -NegP2` incurringb no additional
5635       // instructions.
5636       const APInt *C0, *C1;
5637       bool XorIsNegP2 = match(X, m_APInt(C0)) && match(Y, m_APInt(C1)) &&
5638                         (*C0 ^ *C1).isNegatedPowerOf2();
5639 
5640       // If either Op0/Op1 are both one use or X^Y will constant fold and one of
5641       // Op0/Op1 are one use, proceed. In those cases we are instruction neutral
5642       // but `icmp eq/ne A, 0` is easier to analyze than `icmp eq/ne A, B`.
5643       int UseCnt =
5644           int(Op0->hasOneUse()) + int(Op1->hasOneUse()) +
5645           (int(match(X, m_ImmConstant()) && match(Y, m_ImmConstant())));
5646       if (XorIsNegP2 || UseCnt >= 2) {
5647         // Build (X^Y) & Z
5648         Op1 = Builder.CreateXor(X, Y);
5649         Op1 = Builder.CreateAnd(Op1, Z);
5650         return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
5651       }
5652     }
5653   }
5654 
5655   {
5656     // Similar to above, but specialized for constant because invert is needed:
5657     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
5658     Value *X, *Y;
5659     Constant *C;
5660     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
5661         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
5662       Value *Xor = Builder.CreateXor(X, Y);
5663       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
5664       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
5665     }
5666   }
5667 
5668   if (match(Op1, m_ZExt(m_Value(A))) &&
5669       (Op0->hasOneUse() || Op1->hasOneUse())) {
5670     // (B & (Pow2C-1)) == zext A --> A == trunc B
5671     // (B & (Pow2C-1)) != zext A --> A != trunc B
5672     const APInt *MaskC;
5673     if (match(Op0, m_And(m_Value(B), m_LowBitMask(MaskC))) &&
5674         MaskC->countr_one() == A->getType()->getScalarSizeInBits())
5675       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
5676   }
5677 
5678   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
5679   // For lshr and ashr pairs.
5680   const APInt *AP1, *AP2;
5681   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowPoison(AP1)))) &&
5682        match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowPoison(AP2))))) ||
5683       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowPoison(AP1)))) &&
5684        match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowPoison(AP2)))))) {
5685     if (AP1 != AP2)
5686       return nullptr;
5687     unsigned TypeBits = AP1->getBitWidth();
5688     unsigned ShAmt = AP1->getLimitedValue(TypeBits);
5689     if (ShAmt < TypeBits && ShAmt != 0) {
5690       ICmpInst::Predicate NewPred =
5691           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
5692       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
5693       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
5694       return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal));
5695     }
5696   }
5697 
5698   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
5699   ConstantInt *Cst1;
5700   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
5701       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
5702     unsigned TypeBits = Cst1->getBitWidth();
5703     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
5704     if (ShAmt < TypeBits && ShAmt != 0) {
5705       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
5706       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
5707       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
5708                                       I.getName() + ".mask");
5709       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
5710     }
5711   }
5712 
5713   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
5714   // "icmp (and X, mask), cst"
5715   uint64_t ShAmt = 0;
5716   if (Op0->hasOneUse() &&
5717       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
5718       match(Op1, m_ConstantInt(Cst1)) &&
5719       // Only do this when A has multiple uses.  This is most important to do
5720       // when it exposes other optimizations.
5721       !A->hasOneUse()) {
5722     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
5723 
5724     if (ShAmt < ASize) {
5725       APInt MaskV =
5726           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
5727       MaskV <<= ShAmt;
5728 
5729       APInt CmpV = Cst1->getValue().zext(ASize);
5730       CmpV <<= ShAmt;
5731 
5732       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
5733       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
5734     }
5735   }
5736 
5737   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I, Builder))
5738     return ICmp;
5739 
5740   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
5741   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
5742   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
5743   // of instcombine.
5744   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5745   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
5746       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
5747       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
5748       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
5749     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
5750     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
5751     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
5752                                                   : ICmpInst::ICMP_UGE,
5753                         Add, ConstantInt::get(A->getType(), C.shl(1)));
5754   }
5755 
5756   // Canonicalize:
5757   // Assume B_Pow2 != 0
5758   // 1. A & B_Pow2 != B_Pow2 -> A & B_Pow2 == 0
5759   // 2. A & B_Pow2 == B_Pow2 -> A & B_Pow2 != 0
5760   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())) &&
5761       isKnownToBeAPowerOfTwo(Op1, /* OrZero */ false, 0, &I))
5762     return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0,
5763                         ConstantInt::getNullValue(Op0->getType()));
5764 
5765   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())) &&
5766       isKnownToBeAPowerOfTwo(Op0, /* OrZero */ false, 0, &I))
5767     return new ICmpInst(CmpInst::getInversePredicate(Pred), Op1,
5768                         ConstantInt::getNullValue(Op1->getType()));
5769 
5770   // Canonicalize:
5771   // icmp eq/ne X, OneUse(rotate-right(X))
5772   //    -> icmp eq/ne X, rotate-left(X)
5773   // We generally try to convert rotate-right -> rotate-left, this just
5774   // canonicalizes another case.
5775   CmpInst::Predicate PredUnused = Pred;
5776   if (match(&I, m_c_ICmp(PredUnused, m_Value(A),
5777                          m_OneUse(m_Intrinsic<Intrinsic::fshr>(
5778                              m_Deferred(A), m_Deferred(A), m_Value(B))))))
5779     return new ICmpInst(
5780         Pred, A,
5781         Builder.CreateIntrinsic(Op0->getType(), Intrinsic::fshl, {A, A, B}));
5782 
5783   // Canonicalize:
5784   // icmp eq/ne OneUse(A ^ Cst), B --> icmp eq/ne (A ^ B), Cst
5785   Constant *Cst;
5786   if (match(&I, m_c_ICmp(PredUnused,
5787                          m_OneUse(m_Xor(m_Value(A), m_ImmConstant(Cst))),
5788                          m_CombineAnd(m_Value(B), m_Unless(m_ImmConstant())))))
5789     return new ICmpInst(Pred, Builder.CreateXor(A, B), Cst);
5790 
5791   {
5792     // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2)
5793     auto m_Matcher =
5794         m_CombineOr(m_CombineOr(m_c_Add(m_Value(B), m_Deferred(A)),
5795                                 m_c_Xor(m_Value(B), m_Deferred(A))),
5796                     m_Sub(m_Value(B), m_Deferred(A)));
5797     std::optional<bool> IsZero = std::nullopt;
5798     if (match(&I, m_c_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)),
5799                            m_Deferred(A))))
5800       IsZero = false;
5801     // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0)
5802     else if (match(&I,
5803                    m_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)),
5804                           m_Zero())))
5805       IsZero = true;
5806 
5807     if (IsZero && isKnownToBeAPowerOfTwo(A, /* OrZero */ true, /*Depth*/ 0, &I))
5808       // (icmp eq/ne (and (add/sub/xor X, P2), P2), P2)
5809       //    -> (icmp eq/ne (and X, P2), 0)
5810       // (icmp eq/ne (and (add/sub/xor X, P2), P2), 0)
5811       //    -> (icmp eq/ne (and X, P2), P2)
5812       return new ICmpInst(Pred, Builder.CreateAnd(B, A),
5813                           *IsZero ? A
5814                                   : ConstantInt::getNullValue(A->getType()));
5815   }
5816 
5817   return nullptr;
5818 }
5819 
5820 Instruction *InstCombinerImpl::foldICmpWithTrunc(ICmpInst &ICmp) {
5821   ICmpInst::Predicate Pred = ICmp.getPredicate();
5822   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
5823 
5824   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
5825   // The trunc masks high bits while the compare may effectively mask low bits.
5826   Value *X;
5827   const APInt *C;
5828   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
5829     return nullptr;
5830 
5831   // This matches patterns corresponding to tests of the signbit as well as:
5832   // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
5833   // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
5834   APInt Mask;
5835   if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
5836     Value *And = Builder.CreateAnd(X, Mask);
5837     Constant *Zero = ConstantInt::getNullValue(X->getType());
5838     return new ICmpInst(Pred, And, Zero);
5839   }
5840 
5841   unsigned SrcBits = X->getType()->getScalarSizeInBits();
5842   if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
5843     // If C is a negative power-of-2 (high-bit mask):
5844     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
5845     Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
5846     Value *And = Builder.CreateAnd(X, MaskC);
5847     return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
5848   }
5849 
5850   if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
5851     // If C is not-of-power-of-2 (one clear bit):
5852     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
5853     Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
5854     Value *And = Builder.CreateAnd(X, MaskC);
5855     return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
5856   }
5857 
5858   if (auto *II = dyn_cast<IntrinsicInst>(X)) {
5859     if (II->getIntrinsicID() == Intrinsic::cttz ||
5860         II->getIntrinsicID() == Intrinsic::ctlz) {
5861       unsigned MaxRet = SrcBits;
5862       // If the "is_zero_poison" argument is set, then we know at least
5863       // one bit is set in the input, so the result is always at least one
5864       // less than the full bitwidth of that input.
5865       if (match(II->getArgOperand(1), m_One()))
5866         MaxRet--;
5867 
5868       // Make sure the destination is wide enough to hold the largest output of
5869       // the intrinsic.
5870       if (llvm::Log2_32(MaxRet) + 1 <= Op0->getType()->getScalarSizeInBits())
5871         if (Instruction *I =
5872                 foldICmpIntrinsicWithConstant(ICmp, II, C->zext(SrcBits)))
5873           return I;
5874     }
5875   }
5876 
5877   return nullptr;
5878 }
5879 
5880 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) {
5881   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
5882   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
5883   Value *X;
5884   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
5885     return nullptr;
5886 
5887   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
5888   bool IsSignedCmp = ICmp.isSigned();
5889 
5890   // icmp Pred (ext X), (ext Y)
5891   Value *Y;
5892   if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) {
5893     bool IsZext0 = isa<ZExtInst>(ICmp.getOperand(0));
5894     bool IsZext1 = isa<ZExtInst>(ICmp.getOperand(1));
5895 
5896     if (IsZext0 != IsZext1) {
5897         // If X and Y and both i1
5898         // (icmp eq/ne (zext X) (sext Y))
5899         //      eq -> (icmp eq (or X, Y), 0)
5900         //      ne -> (icmp ne (or X, Y), 0)
5901       if (ICmp.isEquality() && X->getType()->isIntOrIntVectorTy(1) &&
5902           Y->getType()->isIntOrIntVectorTy(1))
5903         return new ICmpInst(ICmp.getPredicate(), Builder.CreateOr(X, Y),
5904                             Constant::getNullValue(X->getType()));
5905 
5906       // If we have mismatched casts and zext has the nneg flag, we can
5907       //  treat the "zext nneg" as "sext". Otherwise, we cannot fold and quit.
5908 
5909       auto *NonNegInst0 = dyn_cast<PossiblyNonNegInst>(ICmp.getOperand(0));
5910       auto *NonNegInst1 = dyn_cast<PossiblyNonNegInst>(ICmp.getOperand(1));
5911 
5912       bool IsNonNeg0 = NonNegInst0 && NonNegInst0->hasNonNeg();
5913       bool IsNonNeg1 = NonNegInst1 && NonNegInst1->hasNonNeg();
5914 
5915       if ((IsZext0 && IsNonNeg0) || (IsZext1 && IsNonNeg1))
5916         IsSignedExt = true;
5917       else
5918         return nullptr;
5919     }
5920 
5921     // Not an extension from the same type?
5922     Type *XTy = X->getType(), *YTy = Y->getType();
5923     if (XTy != YTy) {
5924       // One of the casts must have one use because we are creating a new cast.
5925       if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse())
5926         return nullptr;
5927       // Extend the narrower operand to the type of the wider operand.
5928       CastInst::CastOps CastOpcode =
5929           IsSignedExt ? Instruction::SExt : Instruction::ZExt;
5930       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
5931         X = Builder.CreateCast(CastOpcode, X, YTy);
5932       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
5933         Y = Builder.CreateCast(CastOpcode, Y, XTy);
5934       else
5935         return nullptr;
5936     }
5937 
5938     // (zext X) == (zext Y) --> X == Y
5939     // (sext X) == (sext Y) --> X == Y
5940     if (ICmp.isEquality())
5941       return new ICmpInst(ICmp.getPredicate(), X, Y);
5942 
5943     // A signed comparison of sign extended values simplifies into a
5944     // signed comparison.
5945     if (IsSignedCmp && IsSignedExt)
5946       return new ICmpInst(ICmp.getPredicate(), X, Y);
5947 
5948     // The other three cases all fold into an unsigned comparison.
5949     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
5950   }
5951 
5952   // Below here, we are only folding a compare with constant.
5953   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
5954   if (!C)
5955     return nullptr;
5956 
5957   // If a lossless truncate is possible...
5958   Type *SrcTy = CastOp0->getSrcTy();
5959   Constant *Res = getLosslessTrunc(C, SrcTy, CastOp0->getOpcode());
5960   if (Res) {
5961     if (ICmp.isEquality())
5962       return new ICmpInst(ICmp.getPredicate(), X, Res);
5963 
5964     // A signed comparison of sign extended values simplifies into a
5965     // signed comparison.
5966     if (IsSignedExt && IsSignedCmp)
5967       return new ICmpInst(ICmp.getPredicate(), X, Res);
5968 
5969     // The other three cases all fold into an unsigned comparison.
5970     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res);
5971   }
5972 
5973   // The re-extended constant changed, partly changed (in the case of a vector),
5974   // or could not be determined to be equal (in the case of a constant
5975   // expression), so the constant cannot be represented in the shorter type.
5976   // All the cases that fold to true or false will have already been handled
5977   // by simplifyICmpInst, so only deal with the tricky case.
5978   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
5979     return nullptr;
5980 
5981   // Is source op positive?
5982   // icmp ult (sext X), C --> icmp sgt X, -1
5983   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
5984     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
5985 
5986   // Is source op negative?
5987   // icmp ugt (sext X), C --> icmp slt X, 0
5988   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
5989   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
5990 }
5991 
5992 /// Handle icmp (cast x), (cast or constant).
5993 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
5994   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
5995   // icmp compares only pointer's value.
5996   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
5997   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
5998   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
5999   if (SimplifiedOp0 || SimplifiedOp1)
6000     return new ICmpInst(ICmp.getPredicate(),
6001                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
6002                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
6003 
6004   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
6005   if (!CastOp0)
6006     return nullptr;
6007   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
6008     return nullptr;
6009 
6010   Value *Op0Src = CastOp0->getOperand(0);
6011   Type *SrcTy = CastOp0->getSrcTy();
6012   Type *DestTy = CastOp0->getDestTy();
6013 
6014   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6015   // integer type is the same size as the pointer type.
6016   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
6017     if (isa<VectorType>(SrcTy)) {
6018       SrcTy = cast<VectorType>(SrcTy)->getElementType();
6019       DestTy = cast<VectorType>(DestTy)->getElementType();
6020     }
6021     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
6022   };
6023   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
6024       CompatibleSizes(SrcTy, DestTy)) {
6025     Value *NewOp1 = nullptr;
6026     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
6027       Value *PtrSrc = PtrToIntOp1->getOperand(0);
6028       if (PtrSrc->getType() == Op0Src->getType())
6029         NewOp1 = PtrToIntOp1->getOperand(0);
6030     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
6031       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6032     }
6033 
6034     if (NewOp1)
6035       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
6036   }
6037 
6038   if (Instruction *R = foldICmpWithTrunc(ICmp))
6039     return R;
6040 
6041   return foldICmpWithZextOrSext(ICmp);
6042 }
6043 
6044 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS, bool IsSigned) {
6045   switch (BinaryOp) {
6046     default:
6047       llvm_unreachable("Unsupported binary op");
6048     case Instruction::Add:
6049     case Instruction::Sub:
6050       return match(RHS, m_Zero());
6051     case Instruction::Mul:
6052       return !(RHS->getType()->isIntOrIntVectorTy(1) && IsSigned) &&
6053              match(RHS, m_One());
6054   }
6055 }
6056 
6057 OverflowResult
6058 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
6059                                   bool IsSigned, Value *LHS, Value *RHS,
6060                                   Instruction *CxtI) const {
6061   switch (BinaryOp) {
6062     default:
6063       llvm_unreachable("Unsupported binary op");
6064     case Instruction::Add:
6065       if (IsSigned)
6066         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
6067       else
6068         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
6069     case Instruction::Sub:
6070       if (IsSigned)
6071         return computeOverflowForSignedSub(LHS, RHS, CxtI);
6072       else
6073         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
6074     case Instruction::Mul:
6075       if (IsSigned)
6076         return computeOverflowForSignedMul(LHS, RHS, CxtI);
6077       else
6078         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
6079   }
6080 }
6081 
6082 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
6083                                              bool IsSigned, Value *LHS,
6084                                              Value *RHS, Instruction &OrigI,
6085                                              Value *&Result,
6086                                              Constant *&Overflow) {
6087   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
6088     std::swap(LHS, RHS);
6089 
6090   // If the overflow check was an add followed by a compare, the insertion point
6091   // may be pointing to the compare.  We want to insert the new instructions
6092   // before the add in case there are uses of the add between the add and the
6093   // compare.
6094   Builder.SetInsertPoint(&OrigI);
6095 
6096   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
6097   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
6098     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
6099 
6100   if (isNeutralValue(BinaryOp, RHS, IsSigned)) {
6101     Result = LHS;
6102     Overflow = ConstantInt::getFalse(OverflowTy);
6103     return true;
6104   }
6105 
6106   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
6107     case OverflowResult::MayOverflow:
6108       return false;
6109     case OverflowResult::AlwaysOverflowsLow:
6110     case OverflowResult::AlwaysOverflowsHigh:
6111       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
6112       Result->takeName(&OrigI);
6113       Overflow = ConstantInt::getTrue(OverflowTy);
6114       return true;
6115     case OverflowResult::NeverOverflows:
6116       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
6117       Result->takeName(&OrigI);
6118       Overflow = ConstantInt::getFalse(OverflowTy);
6119       if (auto *Inst = dyn_cast<Instruction>(Result)) {
6120         if (IsSigned)
6121           Inst->setHasNoSignedWrap();
6122         else
6123           Inst->setHasNoUnsignedWrap();
6124       }
6125       return true;
6126   }
6127 
6128   llvm_unreachable("Unexpected overflow result");
6129 }
6130 
6131 /// Recognize and process idiom involving test for multiplication
6132 /// overflow.
6133 ///
6134 /// The caller has matched a pattern of the form:
6135 ///   I = cmp u (mul(zext A, zext B), V
6136 /// The function checks if this is a test for overflow and if so replaces
6137 /// multiplication with call to 'mul.with.overflow' intrinsic.
6138 ///
6139 /// \param I Compare instruction.
6140 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
6141 ///               the compare instruction.  Must be of integer type.
6142 /// \param OtherVal The other argument of compare instruction.
6143 /// \returns Instruction which must replace the compare instruction, NULL if no
6144 ///          replacement required.
6145 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
6146                                          const APInt *OtherVal,
6147                                          InstCombinerImpl &IC) {
6148   // Don't bother doing this transformation for pointers, don't do it for
6149   // vectors.
6150   if (!isa<IntegerType>(MulVal->getType()))
6151     return nullptr;
6152 
6153   auto *MulInstr = dyn_cast<Instruction>(MulVal);
6154   if (!MulInstr)
6155     return nullptr;
6156   assert(MulInstr->getOpcode() == Instruction::Mul);
6157 
6158   auto *LHS = cast<ZExtInst>(MulInstr->getOperand(0)),
6159        *RHS = cast<ZExtInst>(MulInstr->getOperand(1));
6160   assert(LHS->getOpcode() == Instruction::ZExt);
6161   assert(RHS->getOpcode() == Instruction::ZExt);
6162   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
6163 
6164   // Calculate type and width of the result produced by mul.with.overflow.
6165   Type *TyA = A->getType(), *TyB = B->getType();
6166   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
6167            WidthB = TyB->getPrimitiveSizeInBits();
6168   unsigned MulWidth;
6169   Type *MulType;
6170   if (WidthB > WidthA) {
6171     MulWidth = WidthB;
6172     MulType = TyB;
6173   } else {
6174     MulWidth = WidthA;
6175     MulType = TyA;
6176   }
6177 
6178   // In order to replace the original mul with a narrower mul.with.overflow,
6179   // all uses must ignore upper bits of the product.  The number of used low
6180   // bits must be not greater than the width of mul.with.overflow.
6181   if (MulVal->hasNUsesOrMore(2))
6182     for (User *U : MulVal->users()) {
6183       if (U == &I)
6184         continue;
6185       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
6186         // Check if truncation ignores bits above MulWidth.
6187         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
6188         if (TruncWidth > MulWidth)
6189           return nullptr;
6190       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
6191         // Check if AND ignores bits above MulWidth.
6192         if (BO->getOpcode() != Instruction::And)
6193           return nullptr;
6194         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6195           const APInt &CVal = CI->getValue();
6196           if (CVal.getBitWidth() - CVal.countl_zero() > MulWidth)
6197             return nullptr;
6198         } else {
6199           // In this case we could have the operand of the binary operation
6200           // being defined in another block, and performing the replacement
6201           // could break the dominance relation.
6202           return nullptr;
6203         }
6204       } else {
6205         // Other uses prohibit this transformation.
6206         return nullptr;
6207       }
6208     }
6209 
6210   // Recognize patterns
6211   switch (I.getPredicate()) {
6212   case ICmpInst::ICMP_UGT: {
6213     // Recognize pattern:
6214     //   mulval = mul(zext A, zext B)
6215     //   cmp ugt mulval, max
6216     APInt MaxVal = APInt::getMaxValue(MulWidth);
6217     MaxVal = MaxVal.zext(OtherVal->getBitWidth());
6218     if (MaxVal.eq(*OtherVal))
6219       break; // Recognized
6220     return nullptr;
6221   }
6222 
6223   case ICmpInst::ICMP_ULT: {
6224     // Recognize pattern:
6225     //   mulval = mul(zext A, zext B)
6226     //   cmp ule mulval, max + 1
6227     APInt MaxVal = APInt::getOneBitSet(OtherVal->getBitWidth(), MulWidth);
6228     if (MaxVal.eq(*OtherVal))
6229       break; // Recognized
6230     return nullptr;
6231   }
6232 
6233   default:
6234     return nullptr;
6235   }
6236 
6237   InstCombiner::BuilderTy &Builder = IC.Builder;
6238   Builder.SetInsertPoint(MulInstr);
6239 
6240   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
6241   Value *MulA = A, *MulB = B;
6242   if (WidthA < MulWidth)
6243     MulA = Builder.CreateZExt(A, MulType);
6244   if (WidthB < MulWidth)
6245     MulB = Builder.CreateZExt(B, MulType);
6246   Function *F = Intrinsic::getDeclaration(
6247       I.getModule(), Intrinsic::umul_with_overflow, MulType);
6248   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
6249   IC.addToWorklist(MulInstr);
6250 
6251   // If there are uses of mul result other than the comparison, we know that
6252   // they are truncation or binary AND. Change them to use result of
6253   // mul.with.overflow and adjust properly mask/size.
6254   if (MulVal->hasNUsesOrMore(2)) {
6255     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
6256     for (User *U : make_early_inc_range(MulVal->users())) {
6257       if (U == &I)
6258         continue;
6259       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
6260         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
6261           IC.replaceInstUsesWith(*TI, Mul);
6262         else
6263           TI->setOperand(0, Mul);
6264       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
6265         assert(BO->getOpcode() == Instruction::And);
6266         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
6267         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
6268         APInt ShortMask = CI->getValue().trunc(MulWidth);
6269         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
6270         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
6271         IC.replaceInstUsesWith(*BO, Zext);
6272       } else {
6273         llvm_unreachable("Unexpected Binary operation");
6274       }
6275       IC.addToWorklist(cast<Instruction>(U));
6276     }
6277   }
6278 
6279   // The original icmp gets replaced with the overflow value, maybe inverted
6280   // depending on predicate.
6281   if (I.getPredicate() == ICmpInst::ICMP_ULT) {
6282     Value *Res = Builder.CreateExtractValue(Call, 1);
6283     return BinaryOperator::CreateNot(Res);
6284   }
6285 
6286   return ExtractValueInst::Create(Call, 1);
6287 }
6288 
6289 /// When performing a comparison against a constant, it is possible that not all
6290 /// the bits in the LHS are demanded. This helper method computes the mask that
6291 /// IS demanded.
6292 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
6293   const APInt *RHS;
6294   if (!match(I.getOperand(1), m_APInt(RHS)))
6295     return APInt::getAllOnes(BitWidth);
6296 
6297   // If this is a normal comparison, it demands all bits. If it is a sign bit
6298   // comparison, it only demands the sign bit.
6299   bool UnusedBit;
6300   if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
6301     return APInt::getSignMask(BitWidth);
6302 
6303   switch (I.getPredicate()) {
6304   // For a UGT comparison, we don't care about any bits that
6305   // correspond to the trailing ones of the comparand.  The value of these
6306   // bits doesn't impact the outcome of the comparison, because any value
6307   // greater than the RHS must differ in a bit higher than these due to carry.
6308   case ICmpInst::ICMP_UGT:
6309     return APInt::getBitsSetFrom(BitWidth, RHS->countr_one());
6310 
6311   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
6312   // Any value less than the RHS must differ in a higher bit because of carries.
6313   case ICmpInst::ICMP_ULT:
6314     return APInt::getBitsSetFrom(BitWidth, RHS->countr_zero());
6315 
6316   default:
6317     return APInt::getAllOnes(BitWidth);
6318   }
6319 }
6320 
6321 /// Check that one use is in the same block as the definition and all
6322 /// other uses are in blocks dominated by a given block.
6323 ///
6324 /// \param DI Definition
6325 /// \param UI Use
6326 /// \param DB Block that must dominate all uses of \p DI outside
6327 ///           the parent block
6328 /// \return true when \p UI is the only use of \p DI in the parent block
6329 /// and all other uses of \p DI are in blocks dominated by \p DB.
6330 ///
6331 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
6332                                         const Instruction *UI,
6333                                         const BasicBlock *DB) const {
6334   assert(DI && UI && "Instruction not defined\n");
6335   // Ignore incomplete definitions.
6336   if (!DI->getParent())
6337     return false;
6338   // DI and UI must be in the same block.
6339   if (DI->getParent() != UI->getParent())
6340     return false;
6341   // Protect from self-referencing blocks.
6342   if (DI->getParent() == DB)
6343     return false;
6344   for (const User *U : DI->users()) {
6345     auto *Usr = cast<Instruction>(U);
6346     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
6347       return false;
6348   }
6349   return true;
6350 }
6351 
6352 /// Return true when the instruction sequence within a block is select-cmp-br.
6353 static bool isChainSelectCmpBranch(const SelectInst *SI) {
6354   const BasicBlock *BB = SI->getParent();
6355   if (!BB)
6356     return false;
6357   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
6358   if (!BI || BI->getNumSuccessors() != 2)
6359     return false;
6360   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
6361   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
6362     return false;
6363   return true;
6364 }
6365 
6366 /// True when a select result is replaced by one of its operands
6367 /// in select-icmp sequence. This will eventually result in the elimination
6368 /// of the select.
6369 ///
6370 /// \param SI    Select instruction
6371 /// \param Icmp  Compare instruction
6372 /// \param SIOpd Operand that replaces the select
6373 ///
6374 /// Notes:
6375 /// - The replacement is global and requires dominator information
6376 /// - The caller is responsible for the actual replacement
6377 ///
6378 /// Example:
6379 ///
6380 /// entry:
6381 ///  %4 = select i1 %3, %C* %0, %C* null
6382 ///  %5 = icmp eq %C* %4, null
6383 ///  br i1 %5, label %9, label %7
6384 ///  ...
6385 ///  ; <label>:7                                       ; preds = %entry
6386 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
6387 ///  ...
6388 ///
6389 /// can be transformed to
6390 ///
6391 ///  %5 = icmp eq %C* %0, null
6392 ///  %6 = select i1 %3, i1 %5, i1 true
6393 ///  br i1 %6, label %9, label %7
6394 ///  ...
6395 ///  ; <label>:7                                       ; preds = %entry
6396 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
6397 ///
6398 /// Similar when the first operand of the select is a constant or/and
6399 /// the compare is for not equal rather than equal.
6400 ///
6401 /// NOTE: The function is only called when the select and compare constants
6402 /// are equal, the optimization can work only for EQ predicates. This is not a
6403 /// major restriction since a NE compare should be 'normalized' to an equal
6404 /// compare, which usually happens in the combiner and test case
6405 /// select-cmp-br.ll checks for it.
6406 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
6407                                                  const ICmpInst *Icmp,
6408                                                  const unsigned SIOpd) {
6409   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
6410   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
6411     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
6412     // The check for the single predecessor is not the best that can be
6413     // done. But it protects efficiently against cases like when SI's
6414     // home block has two successors, Succ and Succ1, and Succ1 predecessor
6415     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
6416     // replaced can be reached on either path. So the uniqueness check
6417     // guarantees that the path all uses of SI (outside SI's parent) are on
6418     // is disjoint from all other paths out of SI. But that information
6419     // is more expensive to compute, and the trade-off here is in favor
6420     // of compile-time. It should also be noticed that we check for a single
6421     // predecessor and not only uniqueness. This to handle the situation when
6422     // Succ and Succ1 points to the same basic block.
6423     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
6424       NumSel++;
6425       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
6426       return true;
6427     }
6428   }
6429   return false;
6430 }
6431 
6432 /// Try to fold the comparison based on range information we can get by checking
6433 /// whether bits are known to be zero or one in the inputs.
6434 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
6435   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6436   Type *Ty = Op0->getType();
6437   ICmpInst::Predicate Pred = I.getPredicate();
6438 
6439   // Get scalar or pointer size.
6440   unsigned BitWidth = Ty->isIntOrIntVectorTy()
6441                           ? Ty->getScalarSizeInBits()
6442                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
6443 
6444   if (!BitWidth)
6445     return nullptr;
6446 
6447   KnownBits Op0Known(BitWidth);
6448   KnownBits Op1Known(BitWidth);
6449 
6450   {
6451     // Don't use dominating conditions when folding icmp using known bits. This
6452     // may convert signed into unsigned predicates in ways that other passes
6453     // (especially IndVarSimplify) may not be able to reliably undo.
6454     SimplifyQuery Q = SQ.getWithoutDomCondCache().getWithInstruction(&I);
6455     if (SimplifyDemandedBits(&I, 0, getDemandedBitsLHSMask(I, BitWidth),
6456                              Op0Known, /*Depth=*/0, Q))
6457       return &I;
6458 
6459     if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known,
6460                              /*Depth=*/0, Q))
6461       return &I;
6462   }
6463 
6464   // Given the known and unknown bits, compute a range that the LHS could be
6465   // in.  Compute the Min, Max and RHS values based on the known bits. For the
6466   // EQ and NE we use unsigned values.
6467   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
6468   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
6469   if (I.isSigned()) {
6470     Op0Min = Op0Known.getSignedMinValue();
6471     Op0Max = Op0Known.getSignedMaxValue();
6472     Op1Min = Op1Known.getSignedMinValue();
6473     Op1Max = Op1Known.getSignedMaxValue();
6474   } else {
6475     Op0Min = Op0Known.getMinValue();
6476     Op0Max = Op0Known.getMaxValue();
6477     Op1Min = Op1Known.getMinValue();
6478     Op1Max = Op1Known.getMaxValue();
6479   }
6480 
6481   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
6482   // out that the LHS or RHS is a constant. Constant fold this now, so that
6483   // code below can assume that Min != Max.
6484   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
6485     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
6486   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
6487     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
6488 
6489   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
6490   // min/max canonical compare with some other compare. That could lead to
6491   // conflict with select canonicalization and infinite looping.
6492   // FIXME: This constraint may go away if min/max intrinsics are canonical.
6493   auto isMinMaxCmp = [&](Instruction &Cmp) {
6494     if (!Cmp.hasOneUse())
6495       return false;
6496     Value *A, *B;
6497     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
6498     if (!SelectPatternResult::isMinOrMax(SPF))
6499       return false;
6500     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
6501            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
6502   };
6503   if (!isMinMaxCmp(I)) {
6504     switch (Pred) {
6505     default:
6506       break;
6507     case ICmpInst::ICMP_ULT: {
6508       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
6509         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6510       const APInt *CmpC;
6511       if (match(Op1, m_APInt(CmpC))) {
6512         // A <u C -> A == C-1 if min(A)+1 == C
6513         if (*CmpC == Op0Min + 1)
6514           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6515                               ConstantInt::get(Op1->getType(), *CmpC - 1));
6516         // X <u C --> X == 0, if the number of zero bits in the bottom of X
6517         // exceeds the log2 of C.
6518         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
6519           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6520                               Constant::getNullValue(Op1->getType()));
6521       }
6522       break;
6523     }
6524     case ICmpInst::ICMP_UGT: {
6525       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
6526         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6527       const APInt *CmpC;
6528       if (match(Op1, m_APInt(CmpC))) {
6529         // A >u C -> A == C+1 if max(a)-1 == C
6530         if (*CmpC == Op0Max - 1)
6531           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6532                               ConstantInt::get(Op1->getType(), *CmpC + 1));
6533         // X >u C --> X != 0, if the number of zero bits in the bottom of X
6534         // exceeds the log2 of C.
6535         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
6536           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
6537                               Constant::getNullValue(Op1->getType()));
6538       }
6539       break;
6540     }
6541     case ICmpInst::ICMP_SLT: {
6542       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
6543         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6544       const APInt *CmpC;
6545       if (match(Op1, m_APInt(CmpC))) {
6546         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
6547           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6548                               ConstantInt::get(Op1->getType(), *CmpC - 1));
6549       }
6550       break;
6551     }
6552     case ICmpInst::ICMP_SGT: {
6553       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
6554         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6555       const APInt *CmpC;
6556       if (match(Op1, m_APInt(CmpC))) {
6557         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
6558           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6559                               ConstantInt::get(Op1->getType(), *CmpC + 1));
6560       }
6561       break;
6562     }
6563     }
6564   }
6565 
6566   // Based on the range information we know about the LHS, see if we can
6567   // simplify this comparison.  For example, (x&4) < 8 is always true.
6568   switch (Pred) {
6569   default:
6570     llvm_unreachable("Unknown icmp opcode!");
6571   case ICmpInst::ICMP_EQ:
6572   case ICmpInst::ICMP_NE: {
6573     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
6574       return replaceInstUsesWith(
6575           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
6576 
6577     // If all bits are known zero except for one, then we know at most one bit
6578     // is set. If the comparison is against zero, then this is a check to see if
6579     // *that* bit is set.
6580     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
6581     if (Op1Known.isZero()) {
6582       // If the LHS is an AND with the same constant, look through it.
6583       Value *LHS = nullptr;
6584       const APInt *LHSC;
6585       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
6586           *LHSC != Op0KnownZeroInverted)
6587         LHS = Op0;
6588 
6589       Value *X;
6590       const APInt *C1;
6591       if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) {
6592         Type *XTy = X->getType();
6593         unsigned Log2C1 = C1->countr_zero();
6594         APInt C2 = Op0KnownZeroInverted;
6595         APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1;
6596         if (C2Pow2.isPowerOf2()) {
6597           // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2):
6598           // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1))
6599           // ((C1 << X) & C2) != 0 -> X  < (Log2(C2+C1) - Log2(C1))
6600           unsigned Log2C2 = C2Pow2.countr_zero();
6601           auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1);
6602           auto NewPred =
6603               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
6604           return new ICmpInst(NewPred, X, CmpC);
6605         }
6606       }
6607     }
6608 
6609     // Op0 eq C_Pow2 -> Op0 ne 0 if Op0 is known to be C_Pow2 or zero.
6610     if (Op1Known.isConstant() && Op1Known.getConstant().isPowerOf2() &&
6611         (Op0Known & Op1Known) == Op0Known)
6612       return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0,
6613                           ConstantInt::getNullValue(Op1->getType()));
6614     break;
6615   }
6616   case ICmpInst::ICMP_ULT: {
6617     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
6618       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6619     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
6620       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6621     break;
6622   }
6623   case ICmpInst::ICMP_UGT: {
6624     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
6625       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6626     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
6627       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6628     break;
6629   }
6630   case ICmpInst::ICMP_SLT: {
6631     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
6632       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6633     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
6634       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6635     break;
6636   }
6637   case ICmpInst::ICMP_SGT: {
6638     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
6639       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6640     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
6641       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6642     break;
6643   }
6644   case ICmpInst::ICMP_SGE:
6645     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
6646     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
6647       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6648     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
6649       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6650     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
6651       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
6652     break;
6653   case ICmpInst::ICMP_SLE:
6654     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
6655     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
6656       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6657     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
6658       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6659     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
6660       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
6661     break;
6662   case ICmpInst::ICMP_UGE:
6663     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
6664     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
6665       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6666     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
6667       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6668     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
6669       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
6670     break;
6671   case ICmpInst::ICMP_ULE:
6672     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
6673     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
6674       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6675     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
6676       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6677     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
6678       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
6679     break;
6680   }
6681 
6682   // Turn a signed comparison into an unsigned one if both operands are known to
6683   // have the same sign.
6684   if (I.isSigned() &&
6685       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
6686        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
6687     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
6688 
6689   return nullptr;
6690 }
6691 
6692 /// If one operand of an icmp is effectively a bool (value range of {0,1}),
6693 /// then try to reduce patterns based on that limit.
6694 Instruction *InstCombinerImpl::foldICmpUsingBoolRange(ICmpInst &I) {
6695   Value *X, *Y;
6696   ICmpInst::Predicate Pred;
6697 
6698   // X must be 0 and bool must be true for "ULT":
6699   // X <u (zext i1 Y) --> (X == 0) & Y
6700   if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) &&
6701       Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT)
6702     return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y);
6703 
6704   // X must be 0 or bool must be true for "ULE":
6705   // X <=u (sext i1 Y) --> (X == 0) | Y
6706   if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) &&
6707       Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE)
6708     return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y);
6709 
6710   // icmp eq/ne X, (zext/sext (icmp eq/ne X, C))
6711   ICmpInst::Predicate Pred1, Pred2;
6712   const APInt *C;
6713   Instruction *ExtI;
6714   if (match(&I, m_c_ICmp(Pred1, m_Value(X),
6715                          m_CombineAnd(m_Instruction(ExtI),
6716                                       m_ZExtOrSExt(m_ICmp(Pred2, m_Deferred(X),
6717                                                           m_APInt(C)))))) &&
6718       ICmpInst::isEquality(Pred1) && ICmpInst::isEquality(Pred2)) {
6719     bool IsSExt = ExtI->getOpcode() == Instruction::SExt;
6720     bool HasOneUse = ExtI->hasOneUse() && ExtI->getOperand(0)->hasOneUse();
6721     auto CreateRangeCheck = [&] {
6722       Value *CmpV1 =
6723           Builder.CreateICmp(Pred1, X, Constant::getNullValue(X->getType()));
6724       Value *CmpV2 = Builder.CreateICmp(
6725           Pred1, X, ConstantInt::getSigned(X->getType(), IsSExt ? -1 : 1));
6726       return BinaryOperator::Create(
6727           Pred1 == ICmpInst::ICMP_EQ ? Instruction::Or : Instruction::And,
6728           CmpV1, CmpV2);
6729     };
6730     if (C->isZero()) {
6731       if (Pred2 == ICmpInst::ICMP_EQ) {
6732         // icmp eq X, (zext/sext (icmp eq X, 0)) --> false
6733         // icmp ne X, (zext/sext (icmp eq X, 0)) --> true
6734         return replaceInstUsesWith(
6735             I, ConstantInt::getBool(I.getType(), Pred1 == ICmpInst::ICMP_NE));
6736       } else if (!IsSExt || HasOneUse) {
6737         // icmp eq X, (zext (icmp ne X, 0)) --> X == 0 || X == 1
6738         // icmp ne X, (zext (icmp ne X, 0)) --> X != 0 && X != 1
6739         // icmp eq X, (sext (icmp ne X, 0)) --> X == 0 || X == -1
6740         // icmp ne X, (sext (icmp ne X, 0)) --> X != 0 && X == -1
6741         return CreateRangeCheck();
6742       }
6743     } else if (IsSExt ? C->isAllOnes() : C->isOne()) {
6744       if (Pred2 == ICmpInst::ICMP_NE) {
6745         // icmp eq X, (zext (icmp ne X, 1)) --> false
6746         // icmp ne X, (zext (icmp ne X, 1)) --> true
6747         // icmp eq X, (sext (icmp ne X, -1)) --> false
6748         // icmp ne X, (sext (icmp ne X, -1)) --> true
6749         return replaceInstUsesWith(
6750             I, ConstantInt::getBool(I.getType(), Pred1 == ICmpInst::ICMP_NE));
6751       } else if (!IsSExt || HasOneUse) {
6752         // icmp eq X, (zext (icmp eq X, 1)) --> X == 0 || X == 1
6753         // icmp ne X, (zext (icmp eq X, 1)) --> X != 0 && X != 1
6754         // icmp eq X, (sext (icmp eq X, -1)) --> X == 0 || X == -1
6755         // icmp ne X, (sext (icmp eq X, -1)) --> X != 0 && X == -1
6756         return CreateRangeCheck();
6757       }
6758     } else {
6759       // when C != 0 && C != 1:
6760       //   icmp eq X, (zext (icmp eq X, C)) --> icmp eq X, 0
6761       //   icmp eq X, (zext (icmp ne X, C)) --> icmp eq X, 1
6762       //   icmp ne X, (zext (icmp eq X, C)) --> icmp ne X, 0
6763       //   icmp ne X, (zext (icmp ne X, C)) --> icmp ne X, 1
6764       // when C != 0 && C != -1:
6765       //   icmp eq X, (sext (icmp eq X, C)) --> icmp eq X, 0
6766       //   icmp eq X, (sext (icmp ne X, C)) --> icmp eq X, -1
6767       //   icmp ne X, (sext (icmp eq X, C)) --> icmp ne X, 0
6768       //   icmp ne X, (sext (icmp ne X, C)) --> icmp ne X, -1
6769       return ICmpInst::Create(
6770           Instruction::ICmp, Pred1, X,
6771           ConstantInt::getSigned(X->getType(), Pred2 == ICmpInst::ICMP_NE
6772                                                    ? (IsSExt ? -1 : 1)
6773                                                    : 0));
6774     }
6775   }
6776 
6777   return nullptr;
6778 }
6779 
6780 std::optional<std::pair<CmpInst::Predicate, Constant *>>
6781 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
6782                                                        Constant *C) {
6783   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
6784          "Only for relational integer predicates.");
6785 
6786   Type *Type = C->getType();
6787   bool IsSigned = ICmpInst::isSigned(Pred);
6788 
6789   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
6790   bool WillIncrement =
6791       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
6792 
6793   // Check if the constant operand can be safely incremented/decremented
6794   // without overflowing/underflowing.
6795   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
6796     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
6797   };
6798 
6799   Constant *SafeReplacementConstant = nullptr;
6800   if (auto *CI = dyn_cast<ConstantInt>(C)) {
6801     // Bail out if the constant can't be safely incremented/decremented.
6802     if (!ConstantIsOk(CI))
6803       return std::nullopt;
6804   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
6805     unsigned NumElts = FVTy->getNumElements();
6806     for (unsigned i = 0; i != NumElts; ++i) {
6807       Constant *Elt = C->getAggregateElement(i);
6808       if (!Elt)
6809         return std::nullopt;
6810 
6811       if (isa<UndefValue>(Elt))
6812         continue;
6813 
6814       // Bail out if we can't determine if this constant is min/max or if we
6815       // know that this constant is min/max.
6816       auto *CI = dyn_cast<ConstantInt>(Elt);
6817       if (!CI || !ConstantIsOk(CI))
6818         return std::nullopt;
6819 
6820       if (!SafeReplacementConstant)
6821         SafeReplacementConstant = CI;
6822     }
6823   } else if (isa<VectorType>(C->getType())) {
6824     // Handle scalable splat
6825     Value *SplatC = C->getSplatValue();
6826     auto *CI = dyn_cast_or_null<ConstantInt>(SplatC);
6827     // Bail out if the constant can't be safely incremented/decremented.
6828     if (!CI || !ConstantIsOk(CI))
6829       return std::nullopt;
6830   } else {
6831     // ConstantExpr?
6832     return std::nullopt;
6833   }
6834 
6835   // It may not be safe to change a compare predicate in the presence of
6836   // undefined elements, so replace those elements with the first safe constant
6837   // that we found.
6838   // TODO: in case of poison, it is safe; let's replace undefs only.
6839   if (C->containsUndefOrPoisonElement()) {
6840     assert(SafeReplacementConstant && "Replacement constant not set");
6841     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
6842   }
6843 
6844   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
6845 
6846   // Increment or decrement the constant.
6847   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
6848   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
6849 
6850   return std::make_pair(NewPred, NewC);
6851 }
6852 
6853 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
6854 /// it into the appropriate icmp lt or icmp gt instruction. This transform
6855 /// allows them to be folded in visitICmpInst.
6856 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
6857   ICmpInst::Predicate Pred = I.getPredicate();
6858   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
6859       InstCombiner::isCanonicalPredicate(Pred))
6860     return nullptr;
6861 
6862   Value *Op0 = I.getOperand(0);
6863   Value *Op1 = I.getOperand(1);
6864   auto *Op1C = dyn_cast<Constant>(Op1);
6865   if (!Op1C)
6866     return nullptr;
6867 
6868   auto FlippedStrictness =
6869       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
6870   if (!FlippedStrictness)
6871     return nullptr;
6872 
6873   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
6874 }
6875 
6876 /// If we have a comparison with a non-canonical predicate, if we can update
6877 /// all the users, invert the predicate and adjust all the users.
6878 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
6879   // Is the predicate already canonical?
6880   CmpInst::Predicate Pred = I.getPredicate();
6881   if (InstCombiner::isCanonicalPredicate(Pred))
6882     return nullptr;
6883 
6884   // Can all users be adjusted to predicate inversion?
6885   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
6886     return nullptr;
6887 
6888   // Ok, we can canonicalize comparison!
6889   // Let's first invert the comparison's predicate.
6890   I.setPredicate(CmpInst::getInversePredicate(Pred));
6891   I.setName(I.getName() + ".not");
6892 
6893   // And, adapt users.
6894   freelyInvertAllUsersOf(&I);
6895 
6896   return &I;
6897 }
6898 
6899 /// Integer compare with boolean values can always be turned into bitwise ops.
6900 static Instruction *canonicalizeICmpBool(ICmpInst &I,
6901                                          InstCombiner::BuilderTy &Builder) {
6902   Value *A = I.getOperand(0), *B = I.getOperand(1);
6903   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
6904 
6905   // A boolean compared to true/false can be simplified to Op0/true/false in
6906   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
6907   // Cases not handled by InstSimplify are always 'not' of Op0.
6908   if (match(B, m_Zero())) {
6909     switch (I.getPredicate()) {
6910       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
6911       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
6912       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
6913         return BinaryOperator::CreateNot(A);
6914       default:
6915         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
6916     }
6917   } else if (match(B, m_One())) {
6918     switch (I.getPredicate()) {
6919       case CmpInst::ICMP_NE:  // A !=  1 -> !A
6920       case CmpInst::ICMP_ULT: // A <u  1 -> !A
6921       case CmpInst::ICMP_SGT: // A >s -1 -> !A
6922         return BinaryOperator::CreateNot(A);
6923       default:
6924         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
6925     }
6926   }
6927 
6928   switch (I.getPredicate()) {
6929   default:
6930     llvm_unreachable("Invalid icmp instruction!");
6931   case ICmpInst::ICMP_EQ:
6932     // icmp eq i1 A, B -> ~(A ^ B)
6933     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
6934 
6935   case ICmpInst::ICMP_NE:
6936     // icmp ne i1 A, B -> A ^ B
6937     return BinaryOperator::CreateXor(A, B);
6938 
6939   case ICmpInst::ICMP_UGT:
6940     // icmp ugt -> icmp ult
6941     std::swap(A, B);
6942     [[fallthrough]];
6943   case ICmpInst::ICMP_ULT:
6944     // icmp ult i1 A, B -> ~A & B
6945     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
6946 
6947   case ICmpInst::ICMP_SGT:
6948     // icmp sgt -> icmp slt
6949     std::swap(A, B);
6950     [[fallthrough]];
6951   case ICmpInst::ICMP_SLT:
6952     // icmp slt i1 A, B -> A & ~B
6953     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
6954 
6955   case ICmpInst::ICMP_UGE:
6956     // icmp uge -> icmp ule
6957     std::swap(A, B);
6958     [[fallthrough]];
6959   case ICmpInst::ICMP_ULE:
6960     // icmp ule i1 A, B -> ~A | B
6961     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
6962 
6963   case ICmpInst::ICMP_SGE:
6964     // icmp sge -> icmp sle
6965     std::swap(A, B);
6966     [[fallthrough]];
6967   case ICmpInst::ICMP_SLE:
6968     // icmp sle i1 A, B -> A | ~B
6969     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
6970   }
6971 }
6972 
6973 // Transform pattern like:
6974 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
6975 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
6976 // Into:
6977 //   (X l>> Y) != 0
6978 //   (X l>> Y) == 0
6979 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
6980                                             InstCombiner::BuilderTy &Builder) {
6981   ICmpInst::Predicate Pred, NewPred;
6982   Value *X, *Y;
6983   if (match(&Cmp,
6984             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
6985     switch (Pred) {
6986     case ICmpInst::ICMP_ULE:
6987       NewPred = ICmpInst::ICMP_NE;
6988       break;
6989     case ICmpInst::ICMP_UGT:
6990       NewPred = ICmpInst::ICMP_EQ;
6991       break;
6992     default:
6993       return nullptr;
6994     }
6995   } else if (match(&Cmp, m_c_ICmp(Pred,
6996                                   m_OneUse(m_CombineOr(
6997                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
6998                                       m_Add(m_Shl(m_One(), m_Value(Y)),
6999                                             m_AllOnes()))),
7000                                   m_Value(X)))) {
7001     // The variant with 'add' is not canonical, (the variant with 'not' is)
7002     // we only get it because it has extra uses, and can't be canonicalized,
7003 
7004     switch (Pred) {
7005     case ICmpInst::ICMP_ULT:
7006       NewPred = ICmpInst::ICMP_NE;
7007       break;
7008     case ICmpInst::ICMP_UGE:
7009       NewPred = ICmpInst::ICMP_EQ;
7010       break;
7011     default:
7012       return nullptr;
7013     }
7014   } else
7015     return nullptr;
7016 
7017   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
7018   Constant *Zero = Constant::getNullValue(NewX->getType());
7019   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
7020 }
7021 
7022 static Instruction *foldVectorCmp(CmpInst &Cmp,
7023                                   InstCombiner::BuilderTy &Builder) {
7024   const CmpInst::Predicate Pred = Cmp.getPredicate();
7025   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
7026   Value *V1, *V2;
7027 
7028   auto createCmpReverse = [&](CmpInst::Predicate Pred, Value *X, Value *Y) {
7029     Value *V = Builder.CreateCmp(Pred, X, Y, Cmp.getName());
7030     if (auto *I = dyn_cast<Instruction>(V))
7031       I->copyIRFlags(&Cmp);
7032     Module *M = Cmp.getModule();
7033     Function *F =
7034         Intrinsic::getDeclaration(M, Intrinsic::vector_reverse, V->getType());
7035     return CallInst::Create(F, V);
7036   };
7037 
7038   if (match(LHS, m_VecReverse(m_Value(V1)))) {
7039     // cmp Pred, rev(V1), rev(V2) --> rev(cmp Pred, V1, V2)
7040     if (match(RHS, m_VecReverse(m_Value(V2))) &&
7041         (LHS->hasOneUse() || RHS->hasOneUse()))
7042       return createCmpReverse(Pred, V1, V2);
7043 
7044     // cmp Pred, rev(V1), RHSSplat --> rev(cmp Pred, V1, RHSSplat)
7045     if (LHS->hasOneUse() && isSplatValue(RHS))
7046       return createCmpReverse(Pred, V1, RHS);
7047   }
7048   // cmp Pred, LHSSplat, rev(V2) --> rev(cmp Pred, LHSSplat, V2)
7049   else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
7050     return createCmpReverse(Pred, LHS, V2);
7051 
7052   ArrayRef<int> M;
7053   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
7054     return nullptr;
7055 
7056   // If both arguments of the cmp are shuffles that use the same mask and
7057   // shuffle within a single vector, move the shuffle after the cmp:
7058   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
7059   Type *V1Ty = V1->getType();
7060   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
7061       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
7062     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
7063     return new ShuffleVectorInst(NewCmp, M);
7064   }
7065 
7066   // Try to canonicalize compare with splatted operand and splat constant.
7067   // TODO: We could generalize this for more than splats. See/use the code in
7068   //       InstCombiner::foldVectorBinop().
7069   Constant *C;
7070   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
7071     return nullptr;
7072 
7073   // Length-changing splats are ok, so adjust the constants as needed:
7074   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
7075   Constant *ScalarC = C->getSplatValue(/* AllowPoison */ true);
7076   int MaskSplatIndex;
7077   if (ScalarC && match(M, m_SplatOrPoisonMask(MaskSplatIndex))) {
7078     // We allow poison in matching, but this transform removes it for safety.
7079     // Demanded elements analysis should be able to recover some/all of that.
7080     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
7081                                  ScalarC);
7082     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
7083     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
7084     return new ShuffleVectorInst(NewCmp, NewM);
7085   }
7086 
7087   return nullptr;
7088 }
7089 
7090 // extract(uadd.with.overflow(A, B), 0) ult A
7091 //  -> extract(uadd.with.overflow(A, B), 1)
7092 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
7093   CmpInst::Predicate Pred = I.getPredicate();
7094   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
7095 
7096   Value *UAddOv;
7097   Value *A, *B;
7098   auto UAddOvResultPat = m_ExtractValue<0>(
7099       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
7100   if (match(Op0, UAddOvResultPat) &&
7101       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
7102        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
7103         (match(A, m_One()) || match(B, m_One()))) ||
7104        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
7105         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
7106     // extract(uadd.with.overflow(A, B), 0) < A
7107     // extract(uadd.with.overflow(A, 1), 0) == 0
7108     // extract(uadd.with.overflow(A, -1), 0) != -1
7109     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
7110   else if (match(Op1, UAddOvResultPat) &&
7111            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
7112     // A > extract(uadd.with.overflow(A, B), 0)
7113     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
7114   else
7115     return nullptr;
7116 
7117   return ExtractValueInst::Create(UAddOv, 1);
7118 }
7119 
7120 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
7121   if (!I.getOperand(0)->getType()->isPointerTy() ||
7122       NullPointerIsDefined(
7123           I.getParent()->getParent(),
7124           I.getOperand(0)->getType()->getPointerAddressSpace())) {
7125     return nullptr;
7126   }
7127   Instruction *Op;
7128   if (match(I.getOperand(0), m_Instruction(Op)) &&
7129       match(I.getOperand(1), m_Zero()) &&
7130       Op->isLaunderOrStripInvariantGroup()) {
7131     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
7132                             Op->getOperand(0), I.getOperand(1));
7133   }
7134   return nullptr;
7135 }
7136 
7137 /// This function folds patterns produced by lowering of reduce idioms, such as
7138 /// llvm.vector.reduce.and which are lowered into instruction chains. This code
7139 /// attempts to generate fewer number of scalar comparisons instead of vector
7140 /// comparisons when possible.
7141 static Instruction *foldReductionIdiom(ICmpInst &I,
7142                                        InstCombiner::BuilderTy &Builder,
7143                                        const DataLayout &DL) {
7144   if (I.getType()->isVectorTy())
7145     return nullptr;
7146   ICmpInst::Predicate OuterPred, InnerPred;
7147   Value *LHS, *RHS;
7148 
7149   // Match lowering of @llvm.vector.reduce.and. Turn
7150   ///   %vec_ne = icmp ne <8 x i8> %lhs, %rhs
7151   ///   %scalar_ne = bitcast <8 x i1> %vec_ne to i8
7152   ///   %res = icmp <pred> i8 %scalar_ne, 0
7153   ///
7154   /// into
7155   ///
7156   ///   %lhs.scalar = bitcast <8 x i8> %lhs to i64
7157   ///   %rhs.scalar = bitcast <8 x i8> %rhs to i64
7158   ///   %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
7159   ///
7160   /// for <pred> in {ne, eq}.
7161   if (!match(&I, m_ICmp(OuterPred,
7162                         m_OneUse(m_BitCast(m_OneUse(
7163                             m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))),
7164                         m_Zero())))
7165     return nullptr;
7166   auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType());
7167   if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
7168     return nullptr;
7169   unsigned NumBits =
7170       LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
7171   // TODO: Relax this to "not wider than max legal integer type"?
7172   if (!DL.isLegalInteger(NumBits))
7173     return nullptr;
7174 
7175   if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) {
7176     auto *ScalarTy = Builder.getIntNTy(NumBits);
7177     LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar");
7178     RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar");
7179     return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS,
7180                             I.getName());
7181   }
7182 
7183   return nullptr;
7184 }
7185 
7186 // This helper will be called with icmp operands in both orders.
7187 Instruction *InstCombinerImpl::foldICmpCommutative(ICmpInst::Predicate Pred,
7188                                                    Value *Op0, Value *Op1,
7189                                                    ICmpInst &CxtI) {
7190   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
7191   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
7192     if (Instruction *NI = foldGEPICmp(GEP, Op1, Pred, CxtI))
7193       return NI;
7194 
7195   if (auto *SI = dyn_cast<SelectInst>(Op0))
7196     if (Instruction *NI = foldSelectICmp(Pred, SI, Op1, CxtI))
7197       return NI;
7198 
7199   if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op0))
7200     if (Instruction *Res = foldICmpWithMinMax(CxtI, MinMax, Op1, Pred))
7201       return Res;
7202 
7203   {
7204     Value *X;
7205     const APInt *C;
7206     // icmp X+Cst, X
7207     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
7208       return foldICmpAddOpConst(X, *C, Pred);
7209   }
7210 
7211   // abs(X) >=  X --> true
7212   // abs(X) u<= X --> true
7213   // abs(X) <   X --> false
7214   // abs(X) u>  X --> false
7215   // abs(X) u>= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
7216   // abs(X) <=  X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
7217   // abs(X) ==  X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
7218   // abs(X) u<  X --> IsIntMinPosion ? `X < 0` : `X >   INTMIN`
7219   // abs(X) >   X --> IsIntMinPosion ? `X < 0` : `X >   INTMIN`
7220   // abs(X) !=  X --> IsIntMinPosion ? `X < 0` : `X >   INTMIN`
7221   {
7222     Value *X;
7223     Constant *C;
7224     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X), m_Constant(C))) &&
7225         match(Op1, m_Specific(X))) {
7226       Value *NullValue = Constant::getNullValue(X->getType());
7227       Value *AllOnesValue = Constant::getAllOnesValue(X->getType());
7228       const APInt SMin =
7229           APInt::getSignedMinValue(X->getType()->getScalarSizeInBits());
7230       bool IsIntMinPosion = C->isAllOnesValue();
7231       switch (Pred) {
7232       case CmpInst::ICMP_ULE:
7233       case CmpInst::ICMP_SGE:
7234         return replaceInstUsesWith(CxtI, ConstantInt::getTrue(CxtI.getType()));
7235       case CmpInst::ICMP_UGT:
7236       case CmpInst::ICMP_SLT:
7237         return replaceInstUsesWith(CxtI, ConstantInt::getFalse(CxtI.getType()));
7238       case CmpInst::ICMP_UGE:
7239       case CmpInst::ICMP_SLE:
7240       case CmpInst::ICMP_EQ: {
7241         return replaceInstUsesWith(
7242             CxtI, IsIntMinPosion
7243                       ? Builder.CreateICmpSGT(X, AllOnesValue)
7244                       : Builder.CreateICmpULT(
7245                             X, ConstantInt::get(X->getType(), SMin + 1)));
7246       }
7247       case CmpInst::ICMP_ULT:
7248       case CmpInst::ICMP_SGT:
7249       case CmpInst::ICMP_NE: {
7250         return replaceInstUsesWith(
7251             CxtI, IsIntMinPosion
7252                       ? Builder.CreateICmpSLT(X, NullValue)
7253                       : Builder.CreateICmpUGT(
7254                             X, ConstantInt::get(X->getType(), SMin)));
7255       }
7256       default:
7257         llvm_unreachable("Invalid predicate!");
7258       }
7259     }
7260   }
7261 
7262   const SimplifyQuery Q = SQ.getWithInstruction(&CxtI);
7263   if (Value *V = foldICmpWithLowBitMaskedVal(Pred, Op0, Op1, Q, *this))
7264     return replaceInstUsesWith(CxtI, V);
7265 
7266   // Folding (X / Y) pred X => X swap(pred) 0 for constant Y other than 0 or 1
7267   auto CheckUGT1 = [](const APInt &Divisor) { return Divisor.ugt(1); };
7268   {
7269     if (match(Op0, m_UDiv(m_Specific(Op1), m_CheckedInt(CheckUGT1)))) {
7270       return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1,
7271                           Constant::getNullValue(Op1->getType()));
7272     }
7273 
7274     if (!ICmpInst::isUnsigned(Pred) &&
7275         match(Op0, m_SDiv(m_Specific(Op1), m_CheckedInt(CheckUGT1)))) {
7276       return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1,
7277                           Constant::getNullValue(Op1->getType()));
7278     }
7279   }
7280 
7281   // Another case of this fold is (X >> Y) pred X => X swap(pred) 0 if Y != 0
7282   auto CheckNE0 = [](const APInt &Shift) { return !Shift.isZero(); };
7283   {
7284     if (match(Op0, m_LShr(m_Specific(Op1), m_CheckedInt(CheckNE0)))) {
7285       return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1,
7286                           Constant::getNullValue(Op1->getType()));
7287     }
7288 
7289     if ((Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SGE) &&
7290         match(Op0, m_AShr(m_Specific(Op1), m_CheckedInt(CheckNE0)))) {
7291       return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1,
7292                           Constant::getNullValue(Op1->getType()));
7293     }
7294   }
7295 
7296   return nullptr;
7297 }
7298 
7299 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
7300   bool Changed = false;
7301   const SimplifyQuery Q = SQ.getWithInstruction(&I);
7302   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
7303   unsigned Op0Cplxity = getComplexity(Op0);
7304   unsigned Op1Cplxity = getComplexity(Op1);
7305 
7306   /// Orders the operands of the compare so that they are listed from most
7307   /// complex to least complex.  This puts constants before unary operators,
7308   /// before binary operators.
7309   if (Op0Cplxity < Op1Cplxity) {
7310     I.swapOperands();
7311     std::swap(Op0, Op1);
7312     Changed = true;
7313   }
7314 
7315   if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
7316     return replaceInstUsesWith(I, V);
7317 
7318   // Comparing -val or val with non-zero is the same as just comparing val
7319   // ie, abs(val) != 0 -> val != 0
7320   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
7321     Value *Cond, *SelectTrue, *SelectFalse;
7322     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
7323                             m_Value(SelectFalse)))) {
7324       if (Value *V = dyn_castNegVal(SelectTrue)) {
7325         if (V == SelectFalse)
7326           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
7327       }
7328       else if (Value *V = dyn_castNegVal(SelectFalse)) {
7329         if (V == SelectTrue)
7330           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
7331       }
7332     }
7333   }
7334 
7335   if (Op0->getType()->isIntOrIntVectorTy(1))
7336     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
7337       return Res;
7338 
7339   if (Instruction *Res = canonicalizeCmpWithConstant(I))
7340     return Res;
7341 
7342   if (Instruction *Res = canonicalizeICmpPredicate(I))
7343     return Res;
7344 
7345   if (Instruction *Res = foldICmpWithConstant(I))
7346     return Res;
7347 
7348   if (Instruction *Res = foldICmpWithDominatingICmp(I))
7349     return Res;
7350 
7351   if (Instruction *Res = foldICmpUsingBoolRange(I))
7352     return Res;
7353 
7354   if (Instruction *Res = foldICmpUsingKnownBits(I))
7355     return Res;
7356 
7357   if (Instruction *Res = foldICmpTruncWithTruncOrExt(I, Q))
7358     return Res;
7359 
7360   // Test if the ICmpInst instruction is used exclusively by a select as
7361   // part of a minimum or maximum operation. If so, refrain from doing
7362   // any other folding. This helps out other analyses which understand
7363   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
7364   // and CodeGen. And in this case, at least one of the comparison
7365   // operands has at least one user besides the compare (the select),
7366   // which would often largely negate the benefit of folding anyway.
7367   //
7368   // Do the same for the other patterns recognized by matchSelectPattern.
7369   if (I.hasOneUse())
7370     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
7371       Value *A, *B;
7372       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
7373       if (SPR.Flavor != SPF_UNKNOWN)
7374         return nullptr;
7375     }
7376 
7377   // Do this after checking for min/max to prevent infinite looping.
7378   if (Instruction *Res = foldICmpWithZero(I))
7379     return Res;
7380 
7381   // FIXME: We only do this after checking for min/max to prevent infinite
7382   // looping caused by a reverse canonicalization of these patterns for min/max.
7383   // FIXME: The organization of folds is a mess. These would naturally go into
7384   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
7385   // down here after the min/max restriction.
7386   ICmpInst::Predicate Pred = I.getPredicate();
7387   const APInt *C;
7388   if (match(Op1, m_APInt(C))) {
7389     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
7390     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
7391       Constant *Zero = Constant::getNullValue(Op0->getType());
7392       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
7393     }
7394 
7395     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
7396     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
7397       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
7398       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
7399     }
7400   }
7401 
7402   // The folds in here may rely on wrapping flags and special constants, so
7403   // they can break up min/max idioms in some cases but not seemingly similar
7404   // patterns.
7405   // FIXME: It may be possible to enhance select folding to make this
7406   //        unnecessary. It may also be moot if we canonicalize to min/max
7407   //        intrinsics.
7408   if (Instruction *Res = foldICmpBinOp(I, Q))
7409     return Res;
7410 
7411   if (Instruction *Res = foldICmpInstWithConstant(I))
7412     return Res;
7413 
7414   // Try to match comparison as a sign bit test. Intentionally do this after
7415   // foldICmpInstWithConstant() to potentially let other folds to happen first.
7416   if (Instruction *New = foldSignBitTest(I))
7417     return New;
7418 
7419   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
7420     return Res;
7421 
7422   if (Instruction *Res = foldICmpCommutative(I.getPredicate(), Op0, Op1, I))
7423     return Res;
7424   if (Instruction *Res =
7425           foldICmpCommutative(I.getSwappedPredicate(), Op1, Op0, I))
7426     return Res;
7427 
7428   if (I.isCommutative()) {
7429     if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
7430       replaceOperand(I, 0, Pair->first);
7431       replaceOperand(I, 1, Pair->second);
7432       return &I;
7433     }
7434   }
7435 
7436   // In case of a comparison with two select instructions having the same
7437   // condition, check whether one of the resulting branches can be simplified.
7438   // If so, just compare the other branch and select the appropriate result.
7439   // For example:
7440   //   %tmp1 = select i1 %cmp, i32 %y, i32 %x
7441   //   %tmp2 = select i1 %cmp, i32 %z, i32 %x
7442   //   %cmp2 = icmp slt i32 %tmp2, %tmp1
7443   // The icmp will result false for the false value of selects and the result
7444   // will depend upon the comparison of true values of selects if %cmp is
7445   // true. Thus, transform this into:
7446   //   %cmp = icmp slt i32 %y, %z
7447   //   %sel = select i1 %cond, i1 %cmp, i1 false
7448   // This handles similar cases to transform.
7449   {
7450     Value *Cond, *A, *B, *C, *D;
7451     if (match(Op0, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
7452         match(Op1, m_Select(m_Specific(Cond), m_Value(C), m_Value(D))) &&
7453         (Op0->hasOneUse() || Op1->hasOneUse())) {
7454       // Check whether comparison of TrueValues can be simplified
7455       if (Value *Res = simplifyICmpInst(Pred, A, C, SQ)) {
7456         Value *NewICMP = Builder.CreateICmp(Pred, B, D);
7457         return SelectInst::Create(Cond, Res, NewICMP);
7458       }
7459       // Check whether comparison of FalseValues can be simplified
7460       if (Value *Res = simplifyICmpInst(Pred, B, D, SQ)) {
7461         Value *NewICMP = Builder.CreateICmp(Pred, A, C);
7462         return SelectInst::Create(Cond, NewICMP, Res);
7463       }
7464     }
7465   }
7466 
7467   // Try to optimize equality comparisons against alloca-based pointers.
7468   if (Op0->getType()->isPointerTy() && I.isEquality()) {
7469     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
7470     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
7471       if (foldAllocaCmp(Alloca))
7472         return nullptr;
7473     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
7474       if (foldAllocaCmp(Alloca))
7475         return nullptr;
7476   }
7477 
7478   if (Instruction *Res = foldICmpBitCast(I))
7479     return Res;
7480 
7481   // TODO: Hoist this above the min/max bailout.
7482   if (Instruction *R = foldICmpWithCastOp(I))
7483     return R;
7484 
7485   {
7486     Value *X, *Y;
7487     // Transform (X & ~Y) == 0 --> (X & Y) != 0
7488     // and       (X & ~Y) != 0 --> (X & Y) == 0
7489     // if A is a power of 2.
7490     if (match(Op0, m_And(m_Value(X), m_Not(m_Value(Y)))) &&
7491         match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(X, false, 0, &I) &&
7492         I.isEquality())
7493       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(X, Y),
7494                           Op1);
7495 
7496     // Op0 pred Op1 -> ~Op1 pred ~Op0, if this allows us to drop an instruction.
7497     if (Op0->getType()->isIntOrIntVectorTy()) {
7498       bool ConsumesOp0, ConsumesOp1;
7499       if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) &&
7500           isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) &&
7501           (ConsumesOp0 || ConsumesOp1)) {
7502         Value *InvOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder);
7503         Value *InvOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder);
7504         assert(InvOp0 && InvOp1 &&
7505                "Mismatch between isFreeToInvert and getFreelyInverted");
7506         return new ICmpInst(I.getSwappedPredicate(), InvOp0, InvOp1);
7507       }
7508     }
7509 
7510     Instruction *AddI = nullptr;
7511     if (match(&I, m_UAddWithOverflow(m_Value(X), m_Value(Y),
7512                                      m_Instruction(AddI))) &&
7513         isa<IntegerType>(X->getType())) {
7514       Value *Result;
7515       Constant *Overflow;
7516       // m_UAddWithOverflow can match patterns that do not include  an explicit
7517       // "add" instruction, so check the opcode of the matched op.
7518       if (AddI->getOpcode() == Instruction::Add &&
7519           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, X, Y, *AddI,
7520                                 Result, Overflow)) {
7521         replaceInstUsesWith(*AddI, Result);
7522         eraseInstFromFunction(*AddI);
7523         return replaceInstUsesWith(I, Overflow);
7524       }
7525     }
7526 
7527     // (zext X) * (zext Y)  --> llvm.umul.with.overflow.
7528     if (match(Op0, m_NUWMul(m_ZExt(m_Value(X)), m_ZExt(m_Value(Y)))) &&
7529         match(Op1, m_APInt(C))) {
7530       if (Instruction *R = processUMulZExtIdiom(I, Op0, C, *this))
7531         return R;
7532     }
7533 
7534     // Signbit test folds
7535     // Fold (X u>> BitWidth - 1 Pred ZExt(i1))  -->  X s< 0 Pred i1
7536     // Fold (X s>> BitWidth - 1 Pred SExt(i1))  -->  X s< 0 Pred i1
7537     Instruction *ExtI;
7538     if ((I.isUnsigned() || I.isEquality()) &&
7539         match(Op1,
7540               m_CombineAnd(m_Instruction(ExtI), m_ZExtOrSExt(m_Value(Y)))) &&
7541         Y->getType()->getScalarSizeInBits() == 1 &&
7542         (Op0->hasOneUse() || Op1->hasOneUse())) {
7543       unsigned OpWidth = Op0->getType()->getScalarSizeInBits();
7544       Instruction *ShiftI;
7545       if (match(Op0, m_CombineAnd(m_Instruction(ShiftI),
7546                                   m_Shr(m_Value(X), m_SpecificIntAllowPoison(
7547                                                         OpWidth - 1))))) {
7548         unsigned ExtOpc = ExtI->getOpcode();
7549         unsigned ShiftOpc = ShiftI->getOpcode();
7550         if ((ExtOpc == Instruction::ZExt && ShiftOpc == Instruction::LShr) ||
7551             (ExtOpc == Instruction::SExt && ShiftOpc == Instruction::AShr)) {
7552           Value *SLTZero =
7553               Builder.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
7554           Value *Cmp = Builder.CreateICmp(Pred, SLTZero, Y, I.getName());
7555           return replaceInstUsesWith(I, Cmp);
7556         }
7557       }
7558     }
7559   }
7560 
7561   if (Instruction *Res = foldICmpEquality(I))
7562     return Res;
7563 
7564   if (Instruction *Res = foldICmpPow2Test(I, Builder))
7565     return Res;
7566 
7567   if (Instruction *Res = foldICmpOfUAddOv(I))
7568     return Res;
7569 
7570   // The 'cmpxchg' instruction returns an aggregate containing the old value and
7571   // an i1 which indicates whether or not we successfully did the swap.
7572   //
7573   // Replace comparisons between the old value and the expected value with the
7574   // indicator that 'cmpxchg' returns.
7575   //
7576   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
7577   // spuriously fail.  In those cases, the old value may equal the expected
7578   // value but it is possible for the swap to not occur.
7579   if (I.getPredicate() == ICmpInst::ICMP_EQ)
7580     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
7581       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
7582         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
7583             !ACXI->isWeak())
7584           return ExtractValueInst::Create(ACXI, 1);
7585 
7586   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
7587     return Res;
7588 
7589   if (I.getType()->isVectorTy())
7590     if (Instruction *Res = foldVectorCmp(I, Builder))
7591       return Res;
7592 
7593   if (Instruction *Res = foldICmpInvariantGroup(I))
7594     return Res;
7595 
7596   if (Instruction *Res = foldReductionIdiom(I, Builder, DL))
7597     return Res;
7598 
7599   return Changed ? &I : nullptr;
7600 }
7601 
7602 /// Fold fcmp ([us]itofp x, cst) if possible.
7603 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
7604                                                     Instruction *LHSI,
7605                                                     Constant *RHSC) {
7606   const APFloat *RHS;
7607   if (!match(RHSC, m_APFloat(RHS)))
7608     return nullptr;
7609 
7610   // Get the width of the mantissa.  We don't want to hack on conversions that
7611   // might lose information from the integer, e.g. "i64 -> float"
7612   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
7613   if (MantissaWidth == -1) return nullptr;  // Unknown.
7614 
7615   Type *IntTy = LHSI->getOperand(0)->getType();
7616   unsigned IntWidth = IntTy->getScalarSizeInBits();
7617   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
7618 
7619   if (I.isEquality()) {
7620     FCmpInst::Predicate P = I.getPredicate();
7621     bool IsExact = false;
7622     APSInt RHSCvt(IntWidth, LHSUnsigned);
7623     RHS->convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
7624 
7625     // If the floating point constant isn't an integer value, we know if we will
7626     // ever compare equal / not equal to it.
7627     if (!IsExact) {
7628       // TODO: Can never be -0.0 and other non-representable values
7629       APFloat RHSRoundInt(*RHS);
7630       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
7631       if (*RHS != RHSRoundInt) {
7632         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
7633           return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7634 
7635         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
7636         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7637       }
7638     }
7639 
7640     // TODO: If the constant is exactly representable, is it always OK to do
7641     // equality compares as integer?
7642   }
7643 
7644   // Check to see that the input is converted from an integer type that is small
7645   // enough that preserves all bits.  TODO: check here for "known" sign bits.
7646   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
7647 
7648   // Following test does NOT adjust IntWidth downwards for signed inputs,
7649   // because the most negative value still requires all the mantissa bits
7650   // to distinguish it from one less than that value.
7651   if ((int)IntWidth > MantissaWidth) {
7652     // Conversion would lose accuracy. Check if loss can impact comparison.
7653     int Exp = ilogb(*RHS);
7654     if (Exp == APFloat::IEK_Inf) {
7655       int MaxExponent = ilogb(APFloat::getLargest(RHS->getSemantics()));
7656       if (MaxExponent < (int)IntWidth - !LHSUnsigned)
7657         // Conversion could create infinity.
7658         return nullptr;
7659     } else {
7660       // Note that if RHS is zero or NaN, then Exp is negative
7661       // and first condition is trivially false.
7662       if (MantissaWidth <= Exp && Exp <= (int)IntWidth - !LHSUnsigned)
7663         // Conversion could affect comparison.
7664         return nullptr;
7665     }
7666   }
7667 
7668   // Otherwise, we can potentially simplify the comparison.  We know that it
7669   // will always come through as an integer value and we know the constant is
7670   // not a NAN (it would have been previously simplified).
7671   assert(!RHS->isNaN() && "NaN comparison not already folded!");
7672 
7673   ICmpInst::Predicate Pred;
7674   switch (I.getPredicate()) {
7675   default: llvm_unreachable("Unexpected predicate!");
7676   case FCmpInst::FCMP_UEQ:
7677   case FCmpInst::FCMP_OEQ:
7678     Pred = ICmpInst::ICMP_EQ;
7679     break;
7680   case FCmpInst::FCMP_UGT:
7681   case FCmpInst::FCMP_OGT:
7682     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
7683     break;
7684   case FCmpInst::FCMP_UGE:
7685   case FCmpInst::FCMP_OGE:
7686     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
7687     break;
7688   case FCmpInst::FCMP_ULT:
7689   case FCmpInst::FCMP_OLT:
7690     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
7691     break;
7692   case FCmpInst::FCMP_ULE:
7693   case FCmpInst::FCMP_OLE:
7694     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
7695     break;
7696   case FCmpInst::FCMP_UNE:
7697   case FCmpInst::FCMP_ONE:
7698     Pred = ICmpInst::ICMP_NE;
7699     break;
7700   case FCmpInst::FCMP_ORD:
7701     return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7702   case FCmpInst::FCMP_UNO:
7703     return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7704   }
7705 
7706   // Now we know that the APFloat is a normal number, zero or inf.
7707 
7708   // See if the FP constant is too large for the integer.  For example,
7709   // comparing an i8 to 300.0.
7710   if (!LHSUnsigned) {
7711     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
7712     // and large values.
7713     APFloat SMax(RHS->getSemantics());
7714     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
7715                           APFloat::rmNearestTiesToEven);
7716     if (SMax < *RHS) { // smax < 13123.0
7717       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
7718           Pred == ICmpInst::ICMP_SLE)
7719         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7720       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7721     }
7722   } else {
7723     // If the RHS value is > UnsignedMax, fold the comparison. This handles
7724     // +INF and large values.
7725     APFloat UMax(RHS->getSemantics());
7726     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
7727                           APFloat::rmNearestTiesToEven);
7728     if (UMax < *RHS) { // umax < 13123.0
7729       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
7730           Pred == ICmpInst::ICMP_ULE)
7731         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7732       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7733     }
7734   }
7735 
7736   if (!LHSUnsigned) {
7737     // See if the RHS value is < SignedMin.
7738     APFloat SMin(RHS->getSemantics());
7739     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
7740                           APFloat::rmNearestTiesToEven);
7741     if (SMin > *RHS) { // smin > 12312.0
7742       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
7743           Pred == ICmpInst::ICMP_SGE)
7744         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7745       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7746     }
7747   } else {
7748     // See if the RHS value is < UnsignedMin.
7749     APFloat UMin(RHS->getSemantics());
7750     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
7751                           APFloat::rmNearestTiesToEven);
7752     if (UMin > *RHS) { // umin > 12312.0
7753       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
7754           Pred == ICmpInst::ICMP_UGE)
7755         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7756       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7757     }
7758   }
7759 
7760   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
7761   // [0, UMAX], but it may still be fractional. Check whether this is the case
7762   // using the IsExact flag.
7763   // Don't do this for zero, because -0.0 is not fractional.
7764   APSInt RHSInt(IntWidth, LHSUnsigned);
7765   bool IsExact;
7766   RHS->convertToInteger(RHSInt, APFloat::rmTowardZero, &IsExact);
7767   if (!RHS->isZero()) {
7768     if (!IsExact) {
7769       // If we had a comparison against a fractional value, we have to adjust
7770       // the compare predicate and sometimes the value.  RHSC is rounded towards
7771       // zero at this point.
7772       switch (Pred) {
7773       default: llvm_unreachable("Unexpected integer comparison!");
7774       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
7775         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7776       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
7777         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7778       case ICmpInst::ICMP_ULE:
7779         // (float)int <= 4.4   --> int <= 4
7780         // (float)int <= -4.4  --> false
7781         if (RHS->isNegative())
7782           return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7783         break;
7784       case ICmpInst::ICMP_SLE:
7785         // (float)int <= 4.4   --> int <= 4
7786         // (float)int <= -4.4  --> int < -4
7787         if (RHS->isNegative())
7788           Pred = ICmpInst::ICMP_SLT;
7789         break;
7790       case ICmpInst::ICMP_ULT:
7791         // (float)int < -4.4   --> false
7792         // (float)int < 4.4    --> int <= 4
7793         if (RHS->isNegative())
7794           return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7795         Pred = ICmpInst::ICMP_ULE;
7796         break;
7797       case ICmpInst::ICMP_SLT:
7798         // (float)int < -4.4   --> int < -4
7799         // (float)int < 4.4    --> int <= 4
7800         if (!RHS->isNegative())
7801           Pred = ICmpInst::ICMP_SLE;
7802         break;
7803       case ICmpInst::ICMP_UGT:
7804         // (float)int > 4.4    --> int > 4
7805         // (float)int > -4.4   --> true
7806         if (RHS->isNegative())
7807           return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7808         break;
7809       case ICmpInst::ICMP_SGT:
7810         // (float)int > 4.4    --> int > 4
7811         // (float)int > -4.4   --> int >= -4
7812         if (RHS->isNegative())
7813           Pred = ICmpInst::ICMP_SGE;
7814         break;
7815       case ICmpInst::ICMP_UGE:
7816         // (float)int >= -4.4   --> true
7817         // (float)int >= 4.4    --> int > 4
7818         if (RHS->isNegative())
7819           return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7820         Pred = ICmpInst::ICMP_UGT;
7821         break;
7822       case ICmpInst::ICMP_SGE:
7823         // (float)int >= -4.4   --> int >= -4
7824         // (float)int >= 4.4    --> int > 4
7825         if (!RHS->isNegative())
7826           Pred = ICmpInst::ICMP_SGT;
7827         break;
7828       }
7829     }
7830   }
7831 
7832   // Lower this FP comparison into an appropriate integer version of the
7833   // comparison.
7834   return new ICmpInst(Pred, LHSI->getOperand(0),
7835                       ConstantInt::get(LHSI->getOperand(0)->getType(), RHSInt));
7836 }
7837 
7838 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
7839 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
7840                                               Constant *RHSC) {
7841   // When C is not 0.0 and infinities are not allowed:
7842   // (C / X) < 0.0 is a sign-bit test of X
7843   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
7844   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
7845   //
7846   // Proof:
7847   // Multiply (C / X) < 0.0 by X * X / C.
7848   // - X is non zero, if it is the flag 'ninf' is violated.
7849   // - C defines the sign of X * X * C. Thus it also defines whether to swap
7850   //   the predicate. C is also non zero by definition.
7851   //
7852   // Thus X * X / C is non zero and the transformation is valid. [qed]
7853 
7854   FCmpInst::Predicate Pred = I.getPredicate();
7855 
7856   // Check that predicates are valid.
7857   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
7858       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
7859     return nullptr;
7860 
7861   // Check that RHS operand is zero.
7862   if (!match(RHSC, m_AnyZeroFP()))
7863     return nullptr;
7864 
7865   // Check fastmath flags ('ninf').
7866   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
7867     return nullptr;
7868 
7869   // Check the properties of the dividend. It must not be zero to avoid a
7870   // division by zero (see Proof).
7871   const APFloat *C;
7872   if (!match(LHSI->getOperand(0), m_APFloat(C)))
7873     return nullptr;
7874 
7875   if (C->isZero())
7876     return nullptr;
7877 
7878   // Get swapped predicate if necessary.
7879   if (C->isNegative())
7880     Pred = I.getSwappedPredicate();
7881 
7882   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
7883 }
7884 
7885 /// Optimize fabs(X) compared with zero.
7886 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
7887   Value *X;
7888   if (!match(I.getOperand(0), m_FAbs(m_Value(X))))
7889     return nullptr;
7890 
7891   const APFloat *C;
7892   if (!match(I.getOperand(1), m_APFloat(C)))
7893     return nullptr;
7894 
7895   if (!C->isPosZero()) {
7896     if (!C->isSmallestNormalized())
7897       return nullptr;
7898 
7899     const Function *F = I.getFunction();
7900     DenormalMode Mode = F->getDenormalMode(C->getSemantics());
7901     if (Mode.Input == DenormalMode::PreserveSign ||
7902         Mode.Input == DenormalMode::PositiveZero) {
7903 
7904       auto replaceFCmp = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
7905         Constant *Zero = ConstantFP::getZero(X->getType());
7906         return new FCmpInst(P, X, Zero, "", I);
7907       };
7908 
7909       switch (I.getPredicate()) {
7910       case FCmpInst::FCMP_OLT:
7911         // fcmp olt fabs(x), smallest_normalized_number -> fcmp oeq x, 0.0
7912         return replaceFCmp(&I, FCmpInst::FCMP_OEQ, X);
7913       case FCmpInst::FCMP_UGE:
7914         // fcmp uge fabs(x), smallest_normalized_number -> fcmp une x, 0.0
7915         return replaceFCmp(&I, FCmpInst::FCMP_UNE, X);
7916       case FCmpInst::FCMP_OGE:
7917         // fcmp oge fabs(x), smallest_normalized_number -> fcmp one x, 0.0
7918         return replaceFCmp(&I, FCmpInst::FCMP_ONE, X);
7919       case FCmpInst::FCMP_ULT:
7920         // fcmp ult fabs(x), smallest_normalized_number -> fcmp ueq x, 0.0
7921         return replaceFCmp(&I, FCmpInst::FCMP_UEQ, X);
7922       default:
7923         break;
7924       }
7925     }
7926 
7927     return nullptr;
7928   }
7929 
7930   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
7931     I->setPredicate(P);
7932     return IC.replaceOperand(*I, 0, X);
7933   };
7934 
7935   switch (I.getPredicate()) {
7936   case FCmpInst::FCMP_UGE:
7937   case FCmpInst::FCMP_OLT:
7938     // fabs(X) >= 0.0 --> true
7939     // fabs(X) <  0.0 --> false
7940     llvm_unreachable("fcmp should have simplified");
7941 
7942   case FCmpInst::FCMP_OGT:
7943     // fabs(X) > 0.0 --> X != 0.0
7944     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
7945 
7946   case FCmpInst::FCMP_UGT:
7947     // fabs(X) u> 0.0 --> X u!= 0.0
7948     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
7949 
7950   case FCmpInst::FCMP_OLE:
7951     // fabs(X) <= 0.0 --> X == 0.0
7952     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
7953 
7954   case FCmpInst::FCMP_ULE:
7955     // fabs(X) u<= 0.0 --> X u== 0.0
7956     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
7957 
7958   case FCmpInst::FCMP_OGE:
7959     // fabs(X) >= 0.0 --> !isnan(X)
7960     assert(!I.hasNoNaNs() && "fcmp should have simplified");
7961     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
7962 
7963   case FCmpInst::FCMP_ULT:
7964     // fabs(X) u< 0.0 --> isnan(X)
7965     assert(!I.hasNoNaNs() && "fcmp should have simplified");
7966     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
7967 
7968   case FCmpInst::FCMP_OEQ:
7969   case FCmpInst::FCMP_UEQ:
7970   case FCmpInst::FCMP_ONE:
7971   case FCmpInst::FCMP_UNE:
7972   case FCmpInst::FCMP_ORD:
7973   case FCmpInst::FCMP_UNO:
7974     // Look through the fabs() because it doesn't change anything but the sign.
7975     // fabs(X) == 0.0 --> X == 0.0,
7976     // fabs(X) != 0.0 --> X != 0.0
7977     // isnan(fabs(X)) --> isnan(X)
7978     // !isnan(fabs(X) --> !isnan(X)
7979     return replacePredAndOp0(&I, I.getPredicate(), X);
7980 
7981   default:
7982     return nullptr;
7983   }
7984 }
7985 
7986 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) {
7987   CmpInst::Predicate Pred = I.getPredicate();
7988   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
7989 
7990   // Canonicalize fneg as Op1.
7991   if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) {
7992     std::swap(Op0, Op1);
7993     Pred = I.getSwappedPredicate();
7994   }
7995 
7996   if (!match(Op1, m_FNeg(m_Specific(Op0))))
7997     return nullptr;
7998 
7999   // Replace the negated operand with 0.0:
8000   // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0
8001   Constant *Zero = ConstantFP::getZero(Op0->getType());
8002   return new FCmpInst(Pred, Op0, Zero, "", &I);
8003 }
8004 
8005 static Instruction *foldFCmpFSubIntoFCmp(FCmpInst &I, Instruction *LHSI,
8006                                          Constant *RHSC, InstCombinerImpl &CI) {
8007   const CmpInst::Predicate Pred = I.getPredicate();
8008   Value *X = LHSI->getOperand(0);
8009   Value *Y = LHSI->getOperand(1);
8010   switch (Pred) {
8011   default:
8012     break;
8013   case FCmpInst::FCMP_UGT:
8014   case FCmpInst::FCMP_ULT:
8015   case FCmpInst::FCMP_UNE:
8016   case FCmpInst::FCMP_OEQ:
8017   case FCmpInst::FCMP_OGE:
8018   case FCmpInst::FCMP_OLE:
8019     // The optimization is not valid if X and Y are infinities of the same
8020     // sign, i.e. the inf - inf = nan case. If the fsub has the ninf or nnan
8021     // flag then we can assume we do not have that case. Otherwise we might be
8022     // able to prove that either X or Y is not infinity.
8023     if (!LHSI->hasNoNaNs() && !LHSI->hasNoInfs() &&
8024         !isKnownNeverInfinity(Y, /*Depth=*/0,
8025                               CI.getSimplifyQuery().getWithInstruction(&I)) &&
8026         !isKnownNeverInfinity(X, /*Depth=*/0,
8027                               CI.getSimplifyQuery().getWithInstruction(&I)))
8028       break;
8029 
8030     [[fallthrough]];
8031   case FCmpInst::FCMP_OGT:
8032   case FCmpInst::FCMP_OLT:
8033   case FCmpInst::FCMP_ONE:
8034   case FCmpInst::FCMP_UEQ:
8035   case FCmpInst::FCMP_UGE:
8036   case FCmpInst::FCMP_ULE:
8037     // fcmp pred (x - y), 0 --> fcmp pred x, y
8038     if (match(RHSC, m_AnyZeroFP()) &&
8039         I.getFunction()->getDenormalMode(
8040             LHSI->getType()->getScalarType()->getFltSemantics()) ==
8041             DenormalMode::getIEEE()) {
8042       CI.replaceOperand(I, 0, X);
8043       CI.replaceOperand(I, 1, Y);
8044       return &I;
8045     }
8046     break;
8047   }
8048 
8049   return nullptr;
8050 }
8051 
8052 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
8053   bool Changed = false;
8054 
8055   /// Orders the operands of the compare so that they are listed from most
8056   /// complex to least complex.  This puts constants before unary operators,
8057   /// before binary operators.
8058   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
8059     I.swapOperands();
8060     Changed = true;
8061   }
8062 
8063   const CmpInst::Predicate Pred = I.getPredicate();
8064   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
8065   if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
8066                                   SQ.getWithInstruction(&I)))
8067     return replaceInstUsesWith(I, V);
8068 
8069   // Simplify 'fcmp pred X, X'
8070   Type *OpType = Op0->getType();
8071   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
8072   if (Op0 == Op1) {
8073     switch (Pred) {
8074       default: break;
8075     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
8076     case FCmpInst::FCMP_ULT:    // True if unordered or less than
8077     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
8078     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
8079       // Canonicalize these to be 'fcmp uno %X, 0.0'.
8080       I.setPredicate(FCmpInst::FCMP_UNO);
8081       I.setOperand(1, Constant::getNullValue(OpType));
8082       return &I;
8083 
8084     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
8085     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
8086     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
8087     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
8088       // Canonicalize these to be 'fcmp ord %X, 0.0'.
8089       I.setPredicate(FCmpInst::FCMP_ORD);
8090       I.setOperand(1, Constant::getNullValue(OpType));
8091       return &I;
8092     }
8093   }
8094 
8095   if (I.isCommutative()) {
8096     if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
8097       replaceOperand(I, 0, Pair->first);
8098       replaceOperand(I, 1, Pair->second);
8099       return &I;
8100     }
8101   }
8102 
8103   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
8104   // then canonicalize the operand to 0.0.
8105   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
8106     if (!match(Op0, m_PosZeroFP()) &&
8107         isKnownNeverNaN(Op0, 0, getSimplifyQuery().getWithInstruction(&I)))
8108       return replaceOperand(I, 0, ConstantFP::getZero(OpType));
8109 
8110     if (!match(Op1, m_PosZeroFP()) &&
8111         isKnownNeverNaN(Op1, 0, getSimplifyQuery().getWithInstruction(&I)))
8112       return replaceOperand(I, 1, ConstantFP::getZero(OpType));
8113   }
8114 
8115   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
8116   Value *X, *Y;
8117   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
8118     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
8119 
8120   if (Instruction *R = foldFCmpFNegCommonOp(I))
8121     return R;
8122 
8123   // Test if the FCmpInst instruction is used exclusively by a select as
8124   // part of a minimum or maximum operation. If so, refrain from doing
8125   // any other folding. This helps out other analyses which understand
8126   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
8127   // and CodeGen. And in this case, at least one of the comparison
8128   // operands has at least one user besides the compare (the select),
8129   // which would often largely negate the benefit of folding anyway.
8130   if (I.hasOneUse())
8131     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
8132       Value *A, *B;
8133       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
8134       if (SPR.Flavor != SPF_UNKNOWN)
8135         return nullptr;
8136     }
8137 
8138   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
8139   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
8140   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
8141     return replaceOperand(I, 1, ConstantFP::getZero(OpType));
8142 
8143   // Canonicalize:
8144   // fcmp olt X, +inf -> fcmp one X, +inf
8145   // fcmp ole X, +inf -> fcmp ord X, 0
8146   // fcmp ogt X, +inf -> false
8147   // fcmp oge X, +inf -> fcmp oeq X, +inf
8148   // fcmp ult X, +inf -> fcmp une X, +inf
8149   // fcmp ule X, +inf -> true
8150   // fcmp ugt X, +inf -> fcmp uno X, 0
8151   // fcmp uge X, +inf -> fcmp ueq X, +inf
8152   // fcmp olt X, -inf -> false
8153   // fcmp ole X, -inf -> fcmp oeq X, -inf
8154   // fcmp ogt X, -inf -> fcmp one X, -inf
8155   // fcmp oge X, -inf -> fcmp ord X, 0
8156   // fcmp ult X, -inf -> fcmp uno X, 0
8157   // fcmp ule X, -inf -> fcmp ueq X, -inf
8158   // fcmp ugt X, -inf -> fcmp une X, -inf
8159   // fcmp uge X, -inf -> true
8160   const APFloat *C;
8161   if (match(Op1, m_APFloat(C)) && C->isInfinity()) {
8162     switch (C->isNegative() ? FCmpInst::getSwappedPredicate(Pred) : Pred) {
8163     default:
8164       break;
8165     case FCmpInst::FCMP_ORD:
8166     case FCmpInst::FCMP_UNO:
8167     case FCmpInst::FCMP_TRUE:
8168     case FCmpInst::FCMP_FALSE:
8169     case FCmpInst::FCMP_OGT:
8170     case FCmpInst::FCMP_ULE:
8171       llvm_unreachable("Should be simplified by InstSimplify");
8172     case FCmpInst::FCMP_OLT:
8173       return new FCmpInst(FCmpInst::FCMP_ONE, Op0, Op1, "", &I);
8174     case FCmpInst::FCMP_OLE:
8175       return new FCmpInst(FCmpInst::FCMP_ORD, Op0, ConstantFP::getZero(OpType),
8176                           "", &I);
8177     case FCmpInst::FCMP_OGE:
8178       return new FCmpInst(FCmpInst::FCMP_OEQ, Op0, Op1, "", &I);
8179     case FCmpInst::FCMP_ULT:
8180       return new FCmpInst(FCmpInst::FCMP_UNE, Op0, Op1, "", &I);
8181     case FCmpInst::FCMP_UGT:
8182       return new FCmpInst(FCmpInst::FCMP_UNO, Op0, ConstantFP::getZero(OpType),
8183                           "", &I);
8184     case FCmpInst::FCMP_UGE:
8185       return new FCmpInst(FCmpInst::FCMP_UEQ, Op0, Op1, "", &I);
8186     }
8187   }
8188 
8189   // Ignore signbit of bitcasted int when comparing equality to FP 0.0:
8190   // fcmp oeq/une (bitcast X), 0.0 --> (and X, SignMaskC) ==/!= 0
8191   if (match(Op1, m_PosZeroFP()) &&
8192       match(Op0, m_OneUse(m_ElementWiseBitCast(m_Value(X))))) {
8193     ICmpInst::Predicate IntPred = ICmpInst::BAD_ICMP_PREDICATE;
8194     if (Pred == FCmpInst::FCMP_OEQ)
8195       IntPred = ICmpInst::ICMP_EQ;
8196     else if (Pred == FCmpInst::FCMP_UNE)
8197       IntPred = ICmpInst::ICMP_NE;
8198 
8199     if (IntPred != ICmpInst::BAD_ICMP_PREDICATE) {
8200       Type *IntTy = X->getType();
8201       const APInt &SignMask = ~APInt::getSignMask(IntTy->getScalarSizeInBits());
8202       Value *MaskX = Builder.CreateAnd(X, ConstantInt::get(IntTy, SignMask));
8203       return new ICmpInst(IntPred, MaskX, ConstantInt::getNullValue(IntTy));
8204     }
8205   }
8206 
8207   // Handle fcmp with instruction LHS and constant RHS.
8208   Instruction *LHSI;
8209   Constant *RHSC;
8210   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
8211     switch (LHSI->getOpcode()) {
8212     case Instruction::Select:
8213       // fcmp eq (cond ? x : -x), 0 --> fcmp eq x, 0
8214       if (FCmpInst::isEquality(Pred) && match(RHSC, m_AnyZeroFP()) &&
8215           (match(LHSI,
8216                  m_Select(m_Value(), m_Value(X), m_FNeg(m_Deferred(X)))) ||
8217            match(LHSI, m_Select(m_Value(), m_FNeg(m_Value(X)), m_Deferred(X)))))
8218         return replaceOperand(I, 0, X);
8219       if (Instruction *NV = FoldOpIntoSelect(I, cast<SelectInst>(LHSI)))
8220         return NV;
8221       break;
8222     case Instruction::FSub:
8223       if (LHSI->hasOneUse())
8224         if (Instruction *NV = foldFCmpFSubIntoFCmp(I, LHSI, RHSC, *this))
8225           return NV;
8226       break;
8227     case Instruction::PHI:
8228       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
8229         return NV;
8230       break;
8231     case Instruction::SIToFP:
8232     case Instruction::UIToFP:
8233       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
8234         return NV;
8235       break;
8236     case Instruction::FDiv:
8237       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
8238         return NV;
8239       break;
8240     case Instruction::Load:
8241       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
8242         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
8243           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(
8244                   cast<LoadInst>(LHSI), GEP, GV, I))
8245             return Res;
8246       break;
8247   }
8248   }
8249 
8250   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
8251     return R;
8252 
8253   if (match(Op0, m_FNeg(m_Value(X)))) {
8254     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
8255     Constant *C;
8256     if (match(Op1, m_Constant(C)))
8257       if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
8258         return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
8259   }
8260 
8261   // fcmp (fadd X, 0.0), Y --> fcmp X, Y
8262   if (match(Op0, m_FAdd(m_Value(X), m_AnyZeroFP())))
8263     return new FCmpInst(Pred, X, Op1, "", &I);
8264 
8265   // fcmp X, (fadd Y, 0.0) --> fcmp X, Y
8266   if (match(Op1, m_FAdd(m_Value(Y), m_AnyZeroFP())))
8267     return new FCmpInst(Pred, Op0, Y, "", &I);
8268 
8269   if (match(Op0, m_FPExt(m_Value(X)))) {
8270     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
8271     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
8272       return new FCmpInst(Pred, X, Y, "", &I);
8273 
8274     const APFloat *C;
8275     if (match(Op1, m_APFloat(C))) {
8276       const fltSemantics &FPSem =
8277           X->getType()->getScalarType()->getFltSemantics();
8278       bool Lossy;
8279       APFloat TruncC = *C;
8280       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
8281 
8282       if (Lossy) {
8283         // X can't possibly equal the higher-precision constant, so reduce any
8284         // equality comparison.
8285         // TODO: Other predicates can be handled via getFCmpCode().
8286         switch (Pred) {
8287         case FCmpInst::FCMP_OEQ:
8288           // X is ordered and equal to an impossible constant --> false
8289           return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
8290         case FCmpInst::FCMP_ONE:
8291           // X is ordered and not equal to an impossible constant --> ordered
8292           return new FCmpInst(FCmpInst::FCMP_ORD, X,
8293                               ConstantFP::getZero(X->getType()));
8294         case FCmpInst::FCMP_UEQ:
8295           // X is unordered or equal to an impossible constant --> unordered
8296           return new FCmpInst(FCmpInst::FCMP_UNO, X,
8297                               ConstantFP::getZero(X->getType()));
8298         case FCmpInst::FCMP_UNE:
8299           // X is unordered or not equal to an impossible constant --> true
8300           return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
8301         default:
8302           break;
8303         }
8304       }
8305 
8306       // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
8307       // Avoid lossy conversions and denormals.
8308       // Zero is a special case that's OK to convert.
8309       APFloat Fabs = TruncC;
8310       Fabs.clearSign();
8311       if (!Lossy &&
8312           (Fabs.isZero() || !(Fabs < APFloat::getSmallestNormalized(FPSem)))) {
8313         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
8314         return new FCmpInst(Pred, X, NewC, "", &I);
8315       }
8316     }
8317   }
8318 
8319   // Convert a sign-bit test of an FP value into a cast and integer compare.
8320   // TODO: Simplify if the copysign constant is 0.0 or NaN.
8321   // TODO: Handle non-zero compare constants.
8322   // TODO: Handle other predicates.
8323   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
8324                                                            m_Value(X)))) &&
8325       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
8326     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
8327     if (auto *VecTy = dyn_cast<VectorType>(OpType))
8328       IntType = VectorType::get(IntType, VecTy->getElementCount());
8329 
8330     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
8331     if (Pred == FCmpInst::FCMP_OLT) {
8332       Value *IntX = Builder.CreateBitCast(X, IntType);
8333       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
8334                           ConstantInt::getNullValue(IntType));
8335     }
8336   }
8337 
8338   {
8339     Value *CanonLHS = nullptr, *CanonRHS = nullptr;
8340     match(Op0, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonLHS)));
8341     match(Op1, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonRHS)));
8342 
8343     // (canonicalize(x) == x) => (x == x)
8344     if (CanonLHS == Op1)
8345       return new FCmpInst(Pred, Op1, Op1, "", &I);
8346 
8347     // (x == canonicalize(x)) => (x == x)
8348     if (CanonRHS == Op0)
8349       return new FCmpInst(Pred, Op0, Op0, "", &I);
8350 
8351     // (canonicalize(x) == canonicalize(y)) => (x == y)
8352     if (CanonLHS && CanonRHS)
8353       return new FCmpInst(Pred, CanonLHS, CanonRHS, "", &I);
8354   }
8355 
8356   if (I.getType()->isVectorTy())
8357     if (Instruction *Res = foldVectorCmp(I, Builder))
8358       return Res;
8359 
8360   return Changed ? &I : nullptr;
8361 }
8362