xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp (revision 7c20397b724a55001c2054fa133a768e9d06eb1c)
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/CmpInstAnalysis.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/ConstantRange.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
28 #include "llvm/Transforms/InstCombine/InstCombiner.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define DEBUG_TYPE "instcombine"
34 
35 // How many times is a select replaced by one of its operands?
36 STATISTIC(NumSel, "Number of select opts");
37 
38 
39 /// Compute Result = In1+In2, returning true if the result overflowed for this
40 /// type.
41 static bool addWithOverflow(APInt &Result, const APInt &In1,
42                             const APInt &In2, bool IsSigned = false) {
43   bool Overflow;
44   if (IsSigned)
45     Result = In1.sadd_ov(In2, Overflow);
46   else
47     Result = In1.uadd_ov(In2, Overflow);
48 
49   return Overflow;
50 }
51 
52 /// Compute Result = In1-In2, returning true if the result overflowed for this
53 /// type.
54 static bool subWithOverflow(APInt &Result, const APInt &In1,
55                             const APInt &In2, bool IsSigned = false) {
56   bool Overflow;
57   if (IsSigned)
58     Result = In1.ssub_ov(In2, Overflow);
59   else
60     Result = In1.usub_ov(In2, Overflow);
61 
62   return Overflow;
63 }
64 
65 /// Given an icmp instruction, return true if any use of this comparison is a
66 /// branch on sign bit comparison.
67 static bool hasBranchUse(ICmpInst &I) {
68   for (auto *U : I.users())
69     if (isa<BranchInst>(U))
70       return true;
71   return false;
72 }
73 
74 /// Returns true if the exploded icmp can be expressed as a signed comparison
75 /// to zero and updates the predicate accordingly.
76 /// The signedness of the comparison is preserved.
77 /// TODO: Refactor with decomposeBitTestICmp()?
78 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
79   if (!ICmpInst::isSigned(Pred))
80     return false;
81 
82   if (C.isZero())
83     return ICmpInst::isRelational(Pred);
84 
85   if (C.isOne()) {
86     if (Pred == ICmpInst::ICMP_SLT) {
87       Pred = ICmpInst::ICMP_SLE;
88       return true;
89     }
90   } else if (C.isAllOnes()) {
91     if (Pred == ICmpInst::ICMP_SGT) {
92       Pred = ICmpInst::ICMP_SGE;
93       return true;
94     }
95   }
96 
97   return false;
98 }
99 
100 /// This is called when we see this pattern:
101 ///   cmp pred (load (gep GV, ...)), cmpcst
102 /// where GV is a global variable with a constant initializer. Try to simplify
103 /// this into some simple computation that does not need the load. For example
104 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
105 ///
106 /// If AndCst is non-null, then the loaded value is masked with that constant
107 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
108 Instruction *
109 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
110                                                GlobalVariable *GV, CmpInst &ICI,
111                                                ConstantInt *AndCst) {
112   Constant *Init = GV->getInitializer();
113   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
114     return nullptr;
115 
116   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
117   // Don't blow up on huge arrays.
118   if (ArrayElementCount > MaxArraySizeForCombine)
119     return nullptr;
120 
121   // There are many forms of this optimization we can handle, for now, just do
122   // the simple index into a single-dimensional array.
123   //
124   // Require: GEP GV, 0, i {{, constant indices}}
125   if (GEP->getNumOperands() < 3 ||
126       !isa<ConstantInt>(GEP->getOperand(1)) ||
127       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
128       isa<Constant>(GEP->getOperand(2)))
129     return nullptr;
130 
131   // Check that indices after the variable are constants and in-range for the
132   // type they index.  Collect the indices.  This is typically for arrays of
133   // structs.
134   SmallVector<unsigned, 4> LaterIndices;
135 
136   Type *EltTy = Init->getType()->getArrayElementType();
137   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
138     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
139     if (!Idx) return nullptr;  // Variable index.
140 
141     uint64_t IdxVal = Idx->getZExtValue();
142     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
143 
144     if (StructType *STy = dyn_cast<StructType>(EltTy))
145       EltTy = STy->getElementType(IdxVal);
146     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
147       if (IdxVal >= ATy->getNumElements()) return nullptr;
148       EltTy = ATy->getElementType();
149     } else {
150       return nullptr; // Unknown type.
151     }
152 
153     LaterIndices.push_back(IdxVal);
154   }
155 
156   enum { Overdefined = -3, Undefined = -2 };
157 
158   // Variables for our state machines.
159 
160   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
161   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
162   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
163   // undefined, otherwise set to the first true element.  SecondTrueElement is
164   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
165   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
166 
167   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
168   // form "i != 47 & i != 87".  Same state transitions as for true elements.
169   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
170 
171   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
172   /// define a state machine that triggers for ranges of values that the index
173   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
174   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
175   /// index in the range (inclusive).  We use -2 for undefined here because we
176   /// use relative comparisons and don't want 0-1 to match -1.
177   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
178 
179   // MagicBitvector - This is a magic bitvector where we set a bit if the
180   // comparison is true for element 'i'.  If there are 64 elements or less in
181   // the array, this will fully represent all the comparison results.
182   uint64_t MagicBitvector = 0;
183 
184   // Scan the array and see if one of our patterns matches.
185   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
186   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
187     Constant *Elt = Init->getAggregateElement(i);
188     if (!Elt) return nullptr;
189 
190     // If this is indexing an array of structures, get the structure element.
191     if (!LaterIndices.empty())
192       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
193 
194     // If the element is masked, handle it.
195     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
196 
197     // Find out if the comparison would be true or false for the i'th element.
198     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
199                                                   CompareRHS, DL, &TLI);
200     // If the result is undef for this element, ignore it.
201     if (isa<UndefValue>(C)) {
202       // Extend range state machines to cover this element in case there is an
203       // undef in the middle of the range.
204       if (TrueRangeEnd == (int)i-1)
205         TrueRangeEnd = i;
206       if (FalseRangeEnd == (int)i-1)
207         FalseRangeEnd = i;
208       continue;
209     }
210 
211     // If we can't compute the result for any of the elements, we have to give
212     // up evaluating the entire conditional.
213     if (!isa<ConstantInt>(C)) return nullptr;
214 
215     // Otherwise, we know if the comparison is true or false for this element,
216     // update our state machines.
217     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
218 
219     // State machine for single/double/range index comparison.
220     if (IsTrueForElt) {
221       // Update the TrueElement state machine.
222       if (FirstTrueElement == Undefined)
223         FirstTrueElement = TrueRangeEnd = i;  // First true element.
224       else {
225         // Update double-compare state machine.
226         if (SecondTrueElement == Undefined)
227           SecondTrueElement = i;
228         else
229           SecondTrueElement = Overdefined;
230 
231         // Update range state machine.
232         if (TrueRangeEnd == (int)i-1)
233           TrueRangeEnd = i;
234         else
235           TrueRangeEnd = Overdefined;
236       }
237     } else {
238       // Update the FalseElement state machine.
239       if (FirstFalseElement == Undefined)
240         FirstFalseElement = FalseRangeEnd = i; // First false element.
241       else {
242         // Update double-compare state machine.
243         if (SecondFalseElement == Undefined)
244           SecondFalseElement = i;
245         else
246           SecondFalseElement = Overdefined;
247 
248         // Update range state machine.
249         if (FalseRangeEnd == (int)i-1)
250           FalseRangeEnd = i;
251         else
252           FalseRangeEnd = Overdefined;
253       }
254     }
255 
256     // If this element is in range, update our magic bitvector.
257     if (i < 64 && IsTrueForElt)
258       MagicBitvector |= 1ULL << i;
259 
260     // If all of our states become overdefined, bail out early.  Since the
261     // predicate is expensive, only check it every 8 elements.  This is only
262     // really useful for really huge arrays.
263     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
264         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
265         FalseRangeEnd == Overdefined)
266       return nullptr;
267   }
268 
269   // Now that we've scanned the entire array, emit our new comparison(s).  We
270   // order the state machines in complexity of the generated code.
271   Value *Idx = GEP->getOperand(2);
272 
273   // If the index is larger than the pointer size of the target, truncate the
274   // index down like the GEP would do implicitly.  We don't have to do this for
275   // an inbounds GEP because the index can't be out of range.
276   if (!GEP->isInBounds()) {
277     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
278     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
279     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
280       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
281   }
282 
283   // If inbounds keyword is not present, Idx * ElementSize can overflow.
284   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
285   // Then, there are two possible values for Idx to match offset 0:
286   // 0x00..00, 0x80..00.
287   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
288   // comparison is false if Idx was 0x80..00.
289   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
290   unsigned ElementSize =
291       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
292   auto MaskIdx = [&](Value* Idx){
293     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
294       Value *Mask = ConstantInt::get(Idx->getType(), -1);
295       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
296       Idx = Builder.CreateAnd(Idx, Mask);
297     }
298     return Idx;
299   };
300 
301   // If the comparison is only true for one or two elements, emit direct
302   // comparisons.
303   if (SecondTrueElement != Overdefined) {
304     Idx = MaskIdx(Idx);
305     // None true -> false.
306     if (FirstTrueElement == Undefined)
307       return replaceInstUsesWith(ICI, Builder.getFalse());
308 
309     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
310 
311     // True for one element -> 'i == 47'.
312     if (SecondTrueElement == Undefined)
313       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
314 
315     // True for two elements -> 'i == 47 | i == 72'.
316     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
317     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
318     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
319     return BinaryOperator::CreateOr(C1, C2);
320   }
321 
322   // If the comparison is only false for one or two elements, emit direct
323   // comparisons.
324   if (SecondFalseElement != Overdefined) {
325     Idx = MaskIdx(Idx);
326     // None false -> true.
327     if (FirstFalseElement == Undefined)
328       return replaceInstUsesWith(ICI, Builder.getTrue());
329 
330     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
331 
332     // False for one element -> 'i != 47'.
333     if (SecondFalseElement == Undefined)
334       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
335 
336     // False for two elements -> 'i != 47 & i != 72'.
337     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
338     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
339     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
340     return BinaryOperator::CreateAnd(C1, C2);
341   }
342 
343   // If the comparison can be replaced with a range comparison for the elements
344   // where it is true, emit the range check.
345   if (TrueRangeEnd != Overdefined) {
346     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
347     Idx = MaskIdx(Idx);
348 
349     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
350     if (FirstTrueElement) {
351       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
352       Idx = Builder.CreateAdd(Idx, Offs);
353     }
354 
355     Value *End = ConstantInt::get(Idx->getType(),
356                                   TrueRangeEnd-FirstTrueElement+1);
357     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
358   }
359 
360   // False range check.
361   if (FalseRangeEnd != Overdefined) {
362     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
363     Idx = MaskIdx(Idx);
364     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
365     if (FirstFalseElement) {
366       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
367       Idx = Builder.CreateAdd(Idx, Offs);
368     }
369 
370     Value *End = ConstantInt::get(Idx->getType(),
371                                   FalseRangeEnd-FirstFalseElement);
372     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
373   }
374 
375   // If a magic bitvector captures the entire comparison state
376   // of this load, replace it with computation that does:
377   //   ((magic_cst >> i) & 1) != 0
378   {
379     Type *Ty = nullptr;
380 
381     // Look for an appropriate type:
382     // - The type of Idx if the magic fits
383     // - The smallest fitting legal type
384     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
385       Ty = Idx->getType();
386     else
387       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
388 
389     if (Ty) {
390       Idx = MaskIdx(Idx);
391       Value *V = Builder.CreateIntCast(Idx, Ty, false);
392       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
393       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
394       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
395     }
396   }
397 
398   return nullptr;
399 }
400 
401 /// Return a value that can be used to compare the *offset* implied by a GEP to
402 /// zero. For example, if we have &A[i], we want to return 'i' for
403 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
404 /// are involved. The above expression would also be legal to codegen as
405 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
406 /// This latter form is less amenable to optimization though, and we are allowed
407 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
408 ///
409 /// If we can't emit an optimized form for this expression, this returns null.
410 ///
411 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
412                                           const DataLayout &DL) {
413   gep_type_iterator GTI = gep_type_begin(GEP);
414 
415   // Check to see if this gep only has a single variable index.  If so, and if
416   // any constant indices are a multiple of its scale, then we can compute this
417   // in terms of the scale of the variable index.  For example, if the GEP
418   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
419   // because the expression will cross zero at the same point.
420   unsigned i, e = GEP->getNumOperands();
421   int64_t Offset = 0;
422   for (i = 1; i != e; ++i, ++GTI) {
423     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
424       // Compute the aggregate offset of constant indices.
425       if (CI->isZero()) continue;
426 
427       // Handle a struct index, which adds its field offset to the pointer.
428       if (StructType *STy = GTI.getStructTypeOrNull()) {
429         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
430       } else {
431         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
432         Offset += Size*CI->getSExtValue();
433       }
434     } else {
435       // Found our variable index.
436       break;
437     }
438   }
439 
440   // If there are no variable indices, we must have a constant offset, just
441   // evaluate it the general way.
442   if (i == e) return nullptr;
443 
444   Value *VariableIdx = GEP->getOperand(i);
445   // Determine the scale factor of the variable element.  For example, this is
446   // 4 if the variable index is into an array of i32.
447   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
448 
449   // Verify that there are no other variable indices.  If so, emit the hard way.
450   for (++i, ++GTI; i != e; ++i, ++GTI) {
451     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
452     if (!CI) return nullptr;
453 
454     // Compute the aggregate offset of constant indices.
455     if (CI->isZero()) continue;
456 
457     // Handle a struct index, which adds its field offset to the pointer.
458     if (StructType *STy = GTI.getStructTypeOrNull()) {
459       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
460     } else {
461       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
462       Offset += Size*CI->getSExtValue();
463     }
464   }
465 
466   // Okay, we know we have a single variable index, which must be a
467   // pointer/array/vector index.  If there is no offset, life is simple, return
468   // the index.
469   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
470   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
471   if (Offset == 0) {
472     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
473     // we don't need to bother extending: the extension won't affect where the
474     // computation crosses zero.
475     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
476         IntPtrWidth) {
477       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
478     }
479     return VariableIdx;
480   }
481 
482   // Otherwise, there is an index.  The computation we will do will be modulo
483   // the pointer size.
484   Offset = SignExtend64(Offset, IntPtrWidth);
485   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
486 
487   // To do this transformation, any constant index must be a multiple of the
488   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
489   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
490   // multiple of the variable scale.
491   int64_t NewOffs = Offset / (int64_t)VariableScale;
492   if (Offset != NewOffs*(int64_t)VariableScale)
493     return nullptr;
494 
495   // Okay, we can do this evaluation.  Start by converting the index to intptr.
496   if (VariableIdx->getType() != IntPtrTy)
497     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
498                                             true /*Signed*/);
499   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
500   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
501 }
502 
503 /// Returns true if we can rewrite Start as a GEP with pointer Base
504 /// and some integer offset. The nodes that need to be re-written
505 /// for this transformation will be added to Explored.
506 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
507                                   const DataLayout &DL,
508                                   SetVector<Value *> &Explored) {
509   SmallVector<Value *, 16> WorkList(1, Start);
510   Explored.insert(Base);
511 
512   // The following traversal gives us an order which can be used
513   // when doing the final transformation. Since in the final
514   // transformation we create the PHI replacement instructions first,
515   // we don't have to get them in any particular order.
516   //
517   // However, for other instructions we will have to traverse the
518   // operands of an instruction first, which means that we have to
519   // do a post-order traversal.
520   while (!WorkList.empty()) {
521     SetVector<PHINode *> PHIs;
522 
523     while (!WorkList.empty()) {
524       if (Explored.size() >= 100)
525         return false;
526 
527       Value *V = WorkList.back();
528 
529       if (Explored.contains(V)) {
530         WorkList.pop_back();
531         continue;
532       }
533 
534       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
535           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
536         // We've found some value that we can't explore which is different from
537         // the base. Therefore we can't do this transformation.
538         return false;
539 
540       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
541         auto *CI = cast<CastInst>(V);
542         if (!CI->isNoopCast(DL))
543           return false;
544 
545         if (!Explored.contains(CI->getOperand(0)))
546           WorkList.push_back(CI->getOperand(0));
547       }
548 
549       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
550         // We're limiting the GEP to having one index. This will preserve
551         // the original pointer type. We could handle more cases in the
552         // future.
553         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
554             GEP->getSourceElementType() != ElemTy)
555           return false;
556 
557         if (!Explored.contains(GEP->getOperand(0)))
558           WorkList.push_back(GEP->getOperand(0));
559       }
560 
561       if (WorkList.back() == V) {
562         WorkList.pop_back();
563         // We've finished visiting this node, mark it as such.
564         Explored.insert(V);
565       }
566 
567       if (auto *PN = dyn_cast<PHINode>(V)) {
568         // We cannot transform PHIs on unsplittable basic blocks.
569         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
570           return false;
571         Explored.insert(PN);
572         PHIs.insert(PN);
573       }
574     }
575 
576     // Explore the PHI nodes further.
577     for (auto *PN : PHIs)
578       for (Value *Op : PN->incoming_values())
579         if (!Explored.contains(Op))
580           WorkList.push_back(Op);
581   }
582 
583   // Make sure that we can do this. Since we can't insert GEPs in a basic
584   // block before a PHI node, we can't easily do this transformation if
585   // we have PHI node users of transformed instructions.
586   for (Value *Val : Explored) {
587     for (Value *Use : Val->uses()) {
588 
589       auto *PHI = dyn_cast<PHINode>(Use);
590       auto *Inst = dyn_cast<Instruction>(Val);
591 
592       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
593           !Explored.contains(PHI))
594         continue;
595 
596       if (PHI->getParent() == Inst->getParent())
597         return false;
598     }
599   }
600   return true;
601 }
602 
603 // Sets the appropriate insert point on Builder where we can add
604 // a replacement Instruction for V (if that is possible).
605 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
606                               bool Before = true) {
607   if (auto *PHI = dyn_cast<PHINode>(V)) {
608     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
609     return;
610   }
611   if (auto *I = dyn_cast<Instruction>(V)) {
612     if (!Before)
613       I = &*std::next(I->getIterator());
614     Builder.SetInsertPoint(I);
615     return;
616   }
617   if (auto *A = dyn_cast<Argument>(V)) {
618     // Set the insertion point in the entry block.
619     BasicBlock &Entry = A->getParent()->getEntryBlock();
620     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
621     return;
622   }
623   // Otherwise, this is a constant and we don't need to set a new
624   // insertion point.
625   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
626 }
627 
628 /// Returns a re-written value of Start as an indexed GEP using Base as a
629 /// pointer.
630 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base,
631                                  const DataLayout &DL,
632                                  SetVector<Value *> &Explored) {
633   // Perform all the substitutions. This is a bit tricky because we can
634   // have cycles in our use-def chains.
635   // 1. Create the PHI nodes without any incoming values.
636   // 2. Create all the other values.
637   // 3. Add the edges for the PHI nodes.
638   // 4. Emit GEPs to get the original pointers.
639   // 5. Remove the original instructions.
640   Type *IndexType = IntegerType::get(
641       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
642 
643   DenseMap<Value *, Value *> NewInsts;
644   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
645 
646   // Create the new PHI nodes, without adding any incoming values.
647   for (Value *Val : Explored) {
648     if (Val == Base)
649       continue;
650     // Create empty phi nodes. This avoids cyclic dependencies when creating
651     // the remaining instructions.
652     if (auto *PHI = dyn_cast<PHINode>(Val))
653       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
654                                       PHI->getName() + ".idx", PHI);
655   }
656   IRBuilder<> Builder(Base->getContext());
657 
658   // Create all the other instructions.
659   for (Value *Val : Explored) {
660 
661     if (NewInsts.find(Val) != NewInsts.end())
662       continue;
663 
664     if (auto *CI = dyn_cast<CastInst>(Val)) {
665       // Don't get rid of the intermediate variable here; the store can grow
666       // the map which will invalidate the reference to the input value.
667       Value *V = NewInsts[CI->getOperand(0)];
668       NewInsts[CI] = V;
669       continue;
670     }
671     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
672       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
673                                                   : GEP->getOperand(1);
674       setInsertionPoint(Builder, GEP);
675       // Indices might need to be sign extended. GEPs will magically do
676       // this, but we need to do it ourselves here.
677       if (Index->getType()->getScalarSizeInBits() !=
678           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
679         Index = Builder.CreateSExtOrTrunc(
680             Index, NewInsts[GEP->getOperand(0)]->getType(),
681             GEP->getOperand(0)->getName() + ".sext");
682       }
683 
684       auto *Op = NewInsts[GEP->getOperand(0)];
685       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
686         NewInsts[GEP] = Index;
687       else
688         NewInsts[GEP] = Builder.CreateNSWAdd(
689             Op, Index, GEP->getOperand(0)->getName() + ".add");
690       continue;
691     }
692     if (isa<PHINode>(Val))
693       continue;
694 
695     llvm_unreachable("Unexpected instruction type");
696   }
697 
698   // Add the incoming values to the PHI nodes.
699   for (Value *Val : Explored) {
700     if (Val == Base)
701       continue;
702     // All the instructions have been created, we can now add edges to the
703     // phi nodes.
704     if (auto *PHI = dyn_cast<PHINode>(Val)) {
705       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
706       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
707         Value *NewIncoming = PHI->getIncomingValue(I);
708 
709         if (NewInsts.find(NewIncoming) != NewInsts.end())
710           NewIncoming = NewInsts[NewIncoming];
711 
712         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
713       }
714     }
715   }
716 
717   PointerType *PtrTy =
718       ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace());
719   for (Value *Val : Explored) {
720     if (Val == Base)
721       continue;
722 
723     // Depending on the type, for external users we have to emit
724     // a GEP or a GEP + ptrtoint.
725     setInsertionPoint(Builder, Val, false);
726 
727     // Cast base to the expected type.
728     Value *NewVal = Builder.CreateBitOrPointerCast(
729         Base, PtrTy, Start->getName() + "to.ptr");
730     NewVal = Builder.CreateInBoundsGEP(
731         ElemTy, NewVal, makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
732     NewVal = Builder.CreateBitOrPointerCast(
733         NewVal, Val->getType(), Val->getName() + ".conv");
734     Val->replaceAllUsesWith(NewVal);
735   }
736 
737   return NewInsts[Start];
738 }
739 
740 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
741 /// the input Value as a constant indexed GEP. Returns a pair containing
742 /// the GEPs Pointer and Index.
743 static std::pair<Value *, Value *>
744 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) {
745   Type *IndexType = IntegerType::get(V->getContext(),
746                                      DL.getIndexTypeSizeInBits(V->getType()));
747 
748   Constant *Index = ConstantInt::getNullValue(IndexType);
749   while (true) {
750     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
751       // We accept only inbouds GEPs here to exclude the possibility of
752       // overflow.
753       if (!GEP->isInBounds())
754         break;
755       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
756           GEP->getSourceElementType() == ElemTy) {
757         V = GEP->getOperand(0);
758         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
759         Index = ConstantExpr::getAdd(
760             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
761         continue;
762       }
763       break;
764     }
765     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
766       if (!CI->isNoopCast(DL))
767         break;
768       V = CI->getOperand(0);
769       continue;
770     }
771     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
772       if (!CI->isNoopCast(DL))
773         break;
774       V = CI->getOperand(0);
775       continue;
776     }
777     break;
778   }
779   return {V, Index};
780 }
781 
782 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
783 /// We can look through PHIs, GEPs and casts in order to determine a common base
784 /// between GEPLHS and RHS.
785 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
786                                               ICmpInst::Predicate Cond,
787                                               const DataLayout &DL) {
788   // FIXME: Support vector of pointers.
789   if (GEPLHS->getType()->isVectorTy())
790     return nullptr;
791 
792   if (!GEPLHS->hasAllConstantIndices())
793     return nullptr;
794 
795   Type *ElemTy = GEPLHS->getSourceElementType();
796   Value *PtrBase, *Index;
797   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL);
798 
799   // The set of nodes that will take part in this transformation.
800   SetVector<Value *> Nodes;
801 
802   if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes))
803     return nullptr;
804 
805   // We know we can re-write this as
806   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
807   // Since we've only looked through inbouds GEPs we know that we
808   // can't have overflow on either side. We can therefore re-write
809   // this as:
810   //   OFFSET1 cmp OFFSET2
811   Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes);
812 
813   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
814   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
815   // offset. Since Index is the offset of LHS to the base pointer, we will now
816   // compare the offsets instead of comparing the pointers.
817   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
818 }
819 
820 /// Fold comparisons between a GEP instruction and something else. At this point
821 /// we know that the GEP is on the LHS of the comparison.
822 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
823                                            ICmpInst::Predicate Cond,
824                                            Instruction &I) {
825   // Don't transform signed compares of GEPs into index compares. Even if the
826   // GEP is inbounds, the final add of the base pointer can have signed overflow
827   // and would change the result of the icmp.
828   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
829   // the maximum signed value for the pointer type.
830   if (ICmpInst::isSigned(Cond))
831     return nullptr;
832 
833   // Look through bitcasts and addrspacecasts. We do not however want to remove
834   // 0 GEPs.
835   if (!isa<GetElementPtrInst>(RHS))
836     RHS = RHS->stripPointerCasts();
837 
838   Value *PtrBase = GEPLHS->getOperand(0);
839   // FIXME: Support vector pointer GEPs.
840   if (PtrBase == RHS && GEPLHS->isInBounds() &&
841       !GEPLHS->getType()->isVectorTy()) {
842     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
843     // This transformation (ignoring the base and scales) is valid because we
844     // know pointers can't overflow since the gep is inbounds.  See if we can
845     // output an optimized form.
846     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
847 
848     // If not, synthesize the offset the hard way.
849     if (!Offset)
850       Offset = EmitGEPOffset(GEPLHS);
851     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
852                         Constant::getNullValue(Offset->getType()));
853   }
854 
855   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
856       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
857       !NullPointerIsDefined(I.getFunction(),
858                             RHS->getType()->getPointerAddressSpace())) {
859     // For most address spaces, an allocation can't be placed at null, but null
860     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
861     // the only valid inbounds address derived from null, is null itself.
862     // Thus, we have four cases to consider:
863     // 1) Base == nullptr, Offset == 0 -> inbounds, null
864     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
865     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
866     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
867     //
868     // (Note if we're indexing a type of size 0, that simply collapses into one
869     //  of the buckets above.)
870     //
871     // In general, we're allowed to make values less poison (i.e. remove
872     //   sources of full UB), so in this case, we just select between the two
873     //   non-poison cases (1 and 4 above).
874     //
875     // For vectors, we apply the same reasoning on a per-lane basis.
876     auto *Base = GEPLHS->getPointerOperand();
877     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
878       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
879       Base = Builder.CreateVectorSplat(EC, Base);
880     }
881     return new ICmpInst(Cond, Base,
882                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
883                             cast<Constant>(RHS), Base->getType()));
884   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
885     // If the base pointers are different, but the indices are the same, just
886     // compare the base pointer.
887     if (PtrBase != GEPRHS->getOperand(0)) {
888       bool IndicesTheSame =
889           GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
890           GEPLHS->getType() == GEPRHS->getType() &&
891           GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
892       if (IndicesTheSame)
893         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
894           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
895             IndicesTheSame = false;
896             break;
897           }
898 
899       // If all indices are the same, just compare the base pointers.
900       Type *BaseType = GEPLHS->getOperand(0)->getType();
901       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
902         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
903 
904       // If we're comparing GEPs with two base pointers that only differ in type
905       // and both GEPs have only constant indices or just one use, then fold
906       // the compare with the adjusted indices.
907       // FIXME: Support vector of pointers.
908       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
909           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
910           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
911           PtrBase->stripPointerCasts() ==
912               GEPRHS->getOperand(0)->stripPointerCasts() &&
913           !GEPLHS->getType()->isVectorTy()) {
914         Value *LOffset = EmitGEPOffset(GEPLHS);
915         Value *ROffset = EmitGEPOffset(GEPRHS);
916 
917         // If we looked through an addrspacecast between different sized address
918         // spaces, the LHS and RHS pointers are different sized
919         // integers. Truncate to the smaller one.
920         Type *LHSIndexTy = LOffset->getType();
921         Type *RHSIndexTy = ROffset->getType();
922         if (LHSIndexTy != RHSIndexTy) {
923           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
924               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
925             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
926           } else
927             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
928         }
929 
930         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
931                                         LOffset, ROffset);
932         return replaceInstUsesWith(I, Cmp);
933       }
934 
935       // Otherwise, the base pointers are different and the indices are
936       // different. Try convert this to an indexed compare by looking through
937       // PHIs/casts.
938       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
939     }
940 
941     // If one of the GEPs has all zero indices, recurse.
942     // FIXME: Handle vector of pointers.
943     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
944       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
945                          ICmpInst::getSwappedPredicate(Cond), I);
946 
947     // If the other GEP has all zero indices, recurse.
948     // FIXME: Handle vector of pointers.
949     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
950       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
951 
952     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
953     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
954       // If the GEPs only differ by one index, compare it.
955       unsigned NumDifferences = 0;  // Keep track of # differences.
956       unsigned DiffOperand = 0;     // The operand that differs.
957       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
958         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
959           Type *LHSType = GEPLHS->getOperand(i)->getType();
960           Type *RHSType = GEPRHS->getOperand(i)->getType();
961           // FIXME: Better support for vector of pointers.
962           if (LHSType->getPrimitiveSizeInBits() !=
963                    RHSType->getPrimitiveSizeInBits() ||
964               (GEPLHS->getType()->isVectorTy() &&
965                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
966             // Irreconcilable differences.
967             NumDifferences = 2;
968             break;
969           }
970 
971           if (NumDifferences++) break;
972           DiffOperand = i;
973         }
974 
975       if (NumDifferences == 0)   // SAME GEP?
976         return replaceInstUsesWith(I, // No comparison is needed here.
977           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
978 
979       else if (NumDifferences == 1 && GEPsInBounds) {
980         Value *LHSV = GEPLHS->getOperand(DiffOperand);
981         Value *RHSV = GEPRHS->getOperand(DiffOperand);
982         // Make sure we do a signed comparison here.
983         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
984       }
985     }
986 
987     // Only lower this if the icmp is the only user of the GEP or if we expect
988     // the result to fold to a constant!
989     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
990         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
991       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
992       Value *L = EmitGEPOffset(GEPLHS);
993       Value *R = EmitGEPOffset(GEPRHS);
994       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
995     }
996   }
997 
998   // Try convert this to an indexed compare by looking through PHIs/casts as a
999   // last resort.
1000   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1001 }
1002 
1003 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1004                                              const AllocaInst *Alloca,
1005                                              const Value *Other) {
1006   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1007 
1008   // It would be tempting to fold away comparisons between allocas and any
1009   // pointer not based on that alloca (e.g. an argument). However, even
1010   // though such pointers cannot alias, they can still compare equal.
1011   //
1012   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1013   // doesn't escape we can argue that it's impossible to guess its value, and we
1014   // can therefore act as if any such guesses are wrong.
1015   //
1016   // The code below checks that the alloca doesn't escape, and that it's only
1017   // used in a comparison once (the current instruction). The
1018   // single-comparison-use condition ensures that we're trivially folding all
1019   // comparisons against the alloca consistently, and avoids the risk of
1020   // erroneously folding a comparison of the pointer with itself.
1021 
1022   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1023 
1024   SmallVector<const Use *, 32> Worklist;
1025   for (const Use &U : Alloca->uses()) {
1026     if (Worklist.size() >= MaxIter)
1027       return nullptr;
1028     Worklist.push_back(&U);
1029   }
1030 
1031   unsigned NumCmps = 0;
1032   while (!Worklist.empty()) {
1033     assert(Worklist.size() <= MaxIter);
1034     const Use *U = Worklist.pop_back_val();
1035     const Value *V = U->getUser();
1036     --MaxIter;
1037 
1038     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1039         isa<SelectInst>(V)) {
1040       // Track the uses.
1041     } else if (isa<LoadInst>(V)) {
1042       // Loading from the pointer doesn't escape it.
1043       continue;
1044     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1045       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1046       if (SI->getValueOperand() == U->get())
1047         return nullptr;
1048       continue;
1049     } else if (isa<ICmpInst>(V)) {
1050       if (NumCmps++)
1051         return nullptr; // Found more than one cmp.
1052       continue;
1053     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1054       switch (Intrin->getIntrinsicID()) {
1055         // These intrinsics don't escape or compare the pointer. Memset is safe
1056         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1057         // we don't allow stores, so src cannot point to V.
1058         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1059         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1060           continue;
1061         default:
1062           return nullptr;
1063       }
1064     } else {
1065       return nullptr;
1066     }
1067     for (const Use &U : V->uses()) {
1068       if (Worklist.size() >= MaxIter)
1069         return nullptr;
1070       Worklist.push_back(&U);
1071     }
1072   }
1073 
1074   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1075   return replaceInstUsesWith(
1076       ICI,
1077       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1078 }
1079 
1080 /// Fold "icmp pred (X+C), X".
1081 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1082                                                   ICmpInst::Predicate Pred) {
1083   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1084   // so the values can never be equal.  Similarly for all other "or equals"
1085   // operators.
1086   assert(!!C && "C should not be zero!");
1087 
1088   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1089   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1090   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1091   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1092     Constant *R = ConstantInt::get(X->getType(),
1093                                    APInt::getMaxValue(C.getBitWidth()) - C);
1094     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1095   }
1096 
1097   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1098   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1099   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1100   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1101     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1102                         ConstantInt::get(X->getType(), -C));
1103 
1104   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1105 
1106   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1107   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1108   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1109   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1110   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1111   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1112   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1113     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1114                         ConstantInt::get(X->getType(), SMax - C));
1115 
1116   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1117   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1118   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1119   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1120   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1121   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1122 
1123   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1124   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1125                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1126 }
1127 
1128 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1129 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1130 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1131 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1132                                                      const APInt &AP1,
1133                                                      const APInt &AP2) {
1134   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1135 
1136   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1137     if (I.getPredicate() == I.ICMP_NE)
1138       Pred = CmpInst::getInversePredicate(Pred);
1139     return new ICmpInst(Pred, LHS, RHS);
1140   };
1141 
1142   // Don't bother doing any work for cases which InstSimplify handles.
1143   if (AP2.isZero())
1144     return nullptr;
1145 
1146   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1147   if (IsAShr) {
1148     if (AP2.isAllOnes())
1149       return nullptr;
1150     if (AP2.isNegative() != AP1.isNegative())
1151       return nullptr;
1152     if (AP2.sgt(AP1))
1153       return nullptr;
1154   }
1155 
1156   if (!AP1)
1157     // 'A' must be large enough to shift out the highest set bit.
1158     return getICmp(I.ICMP_UGT, A,
1159                    ConstantInt::get(A->getType(), AP2.logBase2()));
1160 
1161   if (AP1 == AP2)
1162     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1163 
1164   int Shift;
1165   if (IsAShr && AP1.isNegative())
1166     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1167   else
1168     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1169 
1170   if (Shift > 0) {
1171     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1172       // There are multiple solutions if we are comparing against -1 and the LHS
1173       // of the ashr is not a power of two.
1174       if (AP1.isAllOnes() && !AP2.isPowerOf2())
1175         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1176       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1177     } else if (AP1 == AP2.lshr(Shift)) {
1178       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1179     }
1180   }
1181 
1182   // Shifting const2 will never be equal to const1.
1183   // FIXME: This should always be handled by InstSimplify?
1184   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1185   return replaceInstUsesWith(I, TorF);
1186 }
1187 
1188 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1189 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1190 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1191                                                      const APInt &AP1,
1192                                                      const APInt &AP2) {
1193   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1194 
1195   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1196     if (I.getPredicate() == I.ICMP_NE)
1197       Pred = CmpInst::getInversePredicate(Pred);
1198     return new ICmpInst(Pred, LHS, RHS);
1199   };
1200 
1201   // Don't bother doing any work for cases which InstSimplify handles.
1202   if (AP2.isZero())
1203     return nullptr;
1204 
1205   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1206 
1207   if (!AP1 && AP2TrailingZeros != 0)
1208     return getICmp(
1209         I.ICMP_UGE, A,
1210         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1211 
1212   if (AP1 == AP2)
1213     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1214 
1215   // Get the distance between the lowest bits that are set.
1216   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1217 
1218   if (Shift > 0 && AP2.shl(Shift) == AP1)
1219     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1220 
1221   // Shifting const2 will never be equal to const1.
1222   // FIXME: This should always be handled by InstSimplify?
1223   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1224   return replaceInstUsesWith(I, TorF);
1225 }
1226 
1227 /// The caller has matched a pattern of the form:
1228 ///   I = icmp ugt (add (add A, B), CI2), CI1
1229 /// If this is of the form:
1230 ///   sum = a + b
1231 ///   if (sum+128 >u 255)
1232 /// Then replace it with llvm.sadd.with.overflow.i8.
1233 ///
1234 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1235                                           ConstantInt *CI2, ConstantInt *CI1,
1236                                           InstCombinerImpl &IC) {
1237   // The transformation we're trying to do here is to transform this into an
1238   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1239   // with a narrower add, and discard the add-with-constant that is part of the
1240   // range check (if we can't eliminate it, this isn't profitable).
1241 
1242   // In order to eliminate the add-with-constant, the compare can be its only
1243   // use.
1244   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1245   if (!AddWithCst->hasOneUse())
1246     return nullptr;
1247 
1248   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1249   if (!CI2->getValue().isPowerOf2())
1250     return nullptr;
1251   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1252   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1253     return nullptr;
1254 
1255   // The width of the new add formed is 1 more than the bias.
1256   ++NewWidth;
1257 
1258   // Check to see that CI1 is an all-ones value with NewWidth bits.
1259   if (CI1->getBitWidth() == NewWidth ||
1260       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1261     return nullptr;
1262 
1263   // This is only really a signed overflow check if the inputs have been
1264   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1265   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1266   if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1267       IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1268     return nullptr;
1269 
1270   // In order to replace the original add with a narrower
1271   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1272   // and truncates that discard the high bits of the add.  Verify that this is
1273   // the case.
1274   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1275   for (User *U : OrigAdd->users()) {
1276     if (U == AddWithCst)
1277       continue;
1278 
1279     // Only accept truncates for now.  We would really like a nice recursive
1280     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1281     // chain to see which bits of a value are actually demanded.  If the
1282     // original add had another add which was then immediately truncated, we
1283     // could still do the transformation.
1284     TruncInst *TI = dyn_cast<TruncInst>(U);
1285     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1286       return nullptr;
1287   }
1288 
1289   // If the pattern matches, truncate the inputs to the narrower type and
1290   // use the sadd_with_overflow intrinsic to efficiently compute both the
1291   // result and the overflow bit.
1292   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1293   Function *F = Intrinsic::getDeclaration(
1294       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1295 
1296   InstCombiner::BuilderTy &Builder = IC.Builder;
1297 
1298   // Put the new code above the original add, in case there are any uses of the
1299   // add between the add and the compare.
1300   Builder.SetInsertPoint(OrigAdd);
1301 
1302   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1303   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1304   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1305   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1306   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1307 
1308   // The inner add was the result of the narrow add, zero extended to the
1309   // wider type.  Replace it with the result computed by the intrinsic.
1310   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1311   IC.eraseInstFromFunction(*OrigAdd);
1312 
1313   // The original icmp gets replaced with the overflow value.
1314   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1315 }
1316 
1317 /// If we have:
1318 ///   icmp eq/ne (urem/srem %x, %y), 0
1319 /// iff %y is a power-of-two, we can replace this with a bit test:
1320 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1321 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1322   // This fold is only valid for equality predicates.
1323   if (!I.isEquality())
1324     return nullptr;
1325   ICmpInst::Predicate Pred;
1326   Value *X, *Y, *Zero;
1327   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1328                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1329     return nullptr;
1330   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1331     return nullptr;
1332   // This may increase instruction count, we don't enforce that Y is a constant.
1333   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1334   Value *Masked = Builder.CreateAnd(X, Mask);
1335   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1336 }
1337 
1338 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1339 /// by one-less-than-bitwidth into a sign test on the original value.
1340 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1341   Instruction *Val;
1342   ICmpInst::Predicate Pred;
1343   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1344     return nullptr;
1345 
1346   Value *X;
1347   Type *XTy;
1348 
1349   Constant *C;
1350   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1351     XTy = X->getType();
1352     unsigned XBitWidth = XTy->getScalarSizeInBits();
1353     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1354                                      APInt(XBitWidth, XBitWidth - 1))))
1355       return nullptr;
1356   } else if (isa<BinaryOperator>(Val) &&
1357              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1358                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1359                   /*AnalyzeForSignBitExtraction=*/true))) {
1360     XTy = X->getType();
1361   } else
1362     return nullptr;
1363 
1364   return ICmpInst::Create(Instruction::ICmp,
1365                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1366                                                     : ICmpInst::ICMP_SLT,
1367                           X, ConstantInt::getNullValue(XTy));
1368 }
1369 
1370 // Handle  icmp pred X, 0
1371 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1372   CmpInst::Predicate Pred = Cmp.getPredicate();
1373   if (!match(Cmp.getOperand(1), m_Zero()))
1374     return nullptr;
1375 
1376   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1377   if (Pred == ICmpInst::ICMP_SGT) {
1378     Value *A, *B;
1379     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1380     if (SPR.Flavor == SPF_SMIN) {
1381       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1382         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1383       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1384         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1385     }
1386   }
1387 
1388   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1389     return New;
1390 
1391   // Given:
1392   //   icmp eq/ne (urem %x, %y), 0
1393   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1394   //   icmp eq/ne %x, 0
1395   Value *X, *Y;
1396   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1397       ICmpInst::isEquality(Pred)) {
1398     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1399     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1400     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1401       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1402   }
1403 
1404   return nullptr;
1405 }
1406 
1407 /// Fold icmp Pred X, C.
1408 /// TODO: This code structure does not make sense. The saturating add fold
1409 /// should be moved to some other helper and extended as noted below (it is also
1410 /// possible that code has been made unnecessary - do we canonicalize IR to
1411 /// overflow/saturating intrinsics or not?).
1412 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1413   // Match the following pattern, which is a common idiom when writing
1414   // overflow-safe integer arithmetic functions. The source performs an addition
1415   // in wider type and explicitly checks for overflow using comparisons against
1416   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1417   //
1418   // TODO: This could probably be generalized to handle other overflow-safe
1419   // operations if we worked out the formulas to compute the appropriate magic
1420   // constants.
1421   //
1422   // sum = a + b
1423   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1424   CmpInst::Predicate Pred = Cmp.getPredicate();
1425   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1426   Value *A, *B;
1427   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1428   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1429       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1430     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1431       return Res;
1432 
1433   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1434   Constant *C = dyn_cast<Constant>(Op1);
1435   if (!C || C->canTrap())
1436     return nullptr;
1437 
1438   if (auto *Phi = dyn_cast<PHINode>(Op0))
1439     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1440       Type *Ty = Cmp.getType();
1441       Builder.SetInsertPoint(Phi);
1442       PHINode *NewPhi =
1443           Builder.CreatePHI(Ty, Phi->getNumOperands());
1444       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1445         auto *Input =
1446             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1447         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1448         NewPhi->addIncoming(BoolInput, Predecessor);
1449       }
1450       NewPhi->takeName(&Cmp);
1451       return replaceInstUsesWith(Cmp, NewPhi);
1452     }
1453 
1454   return nullptr;
1455 }
1456 
1457 /// Canonicalize icmp instructions based on dominating conditions.
1458 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1459   // This is a cheap/incomplete check for dominance - just match a single
1460   // predecessor with a conditional branch.
1461   BasicBlock *CmpBB = Cmp.getParent();
1462   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1463   if (!DomBB)
1464     return nullptr;
1465 
1466   Value *DomCond;
1467   BasicBlock *TrueBB, *FalseBB;
1468   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1469     return nullptr;
1470 
1471   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1472          "Predecessor block does not point to successor?");
1473 
1474   // The branch should get simplified. Don't bother simplifying this condition.
1475   if (TrueBB == FalseBB)
1476     return nullptr;
1477 
1478   // Try to simplify this compare to T/F based on the dominating condition.
1479   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1480   if (Imp)
1481     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1482 
1483   CmpInst::Predicate Pred = Cmp.getPredicate();
1484   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1485   ICmpInst::Predicate DomPred;
1486   const APInt *C, *DomC;
1487   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1488       match(Y, m_APInt(C))) {
1489     // We have 2 compares of a variable with constants. Calculate the constant
1490     // ranges of those compares to see if we can transform the 2nd compare:
1491     // DomBB:
1492     //   DomCond = icmp DomPred X, DomC
1493     //   br DomCond, CmpBB, FalseBB
1494     // CmpBB:
1495     //   Cmp = icmp Pred X, C
1496     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1497     ConstantRange DominatingCR =
1498         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1499                           : ConstantRange::makeExactICmpRegion(
1500                                 CmpInst::getInversePredicate(DomPred), *DomC);
1501     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1502     ConstantRange Difference = DominatingCR.difference(CR);
1503     if (Intersection.isEmptySet())
1504       return replaceInstUsesWith(Cmp, Builder.getFalse());
1505     if (Difference.isEmptySet())
1506       return replaceInstUsesWith(Cmp, Builder.getTrue());
1507 
1508     // Canonicalizing a sign bit comparison that gets used in a branch,
1509     // pessimizes codegen by generating branch on zero instruction instead
1510     // of a test and branch. So we avoid canonicalizing in such situations
1511     // because test and branch instruction has better branch displacement
1512     // than compare and branch instruction.
1513     bool UnusedBit;
1514     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1515     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1516       return nullptr;
1517 
1518     // Avoid an infinite loop with min/max canonicalization.
1519     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1520     if (Cmp.hasOneUse() &&
1521         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1522       return nullptr;
1523 
1524     if (const APInt *EqC = Intersection.getSingleElement())
1525       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1526     if (const APInt *NeC = Difference.getSingleElement())
1527       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1528   }
1529 
1530   return nullptr;
1531 }
1532 
1533 /// Fold icmp (trunc X, Y), C.
1534 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1535                                                      TruncInst *Trunc,
1536                                                      const APInt &C) {
1537   ICmpInst::Predicate Pred = Cmp.getPredicate();
1538   Value *X = Trunc->getOperand(0);
1539   if (C.isOne() && C.getBitWidth() > 1) {
1540     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1541     Value *V = nullptr;
1542     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1543       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1544                           ConstantInt::get(V->getType(), 1));
1545   }
1546 
1547   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1548            SrcBits = X->getType()->getScalarSizeInBits();
1549   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1550     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1551     // of the high bits truncated out of x are known.
1552     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1553 
1554     // If all the high bits are known, we can do this xform.
1555     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1556       // Pull in the high bits from known-ones set.
1557       APInt NewRHS = C.zext(SrcBits);
1558       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1559       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1560     }
1561   }
1562 
1563   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1564   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1565   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1566   Value *ShOp;
1567   const APInt *ShAmtC;
1568   bool TrueIfSigned;
1569   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1570       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1571       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1572     return TrueIfSigned
1573                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1574                               ConstantInt::getNullValue(X->getType()))
1575                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1576                               ConstantInt::getAllOnesValue(X->getType()));
1577   }
1578 
1579   return nullptr;
1580 }
1581 
1582 /// Fold icmp (xor X, Y), C.
1583 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1584                                                    BinaryOperator *Xor,
1585                                                    const APInt &C) {
1586   Value *X = Xor->getOperand(0);
1587   Value *Y = Xor->getOperand(1);
1588   const APInt *XorC;
1589   if (!match(Y, m_APInt(XorC)))
1590     return nullptr;
1591 
1592   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1593   // fold the xor.
1594   ICmpInst::Predicate Pred = Cmp.getPredicate();
1595   bool TrueIfSigned = false;
1596   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1597 
1598     // If the sign bit of the XorCst is not set, there is no change to
1599     // the operation, just stop using the Xor.
1600     if (!XorC->isNegative())
1601       return replaceOperand(Cmp, 0, X);
1602 
1603     // Emit the opposite comparison.
1604     if (TrueIfSigned)
1605       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1606                           ConstantInt::getAllOnesValue(X->getType()));
1607     else
1608       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1609                           ConstantInt::getNullValue(X->getType()));
1610   }
1611 
1612   if (Xor->hasOneUse()) {
1613     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1614     if (!Cmp.isEquality() && XorC->isSignMask()) {
1615       Pred = Cmp.getFlippedSignednessPredicate();
1616       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1617     }
1618 
1619     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1620     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1621       Pred = Cmp.getFlippedSignednessPredicate();
1622       Pred = Cmp.getSwappedPredicate(Pred);
1623       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1624     }
1625   }
1626 
1627   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1628   if (Pred == ICmpInst::ICMP_UGT) {
1629     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1630     if (*XorC == ~C && (C + 1).isPowerOf2())
1631       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1632     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1633     if (*XorC == C && (C + 1).isPowerOf2())
1634       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1635   }
1636   if (Pred == ICmpInst::ICMP_ULT) {
1637     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1638     if (*XorC == -C && C.isPowerOf2())
1639       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1640                           ConstantInt::get(X->getType(), ~C));
1641     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1642     if (*XorC == C && (-C).isPowerOf2())
1643       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1644                           ConstantInt::get(X->getType(), ~C));
1645   }
1646   return nullptr;
1647 }
1648 
1649 /// Fold icmp (and (sh X, Y), C2), C1.
1650 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1651                                                 BinaryOperator *And,
1652                                                 const APInt &C1,
1653                                                 const APInt &C2) {
1654   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1655   if (!Shift || !Shift->isShift())
1656     return nullptr;
1657 
1658   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1659   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1660   // code produced by the clang front-end, for bitfield access.
1661   // This seemingly simple opportunity to fold away a shift turns out to be
1662   // rather complicated. See PR17827 for details.
1663   unsigned ShiftOpcode = Shift->getOpcode();
1664   bool IsShl = ShiftOpcode == Instruction::Shl;
1665   const APInt *C3;
1666   if (match(Shift->getOperand(1), m_APInt(C3))) {
1667     APInt NewAndCst, NewCmpCst;
1668     bool AnyCmpCstBitsShiftedOut;
1669     if (ShiftOpcode == Instruction::Shl) {
1670       // For a left shift, we can fold if the comparison is not signed. We can
1671       // also fold a signed comparison if the mask value and comparison value
1672       // are not negative. These constraints may not be obvious, but we can
1673       // prove that they are correct using an SMT solver.
1674       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1675         return nullptr;
1676 
1677       NewCmpCst = C1.lshr(*C3);
1678       NewAndCst = C2.lshr(*C3);
1679       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1680     } else if (ShiftOpcode == Instruction::LShr) {
1681       // For a logical right shift, we can fold if the comparison is not signed.
1682       // We can also fold a signed comparison if the shifted mask value and the
1683       // shifted comparison value are not negative. These constraints may not be
1684       // obvious, but we can prove that they are correct using an SMT solver.
1685       NewCmpCst = C1.shl(*C3);
1686       NewAndCst = C2.shl(*C3);
1687       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1688       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1689         return nullptr;
1690     } else {
1691       // For an arithmetic shift, check that both constants don't use (in a
1692       // signed sense) the top bits being shifted out.
1693       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1694       NewCmpCst = C1.shl(*C3);
1695       NewAndCst = C2.shl(*C3);
1696       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1697       if (NewAndCst.ashr(*C3) != C2)
1698         return nullptr;
1699     }
1700 
1701     if (AnyCmpCstBitsShiftedOut) {
1702       // If we shifted bits out, the fold is not going to work out. As a
1703       // special case, check to see if this means that the result is always
1704       // true or false now.
1705       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1706         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1707       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1708         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1709     } else {
1710       Value *NewAnd = Builder.CreateAnd(
1711           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1712       return new ICmpInst(Cmp.getPredicate(),
1713           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1714     }
1715   }
1716 
1717   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1718   // preferable because it allows the C2 << Y expression to be hoisted out of a
1719   // loop if Y is invariant and X is not.
1720   if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1721       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1722     // Compute C2 << Y.
1723     Value *NewShift =
1724         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1725               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1726 
1727     // Compute X & (C2 << Y).
1728     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1729     return replaceOperand(Cmp, 0, NewAnd);
1730   }
1731 
1732   return nullptr;
1733 }
1734 
1735 /// Fold icmp (and X, C2), C1.
1736 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1737                                                      BinaryOperator *And,
1738                                                      const APInt &C1) {
1739   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1740 
1741   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1742   // TODO: We canonicalize to the longer form for scalars because we have
1743   // better analysis/folds for icmp, and codegen may be better with icmp.
1744   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1745       match(And->getOperand(1), m_One()))
1746     return new TruncInst(And->getOperand(0), Cmp.getType());
1747 
1748   const APInt *C2;
1749   Value *X;
1750   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1751     return nullptr;
1752 
1753   // Don't perform the following transforms if the AND has multiple uses
1754   if (!And->hasOneUse())
1755     return nullptr;
1756 
1757   if (Cmp.isEquality() && C1.isZero()) {
1758     // Restrict this fold to single-use 'and' (PR10267).
1759     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1760     if (C2->isSignMask()) {
1761       Constant *Zero = Constant::getNullValue(X->getType());
1762       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1763       return new ICmpInst(NewPred, X, Zero);
1764     }
1765 
1766     // Restrict this fold only for single-use 'and' (PR10267).
1767     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1768     if ((~(*C2) + 1).isPowerOf2()) {
1769       Constant *NegBOC =
1770           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1771       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1772       return new ICmpInst(NewPred, X, NegBOC);
1773     }
1774   }
1775 
1776   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1777   // the input width without changing the value produced, eliminate the cast:
1778   //
1779   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1780   //
1781   // We can do this transformation if the constants do not have their sign bits
1782   // set or if it is an equality comparison. Extending a relational comparison
1783   // when we're checking the sign bit would not work.
1784   Value *W;
1785   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1786       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1787     // TODO: Is this a good transform for vectors? Wider types may reduce
1788     // throughput. Should this transform be limited (even for scalars) by using
1789     // shouldChangeType()?
1790     if (!Cmp.getType()->isVectorTy()) {
1791       Type *WideType = W->getType();
1792       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1793       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1794       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1795       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1796       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1797     }
1798   }
1799 
1800   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1801     return I;
1802 
1803   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1804   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1805   //
1806   // iff pred isn't signed
1807   if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1808       match(And->getOperand(1), m_One())) {
1809     Constant *One = cast<Constant>(And->getOperand(1));
1810     Value *Or = And->getOperand(0);
1811     Value *A, *B, *LShr;
1812     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1813         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1814       unsigned UsesRemoved = 0;
1815       if (And->hasOneUse())
1816         ++UsesRemoved;
1817       if (Or->hasOneUse())
1818         ++UsesRemoved;
1819       if (LShr->hasOneUse())
1820         ++UsesRemoved;
1821 
1822       // Compute A & ((1 << B) | 1)
1823       Value *NewOr = nullptr;
1824       if (auto *C = dyn_cast<Constant>(B)) {
1825         if (UsesRemoved >= 1)
1826           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1827       } else {
1828         if (UsesRemoved >= 3)
1829           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1830                                                      /*HasNUW=*/true),
1831                                    One, Or->getName());
1832       }
1833       if (NewOr) {
1834         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1835         return replaceOperand(Cmp, 0, NewAnd);
1836       }
1837     }
1838   }
1839 
1840   return nullptr;
1841 }
1842 
1843 /// Fold icmp (and X, Y), C.
1844 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1845                                                    BinaryOperator *And,
1846                                                    const APInt &C) {
1847   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1848     return I;
1849 
1850   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1851   bool TrueIfNeg;
1852   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1853     // ((X - 1) & ~X) <  0 --> X == 0
1854     // ((X - 1) & ~X) >= 0 --> X != 0
1855     Value *X;
1856     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1857         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1858       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1859       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1860     }
1861   }
1862 
1863   // TODO: These all require that Y is constant too, so refactor with the above.
1864 
1865   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1866   Value *X = And->getOperand(0);
1867   Value *Y = And->getOperand(1);
1868   if (auto *LI = dyn_cast<LoadInst>(X))
1869     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1870       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1871         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1872             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1873           ConstantInt *C2 = cast<ConstantInt>(Y);
1874           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1875             return Res;
1876         }
1877 
1878   if (!Cmp.isEquality())
1879     return nullptr;
1880 
1881   // X & -C == -C -> X >  u ~C
1882   // X & -C != -C -> X <= u ~C
1883   //   iff C is a power of 2
1884   if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1885     auto NewPred =
1886         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1887     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1888   }
1889 
1890   return nullptr;
1891 }
1892 
1893 /// Fold icmp (or X, Y), C.
1894 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1895                                                   BinaryOperator *Or,
1896                                                   const APInt &C) {
1897   ICmpInst::Predicate Pred = Cmp.getPredicate();
1898   if (C.isOne()) {
1899     // icmp slt signum(V) 1 --> icmp slt V, 1
1900     Value *V = nullptr;
1901     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1902       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1903                           ConstantInt::get(V->getType(), 1));
1904   }
1905 
1906   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1907   const APInt *MaskC;
1908   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1909     if (*MaskC == C && (C + 1).isPowerOf2()) {
1910       // X | C == C --> X <=u C
1911       // X | C != C --> X  >u C
1912       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1913       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1914       return new ICmpInst(Pred, OrOp0, OrOp1);
1915     }
1916 
1917     // More general: canonicalize 'equality with set bits mask' to
1918     // 'equality with clear bits mask'.
1919     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1920     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1921     if (Or->hasOneUse()) {
1922       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1923       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1924       return new ICmpInst(Pred, And, NewC);
1925     }
1926   }
1927 
1928   // (X | (X-1)) s<  0 --> X s< 1
1929   // (X | (X-1)) s> -1 --> X s> 0
1930   Value *X;
1931   bool TrueIfSigned;
1932   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1933       match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
1934     auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
1935     Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
1936     return new ICmpInst(NewPred, X, NewC);
1937   }
1938 
1939   if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
1940     return nullptr;
1941 
1942   Value *P, *Q;
1943   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1944     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1945     // -> and (icmp eq P, null), (icmp eq Q, null).
1946     Value *CmpP =
1947         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1948     Value *CmpQ =
1949         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1950     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1951     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1952   }
1953 
1954   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1955   // a shorter form that has more potential to be folded even further.
1956   Value *X1, *X2, *X3, *X4;
1957   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1958       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1959     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1960     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1961     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1962     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1963     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1964     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1965   }
1966 
1967   return nullptr;
1968 }
1969 
1970 /// Fold icmp (mul X, Y), C.
1971 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1972                                                    BinaryOperator *Mul,
1973                                                    const APInt &C) {
1974   const APInt *MulC;
1975   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1976     return nullptr;
1977 
1978   // If this is a test of the sign bit and the multiply is sign-preserving with
1979   // a constant operand, use the multiply LHS operand instead.
1980   ICmpInst::Predicate Pred = Cmp.getPredicate();
1981   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1982     if (MulC->isNegative())
1983       Pred = ICmpInst::getSwappedPredicate(Pred);
1984     return new ICmpInst(Pred, Mul->getOperand(0),
1985                         Constant::getNullValue(Mul->getType()));
1986   }
1987 
1988   // If the multiply does not wrap, try to divide the compare constant by the
1989   // multiplication factor.
1990   if (Cmp.isEquality() && !MulC->isZero()) {
1991     // (mul nsw X, MulC) == C --> X == C /s MulC
1992     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
1993       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1994       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1995     }
1996     // (mul nuw X, MulC) == C --> X == C /u MulC
1997     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isZero()) {
1998       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1999       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2000     }
2001   }
2002 
2003   return nullptr;
2004 }
2005 
2006 /// Fold icmp (shl 1, Y), C.
2007 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2008                                    const APInt &C) {
2009   Value *Y;
2010   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2011     return nullptr;
2012 
2013   Type *ShiftType = Shl->getType();
2014   unsigned TypeBits = C.getBitWidth();
2015   bool CIsPowerOf2 = C.isPowerOf2();
2016   ICmpInst::Predicate Pred = Cmp.getPredicate();
2017   if (Cmp.isUnsigned()) {
2018     // (1 << Y) pred C -> Y pred Log2(C)
2019     if (!CIsPowerOf2) {
2020       // (1 << Y) <  30 -> Y <= 4
2021       // (1 << Y) <= 30 -> Y <= 4
2022       // (1 << Y) >= 30 -> Y >  4
2023       // (1 << Y) >  30 -> Y >  4
2024       if (Pred == ICmpInst::ICMP_ULT)
2025         Pred = ICmpInst::ICMP_ULE;
2026       else if (Pred == ICmpInst::ICMP_UGE)
2027         Pred = ICmpInst::ICMP_UGT;
2028     }
2029 
2030     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2031     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2032     unsigned CLog2 = C.logBase2();
2033     if (CLog2 == TypeBits - 1) {
2034       if (Pred == ICmpInst::ICMP_UGE)
2035         Pred = ICmpInst::ICMP_EQ;
2036       else if (Pred == ICmpInst::ICMP_ULT)
2037         Pred = ICmpInst::ICMP_NE;
2038     }
2039     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2040   } else if (Cmp.isSigned()) {
2041     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2042     if (C.isAllOnes()) {
2043       // (1 << Y) <= -1 -> Y == 31
2044       if (Pred == ICmpInst::ICMP_SLE)
2045         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2046 
2047       // (1 << Y) >  -1 -> Y != 31
2048       if (Pred == ICmpInst::ICMP_SGT)
2049         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2050     } else if (!C) {
2051       // (1 << Y) <  0 -> Y == 31
2052       // (1 << Y) <= 0 -> Y == 31
2053       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2054         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2055 
2056       // (1 << Y) >= 0 -> Y != 31
2057       // (1 << Y) >  0 -> Y != 31
2058       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2059         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2060     }
2061   } else if (Cmp.isEquality() && CIsPowerOf2) {
2062     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2063   }
2064 
2065   return nullptr;
2066 }
2067 
2068 /// Fold icmp (shl X, Y), C.
2069 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2070                                                    BinaryOperator *Shl,
2071                                                    const APInt &C) {
2072   const APInt *ShiftVal;
2073   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2074     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2075 
2076   const APInt *ShiftAmt;
2077   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2078     return foldICmpShlOne(Cmp, Shl, C);
2079 
2080   // Check that the shift amount is in range. If not, don't perform undefined
2081   // shifts. When the shift is visited, it will be simplified.
2082   unsigned TypeBits = C.getBitWidth();
2083   if (ShiftAmt->uge(TypeBits))
2084     return nullptr;
2085 
2086   ICmpInst::Predicate Pred = Cmp.getPredicate();
2087   Value *X = Shl->getOperand(0);
2088   Type *ShType = Shl->getType();
2089 
2090   // NSW guarantees that we are only shifting out sign bits from the high bits,
2091   // so we can ASHR the compare constant without needing a mask and eliminate
2092   // the shift.
2093   if (Shl->hasNoSignedWrap()) {
2094     if (Pred == ICmpInst::ICMP_SGT) {
2095       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2096       APInt ShiftedC = C.ashr(*ShiftAmt);
2097       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2098     }
2099     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2100         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2101       APInt ShiftedC = C.ashr(*ShiftAmt);
2102       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2103     }
2104     if (Pred == ICmpInst::ICMP_SLT) {
2105       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2106       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2107       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2108       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2109       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2110       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2111       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2112     }
2113     // If this is a signed comparison to 0 and the shift is sign preserving,
2114     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2115     // do that if we're sure to not continue on in this function.
2116     if (isSignTest(Pred, C))
2117       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2118   }
2119 
2120   // NUW guarantees that we are only shifting out zero bits from the high bits,
2121   // so we can LSHR the compare constant without needing a mask and eliminate
2122   // the shift.
2123   if (Shl->hasNoUnsignedWrap()) {
2124     if (Pred == ICmpInst::ICMP_UGT) {
2125       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2126       APInt ShiftedC = C.lshr(*ShiftAmt);
2127       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2128     }
2129     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2130         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2131       APInt ShiftedC = C.lshr(*ShiftAmt);
2132       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2133     }
2134     if (Pred == ICmpInst::ICMP_ULT) {
2135       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2136       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2137       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2138       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2139       assert(C.ugt(0) && "ult 0 should have been eliminated");
2140       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2141       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2142     }
2143   }
2144 
2145   if (Cmp.isEquality() && Shl->hasOneUse()) {
2146     // Strength-reduce the shift into an 'and'.
2147     Constant *Mask = ConstantInt::get(
2148         ShType,
2149         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2150     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2151     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2152     return new ICmpInst(Pred, And, LShrC);
2153   }
2154 
2155   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2156   bool TrueIfSigned = false;
2157   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2158     // (X << 31) <s 0  --> (X & 1) != 0
2159     Constant *Mask = ConstantInt::get(
2160         ShType,
2161         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2162     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2163     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2164                         And, Constant::getNullValue(ShType));
2165   }
2166 
2167   // Simplify 'shl' inequality test into 'and' equality test.
2168   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2169     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2170     if ((C + 1).isPowerOf2() &&
2171         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2172       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2173       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2174                                                      : ICmpInst::ICMP_NE,
2175                           And, Constant::getNullValue(ShType));
2176     }
2177     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2178     if (C.isPowerOf2() &&
2179         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2180       Value *And =
2181           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2182       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2183                                                      : ICmpInst::ICMP_NE,
2184                           And, Constant::getNullValue(ShType));
2185     }
2186   }
2187 
2188   // Transform (icmp pred iM (shl iM %v, N), C)
2189   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2190   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2191   // This enables us to get rid of the shift in favor of a trunc that may be
2192   // free on the target. It has the additional benefit of comparing to a
2193   // smaller constant that may be more target-friendly.
2194   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2195   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2196       DL.isLegalInteger(TypeBits - Amt)) {
2197     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2198     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2199       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2200     Constant *NewC =
2201         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2202     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2203   }
2204 
2205   return nullptr;
2206 }
2207 
2208 /// Fold icmp ({al}shr X, Y), C.
2209 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2210                                                    BinaryOperator *Shr,
2211                                                    const APInt &C) {
2212   // An exact shr only shifts out zero bits, so:
2213   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2214   Value *X = Shr->getOperand(0);
2215   CmpInst::Predicate Pred = Cmp.getPredicate();
2216   if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2217     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2218 
2219   const APInt *ShiftVal;
2220   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2221     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2222 
2223   const APInt *ShiftAmt;
2224   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2225     return nullptr;
2226 
2227   // Check that the shift amount is in range. If not, don't perform undefined
2228   // shifts. When the shift is visited it will be simplified.
2229   unsigned TypeBits = C.getBitWidth();
2230   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2231   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2232     return nullptr;
2233 
2234   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2235   bool IsExact = Shr->isExact();
2236   Type *ShrTy = Shr->getType();
2237   // TODO: If we could guarantee that InstSimplify would handle all of the
2238   // constant-value-based preconditions in the folds below, then we could assert
2239   // those conditions rather than checking them. This is difficult because of
2240   // undef/poison (PR34838).
2241   if (IsAShr) {
2242     if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
2243       // When ShAmtC can be shifted losslessly:
2244       // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2245       // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2246       APInt ShiftedC = C.shl(ShAmtVal);
2247       if (ShiftedC.ashr(ShAmtVal) == C)
2248         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2249     }
2250     if (Pred == CmpInst::ICMP_SGT) {
2251       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2252       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2253       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2254           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2255         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2256     }
2257     if (Pred == CmpInst::ICMP_UGT) {
2258       // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2259       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2260       if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2261         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2262     }
2263 
2264     // If the compare constant has significant bits above the lowest sign-bit,
2265     // then convert an unsigned cmp to a test of the sign-bit:
2266     // (ashr X, ShiftC) u> C --> X s< 0
2267     // (ashr X, ShiftC) u< C --> X s> -1
2268     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2269       if (Pred == CmpInst::ICMP_UGT) {
2270         return new ICmpInst(CmpInst::ICMP_SLT, X,
2271                             ConstantInt::getNullValue(ShrTy));
2272       }
2273       if (Pred == CmpInst::ICMP_ULT) {
2274         return new ICmpInst(CmpInst::ICMP_SGT, X,
2275                             ConstantInt::getAllOnesValue(ShrTy));
2276       }
2277     }
2278   } else {
2279     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2280       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2281       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2282       APInt ShiftedC = C.shl(ShAmtVal);
2283       if (ShiftedC.lshr(ShAmtVal) == C)
2284         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2285     }
2286     if (Pred == CmpInst::ICMP_UGT) {
2287       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2288       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2289       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2290         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2291     }
2292   }
2293 
2294   if (!Cmp.isEquality())
2295     return nullptr;
2296 
2297   // Handle equality comparisons of shift-by-constant.
2298 
2299   // If the comparison constant changes with the shift, the comparison cannot
2300   // succeed (bits of the comparison constant cannot match the shifted value).
2301   // This should be known by InstSimplify and already be folded to true/false.
2302   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2303           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2304          "Expected icmp+shr simplify did not occur.");
2305 
2306   // If the bits shifted out are known zero, compare the unshifted value:
2307   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2308   if (Shr->isExact())
2309     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2310 
2311   if (C.isZero()) {
2312     // == 0 is u< 1.
2313     if (Pred == CmpInst::ICMP_EQ)
2314       return new ICmpInst(CmpInst::ICMP_ULT, X,
2315                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2316     else
2317       return new ICmpInst(CmpInst::ICMP_UGT, X,
2318                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2319   }
2320 
2321   if (Shr->hasOneUse()) {
2322     // Canonicalize the shift into an 'and':
2323     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2324     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2325     Constant *Mask = ConstantInt::get(ShrTy, Val);
2326     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2327     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2328   }
2329 
2330   return nullptr;
2331 }
2332 
2333 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2334                                                     BinaryOperator *SRem,
2335                                                     const APInt &C) {
2336   // Match an 'is positive' or 'is negative' comparison of remainder by a
2337   // constant power-of-2 value:
2338   // (X % pow2C) sgt/slt 0
2339   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2340   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2341     return nullptr;
2342 
2343   // TODO: The one-use check is standard because we do not typically want to
2344   //       create longer instruction sequences, but this might be a special-case
2345   //       because srem is not good for analysis or codegen.
2346   if (!SRem->hasOneUse())
2347     return nullptr;
2348 
2349   const APInt *DivisorC;
2350   if (!C.isZero() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2351     return nullptr;
2352 
2353   // Mask off the sign bit and the modulo bits (low-bits).
2354   Type *Ty = SRem->getType();
2355   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2356   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2357   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2358 
2359   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2360   // bit is set. Example:
2361   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2362   if (Pred == ICmpInst::ICMP_SGT)
2363     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2364 
2365   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2366   // bit is set. Example:
2367   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2368   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2369 }
2370 
2371 /// Fold icmp (udiv X, Y), C.
2372 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2373                                                     BinaryOperator *UDiv,
2374                                                     const APInt &C) {
2375   const APInt *C2;
2376   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2377     return nullptr;
2378 
2379   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2380 
2381   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2382   Value *Y = UDiv->getOperand(1);
2383   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2384     assert(!C.isMaxValue() &&
2385            "icmp ugt X, UINT_MAX should have been simplified already.");
2386     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2387                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2388   }
2389 
2390   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2391   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2392     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2393     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2394                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2395   }
2396 
2397   return nullptr;
2398 }
2399 
2400 /// Fold icmp ({su}div X, Y), C.
2401 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2402                                                    BinaryOperator *Div,
2403                                                    const APInt &C) {
2404   // Fold: icmp pred ([us]div X, C2), C -> range test
2405   // Fold this div into the comparison, producing a range check.
2406   // Determine, based on the divide type, what the range is being
2407   // checked.  If there is an overflow on the low or high side, remember
2408   // it, otherwise compute the range [low, hi) bounding the new value.
2409   // See: InsertRangeTest above for the kinds of replacements possible.
2410   const APInt *C2;
2411   if (!match(Div->getOperand(1), m_APInt(C2)))
2412     return nullptr;
2413 
2414   // FIXME: If the operand types don't match the type of the divide
2415   // then don't attempt this transform. The code below doesn't have the
2416   // logic to deal with a signed divide and an unsigned compare (and
2417   // vice versa). This is because (x /s C2) <s C  produces different
2418   // results than (x /s C2) <u C or (x /u C2) <s C or even
2419   // (x /u C2) <u C.  Simply casting the operands and result won't
2420   // work. :(  The if statement below tests that condition and bails
2421   // if it finds it.
2422   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2423   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2424     return nullptr;
2425 
2426   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2427   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2428   // division-by-constant cases should be present, we can not assert that they
2429   // have happened before we reach this icmp instruction.
2430   if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2431     return nullptr;
2432 
2433   // Compute Prod = C * C2. We are essentially solving an equation of
2434   // form X / C2 = C. We solve for X by multiplying C2 and C.
2435   // By solving for X, we can turn this into a range check instead of computing
2436   // a divide.
2437   APInt Prod = C * *C2;
2438 
2439   // Determine if the product overflows by seeing if the product is not equal to
2440   // the divide. Make sure we do the same kind of divide as in the LHS
2441   // instruction that we're folding.
2442   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2443 
2444   ICmpInst::Predicate Pred = Cmp.getPredicate();
2445 
2446   // If the division is known to be exact, then there is no remainder from the
2447   // divide, so the covered range size is unit, otherwise it is the divisor.
2448   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2449 
2450   // Figure out the interval that is being checked.  For example, a comparison
2451   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2452   // Compute this interval based on the constants involved and the signedness of
2453   // the compare/divide.  This computes a half-open interval, keeping track of
2454   // whether either value in the interval overflows.  After analysis each
2455   // overflow variable is set to 0 if it's corresponding bound variable is valid
2456   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2457   int LoOverflow = 0, HiOverflow = 0;
2458   APInt LoBound, HiBound;
2459 
2460   if (!DivIsSigned) {  // udiv
2461     // e.g. X/5 op 3  --> [15, 20)
2462     LoBound = Prod;
2463     HiOverflow = LoOverflow = ProdOV;
2464     if (!HiOverflow) {
2465       // If this is not an exact divide, then many values in the range collapse
2466       // to the same result value.
2467       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2468     }
2469   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2470     if (C.isZero()) {                    // (X / pos) op 0
2471       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2472       LoBound = -(RangeSize - 1);
2473       HiBound = RangeSize;
2474     } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2475       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2476       HiOverflow = LoOverflow = ProdOV;
2477       if (!HiOverflow)
2478         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2479     } else { // (X / pos) op neg
2480       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2481       HiBound = Prod + 1;
2482       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2483       if (!LoOverflow) {
2484         APInt DivNeg = -RangeSize;
2485         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2486       }
2487     }
2488   } else if (C2->isNegative()) { // Divisor is < 0.
2489     if (Div->isExact())
2490       RangeSize.negate();
2491     if (C.isZero()) { // (X / neg) op 0
2492       // e.g. X/-5 op 0  --> [-4, 5)
2493       LoBound = RangeSize + 1;
2494       HiBound = -RangeSize;
2495       if (HiBound == *C2) {        // -INTMIN = INTMIN
2496         HiOverflow = 1;            // [INTMIN+1, overflow)
2497         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2498       }
2499     } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2500       // e.g. X/-5 op 3  --> [-19, -14)
2501       HiBound = Prod + 1;
2502       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2503       if (!LoOverflow)
2504         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2505     } else {                // (X / neg) op neg
2506       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2507       LoOverflow = HiOverflow = ProdOV;
2508       if (!HiOverflow)
2509         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2510     }
2511 
2512     // Dividing by a negative swaps the condition.  LT <-> GT
2513     Pred = ICmpInst::getSwappedPredicate(Pred);
2514   }
2515 
2516   Value *X = Div->getOperand(0);
2517   switch (Pred) {
2518     default: llvm_unreachable("Unhandled icmp opcode!");
2519     case ICmpInst::ICMP_EQ:
2520       if (LoOverflow && HiOverflow)
2521         return replaceInstUsesWith(Cmp, Builder.getFalse());
2522       if (HiOverflow)
2523         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2524                             ICmpInst::ICMP_UGE, X,
2525                             ConstantInt::get(Div->getType(), LoBound));
2526       if (LoOverflow)
2527         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2528                             ICmpInst::ICMP_ULT, X,
2529                             ConstantInt::get(Div->getType(), HiBound));
2530       return replaceInstUsesWith(
2531           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2532     case ICmpInst::ICMP_NE:
2533       if (LoOverflow && HiOverflow)
2534         return replaceInstUsesWith(Cmp, Builder.getTrue());
2535       if (HiOverflow)
2536         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2537                             ICmpInst::ICMP_ULT, X,
2538                             ConstantInt::get(Div->getType(), LoBound));
2539       if (LoOverflow)
2540         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2541                             ICmpInst::ICMP_UGE, X,
2542                             ConstantInt::get(Div->getType(), HiBound));
2543       return replaceInstUsesWith(Cmp,
2544                                  insertRangeTest(X, LoBound, HiBound,
2545                                                  DivIsSigned, false));
2546     case ICmpInst::ICMP_ULT:
2547     case ICmpInst::ICMP_SLT:
2548       if (LoOverflow == +1)   // Low bound is greater than input range.
2549         return replaceInstUsesWith(Cmp, Builder.getTrue());
2550       if (LoOverflow == -1)   // Low bound is less than input range.
2551         return replaceInstUsesWith(Cmp, Builder.getFalse());
2552       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2553     case ICmpInst::ICMP_UGT:
2554     case ICmpInst::ICMP_SGT:
2555       if (HiOverflow == +1)       // High bound greater than input range.
2556         return replaceInstUsesWith(Cmp, Builder.getFalse());
2557       if (HiOverflow == -1)       // High bound less than input range.
2558         return replaceInstUsesWith(Cmp, Builder.getTrue());
2559       if (Pred == ICmpInst::ICMP_UGT)
2560         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2561                             ConstantInt::get(Div->getType(), HiBound));
2562       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2563                           ConstantInt::get(Div->getType(), HiBound));
2564   }
2565 
2566   return nullptr;
2567 }
2568 
2569 /// Fold icmp (sub X, Y), C.
2570 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2571                                                    BinaryOperator *Sub,
2572                                                    const APInt &C) {
2573   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2574   ICmpInst::Predicate Pred = Cmp.getPredicate();
2575   Type *Ty = Sub->getType();
2576 
2577   // (SubC - Y) == C) --> Y == (SubC - C)
2578   // (SubC - Y) != C) --> Y != (SubC - C)
2579   Constant *SubC;
2580   if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2581     return new ICmpInst(Pred, Y,
2582                         ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2583   }
2584 
2585   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2586   const APInt *C2;
2587   APInt SubResult;
2588   ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2589   bool HasNSW = Sub->hasNoSignedWrap();
2590   bool HasNUW = Sub->hasNoUnsignedWrap();
2591   if (match(X, m_APInt(C2)) &&
2592       ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2593       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2594     return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2595 
2596   // The following transforms are only worth it if the only user of the subtract
2597   // is the icmp.
2598   // TODO: This is an artificial restriction for all of the transforms below
2599   //       that only need a single replacement icmp.
2600   if (!Sub->hasOneUse())
2601     return nullptr;
2602 
2603   // X - Y == 0 --> X == Y.
2604   // X - Y != 0 --> X != Y.
2605   if (Cmp.isEquality() && C.isZero())
2606     return new ICmpInst(Pred, X, Y);
2607 
2608   if (Sub->hasNoSignedWrap()) {
2609     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2610     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2611       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2612 
2613     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2614     if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2615       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2616 
2617     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2618     if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2619       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2620 
2621     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2622     if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2623       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2624   }
2625 
2626   if (!match(X, m_APInt(C2)))
2627     return nullptr;
2628 
2629   // C2 - Y <u C -> (Y | (C - 1)) == C2
2630   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2631   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2632       (*C2 & (C - 1)) == (C - 1))
2633     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2634 
2635   // C2 - Y >u C -> (Y | C) != C2
2636   //   iff C2 & C == C and C + 1 is a power of 2
2637   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2638     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2639 
2640   // We have handled special cases that reduce.
2641   // Canonicalize any remaining sub to add as:
2642   // (C2 - Y) > C --> (Y + ~C2) < ~C
2643   Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2644                                  HasNUW, HasNSW);
2645   return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2646 }
2647 
2648 /// Fold icmp (add X, Y), C.
2649 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2650                                                    BinaryOperator *Add,
2651                                                    const APInt &C) {
2652   Value *Y = Add->getOperand(1);
2653   const APInt *C2;
2654   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2655     return nullptr;
2656 
2657   // Fold icmp pred (add X, C2), C.
2658   Value *X = Add->getOperand(0);
2659   Type *Ty = Add->getType();
2660   const CmpInst::Predicate Pred = Cmp.getPredicate();
2661 
2662   // If the add does not wrap, we can always adjust the compare by subtracting
2663   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2664   // are canonicalized to SGT/SLT/UGT/ULT.
2665   if ((Add->hasNoSignedWrap() &&
2666        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2667       (Add->hasNoUnsignedWrap() &&
2668        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2669     bool Overflow;
2670     APInt NewC =
2671         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2672     // If there is overflow, the result must be true or false.
2673     // TODO: Can we assert there is no overflow because InstSimplify always
2674     // handles those cases?
2675     if (!Overflow)
2676       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2677       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2678   }
2679 
2680   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2681   const APInt &Upper = CR.getUpper();
2682   const APInt &Lower = CR.getLower();
2683   if (Cmp.isSigned()) {
2684     if (Lower.isSignMask())
2685       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2686     if (Upper.isSignMask())
2687       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2688   } else {
2689     if (Lower.isMinValue())
2690       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2691     if (Upper.isMinValue())
2692       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2693   }
2694 
2695   // This set of folds is intentionally placed after folds that use no-wrapping
2696   // flags because those folds are likely better for later analysis/codegen.
2697   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2698   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2699 
2700   // Fold compare with offset to opposite sign compare if it eliminates offset:
2701   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2702   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2703     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2704 
2705   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2706   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2707     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2708 
2709   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2710   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2711     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2712 
2713   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2714   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2715     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2716 
2717   if (!Add->hasOneUse())
2718     return nullptr;
2719 
2720   // X+C <u C2 -> (X & -C2) == C
2721   //   iff C & (C2-1) == 0
2722   //       C2 is a power of 2
2723   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2724     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2725                         ConstantExpr::getNeg(cast<Constant>(Y)));
2726 
2727   // X+C >u C2 -> (X & ~C2) != C
2728   //   iff C & C2 == 0
2729   //       C2+1 is a power of 2
2730   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2731     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2732                         ConstantExpr::getNeg(cast<Constant>(Y)));
2733 
2734   // The range test idiom can use either ult or ugt. Arbitrarily canonicalize
2735   // to the ult form.
2736   // X+C2 >u C -> X+(C2-C-1) <u ~C
2737   if (Pred == ICmpInst::ICMP_UGT)
2738     return new ICmpInst(ICmpInst::ICMP_ULT,
2739                         Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
2740                         ConstantInt::get(Ty, ~C));
2741 
2742   return nullptr;
2743 }
2744 
2745 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2746                                                Value *&RHS, ConstantInt *&Less,
2747                                                ConstantInt *&Equal,
2748                                                ConstantInt *&Greater) {
2749   // TODO: Generalize this to work with other comparison idioms or ensure
2750   // they get canonicalized into this form.
2751 
2752   // select i1 (a == b),
2753   //        i32 Equal,
2754   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2755   // where Equal, Less and Greater are placeholders for any three constants.
2756   ICmpInst::Predicate PredA;
2757   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2758       !ICmpInst::isEquality(PredA))
2759     return false;
2760   Value *EqualVal = SI->getTrueValue();
2761   Value *UnequalVal = SI->getFalseValue();
2762   // We still can get non-canonical predicate here, so canonicalize.
2763   if (PredA == ICmpInst::ICMP_NE)
2764     std::swap(EqualVal, UnequalVal);
2765   if (!match(EqualVal, m_ConstantInt(Equal)))
2766     return false;
2767   ICmpInst::Predicate PredB;
2768   Value *LHS2, *RHS2;
2769   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2770                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2771     return false;
2772   // We can get predicate mismatch here, so canonicalize if possible:
2773   // First, ensure that 'LHS' match.
2774   if (LHS2 != LHS) {
2775     // x sgt y <--> y slt x
2776     std::swap(LHS2, RHS2);
2777     PredB = ICmpInst::getSwappedPredicate(PredB);
2778   }
2779   if (LHS2 != LHS)
2780     return false;
2781   // We also need to canonicalize 'RHS'.
2782   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2783     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2784     auto FlippedStrictness =
2785         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2786             PredB, cast<Constant>(RHS2));
2787     if (!FlippedStrictness)
2788       return false;
2789     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
2790            "basic correctness failure");
2791     RHS2 = FlippedStrictness->second;
2792     // And kind-of perform the result swap.
2793     std::swap(Less, Greater);
2794     PredB = ICmpInst::ICMP_SLT;
2795   }
2796   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2797 }
2798 
2799 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2800                                                       SelectInst *Select,
2801                                                       ConstantInt *C) {
2802 
2803   assert(C && "Cmp RHS should be a constant int!");
2804   // If we're testing a constant value against the result of a three way
2805   // comparison, the result can be expressed directly in terms of the
2806   // original values being compared.  Note: We could possibly be more
2807   // aggressive here and remove the hasOneUse test. The original select is
2808   // really likely to simplify or sink when we remove a test of the result.
2809   Value *OrigLHS, *OrigRHS;
2810   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2811   if (Cmp.hasOneUse() &&
2812       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2813                               C3GreaterThan)) {
2814     assert(C1LessThan && C2Equal && C3GreaterThan);
2815 
2816     bool TrueWhenLessThan =
2817         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2818             ->isAllOnesValue();
2819     bool TrueWhenEqual =
2820         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2821             ->isAllOnesValue();
2822     bool TrueWhenGreaterThan =
2823         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2824             ->isAllOnesValue();
2825 
2826     // This generates the new instruction that will replace the original Cmp
2827     // Instruction. Instead of enumerating the various combinations when
2828     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2829     // false, we rely on chaining of ORs and future passes of InstCombine to
2830     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2831 
2832     // When none of the three constants satisfy the predicate for the RHS (C),
2833     // the entire original Cmp can be simplified to a false.
2834     Value *Cond = Builder.getFalse();
2835     if (TrueWhenLessThan)
2836       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2837                                                        OrigLHS, OrigRHS));
2838     if (TrueWhenEqual)
2839       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2840                                                        OrigLHS, OrigRHS));
2841     if (TrueWhenGreaterThan)
2842       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2843                                                        OrigLHS, OrigRHS));
2844 
2845     return replaceInstUsesWith(Cmp, Cond);
2846   }
2847   return nullptr;
2848 }
2849 
2850 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
2851   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2852   if (!Bitcast)
2853     return nullptr;
2854 
2855   ICmpInst::Predicate Pred = Cmp.getPredicate();
2856   Value *Op1 = Cmp.getOperand(1);
2857   Value *BCSrcOp = Bitcast->getOperand(0);
2858 
2859   // Make sure the bitcast doesn't change the number of vector elements.
2860   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2861           Bitcast->getDestTy()->getScalarSizeInBits()) {
2862     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2863     Value *X;
2864     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2865       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2866       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2867       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2868       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2869       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2870            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2871           match(Op1, m_Zero()))
2872         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2873 
2874       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2875       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2876         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2877 
2878       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2879       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2880         return new ICmpInst(Pred, X,
2881                             ConstantInt::getAllOnesValue(X->getType()));
2882     }
2883 
2884     // Zero-equality checks are preserved through unsigned floating-point casts:
2885     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2886     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2887     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2888       if (Cmp.isEquality() && match(Op1, m_Zero()))
2889         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2890 
2891     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2892     // the FP extend/truncate because that cast does not change the sign-bit.
2893     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2894     // The sign-bit is always the most significant bit in those types.
2895     const APInt *C;
2896     bool TrueIfSigned;
2897     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2898         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2899       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2900           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2901         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2902         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2903         Type *XType = X->getType();
2904 
2905         // We can't currently handle Power style floating point operations here.
2906         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2907 
2908           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2909           if (auto *XVTy = dyn_cast<VectorType>(XType))
2910             NewType = VectorType::get(NewType, XVTy->getElementCount());
2911           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2912           if (TrueIfSigned)
2913             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2914                                 ConstantInt::getNullValue(NewType));
2915           else
2916             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2917                                 ConstantInt::getAllOnesValue(NewType));
2918         }
2919       }
2920     }
2921   }
2922 
2923   // Test to see if the operands of the icmp are casted versions of other
2924   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2925   if (Bitcast->getType()->isPointerTy() &&
2926       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2927     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2928     // so eliminate it as well.
2929     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2930       Op1 = BC2->getOperand(0);
2931 
2932     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2933     return new ICmpInst(Pred, BCSrcOp, Op1);
2934   }
2935 
2936   const APInt *C;
2937   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2938       !Bitcast->getType()->isIntegerTy() ||
2939       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2940     return nullptr;
2941 
2942   // If this is checking if all elements of a vector compare are set or not,
2943   // invert the casted vector equality compare and test if all compare
2944   // elements are clear or not. Compare against zero is generally easier for
2945   // analysis and codegen.
2946   // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
2947   // Example: are all elements equal? --> are zero elements not equal?
2948   // TODO: Try harder to reduce compare of 2 freely invertible operands?
2949   if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() &&
2950       isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) {
2951     Type *ScalarTy = Bitcast->getType();
2952     Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), ScalarTy);
2953     return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(ScalarTy));
2954   }
2955 
2956   // If this is checking if all elements of an extended vector are clear or not,
2957   // compare in a narrow type to eliminate the extend:
2958   // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
2959   Value *X;
2960   if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
2961       match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
2962     if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
2963       Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
2964       Value *NewCast = Builder.CreateBitCast(X, NewType);
2965       return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
2966     }
2967   }
2968 
2969   // Folding: icmp <pred> iN X, C
2970   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2971   //    and C is a splat of a K-bit pattern
2972   //    and SC is a constant vector = <C', C', C', ..., C'>
2973   // Into:
2974   //   %E = extractelement <M x iK> %vec, i32 C'
2975   //   icmp <pred> iK %E, trunc(C)
2976   Value *Vec;
2977   ArrayRef<int> Mask;
2978   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2979     // Check whether every element of Mask is the same constant
2980     if (is_splat(Mask)) {
2981       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2982       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2983       if (C->isSplat(EltTy->getBitWidth())) {
2984         // Fold the icmp based on the value of C
2985         // If C is M copies of an iK sized bit pattern,
2986         // then:
2987         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2988         //       icmp <pred> iK %SplatVal, <pattern>
2989         Value *Elem = Builder.getInt32(Mask[0]);
2990         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2991         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2992         return new ICmpInst(Pred, Extract, NewC);
2993       }
2994     }
2995   }
2996   return nullptr;
2997 }
2998 
2999 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3000 /// where X is some kind of instruction.
3001 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3002   const APInt *C;
3003   if (!match(Cmp.getOperand(1), m_APInt(C)))
3004     return nullptr;
3005 
3006   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
3007     switch (BO->getOpcode()) {
3008     case Instruction::Xor:
3009       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
3010         return I;
3011       break;
3012     case Instruction::And:
3013       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
3014         return I;
3015       break;
3016     case Instruction::Or:
3017       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
3018         return I;
3019       break;
3020     case Instruction::Mul:
3021       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
3022         return I;
3023       break;
3024     case Instruction::Shl:
3025       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
3026         return I;
3027       break;
3028     case Instruction::LShr:
3029     case Instruction::AShr:
3030       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
3031         return I;
3032       break;
3033     case Instruction::SRem:
3034       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
3035         return I;
3036       break;
3037     case Instruction::UDiv:
3038       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
3039         return I;
3040       LLVM_FALLTHROUGH;
3041     case Instruction::SDiv:
3042       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
3043         return I;
3044       break;
3045     case Instruction::Sub:
3046       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
3047         return I;
3048       break;
3049     case Instruction::Add:
3050       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
3051         return I;
3052       break;
3053     default:
3054       break;
3055     }
3056     // TODO: These folds could be refactored to be part of the above calls.
3057     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
3058       return I;
3059   }
3060 
3061   // Match against CmpInst LHS being instructions other than binary operators.
3062 
3063   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
3064     // For now, we only support constant integers while folding the
3065     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3066     // similar to the cases handled by binary ops above.
3067     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3068       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3069         return I;
3070   }
3071 
3072   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
3073     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3074       return I;
3075   }
3076 
3077   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3078     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3079       return I;
3080 
3081   return nullptr;
3082 }
3083 
3084 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3085 /// icmp eq/ne BO, C.
3086 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3087     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3088   // TODO: Some of these folds could work with arbitrary constants, but this
3089   // function is limited to scalar and vector splat constants.
3090   if (!Cmp.isEquality())
3091     return nullptr;
3092 
3093   ICmpInst::Predicate Pred = Cmp.getPredicate();
3094   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3095   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3096   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3097 
3098   switch (BO->getOpcode()) {
3099   case Instruction::SRem:
3100     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3101     if (C.isZero() && BO->hasOneUse()) {
3102       const APInt *BOC;
3103       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3104         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3105         return new ICmpInst(Pred, NewRem,
3106                             Constant::getNullValue(BO->getType()));
3107       }
3108     }
3109     break;
3110   case Instruction::Add: {
3111     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3112     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3113       if (BO->hasOneUse())
3114         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3115     } else if (C.isZero()) {
3116       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3117       // efficiently invertible, or if the add has just this one use.
3118       if (Value *NegVal = dyn_castNegVal(BOp1))
3119         return new ICmpInst(Pred, BOp0, NegVal);
3120       if (Value *NegVal = dyn_castNegVal(BOp0))
3121         return new ICmpInst(Pred, NegVal, BOp1);
3122       if (BO->hasOneUse()) {
3123         Value *Neg = Builder.CreateNeg(BOp1);
3124         Neg->takeName(BO);
3125         return new ICmpInst(Pred, BOp0, Neg);
3126       }
3127     }
3128     break;
3129   }
3130   case Instruction::Xor:
3131     if (BO->hasOneUse()) {
3132       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3133         // For the xor case, we can xor two constants together, eliminating
3134         // the explicit xor.
3135         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3136       } else if (C.isZero()) {
3137         // Replace ((xor A, B) != 0) with (A != B)
3138         return new ICmpInst(Pred, BOp0, BOp1);
3139       }
3140     }
3141     break;
3142   case Instruction::Or: {
3143     const APInt *BOC;
3144     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3145       // Comparing if all bits outside of a constant mask are set?
3146       // Replace (X | C) == -1 with (X & ~C) == ~C.
3147       // This removes the -1 constant.
3148       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3149       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3150       return new ICmpInst(Pred, And, NotBOC);
3151     }
3152     break;
3153   }
3154   case Instruction::And: {
3155     const APInt *BOC;
3156     if (match(BOp1, m_APInt(BOC))) {
3157       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3158       if (C == *BOC && C.isPowerOf2())
3159         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3160                             BO, Constant::getNullValue(RHS->getType()));
3161     }
3162     break;
3163   }
3164   case Instruction::UDiv:
3165     if (C.isZero()) {
3166       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3167       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3168       return new ICmpInst(NewPred, BOp1, BOp0);
3169     }
3170     break;
3171   default:
3172     break;
3173   }
3174   return nullptr;
3175 }
3176 
3177 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3178 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3179     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3180   Type *Ty = II->getType();
3181   unsigned BitWidth = C.getBitWidth();
3182   const ICmpInst::Predicate Pred = Cmp.getPredicate();
3183 
3184   switch (II->getIntrinsicID()) {
3185   case Intrinsic::abs:
3186     // abs(A) == 0  ->  A == 0
3187     // abs(A) == INT_MIN  ->  A == INT_MIN
3188     if (C.isZero() || C.isMinSignedValue())
3189       return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3190     break;
3191 
3192   case Intrinsic::bswap:
3193     // bswap(A) == C  ->  A == bswap(C)
3194     return new ICmpInst(Pred, II->getArgOperand(0),
3195                         ConstantInt::get(Ty, C.byteSwap()));
3196 
3197   case Intrinsic::ctlz:
3198   case Intrinsic::cttz: {
3199     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3200     if (C == BitWidth)
3201       return new ICmpInst(Pred, II->getArgOperand(0),
3202                           ConstantInt::getNullValue(Ty));
3203 
3204     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3205     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3206     // Limit to one use to ensure we don't increase instruction count.
3207     unsigned Num = C.getLimitedValue(BitWidth);
3208     if (Num != BitWidth && II->hasOneUse()) {
3209       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3210       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3211                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3212       APInt Mask2 = IsTrailing
3213         ? APInt::getOneBitSet(BitWidth, Num)
3214         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3215       return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3216                           ConstantInt::get(Ty, Mask2));
3217     }
3218     break;
3219   }
3220 
3221   case Intrinsic::ctpop: {
3222     // popcount(A) == 0  ->  A == 0 and likewise for !=
3223     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3224     bool IsZero = C.isZero();
3225     if (IsZero || C == BitWidth)
3226       return new ICmpInst(Pred, II->getArgOperand(0),
3227                           IsZero ? Constant::getNullValue(Ty)
3228                                  : Constant::getAllOnesValue(Ty));
3229 
3230     break;
3231   }
3232 
3233   case Intrinsic::fshl:
3234   case Intrinsic::fshr:
3235     if (II->getArgOperand(0) == II->getArgOperand(1)) {
3236       // (rot X, ?) == 0/-1 --> X == 0/-1
3237       // TODO: This transform is safe to re-use undef elts in a vector, but
3238       //       the constant value passed in by the caller doesn't allow that.
3239       if (C.isZero() || C.isAllOnes())
3240         return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3241 
3242       const APInt *RotAmtC;
3243       // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3244       // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3245       if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3246         return new ICmpInst(Pred, II->getArgOperand(0),
3247                             II->getIntrinsicID() == Intrinsic::fshl
3248                                 ? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3249                                 : ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3250     }
3251     break;
3252 
3253   case Intrinsic::uadd_sat: {
3254     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3255     if (C.isZero()) {
3256       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3257       return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3258     }
3259     break;
3260   }
3261 
3262   case Intrinsic::usub_sat: {
3263     // usub.sat(a, b) == 0  ->  a <= b
3264     if (C.isZero()) {
3265       ICmpInst::Predicate NewPred =
3266           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3267       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3268     }
3269     break;
3270   }
3271   default:
3272     break;
3273   }
3274 
3275   return nullptr;
3276 }
3277 
3278 /// Fold an icmp with LLVM intrinsics
3279 static Instruction *foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp) {
3280   assert(Cmp.isEquality());
3281 
3282   ICmpInst::Predicate Pred = Cmp.getPredicate();
3283   Value *Op0 = Cmp.getOperand(0);
3284   Value *Op1 = Cmp.getOperand(1);
3285   const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3286   const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3287   if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3288     return nullptr;
3289 
3290   switch (IIOp0->getIntrinsicID()) {
3291   case Intrinsic::bswap:
3292   case Intrinsic::bitreverse:
3293     // If both operands are byte-swapped or bit-reversed, just compare the
3294     // original values.
3295     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3296   case Intrinsic::fshl:
3297   case Intrinsic::fshr:
3298     // If both operands are rotated by same amount, just compare the
3299     // original values.
3300     if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3301       break;
3302     if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3303       break;
3304     if (IIOp0->getOperand(2) != IIOp1->getOperand(2))
3305       break;
3306     return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3307   default:
3308     break;
3309   }
3310 
3311   return nullptr;
3312 }
3313 
3314 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3315 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3316                                                              IntrinsicInst *II,
3317                                                              const APInt &C) {
3318   if (Cmp.isEquality())
3319     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3320 
3321   Type *Ty = II->getType();
3322   unsigned BitWidth = C.getBitWidth();
3323   ICmpInst::Predicate Pred = Cmp.getPredicate();
3324   switch (II->getIntrinsicID()) {
3325   case Intrinsic::ctpop: {
3326     // (ctpop X > BitWidth - 1) --> X == -1
3327     Value *X = II->getArgOperand(0);
3328     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3329       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3330                              ConstantInt::getAllOnesValue(Ty));
3331     // (ctpop X < BitWidth) --> X != -1
3332     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3333       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3334                              ConstantInt::getAllOnesValue(Ty));
3335     break;
3336   }
3337   case Intrinsic::ctlz: {
3338     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3339     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3340       unsigned Num = C.getLimitedValue();
3341       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3342       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3343                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3344     }
3345 
3346     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3347     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3348       unsigned Num = C.getLimitedValue();
3349       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3350       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3351                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3352     }
3353     break;
3354   }
3355   case Intrinsic::cttz: {
3356     // Limit to one use to ensure we don't increase instruction count.
3357     if (!II->hasOneUse())
3358       return nullptr;
3359 
3360     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3361     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3362       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3363       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3364                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3365                              ConstantInt::getNullValue(Ty));
3366     }
3367 
3368     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3369     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3370       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3371       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3372                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3373                              ConstantInt::getNullValue(Ty));
3374     }
3375     break;
3376   }
3377   default:
3378     break;
3379   }
3380 
3381   return nullptr;
3382 }
3383 
3384 /// Handle icmp with constant (but not simple integer constant) RHS.
3385 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3386   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3387   Constant *RHSC = dyn_cast<Constant>(Op1);
3388   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3389   if (!RHSC || !LHSI)
3390     return nullptr;
3391 
3392   switch (LHSI->getOpcode()) {
3393   case Instruction::GetElementPtr:
3394     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3395     if (RHSC->isNullValue() &&
3396         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3397       return new ICmpInst(
3398           I.getPredicate(), LHSI->getOperand(0),
3399           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3400     break;
3401   case Instruction::PHI:
3402     // Only fold icmp into the PHI if the phi and icmp are in the same
3403     // block.  If in the same block, we're encouraging jump threading.  If
3404     // not, we are just pessimizing the code by making an i1 phi.
3405     if (LHSI->getParent() == I.getParent())
3406       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3407         return NV;
3408     break;
3409   case Instruction::Select: {
3410     // If either operand of the select is a constant, we can fold the
3411     // comparison into the select arms, which will cause one to be
3412     // constant folded and the select turned into a bitwise or.
3413     Value *Op1 = nullptr, *Op2 = nullptr;
3414     ConstantInt *CI = nullptr;
3415 
3416     auto SimplifyOp = [&](Value *V) {
3417       Value *Op = nullptr;
3418       if (Constant *C = dyn_cast<Constant>(V)) {
3419         Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3420       } else if (RHSC->isNullValue()) {
3421         // If null is being compared, check if it can be further simplified.
3422         Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ);
3423       }
3424       return Op;
3425     };
3426     Op1 = SimplifyOp(LHSI->getOperand(1));
3427     if (Op1)
3428       CI = dyn_cast<ConstantInt>(Op1);
3429 
3430     Op2 = SimplifyOp(LHSI->getOperand(2));
3431     if (Op2)
3432       CI = dyn_cast<ConstantInt>(Op2);
3433 
3434     // We only want to perform this transformation if it will not lead to
3435     // additional code. This is true if either both sides of the select
3436     // fold to a constant (in which case the icmp is replaced with a select
3437     // which will usually simplify) or this is the only user of the
3438     // select (in which case we are trading a select+icmp for a simpler
3439     // select+icmp) or all uses of the select can be replaced based on
3440     // dominance information ("Global cases").
3441     bool Transform = false;
3442     if (Op1 && Op2)
3443       Transform = true;
3444     else if (Op1 || Op2) {
3445       // Local case
3446       if (LHSI->hasOneUse())
3447         Transform = true;
3448       // Global cases
3449       else if (CI && !CI->isZero())
3450         // When Op1 is constant try replacing select with second operand.
3451         // Otherwise Op2 is constant and try replacing select with first
3452         // operand.
3453         Transform =
3454             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3455     }
3456     if (Transform) {
3457       if (!Op1)
3458         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3459                                  I.getName());
3460       if (!Op2)
3461         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3462                                  I.getName());
3463       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3464     }
3465     break;
3466   }
3467   case Instruction::IntToPtr:
3468     // icmp pred inttoptr(X), null -> icmp pred X, 0
3469     if (RHSC->isNullValue() &&
3470         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3471       return new ICmpInst(
3472           I.getPredicate(), LHSI->getOperand(0),
3473           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3474     break;
3475 
3476   case Instruction::Load:
3477     // Try to optimize things like "A[i] > 4" to index computations.
3478     if (GetElementPtrInst *GEP =
3479             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3480       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3481         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3482             !cast<LoadInst>(LHSI)->isVolatile())
3483           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3484             return Res;
3485     }
3486     break;
3487   }
3488 
3489   return nullptr;
3490 }
3491 
3492 /// Some comparisons can be simplified.
3493 /// In this case, we are looking for comparisons that look like
3494 /// a check for a lossy truncation.
3495 /// Folds:
3496 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3497 /// Where Mask is some pattern that produces all-ones in low bits:
3498 ///    (-1 >> y)
3499 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3500 ///   ~(-1 << y)
3501 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3502 /// The Mask can be a constant, too.
3503 /// For some predicates, the operands are commutative.
3504 /// For others, x can only be on a specific side.
3505 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3506                                           InstCombiner::BuilderTy &Builder) {
3507   ICmpInst::Predicate SrcPred;
3508   Value *X, *M, *Y;
3509   auto m_VariableMask = m_CombineOr(
3510       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3511                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3512       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3513                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3514   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3515   if (!match(&I, m_c_ICmp(SrcPred,
3516                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3517                           m_Deferred(X))))
3518     return nullptr;
3519 
3520   ICmpInst::Predicate DstPred;
3521   switch (SrcPred) {
3522   case ICmpInst::Predicate::ICMP_EQ:
3523     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3524     DstPred = ICmpInst::Predicate::ICMP_ULE;
3525     break;
3526   case ICmpInst::Predicate::ICMP_NE:
3527     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3528     DstPred = ICmpInst::Predicate::ICMP_UGT;
3529     break;
3530   case ICmpInst::Predicate::ICMP_ULT:
3531     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3532     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3533     DstPred = ICmpInst::Predicate::ICMP_UGT;
3534     break;
3535   case ICmpInst::Predicate::ICMP_UGE:
3536     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3537     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3538     DstPred = ICmpInst::Predicate::ICMP_ULE;
3539     break;
3540   case ICmpInst::Predicate::ICMP_SLT:
3541     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3542     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3543     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3544       return nullptr;
3545     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3546       return nullptr;
3547     DstPred = ICmpInst::Predicate::ICMP_SGT;
3548     break;
3549   case ICmpInst::Predicate::ICMP_SGE:
3550     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3551     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3552     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3553       return nullptr;
3554     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3555       return nullptr;
3556     DstPred = ICmpInst::Predicate::ICMP_SLE;
3557     break;
3558   case ICmpInst::Predicate::ICMP_SGT:
3559   case ICmpInst::Predicate::ICMP_SLE:
3560     return nullptr;
3561   case ICmpInst::Predicate::ICMP_UGT:
3562   case ICmpInst::Predicate::ICMP_ULE:
3563     llvm_unreachable("Instsimplify took care of commut. variant");
3564     break;
3565   default:
3566     llvm_unreachable("All possible folds are handled.");
3567   }
3568 
3569   // The mask value may be a vector constant that has undefined elements. But it
3570   // may not be safe to propagate those undefs into the new compare, so replace
3571   // those elements by copying an existing, defined, and safe scalar constant.
3572   Type *OpTy = M->getType();
3573   auto *VecC = dyn_cast<Constant>(M);
3574   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3575   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3576     Constant *SafeReplacementConstant = nullptr;
3577     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3578       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3579         SafeReplacementConstant = VecC->getAggregateElement(i);
3580         break;
3581       }
3582     }
3583     assert(SafeReplacementConstant && "Failed to find undef replacement");
3584     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3585   }
3586 
3587   return Builder.CreateICmp(DstPred, X, M);
3588 }
3589 
3590 /// Some comparisons can be simplified.
3591 /// In this case, we are looking for comparisons that look like
3592 /// a check for a lossy signed truncation.
3593 /// Folds:   (MaskedBits is a constant.)
3594 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3595 /// Into:
3596 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3597 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3598 static Value *
3599 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3600                                  InstCombiner::BuilderTy &Builder) {
3601   ICmpInst::Predicate SrcPred;
3602   Value *X;
3603   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3604   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3605   if (!match(&I, m_c_ICmp(SrcPred,
3606                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3607                                           m_APInt(C1))),
3608                           m_Deferred(X))))
3609     return nullptr;
3610 
3611   // Potential handling of non-splats: for each element:
3612   //  * if both are undef, replace with constant 0.
3613   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3614   //  * if both are not undef, and are different, bailout.
3615   //  * else, only one is undef, then pick the non-undef one.
3616 
3617   // The shift amount must be equal.
3618   if (*C0 != *C1)
3619     return nullptr;
3620   const APInt &MaskedBits = *C0;
3621   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3622 
3623   ICmpInst::Predicate DstPred;
3624   switch (SrcPred) {
3625   case ICmpInst::Predicate::ICMP_EQ:
3626     // ((%x << MaskedBits) a>> MaskedBits) == %x
3627     //   =>
3628     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3629     DstPred = ICmpInst::Predicate::ICMP_ULT;
3630     break;
3631   case ICmpInst::Predicate::ICMP_NE:
3632     // ((%x << MaskedBits) a>> MaskedBits) != %x
3633     //   =>
3634     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3635     DstPred = ICmpInst::Predicate::ICMP_UGE;
3636     break;
3637   // FIXME: are more folds possible?
3638   default:
3639     return nullptr;
3640   }
3641 
3642   auto *XType = X->getType();
3643   const unsigned XBitWidth = XType->getScalarSizeInBits();
3644   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3645   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3646 
3647   // KeptBits = bitwidth(%x) - MaskedBits
3648   const APInt KeptBits = BitWidth - MaskedBits;
3649   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3650   // ICmpCst = (1 << KeptBits)
3651   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3652   assert(ICmpCst.isPowerOf2());
3653   // AddCst = (1 << (KeptBits-1))
3654   const APInt AddCst = ICmpCst.lshr(1);
3655   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3656 
3657   // T0 = add %x, AddCst
3658   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3659   // T1 = T0 DstPred ICmpCst
3660   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3661 
3662   return T1;
3663 }
3664 
3665 // Given pattern:
3666 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3667 // we should move shifts to the same hand of 'and', i.e. rewrite as
3668 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3669 // We are only interested in opposite logical shifts here.
3670 // One of the shifts can be truncated.
3671 // If we can, we want to end up creating 'lshr' shift.
3672 static Value *
3673 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3674                                            InstCombiner::BuilderTy &Builder) {
3675   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3676       !I.getOperand(0)->hasOneUse())
3677     return nullptr;
3678 
3679   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3680 
3681   // Look for an 'and' of two logical shifts, one of which may be truncated.
3682   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3683   Instruction *XShift, *MaybeTruncation, *YShift;
3684   if (!match(
3685           I.getOperand(0),
3686           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3687                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3688                                    m_AnyLogicalShift, m_Instruction(YShift))),
3689                                m_Instruction(MaybeTruncation)))))
3690     return nullptr;
3691 
3692   // We potentially looked past 'trunc', but only when matching YShift,
3693   // therefore YShift must have the widest type.
3694   Instruction *WidestShift = YShift;
3695   // Therefore XShift must have the shallowest type.
3696   // Or they both have identical types if there was no truncation.
3697   Instruction *NarrowestShift = XShift;
3698 
3699   Type *WidestTy = WidestShift->getType();
3700   Type *NarrowestTy = NarrowestShift->getType();
3701   assert(NarrowestTy == I.getOperand(0)->getType() &&
3702          "We did not look past any shifts while matching XShift though.");
3703   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3704 
3705   // If YShift is a 'lshr', swap the shifts around.
3706   if (match(YShift, m_LShr(m_Value(), m_Value())))
3707     std::swap(XShift, YShift);
3708 
3709   // The shifts must be in opposite directions.
3710   auto XShiftOpcode = XShift->getOpcode();
3711   if (XShiftOpcode == YShift->getOpcode())
3712     return nullptr; // Do not care about same-direction shifts here.
3713 
3714   Value *X, *XShAmt, *Y, *YShAmt;
3715   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3716   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3717 
3718   // If one of the values being shifted is a constant, then we will end with
3719   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3720   // however, we will need to ensure that we won't increase instruction count.
3721   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3722     // At least one of the hands of the 'and' should be one-use shift.
3723     if (!match(I.getOperand(0),
3724                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3725       return nullptr;
3726     if (HadTrunc) {
3727       // Due to the 'trunc', we will need to widen X. For that either the old
3728       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3729       if (!MaybeTruncation->hasOneUse() &&
3730           !NarrowestShift->getOperand(1)->hasOneUse())
3731         return nullptr;
3732     }
3733   }
3734 
3735   // We have two shift amounts from two different shifts. The types of those
3736   // shift amounts may not match. If that's the case let's bailout now.
3737   if (XShAmt->getType() != YShAmt->getType())
3738     return nullptr;
3739 
3740   // As input, we have the following pattern:
3741   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3742   // We want to rewrite that as:
3743   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3744   // While we know that originally (Q+K) would not overflow
3745   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3746   // shift amounts. so it may now overflow in smaller bitwidth.
3747   // To ensure that does not happen, we need to ensure that the total maximal
3748   // shift amount is still representable in that smaller bit width.
3749   unsigned MaximalPossibleTotalShiftAmount =
3750       (WidestTy->getScalarSizeInBits() - 1) +
3751       (NarrowestTy->getScalarSizeInBits() - 1);
3752   APInt MaximalRepresentableShiftAmount =
3753       APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
3754   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3755     return nullptr;
3756 
3757   // Can we fold (XShAmt+YShAmt) ?
3758   auto *NewShAmt = dyn_cast_or_null<Constant>(
3759       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3760                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3761   if (!NewShAmt)
3762     return nullptr;
3763   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3764   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3765 
3766   // Is the new shift amount smaller than the bit width?
3767   // FIXME: could also rely on ConstantRange.
3768   if (!match(NewShAmt,
3769              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3770                                 APInt(WidestBitWidth, WidestBitWidth))))
3771     return nullptr;
3772 
3773   // An extra legality check is needed if we had trunc-of-lshr.
3774   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3775     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3776                     WidestShift]() {
3777       // It isn't obvious whether it's worth it to analyze non-constants here.
3778       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3779       // If *any* of these preconditions matches we can perform the fold.
3780       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3781                                     ? NewShAmt->getSplatValue()
3782                                     : NewShAmt;
3783       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3784       if (NewShAmtSplat &&
3785           (NewShAmtSplat->isNullValue() ||
3786            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3787         return true;
3788       // We consider *min* leading zeros so a single outlier
3789       // blocks the transform as opposed to allowing it.
3790       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3791         KnownBits Known = computeKnownBits(C, SQ.DL);
3792         unsigned MinLeadZero = Known.countMinLeadingZeros();
3793         // If the value being shifted has at most lowest bit set we can fold.
3794         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3795         if (MaxActiveBits <= 1)
3796           return true;
3797         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3798         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3799           return true;
3800       }
3801       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3802         KnownBits Known = computeKnownBits(C, SQ.DL);
3803         unsigned MinLeadZero = Known.countMinLeadingZeros();
3804         // If the value being shifted has at most lowest bit set we can fold.
3805         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3806         if (MaxActiveBits <= 1)
3807           return true;
3808         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3809         if (NewShAmtSplat) {
3810           APInt AdjNewShAmt =
3811               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3812           if (AdjNewShAmt.ule(MinLeadZero))
3813             return true;
3814         }
3815       }
3816       return false; // Can't tell if it's ok.
3817     };
3818     if (!CanFold())
3819       return nullptr;
3820   }
3821 
3822   // All good, we can do this fold.
3823   X = Builder.CreateZExt(X, WidestTy);
3824   Y = Builder.CreateZExt(Y, WidestTy);
3825   // The shift is the same that was for X.
3826   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3827                   ? Builder.CreateLShr(X, NewShAmt)
3828                   : Builder.CreateShl(X, NewShAmt);
3829   Value *T1 = Builder.CreateAnd(T0, Y);
3830   return Builder.CreateICmp(I.getPredicate(), T1,
3831                             Constant::getNullValue(WidestTy));
3832 }
3833 
3834 /// Fold
3835 ///   (-1 u/ x) u< y
3836 ///   ((x * y) ?/ x) != y
3837 /// to
3838 ///   @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
3839 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3840 /// will mean that we are looking for the opposite answer.
3841 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
3842   ICmpInst::Predicate Pred;
3843   Value *X, *Y;
3844   Instruction *Mul;
3845   Instruction *Div;
3846   bool NeedNegation;
3847   // Look for: (-1 u/ x) u</u>= y
3848   if (!I.isEquality() &&
3849       match(&I, m_c_ICmp(Pred,
3850                          m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3851                                       m_Instruction(Div)),
3852                          m_Value(Y)))) {
3853     Mul = nullptr;
3854 
3855     // Are we checking that overflow does not happen, or does happen?
3856     switch (Pred) {
3857     case ICmpInst::Predicate::ICMP_ULT:
3858       NeedNegation = false;
3859       break; // OK
3860     case ICmpInst::Predicate::ICMP_UGE:
3861       NeedNegation = true;
3862       break; // OK
3863     default:
3864       return nullptr; // Wrong predicate.
3865     }
3866   } else // Look for: ((x * y) / x) !=/== y
3867       if (I.isEquality() &&
3868           match(&I,
3869                 m_c_ICmp(Pred, m_Value(Y),
3870                          m_CombineAnd(
3871                              m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3872                                                                   m_Value(X)),
3873                                                           m_Instruction(Mul)),
3874                                              m_Deferred(X))),
3875                              m_Instruction(Div))))) {
3876     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3877   } else
3878     return nullptr;
3879 
3880   BuilderTy::InsertPointGuard Guard(Builder);
3881   // If the pattern included (x * y), we'll want to insert new instructions
3882   // right before that original multiplication so that we can replace it.
3883   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3884   if (MulHadOtherUses)
3885     Builder.SetInsertPoint(Mul);
3886 
3887   Function *F = Intrinsic::getDeclaration(I.getModule(),
3888                                           Div->getOpcode() == Instruction::UDiv
3889                                               ? Intrinsic::umul_with_overflow
3890                                               : Intrinsic::smul_with_overflow,
3891                                           X->getType());
3892   CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
3893 
3894   // If the multiplication was used elsewhere, to ensure that we don't leave
3895   // "duplicate" instructions, replace uses of that original multiplication
3896   // with the multiplication result from the with.overflow intrinsic.
3897   if (MulHadOtherUses)
3898     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
3899 
3900   Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
3901   if (NeedNegation) // This technically increases instruction count.
3902     Res = Builder.CreateNot(Res, "mul.not.ov");
3903 
3904   // If we replaced the mul, erase it. Do this after all uses of Builder,
3905   // as the mul is used as insertion point.
3906   if (MulHadOtherUses)
3907     eraseInstFromFunction(*Mul);
3908 
3909   return Res;
3910 }
3911 
3912 static Instruction *foldICmpXNegX(ICmpInst &I) {
3913   CmpInst::Predicate Pred;
3914   Value *X;
3915   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3916     return nullptr;
3917 
3918   if (ICmpInst::isSigned(Pred))
3919     Pred = ICmpInst::getSwappedPredicate(Pred);
3920   else if (ICmpInst::isUnsigned(Pred))
3921     Pred = ICmpInst::getSignedPredicate(Pred);
3922   // else for equality-comparisons just keep the predicate.
3923 
3924   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3925                           Constant::getNullValue(X->getType()), I.getName());
3926 }
3927 
3928 /// Try to fold icmp (binop), X or icmp X, (binop).
3929 /// TODO: A large part of this logic is duplicated in InstSimplify's
3930 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3931 /// duplication.
3932 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3933                                              const SimplifyQuery &SQ) {
3934   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3935   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3936 
3937   // Special logic for binary operators.
3938   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3939   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3940   if (!BO0 && !BO1)
3941     return nullptr;
3942 
3943   if (Instruction *NewICmp = foldICmpXNegX(I))
3944     return NewICmp;
3945 
3946   const CmpInst::Predicate Pred = I.getPredicate();
3947   Value *X;
3948 
3949   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3950   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3951   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3952       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3953     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3954   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3955   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3956       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3957     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3958 
3959   {
3960     // Similar to above: an unsigned overflow comparison may use offset + mask:
3961     // ((Op1 + C) & C) u<  Op1 --> Op1 != 0
3962     // ((Op1 + C) & C) u>= Op1 --> Op1 == 0
3963     // Op0 u>  ((Op0 + C) & C) --> Op0 != 0
3964     // Op0 u<= ((Op0 + C) & C) --> Op0 == 0
3965     BinaryOperator *BO;
3966     const APInt *C;
3967     if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
3968         match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
3969         match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) {
3970       CmpInst::Predicate NewPred =
3971           Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
3972       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
3973       return new ICmpInst(NewPred, Op1, Zero);
3974     }
3975 
3976     if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
3977         match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
3978         match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) {
3979       CmpInst::Predicate NewPred =
3980           Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
3981       Constant *Zero = ConstantInt::getNullValue(Op1->getType());
3982       return new ICmpInst(NewPred, Op0, Zero);
3983     }
3984   }
3985 
3986   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3987   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3988     NoOp0WrapProblem =
3989         ICmpInst::isEquality(Pred) ||
3990         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3991         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3992   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3993     NoOp1WrapProblem =
3994         ICmpInst::isEquality(Pred) ||
3995         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3996         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3997 
3998   // Analyze the case when either Op0 or Op1 is an add instruction.
3999   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
4000   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
4001   if (BO0 && BO0->getOpcode() == Instruction::Add) {
4002     A = BO0->getOperand(0);
4003     B = BO0->getOperand(1);
4004   }
4005   if (BO1 && BO1->getOpcode() == Instruction::Add) {
4006     C = BO1->getOperand(0);
4007     D = BO1->getOperand(1);
4008   }
4009 
4010   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4011   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4012   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
4013     return new ICmpInst(Pred, A == Op1 ? B : A,
4014                         Constant::getNullValue(Op1->getType()));
4015 
4016   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
4017   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
4018   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
4019     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
4020                         C == Op0 ? D : C);
4021 
4022   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
4023   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
4024       NoOp1WrapProblem) {
4025     // Determine Y and Z in the form icmp (X+Y), (X+Z).
4026     Value *Y, *Z;
4027     if (A == C) {
4028       // C + B == C + D  ->  B == D
4029       Y = B;
4030       Z = D;
4031     } else if (A == D) {
4032       // D + B == C + D  ->  B == C
4033       Y = B;
4034       Z = C;
4035     } else if (B == C) {
4036       // A + C == C + D  ->  A == D
4037       Y = A;
4038       Z = D;
4039     } else {
4040       assert(B == D);
4041       // A + D == C + D  ->  A == C
4042       Y = A;
4043       Z = C;
4044     }
4045     return new ICmpInst(Pred, Y, Z);
4046   }
4047 
4048   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
4049   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
4050       match(B, m_AllOnes()))
4051     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
4052 
4053   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
4054   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
4055       match(B, m_AllOnes()))
4056     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
4057 
4058   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
4059   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
4060     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
4061 
4062   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
4063   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
4064     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
4065 
4066   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
4067   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
4068       match(D, m_AllOnes()))
4069     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
4070 
4071   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
4072   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
4073       match(D, m_AllOnes()))
4074     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
4075 
4076   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
4077   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
4078     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
4079 
4080   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
4081   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
4082     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
4083 
4084   // TODO: The subtraction-related identities shown below also hold, but
4085   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
4086   // wouldn't happen even if they were implemented.
4087   //
4088   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
4089   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
4090   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
4091   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
4092 
4093   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
4094   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
4095     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
4096 
4097   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4098   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
4099     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
4100 
4101   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4102   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
4103     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
4104 
4105   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4106   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
4107     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
4108 
4109   // if C1 has greater magnitude than C2:
4110   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
4111   //  s.t. C3 = C1 - C2
4112   //
4113   // if C2 has greater magnitude than C1:
4114   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4115   //  s.t. C3 = C2 - C1
4116   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
4117       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
4118     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
4119       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
4120         const APInt &AP1 = C1->getValue();
4121         const APInt &AP2 = C2->getValue();
4122         if (AP1.isNegative() == AP2.isNegative()) {
4123           APInt AP1Abs = C1->getValue().abs();
4124           APInt AP2Abs = C2->getValue().abs();
4125           if (AP1Abs.uge(AP2Abs)) {
4126             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
4127             bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
4128             bool HasNSW = BO0->hasNoSignedWrap();
4129             Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4130             return new ICmpInst(Pred, NewAdd, C);
4131           } else {
4132             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
4133             bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
4134             bool HasNSW = BO1->hasNoSignedWrap();
4135             Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4136             return new ICmpInst(Pred, A, NewAdd);
4137           }
4138         }
4139       }
4140 
4141   // Analyze the case when either Op0 or Op1 is a sub instruction.
4142   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4143   A = nullptr;
4144   B = nullptr;
4145   C = nullptr;
4146   D = nullptr;
4147   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4148     A = BO0->getOperand(0);
4149     B = BO0->getOperand(1);
4150   }
4151   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4152     C = BO1->getOperand(0);
4153     D = BO1->getOperand(1);
4154   }
4155 
4156   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4157   if (A == Op1 && NoOp0WrapProblem)
4158     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4159   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4160   if (C == Op0 && NoOp1WrapProblem)
4161     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4162 
4163   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4164   // (A - B) u>/u<= A --> B u>/u<= A
4165   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4166     return new ICmpInst(Pred, B, A);
4167   // C u</u>= (C - D) --> C u</u>= D
4168   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4169     return new ICmpInst(Pred, C, D);
4170   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4171   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4172       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4173     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4174   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4175   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4176       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4177     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4178 
4179   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4180   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4181     return new ICmpInst(Pred, A, C);
4182 
4183   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4184   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4185     return new ICmpInst(Pred, D, B);
4186 
4187   // icmp (0-X) < cst --> x > -cst
4188   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4189     Value *X;
4190     if (match(BO0, m_Neg(m_Value(X))))
4191       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4192         if (RHSC->isNotMinSignedValue())
4193           return new ICmpInst(I.getSwappedPredicate(), X,
4194                               ConstantExpr::getNeg(RHSC));
4195   }
4196 
4197   {
4198     // Try to remove shared constant multiplier from equality comparison:
4199     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4200     Value *X, *Y;
4201     const APInt *C;
4202     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4203         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4204       if (!C->countTrailingZeros() ||
4205           (BO0 && BO1 && BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4206           (BO0 && BO1 && BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4207       return new ICmpInst(Pred, X, Y);
4208   }
4209 
4210   BinaryOperator *SRem = nullptr;
4211   // icmp (srem X, Y), Y
4212   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4213     SRem = BO0;
4214   // icmp Y, (srem X, Y)
4215   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4216            Op0 == BO1->getOperand(1))
4217     SRem = BO1;
4218   if (SRem) {
4219     // We don't check hasOneUse to avoid increasing register pressure because
4220     // the value we use is the same value this instruction was already using.
4221     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4222     default:
4223       break;
4224     case ICmpInst::ICMP_EQ:
4225       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4226     case ICmpInst::ICMP_NE:
4227       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4228     case ICmpInst::ICMP_SGT:
4229     case ICmpInst::ICMP_SGE:
4230       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4231                           Constant::getAllOnesValue(SRem->getType()));
4232     case ICmpInst::ICMP_SLT:
4233     case ICmpInst::ICMP_SLE:
4234       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4235                           Constant::getNullValue(SRem->getType()));
4236     }
4237   }
4238 
4239   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4240       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4241     switch (BO0->getOpcode()) {
4242     default:
4243       break;
4244     case Instruction::Add:
4245     case Instruction::Sub:
4246     case Instruction::Xor: {
4247       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4248         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4249 
4250       const APInt *C;
4251       if (match(BO0->getOperand(1), m_APInt(C))) {
4252         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4253         if (C->isSignMask()) {
4254           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4255           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4256         }
4257 
4258         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4259         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4260           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4261           NewPred = I.getSwappedPredicate(NewPred);
4262           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4263         }
4264       }
4265       break;
4266     }
4267     case Instruction::Mul: {
4268       if (!I.isEquality())
4269         break;
4270 
4271       const APInt *C;
4272       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
4273           !C->isOne()) {
4274         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4275         // Mask = -1 >> count-trailing-zeros(C).
4276         if (unsigned TZs = C->countTrailingZeros()) {
4277           Constant *Mask = ConstantInt::get(
4278               BO0->getType(),
4279               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4280           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4281           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4282           return new ICmpInst(Pred, And1, And2);
4283         }
4284       }
4285       break;
4286     }
4287     case Instruction::UDiv:
4288     case Instruction::LShr:
4289       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4290         break;
4291       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4292 
4293     case Instruction::SDiv:
4294       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4295         break;
4296       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4297 
4298     case Instruction::AShr:
4299       if (!BO0->isExact() || !BO1->isExact())
4300         break;
4301       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4302 
4303     case Instruction::Shl: {
4304       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4305       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4306       if (!NUW && !NSW)
4307         break;
4308       if (!NSW && I.isSigned())
4309         break;
4310       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4311     }
4312     }
4313   }
4314 
4315   if (BO0) {
4316     // Transform  A & (L - 1) `ult` L --> L != 0
4317     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4318     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4319 
4320     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4321       auto *Zero = Constant::getNullValue(BO0->getType());
4322       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4323     }
4324   }
4325 
4326   if (Value *V = foldMultiplicationOverflowCheck(I))
4327     return replaceInstUsesWith(I, V);
4328 
4329   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4330     return replaceInstUsesWith(I, V);
4331 
4332   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4333     return replaceInstUsesWith(I, V);
4334 
4335   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4336     return replaceInstUsesWith(I, V);
4337 
4338   return nullptr;
4339 }
4340 
4341 /// Fold icmp Pred min|max(X, Y), X.
4342 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4343   ICmpInst::Predicate Pred = Cmp.getPredicate();
4344   Value *Op0 = Cmp.getOperand(0);
4345   Value *X = Cmp.getOperand(1);
4346 
4347   // Canonicalize minimum or maximum operand to LHS of the icmp.
4348   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4349       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4350       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4351       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4352     std::swap(Op0, X);
4353     Pred = Cmp.getSwappedPredicate();
4354   }
4355 
4356   Value *Y;
4357   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4358     // smin(X, Y)  == X --> X s<= Y
4359     // smin(X, Y) s>= X --> X s<= Y
4360     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4361       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4362 
4363     // smin(X, Y) != X --> X s> Y
4364     // smin(X, Y) s< X --> X s> Y
4365     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4366       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4367 
4368     // These cases should be handled in InstSimplify:
4369     // smin(X, Y) s<= X --> true
4370     // smin(X, Y) s> X --> false
4371     return nullptr;
4372   }
4373 
4374   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4375     // smax(X, Y)  == X --> X s>= Y
4376     // smax(X, Y) s<= X --> X s>= Y
4377     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4378       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4379 
4380     // smax(X, Y) != X --> X s< Y
4381     // smax(X, Y) s> X --> X s< Y
4382     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4383       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4384 
4385     // These cases should be handled in InstSimplify:
4386     // smax(X, Y) s>= X --> true
4387     // smax(X, Y) s< X --> false
4388     return nullptr;
4389   }
4390 
4391   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4392     // umin(X, Y)  == X --> X u<= Y
4393     // umin(X, Y) u>= X --> X u<= Y
4394     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4395       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4396 
4397     // umin(X, Y) != X --> X u> Y
4398     // umin(X, Y) u< X --> X u> Y
4399     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4400       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4401 
4402     // These cases should be handled in InstSimplify:
4403     // umin(X, Y) u<= X --> true
4404     // umin(X, Y) u> X --> false
4405     return nullptr;
4406   }
4407 
4408   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4409     // umax(X, Y)  == X --> X u>= Y
4410     // umax(X, Y) u<= X --> X u>= Y
4411     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4412       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4413 
4414     // umax(X, Y) != X --> X u< Y
4415     // umax(X, Y) u> X --> X u< Y
4416     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4417       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4418 
4419     // These cases should be handled in InstSimplify:
4420     // umax(X, Y) u>= X --> true
4421     // umax(X, Y) u< X --> false
4422     return nullptr;
4423   }
4424 
4425   return nullptr;
4426 }
4427 
4428 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4429   if (!I.isEquality())
4430     return nullptr;
4431 
4432   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4433   const CmpInst::Predicate Pred = I.getPredicate();
4434   Value *A, *B, *C, *D;
4435   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4436     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4437       Value *OtherVal = A == Op1 ? B : A;
4438       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4439     }
4440 
4441     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4442       // A^c1 == C^c2 --> A == C^(c1^c2)
4443       ConstantInt *C1, *C2;
4444       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4445           Op1->hasOneUse()) {
4446         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4447         Value *Xor = Builder.CreateXor(C, NC);
4448         return new ICmpInst(Pred, A, Xor);
4449       }
4450 
4451       // A^B == A^D -> B == D
4452       if (A == C)
4453         return new ICmpInst(Pred, B, D);
4454       if (A == D)
4455         return new ICmpInst(Pred, B, C);
4456       if (B == C)
4457         return new ICmpInst(Pred, A, D);
4458       if (B == D)
4459         return new ICmpInst(Pred, A, C);
4460     }
4461   }
4462 
4463   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4464     // A == (A^B)  ->  B == 0
4465     Value *OtherVal = A == Op0 ? B : A;
4466     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4467   }
4468 
4469   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4470   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4471       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4472     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4473 
4474     if (A == C) {
4475       X = B;
4476       Y = D;
4477       Z = A;
4478     } else if (A == D) {
4479       X = B;
4480       Y = C;
4481       Z = A;
4482     } else if (B == C) {
4483       X = A;
4484       Y = D;
4485       Z = B;
4486     } else if (B == D) {
4487       X = A;
4488       Y = C;
4489       Z = B;
4490     }
4491 
4492     if (X) { // Build (X^Y) & Z
4493       Op1 = Builder.CreateXor(X, Y);
4494       Op1 = Builder.CreateAnd(Op1, Z);
4495       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4496     }
4497   }
4498 
4499   {
4500     // Similar to above, but specialized for constant because invert is needed:
4501     // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
4502     Value *X, *Y;
4503     Constant *C;
4504     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
4505         match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
4506       Value *Xor = Builder.CreateXor(X, Y);
4507       Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
4508       return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
4509     }
4510   }
4511 
4512   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4513   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4514   ConstantInt *Cst1;
4515   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4516        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4517       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4518        match(Op1, m_ZExt(m_Value(A))))) {
4519     APInt Pow2 = Cst1->getValue() + 1;
4520     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4521         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4522       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4523   }
4524 
4525   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4526   // For lshr and ashr pairs.
4527   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4528        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4529       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4530        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4531     unsigned TypeBits = Cst1->getBitWidth();
4532     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4533     if (ShAmt < TypeBits && ShAmt != 0) {
4534       ICmpInst::Predicate NewPred =
4535           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4536       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4537       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4538       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4539     }
4540   }
4541 
4542   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4543   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4544       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4545     unsigned TypeBits = Cst1->getBitWidth();
4546     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4547     if (ShAmt < TypeBits && ShAmt != 0) {
4548       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4549       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4550       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4551                                       I.getName() + ".mask");
4552       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4553     }
4554   }
4555 
4556   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4557   // "icmp (and X, mask), cst"
4558   uint64_t ShAmt = 0;
4559   if (Op0->hasOneUse() &&
4560       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4561       match(Op1, m_ConstantInt(Cst1)) &&
4562       // Only do this when A has multiple uses.  This is most important to do
4563       // when it exposes other optimizations.
4564       !A->hasOneUse()) {
4565     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4566 
4567     if (ShAmt < ASize) {
4568       APInt MaskV =
4569           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4570       MaskV <<= ShAmt;
4571 
4572       APInt CmpV = Cst1->getValue().zext(ASize);
4573       CmpV <<= ShAmt;
4574 
4575       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4576       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4577     }
4578   }
4579 
4580   if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I))
4581     return ICmp;
4582 
4583   // Canonicalize checking for a power-of-2-or-zero value:
4584   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4585   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4586   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4587                                    m_Deferred(A)))) ||
4588       !match(Op1, m_ZeroInt()))
4589     A = nullptr;
4590 
4591   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4592   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4593   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4594     A = Op1;
4595   else if (match(Op1,
4596                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4597     A = Op0;
4598 
4599   if (A) {
4600     Type *Ty = A->getType();
4601     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4602     return Pred == ICmpInst::ICMP_EQ
4603         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4604         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4605   }
4606 
4607   // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
4608   // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
4609   // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
4610   // of instcombine.
4611   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
4612   if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
4613       match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
4614       A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
4615       (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
4616     APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
4617     Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
4618     return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
4619                                                   : ICmpInst::ICMP_UGE,
4620                         Add, ConstantInt::get(A->getType(), C.shl(1)));
4621   }
4622 
4623   return nullptr;
4624 }
4625 
4626 static Instruction *foldICmpWithTrunc(ICmpInst &ICmp,
4627                                       InstCombiner::BuilderTy &Builder) {
4628   ICmpInst::Predicate Pred = ICmp.getPredicate();
4629   Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
4630 
4631   // Try to canonicalize trunc + compare-to-constant into a mask + cmp.
4632   // The trunc masks high bits while the compare may effectively mask low bits.
4633   Value *X;
4634   const APInt *C;
4635   if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
4636     return nullptr;
4637 
4638   // This matches patterns corresponding to tests of the signbit as well as:
4639   // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
4640   // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
4641   APInt Mask;
4642   if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
4643     Value *And = Builder.CreateAnd(X, Mask);
4644     Constant *Zero = ConstantInt::getNullValue(X->getType());
4645     return new ICmpInst(Pred, And, Zero);
4646   }
4647 
4648   unsigned SrcBits = X->getType()->getScalarSizeInBits();
4649   if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
4650     // If C is a negative power-of-2 (high-bit mask):
4651     // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
4652     Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
4653     Value *And = Builder.CreateAnd(X, MaskC);
4654     return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
4655   }
4656 
4657   if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
4658     // If C is not-of-power-of-2 (one clear bit):
4659     // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
4660     Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
4661     Value *And = Builder.CreateAnd(X, MaskC);
4662     return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
4663   }
4664 
4665   return nullptr;
4666 }
4667 
4668 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4669                                            InstCombiner::BuilderTy &Builder) {
4670   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4671   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4672   Value *X;
4673   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4674     return nullptr;
4675 
4676   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4677   bool IsSignedCmp = ICmp.isSigned();
4678   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4679     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4680     // and the other is a zext), then we can't handle this.
4681     // TODO: This is too strict. We can handle some predicates (equality?).
4682     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4683       return nullptr;
4684 
4685     // Not an extension from the same type?
4686     Value *Y = CastOp1->getOperand(0);
4687     Type *XTy = X->getType(), *YTy = Y->getType();
4688     if (XTy != YTy) {
4689       // One of the casts must have one use because we are creating a new cast.
4690       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4691         return nullptr;
4692       // Extend the narrower operand to the type of the wider operand.
4693       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4694         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4695       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4696         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4697       else
4698         return nullptr;
4699     }
4700 
4701     // (zext X) == (zext Y) --> X == Y
4702     // (sext X) == (sext Y) --> X == Y
4703     if (ICmp.isEquality())
4704       return new ICmpInst(ICmp.getPredicate(), X, Y);
4705 
4706     // A signed comparison of sign extended values simplifies into a
4707     // signed comparison.
4708     if (IsSignedCmp && IsSignedExt)
4709       return new ICmpInst(ICmp.getPredicate(), X, Y);
4710 
4711     // The other three cases all fold into an unsigned comparison.
4712     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4713   }
4714 
4715   // Below here, we are only folding a compare with constant.
4716   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4717   if (!C)
4718     return nullptr;
4719 
4720   // Compute the constant that would happen if we truncated to SrcTy then
4721   // re-extended to DestTy.
4722   Type *SrcTy = CastOp0->getSrcTy();
4723   Type *DestTy = CastOp0->getDestTy();
4724   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4725   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4726 
4727   // If the re-extended constant didn't change...
4728   if (Res2 == C) {
4729     if (ICmp.isEquality())
4730       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4731 
4732     // A signed comparison of sign extended values simplifies into a
4733     // signed comparison.
4734     if (IsSignedExt && IsSignedCmp)
4735       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4736 
4737     // The other three cases all fold into an unsigned comparison.
4738     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4739   }
4740 
4741   // The re-extended constant changed, partly changed (in the case of a vector),
4742   // or could not be determined to be equal (in the case of a constant
4743   // expression), so the constant cannot be represented in the shorter type.
4744   // All the cases that fold to true or false will have already been handled
4745   // by SimplifyICmpInst, so only deal with the tricky case.
4746   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4747     return nullptr;
4748 
4749   // Is source op positive?
4750   // icmp ult (sext X), C --> icmp sgt X, -1
4751   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4752     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4753 
4754   // Is source op negative?
4755   // icmp ugt (sext X), C --> icmp slt X, 0
4756   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4757   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4758 }
4759 
4760 /// Handle icmp (cast x), (cast or constant).
4761 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4762   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4763   // icmp compares only pointer's value.
4764   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4765   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4766   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4767   if (SimplifiedOp0 || SimplifiedOp1)
4768     return new ICmpInst(ICmp.getPredicate(),
4769                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4770                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4771 
4772   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4773   if (!CastOp0)
4774     return nullptr;
4775   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4776     return nullptr;
4777 
4778   Value *Op0Src = CastOp0->getOperand(0);
4779   Type *SrcTy = CastOp0->getSrcTy();
4780   Type *DestTy = CastOp0->getDestTy();
4781 
4782   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4783   // integer type is the same size as the pointer type.
4784   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4785     if (isa<VectorType>(SrcTy)) {
4786       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4787       DestTy = cast<VectorType>(DestTy)->getElementType();
4788     }
4789     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4790   };
4791   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4792       CompatibleSizes(SrcTy, DestTy)) {
4793     Value *NewOp1 = nullptr;
4794     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4795       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4796       if (PtrSrc->getType()->getPointerAddressSpace() ==
4797           Op0Src->getType()->getPointerAddressSpace()) {
4798         NewOp1 = PtrToIntOp1->getOperand(0);
4799         // If the pointer types don't match, insert a bitcast.
4800         if (Op0Src->getType() != NewOp1->getType())
4801           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4802       }
4803     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4804       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4805     }
4806 
4807     if (NewOp1)
4808       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4809   }
4810 
4811   if (Instruction *R = foldICmpWithTrunc(ICmp, Builder))
4812     return R;
4813 
4814   return foldICmpWithZextOrSext(ICmp, Builder);
4815 }
4816 
4817 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4818   switch (BinaryOp) {
4819     default:
4820       llvm_unreachable("Unsupported binary op");
4821     case Instruction::Add:
4822     case Instruction::Sub:
4823       return match(RHS, m_Zero());
4824     case Instruction::Mul:
4825       return match(RHS, m_One());
4826   }
4827 }
4828 
4829 OverflowResult
4830 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4831                                   bool IsSigned, Value *LHS, Value *RHS,
4832                                   Instruction *CxtI) const {
4833   switch (BinaryOp) {
4834     default:
4835       llvm_unreachable("Unsupported binary op");
4836     case Instruction::Add:
4837       if (IsSigned)
4838         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4839       else
4840         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4841     case Instruction::Sub:
4842       if (IsSigned)
4843         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4844       else
4845         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4846     case Instruction::Mul:
4847       if (IsSigned)
4848         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4849       else
4850         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4851   }
4852 }
4853 
4854 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4855                                              bool IsSigned, Value *LHS,
4856                                              Value *RHS, Instruction &OrigI,
4857                                              Value *&Result,
4858                                              Constant *&Overflow) {
4859   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4860     std::swap(LHS, RHS);
4861 
4862   // If the overflow check was an add followed by a compare, the insertion point
4863   // may be pointing to the compare.  We want to insert the new instructions
4864   // before the add in case there are uses of the add between the add and the
4865   // compare.
4866   Builder.SetInsertPoint(&OrigI);
4867 
4868   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4869   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4870     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4871 
4872   if (isNeutralValue(BinaryOp, RHS)) {
4873     Result = LHS;
4874     Overflow = ConstantInt::getFalse(OverflowTy);
4875     return true;
4876   }
4877 
4878   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4879     case OverflowResult::MayOverflow:
4880       return false;
4881     case OverflowResult::AlwaysOverflowsLow:
4882     case OverflowResult::AlwaysOverflowsHigh:
4883       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4884       Result->takeName(&OrigI);
4885       Overflow = ConstantInt::getTrue(OverflowTy);
4886       return true;
4887     case OverflowResult::NeverOverflows:
4888       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4889       Result->takeName(&OrigI);
4890       Overflow = ConstantInt::getFalse(OverflowTy);
4891       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4892         if (IsSigned)
4893           Inst->setHasNoSignedWrap();
4894         else
4895           Inst->setHasNoUnsignedWrap();
4896       }
4897       return true;
4898   }
4899 
4900   llvm_unreachable("Unexpected overflow result");
4901 }
4902 
4903 /// Recognize and process idiom involving test for multiplication
4904 /// overflow.
4905 ///
4906 /// The caller has matched a pattern of the form:
4907 ///   I = cmp u (mul(zext A, zext B), V
4908 /// The function checks if this is a test for overflow and if so replaces
4909 /// multiplication with call to 'mul.with.overflow' intrinsic.
4910 ///
4911 /// \param I Compare instruction.
4912 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4913 ///               the compare instruction.  Must be of integer type.
4914 /// \param OtherVal The other argument of compare instruction.
4915 /// \returns Instruction which must replace the compare instruction, NULL if no
4916 ///          replacement required.
4917 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4918                                          Value *OtherVal,
4919                                          InstCombinerImpl &IC) {
4920   // Don't bother doing this transformation for pointers, don't do it for
4921   // vectors.
4922   if (!isa<IntegerType>(MulVal->getType()))
4923     return nullptr;
4924 
4925   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4926   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4927   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4928   if (!MulInstr)
4929     return nullptr;
4930   assert(MulInstr->getOpcode() == Instruction::Mul);
4931 
4932   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4933        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4934   assert(LHS->getOpcode() == Instruction::ZExt);
4935   assert(RHS->getOpcode() == Instruction::ZExt);
4936   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4937 
4938   // Calculate type and width of the result produced by mul.with.overflow.
4939   Type *TyA = A->getType(), *TyB = B->getType();
4940   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4941            WidthB = TyB->getPrimitiveSizeInBits();
4942   unsigned MulWidth;
4943   Type *MulType;
4944   if (WidthB > WidthA) {
4945     MulWidth = WidthB;
4946     MulType = TyB;
4947   } else {
4948     MulWidth = WidthA;
4949     MulType = TyA;
4950   }
4951 
4952   // In order to replace the original mul with a narrower mul.with.overflow,
4953   // all uses must ignore upper bits of the product.  The number of used low
4954   // bits must be not greater than the width of mul.with.overflow.
4955   if (MulVal->hasNUsesOrMore(2))
4956     for (User *U : MulVal->users()) {
4957       if (U == &I)
4958         continue;
4959       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4960         // Check if truncation ignores bits above MulWidth.
4961         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4962         if (TruncWidth > MulWidth)
4963           return nullptr;
4964       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4965         // Check if AND ignores bits above MulWidth.
4966         if (BO->getOpcode() != Instruction::And)
4967           return nullptr;
4968         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4969           const APInt &CVal = CI->getValue();
4970           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4971             return nullptr;
4972         } else {
4973           // In this case we could have the operand of the binary operation
4974           // being defined in another block, and performing the replacement
4975           // could break the dominance relation.
4976           return nullptr;
4977         }
4978       } else {
4979         // Other uses prohibit this transformation.
4980         return nullptr;
4981       }
4982     }
4983 
4984   // Recognize patterns
4985   switch (I.getPredicate()) {
4986   case ICmpInst::ICMP_EQ:
4987   case ICmpInst::ICMP_NE:
4988     // Recognize pattern:
4989     //   mulval = mul(zext A, zext B)
4990     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4991     ConstantInt *CI;
4992     Value *ValToMask;
4993     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4994       if (ValToMask != MulVal)
4995         return nullptr;
4996       const APInt &CVal = CI->getValue() + 1;
4997       if (CVal.isPowerOf2()) {
4998         unsigned MaskWidth = CVal.logBase2();
4999         if (MaskWidth == MulWidth)
5000           break; // Recognized
5001       }
5002     }
5003     return nullptr;
5004 
5005   case ICmpInst::ICMP_UGT:
5006     // Recognize pattern:
5007     //   mulval = mul(zext A, zext B)
5008     //   cmp ugt mulval, max
5009     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5010       APInt MaxVal = APInt::getMaxValue(MulWidth);
5011       MaxVal = MaxVal.zext(CI->getBitWidth());
5012       if (MaxVal.eq(CI->getValue()))
5013         break; // Recognized
5014     }
5015     return nullptr;
5016 
5017   case ICmpInst::ICMP_UGE:
5018     // Recognize pattern:
5019     //   mulval = mul(zext A, zext B)
5020     //   cmp uge mulval, max+1
5021     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5022       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5023       if (MaxVal.eq(CI->getValue()))
5024         break; // Recognized
5025     }
5026     return nullptr;
5027 
5028   case ICmpInst::ICMP_ULE:
5029     // Recognize pattern:
5030     //   mulval = mul(zext A, zext B)
5031     //   cmp ule mulval, max
5032     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5033       APInt MaxVal = APInt::getMaxValue(MulWidth);
5034       MaxVal = MaxVal.zext(CI->getBitWidth());
5035       if (MaxVal.eq(CI->getValue()))
5036         break; // Recognized
5037     }
5038     return nullptr;
5039 
5040   case ICmpInst::ICMP_ULT:
5041     // Recognize pattern:
5042     //   mulval = mul(zext A, zext B)
5043     //   cmp ule mulval, max + 1
5044     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
5045       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
5046       if (MaxVal.eq(CI->getValue()))
5047         break; // Recognized
5048     }
5049     return nullptr;
5050 
5051   default:
5052     return nullptr;
5053   }
5054 
5055   InstCombiner::BuilderTy &Builder = IC.Builder;
5056   Builder.SetInsertPoint(MulInstr);
5057 
5058   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
5059   Value *MulA = A, *MulB = B;
5060   if (WidthA < MulWidth)
5061     MulA = Builder.CreateZExt(A, MulType);
5062   if (WidthB < MulWidth)
5063     MulB = Builder.CreateZExt(B, MulType);
5064   Function *F = Intrinsic::getDeclaration(
5065       I.getModule(), Intrinsic::umul_with_overflow, MulType);
5066   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
5067   IC.addToWorklist(MulInstr);
5068 
5069   // If there are uses of mul result other than the comparison, we know that
5070   // they are truncation or binary AND. Change them to use result of
5071   // mul.with.overflow and adjust properly mask/size.
5072   if (MulVal->hasNUsesOrMore(2)) {
5073     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
5074     for (User *U : make_early_inc_range(MulVal->users())) {
5075       if (U == &I || U == OtherVal)
5076         continue;
5077       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
5078         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
5079           IC.replaceInstUsesWith(*TI, Mul);
5080         else
5081           TI->setOperand(0, Mul);
5082       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
5083         assert(BO->getOpcode() == Instruction::And);
5084         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
5085         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
5086         APInt ShortMask = CI->getValue().trunc(MulWidth);
5087         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
5088         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
5089         IC.replaceInstUsesWith(*BO, Zext);
5090       } else {
5091         llvm_unreachable("Unexpected Binary operation");
5092       }
5093       IC.addToWorklist(cast<Instruction>(U));
5094     }
5095   }
5096   if (isa<Instruction>(OtherVal))
5097     IC.addToWorklist(cast<Instruction>(OtherVal));
5098 
5099   // The original icmp gets replaced with the overflow value, maybe inverted
5100   // depending on predicate.
5101   bool Inverse = false;
5102   switch (I.getPredicate()) {
5103   case ICmpInst::ICMP_NE:
5104     break;
5105   case ICmpInst::ICMP_EQ:
5106     Inverse = true;
5107     break;
5108   case ICmpInst::ICMP_UGT:
5109   case ICmpInst::ICMP_UGE:
5110     if (I.getOperand(0) == MulVal)
5111       break;
5112     Inverse = true;
5113     break;
5114   case ICmpInst::ICMP_ULT:
5115   case ICmpInst::ICMP_ULE:
5116     if (I.getOperand(1) == MulVal)
5117       break;
5118     Inverse = true;
5119     break;
5120   default:
5121     llvm_unreachable("Unexpected predicate");
5122   }
5123   if (Inverse) {
5124     Value *Res = Builder.CreateExtractValue(Call, 1);
5125     return BinaryOperator::CreateNot(Res);
5126   }
5127 
5128   return ExtractValueInst::Create(Call, 1);
5129 }
5130 
5131 /// When performing a comparison against a constant, it is possible that not all
5132 /// the bits in the LHS are demanded. This helper method computes the mask that
5133 /// IS demanded.
5134 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
5135   const APInt *RHS;
5136   if (!match(I.getOperand(1), m_APInt(RHS)))
5137     return APInt::getAllOnes(BitWidth);
5138 
5139   // If this is a normal comparison, it demands all bits. If it is a sign bit
5140   // comparison, it only demands the sign bit.
5141   bool UnusedBit;
5142   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
5143     return APInt::getSignMask(BitWidth);
5144 
5145   switch (I.getPredicate()) {
5146   // For a UGT comparison, we don't care about any bits that
5147   // correspond to the trailing ones of the comparand.  The value of these
5148   // bits doesn't impact the outcome of the comparison, because any value
5149   // greater than the RHS must differ in a bit higher than these due to carry.
5150   case ICmpInst::ICMP_UGT:
5151     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
5152 
5153   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
5154   // Any value less than the RHS must differ in a higher bit because of carries.
5155   case ICmpInst::ICMP_ULT:
5156     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
5157 
5158   default:
5159     return APInt::getAllOnes(BitWidth);
5160   }
5161 }
5162 
5163 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
5164 /// should be swapped.
5165 /// The decision is based on how many times these two operands are reused
5166 /// as subtract operands and their positions in those instructions.
5167 /// The rationale is that several architectures use the same instruction for
5168 /// both subtract and cmp. Thus, it is better if the order of those operands
5169 /// match.
5170 /// \return true if Op0 and Op1 should be swapped.
5171 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
5172   // Filter out pointer values as those cannot appear directly in subtract.
5173   // FIXME: we may want to go through inttoptrs or bitcasts.
5174   if (Op0->getType()->isPointerTy())
5175     return false;
5176   // If a subtract already has the same operands as a compare, swapping would be
5177   // bad. If a subtract has the same operands as a compare but in reverse order,
5178   // then swapping is good.
5179   int GoodToSwap = 0;
5180   for (const User *U : Op0->users()) {
5181     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
5182       GoodToSwap++;
5183     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
5184       GoodToSwap--;
5185   }
5186   return GoodToSwap > 0;
5187 }
5188 
5189 /// Check that one use is in the same block as the definition and all
5190 /// other uses are in blocks dominated by a given block.
5191 ///
5192 /// \param DI Definition
5193 /// \param UI Use
5194 /// \param DB Block that must dominate all uses of \p DI outside
5195 ///           the parent block
5196 /// \return true when \p UI is the only use of \p DI in the parent block
5197 /// and all other uses of \p DI are in blocks dominated by \p DB.
5198 ///
5199 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5200                                         const Instruction *UI,
5201                                         const BasicBlock *DB) const {
5202   assert(DI && UI && "Instruction not defined\n");
5203   // Ignore incomplete definitions.
5204   if (!DI->getParent())
5205     return false;
5206   // DI and UI must be in the same block.
5207   if (DI->getParent() != UI->getParent())
5208     return false;
5209   // Protect from self-referencing blocks.
5210   if (DI->getParent() == DB)
5211     return false;
5212   for (const User *U : DI->users()) {
5213     auto *Usr = cast<Instruction>(U);
5214     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5215       return false;
5216   }
5217   return true;
5218 }
5219 
5220 /// Return true when the instruction sequence within a block is select-cmp-br.
5221 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5222   const BasicBlock *BB = SI->getParent();
5223   if (!BB)
5224     return false;
5225   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5226   if (!BI || BI->getNumSuccessors() != 2)
5227     return false;
5228   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5229   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5230     return false;
5231   return true;
5232 }
5233 
5234 /// True when a select result is replaced by one of its operands
5235 /// in select-icmp sequence. This will eventually result in the elimination
5236 /// of the select.
5237 ///
5238 /// \param SI    Select instruction
5239 /// \param Icmp  Compare instruction
5240 /// \param SIOpd Operand that replaces the select
5241 ///
5242 /// Notes:
5243 /// - The replacement is global and requires dominator information
5244 /// - The caller is responsible for the actual replacement
5245 ///
5246 /// Example:
5247 ///
5248 /// entry:
5249 ///  %4 = select i1 %3, %C* %0, %C* null
5250 ///  %5 = icmp eq %C* %4, null
5251 ///  br i1 %5, label %9, label %7
5252 ///  ...
5253 ///  ; <label>:7                                       ; preds = %entry
5254 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5255 ///  ...
5256 ///
5257 /// can be transformed to
5258 ///
5259 ///  %5 = icmp eq %C* %0, null
5260 ///  %6 = select i1 %3, i1 %5, i1 true
5261 ///  br i1 %6, label %9, label %7
5262 ///  ...
5263 ///  ; <label>:7                                       ; preds = %entry
5264 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5265 ///
5266 /// Similar when the first operand of the select is a constant or/and
5267 /// the compare is for not equal rather than equal.
5268 ///
5269 /// NOTE: The function is only called when the select and compare constants
5270 /// are equal, the optimization can work only for EQ predicates. This is not a
5271 /// major restriction since a NE compare should be 'normalized' to an equal
5272 /// compare, which usually happens in the combiner and test case
5273 /// select-cmp-br.ll checks for it.
5274 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5275                                                  const ICmpInst *Icmp,
5276                                                  const unsigned SIOpd) {
5277   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5278   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5279     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5280     // The check for the single predecessor is not the best that can be
5281     // done. But it protects efficiently against cases like when SI's
5282     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5283     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5284     // replaced can be reached on either path. So the uniqueness check
5285     // guarantees that the path all uses of SI (outside SI's parent) are on
5286     // is disjoint from all other paths out of SI. But that information
5287     // is more expensive to compute, and the trade-off here is in favor
5288     // of compile-time. It should also be noticed that we check for a single
5289     // predecessor and not only uniqueness. This to handle the situation when
5290     // Succ and Succ1 points to the same basic block.
5291     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5292       NumSel++;
5293       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5294       return true;
5295     }
5296   }
5297   return false;
5298 }
5299 
5300 /// Try to fold the comparison based on range information we can get by checking
5301 /// whether bits are known to be zero or one in the inputs.
5302 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5303   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5304   Type *Ty = Op0->getType();
5305   ICmpInst::Predicate Pred = I.getPredicate();
5306 
5307   // Get scalar or pointer size.
5308   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5309                           ? Ty->getScalarSizeInBits()
5310                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5311 
5312   if (!BitWidth)
5313     return nullptr;
5314 
5315   KnownBits Op0Known(BitWidth);
5316   KnownBits Op1Known(BitWidth);
5317 
5318   if (SimplifyDemandedBits(&I, 0,
5319                            getDemandedBitsLHSMask(I, BitWidth),
5320                            Op0Known, 0))
5321     return &I;
5322 
5323   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0))
5324     return &I;
5325 
5326   // Given the known and unknown bits, compute a range that the LHS could be
5327   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5328   // EQ and NE we use unsigned values.
5329   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5330   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5331   if (I.isSigned()) {
5332     Op0Min = Op0Known.getSignedMinValue();
5333     Op0Max = Op0Known.getSignedMaxValue();
5334     Op1Min = Op1Known.getSignedMinValue();
5335     Op1Max = Op1Known.getSignedMaxValue();
5336   } else {
5337     Op0Min = Op0Known.getMinValue();
5338     Op0Max = Op0Known.getMaxValue();
5339     Op1Min = Op1Known.getMinValue();
5340     Op1Max = Op1Known.getMaxValue();
5341   }
5342 
5343   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5344   // out that the LHS or RHS is a constant. Constant fold this now, so that
5345   // code below can assume that Min != Max.
5346   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5347     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5348   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5349     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5350 
5351   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5352   // min/max canonical compare with some other compare. That could lead to
5353   // conflict with select canonicalization and infinite looping.
5354   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5355   auto isMinMaxCmp = [&](Instruction &Cmp) {
5356     if (!Cmp.hasOneUse())
5357       return false;
5358     Value *A, *B;
5359     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5360     if (!SelectPatternResult::isMinOrMax(SPF))
5361       return false;
5362     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5363            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5364   };
5365   if (!isMinMaxCmp(I)) {
5366     switch (Pred) {
5367     default:
5368       break;
5369     case ICmpInst::ICMP_ULT: {
5370       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5371         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5372       const APInt *CmpC;
5373       if (match(Op1, m_APInt(CmpC))) {
5374         // A <u C -> A == C-1 if min(A)+1 == C
5375         if (*CmpC == Op0Min + 1)
5376           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5377                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5378         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5379         // exceeds the log2 of C.
5380         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5381           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5382                               Constant::getNullValue(Op1->getType()));
5383       }
5384       break;
5385     }
5386     case ICmpInst::ICMP_UGT: {
5387       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5388         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5389       const APInt *CmpC;
5390       if (match(Op1, m_APInt(CmpC))) {
5391         // A >u C -> A == C+1 if max(a)-1 == C
5392         if (*CmpC == Op0Max - 1)
5393           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5394                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5395         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5396         // exceeds the log2 of C.
5397         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5398           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5399                               Constant::getNullValue(Op1->getType()));
5400       }
5401       break;
5402     }
5403     case ICmpInst::ICMP_SLT: {
5404       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5405         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5406       const APInt *CmpC;
5407       if (match(Op1, m_APInt(CmpC))) {
5408         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5409           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5410                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5411       }
5412       break;
5413     }
5414     case ICmpInst::ICMP_SGT: {
5415       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5416         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5417       const APInt *CmpC;
5418       if (match(Op1, m_APInt(CmpC))) {
5419         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5420           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5421                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5422       }
5423       break;
5424     }
5425     }
5426   }
5427 
5428   // Based on the range information we know about the LHS, see if we can
5429   // simplify this comparison.  For example, (x&4) < 8 is always true.
5430   switch (Pred) {
5431   default:
5432     llvm_unreachable("Unknown icmp opcode!");
5433   case ICmpInst::ICMP_EQ:
5434   case ICmpInst::ICMP_NE: {
5435     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5436       return replaceInstUsesWith(
5437           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5438 
5439     // If all bits are known zero except for one, then we know at most one bit
5440     // is set. If the comparison is against zero, then this is a check to see if
5441     // *that* bit is set.
5442     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5443     if (Op1Known.isZero()) {
5444       // If the LHS is an AND with the same constant, look through it.
5445       Value *LHS = nullptr;
5446       const APInt *LHSC;
5447       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5448           *LHSC != Op0KnownZeroInverted)
5449         LHS = Op0;
5450 
5451       Value *X;
5452       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5453         APInt ValToCheck = Op0KnownZeroInverted;
5454         Type *XTy = X->getType();
5455         if (ValToCheck.isPowerOf2()) {
5456           // ((1 << X) & 8) == 0 -> X != 3
5457           // ((1 << X) & 8) != 0 -> X == 3
5458           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5459           auto NewPred = ICmpInst::getInversePredicate(Pred);
5460           return new ICmpInst(NewPred, X, CmpC);
5461         } else if ((++ValToCheck).isPowerOf2()) {
5462           // ((1 << X) & 7) == 0 -> X >= 3
5463           // ((1 << X) & 7) != 0 -> X  < 3
5464           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5465           auto NewPred =
5466               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5467           return new ICmpInst(NewPred, X, CmpC);
5468         }
5469       }
5470 
5471       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5472       const APInt *CI;
5473       if (Op0KnownZeroInverted.isOne() &&
5474           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5475         // ((8 >>u X) & 1) == 0 -> X != 3
5476         // ((8 >>u X) & 1) != 0 -> X == 3
5477         unsigned CmpVal = CI->countTrailingZeros();
5478         auto NewPred = ICmpInst::getInversePredicate(Pred);
5479         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5480       }
5481     }
5482     break;
5483   }
5484   case ICmpInst::ICMP_ULT: {
5485     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5486       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5487     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5488       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5489     break;
5490   }
5491   case ICmpInst::ICMP_UGT: {
5492     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5493       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5494     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5495       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5496     break;
5497   }
5498   case ICmpInst::ICMP_SLT: {
5499     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5500       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5501     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5502       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5503     break;
5504   }
5505   case ICmpInst::ICMP_SGT: {
5506     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5507       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5508     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5509       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5510     break;
5511   }
5512   case ICmpInst::ICMP_SGE:
5513     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5514     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5515       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5516     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5517       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5518     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5519       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5520     break;
5521   case ICmpInst::ICMP_SLE:
5522     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5523     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5524       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5525     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5526       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5527     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5528       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5529     break;
5530   case ICmpInst::ICMP_UGE:
5531     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5532     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5533       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5534     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5535       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5536     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5537       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5538     break;
5539   case ICmpInst::ICMP_ULE:
5540     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5541     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5542       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5543     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5544       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5545     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5546       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5547     break;
5548   }
5549 
5550   // Turn a signed comparison into an unsigned one if both operands are known to
5551   // have the same sign.
5552   if (I.isSigned() &&
5553       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5554        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5555     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5556 
5557   return nullptr;
5558 }
5559 
5560 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5561 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5562                                                        Constant *C) {
5563   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5564          "Only for relational integer predicates.");
5565 
5566   Type *Type = C->getType();
5567   bool IsSigned = ICmpInst::isSigned(Pred);
5568 
5569   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5570   bool WillIncrement =
5571       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5572 
5573   // Check if the constant operand can be safely incremented/decremented
5574   // without overflowing/underflowing.
5575   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5576     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5577   };
5578 
5579   Constant *SafeReplacementConstant = nullptr;
5580   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5581     // Bail out if the constant can't be safely incremented/decremented.
5582     if (!ConstantIsOk(CI))
5583       return llvm::None;
5584   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5585     unsigned NumElts = FVTy->getNumElements();
5586     for (unsigned i = 0; i != NumElts; ++i) {
5587       Constant *Elt = C->getAggregateElement(i);
5588       if (!Elt)
5589         return llvm::None;
5590 
5591       if (isa<UndefValue>(Elt))
5592         continue;
5593 
5594       // Bail out if we can't determine if this constant is min/max or if we
5595       // know that this constant is min/max.
5596       auto *CI = dyn_cast<ConstantInt>(Elt);
5597       if (!CI || !ConstantIsOk(CI))
5598         return llvm::None;
5599 
5600       if (!SafeReplacementConstant)
5601         SafeReplacementConstant = CI;
5602     }
5603   } else {
5604     // ConstantExpr?
5605     return llvm::None;
5606   }
5607 
5608   // It may not be safe to change a compare predicate in the presence of
5609   // undefined elements, so replace those elements with the first safe constant
5610   // that we found.
5611   // TODO: in case of poison, it is safe; let's replace undefs only.
5612   if (C->containsUndefOrPoisonElement()) {
5613     assert(SafeReplacementConstant && "Replacement constant not set");
5614     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5615   }
5616 
5617   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5618 
5619   // Increment or decrement the constant.
5620   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5621   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5622 
5623   return std::make_pair(NewPred, NewC);
5624 }
5625 
5626 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5627 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5628 /// allows them to be folded in visitICmpInst.
5629 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5630   ICmpInst::Predicate Pred = I.getPredicate();
5631   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5632       InstCombiner::isCanonicalPredicate(Pred))
5633     return nullptr;
5634 
5635   Value *Op0 = I.getOperand(0);
5636   Value *Op1 = I.getOperand(1);
5637   auto *Op1C = dyn_cast<Constant>(Op1);
5638   if (!Op1C)
5639     return nullptr;
5640 
5641   auto FlippedStrictness =
5642       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5643   if (!FlippedStrictness)
5644     return nullptr;
5645 
5646   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5647 }
5648 
5649 /// If we have a comparison with a non-canonical predicate, if we can update
5650 /// all the users, invert the predicate and adjust all the users.
5651 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5652   // Is the predicate already canonical?
5653   CmpInst::Predicate Pred = I.getPredicate();
5654   if (InstCombiner::isCanonicalPredicate(Pred))
5655     return nullptr;
5656 
5657   // Can all users be adjusted to predicate inversion?
5658   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5659     return nullptr;
5660 
5661   // Ok, we can canonicalize comparison!
5662   // Let's first invert the comparison's predicate.
5663   I.setPredicate(CmpInst::getInversePredicate(Pred));
5664   I.setName(I.getName() + ".not");
5665 
5666   // And, adapt users.
5667   freelyInvertAllUsersOf(&I);
5668 
5669   return &I;
5670 }
5671 
5672 /// Integer compare with boolean values can always be turned into bitwise ops.
5673 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5674                                          InstCombiner::BuilderTy &Builder) {
5675   Value *A = I.getOperand(0), *B = I.getOperand(1);
5676   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5677 
5678   // A boolean compared to true/false can be simplified to Op0/true/false in
5679   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5680   // Cases not handled by InstSimplify are always 'not' of Op0.
5681   if (match(B, m_Zero())) {
5682     switch (I.getPredicate()) {
5683       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5684       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5685       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5686         return BinaryOperator::CreateNot(A);
5687       default:
5688         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5689     }
5690   } else if (match(B, m_One())) {
5691     switch (I.getPredicate()) {
5692       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5693       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5694       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5695         return BinaryOperator::CreateNot(A);
5696       default:
5697         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5698     }
5699   }
5700 
5701   switch (I.getPredicate()) {
5702   default:
5703     llvm_unreachable("Invalid icmp instruction!");
5704   case ICmpInst::ICMP_EQ:
5705     // icmp eq i1 A, B -> ~(A ^ B)
5706     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5707 
5708   case ICmpInst::ICMP_NE:
5709     // icmp ne i1 A, B -> A ^ B
5710     return BinaryOperator::CreateXor(A, B);
5711 
5712   case ICmpInst::ICMP_UGT:
5713     // icmp ugt -> icmp ult
5714     std::swap(A, B);
5715     LLVM_FALLTHROUGH;
5716   case ICmpInst::ICMP_ULT:
5717     // icmp ult i1 A, B -> ~A & B
5718     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5719 
5720   case ICmpInst::ICMP_SGT:
5721     // icmp sgt -> icmp slt
5722     std::swap(A, B);
5723     LLVM_FALLTHROUGH;
5724   case ICmpInst::ICMP_SLT:
5725     // icmp slt i1 A, B -> A & ~B
5726     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5727 
5728   case ICmpInst::ICMP_UGE:
5729     // icmp uge -> icmp ule
5730     std::swap(A, B);
5731     LLVM_FALLTHROUGH;
5732   case ICmpInst::ICMP_ULE:
5733     // icmp ule i1 A, B -> ~A | B
5734     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5735 
5736   case ICmpInst::ICMP_SGE:
5737     // icmp sge -> icmp sle
5738     std::swap(A, B);
5739     LLVM_FALLTHROUGH;
5740   case ICmpInst::ICMP_SLE:
5741     // icmp sle i1 A, B -> A | ~B
5742     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5743   }
5744 }
5745 
5746 // Transform pattern like:
5747 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5748 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5749 // Into:
5750 //   (X l>> Y) != 0
5751 //   (X l>> Y) == 0
5752 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5753                                             InstCombiner::BuilderTy &Builder) {
5754   ICmpInst::Predicate Pred, NewPred;
5755   Value *X, *Y;
5756   if (match(&Cmp,
5757             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5758     switch (Pred) {
5759     case ICmpInst::ICMP_ULE:
5760       NewPred = ICmpInst::ICMP_NE;
5761       break;
5762     case ICmpInst::ICMP_UGT:
5763       NewPred = ICmpInst::ICMP_EQ;
5764       break;
5765     default:
5766       return nullptr;
5767     }
5768   } else if (match(&Cmp, m_c_ICmp(Pred,
5769                                   m_OneUse(m_CombineOr(
5770                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5771                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5772                                             m_AllOnes()))),
5773                                   m_Value(X)))) {
5774     // The variant with 'add' is not canonical, (the variant with 'not' is)
5775     // we only get it because it has extra uses, and can't be canonicalized,
5776 
5777     switch (Pred) {
5778     case ICmpInst::ICMP_ULT:
5779       NewPred = ICmpInst::ICMP_NE;
5780       break;
5781     case ICmpInst::ICMP_UGE:
5782       NewPred = ICmpInst::ICMP_EQ;
5783       break;
5784     default:
5785       return nullptr;
5786     }
5787   } else
5788     return nullptr;
5789 
5790   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5791   Constant *Zero = Constant::getNullValue(NewX->getType());
5792   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5793 }
5794 
5795 static Instruction *foldVectorCmp(CmpInst &Cmp,
5796                                   InstCombiner::BuilderTy &Builder) {
5797   const CmpInst::Predicate Pred = Cmp.getPredicate();
5798   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5799   Value *V1, *V2;
5800   ArrayRef<int> M;
5801   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5802     return nullptr;
5803 
5804   // If both arguments of the cmp are shuffles that use the same mask and
5805   // shuffle within a single vector, move the shuffle after the cmp:
5806   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5807   Type *V1Ty = V1->getType();
5808   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5809       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5810     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5811     return new ShuffleVectorInst(NewCmp, M);
5812   }
5813 
5814   // Try to canonicalize compare with splatted operand and splat constant.
5815   // TODO: We could generalize this for more than splats. See/use the code in
5816   //       InstCombiner::foldVectorBinop().
5817   Constant *C;
5818   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5819     return nullptr;
5820 
5821   // Length-changing splats are ok, so adjust the constants as needed:
5822   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5823   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5824   int MaskSplatIndex;
5825   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5826     // We allow undefs in matching, but this transform removes those for safety.
5827     // Demanded elements analysis should be able to recover some/all of that.
5828     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5829                                  ScalarC);
5830     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5831     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5832     return new ShuffleVectorInst(NewCmp, NewM);
5833   }
5834 
5835   return nullptr;
5836 }
5837 
5838 // extract(uadd.with.overflow(A, B), 0) ult A
5839 //  -> extract(uadd.with.overflow(A, B), 1)
5840 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5841   CmpInst::Predicate Pred = I.getPredicate();
5842   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5843 
5844   Value *UAddOv;
5845   Value *A, *B;
5846   auto UAddOvResultPat = m_ExtractValue<0>(
5847       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5848   if (match(Op0, UAddOvResultPat) &&
5849       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5850        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5851         (match(A, m_One()) || match(B, m_One()))) ||
5852        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5853         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5854     // extract(uadd.with.overflow(A, B), 0) < A
5855     // extract(uadd.with.overflow(A, 1), 0) == 0
5856     // extract(uadd.with.overflow(A, -1), 0) != -1
5857     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5858   else if (match(Op1, UAddOvResultPat) &&
5859            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5860     // A > extract(uadd.with.overflow(A, B), 0)
5861     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5862   else
5863     return nullptr;
5864 
5865   return ExtractValueInst::Create(UAddOv, 1);
5866 }
5867 
5868 static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
5869   if (!I.getOperand(0)->getType()->isPointerTy() ||
5870       NullPointerIsDefined(
5871           I.getParent()->getParent(),
5872           I.getOperand(0)->getType()->getPointerAddressSpace())) {
5873     return nullptr;
5874   }
5875   Instruction *Op;
5876   if (match(I.getOperand(0), m_Instruction(Op)) &&
5877       match(I.getOperand(1), m_Zero()) &&
5878       Op->isLaunderOrStripInvariantGroup()) {
5879     return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
5880                             Op->getOperand(0), I.getOperand(1));
5881   }
5882   return nullptr;
5883 }
5884 
5885 /// This function folds patterns produced by lowering of reduce idioms, such as
5886 /// llvm.vector.reduce.and which are lowered into instruction chains. This code
5887 /// attempts to generate fewer number of scalar comparisons instead of vector
5888 /// comparisons when possible.
5889 static Instruction *foldReductionIdiom(ICmpInst &I,
5890                                        InstCombiner::BuilderTy &Builder,
5891                                        const DataLayout &DL) {
5892   if (I.getType()->isVectorTy())
5893     return nullptr;
5894   ICmpInst::Predicate OuterPred, InnerPred;
5895   Value *LHS, *RHS;
5896 
5897   // Match lowering of @llvm.vector.reduce.and. Turn
5898   ///   %vec_ne = icmp ne <8 x i8> %lhs, %rhs
5899   ///   %scalar_ne = bitcast <8 x i1> %vec_ne to i8
5900   ///   %res = icmp <pred> i8 %scalar_ne, 0
5901   ///
5902   /// into
5903   ///
5904   ///   %lhs.scalar = bitcast <8 x i8> %lhs to i64
5905   ///   %rhs.scalar = bitcast <8 x i8> %rhs to i64
5906   ///   %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
5907   ///
5908   /// for <pred> in {ne, eq}.
5909   if (!match(&I, m_ICmp(OuterPred,
5910                         m_OneUse(m_BitCast(m_OneUse(
5911                             m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))),
5912                         m_Zero())))
5913     return nullptr;
5914   auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType());
5915   if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
5916     return nullptr;
5917   unsigned NumBits =
5918       LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
5919   // TODO: Relax this to "not wider than max legal integer type"?
5920   if (!DL.isLegalInteger(NumBits))
5921     return nullptr;
5922 
5923   if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) {
5924     auto *ScalarTy = Builder.getIntNTy(NumBits);
5925     LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar");
5926     RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar");
5927     return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS,
5928                             I.getName());
5929   }
5930 
5931   return nullptr;
5932 }
5933 
5934 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5935   bool Changed = false;
5936   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5937   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5938   unsigned Op0Cplxity = getComplexity(Op0);
5939   unsigned Op1Cplxity = getComplexity(Op1);
5940 
5941   /// Orders the operands of the compare so that they are listed from most
5942   /// complex to least complex.  This puts constants before unary operators,
5943   /// before binary operators.
5944   if (Op0Cplxity < Op1Cplxity ||
5945       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5946     I.swapOperands();
5947     std::swap(Op0, Op1);
5948     Changed = true;
5949   }
5950 
5951   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5952     return replaceInstUsesWith(I, V);
5953 
5954   // Comparing -val or val with non-zero is the same as just comparing val
5955   // ie, abs(val) != 0 -> val != 0
5956   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5957     Value *Cond, *SelectTrue, *SelectFalse;
5958     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5959                             m_Value(SelectFalse)))) {
5960       if (Value *V = dyn_castNegVal(SelectTrue)) {
5961         if (V == SelectFalse)
5962           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5963       }
5964       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5965         if (V == SelectTrue)
5966           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5967       }
5968     }
5969   }
5970 
5971   if (Op0->getType()->isIntOrIntVectorTy(1))
5972     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5973       return Res;
5974 
5975   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5976     return Res;
5977 
5978   if (Instruction *Res = canonicalizeICmpPredicate(I))
5979     return Res;
5980 
5981   if (Instruction *Res = foldICmpWithConstant(I))
5982     return Res;
5983 
5984   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5985     return Res;
5986 
5987   if (Instruction *Res = foldICmpUsingKnownBits(I))
5988     return Res;
5989 
5990   // Test if the ICmpInst instruction is used exclusively by a select as
5991   // part of a minimum or maximum operation. If so, refrain from doing
5992   // any other folding. This helps out other analyses which understand
5993   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5994   // and CodeGen. And in this case, at least one of the comparison
5995   // operands has at least one user besides the compare (the select),
5996   // which would often largely negate the benefit of folding anyway.
5997   //
5998   // Do the same for the other patterns recognized by matchSelectPattern.
5999   if (I.hasOneUse())
6000     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6001       Value *A, *B;
6002       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6003       if (SPR.Flavor != SPF_UNKNOWN)
6004         return nullptr;
6005     }
6006 
6007   // Do this after checking for min/max to prevent infinite looping.
6008   if (Instruction *Res = foldICmpWithZero(I))
6009     return Res;
6010 
6011   // FIXME: We only do this after checking for min/max to prevent infinite
6012   // looping caused by a reverse canonicalization of these patterns for min/max.
6013   // FIXME: The organization of folds is a mess. These would naturally go into
6014   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
6015   // down here after the min/max restriction.
6016   ICmpInst::Predicate Pred = I.getPredicate();
6017   const APInt *C;
6018   if (match(Op1, m_APInt(C))) {
6019     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
6020     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
6021       Constant *Zero = Constant::getNullValue(Op0->getType());
6022       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
6023     }
6024 
6025     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
6026     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
6027       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
6028       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
6029     }
6030   }
6031 
6032   // The folds in here may rely on wrapping flags and special constants, so
6033   // they can break up min/max idioms in some cases but not seemingly similar
6034   // patterns.
6035   // FIXME: It may be possible to enhance select folding to make this
6036   //        unnecessary. It may also be moot if we canonicalize to min/max
6037   //        intrinsics.
6038   if (Instruction *Res = foldICmpBinOp(I, Q))
6039     return Res;
6040 
6041   if (Instruction *Res = foldICmpInstWithConstant(I))
6042     return Res;
6043 
6044   // Try to match comparison as a sign bit test. Intentionally do this after
6045   // foldICmpInstWithConstant() to potentially let other folds to happen first.
6046   if (Instruction *New = foldSignBitTest(I))
6047     return New;
6048 
6049   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
6050     return Res;
6051 
6052   // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
6053   if (auto *GEP = dyn_cast<GEPOperator>(Op0))
6054     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
6055       return NI;
6056   if (auto *GEP = dyn_cast<GEPOperator>(Op1))
6057     if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I))
6058       return NI;
6059 
6060   // Try to optimize equality comparisons against alloca-based pointers.
6061   if (Op0->getType()->isPointerTy() && I.isEquality()) {
6062     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
6063     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
6064       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
6065         return New;
6066     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
6067       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
6068         return New;
6069   }
6070 
6071   if (Instruction *Res = foldICmpBitCast(I))
6072     return Res;
6073 
6074   // TODO: Hoist this above the min/max bailout.
6075   if (Instruction *R = foldICmpWithCastOp(I))
6076     return R;
6077 
6078   if (Instruction *Res = foldICmpWithMinMax(I))
6079     return Res;
6080 
6081   {
6082     Value *A, *B;
6083     // Transform (A & ~B) == 0 --> (A & B) != 0
6084     // and       (A & ~B) != 0 --> (A & B) == 0
6085     // if A is a power of 2.
6086     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
6087         match(Op1, m_Zero()) &&
6088         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
6089       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
6090                           Op1);
6091 
6092     // ~X < ~Y --> Y < X
6093     // ~X < C -->  X > ~C
6094     if (match(Op0, m_Not(m_Value(A)))) {
6095       if (match(Op1, m_Not(m_Value(B))))
6096         return new ICmpInst(I.getPredicate(), B, A);
6097 
6098       const APInt *C;
6099       if (match(Op1, m_APInt(C)))
6100         return new ICmpInst(I.getSwappedPredicate(), A,
6101                             ConstantInt::get(Op1->getType(), ~(*C)));
6102     }
6103 
6104     Instruction *AddI = nullptr;
6105     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
6106                                      m_Instruction(AddI))) &&
6107         isa<IntegerType>(A->getType())) {
6108       Value *Result;
6109       Constant *Overflow;
6110       // m_UAddWithOverflow can match patterns that do not include  an explicit
6111       // "add" instruction, so check the opcode of the matched op.
6112       if (AddI->getOpcode() == Instruction::Add &&
6113           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
6114                                 Result, Overflow)) {
6115         replaceInstUsesWith(*AddI, Result);
6116         eraseInstFromFunction(*AddI);
6117         return replaceInstUsesWith(I, Overflow);
6118       }
6119     }
6120 
6121     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
6122     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6123       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
6124         return R;
6125     }
6126     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
6127       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
6128         return R;
6129     }
6130   }
6131 
6132   if (Instruction *Res = foldICmpEquality(I))
6133     return Res;
6134 
6135   if (Instruction *Res = foldICmpOfUAddOv(I))
6136     return Res;
6137 
6138   // The 'cmpxchg' instruction returns an aggregate containing the old value and
6139   // an i1 which indicates whether or not we successfully did the swap.
6140   //
6141   // Replace comparisons between the old value and the expected value with the
6142   // indicator that 'cmpxchg' returns.
6143   //
6144   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
6145   // spuriously fail.  In those cases, the old value may equal the expected
6146   // value but it is possible for the swap to not occur.
6147   if (I.getPredicate() == ICmpInst::ICMP_EQ)
6148     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
6149       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
6150         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
6151             !ACXI->isWeak())
6152           return ExtractValueInst::Create(ACXI, 1);
6153 
6154   {
6155     Value *X;
6156     const APInt *C;
6157     // icmp X+Cst, X
6158     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
6159       return foldICmpAddOpConst(X, *C, I.getPredicate());
6160 
6161     // icmp X, X+Cst
6162     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
6163       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
6164   }
6165 
6166   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
6167     return Res;
6168 
6169   if (I.getType()->isVectorTy())
6170     if (Instruction *Res = foldVectorCmp(I, Builder))
6171       return Res;
6172 
6173   if (Instruction *Res = foldICmpInvariantGroup(I))
6174     return Res;
6175 
6176   if (Instruction *Res = foldReductionIdiom(I, Builder, DL))
6177     return Res;
6178 
6179   return Changed ? &I : nullptr;
6180 }
6181 
6182 /// Fold fcmp ([us]itofp x, cst) if possible.
6183 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
6184                                                     Instruction *LHSI,
6185                                                     Constant *RHSC) {
6186   if (!isa<ConstantFP>(RHSC)) return nullptr;
6187   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
6188 
6189   // Get the width of the mantissa.  We don't want to hack on conversions that
6190   // might lose information from the integer, e.g. "i64 -> float"
6191   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
6192   if (MantissaWidth == -1) return nullptr;  // Unknown.
6193 
6194   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
6195 
6196   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
6197 
6198   if (I.isEquality()) {
6199     FCmpInst::Predicate P = I.getPredicate();
6200     bool IsExact = false;
6201     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
6202     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
6203 
6204     // If the floating point constant isn't an integer value, we know if we will
6205     // ever compare equal / not equal to it.
6206     if (!IsExact) {
6207       // TODO: Can never be -0.0 and other non-representable values
6208       APFloat RHSRoundInt(RHS);
6209       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
6210       if (RHS != RHSRoundInt) {
6211         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
6212           return replaceInstUsesWith(I, Builder.getFalse());
6213 
6214         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
6215         return replaceInstUsesWith(I, Builder.getTrue());
6216       }
6217     }
6218 
6219     // TODO: If the constant is exactly representable, is it always OK to do
6220     // equality compares as integer?
6221   }
6222 
6223   // Check to see that the input is converted from an integer type that is small
6224   // enough that preserves all bits.  TODO: check here for "known" sign bits.
6225   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
6226   unsigned InputSize = IntTy->getScalarSizeInBits();
6227 
6228   // Following test does NOT adjust InputSize downwards for signed inputs,
6229   // because the most negative value still requires all the mantissa bits
6230   // to distinguish it from one less than that value.
6231   if ((int)InputSize > MantissaWidth) {
6232     // Conversion would lose accuracy. Check if loss can impact comparison.
6233     int Exp = ilogb(RHS);
6234     if (Exp == APFloat::IEK_Inf) {
6235       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
6236       if (MaxExponent < (int)InputSize - !LHSUnsigned)
6237         // Conversion could create infinity.
6238         return nullptr;
6239     } else {
6240       // Note that if RHS is zero or NaN, then Exp is negative
6241       // and first condition is trivially false.
6242       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
6243         // Conversion could affect comparison.
6244         return nullptr;
6245     }
6246   }
6247 
6248   // Otherwise, we can potentially simplify the comparison.  We know that it
6249   // will always come through as an integer value and we know the constant is
6250   // not a NAN (it would have been previously simplified).
6251   assert(!RHS.isNaN() && "NaN comparison not already folded!");
6252 
6253   ICmpInst::Predicate Pred;
6254   switch (I.getPredicate()) {
6255   default: llvm_unreachable("Unexpected predicate!");
6256   case FCmpInst::FCMP_UEQ:
6257   case FCmpInst::FCMP_OEQ:
6258     Pred = ICmpInst::ICMP_EQ;
6259     break;
6260   case FCmpInst::FCMP_UGT:
6261   case FCmpInst::FCMP_OGT:
6262     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
6263     break;
6264   case FCmpInst::FCMP_UGE:
6265   case FCmpInst::FCMP_OGE:
6266     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6267     break;
6268   case FCmpInst::FCMP_ULT:
6269   case FCmpInst::FCMP_OLT:
6270     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6271     break;
6272   case FCmpInst::FCMP_ULE:
6273   case FCmpInst::FCMP_OLE:
6274     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6275     break;
6276   case FCmpInst::FCMP_UNE:
6277   case FCmpInst::FCMP_ONE:
6278     Pred = ICmpInst::ICMP_NE;
6279     break;
6280   case FCmpInst::FCMP_ORD:
6281     return replaceInstUsesWith(I, Builder.getTrue());
6282   case FCmpInst::FCMP_UNO:
6283     return replaceInstUsesWith(I, Builder.getFalse());
6284   }
6285 
6286   // Now we know that the APFloat is a normal number, zero or inf.
6287 
6288   // See if the FP constant is too large for the integer.  For example,
6289   // comparing an i8 to 300.0.
6290   unsigned IntWidth = IntTy->getScalarSizeInBits();
6291 
6292   if (!LHSUnsigned) {
6293     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6294     // and large values.
6295     APFloat SMax(RHS.getSemantics());
6296     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6297                           APFloat::rmNearestTiesToEven);
6298     if (SMax < RHS) { // smax < 13123.0
6299       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6300           Pred == ICmpInst::ICMP_SLE)
6301         return replaceInstUsesWith(I, Builder.getTrue());
6302       return replaceInstUsesWith(I, Builder.getFalse());
6303     }
6304   } else {
6305     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6306     // +INF and large values.
6307     APFloat UMax(RHS.getSemantics());
6308     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6309                           APFloat::rmNearestTiesToEven);
6310     if (UMax < RHS) { // umax < 13123.0
6311       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6312           Pred == ICmpInst::ICMP_ULE)
6313         return replaceInstUsesWith(I, Builder.getTrue());
6314       return replaceInstUsesWith(I, Builder.getFalse());
6315     }
6316   }
6317 
6318   if (!LHSUnsigned) {
6319     // See if the RHS value is < SignedMin.
6320     APFloat SMin(RHS.getSemantics());
6321     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6322                           APFloat::rmNearestTiesToEven);
6323     if (SMin > RHS) { // smin > 12312.0
6324       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6325           Pred == ICmpInst::ICMP_SGE)
6326         return replaceInstUsesWith(I, Builder.getTrue());
6327       return replaceInstUsesWith(I, Builder.getFalse());
6328     }
6329   } else {
6330     // See if the RHS value is < UnsignedMin.
6331     APFloat UMin(RHS.getSemantics());
6332     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6333                           APFloat::rmNearestTiesToEven);
6334     if (UMin > RHS) { // umin > 12312.0
6335       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6336           Pred == ICmpInst::ICMP_UGE)
6337         return replaceInstUsesWith(I, Builder.getTrue());
6338       return replaceInstUsesWith(I, Builder.getFalse());
6339     }
6340   }
6341 
6342   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6343   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6344   // casting the FP value to the integer value and back, checking for equality.
6345   // Don't do this for zero, because -0.0 is not fractional.
6346   Constant *RHSInt = LHSUnsigned
6347     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6348     : ConstantExpr::getFPToSI(RHSC, IntTy);
6349   if (!RHS.isZero()) {
6350     bool Equal = LHSUnsigned
6351       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6352       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6353     if (!Equal) {
6354       // If we had a comparison against a fractional value, we have to adjust
6355       // the compare predicate and sometimes the value.  RHSC is rounded towards
6356       // zero at this point.
6357       switch (Pred) {
6358       default: llvm_unreachable("Unexpected integer comparison!");
6359       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6360         return replaceInstUsesWith(I, Builder.getTrue());
6361       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6362         return replaceInstUsesWith(I, Builder.getFalse());
6363       case ICmpInst::ICMP_ULE:
6364         // (float)int <= 4.4   --> int <= 4
6365         // (float)int <= -4.4  --> false
6366         if (RHS.isNegative())
6367           return replaceInstUsesWith(I, Builder.getFalse());
6368         break;
6369       case ICmpInst::ICMP_SLE:
6370         // (float)int <= 4.4   --> int <= 4
6371         // (float)int <= -4.4  --> int < -4
6372         if (RHS.isNegative())
6373           Pred = ICmpInst::ICMP_SLT;
6374         break;
6375       case ICmpInst::ICMP_ULT:
6376         // (float)int < -4.4   --> false
6377         // (float)int < 4.4    --> int <= 4
6378         if (RHS.isNegative())
6379           return replaceInstUsesWith(I, Builder.getFalse());
6380         Pred = ICmpInst::ICMP_ULE;
6381         break;
6382       case ICmpInst::ICMP_SLT:
6383         // (float)int < -4.4   --> int < -4
6384         // (float)int < 4.4    --> int <= 4
6385         if (!RHS.isNegative())
6386           Pred = ICmpInst::ICMP_SLE;
6387         break;
6388       case ICmpInst::ICMP_UGT:
6389         // (float)int > 4.4    --> int > 4
6390         // (float)int > -4.4   --> true
6391         if (RHS.isNegative())
6392           return replaceInstUsesWith(I, Builder.getTrue());
6393         break;
6394       case ICmpInst::ICMP_SGT:
6395         // (float)int > 4.4    --> int > 4
6396         // (float)int > -4.4   --> int >= -4
6397         if (RHS.isNegative())
6398           Pred = ICmpInst::ICMP_SGE;
6399         break;
6400       case ICmpInst::ICMP_UGE:
6401         // (float)int >= -4.4   --> true
6402         // (float)int >= 4.4    --> int > 4
6403         if (RHS.isNegative())
6404           return replaceInstUsesWith(I, Builder.getTrue());
6405         Pred = ICmpInst::ICMP_UGT;
6406         break;
6407       case ICmpInst::ICMP_SGE:
6408         // (float)int >= -4.4   --> int >= -4
6409         // (float)int >= 4.4    --> int > 4
6410         if (!RHS.isNegative())
6411           Pred = ICmpInst::ICMP_SGT;
6412         break;
6413       }
6414     }
6415   }
6416 
6417   // Lower this FP comparison into an appropriate integer version of the
6418   // comparison.
6419   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6420 }
6421 
6422 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6423 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6424                                               Constant *RHSC) {
6425   // When C is not 0.0 and infinities are not allowed:
6426   // (C / X) < 0.0 is a sign-bit test of X
6427   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6428   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6429   //
6430   // Proof:
6431   // Multiply (C / X) < 0.0 by X * X / C.
6432   // - X is non zero, if it is the flag 'ninf' is violated.
6433   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6434   //   the predicate. C is also non zero by definition.
6435   //
6436   // Thus X * X / C is non zero and the transformation is valid. [qed]
6437 
6438   FCmpInst::Predicate Pred = I.getPredicate();
6439 
6440   // Check that predicates are valid.
6441   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6442       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6443     return nullptr;
6444 
6445   // Check that RHS operand is zero.
6446   if (!match(RHSC, m_AnyZeroFP()))
6447     return nullptr;
6448 
6449   // Check fastmath flags ('ninf').
6450   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6451     return nullptr;
6452 
6453   // Check the properties of the dividend. It must not be zero to avoid a
6454   // division by zero (see Proof).
6455   const APFloat *C;
6456   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6457     return nullptr;
6458 
6459   if (C->isZero())
6460     return nullptr;
6461 
6462   // Get swapped predicate if necessary.
6463   if (C->isNegative())
6464     Pred = I.getSwappedPredicate();
6465 
6466   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6467 }
6468 
6469 /// Optimize fabs(X) compared with zero.
6470 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6471   Value *X;
6472   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6473       !match(I.getOperand(1), m_PosZeroFP()))
6474     return nullptr;
6475 
6476   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6477     I->setPredicate(P);
6478     return IC.replaceOperand(*I, 0, X);
6479   };
6480 
6481   switch (I.getPredicate()) {
6482   case FCmpInst::FCMP_UGE:
6483   case FCmpInst::FCMP_OLT:
6484     // fabs(X) >= 0.0 --> true
6485     // fabs(X) <  0.0 --> false
6486     llvm_unreachable("fcmp should have simplified");
6487 
6488   case FCmpInst::FCMP_OGT:
6489     // fabs(X) > 0.0 --> X != 0.0
6490     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6491 
6492   case FCmpInst::FCMP_UGT:
6493     // fabs(X) u> 0.0 --> X u!= 0.0
6494     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6495 
6496   case FCmpInst::FCMP_OLE:
6497     // fabs(X) <= 0.0 --> X == 0.0
6498     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6499 
6500   case FCmpInst::FCMP_ULE:
6501     // fabs(X) u<= 0.0 --> X u== 0.0
6502     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6503 
6504   case FCmpInst::FCMP_OGE:
6505     // fabs(X) >= 0.0 --> !isnan(X)
6506     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6507     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6508 
6509   case FCmpInst::FCMP_ULT:
6510     // fabs(X) u< 0.0 --> isnan(X)
6511     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6512     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6513 
6514   case FCmpInst::FCMP_OEQ:
6515   case FCmpInst::FCMP_UEQ:
6516   case FCmpInst::FCMP_ONE:
6517   case FCmpInst::FCMP_UNE:
6518   case FCmpInst::FCMP_ORD:
6519   case FCmpInst::FCMP_UNO:
6520     // Look through the fabs() because it doesn't change anything but the sign.
6521     // fabs(X) == 0.0 --> X == 0.0,
6522     // fabs(X) != 0.0 --> X != 0.0
6523     // isnan(fabs(X)) --> isnan(X)
6524     // !isnan(fabs(X) --> !isnan(X)
6525     return replacePredAndOp0(&I, I.getPredicate(), X);
6526 
6527   default:
6528     return nullptr;
6529   }
6530 }
6531 
6532 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6533   bool Changed = false;
6534 
6535   /// Orders the operands of the compare so that they are listed from most
6536   /// complex to least complex.  This puts constants before unary operators,
6537   /// before binary operators.
6538   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6539     I.swapOperands();
6540     Changed = true;
6541   }
6542 
6543   const CmpInst::Predicate Pred = I.getPredicate();
6544   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6545   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6546                                   SQ.getWithInstruction(&I)))
6547     return replaceInstUsesWith(I, V);
6548 
6549   // Simplify 'fcmp pred X, X'
6550   Type *OpType = Op0->getType();
6551   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6552   if (Op0 == Op1) {
6553     switch (Pred) {
6554       default: break;
6555     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6556     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6557     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6558     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6559       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6560       I.setPredicate(FCmpInst::FCMP_UNO);
6561       I.setOperand(1, Constant::getNullValue(OpType));
6562       return &I;
6563 
6564     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6565     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6566     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6567     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6568       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6569       I.setPredicate(FCmpInst::FCMP_ORD);
6570       I.setOperand(1, Constant::getNullValue(OpType));
6571       return &I;
6572     }
6573   }
6574 
6575   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6576   // then canonicalize the operand to 0.0.
6577   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6578     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6579       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6580 
6581     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6582       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6583   }
6584 
6585   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6586   Value *X, *Y;
6587   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6588     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6589 
6590   // Test if the FCmpInst instruction is used exclusively by a select as
6591   // part of a minimum or maximum operation. If so, refrain from doing
6592   // any other folding. This helps out other analyses which understand
6593   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6594   // and CodeGen. And in this case, at least one of the comparison
6595   // operands has at least one user besides the compare (the select),
6596   // which would often largely negate the benefit of folding anyway.
6597   if (I.hasOneUse())
6598     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6599       Value *A, *B;
6600       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6601       if (SPR.Flavor != SPF_UNKNOWN)
6602         return nullptr;
6603     }
6604 
6605   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6606   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6607   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6608     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6609 
6610   // Handle fcmp with instruction LHS and constant RHS.
6611   Instruction *LHSI;
6612   Constant *RHSC;
6613   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6614     switch (LHSI->getOpcode()) {
6615     case Instruction::PHI:
6616       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6617       // block.  If in the same block, we're encouraging jump threading.  If
6618       // not, we are just pessimizing the code by making an i1 phi.
6619       if (LHSI->getParent() == I.getParent())
6620         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6621           return NV;
6622       break;
6623     case Instruction::SIToFP:
6624     case Instruction::UIToFP:
6625       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6626         return NV;
6627       break;
6628     case Instruction::FDiv:
6629       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6630         return NV;
6631       break;
6632     case Instruction::Load:
6633       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6634         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6635           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6636               !cast<LoadInst>(LHSI)->isVolatile())
6637             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6638               return Res;
6639       break;
6640   }
6641   }
6642 
6643   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6644     return R;
6645 
6646   if (match(Op0, m_FNeg(m_Value(X)))) {
6647     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6648     Constant *C;
6649     if (match(Op1, m_Constant(C))) {
6650       Constant *NegC = ConstantExpr::getFNeg(C);
6651       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6652     }
6653   }
6654 
6655   if (match(Op0, m_FPExt(m_Value(X)))) {
6656     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6657     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6658       return new FCmpInst(Pred, X, Y, "", &I);
6659 
6660     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6661     const APFloat *C;
6662     if (match(Op1, m_APFloat(C))) {
6663       const fltSemantics &FPSem =
6664           X->getType()->getScalarType()->getFltSemantics();
6665       bool Lossy;
6666       APFloat TruncC = *C;
6667       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6668 
6669       // Avoid lossy conversions and denormals.
6670       // Zero is a special case that's OK to convert.
6671       APFloat Fabs = TruncC;
6672       Fabs.clearSign();
6673       if (!Lossy &&
6674           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6675         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6676         return new FCmpInst(Pred, X, NewC, "", &I);
6677       }
6678     }
6679   }
6680 
6681   // Convert a sign-bit test of an FP value into a cast and integer compare.
6682   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6683   // TODO: Handle non-zero compare constants.
6684   // TODO: Handle other predicates.
6685   const APFloat *C;
6686   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6687                                                            m_Value(X)))) &&
6688       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6689     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6690     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6691       IntType = VectorType::get(IntType, VecTy->getElementCount());
6692 
6693     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6694     if (Pred == FCmpInst::FCMP_OLT) {
6695       Value *IntX = Builder.CreateBitCast(X, IntType);
6696       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6697                           ConstantInt::getNullValue(IntType));
6698     }
6699   }
6700 
6701   if (I.getType()->isVectorTy())
6702     if (Instruction *Res = foldVectorCmp(I, Builder))
6703       return Res;
6704 
6705   return Changed ? &I : nullptr;
6706 }
6707