xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 // How many times is a select replaced by one of its operands?
34 STATISTIC(NumSel, "Number of select opts");
35 
36 
37 /// Compute Result = In1+In2, returning true if the result overflowed for this
38 /// type.
39 static bool addWithOverflow(APInt &Result, const APInt &In1,
40                             const APInt &In2, bool IsSigned = false) {
41   bool Overflow;
42   if (IsSigned)
43     Result = In1.sadd_ov(In2, Overflow);
44   else
45     Result = In1.uadd_ov(In2, Overflow);
46 
47   return Overflow;
48 }
49 
50 /// Compute Result = In1-In2, returning true if the result overflowed for this
51 /// type.
52 static bool subWithOverflow(APInt &Result, const APInt &In1,
53                             const APInt &In2, bool IsSigned = false) {
54   bool Overflow;
55   if (IsSigned)
56     Result = In1.ssub_ov(In2, Overflow);
57   else
58     Result = In1.usub_ov(In2, Overflow);
59 
60   return Overflow;
61 }
62 
63 /// Given an icmp instruction, return true if any use of this comparison is a
64 /// branch on sign bit comparison.
65 static bool hasBranchUse(ICmpInst &I) {
66   for (auto *U : I.users())
67     if (isa<BranchInst>(U))
68       return true;
69   return false;
70 }
71 
72 /// Returns true if the exploded icmp can be expressed as a signed comparison
73 /// to zero and updates the predicate accordingly.
74 /// The signedness of the comparison is preserved.
75 /// TODO: Refactor with decomposeBitTestICmp()?
76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
77   if (!ICmpInst::isSigned(Pred))
78     return false;
79 
80   if (C.isNullValue())
81     return ICmpInst::isRelational(Pred);
82 
83   if (C.isOneValue()) {
84     if (Pred == ICmpInst::ICMP_SLT) {
85       Pred = ICmpInst::ICMP_SLE;
86       return true;
87     }
88   } else if (C.isAllOnesValue()) {
89     if (Pred == ICmpInst::ICMP_SGT) {
90       Pred = ICmpInst::ICMP_SGE;
91       return true;
92     }
93   }
94 
95   return false;
96 }
97 
98 /// Given a signed integer type and a set of known zero and one bits, compute
99 /// the maximum and minimum values that could have the specified known zero and
100 /// known one bits, returning them in Min/Max.
101 /// TODO: Move to method on KnownBits struct?
102 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
103                                                    APInt &Min, APInt &Max) {
104   assert(Known.getBitWidth() == Min.getBitWidth() &&
105          Known.getBitWidth() == Max.getBitWidth() &&
106          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
107   APInt UnknownBits = ~(Known.Zero|Known.One);
108 
109   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
110   // bit if it is unknown.
111   Min = Known.One;
112   Max = Known.One|UnknownBits;
113 
114   if (UnknownBits.isNegative()) { // Sign bit is unknown
115     Min.setSignBit();
116     Max.clearSignBit();
117   }
118 }
119 
120 /// Given an unsigned integer type and a set of known zero and one bits, compute
121 /// the maximum and minimum values that could have the specified known zero and
122 /// known one bits, returning them in Min/Max.
123 /// TODO: Move to method on KnownBits struct?
124 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
125                                                      APInt &Min, APInt &Max) {
126   assert(Known.getBitWidth() == Min.getBitWidth() &&
127          Known.getBitWidth() == Max.getBitWidth() &&
128          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
129   APInt UnknownBits = ~(Known.Zero|Known.One);
130 
131   // The minimum value is when the unknown bits are all zeros.
132   Min = Known.One;
133   // The maximum value is when the unknown bits are all ones.
134   Max = Known.One|UnknownBits;
135 }
136 
137 /// This is called when we see this pattern:
138 ///   cmp pred (load (gep GV, ...)), cmpcst
139 /// where GV is a global variable with a constant initializer. Try to simplify
140 /// this into some simple computation that does not need the load. For example
141 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
142 ///
143 /// If AndCst is non-null, then the loaded value is masked with that constant
144 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
145 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
146                                                         GlobalVariable *GV,
147                                                         CmpInst &ICI,
148                                                         ConstantInt *AndCst) {
149   Constant *Init = GV->getInitializer();
150   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
151     return nullptr;
152 
153   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
154   // Don't blow up on huge arrays.
155   if (ArrayElementCount > MaxArraySizeForCombine)
156     return nullptr;
157 
158   // There are many forms of this optimization we can handle, for now, just do
159   // the simple index into a single-dimensional array.
160   //
161   // Require: GEP GV, 0, i {{, constant indices}}
162   if (GEP->getNumOperands() < 3 ||
163       !isa<ConstantInt>(GEP->getOperand(1)) ||
164       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
165       isa<Constant>(GEP->getOperand(2)))
166     return nullptr;
167 
168   // Check that indices after the variable are constants and in-range for the
169   // type they index.  Collect the indices.  This is typically for arrays of
170   // structs.
171   SmallVector<unsigned, 4> LaterIndices;
172 
173   Type *EltTy = Init->getType()->getArrayElementType();
174   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
175     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
176     if (!Idx) return nullptr;  // Variable index.
177 
178     uint64_t IdxVal = Idx->getZExtValue();
179     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
180 
181     if (StructType *STy = dyn_cast<StructType>(EltTy))
182       EltTy = STy->getElementType(IdxVal);
183     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
184       if (IdxVal >= ATy->getNumElements()) return nullptr;
185       EltTy = ATy->getElementType();
186     } else {
187       return nullptr; // Unknown type.
188     }
189 
190     LaterIndices.push_back(IdxVal);
191   }
192 
193   enum { Overdefined = -3, Undefined = -2 };
194 
195   // Variables for our state machines.
196 
197   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
198   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
199   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
200   // undefined, otherwise set to the first true element.  SecondTrueElement is
201   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
202   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
203 
204   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
205   // form "i != 47 & i != 87".  Same state transitions as for true elements.
206   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
207 
208   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
209   /// define a state machine that triggers for ranges of values that the index
210   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
211   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
212   /// index in the range (inclusive).  We use -2 for undefined here because we
213   /// use relative comparisons and don't want 0-1 to match -1.
214   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
215 
216   // MagicBitvector - This is a magic bitvector where we set a bit if the
217   // comparison is true for element 'i'.  If there are 64 elements or less in
218   // the array, this will fully represent all the comparison results.
219   uint64_t MagicBitvector = 0;
220 
221   // Scan the array and see if one of our patterns matches.
222   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
223   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
224     Constant *Elt = Init->getAggregateElement(i);
225     if (!Elt) return nullptr;
226 
227     // If this is indexing an array of structures, get the structure element.
228     if (!LaterIndices.empty())
229       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
230 
231     // If the element is masked, handle it.
232     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
233 
234     // Find out if the comparison would be true or false for the i'th element.
235     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
236                                                   CompareRHS, DL, &TLI);
237     // If the result is undef for this element, ignore it.
238     if (isa<UndefValue>(C)) {
239       // Extend range state machines to cover this element in case there is an
240       // undef in the middle of the range.
241       if (TrueRangeEnd == (int)i-1)
242         TrueRangeEnd = i;
243       if (FalseRangeEnd == (int)i-1)
244         FalseRangeEnd = i;
245       continue;
246     }
247 
248     // If we can't compute the result for any of the elements, we have to give
249     // up evaluating the entire conditional.
250     if (!isa<ConstantInt>(C)) return nullptr;
251 
252     // Otherwise, we know if the comparison is true or false for this element,
253     // update our state machines.
254     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
255 
256     // State machine for single/double/range index comparison.
257     if (IsTrueForElt) {
258       // Update the TrueElement state machine.
259       if (FirstTrueElement == Undefined)
260         FirstTrueElement = TrueRangeEnd = i;  // First true element.
261       else {
262         // Update double-compare state machine.
263         if (SecondTrueElement == Undefined)
264           SecondTrueElement = i;
265         else
266           SecondTrueElement = Overdefined;
267 
268         // Update range state machine.
269         if (TrueRangeEnd == (int)i-1)
270           TrueRangeEnd = i;
271         else
272           TrueRangeEnd = Overdefined;
273       }
274     } else {
275       // Update the FalseElement state machine.
276       if (FirstFalseElement == Undefined)
277         FirstFalseElement = FalseRangeEnd = i; // First false element.
278       else {
279         // Update double-compare state machine.
280         if (SecondFalseElement == Undefined)
281           SecondFalseElement = i;
282         else
283           SecondFalseElement = Overdefined;
284 
285         // Update range state machine.
286         if (FalseRangeEnd == (int)i-1)
287           FalseRangeEnd = i;
288         else
289           FalseRangeEnd = Overdefined;
290       }
291     }
292 
293     // If this element is in range, update our magic bitvector.
294     if (i < 64 && IsTrueForElt)
295       MagicBitvector |= 1ULL << i;
296 
297     // If all of our states become overdefined, bail out early.  Since the
298     // predicate is expensive, only check it every 8 elements.  This is only
299     // really useful for really huge arrays.
300     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
301         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
302         FalseRangeEnd == Overdefined)
303       return nullptr;
304   }
305 
306   // Now that we've scanned the entire array, emit our new comparison(s).  We
307   // order the state machines in complexity of the generated code.
308   Value *Idx = GEP->getOperand(2);
309 
310   // If the index is larger than the pointer size of the target, truncate the
311   // index down like the GEP would do implicitly.  We don't have to do this for
312   // an inbounds GEP because the index can't be out of range.
313   if (!GEP->isInBounds()) {
314     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
315     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
316     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
317       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
318   }
319 
320   // If the comparison is only true for one or two elements, emit direct
321   // comparisons.
322   if (SecondTrueElement != Overdefined) {
323     // None true -> false.
324     if (FirstTrueElement == Undefined)
325       return replaceInstUsesWith(ICI, Builder.getFalse());
326 
327     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
328 
329     // True for one element -> 'i == 47'.
330     if (SecondTrueElement == Undefined)
331       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
332 
333     // True for two elements -> 'i == 47 | i == 72'.
334     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
335     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
336     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
337     return BinaryOperator::CreateOr(C1, C2);
338   }
339 
340   // If the comparison is only false for one or two elements, emit direct
341   // comparisons.
342   if (SecondFalseElement != Overdefined) {
343     // None false -> true.
344     if (FirstFalseElement == Undefined)
345       return replaceInstUsesWith(ICI, Builder.getTrue());
346 
347     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
348 
349     // False for one element -> 'i != 47'.
350     if (SecondFalseElement == Undefined)
351       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
352 
353     // False for two elements -> 'i != 47 & i != 72'.
354     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
355     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
356     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
357     return BinaryOperator::CreateAnd(C1, C2);
358   }
359 
360   // If the comparison can be replaced with a range comparison for the elements
361   // where it is true, emit the range check.
362   if (TrueRangeEnd != Overdefined) {
363     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
364 
365     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
366     if (FirstTrueElement) {
367       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
368       Idx = Builder.CreateAdd(Idx, Offs);
369     }
370 
371     Value *End = ConstantInt::get(Idx->getType(),
372                                   TrueRangeEnd-FirstTrueElement+1);
373     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
374   }
375 
376   // False range check.
377   if (FalseRangeEnd != Overdefined) {
378     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
379     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
380     if (FirstFalseElement) {
381       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
382       Idx = Builder.CreateAdd(Idx, Offs);
383     }
384 
385     Value *End = ConstantInt::get(Idx->getType(),
386                                   FalseRangeEnd-FirstFalseElement);
387     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
388   }
389 
390   // If a magic bitvector captures the entire comparison state
391   // of this load, replace it with computation that does:
392   //   ((magic_cst >> i) & 1) != 0
393   {
394     Type *Ty = nullptr;
395 
396     // Look for an appropriate type:
397     // - The type of Idx if the magic fits
398     // - The smallest fitting legal type
399     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
400       Ty = Idx->getType();
401     else
402       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
403 
404     if (Ty) {
405       Value *V = Builder.CreateIntCast(Idx, Ty, false);
406       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
407       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
408       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
409     }
410   }
411 
412   return nullptr;
413 }
414 
415 /// Return a value that can be used to compare the *offset* implied by a GEP to
416 /// zero. For example, if we have &A[i], we want to return 'i' for
417 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
418 /// are involved. The above expression would also be legal to codegen as
419 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
420 /// This latter form is less amenable to optimization though, and we are allowed
421 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
422 ///
423 /// If we can't emit an optimized form for this expression, this returns null.
424 ///
425 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
426                                           const DataLayout &DL) {
427   gep_type_iterator GTI = gep_type_begin(GEP);
428 
429   // Check to see if this gep only has a single variable index.  If so, and if
430   // any constant indices are a multiple of its scale, then we can compute this
431   // in terms of the scale of the variable index.  For example, if the GEP
432   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
433   // because the expression will cross zero at the same point.
434   unsigned i, e = GEP->getNumOperands();
435   int64_t Offset = 0;
436   for (i = 1; i != e; ++i, ++GTI) {
437     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
438       // Compute the aggregate offset of constant indices.
439       if (CI->isZero()) continue;
440 
441       // Handle a struct index, which adds its field offset to the pointer.
442       if (StructType *STy = GTI.getStructTypeOrNull()) {
443         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
444       } else {
445         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
446         Offset += Size*CI->getSExtValue();
447       }
448     } else {
449       // Found our variable index.
450       break;
451     }
452   }
453 
454   // If there are no variable indices, we must have a constant offset, just
455   // evaluate it the general way.
456   if (i == e) return nullptr;
457 
458   Value *VariableIdx = GEP->getOperand(i);
459   // Determine the scale factor of the variable element.  For example, this is
460   // 4 if the variable index is into an array of i32.
461   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
462 
463   // Verify that there are no other variable indices.  If so, emit the hard way.
464   for (++i, ++GTI; i != e; ++i, ++GTI) {
465     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
466     if (!CI) return nullptr;
467 
468     // Compute the aggregate offset of constant indices.
469     if (CI->isZero()) continue;
470 
471     // Handle a struct index, which adds its field offset to the pointer.
472     if (StructType *STy = GTI.getStructTypeOrNull()) {
473       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
474     } else {
475       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
476       Offset += Size*CI->getSExtValue();
477     }
478   }
479 
480   // Okay, we know we have a single variable index, which must be a
481   // pointer/array/vector index.  If there is no offset, life is simple, return
482   // the index.
483   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
484   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
485   if (Offset == 0) {
486     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
487     // we don't need to bother extending: the extension won't affect where the
488     // computation crosses zero.
489     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
490       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
491     }
492     return VariableIdx;
493   }
494 
495   // Otherwise, there is an index.  The computation we will do will be modulo
496   // the pointer size.
497   Offset = SignExtend64(Offset, IntPtrWidth);
498   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
499 
500   // To do this transformation, any constant index must be a multiple of the
501   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
502   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
503   // multiple of the variable scale.
504   int64_t NewOffs = Offset / (int64_t)VariableScale;
505   if (Offset != NewOffs*(int64_t)VariableScale)
506     return nullptr;
507 
508   // Okay, we can do this evaluation.  Start by converting the index to intptr.
509   if (VariableIdx->getType() != IntPtrTy)
510     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
511                                             true /*Signed*/);
512   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
513   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
514 }
515 
516 /// Returns true if we can rewrite Start as a GEP with pointer Base
517 /// and some integer offset. The nodes that need to be re-written
518 /// for this transformation will be added to Explored.
519 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
520                                   const DataLayout &DL,
521                                   SetVector<Value *> &Explored) {
522   SmallVector<Value *, 16> WorkList(1, Start);
523   Explored.insert(Base);
524 
525   // The following traversal gives us an order which can be used
526   // when doing the final transformation. Since in the final
527   // transformation we create the PHI replacement instructions first,
528   // we don't have to get them in any particular order.
529   //
530   // However, for other instructions we will have to traverse the
531   // operands of an instruction first, which means that we have to
532   // do a post-order traversal.
533   while (!WorkList.empty()) {
534     SetVector<PHINode *> PHIs;
535 
536     while (!WorkList.empty()) {
537       if (Explored.size() >= 100)
538         return false;
539 
540       Value *V = WorkList.back();
541 
542       if (Explored.count(V) != 0) {
543         WorkList.pop_back();
544         continue;
545       }
546 
547       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
548           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
549         // We've found some value that we can't explore which is different from
550         // the base. Therefore we can't do this transformation.
551         return false;
552 
553       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
554         auto *CI = dyn_cast<CastInst>(V);
555         if (!CI->isNoopCast(DL))
556           return false;
557 
558         if (Explored.count(CI->getOperand(0)) == 0)
559           WorkList.push_back(CI->getOperand(0));
560       }
561 
562       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
563         // We're limiting the GEP to having one index. This will preserve
564         // the original pointer type. We could handle more cases in the
565         // future.
566         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
567             GEP->getType() != Start->getType())
568           return false;
569 
570         if (Explored.count(GEP->getOperand(0)) == 0)
571           WorkList.push_back(GEP->getOperand(0));
572       }
573 
574       if (WorkList.back() == V) {
575         WorkList.pop_back();
576         // We've finished visiting this node, mark it as such.
577         Explored.insert(V);
578       }
579 
580       if (auto *PN = dyn_cast<PHINode>(V)) {
581         // We cannot transform PHIs on unsplittable basic blocks.
582         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
583           return false;
584         Explored.insert(PN);
585         PHIs.insert(PN);
586       }
587     }
588 
589     // Explore the PHI nodes further.
590     for (auto *PN : PHIs)
591       for (Value *Op : PN->incoming_values())
592         if (Explored.count(Op) == 0)
593           WorkList.push_back(Op);
594   }
595 
596   // Make sure that we can do this. Since we can't insert GEPs in a basic
597   // block before a PHI node, we can't easily do this transformation if
598   // we have PHI node users of transformed instructions.
599   for (Value *Val : Explored) {
600     for (Value *Use : Val->uses()) {
601 
602       auto *PHI = dyn_cast<PHINode>(Use);
603       auto *Inst = dyn_cast<Instruction>(Val);
604 
605       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
606           Explored.count(PHI) == 0)
607         continue;
608 
609       if (PHI->getParent() == Inst->getParent())
610         return false;
611     }
612   }
613   return true;
614 }
615 
616 // Sets the appropriate insert point on Builder where we can add
617 // a replacement Instruction for V (if that is possible).
618 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
619                               bool Before = true) {
620   if (auto *PHI = dyn_cast<PHINode>(V)) {
621     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
622     return;
623   }
624   if (auto *I = dyn_cast<Instruction>(V)) {
625     if (!Before)
626       I = &*std::next(I->getIterator());
627     Builder.SetInsertPoint(I);
628     return;
629   }
630   if (auto *A = dyn_cast<Argument>(V)) {
631     // Set the insertion point in the entry block.
632     BasicBlock &Entry = A->getParent()->getEntryBlock();
633     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
634     return;
635   }
636   // Otherwise, this is a constant and we don't need to set a new
637   // insertion point.
638   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
639 }
640 
641 /// Returns a re-written value of Start as an indexed GEP using Base as a
642 /// pointer.
643 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
644                                  const DataLayout &DL,
645                                  SetVector<Value *> &Explored) {
646   // Perform all the substitutions. This is a bit tricky because we can
647   // have cycles in our use-def chains.
648   // 1. Create the PHI nodes without any incoming values.
649   // 2. Create all the other values.
650   // 3. Add the edges for the PHI nodes.
651   // 4. Emit GEPs to get the original pointers.
652   // 5. Remove the original instructions.
653   Type *IndexType = IntegerType::get(
654       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
655 
656   DenseMap<Value *, Value *> NewInsts;
657   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
658 
659   // Create the new PHI nodes, without adding any incoming values.
660   for (Value *Val : Explored) {
661     if (Val == Base)
662       continue;
663     // Create empty phi nodes. This avoids cyclic dependencies when creating
664     // the remaining instructions.
665     if (auto *PHI = dyn_cast<PHINode>(Val))
666       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
667                                       PHI->getName() + ".idx", PHI);
668   }
669   IRBuilder<> Builder(Base->getContext());
670 
671   // Create all the other instructions.
672   for (Value *Val : Explored) {
673 
674     if (NewInsts.find(Val) != NewInsts.end())
675       continue;
676 
677     if (auto *CI = dyn_cast<CastInst>(Val)) {
678       // Don't get rid of the intermediate variable here; the store can grow
679       // the map which will invalidate the reference to the input value.
680       Value *V = NewInsts[CI->getOperand(0)];
681       NewInsts[CI] = V;
682       continue;
683     }
684     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
685       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
686                                                   : GEP->getOperand(1);
687       setInsertionPoint(Builder, GEP);
688       // Indices might need to be sign extended. GEPs will magically do
689       // this, but we need to do it ourselves here.
690       if (Index->getType()->getScalarSizeInBits() !=
691           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
692         Index = Builder.CreateSExtOrTrunc(
693             Index, NewInsts[GEP->getOperand(0)]->getType(),
694             GEP->getOperand(0)->getName() + ".sext");
695       }
696 
697       auto *Op = NewInsts[GEP->getOperand(0)];
698       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
699         NewInsts[GEP] = Index;
700       else
701         NewInsts[GEP] = Builder.CreateNSWAdd(
702             Op, Index, GEP->getOperand(0)->getName() + ".add");
703       continue;
704     }
705     if (isa<PHINode>(Val))
706       continue;
707 
708     llvm_unreachable("Unexpected instruction type");
709   }
710 
711   // Add the incoming values to the PHI nodes.
712   for (Value *Val : Explored) {
713     if (Val == Base)
714       continue;
715     // All the instructions have been created, we can now add edges to the
716     // phi nodes.
717     if (auto *PHI = dyn_cast<PHINode>(Val)) {
718       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
719       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
720         Value *NewIncoming = PHI->getIncomingValue(I);
721 
722         if (NewInsts.find(NewIncoming) != NewInsts.end())
723           NewIncoming = NewInsts[NewIncoming];
724 
725         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
726       }
727     }
728   }
729 
730   for (Value *Val : Explored) {
731     if (Val == Base)
732       continue;
733 
734     // Depending on the type, for external users we have to emit
735     // a GEP or a GEP + ptrtoint.
736     setInsertionPoint(Builder, Val, false);
737 
738     // If required, create an inttoptr instruction for Base.
739     Value *NewBase = Base;
740     if (!Base->getType()->isPointerTy())
741       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
742                                                Start->getName() + "to.ptr");
743 
744     Value *GEP = Builder.CreateInBoundsGEP(
745         Start->getType()->getPointerElementType(), NewBase,
746         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
747 
748     if (!Val->getType()->isPointerTy()) {
749       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
750                                               Val->getName() + ".conv");
751       GEP = Cast;
752     }
753     Val->replaceAllUsesWith(GEP);
754   }
755 
756   return NewInsts[Start];
757 }
758 
759 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
760 /// the input Value as a constant indexed GEP. Returns a pair containing
761 /// the GEPs Pointer and Index.
762 static std::pair<Value *, Value *>
763 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
764   Type *IndexType = IntegerType::get(V->getContext(),
765                                      DL.getIndexTypeSizeInBits(V->getType()));
766 
767   Constant *Index = ConstantInt::getNullValue(IndexType);
768   while (true) {
769     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
770       // We accept only inbouds GEPs here to exclude the possibility of
771       // overflow.
772       if (!GEP->isInBounds())
773         break;
774       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
775           GEP->getType() == V->getType()) {
776         V = GEP->getOperand(0);
777         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
778         Index = ConstantExpr::getAdd(
779             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
780         continue;
781       }
782       break;
783     }
784     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
785       if (!CI->isNoopCast(DL))
786         break;
787       V = CI->getOperand(0);
788       continue;
789     }
790     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
791       if (!CI->isNoopCast(DL))
792         break;
793       V = CI->getOperand(0);
794       continue;
795     }
796     break;
797   }
798   return {V, Index};
799 }
800 
801 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
802 /// We can look through PHIs, GEPs and casts in order to determine a common base
803 /// between GEPLHS and RHS.
804 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
805                                               ICmpInst::Predicate Cond,
806                                               const DataLayout &DL) {
807   // FIXME: Support vector of pointers.
808   if (GEPLHS->getType()->isVectorTy())
809     return nullptr;
810 
811   if (!GEPLHS->hasAllConstantIndices())
812     return nullptr;
813 
814   // Make sure the pointers have the same type.
815   if (GEPLHS->getType() != RHS->getType())
816     return nullptr;
817 
818   Value *PtrBase, *Index;
819   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
820 
821   // The set of nodes that will take part in this transformation.
822   SetVector<Value *> Nodes;
823 
824   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
825     return nullptr;
826 
827   // We know we can re-write this as
828   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
829   // Since we've only looked through inbouds GEPs we know that we
830   // can't have overflow on either side. We can therefore re-write
831   // this as:
832   //   OFFSET1 cmp OFFSET2
833   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
834 
835   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
836   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
837   // offset. Since Index is the offset of LHS to the base pointer, we will now
838   // compare the offsets instead of comparing the pointers.
839   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
840 }
841 
842 /// Fold comparisons between a GEP instruction and something else. At this point
843 /// we know that the GEP is on the LHS of the comparison.
844 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
845                                        ICmpInst::Predicate Cond,
846                                        Instruction &I) {
847   // Don't transform signed compares of GEPs into index compares. Even if the
848   // GEP is inbounds, the final add of the base pointer can have signed overflow
849   // and would change the result of the icmp.
850   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
851   // the maximum signed value for the pointer type.
852   if (ICmpInst::isSigned(Cond))
853     return nullptr;
854 
855   // Look through bitcasts and addrspacecasts. We do not however want to remove
856   // 0 GEPs.
857   if (!isa<GetElementPtrInst>(RHS))
858     RHS = RHS->stripPointerCasts();
859 
860   Value *PtrBase = GEPLHS->getOperand(0);
861   // FIXME: Support vector pointer GEPs.
862   if (PtrBase == RHS && GEPLHS->isInBounds() &&
863       !GEPLHS->getType()->isVectorTy()) {
864     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
865     // This transformation (ignoring the base and scales) is valid because we
866     // know pointers can't overflow since the gep is inbounds.  See if we can
867     // output an optimized form.
868     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
869 
870     // If not, synthesize the offset the hard way.
871     if (!Offset)
872       Offset = EmitGEPOffset(GEPLHS);
873     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
874                         Constant::getNullValue(Offset->getType()));
875   }
876 
877   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
878       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
879       !NullPointerIsDefined(I.getFunction(),
880                             RHS->getType()->getPointerAddressSpace())) {
881     // For most address spaces, an allocation can't be placed at null, but null
882     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
883     // the only valid inbounds address derived from null, is null itself.
884     // Thus, we have four cases to consider:
885     // 1) Base == nullptr, Offset == 0 -> inbounds, null
886     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
887     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
888     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
889     //
890     // (Note if we're indexing a type of size 0, that simply collapses into one
891     //  of the buckets above.)
892     //
893     // In general, we're allowed to make values less poison (i.e. remove
894     //   sources of full UB), so in this case, we just select between the two
895     //   non-poison cases (1 and 4 above).
896     //
897     // For vectors, we apply the same reasoning on a per-lane basis.
898     auto *Base = GEPLHS->getPointerOperand();
899     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
900       int NumElts = cast<VectorType>(GEPLHS->getType())->getNumElements();
901       Base = Builder.CreateVectorSplat(NumElts, Base);
902     }
903     return new ICmpInst(Cond, Base,
904                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
905                             cast<Constant>(RHS), Base->getType()));
906   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
907     // If the base pointers are different, but the indices are the same, just
908     // compare the base pointer.
909     if (PtrBase != GEPRHS->getOperand(0)) {
910       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
911       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
912                         GEPRHS->getOperand(0)->getType();
913       if (IndicesTheSame)
914         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
915           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
916             IndicesTheSame = false;
917             break;
918           }
919 
920       // If all indices are the same, just compare the base pointers.
921       Type *BaseType = GEPLHS->getOperand(0)->getType();
922       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
923         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
924 
925       // If we're comparing GEPs with two base pointers that only differ in type
926       // and both GEPs have only constant indices or just one use, then fold
927       // the compare with the adjusted indices.
928       // FIXME: Support vector of pointers.
929       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
930           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
931           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
932           PtrBase->stripPointerCasts() ==
933               GEPRHS->getOperand(0)->stripPointerCasts() &&
934           !GEPLHS->getType()->isVectorTy()) {
935         Value *LOffset = EmitGEPOffset(GEPLHS);
936         Value *ROffset = EmitGEPOffset(GEPRHS);
937 
938         // If we looked through an addrspacecast between different sized address
939         // spaces, the LHS and RHS pointers are different sized
940         // integers. Truncate to the smaller one.
941         Type *LHSIndexTy = LOffset->getType();
942         Type *RHSIndexTy = ROffset->getType();
943         if (LHSIndexTy != RHSIndexTy) {
944           if (LHSIndexTy->getPrimitiveSizeInBits() <
945               RHSIndexTy->getPrimitiveSizeInBits()) {
946             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
947           } else
948             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
949         }
950 
951         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
952                                         LOffset, ROffset);
953         return replaceInstUsesWith(I, Cmp);
954       }
955 
956       // Otherwise, the base pointers are different and the indices are
957       // different. Try convert this to an indexed compare by looking through
958       // PHIs/casts.
959       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
960     }
961 
962     // If one of the GEPs has all zero indices, recurse.
963     // FIXME: Handle vector of pointers.
964     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
965       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
966                          ICmpInst::getSwappedPredicate(Cond), I);
967 
968     // If the other GEP has all zero indices, recurse.
969     // FIXME: Handle vector of pointers.
970     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
971       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
972 
973     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
974     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
975       // If the GEPs only differ by one index, compare it.
976       unsigned NumDifferences = 0;  // Keep track of # differences.
977       unsigned DiffOperand = 0;     // The operand that differs.
978       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
979         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
980           Type *LHSType = GEPLHS->getOperand(i)->getType();
981           Type *RHSType = GEPRHS->getOperand(i)->getType();
982           // FIXME: Better support for vector of pointers.
983           if (LHSType->getPrimitiveSizeInBits() !=
984                    RHSType->getPrimitiveSizeInBits() ||
985               (GEPLHS->getType()->isVectorTy() &&
986                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
987             // Irreconcilable differences.
988             NumDifferences = 2;
989             break;
990           }
991 
992           if (NumDifferences++) break;
993           DiffOperand = i;
994         }
995 
996       if (NumDifferences == 0)   // SAME GEP?
997         return replaceInstUsesWith(I, // No comparison is needed here.
998           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
999 
1000       else if (NumDifferences == 1 && GEPsInBounds) {
1001         Value *LHSV = GEPLHS->getOperand(DiffOperand);
1002         Value *RHSV = GEPRHS->getOperand(DiffOperand);
1003         // Make sure we do a signed comparison here.
1004         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1005       }
1006     }
1007 
1008     // Only lower this if the icmp is the only user of the GEP or if we expect
1009     // the result to fold to a constant!
1010     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1011         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1012       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1013       Value *L = EmitGEPOffset(GEPLHS);
1014       Value *R = EmitGEPOffset(GEPRHS);
1015       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1016     }
1017   }
1018 
1019   // Try convert this to an indexed compare by looking through PHIs/casts as a
1020   // last resort.
1021   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1022 }
1023 
1024 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1025                                          const AllocaInst *Alloca,
1026                                          const Value *Other) {
1027   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1028 
1029   // It would be tempting to fold away comparisons between allocas and any
1030   // pointer not based on that alloca (e.g. an argument). However, even
1031   // though such pointers cannot alias, they can still compare equal.
1032   //
1033   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1034   // doesn't escape we can argue that it's impossible to guess its value, and we
1035   // can therefore act as if any such guesses are wrong.
1036   //
1037   // The code below checks that the alloca doesn't escape, and that it's only
1038   // used in a comparison once (the current instruction). The
1039   // single-comparison-use condition ensures that we're trivially folding all
1040   // comparisons against the alloca consistently, and avoids the risk of
1041   // erroneously folding a comparison of the pointer with itself.
1042 
1043   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1044 
1045   SmallVector<const Use *, 32> Worklist;
1046   for (const Use &U : Alloca->uses()) {
1047     if (Worklist.size() >= MaxIter)
1048       return nullptr;
1049     Worklist.push_back(&U);
1050   }
1051 
1052   unsigned NumCmps = 0;
1053   while (!Worklist.empty()) {
1054     assert(Worklist.size() <= MaxIter);
1055     const Use *U = Worklist.pop_back_val();
1056     const Value *V = U->getUser();
1057     --MaxIter;
1058 
1059     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1060         isa<SelectInst>(V)) {
1061       // Track the uses.
1062     } else if (isa<LoadInst>(V)) {
1063       // Loading from the pointer doesn't escape it.
1064       continue;
1065     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1066       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1067       if (SI->getValueOperand() == U->get())
1068         return nullptr;
1069       continue;
1070     } else if (isa<ICmpInst>(V)) {
1071       if (NumCmps++)
1072         return nullptr; // Found more than one cmp.
1073       continue;
1074     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1075       switch (Intrin->getIntrinsicID()) {
1076         // These intrinsics don't escape or compare the pointer. Memset is safe
1077         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1078         // we don't allow stores, so src cannot point to V.
1079         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1080         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1081           continue;
1082         default:
1083           return nullptr;
1084       }
1085     } else {
1086       return nullptr;
1087     }
1088     for (const Use &U : V->uses()) {
1089       if (Worklist.size() >= MaxIter)
1090         return nullptr;
1091       Worklist.push_back(&U);
1092     }
1093   }
1094 
1095   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1096   return replaceInstUsesWith(
1097       ICI,
1098       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1099 }
1100 
1101 /// Fold "icmp pred (X+C), X".
1102 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
1103                                               ICmpInst::Predicate Pred) {
1104   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1105   // so the values can never be equal.  Similarly for all other "or equals"
1106   // operators.
1107   assert(!!C && "C should not be zero!");
1108 
1109   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1110   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1111   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1112   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1113     Constant *R = ConstantInt::get(X->getType(),
1114                                    APInt::getMaxValue(C.getBitWidth()) - C);
1115     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1116   }
1117 
1118   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1119   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1120   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1121   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1122     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1123                         ConstantInt::get(X->getType(), -C));
1124 
1125   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1126 
1127   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1128   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1129   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1130   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1131   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1132   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1133   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1134     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1135                         ConstantInt::get(X->getType(), SMax - C));
1136 
1137   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1138   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1139   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1140   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1141   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1142   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1143 
1144   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1145   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1146                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1147 }
1148 
1149 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1150 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1151 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1152 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1153                                                  const APInt &AP1,
1154                                                  const APInt &AP2) {
1155   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1156 
1157   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1158     if (I.getPredicate() == I.ICMP_NE)
1159       Pred = CmpInst::getInversePredicate(Pred);
1160     return new ICmpInst(Pred, LHS, RHS);
1161   };
1162 
1163   // Don't bother doing any work for cases which InstSimplify handles.
1164   if (AP2.isNullValue())
1165     return nullptr;
1166 
1167   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1168   if (IsAShr) {
1169     if (AP2.isAllOnesValue())
1170       return nullptr;
1171     if (AP2.isNegative() != AP1.isNegative())
1172       return nullptr;
1173     if (AP2.sgt(AP1))
1174       return nullptr;
1175   }
1176 
1177   if (!AP1)
1178     // 'A' must be large enough to shift out the highest set bit.
1179     return getICmp(I.ICMP_UGT, A,
1180                    ConstantInt::get(A->getType(), AP2.logBase2()));
1181 
1182   if (AP1 == AP2)
1183     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1184 
1185   int Shift;
1186   if (IsAShr && AP1.isNegative())
1187     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1188   else
1189     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1190 
1191   if (Shift > 0) {
1192     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1193       // There are multiple solutions if we are comparing against -1 and the LHS
1194       // of the ashr is not a power of two.
1195       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1196         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1197       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1198     } else if (AP1 == AP2.lshr(Shift)) {
1199       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1200     }
1201   }
1202 
1203   // Shifting const2 will never be equal to const1.
1204   // FIXME: This should always be handled by InstSimplify?
1205   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1206   return replaceInstUsesWith(I, TorF);
1207 }
1208 
1209 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1210 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1211 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1212                                                  const APInt &AP1,
1213                                                  const APInt &AP2) {
1214   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1215 
1216   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1217     if (I.getPredicate() == I.ICMP_NE)
1218       Pred = CmpInst::getInversePredicate(Pred);
1219     return new ICmpInst(Pred, LHS, RHS);
1220   };
1221 
1222   // Don't bother doing any work for cases which InstSimplify handles.
1223   if (AP2.isNullValue())
1224     return nullptr;
1225 
1226   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1227 
1228   if (!AP1 && AP2TrailingZeros != 0)
1229     return getICmp(
1230         I.ICMP_UGE, A,
1231         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1232 
1233   if (AP1 == AP2)
1234     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1235 
1236   // Get the distance between the lowest bits that are set.
1237   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1238 
1239   if (Shift > 0 && AP2.shl(Shift) == AP1)
1240     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1241 
1242   // Shifting const2 will never be equal to const1.
1243   // FIXME: This should always be handled by InstSimplify?
1244   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1245   return replaceInstUsesWith(I, TorF);
1246 }
1247 
1248 /// The caller has matched a pattern of the form:
1249 ///   I = icmp ugt (add (add A, B), CI2), CI1
1250 /// If this is of the form:
1251 ///   sum = a + b
1252 ///   if (sum+128 >u 255)
1253 /// Then replace it with llvm.sadd.with.overflow.i8.
1254 ///
1255 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1256                                           ConstantInt *CI2, ConstantInt *CI1,
1257                                           InstCombiner &IC) {
1258   // The transformation we're trying to do here is to transform this into an
1259   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1260   // with a narrower add, and discard the add-with-constant that is part of the
1261   // range check (if we can't eliminate it, this isn't profitable).
1262 
1263   // In order to eliminate the add-with-constant, the compare can be its only
1264   // use.
1265   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1266   if (!AddWithCst->hasOneUse())
1267     return nullptr;
1268 
1269   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1270   if (!CI2->getValue().isPowerOf2())
1271     return nullptr;
1272   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1273   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1274     return nullptr;
1275 
1276   // The width of the new add formed is 1 more than the bias.
1277   ++NewWidth;
1278 
1279   // Check to see that CI1 is an all-ones value with NewWidth bits.
1280   if (CI1->getBitWidth() == NewWidth ||
1281       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1282     return nullptr;
1283 
1284   // This is only really a signed overflow check if the inputs have been
1285   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1286   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1287   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1288   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1289       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1290     return nullptr;
1291 
1292   // In order to replace the original add with a narrower
1293   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1294   // and truncates that discard the high bits of the add.  Verify that this is
1295   // the case.
1296   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1297   for (User *U : OrigAdd->users()) {
1298     if (U == AddWithCst)
1299       continue;
1300 
1301     // Only accept truncates for now.  We would really like a nice recursive
1302     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1303     // chain to see which bits of a value are actually demanded.  If the
1304     // original add had another add which was then immediately truncated, we
1305     // could still do the transformation.
1306     TruncInst *TI = dyn_cast<TruncInst>(U);
1307     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1308       return nullptr;
1309   }
1310 
1311   // If the pattern matches, truncate the inputs to the narrower type and
1312   // use the sadd_with_overflow intrinsic to efficiently compute both the
1313   // result and the overflow bit.
1314   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1315   Function *F = Intrinsic::getDeclaration(
1316       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1317 
1318   InstCombiner::BuilderTy &Builder = IC.Builder;
1319 
1320   // Put the new code above the original add, in case there are any uses of the
1321   // add between the add and the compare.
1322   Builder.SetInsertPoint(OrigAdd);
1323 
1324   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1325   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1326   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1327   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1328   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1329 
1330   // The inner add was the result of the narrow add, zero extended to the
1331   // wider type.  Replace it with the result computed by the intrinsic.
1332   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1333   IC.eraseInstFromFunction(*OrigAdd);
1334 
1335   // The original icmp gets replaced with the overflow value.
1336   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1337 }
1338 
1339 /// If we have:
1340 ///   icmp eq/ne (urem/srem %x, %y), 0
1341 /// iff %y is a power-of-two, we can replace this with a bit test:
1342 ///   icmp eq/ne (and %x, (add %y, -1)), 0
1343 Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1344   // This fold is only valid for equality predicates.
1345   if (!I.isEquality())
1346     return nullptr;
1347   ICmpInst::Predicate Pred;
1348   Value *X, *Y, *Zero;
1349   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1350                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1351     return nullptr;
1352   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1353     return nullptr;
1354   // This may increase instruction count, we don't enforce that Y is a constant.
1355   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1356   Value *Masked = Builder.CreateAnd(X, Mask);
1357   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1358 }
1359 
1360 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1361 /// by one-less-than-bitwidth into a sign test on the original value.
1362 Instruction *InstCombiner::foldSignBitTest(ICmpInst &I) {
1363   Instruction *Val;
1364   ICmpInst::Predicate Pred;
1365   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1366     return nullptr;
1367 
1368   Value *X;
1369   Type *XTy;
1370 
1371   Constant *C;
1372   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1373     XTy = X->getType();
1374     unsigned XBitWidth = XTy->getScalarSizeInBits();
1375     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1376                                      APInt(XBitWidth, XBitWidth - 1))))
1377       return nullptr;
1378   } else if (isa<BinaryOperator>(Val) &&
1379              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1380                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1381                   /*AnalyzeForSignBitExtraction=*/true))) {
1382     XTy = X->getType();
1383   } else
1384     return nullptr;
1385 
1386   return ICmpInst::Create(Instruction::ICmp,
1387                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1388                                                     : ICmpInst::ICMP_SLT,
1389                           X, ConstantInt::getNullValue(XTy));
1390 }
1391 
1392 // Handle  icmp pred X, 0
1393 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1394   CmpInst::Predicate Pred = Cmp.getPredicate();
1395   if (!match(Cmp.getOperand(1), m_Zero()))
1396     return nullptr;
1397 
1398   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1399   if (Pred == ICmpInst::ICMP_SGT) {
1400     Value *A, *B;
1401     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1402     if (SPR.Flavor == SPF_SMIN) {
1403       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1404         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1405       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1406         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1407     }
1408   }
1409 
1410   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1411     return New;
1412 
1413   // Given:
1414   //   icmp eq/ne (urem %x, %y), 0
1415   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1416   //   icmp eq/ne %x, 0
1417   Value *X, *Y;
1418   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1419       ICmpInst::isEquality(Pred)) {
1420     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1421     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1422     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1423       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1424   }
1425 
1426   return nullptr;
1427 }
1428 
1429 /// Fold icmp Pred X, C.
1430 /// TODO: This code structure does not make sense. The saturating add fold
1431 /// should be moved to some other helper and extended as noted below (it is also
1432 /// possible that code has been made unnecessary - do we canonicalize IR to
1433 /// overflow/saturating intrinsics or not?).
1434 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1435   // Match the following pattern, which is a common idiom when writing
1436   // overflow-safe integer arithmetic functions. The source performs an addition
1437   // in wider type and explicitly checks for overflow using comparisons against
1438   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1439   //
1440   // TODO: This could probably be generalized to handle other overflow-safe
1441   // operations if we worked out the formulas to compute the appropriate magic
1442   // constants.
1443   //
1444   // sum = a + b
1445   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1446   CmpInst::Predicate Pred = Cmp.getPredicate();
1447   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1448   Value *A, *B;
1449   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1450   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1451       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1452     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1453       return Res;
1454 
1455   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1456   Constant *C = dyn_cast<Constant>(Op1);
1457   if (!C)
1458     return nullptr;
1459 
1460   if (auto *Phi = dyn_cast<PHINode>(Op0))
1461     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1462       Type *Ty = Cmp.getType();
1463       Builder.SetInsertPoint(Phi);
1464       PHINode *NewPhi =
1465           Builder.CreatePHI(Ty, Phi->getNumOperands());
1466       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1467         auto *Input =
1468             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1469         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1470         NewPhi->addIncoming(BoolInput, Predecessor);
1471       }
1472       NewPhi->takeName(&Cmp);
1473       return replaceInstUsesWith(Cmp, NewPhi);
1474     }
1475 
1476   return nullptr;
1477 }
1478 
1479 /// Canonicalize icmp instructions based on dominating conditions.
1480 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1481   // This is a cheap/incomplete check for dominance - just match a single
1482   // predecessor with a conditional branch.
1483   BasicBlock *CmpBB = Cmp.getParent();
1484   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1485   if (!DomBB)
1486     return nullptr;
1487 
1488   Value *DomCond;
1489   BasicBlock *TrueBB, *FalseBB;
1490   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1491     return nullptr;
1492 
1493   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1494          "Predecessor block does not point to successor?");
1495 
1496   // The branch should get simplified. Don't bother simplifying this condition.
1497   if (TrueBB == FalseBB)
1498     return nullptr;
1499 
1500   // Try to simplify this compare to T/F based on the dominating condition.
1501   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1502   if (Imp)
1503     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1504 
1505   CmpInst::Predicate Pred = Cmp.getPredicate();
1506   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1507   ICmpInst::Predicate DomPred;
1508   const APInt *C, *DomC;
1509   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1510       match(Y, m_APInt(C))) {
1511     // We have 2 compares of a variable with constants. Calculate the constant
1512     // ranges of those compares to see if we can transform the 2nd compare:
1513     // DomBB:
1514     //   DomCond = icmp DomPred X, DomC
1515     //   br DomCond, CmpBB, FalseBB
1516     // CmpBB:
1517     //   Cmp = icmp Pred X, C
1518     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1519     ConstantRange DominatingCR =
1520         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1521                           : ConstantRange::makeExactICmpRegion(
1522                                 CmpInst::getInversePredicate(DomPred), *DomC);
1523     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1524     ConstantRange Difference = DominatingCR.difference(CR);
1525     if (Intersection.isEmptySet())
1526       return replaceInstUsesWith(Cmp, Builder.getFalse());
1527     if (Difference.isEmptySet())
1528       return replaceInstUsesWith(Cmp, Builder.getTrue());
1529 
1530     // Canonicalizing a sign bit comparison that gets used in a branch,
1531     // pessimizes codegen by generating branch on zero instruction instead
1532     // of a test and branch. So we avoid canonicalizing in such situations
1533     // because test and branch instruction has better branch displacement
1534     // than compare and branch instruction.
1535     bool UnusedBit;
1536     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1537     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1538       return nullptr;
1539 
1540     if (const APInt *EqC = Intersection.getSingleElement())
1541       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1542     if (const APInt *NeC = Difference.getSingleElement())
1543       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1544   }
1545 
1546   return nullptr;
1547 }
1548 
1549 /// Fold icmp (trunc X, Y), C.
1550 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1551                                                  TruncInst *Trunc,
1552                                                  const APInt &C) {
1553   ICmpInst::Predicate Pred = Cmp.getPredicate();
1554   Value *X = Trunc->getOperand(0);
1555   if (C.isOneValue() && C.getBitWidth() > 1) {
1556     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1557     Value *V = nullptr;
1558     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1559       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1560                           ConstantInt::get(V->getType(), 1));
1561   }
1562 
1563   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1564     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1565     // of the high bits truncated out of x are known.
1566     unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1567              SrcBits = X->getType()->getScalarSizeInBits();
1568     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1569 
1570     // If all the high bits are known, we can do this xform.
1571     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1572       // Pull in the high bits from known-ones set.
1573       APInt NewRHS = C.zext(SrcBits);
1574       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1575       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1576     }
1577   }
1578 
1579   return nullptr;
1580 }
1581 
1582 /// Fold icmp (xor X, Y), C.
1583 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1584                                                BinaryOperator *Xor,
1585                                                const APInt &C) {
1586   Value *X = Xor->getOperand(0);
1587   Value *Y = Xor->getOperand(1);
1588   const APInt *XorC;
1589   if (!match(Y, m_APInt(XorC)))
1590     return nullptr;
1591 
1592   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1593   // fold the xor.
1594   ICmpInst::Predicate Pred = Cmp.getPredicate();
1595   bool TrueIfSigned = false;
1596   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1597 
1598     // If the sign bit of the XorCst is not set, there is no change to
1599     // the operation, just stop using the Xor.
1600     if (!XorC->isNegative())
1601       return replaceOperand(Cmp, 0, X);
1602 
1603     // Emit the opposite comparison.
1604     if (TrueIfSigned)
1605       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1606                           ConstantInt::getAllOnesValue(X->getType()));
1607     else
1608       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1609                           ConstantInt::getNullValue(X->getType()));
1610   }
1611 
1612   if (Xor->hasOneUse()) {
1613     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1614     if (!Cmp.isEquality() && XorC->isSignMask()) {
1615       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1616                             : Cmp.getSignedPredicate();
1617       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1618     }
1619 
1620     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1621     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1622       Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1623                             : Cmp.getSignedPredicate();
1624       Pred = Cmp.getSwappedPredicate(Pred);
1625       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1626     }
1627   }
1628 
1629   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1630   if (Pred == ICmpInst::ICMP_UGT) {
1631     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1632     if (*XorC == ~C && (C + 1).isPowerOf2())
1633       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1634     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1635     if (*XorC == C && (C + 1).isPowerOf2())
1636       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1637   }
1638   if (Pred == ICmpInst::ICMP_ULT) {
1639     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1640     if (*XorC == -C && C.isPowerOf2())
1641       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1642                           ConstantInt::get(X->getType(), ~C));
1643     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1644     if (*XorC == C && (-C).isPowerOf2())
1645       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1646                           ConstantInt::get(X->getType(), ~C));
1647   }
1648   return nullptr;
1649 }
1650 
1651 /// Fold icmp (and (sh X, Y), C2), C1.
1652 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1653                                             const APInt &C1, const APInt &C2) {
1654   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1655   if (!Shift || !Shift->isShift())
1656     return nullptr;
1657 
1658   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1659   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1660   // code produced by the clang front-end, for bitfield access.
1661   // This seemingly simple opportunity to fold away a shift turns out to be
1662   // rather complicated. See PR17827 for details.
1663   unsigned ShiftOpcode = Shift->getOpcode();
1664   bool IsShl = ShiftOpcode == Instruction::Shl;
1665   const APInt *C3;
1666   if (match(Shift->getOperand(1), m_APInt(C3))) {
1667     APInt NewAndCst, NewCmpCst;
1668     bool AnyCmpCstBitsShiftedOut;
1669     if (ShiftOpcode == Instruction::Shl) {
1670       // For a left shift, we can fold if the comparison is not signed. We can
1671       // also fold a signed comparison if the mask value and comparison value
1672       // are not negative. These constraints may not be obvious, but we can
1673       // prove that they are correct using an SMT solver.
1674       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1675         return nullptr;
1676 
1677       NewCmpCst = C1.lshr(*C3);
1678       NewAndCst = C2.lshr(*C3);
1679       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1680     } else if (ShiftOpcode == Instruction::LShr) {
1681       // For a logical right shift, we can fold if the comparison is not signed.
1682       // We can also fold a signed comparison if the shifted mask value and the
1683       // shifted comparison value are not negative. These constraints may not be
1684       // obvious, but we can prove that they are correct using an SMT solver.
1685       NewCmpCst = C1.shl(*C3);
1686       NewAndCst = C2.shl(*C3);
1687       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1688       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1689         return nullptr;
1690     } else {
1691       // For an arithmetic shift, check that both constants don't use (in a
1692       // signed sense) the top bits being shifted out.
1693       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1694       NewCmpCst = C1.shl(*C3);
1695       NewAndCst = C2.shl(*C3);
1696       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1697       if (NewAndCst.ashr(*C3) != C2)
1698         return nullptr;
1699     }
1700 
1701     if (AnyCmpCstBitsShiftedOut) {
1702       // If we shifted bits out, the fold is not going to work out. As a
1703       // special case, check to see if this means that the result is always
1704       // true or false now.
1705       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1706         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1707       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1708         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1709     } else {
1710       Value *NewAnd = Builder.CreateAnd(
1711           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1712       return new ICmpInst(Cmp.getPredicate(),
1713           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1714     }
1715   }
1716 
1717   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1718   // preferable because it allows the C2 << Y expression to be hoisted out of a
1719   // loop if Y is invariant and X is not.
1720   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1721       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1722     // Compute C2 << Y.
1723     Value *NewShift =
1724         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1725               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1726 
1727     // Compute X & (C2 << Y).
1728     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1729     return replaceOperand(Cmp, 0, NewAnd);
1730   }
1731 
1732   return nullptr;
1733 }
1734 
1735 /// Fold icmp (and X, C2), C1.
1736 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1737                                                  BinaryOperator *And,
1738                                                  const APInt &C1) {
1739   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1740 
1741   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1742   // TODO: We canonicalize to the longer form for scalars because we have
1743   // better analysis/folds for icmp, and codegen may be better with icmp.
1744   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1745       match(And->getOperand(1), m_One()))
1746     return new TruncInst(And->getOperand(0), Cmp.getType());
1747 
1748   const APInt *C2;
1749   Value *X;
1750   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1751     return nullptr;
1752 
1753   // Don't perform the following transforms if the AND has multiple uses
1754   if (!And->hasOneUse())
1755     return nullptr;
1756 
1757   if (Cmp.isEquality() && C1.isNullValue()) {
1758     // Restrict this fold to single-use 'and' (PR10267).
1759     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1760     if (C2->isSignMask()) {
1761       Constant *Zero = Constant::getNullValue(X->getType());
1762       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1763       return new ICmpInst(NewPred, X, Zero);
1764     }
1765 
1766     // Restrict this fold only for single-use 'and' (PR10267).
1767     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1768     if ((~(*C2) + 1).isPowerOf2()) {
1769       Constant *NegBOC =
1770           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1771       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1772       return new ICmpInst(NewPred, X, NegBOC);
1773     }
1774   }
1775 
1776   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1777   // the input width without changing the value produced, eliminate the cast:
1778   //
1779   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1780   //
1781   // We can do this transformation if the constants do not have their sign bits
1782   // set or if it is an equality comparison. Extending a relational comparison
1783   // when we're checking the sign bit would not work.
1784   Value *W;
1785   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1786       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1787     // TODO: Is this a good transform for vectors? Wider types may reduce
1788     // throughput. Should this transform be limited (even for scalars) by using
1789     // shouldChangeType()?
1790     if (!Cmp.getType()->isVectorTy()) {
1791       Type *WideType = W->getType();
1792       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1793       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1794       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1795       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1796       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1797     }
1798   }
1799 
1800   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1801     return I;
1802 
1803   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1804   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1805   //
1806   // iff pred isn't signed
1807   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1808       match(And->getOperand(1), m_One())) {
1809     Constant *One = cast<Constant>(And->getOperand(1));
1810     Value *Or = And->getOperand(0);
1811     Value *A, *B, *LShr;
1812     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1813         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1814       unsigned UsesRemoved = 0;
1815       if (And->hasOneUse())
1816         ++UsesRemoved;
1817       if (Or->hasOneUse())
1818         ++UsesRemoved;
1819       if (LShr->hasOneUse())
1820         ++UsesRemoved;
1821 
1822       // Compute A & ((1 << B) | 1)
1823       Value *NewOr = nullptr;
1824       if (auto *C = dyn_cast<Constant>(B)) {
1825         if (UsesRemoved >= 1)
1826           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1827       } else {
1828         if (UsesRemoved >= 3)
1829           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1830                                                      /*HasNUW=*/true),
1831                                    One, Or->getName());
1832       }
1833       if (NewOr) {
1834         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1835         return replaceOperand(Cmp, 0, NewAnd);
1836       }
1837     }
1838   }
1839 
1840   return nullptr;
1841 }
1842 
1843 /// Fold icmp (and X, Y), C.
1844 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1845                                                BinaryOperator *And,
1846                                                const APInt &C) {
1847   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1848     return I;
1849 
1850   // TODO: These all require that Y is constant too, so refactor with the above.
1851 
1852   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1853   Value *X = And->getOperand(0);
1854   Value *Y = And->getOperand(1);
1855   if (auto *LI = dyn_cast<LoadInst>(X))
1856     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1857       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1858         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1859             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1860           ConstantInt *C2 = cast<ConstantInt>(Y);
1861           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1862             return Res;
1863         }
1864 
1865   if (!Cmp.isEquality())
1866     return nullptr;
1867 
1868   // X & -C == -C -> X >  u ~C
1869   // X & -C != -C -> X <= u ~C
1870   //   iff C is a power of 2
1871   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1872     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1873                                                           : CmpInst::ICMP_ULE;
1874     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1875   }
1876 
1877   // (X & C2) == 0 -> (trunc X) >= 0
1878   // (X & C2) != 0 -> (trunc X) <  0
1879   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1880   const APInt *C2;
1881   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1882     int32_t ExactLogBase2 = C2->exactLogBase2();
1883     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1884       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1885       if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1886         NTy = FixedVectorType::get(NTy, AndVTy->getNumElements());
1887       Value *Trunc = Builder.CreateTrunc(X, NTy);
1888       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1889                                                             : CmpInst::ICMP_SLT;
1890       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1891     }
1892   }
1893 
1894   return nullptr;
1895 }
1896 
1897 /// Fold icmp (or X, Y), C.
1898 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1899                                               const APInt &C) {
1900   ICmpInst::Predicate Pred = Cmp.getPredicate();
1901   if (C.isOneValue()) {
1902     // icmp slt signum(V) 1 --> icmp slt V, 1
1903     Value *V = nullptr;
1904     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1905       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1906                           ConstantInt::get(V->getType(), 1));
1907   }
1908 
1909   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1910   const APInt *MaskC;
1911   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1912     if (*MaskC == C && (C + 1).isPowerOf2()) {
1913       // X | C == C --> X <=u C
1914       // X | C != C --> X  >u C
1915       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1916       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1917       return new ICmpInst(Pred, OrOp0, OrOp1);
1918     }
1919 
1920     // More general: canonicalize 'equality with set bits mask' to
1921     // 'equality with clear bits mask'.
1922     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1923     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1924     if (Or->hasOneUse()) {
1925       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1926       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1927       return new ICmpInst(Pred, And, NewC);
1928     }
1929   }
1930 
1931   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1932     return nullptr;
1933 
1934   Value *P, *Q;
1935   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1936     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1937     // -> and (icmp eq P, null), (icmp eq Q, null).
1938     Value *CmpP =
1939         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1940     Value *CmpQ =
1941         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1942     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1943     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1944   }
1945 
1946   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1947   // a shorter form that has more potential to be folded even further.
1948   Value *X1, *X2, *X3, *X4;
1949   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1950       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1951     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1952     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1953     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1954     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1955     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1956     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1957   }
1958 
1959   return nullptr;
1960 }
1961 
1962 /// Fold icmp (mul X, Y), C.
1963 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1964                                                BinaryOperator *Mul,
1965                                                const APInt &C) {
1966   const APInt *MulC;
1967   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1968     return nullptr;
1969 
1970   // If this is a test of the sign bit and the multiply is sign-preserving with
1971   // a constant operand, use the multiply LHS operand instead.
1972   ICmpInst::Predicate Pred = Cmp.getPredicate();
1973   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1974     if (MulC->isNegative())
1975       Pred = ICmpInst::getSwappedPredicate(Pred);
1976     return new ICmpInst(Pred, Mul->getOperand(0),
1977                         Constant::getNullValue(Mul->getType()));
1978   }
1979 
1980   return nullptr;
1981 }
1982 
1983 /// Fold icmp (shl 1, Y), C.
1984 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1985                                    const APInt &C) {
1986   Value *Y;
1987   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1988     return nullptr;
1989 
1990   Type *ShiftType = Shl->getType();
1991   unsigned TypeBits = C.getBitWidth();
1992   bool CIsPowerOf2 = C.isPowerOf2();
1993   ICmpInst::Predicate Pred = Cmp.getPredicate();
1994   if (Cmp.isUnsigned()) {
1995     // (1 << Y) pred C -> Y pred Log2(C)
1996     if (!CIsPowerOf2) {
1997       // (1 << Y) <  30 -> Y <= 4
1998       // (1 << Y) <= 30 -> Y <= 4
1999       // (1 << Y) >= 30 -> Y >  4
2000       // (1 << Y) >  30 -> Y >  4
2001       if (Pred == ICmpInst::ICMP_ULT)
2002         Pred = ICmpInst::ICMP_ULE;
2003       else if (Pred == ICmpInst::ICMP_UGE)
2004         Pred = ICmpInst::ICMP_UGT;
2005     }
2006 
2007     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2008     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2009     unsigned CLog2 = C.logBase2();
2010     if (CLog2 == TypeBits - 1) {
2011       if (Pred == ICmpInst::ICMP_UGE)
2012         Pred = ICmpInst::ICMP_EQ;
2013       else if (Pred == ICmpInst::ICMP_ULT)
2014         Pred = ICmpInst::ICMP_NE;
2015     }
2016     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2017   } else if (Cmp.isSigned()) {
2018     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2019     if (C.isAllOnesValue()) {
2020       // (1 << Y) <= -1 -> Y == 31
2021       if (Pred == ICmpInst::ICMP_SLE)
2022         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2023 
2024       // (1 << Y) >  -1 -> Y != 31
2025       if (Pred == ICmpInst::ICMP_SGT)
2026         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2027     } else if (!C) {
2028       // (1 << Y) <  0 -> Y == 31
2029       // (1 << Y) <= 0 -> Y == 31
2030       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2031         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2032 
2033       // (1 << Y) >= 0 -> Y != 31
2034       // (1 << Y) >  0 -> Y != 31
2035       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2036         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2037     }
2038   } else if (Cmp.isEquality() && CIsPowerOf2) {
2039     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2040   }
2041 
2042   return nullptr;
2043 }
2044 
2045 /// Fold icmp (shl X, Y), C.
2046 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
2047                                                BinaryOperator *Shl,
2048                                                const APInt &C) {
2049   const APInt *ShiftVal;
2050   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2051     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2052 
2053   const APInt *ShiftAmt;
2054   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2055     return foldICmpShlOne(Cmp, Shl, C);
2056 
2057   // Check that the shift amount is in range. If not, don't perform undefined
2058   // shifts. When the shift is visited, it will be simplified.
2059   unsigned TypeBits = C.getBitWidth();
2060   if (ShiftAmt->uge(TypeBits))
2061     return nullptr;
2062 
2063   ICmpInst::Predicate Pred = Cmp.getPredicate();
2064   Value *X = Shl->getOperand(0);
2065   Type *ShType = Shl->getType();
2066 
2067   // NSW guarantees that we are only shifting out sign bits from the high bits,
2068   // so we can ASHR the compare constant without needing a mask and eliminate
2069   // the shift.
2070   if (Shl->hasNoSignedWrap()) {
2071     if (Pred == ICmpInst::ICMP_SGT) {
2072       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2073       APInt ShiftedC = C.ashr(*ShiftAmt);
2074       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2075     }
2076     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2077         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2078       APInt ShiftedC = C.ashr(*ShiftAmt);
2079       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2080     }
2081     if (Pred == ICmpInst::ICMP_SLT) {
2082       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2083       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2084       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2085       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2086       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2087       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2088       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2089     }
2090     // If this is a signed comparison to 0 and the shift is sign preserving,
2091     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2092     // do that if we're sure to not continue on in this function.
2093     if (isSignTest(Pred, C))
2094       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2095   }
2096 
2097   // NUW guarantees that we are only shifting out zero bits from the high bits,
2098   // so we can LSHR the compare constant without needing a mask and eliminate
2099   // the shift.
2100   if (Shl->hasNoUnsignedWrap()) {
2101     if (Pred == ICmpInst::ICMP_UGT) {
2102       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2103       APInt ShiftedC = C.lshr(*ShiftAmt);
2104       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2105     }
2106     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2107         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2108       APInt ShiftedC = C.lshr(*ShiftAmt);
2109       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2110     }
2111     if (Pred == ICmpInst::ICMP_ULT) {
2112       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2113       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2114       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2115       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2116       assert(C.ugt(0) && "ult 0 should have been eliminated");
2117       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2118       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2119     }
2120   }
2121 
2122   if (Cmp.isEquality() && Shl->hasOneUse()) {
2123     // Strength-reduce the shift into an 'and'.
2124     Constant *Mask = ConstantInt::get(
2125         ShType,
2126         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2127     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2128     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2129     return new ICmpInst(Pred, And, LShrC);
2130   }
2131 
2132   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2133   bool TrueIfSigned = false;
2134   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2135     // (X << 31) <s 0  --> (X & 1) != 0
2136     Constant *Mask = ConstantInt::get(
2137         ShType,
2138         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2139     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2140     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2141                         And, Constant::getNullValue(ShType));
2142   }
2143 
2144   // Simplify 'shl' inequality test into 'and' equality test.
2145   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2146     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2147     if ((C + 1).isPowerOf2() &&
2148         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2149       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2150       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2151                                                      : ICmpInst::ICMP_NE,
2152                           And, Constant::getNullValue(ShType));
2153     }
2154     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2155     if (C.isPowerOf2() &&
2156         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2157       Value *And =
2158           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2159       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2160                                                      : ICmpInst::ICMP_NE,
2161                           And, Constant::getNullValue(ShType));
2162     }
2163   }
2164 
2165   // Transform (icmp pred iM (shl iM %v, N), C)
2166   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2167   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2168   // This enables us to get rid of the shift in favor of a trunc that may be
2169   // free on the target. It has the additional benefit of comparing to a
2170   // smaller constant that may be more target-friendly.
2171   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2172   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2173       DL.isLegalInteger(TypeBits - Amt)) {
2174     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2175     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2176       TruncTy = FixedVectorType::get(TruncTy, ShVTy->getNumElements());
2177     Constant *NewC =
2178         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2179     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2180   }
2181 
2182   return nullptr;
2183 }
2184 
2185 /// Fold icmp ({al}shr X, Y), C.
2186 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2187                                                BinaryOperator *Shr,
2188                                                const APInt &C) {
2189   // An exact shr only shifts out zero bits, so:
2190   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2191   Value *X = Shr->getOperand(0);
2192   CmpInst::Predicate Pred = Cmp.getPredicate();
2193   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2194       C.isNullValue())
2195     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2196 
2197   const APInt *ShiftVal;
2198   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2199     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2200 
2201   const APInt *ShiftAmt;
2202   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2203     return nullptr;
2204 
2205   // Check that the shift amount is in range. If not, don't perform undefined
2206   // shifts. When the shift is visited it will be simplified.
2207   unsigned TypeBits = C.getBitWidth();
2208   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2209   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2210     return nullptr;
2211 
2212   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2213   bool IsExact = Shr->isExact();
2214   Type *ShrTy = Shr->getType();
2215   // TODO: If we could guarantee that InstSimplify would handle all of the
2216   // constant-value-based preconditions in the folds below, then we could assert
2217   // those conditions rather than checking them. This is difficult because of
2218   // undef/poison (PR34838).
2219   if (IsAShr) {
2220     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2221       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2222       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2223       APInt ShiftedC = C.shl(ShAmtVal);
2224       if (ShiftedC.ashr(ShAmtVal) == C)
2225         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2226     }
2227     if (Pred == CmpInst::ICMP_SGT) {
2228       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2229       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2230       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2231           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2232         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2233     }
2234   } else {
2235     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2236       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2237       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2238       APInt ShiftedC = C.shl(ShAmtVal);
2239       if (ShiftedC.lshr(ShAmtVal) == C)
2240         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2241     }
2242     if (Pred == CmpInst::ICMP_UGT) {
2243       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2244       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2245       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2246         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2247     }
2248   }
2249 
2250   if (!Cmp.isEquality())
2251     return nullptr;
2252 
2253   // Handle equality comparisons of shift-by-constant.
2254 
2255   // If the comparison constant changes with the shift, the comparison cannot
2256   // succeed (bits of the comparison constant cannot match the shifted value).
2257   // This should be known by InstSimplify and already be folded to true/false.
2258   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2259           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2260          "Expected icmp+shr simplify did not occur.");
2261 
2262   // If the bits shifted out are known zero, compare the unshifted value:
2263   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2264   if (Shr->isExact())
2265     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2266 
2267   if (Shr->hasOneUse()) {
2268     // Canonicalize the shift into an 'and':
2269     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2270     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2271     Constant *Mask = ConstantInt::get(ShrTy, Val);
2272     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2273     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2274   }
2275 
2276   return nullptr;
2277 }
2278 
2279 Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp,
2280                                                 BinaryOperator *SRem,
2281                                                 const APInt &C) {
2282   // Match an 'is positive' or 'is negative' comparison of remainder by a
2283   // constant power-of-2 value:
2284   // (X % pow2C) sgt/slt 0
2285   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2286   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2287     return nullptr;
2288 
2289   // TODO: The one-use check is standard because we do not typically want to
2290   //       create longer instruction sequences, but this might be a special-case
2291   //       because srem is not good for analysis or codegen.
2292   if (!SRem->hasOneUse())
2293     return nullptr;
2294 
2295   const APInt *DivisorC;
2296   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2297     return nullptr;
2298 
2299   // Mask off the sign bit and the modulo bits (low-bits).
2300   Type *Ty = SRem->getType();
2301   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2302   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2303   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2304 
2305   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2306   // bit is set. Example:
2307   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2308   if (Pred == ICmpInst::ICMP_SGT)
2309     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2310 
2311   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2312   // bit is set. Example:
2313   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2314   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2315 }
2316 
2317 /// Fold icmp (udiv X, Y), C.
2318 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2319                                                 BinaryOperator *UDiv,
2320                                                 const APInt &C) {
2321   const APInt *C2;
2322   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2323     return nullptr;
2324 
2325   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2326 
2327   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2328   Value *Y = UDiv->getOperand(1);
2329   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2330     assert(!C.isMaxValue() &&
2331            "icmp ugt X, UINT_MAX should have been simplified already.");
2332     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2333                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2334   }
2335 
2336   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2337   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2338     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2339     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2340                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2341   }
2342 
2343   return nullptr;
2344 }
2345 
2346 /// Fold icmp ({su}div X, Y), C.
2347 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2348                                                BinaryOperator *Div,
2349                                                const APInt &C) {
2350   // Fold: icmp pred ([us]div X, C2), C -> range test
2351   // Fold this div into the comparison, producing a range check.
2352   // Determine, based on the divide type, what the range is being
2353   // checked.  If there is an overflow on the low or high side, remember
2354   // it, otherwise compute the range [low, hi) bounding the new value.
2355   // See: InsertRangeTest above for the kinds of replacements possible.
2356   const APInt *C2;
2357   if (!match(Div->getOperand(1), m_APInt(C2)))
2358     return nullptr;
2359 
2360   // FIXME: If the operand types don't match the type of the divide
2361   // then don't attempt this transform. The code below doesn't have the
2362   // logic to deal with a signed divide and an unsigned compare (and
2363   // vice versa). This is because (x /s C2) <s C  produces different
2364   // results than (x /s C2) <u C or (x /u C2) <s C or even
2365   // (x /u C2) <u C.  Simply casting the operands and result won't
2366   // work. :(  The if statement below tests that condition and bails
2367   // if it finds it.
2368   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2369   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2370     return nullptr;
2371 
2372   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2373   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2374   // division-by-constant cases should be present, we can not assert that they
2375   // have happened before we reach this icmp instruction.
2376   if (C2->isNullValue() || C2->isOneValue() ||
2377       (DivIsSigned && C2->isAllOnesValue()))
2378     return nullptr;
2379 
2380   // Compute Prod = C * C2. We are essentially solving an equation of
2381   // form X / C2 = C. We solve for X by multiplying C2 and C.
2382   // By solving for X, we can turn this into a range check instead of computing
2383   // a divide.
2384   APInt Prod = C * *C2;
2385 
2386   // Determine if the product overflows by seeing if the product is not equal to
2387   // the divide. Make sure we do the same kind of divide as in the LHS
2388   // instruction that we're folding.
2389   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2390 
2391   ICmpInst::Predicate Pred = Cmp.getPredicate();
2392 
2393   // If the division is known to be exact, then there is no remainder from the
2394   // divide, so the covered range size is unit, otherwise it is the divisor.
2395   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2396 
2397   // Figure out the interval that is being checked.  For example, a comparison
2398   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2399   // Compute this interval based on the constants involved and the signedness of
2400   // the compare/divide.  This computes a half-open interval, keeping track of
2401   // whether either value in the interval overflows.  After analysis each
2402   // overflow variable is set to 0 if it's corresponding bound variable is valid
2403   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2404   int LoOverflow = 0, HiOverflow = 0;
2405   APInt LoBound, HiBound;
2406 
2407   if (!DivIsSigned) {  // udiv
2408     // e.g. X/5 op 3  --> [15, 20)
2409     LoBound = Prod;
2410     HiOverflow = LoOverflow = ProdOV;
2411     if (!HiOverflow) {
2412       // If this is not an exact divide, then many values in the range collapse
2413       // to the same result value.
2414       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2415     }
2416   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2417     if (C.isNullValue()) {       // (X / pos) op 0
2418       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2419       LoBound = -(RangeSize - 1);
2420       HiBound = RangeSize;
2421     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2422       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2423       HiOverflow = LoOverflow = ProdOV;
2424       if (!HiOverflow)
2425         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2426     } else {                       // (X / pos) op neg
2427       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2428       HiBound = Prod + 1;
2429       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2430       if (!LoOverflow) {
2431         APInt DivNeg = -RangeSize;
2432         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2433       }
2434     }
2435   } else if (C2->isNegative()) { // Divisor is < 0.
2436     if (Div->isExact())
2437       RangeSize.negate();
2438     if (C.isNullValue()) { // (X / neg) op 0
2439       // e.g. X/-5 op 0  --> [-4, 5)
2440       LoBound = RangeSize + 1;
2441       HiBound = -RangeSize;
2442       if (HiBound == *C2) {        // -INTMIN = INTMIN
2443         HiOverflow = 1;            // [INTMIN+1, overflow)
2444         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2445       }
2446     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2447       // e.g. X/-5 op 3  --> [-19, -14)
2448       HiBound = Prod + 1;
2449       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2450       if (!LoOverflow)
2451         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2452     } else {                       // (X / neg) op neg
2453       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2454       LoOverflow = HiOverflow = ProdOV;
2455       if (!HiOverflow)
2456         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2457     }
2458 
2459     // Dividing by a negative swaps the condition.  LT <-> GT
2460     Pred = ICmpInst::getSwappedPredicate(Pred);
2461   }
2462 
2463   Value *X = Div->getOperand(0);
2464   switch (Pred) {
2465     default: llvm_unreachable("Unhandled icmp opcode!");
2466     case ICmpInst::ICMP_EQ:
2467       if (LoOverflow && HiOverflow)
2468         return replaceInstUsesWith(Cmp, Builder.getFalse());
2469       if (HiOverflow)
2470         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2471                             ICmpInst::ICMP_UGE, X,
2472                             ConstantInt::get(Div->getType(), LoBound));
2473       if (LoOverflow)
2474         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2475                             ICmpInst::ICMP_ULT, X,
2476                             ConstantInt::get(Div->getType(), HiBound));
2477       return replaceInstUsesWith(
2478           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2479     case ICmpInst::ICMP_NE:
2480       if (LoOverflow && HiOverflow)
2481         return replaceInstUsesWith(Cmp, Builder.getTrue());
2482       if (HiOverflow)
2483         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2484                             ICmpInst::ICMP_ULT, X,
2485                             ConstantInt::get(Div->getType(), LoBound));
2486       if (LoOverflow)
2487         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2488                             ICmpInst::ICMP_UGE, X,
2489                             ConstantInt::get(Div->getType(), HiBound));
2490       return replaceInstUsesWith(Cmp,
2491                                  insertRangeTest(X, LoBound, HiBound,
2492                                                  DivIsSigned, false));
2493     case ICmpInst::ICMP_ULT:
2494     case ICmpInst::ICMP_SLT:
2495       if (LoOverflow == +1)   // Low bound is greater than input range.
2496         return replaceInstUsesWith(Cmp, Builder.getTrue());
2497       if (LoOverflow == -1)   // Low bound is less than input range.
2498         return replaceInstUsesWith(Cmp, Builder.getFalse());
2499       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2500     case ICmpInst::ICMP_UGT:
2501     case ICmpInst::ICMP_SGT:
2502       if (HiOverflow == +1)       // High bound greater than input range.
2503         return replaceInstUsesWith(Cmp, Builder.getFalse());
2504       if (HiOverflow == -1)       // High bound less than input range.
2505         return replaceInstUsesWith(Cmp, Builder.getTrue());
2506       if (Pred == ICmpInst::ICMP_UGT)
2507         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2508                             ConstantInt::get(Div->getType(), HiBound));
2509       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2510                           ConstantInt::get(Div->getType(), HiBound));
2511   }
2512 
2513   return nullptr;
2514 }
2515 
2516 /// Fold icmp (sub X, Y), C.
2517 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2518                                                BinaryOperator *Sub,
2519                                                const APInt &C) {
2520   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2521   ICmpInst::Predicate Pred = Cmp.getPredicate();
2522   const APInt *C2;
2523   APInt SubResult;
2524 
2525   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2526   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2527     return new ICmpInst(Cmp.getPredicate(), Y,
2528                         ConstantInt::get(Y->getType(), 0));
2529 
2530   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2531   if (match(X, m_APInt(C2)) &&
2532       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2533        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2534       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2535     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2536                         ConstantInt::get(Y->getType(), SubResult));
2537 
2538   // The following transforms are only worth it if the only user of the subtract
2539   // is the icmp.
2540   if (!Sub->hasOneUse())
2541     return nullptr;
2542 
2543   if (Sub->hasNoSignedWrap()) {
2544     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2545     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2546       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2547 
2548     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2549     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2550       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2551 
2552     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2553     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2554       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2555 
2556     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2557     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2558       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2559   }
2560 
2561   if (!match(X, m_APInt(C2)))
2562     return nullptr;
2563 
2564   // C2 - Y <u C -> (Y | (C - 1)) == C2
2565   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2566   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2567       (*C2 & (C - 1)) == (C - 1))
2568     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2569 
2570   // C2 - Y >u C -> (Y | C) != C2
2571   //   iff C2 & C == C and C + 1 is a power of 2
2572   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2573     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2574 
2575   return nullptr;
2576 }
2577 
2578 /// Fold icmp (add X, Y), C.
2579 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2580                                                BinaryOperator *Add,
2581                                                const APInt &C) {
2582   Value *Y = Add->getOperand(1);
2583   const APInt *C2;
2584   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2585     return nullptr;
2586 
2587   // Fold icmp pred (add X, C2), C.
2588   Value *X = Add->getOperand(0);
2589   Type *Ty = Add->getType();
2590   CmpInst::Predicate Pred = Cmp.getPredicate();
2591 
2592   // If the add does not wrap, we can always adjust the compare by subtracting
2593   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2594   // are canonicalized to SGT/SLT/UGT/ULT.
2595   if ((Add->hasNoSignedWrap() &&
2596        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2597       (Add->hasNoUnsignedWrap() &&
2598        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2599     bool Overflow;
2600     APInt NewC =
2601         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2602     // If there is overflow, the result must be true or false.
2603     // TODO: Can we assert there is no overflow because InstSimplify always
2604     // handles those cases?
2605     if (!Overflow)
2606       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2607       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2608   }
2609 
2610   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2611   const APInt &Upper = CR.getUpper();
2612   const APInt &Lower = CR.getLower();
2613   if (Cmp.isSigned()) {
2614     if (Lower.isSignMask())
2615       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2616     if (Upper.isSignMask())
2617       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2618   } else {
2619     if (Lower.isMinValue())
2620       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2621     if (Upper.isMinValue())
2622       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2623   }
2624 
2625   if (!Add->hasOneUse())
2626     return nullptr;
2627 
2628   // X+C <u C2 -> (X & -C2) == C
2629   //   iff C & (C2-1) == 0
2630   //       C2 is a power of 2
2631   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2632     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2633                         ConstantExpr::getNeg(cast<Constant>(Y)));
2634 
2635   // X+C >u C2 -> (X & ~C2) != C
2636   //   iff C & C2 == 0
2637   //       C2+1 is a power of 2
2638   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2639     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2640                         ConstantExpr::getNeg(cast<Constant>(Y)));
2641 
2642   return nullptr;
2643 }
2644 
2645 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2646                                            Value *&RHS, ConstantInt *&Less,
2647                                            ConstantInt *&Equal,
2648                                            ConstantInt *&Greater) {
2649   // TODO: Generalize this to work with other comparison idioms or ensure
2650   // they get canonicalized into this form.
2651 
2652   // select i1 (a == b),
2653   //        i32 Equal,
2654   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2655   // where Equal, Less and Greater are placeholders for any three constants.
2656   ICmpInst::Predicate PredA;
2657   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2658       !ICmpInst::isEquality(PredA))
2659     return false;
2660   Value *EqualVal = SI->getTrueValue();
2661   Value *UnequalVal = SI->getFalseValue();
2662   // We still can get non-canonical predicate here, so canonicalize.
2663   if (PredA == ICmpInst::ICMP_NE)
2664     std::swap(EqualVal, UnequalVal);
2665   if (!match(EqualVal, m_ConstantInt(Equal)))
2666     return false;
2667   ICmpInst::Predicate PredB;
2668   Value *LHS2, *RHS2;
2669   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2670                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2671     return false;
2672   // We can get predicate mismatch here, so canonicalize if possible:
2673   // First, ensure that 'LHS' match.
2674   if (LHS2 != LHS) {
2675     // x sgt y <--> y slt x
2676     std::swap(LHS2, RHS2);
2677     PredB = ICmpInst::getSwappedPredicate(PredB);
2678   }
2679   if (LHS2 != LHS)
2680     return false;
2681   // We also need to canonicalize 'RHS'.
2682   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2683     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2684     auto FlippedStrictness =
2685         getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2));
2686     if (!FlippedStrictness)
2687       return false;
2688     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2689     RHS2 = FlippedStrictness->second;
2690     // And kind-of perform the result swap.
2691     std::swap(Less, Greater);
2692     PredB = ICmpInst::ICMP_SLT;
2693   }
2694   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2695 }
2696 
2697 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2698                                                   SelectInst *Select,
2699                                                   ConstantInt *C) {
2700 
2701   assert(C && "Cmp RHS should be a constant int!");
2702   // If we're testing a constant value against the result of a three way
2703   // comparison, the result can be expressed directly in terms of the
2704   // original values being compared.  Note: We could possibly be more
2705   // aggressive here and remove the hasOneUse test. The original select is
2706   // really likely to simplify or sink when we remove a test of the result.
2707   Value *OrigLHS, *OrigRHS;
2708   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2709   if (Cmp.hasOneUse() &&
2710       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2711                               C3GreaterThan)) {
2712     assert(C1LessThan && C2Equal && C3GreaterThan);
2713 
2714     bool TrueWhenLessThan =
2715         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2716             ->isAllOnesValue();
2717     bool TrueWhenEqual =
2718         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2719             ->isAllOnesValue();
2720     bool TrueWhenGreaterThan =
2721         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2722             ->isAllOnesValue();
2723 
2724     // This generates the new instruction that will replace the original Cmp
2725     // Instruction. Instead of enumerating the various combinations when
2726     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2727     // false, we rely on chaining of ORs and future passes of InstCombine to
2728     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2729 
2730     // When none of the three constants satisfy the predicate for the RHS (C),
2731     // the entire original Cmp can be simplified to a false.
2732     Value *Cond = Builder.getFalse();
2733     if (TrueWhenLessThan)
2734       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2735                                                        OrigLHS, OrigRHS));
2736     if (TrueWhenEqual)
2737       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2738                                                        OrigLHS, OrigRHS));
2739     if (TrueWhenGreaterThan)
2740       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2741                                                        OrigLHS, OrigRHS));
2742 
2743     return replaceInstUsesWith(Cmp, Cond);
2744   }
2745   return nullptr;
2746 }
2747 
2748 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2749                                     InstCombiner::BuilderTy &Builder) {
2750   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2751   if (!Bitcast)
2752     return nullptr;
2753 
2754   ICmpInst::Predicate Pred = Cmp.getPredicate();
2755   Value *Op1 = Cmp.getOperand(1);
2756   Value *BCSrcOp = Bitcast->getOperand(0);
2757 
2758   // Make sure the bitcast doesn't change the number of vector elements.
2759   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2760           Bitcast->getDestTy()->getScalarSizeInBits()) {
2761     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2762     Value *X;
2763     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2764       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2765       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2766       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2767       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2768       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2769            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2770           match(Op1, m_Zero()))
2771         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2772 
2773       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2774       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2775         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2776 
2777       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2778       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2779         return new ICmpInst(Pred, X,
2780                             ConstantInt::getAllOnesValue(X->getType()));
2781     }
2782 
2783     // Zero-equality checks are preserved through unsigned floating-point casts:
2784     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2785     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2786     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2787       if (Cmp.isEquality() && match(Op1, m_Zero()))
2788         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2789 
2790     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2791     // the FP extend/truncate because that cast does not change the sign-bit.
2792     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2793     // The sign-bit is always the most significant bit in those types.
2794     const APInt *C;
2795     bool TrueIfSigned;
2796     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2797         isSignBitCheck(Pred, *C, TrueIfSigned)) {
2798       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2799           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2800         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2801         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2802         Type *XType = X->getType();
2803 
2804         // We can't currently handle Power style floating point operations here.
2805         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2806 
2807           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2808           if (auto *XVTy = dyn_cast<VectorType>(XType))
2809             NewType = FixedVectorType::get(NewType, XVTy->getNumElements());
2810           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2811           if (TrueIfSigned)
2812             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2813                                 ConstantInt::getNullValue(NewType));
2814           else
2815             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2816                                 ConstantInt::getAllOnesValue(NewType));
2817         }
2818       }
2819     }
2820   }
2821 
2822   // Test to see if the operands of the icmp are casted versions of other
2823   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2824   if (Bitcast->getType()->isPointerTy() &&
2825       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2826     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2827     // so eliminate it as well.
2828     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2829       Op1 = BC2->getOperand(0);
2830 
2831     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2832     return new ICmpInst(Pred, BCSrcOp, Op1);
2833   }
2834 
2835   // Folding: icmp <pred> iN X, C
2836   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2837   //    and C is a splat of a K-bit pattern
2838   //    and SC is a constant vector = <C', C', C', ..., C'>
2839   // Into:
2840   //   %E = extractelement <M x iK> %vec, i32 C'
2841   //   icmp <pred> iK %E, trunc(C)
2842   const APInt *C;
2843   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2844       !Bitcast->getType()->isIntegerTy() ||
2845       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2846     return nullptr;
2847 
2848   Value *Vec;
2849   ArrayRef<int> Mask;
2850   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2851     // Check whether every element of Mask is the same constant
2852     if (is_splat(Mask)) {
2853       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2854       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2855       if (C->isSplat(EltTy->getBitWidth())) {
2856         // Fold the icmp based on the value of C
2857         // If C is M copies of an iK sized bit pattern,
2858         // then:
2859         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2860         //       icmp <pred> iK %SplatVal, <pattern>
2861         Value *Elem = Builder.getInt32(Mask[0]);
2862         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2863         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2864         return new ICmpInst(Pred, Extract, NewC);
2865       }
2866     }
2867   }
2868   return nullptr;
2869 }
2870 
2871 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2872 /// where X is some kind of instruction.
2873 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2874   const APInt *C;
2875   if (!match(Cmp.getOperand(1), m_APInt(C)))
2876     return nullptr;
2877 
2878   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2879     switch (BO->getOpcode()) {
2880     case Instruction::Xor:
2881       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2882         return I;
2883       break;
2884     case Instruction::And:
2885       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2886         return I;
2887       break;
2888     case Instruction::Or:
2889       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2890         return I;
2891       break;
2892     case Instruction::Mul:
2893       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2894         return I;
2895       break;
2896     case Instruction::Shl:
2897       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2898         return I;
2899       break;
2900     case Instruction::LShr:
2901     case Instruction::AShr:
2902       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2903         return I;
2904       break;
2905     case Instruction::SRem:
2906       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2907         return I;
2908       break;
2909     case Instruction::UDiv:
2910       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2911         return I;
2912       LLVM_FALLTHROUGH;
2913     case Instruction::SDiv:
2914       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2915         return I;
2916       break;
2917     case Instruction::Sub:
2918       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2919         return I;
2920       break;
2921     case Instruction::Add:
2922       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2923         return I;
2924       break;
2925     default:
2926       break;
2927     }
2928     // TODO: These folds could be refactored to be part of the above calls.
2929     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2930       return I;
2931   }
2932 
2933   // Match against CmpInst LHS being instructions other than binary operators.
2934 
2935   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2936     // For now, we only support constant integers while folding the
2937     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2938     // similar to the cases handled by binary ops above.
2939     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2940       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2941         return I;
2942   }
2943 
2944   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2945     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2946       return I;
2947   }
2948 
2949   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2950     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2951       return I;
2952 
2953   return nullptr;
2954 }
2955 
2956 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2957 /// icmp eq/ne BO, C.
2958 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2959                                                              BinaryOperator *BO,
2960                                                              const APInt &C) {
2961   // TODO: Some of these folds could work with arbitrary constants, but this
2962   // function is limited to scalar and vector splat constants.
2963   if (!Cmp.isEquality())
2964     return nullptr;
2965 
2966   ICmpInst::Predicate Pred = Cmp.getPredicate();
2967   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2968   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2969   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2970 
2971   switch (BO->getOpcode()) {
2972   case Instruction::SRem:
2973     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2974     if (C.isNullValue() && BO->hasOneUse()) {
2975       const APInt *BOC;
2976       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2977         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2978         return new ICmpInst(Pred, NewRem,
2979                             Constant::getNullValue(BO->getType()));
2980       }
2981     }
2982     break;
2983   case Instruction::Add: {
2984     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2985     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2986       if (BO->hasOneUse())
2987         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
2988     } else if (C.isNullValue()) {
2989       // Replace ((add A, B) != 0) with (A != -B) if A or B is
2990       // efficiently invertible, or if the add has just this one use.
2991       if (Value *NegVal = dyn_castNegVal(BOp1))
2992         return new ICmpInst(Pred, BOp0, NegVal);
2993       if (Value *NegVal = dyn_castNegVal(BOp0))
2994         return new ICmpInst(Pred, NegVal, BOp1);
2995       if (BO->hasOneUse()) {
2996         Value *Neg = Builder.CreateNeg(BOp1);
2997         Neg->takeName(BO);
2998         return new ICmpInst(Pred, BOp0, Neg);
2999       }
3000     }
3001     break;
3002   }
3003   case Instruction::Xor:
3004     if (BO->hasOneUse()) {
3005       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3006         // For the xor case, we can xor two constants together, eliminating
3007         // the explicit xor.
3008         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3009       } else if (C.isNullValue()) {
3010         // Replace ((xor A, B) != 0) with (A != B)
3011         return new ICmpInst(Pred, BOp0, BOp1);
3012       }
3013     }
3014     break;
3015   case Instruction::Sub:
3016     if (BO->hasOneUse()) {
3017       // Only check for constant LHS here, as constant RHS will be canonicalized
3018       // to add and use the fold above.
3019       if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
3020         // Replace ((sub BOC, B) != C) with (B != BOC-C).
3021         return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3022       } else if (C.isNullValue()) {
3023         // Replace ((sub A, B) != 0) with (A != B).
3024         return new ICmpInst(Pred, BOp0, BOp1);
3025       }
3026     }
3027     break;
3028   case Instruction::Or: {
3029     const APInt *BOC;
3030     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3031       // Comparing if all bits outside of a constant mask are set?
3032       // Replace (X | C) == -1 with (X & ~C) == ~C.
3033       // This removes the -1 constant.
3034       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3035       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3036       return new ICmpInst(Pred, And, NotBOC);
3037     }
3038     break;
3039   }
3040   case Instruction::And: {
3041     const APInt *BOC;
3042     if (match(BOp1, m_APInt(BOC))) {
3043       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3044       if (C == *BOC && C.isPowerOf2())
3045         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3046                             BO, Constant::getNullValue(RHS->getType()));
3047     }
3048     break;
3049   }
3050   case Instruction::Mul:
3051     if (C.isNullValue() && BO->hasNoSignedWrap()) {
3052       const APInt *BOC;
3053       if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
3054         // The trivial case (mul X, 0) is handled by InstSimplify.
3055         // General case : (mul X, C) != 0 iff X != 0
3056         //                (mul X, C) == 0 iff X == 0
3057         return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
3058       }
3059     }
3060     break;
3061   case Instruction::UDiv:
3062     if (C.isNullValue()) {
3063       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3064       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3065       return new ICmpInst(NewPred, BOp1, BOp0);
3066     }
3067     break;
3068   default:
3069     break;
3070   }
3071   return nullptr;
3072 }
3073 
3074 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3075 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
3076                                                            IntrinsicInst *II,
3077                                                            const APInt &C) {
3078   Type *Ty = II->getType();
3079   unsigned BitWidth = C.getBitWidth();
3080   switch (II->getIntrinsicID()) {
3081   case Intrinsic::bswap:
3082     // bswap(A) == C  ->  A == bswap(C)
3083     return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3084                         ConstantInt::get(Ty, C.byteSwap()));
3085 
3086   case Intrinsic::ctlz:
3087   case Intrinsic::cttz: {
3088     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3089     if (C == BitWidth)
3090       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3091                           ConstantInt::getNullValue(Ty));
3092 
3093     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3094     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3095     // Limit to one use to ensure we don't increase instruction count.
3096     unsigned Num = C.getLimitedValue(BitWidth);
3097     if (Num != BitWidth && II->hasOneUse()) {
3098       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3099       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3100                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3101       APInt Mask2 = IsTrailing
3102         ? APInt::getOneBitSet(BitWidth, Num)
3103         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3104       return new ICmpInst(Cmp.getPredicate(),
3105           Builder.CreateAnd(II->getArgOperand(0), Mask1),
3106           ConstantInt::get(Ty, Mask2));
3107     }
3108     break;
3109   }
3110 
3111   case Intrinsic::ctpop: {
3112     // popcount(A) == 0  ->  A == 0 and likewise for !=
3113     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3114     bool IsZero = C.isNullValue();
3115     if (IsZero || C == BitWidth)
3116       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3117           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3118 
3119     break;
3120   }
3121 
3122   case Intrinsic::uadd_sat: {
3123     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3124     if (C.isNullValue()) {
3125       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3126       return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3127     }
3128     break;
3129   }
3130 
3131   case Intrinsic::usub_sat: {
3132     // usub.sat(a, b) == 0  ->  a <= b
3133     if (C.isNullValue()) {
3134       ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3135           ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3136       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3137     }
3138     break;
3139   }
3140   default:
3141     break;
3142   }
3143 
3144   return nullptr;
3145 }
3146 
3147 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3148 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3149                                                          IntrinsicInst *II,
3150                                                          const APInt &C) {
3151   if (Cmp.isEquality())
3152     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3153 
3154   Type *Ty = II->getType();
3155   unsigned BitWidth = C.getBitWidth();
3156   switch (II->getIntrinsicID()) {
3157   case Intrinsic::ctlz: {
3158     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3159     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3160       unsigned Num = C.getLimitedValue();
3161       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3162       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3163                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3164     }
3165 
3166     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3167     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3168         C.uge(1) && C.ule(BitWidth)) {
3169       unsigned Num = C.getLimitedValue();
3170       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3171       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3172                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3173     }
3174     break;
3175   }
3176   case Intrinsic::cttz: {
3177     // Limit to one use to ensure we don't increase instruction count.
3178     if (!II->hasOneUse())
3179       return nullptr;
3180 
3181     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3182     if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3183       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3184       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3185                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3186                              ConstantInt::getNullValue(Ty));
3187     }
3188 
3189     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3190     if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3191         C.uge(1) && C.ule(BitWidth)) {
3192       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3193       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3194                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3195                              ConstantInt::getNullValue(Ty));
3196     }
3197     break;
3198   }
3199   default:
3200     break;
3201   }
3202 
3203   return nullptr;
3204 }
3205 
3206 /// Handle icmp with constant (but not simple integer constant) RHS.
3207 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3208   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3209   Constant *RHSC = dyn_cast<Constant>(Op1);
3210   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3211   if (!RHSC || !LHSI)
3212     return nullptr;
3213 
3214   switch (LHSI->getOpcode()) {
3215   case Instruction::GetElementPtr:
3216     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3217     if (RHSC->isNullValue() &&
3218         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3219       return new ICmpInst(
3220           I.getPredicate(), LHSI->getOperand(0),
3221           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3222     break;
3223   case Instruction::PHI:
3224     // Only fold icmp into the PHI if the phi and icmp are in the same
3225     // block.  If in the same block, we're encouraging jump threading.  If
3226     // not, we are just pessimizing the code by making an i1 phi.
3227     if (LHSI->getParent() == I.getParent())
3228       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3229         return NV;
3230     break;
3231   case Instruction::Select: {
3232     // If either operand of the select is a constant, we can fold the
3233     // comparison into the select arms, which will cause one to be
3234     // constant folded and the select turned into a bitwise or.
3235     Value *Op1 = nullptr, *Op2 = nullptr;
3236     ConstantInt *CI = nullptr;
3237     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3238       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3239       CI = dyn_cast<ConstantInt>(Op1);
3240     }
3241     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3242       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3243       CI = dyn_cast<ConstantInt>(Op2);
3244     }
3245 
3246     // We only want to perform this transformation if it will not lead to
3247     // additional code. This is true if either both sides of the select
3248     // fold to a constant (in which case the icmp is replaced with a select
3249     // which will usually simplify) or this is the only user of the
3250     // select (in which case we are trading a select+icmp for a simpler
3251     // select+icmp) or all uses of the select can be replaced based on
3252     // dominance information ("Global cases").
3253     bool Transform = false;
3254     if (Op1 && Op2)
3255       Transform = true;
3256     else if (Op1 || Op2) {
3257       // Local case
3258       if (LHSI->hasOneUse())
3259         Transform = true;
3260       // Global cases
3261       else if (CI && !CI->isZero())
3262         // When Op1 is constant try replacing select with second operand.
3263         // Otherwise Op2 is constant and try replacing select with first
3264         // operand.
3265         Transform =
3266             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3267     }
3268     if (Transform) {
3269       if (!Op1)
3270         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3271                                  I.getName());
3272       if (!Op2)
3273         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3274                                  I.getName());
3275       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3276     }
3277     break;
3278   }
3279   case Instruction::IntToPtr:
3280     // icmp pred inttoptr(X), null -> icmp pred X, 0
3281     if (RHSC->isNullValue() &&
3282         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3283       return new ICmpInst(
3284           I.getPredicate(), LHSI->getOperand(0),
3285           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3286     break;
3287 
3288   case Instruction::Load:
3289     // Try to optimize things like "A[i] > 4" to index computations.
3290     if (GetElementPtrInst *GEP =
3291             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3292       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3293         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3294             !cast<LoadInst>(LHSI)->isVolatile())
3295           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3296             return Res;
3297     }
3298     break;
3299   }
3300 
3301   return nullptr;
3302 }
3303 
3304 /// Some comparisons can be simplified.
3305 /// In this case, we are looking for comparisons that look like
3306 /// a check for a lossy truncation.
3307 /// Folds:
3308 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3309 /// Where Mask is some pattern that produces all-ones in low bits:
3310 ///    (-1 >> y)
3311 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3312 ///   ~(-1 << y)
3313 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3314 /// The Mask can be a constant, too.
3315 /// For some predicates, the operands are commutative.
3316 /// For others, x can only be on a specific side.
3317 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3318                                           InstCombiner::BuilderTy &Builder) {
3319   ICmpInst::Predicate SrcPred;
3320   Value *X, *M, *Y;
3321   auto m_VariableMask = m_CombineOr(
3322       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3323                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3324       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3325                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3326   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3327   if (!match(&I, m_c_ICmp(SrcPred,
3328                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3329                           m_Deferred(X))))
3330     return nullptr;
3331 
3332   ICmpInst::Predicate DstPred;
3333   switch (SrcPred) {
3334   case ICmpInst::Predicate::ICMP_EQ:
3335     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3336     DstPred = ICmpInst::Predicate::ICMP_ULE;
3337     break;
3338   case ICmpInst::Predicate::ICMP_NE:
3339     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3340     DstPred = ICmpInst::Predicate::ICMP_UGT;
3341     break;
3342   case ICmpInst::Predicate::ICMP_ULT:
3343     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3344     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3345     DstPred = ICmpInst::Predicate::ICMP_UGT;
3346     break;
3347   case ICmpInst::Predicate::ICMP_UGE:
3348     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3349     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3350     DstPred = ICmpInst::Predicate::ICMP_ULE;
3351     break;
3352   case ICmpInst::Predicate::ICMP_SLT:
3353     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3354     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3355     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3356       return nullptr;
3357     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3358       return nullptr;
3359     DstPred = ICmpInst::Predicate::ICMP_SGT;
3360     break;
3361   case ICmpInst::Predicate::ICMP_SGE:
3362     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3363     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3364     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3365       return nullptr;
3366     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3367       return nullptr;
3368     DstPred = ICmpInst::Predicate::ICMP_SLE;
3369     break;
3370   case ICmpInst::Predicate::ICMP_SGT:
3371   case ICmpInst::Predicate::ICMP_SLE:
3372     return nullptr;
3373   case ICmpInst::Predicate::ICMP_UGT:
3374   case ICmpInst::Predicate::ICMP_ULE:
3375     llvm_unreachable("Instsimplify took care of commut. variant");
3376     break;
3377   default:
3378     llvm_unreachable("All possible folds are handled.");
3379   }
3380 
3381   // The mask value may be a vector constant that has undefined elements. But it
3382   // may not be safe to propagate those undefs into the new compare, so replace
3383   // those elements by copying an existing, defined, and safe scalar constant.
3384   Type *OpTy = M->getType();
3385   auto *VecC = dyn_cast<Constant>(M);
3386   if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) {
3387     auto *OpVTy = cast<VectorType>(OpTy);
3388     Constant *SafeReplacementConstant = nullptr;
3389     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3390       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3391         SafeReplacementConstant = VecC->getAggregateElement(i);
3392         break;
3393       }
3394     }
3395     assert(SafeReplacementConstant && "Failed to find undef replacement");
3396     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3397   }
3398 
3399   return Builder.CreateICmp(DstPred, X, M);
3400 }
3401 
3402 /// Some comparisons can be simplified.
3403 /// In this case, we are looking for comparisons that look like
3404 /// a check for a lossy signed truncation.
3405 /// Folds:   (MaskedBits is a constant.)
3406 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3407 /// Into:
3408 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3409 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3410 static Value *
3411 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3412                                  InstCombiner::BuilderTy &Builder) {
3413   ICmpInst::Predicate SrcPred;
3414   Value *X;
3415   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3416   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3417   if (!match(&I, m_c_ICmp(SrcPred,
3418                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3419                                           m_APInt(C1))),
3420                           m_Deferred(X))))
3421     return nullptr;
3422 
3423   // Potential handling of non-splats: for each element:
3424   //  * if both are undef, replace with constant 0.
3425   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3426   //  * if both are not undef, and are different, bailout.
3427   //  * else, only one is undef, then pick the non-undef one.
3428 
3429   // The shift amount must be equal.
3430   if (*C0 != *C1)
3431     return nullptr;
3432   const APInt &MaskedBits = *C0;
3433   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3434 
3435   ICmpInst::Predicate DstPred;
3436   switch (SrcPred) {
3437   case ICmpInst::Predicate::ICMP_EQ:
3438     // ((%x << MaskedBits) a>> MaskedBits) == %x
3439     //   =>
3440     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3441     DstPred = ICmpInst::Predicate::ICMP_ULT;
3442     break;
3443   case ICmpInst::Predicate::ICMP_NE:
3444     // ((%x << MaskedBits) a>> MaskedBits) != %x
3445     //   =>
3446     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3447     DstPred = ICmpInst::Predicate::ICMP_UGE;
3448     break;
3449   // FIXME: are more folds possible?
3450   default:
3451     return nullptr;
3452   }
3453 
3454   auto *XType = X->getType();
3455   const unsigned XBitWidth = XType->getScalarSizeInBits();
3456   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3457   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3458 
3459   // KeptBits = bitwidth(%x) - MaskedBits
3460   const APInt KeptBits = BitWidth - MaskedBits;
3461   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3462   // ICmpCst = (1 << KeptBits)
3463   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3464   assert(ICmpCst.isPowerOf2());
3465   // AddCst = (1 << (KeptBits-1))
3466   const APInt AddCst = ICmpCst.lshr(1);
3467   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3468 
3469   // T0 = add %x, AddCst
3470   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3471   // T1 = T0 DstPred ICmpCst
3472   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3473 
3474   return T1;
3475 }
3476 
3477 // Given pattern:
3478 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3479 // we should move shifts to the same hand of 'and', i.e. rewrite as
3480 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3481 // We are only interested in opposite logical shifts here.
3482 // One of the shifts can be truncated.
3483 // If we can, we want to end up creating 'lshr' shift.
3484 static Value *
3485 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3486                                            InstCombiner::BuilderTy &Builder) {
3487   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3488       !I.getOperand(0)->hasOneUse())
3489     return nullptr;
3490 
3491   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3492 
3493   // Look for an 'and' of two logical shifts, one of which may be truncated.
3494   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3495   Instruction *XShift, *MaybeTruncation, *YShift;
3496   if (!match(
3497           I.getOperand(0),
3498           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3499                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3500                                    m_AnyLogicalShift, m_Instruction(YShift))),
3501                                m_Instruction(MaybeTruncation)))))
3502     return nullptr;
3503 
3504   // We potentially looked past 'trunc', but only when matching YShift,
3505   // therefore YShift must have the widest type.
3506   Instruction *WidestShift = YShift;
3507   // Therefore XShift must have the shallowest type.
3508   // Or they both have identical types if there was no truncation.
3509   Instruction *NarrowestShift = XShift;
3510 
3511   Type *WidestTy = WidestShift->getType();
3512   Type *NarrowestTy = NarrowestShift->getType();
3513   assert(NarrowestTy == I.getOperand(0)->getType() &&
3514          "We did not look past any shifts while matching XShift though.");
3515   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3516 
3517   // If YShift is a 'lshr', swap the shifts around.
3518   if (match(YShift, m_LShr(m_Value(), m_Value())))
3519     std::swap(XShift, YShift);
3520 
3521   // The shifts must be in opposite directions.
3522   auto XShiftOpcode = XShift->getOpcode();
3523   if (XShiftOpcode == YShift->getOpcode())
3524     return nullptr; // Do not care about same-direction shifts here.
3525 
3526   Value *X, *XShAmt, *Y, *YShAmt;
3527   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3528   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3529 
3530   // If one of the values being shifted is a constant, then we will end with
3531   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3532   // however, we will need to ensure that we won't increase instruction count.
3533   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3534     // At least one of the hands of the 'and' should be one-use shift.
3535     if (!match(I.getOperand(0),
3536                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3537       return nullptr;
3538     if (HadTrunc) {
3539       // Due to the 'trunc', we will need to widen X. For that either the old
3540       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3541       if (!MaybeTruncation->hasOneUse() &&
3542           !NarrowestShift->getOperand(1)->hasOneUse())
3543         return nullptr;
3544     }
3545   }
3546 
3547   // We have two shift amounts from two different shifts. The types of those
3548   // shift amounts may not match. If that's the case let's bailout now.
3549   if (XShAmt->getType() != YShAmt->getType())
3550     return nullptr;
3551 
3552   // As input, we have the following pattern:
3553   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3554   // We want to rewrite that as:
3555   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3556   // While we know that originally (Q+K) would not overflow
3557   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3558   // shift amounts. so it may now overflow in smaller bitwidth.
3559   // To ensure that does not happen, we need to ensure that the total maximal
3560   // shift amount is still representable in that smaller bit width.
3561   unsigned MaximalPossibleTotalShiftAmount =
3562       (WidestTy->getScalarSizeInBits() - 1) +
3563       (NarrowestTy->getScalarSizeInBits() - 1);
3564   APInt MaximalRepresentableShiftAmount =
3565       APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3566   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3567     return nullptr;
3568 
3569   // Can we fold (XShAmt+YShAmt) ?
3570   auto *NewShAmt = dyn_cast_or_null<Constant>(
3571       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3572                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3573   if (!NewShAmt)
3574     return nullptr;
3575   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3576   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3577 
3578   // Is the new shift amount smaller than the bit width?
3579   // FIXME: could also rely on ConstantRange.
3580   if (!match(NewShAmt,
3581              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3582                                 APInt(WidestBitWidth, WidestBitWidth))))
3583     return nullptr;
3584 
3585   // An extra legality check is needed if we had trunc-of-lshr.
3586   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3587     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3588                     WidestShift]() {
3589       // It isn't obvious whether it's worth it to analyze non-constants here.
3590       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3591       // If *any* of these preconditions matches we can perform the fold.
3592       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3593                                     ? NewShAmt->getSplatValue()
3594                                     : NewShAmt;
3595       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3596       if (NewShAmtSplat &&
3597           (NewShAmtSplat->isNullValue() ||
3598            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3599         return true;
3600       // We consider *min* leading zeros so a single outlier
3601       // blocks the transform as opposed to allowing it.
3602       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3603         KnownBits Known = computeKnownBits(C, SQ.DL);
3604         unsigned MinLeadZero = Known.countMinLeadingZeros();
3605         // If the value being shifted has at most lowest bit set we can fold.
3606         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3607         if (MaxActiveBits <= 1)
3608           return true;
3609         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3610         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3611           return true;
3612       }
3613       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3614         KnownBits Known = computeKnownBits(C, SQ.DL);
3615         unsigned MinLeadZero = Known.countMinLeadingZeros();
3616         // If the value being shifted has at most lowest bit set we can fold.
3617         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3618         if (MaxActiveBits <= 1)
3619           return true;
3620         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3621         if (NewShAmtSplat) {
3622           APInt AdjNewShAmt =
3623               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3624           if (AdjNewShAmt.ule(MinLeadZero))
3625             return true;
3626         }
3627       }
3628       return false; // Can't tell if it's ok.
3629     };
3630     if (!CanFold())
3631       return nullptr;
3632   }
3633 
3634   // All good, we can do this fold.
3635   X = Builder.CreateZExt(X, WidestTy);
3636   Y = Builder.CreateZExt(Y, WidestTy);
3637   // The shift is the same that was for X.
3638   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3639                   ? Builder.CreateLShr(X, NewShAmt)
3640                   : Builder.CreateShl(X, NewShAmt);
3641   Value *T1 = Builder.CreateAnd(T0, Y);
3642   return Builder.CreateICmp(I.getPredicate(), T1,
3643                             Constant::getNullValue(WidestTy));
3644 }
3645 
3646 /// Fold
3647 ///   (-1 u/ x) u< y
3648 ///   ((x * y) u/ x) != y
3649 /// to
3650 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3651 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3652 /// will mean that we are looking for the opposite answer.
3653 Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3654   ICmpInst::Predicate Pred;
3655   Value *X, *Y;
3656   Instruction *Mul;
3657   bool NeedNegation;
3658   // Look for: (-1 u/ x) u</u>= y
3659   if (!I.isEquality() &&
3660       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3661                          m_Value(Y)))) {
3662     Mul = nullptr;
3663 
3664     // Are we checking that overflow does not happen, or does happen?
3665     switch (Pred) {
3666     case ICmpInst::Predicate::ICMP_ULT:
3667       NeedNegation = false;
3668       break; // OK
3669     case ICmpInst::Predicate::ICMP_UGE:
3670       NeedNegation = true;
3671       break; // OK
3672     default:
3673       return nullptr; // Wrong predicate.
3674     }
3675   } else // Look for: ((x * y) u/ x) !=/== y
3676       if (I.isEquality() &&
3677           match(&I, m_c_ICmp(Pred, m_Value(Y),
3678                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3679                                                                   m_Value(X)),
3680                                                           m_Instruction(Mul)),
3681                                              m_Deferred(X)))))) {
3682     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3683   } else
3684     return nullptr;
3685 
3686   BuilderTy::InsertPointGuard Guard(Builder);
3687   // If the pattern included (x * y), we'll want to insert new instructions
3688   // right before that original multiplication so that we can replace it.
3689   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3690   if (MulHadOtherUses)
3691     Builder.SetInsertPoint(Mul);
3692 
3693   Function *F = Intrinsic::getDeclaration(
3694       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3695   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3696 
3697   // If the multiplication was used elsewhere, to ensure that we don't leave
3698   // "duplicate" instructions, replace uses of that original multiplication
3699   // with the multiplication result from the with.overflow intrinsic.
3700   if (MulHadOtherUses)
3701     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3702 
3703   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3704   if (NeedNegation) // This technically increases instruction count.
3705     Res = Builder.CreateNot(Res, "umul.not.ov");
3706 
3707   // If we replaced the mul, erase it. Do this after all uses of Builder,
3708   // as the mul is used as insertion point.
3709   if (MulHadOtherUses)
3710     eraseInstFromFunction(*Mul);
3711 
3712   return Res;
3713 }
3714 
3715 /// Try to fold icmp (binop), X or icmp X, (binop).
3716 /// TODO: A large part of this logic is duplicated in InstSimplify's
3717 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3718 /// duplication.
3719 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) {
3720   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3721   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3722 
3723   // Special logic for binary operators.
3724   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3725   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3726   if (!BO0 && !BO1)
3727     return nullptr;
3728 
3729   const CmpInst::Predicate Pred = I.getPredicate();
3730   Value *X;
3731 
3732   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3733   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3734   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3735       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3736     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3737   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3738   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3739       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3740     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3741 
3742   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3743   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3744     NoOp0WrapProblem =
3745         ICmpInst::isEquality(Pred) ||
3746         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3747         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3748   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3749     NoOp1WrapProblem =
3750         ICmpInst::isEquality(Pred) ||
3751         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3752         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3753 
3754   // Analyze the case when either Op0 or Op1 is an add instruction.
3755   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3756   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3757   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3758     A = BO0->getOperand(0);
3759     B = BO0->getOperand(1);
3760   }
3761   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3762     C = BO1->getOperand(0);
3763     D = BO1->getOperand(1);
3764   }
3765 
3766   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3767   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3768   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3769     return new ICmpInst(Pred, A == Op1 ? B : A,
3770                         Constant::getNullValue(Op1->getType()));
3771 
3772   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3773   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3774   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3775     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3776                         C == Op0 ? D : C);
3777 
3778   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3779   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3780       NoOp1WrapProblem) {
3781     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3782     Value *Y, *Z;
3783     if (A == C) {
3784       // C + B == C + D  ->  B == D
3785       Y = B;
3786       Z = D;
3787     } else if (A == D) {
3788       // D + B == C + D  ->  B == C
3789       Y = B;
3790       Z = C;
3791     } else if (B == C) {
3792       // A + C == C + D  ->  A == D
3793       Y = A;
3794       Z = D;
3795     } else {
3796       assert(B == D);
3797       // A + D == C + D  ->  A == C
3798       Y = A;
3799       Z = C;
3800     }
3801     return new ICmpInst(Pred, Y, Z);
3802   }
3803 
3804   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3805   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3806       match(B, m_AllOnes()))
3807     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3808 
3809   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3810   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3811       match(B, m_AllOnes()))
3812     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3813 
3814   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3815   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3816     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3817 
3818   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3819   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3820     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3821 
3822   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3823   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3824       match(D, m_AllOnes()))
3825     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3826 
3827   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3828   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3829       match(D, m_AllOnes()))
3830     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3831 
3832   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3833   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3834     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3835 
3836   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3837   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3838     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3839 
3840   // TODO: The subtraction-related identities shown below also hold, but
3841   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3842   // wouldn't happen even if they were implemented.
3843   //
3844   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3845   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3846   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3847   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3848 
3849   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3850   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3851     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3852 
3853   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3854   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3855     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3856 
3857   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3858   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3859     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3860 
3861   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3862   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3863     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3864 
3865   // if C1 has greater magnitude than C2:
3866   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3867   //  s.t. C3 = C1 - C2
3868   //
3869   // if C2 has greater magnitude than C1:
3870   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3871   //  s.t. C3 = C2 - C1
3872   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3873       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3874     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3875       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3876         const APInt &AP1 = C1->getValue();
3877         const APInt &AP2 = C2->getValue();
3878         if (AP1.isNegative() == AP2.isNegative()) {
3879           APInt AP1Abs = C1->getValue().abs();
3880           APInt AP2Abs = C2->getValue().abs();
3881           if (AP1Abs.uge(AP2Abs)) {
3882             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3883             Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3884             return new ICmpInst(Pred, NewAdd, C);
3885           } else {
3886             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3887             Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3888             return new ICmpInst(Pred, A, NewAdd);
3889           }
3890         }
3891       }
3892 
3893   // Analyze the case when either Op0 or Op1 is a sub instruction.
3894   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3895   A = nullptr;
3896   B = nullptr;
3897   C = nullptr;
3898   D = nullptr;
3899   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3900     A = BO0->getOperand(0);
3901     B = BO0->getOperand(1);
3902   }
3903   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3904     C = BO1->getOperand(0);
3905     D = BO1->getOperand(1);
3906   }
3907 
3908   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3909   if (A == Op1 && NoOp0WrapProblem)
3910     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3911   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3912   if (C == Op0 && NoOp1WrapProblem)
3913     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3914 
3915   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3916   // (A - B) u>/u<= A --> B u>/u<= A
3917   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3918     return new ICmpInst(Pred, B, A);
3919   // C u</u>= (C - D) --> C u</u>= D
3920   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3921     return new ICmpInst(Pred, C, D);
3922   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
3923   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3924       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3925     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3926   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
3927   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3928       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3929     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3930 
3931   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3932   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3933     return new ICmpInst(Pred, A, C);
3934 
3935   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3936   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3937     return new ICmpInst(Pred, D, B);
3938 
3939   // icmp (0-X) < cst --> x > -cst
3940   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3941     Value *X;
3942     if (match(BO0, m_Neg(m_Value(X))))
3943       if (Constant *RHSC = dyn_cast<Constant>(Op1))
3944         if (RHSC->isNotMinSignedValue())
3945           return new ICmpInst(I.getSwappedPredicate(), X,
3946                               ConstantExpr::getNeg(RHSC));
3947   }
3948 
3949   BinaryOperator *SRem = nullptr;
3950   // icmp (srem X, Y), Y
3951   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3952     SRem = BO0;
3953   // icmp Y, (srem X, Y)
3954   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3955            Op0 == BO1->getOperand(1))
3956     SRem = BO1;
3957   if (SRem) {
3958     // We don't check hasOneUse to avoid increasing register pressure because
3959     // the value we use is the same value this instruction was already using.
3960     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3961     default:
3962       break;
3963     case ICmpInst::ICMP_EQ:
3964       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3965     case ICmpInst::ICMP_NE:
3966       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3967     case ICmpInst::ICMP_SGT:
3968     case ICmpInst::ICMP_SGE:
3969       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3970                           Constant::getAllOnesValue(SRem->getType()));
3971     case ICmpInst::ICMP_SLT:
3972     case ICmpInst::ICMP_SLE:
3973       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3974                           Constant::getNullValue(SRem->getType()));
3975     }
3976   }
3977 
3978   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3979       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3980     switch (BO0->getOpcode()) {
3981     default:
3982       break;
3983     case Instruction::Add:
3984     case Instruction::Sub:
3985     case Instruction::Xor: {
3986       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3987         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3988 
3989       const APInt *C;
3990       if (match(BO0->getOperand(1), m_APInt(C))) {
3991         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3992         if (C->isSignMask()) {
3993           ICmpInst::Predicate NewPred =
3994               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3995           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3996         }
3997 
3998         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3999         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4000           ICmpInst::Predicate NewPred =
4001               I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
4002           NewPred = I.getSwappedPredicate(NewPred);
4003           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4004         }
4005       }
4006       break;
4007     }
4008     case Instruction::Mul: {
4009       if (!I.isEquality())
4010         break;
4011 
4012       const APInt *C;
4013       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
4014           !C->isOneValue()) {
4015         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4016         // Mask = -1 >> count-trailing-zeros(C).
4017         if (unsigned TZs = C->countTrailingZeros()) {
4018           Constant *Mask = ConstantInt::get(
4019               BO0->getType(),
4020               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4021           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4022           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4023           return new ICmpInst(Pred, And1, And2);
4024         }
4025         // If there are no trailing zeros in the multiplier, just eliminate
4026         // the multiplies (no masking is needed):
4027         // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
4028         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4029       }
4030       break;
4031     }
4032     case Instruction::UDiv:
4033     case Instruction::LShr:
4034       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4035         break;
4036       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4037 
4038     case Instruction::SDiv:
4039       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4040         break;
4041       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4042 
4043     case Instruction::AShr:
4044       if (!BO0->isExact() || !BO1->isExact())
4045         break;
4046       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4047 
4048     case Instruction::Shl: {
4049       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4050       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4051       if (!NUW && !NSW)
4052         break;
4053       if (!NSW && I.isSigned())
4054         break;
4055       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4056     }
4057     }
4058   }
4059 
4060   if (BO0) {
4061     // Transform  A & (L - 1) `ult` L --> L != 0
4062     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4063     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4064 
4065     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4066       auto *Zero = Constant::getNullValue(BO0->getType());
4067       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4068     }
4069   }
4070 
4071   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4072     return replaceInstUsesWith(I, V);
4073 
4074   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4075     return replaceInstUsesWith(I, V);
4076 
4077   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4078     return replaceInstUsesWith(I, V);
4079 
4080   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4081     return replaceInstUsesWith(I, V);
4082 
4083   return nullptr;
4084 }
4085 
4086 /// Fold icmp Pred min|max(X, Y), X.
4087 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4088   ICmpInst::Predicate Pred = Cmp.getPredicate();
4089   Value *Op0 = Cmp.getOperand(0);
4090   Value *X = Cmp.getOperand(1);
4091 
4092   // Canonicalize minimum or maximum operand to LHS of the icmp.
4093   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4094       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4095       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4096       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4097     std::swap(Op0, X);
4098     Pred = Cmp.getSwappedPredicate();
4099   }
4100 
4101   Value *Y;
4102   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4103     // smin(X, Y)  == X --> X s<= Y
4104     // smin(X, Y) s>= X --> X s<= Y
4105     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4106       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4107 
4108     // smin(X, Y) != X --> X s> Y
4109     // smin(X, Y) s< X --> X s> Y
4110     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4111       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4112 
4113     // These cases should be handled in InstSimplify:
4114     // smin(X, Y) s<= X --> true
4115     // smin(X, Y) s> X --> false
4116     return nullptr;
4117   }
4118 
4119   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4120     // smax(X, Y)  == X --> X s>= Y
4121     // smax(X, Y) s<= X --> X s>= Y
4122     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4123       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4124 
4125     // smax(X, Y) != X --> X s< Y
4126     // smax(X, Y) s> X --> X s< Y
4127     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4128       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4129 
4130     // These cases should be handled in InstSimplify:
4131     // smax(X, Y) s>= X --> true
4132     // smax(X, Y) s< X --> false
4133     return nullptr;
4134   }
4135 
4136   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4137     // umin(X, Y)  == X --> X u<= Y
4138     // umin(X, Y) u>= X --> X u<= Y
4139     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4140       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4141 
4142     // umin(X, Y) != X --> X u> Y
4143     // umin(X, Y) u< X --> X u> Y
4144     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4145       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4146 
4147     // These cases should be handled in InstSimplify:
4148     // umin(X, Y) u<= X --> true
4149     // umin(X, Y) u> X --> false
4150     return nullptr;
4151   }
4152 
4153   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4154     // umax(X, Y)  == X --> X u>= Y
4155     // umax(X, Y) u<= X --> X u>= Y
4156     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4157       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4158 
4159     // umax(X, Y) != X --> X u< Y
4160     // umax(X, Y) u> X --> X u< Y
4161     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4162       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4163 
4164     // These cases should be handled in InstSimplify:
4165     // umax(X, Y) u>= X --> true
4166     // umax(X, Y) u< X --> false
4167     return nullptr;
4168   }
4169 
4170   return nullptr;
4171 }
4172 
4173 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
4174   if (!I.isEquality())
4175     return nullptr;
4176 
4177   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4178   const CmpInst::Predicate Pred = I.getPredicate();
4179   Value *A, *B, *C, *D;
4180   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4181     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4182       Value *OtherVal = A == Op1 ? B : A;
4183       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4184     }
4185 
4186     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4187       // A^c1 == C^c2 --> A == C^(c1^c2)
4188       ConstantInt *C1, *C2;
4189       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4190           Op1->hasOneUse()) {
4191         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4192         Value *Xor = Builder.CreateXor(C, NC);
4193         return new ICmpInst(Pred, A, Xor);
4194       }
4195 
4196       // A^B == A^D -> B == D
4197       if (A == C)
4198         return new ICmpInst(Pred, B, D);
4199       if (A == D)
4200         return new ICmpInst(Pred, B, C);
4201       if (B == C)
4202         return new ICmpInst(Pred, A, D);
4203       if (B == D)
4204         return new ICmpInst(Pred, A, C);
4205     }
4206   }
4207 
4208   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4209     // A == (A^B)  ->  B == 0
4210     Value *OtherVal = A == Op0 ? B : A;
4211     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4212   }
4213 
4214   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4215   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4216       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4217     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4218 
4219     if (A == C) {
4220       X = B;
4221       Y = D;
4222       Z = A;
4223     } else if (A == D) {
4224       X = B;
4225       Y = C;
4226       Z = A;
4227     } else if (B == C) {
4228       X = A;
4229       Y = D;
4230       Z = B;
4231     } else if (B == D) {
4232       X = A;
4233       Y = C;
4234       Z = B;
4235     }
4236 
4237     if (X) { // Build (X^Y) & Z
4238       Op1 = Builder.CreateXor(X, Y);
4239       Op1 = Builder.CreateAnd(Op1, Z);
4240       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4241     }
4242   }
4243 
4244   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4245   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4246   ConstantInt *Cst1;
4247   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4248        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4249       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4250        match(Op1, m_ZExt(m_Value(A))))) {
4251     APInt Pow2 = Cst1->getValue() + 1;
4252     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4253         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4254       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4255   }
4256 
4257   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4258   // For lshr and ashr pairs.
4259   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4260        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4261       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4262        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4263     unsigned TypeBits = Cst1->getBitWidth();
4264     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4265     if (ShAmt < TypeBits && ShAmt != 0) {
4266       ICmpInst::Predicate NewPred =
4267           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4268       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4269       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4270       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4271     }
4272   }
4273 
4274   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4275   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4276       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4277     unsigned TypeBits = Cst1->getBitWidth();
4278     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4279     if (ShAmt < TypeBits && ShAmt != 0) {
4280       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4281       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4282       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4283                                       I.getName() + ".mask");
4284       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4285     }
4286   }
4287 
4288   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4289   // "icmp (and X, mask), cst"
4290   uint64_t ShAmt = 0;
4291   if (Op0->hasOneUse() &&
4292       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4293       match(Op1, m_ConstantInt(Cst1)) &&
4294       // Only do this when A has multiple uses.  This is most important to do
4295       // when it exposes other optimizations.
4296       !A->hasOneUse()) {
4297     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4298 
4299     if (ShAmt < ASize) {
4300       APInt MaskV =
4301           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4302       MaskV <<= ShAmt;
4303 
4304       APInt CmpV = Cst1->getValue().zext(ASize);
4305       CmpV <<= ShAmt;
4306 
4307       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4308       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4309     }
4310   }
4311 
4312   // If both operands are byte-swapped or bit-reversed, just compare the
4313   // original values.
4314   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4315   // and handle more intrinsics.
4316   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4317       (match(Op0, m_BitReverse(m_Value(A))) &&
4318        match(Op1, m_BitReverse(m_Value(B)))))
4319     return new ICmpInst(Pred, A, B);
4320 
4321   // Canonicalize checking for a power-of-2-or-zero value:
4322   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4323   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4324   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4325                                    m_Deferred(A)))) ||
4326       !match(Op1, m_ZeroInt()))
4327     A = nullptr;
4328 
4329   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4330   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4331   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4332     A = Op1;
4333   else if (match(Op1,
4334                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4335     A = Op0;
4336 
4337   if (A) {
4338     Type *Ty = A->getType();
4339     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4340     return Pred == ICmpInst::ICMP_EQ
4341         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4342         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4343   }
4344 
4345   return nullptr;
4346 }
4347 
4348 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4349                                            InstCombiner::BuilderTy &Builder) {
4350   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4351   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4352   Value *X;
4353   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4354     return nullptr;
4355 
4356   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4357   bool IsSignedCmp = ICmp.isSigned();
4358   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4359     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4360     // and the other is a zext), then we can't handle this.
4361     // TODO: This is too strict. We can handle some predicates (equality?).
4362     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4363       return nullptr;
4364 
4365     // Not an extension from the same type?
4366     Value *Y = CastOp1->getOperand(0);
4367     Type *XTy = X->getType(), *YTy = Y->getType();
4368     if (XTy != YTy) {
4369       // One of the casts must have one use because we are creating a new cast.
4370       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4371         return nullptr;
4372       // Extend the narrower operand to the type of the wider operand.
4373       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4374         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4375       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4376         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4377       else
4378         return nullptr;
4379     }
4380 
4381     // (zext X) == (zext Y) --> X == Y
4382     // (sext X) == (sext Y) --> X == Y
4383     if (ICmp.isEquality())
4384       return new ICmpInst(ICmp.getPredicate(), X, Y);
4385 
4386     // A signed comparison of sign extended values simplifies into a
4387     // signed comparison.
4388     if (IsSignedCmp && IsSignedExt)
4389       return new ICmpInst(ICmp.getPredicate(), X, Y);
4390 
4391     // The other three cases all fold into an unsigned comparison.
4392     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4393   }
4394 
4395   // Below here, we are only folding a compare with constant.
4396   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4397   if (!C)
4398     return nullptr;
4399 
4400   // Compute the constant that would happen if we truncated to SrcTy then
4401   // re-extended to DestTy.
4402   Type *SrcTy = CastOp0->getSrcTy();
4403   Type *DestTy = CastOp0->getDestTy();
4404   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4405   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4406 
4407   // If the re-extended constant didn't change...
4408   if (Res2 == C) {
4409     if (ICmp.isEquality())
4410       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4411 
4412     // A signed comparison of sign extended values simplifies into a
4413     // signed comparison.
4414     if (IsSignedExt && IsSignedCmp)
4415       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4416 
4417     // The other three cases all fold into an unsigned comparison.
4418     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4419   }
4420 
4421   // The re-extended constant changed, partly changed (in the case of a vector),
4422   // or could not be determined to be equal (in the case of a constant
4423   // expression), so the constant cannot be represented in the shorter type.
4424   // All the cases that fold to true or false will have already been handled
4425   // by SimplifyICmpInst, so only deal with the tricky case.
4426   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4427     return nullptr;
4428 
4429   // Is source op positive?
4430   // icmp ult (sext X), C --> icmp sgt X, -1
4431   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4432     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4433 
4434   // Is source op negative?
4435   // icmp ugt (sext X), C --> icmp slt X, 0
4436   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4437   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4438 }
4439 
4440 /// Handle icmp (cast x), (cast or constant).
4441 Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) {
4442   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4443   if (!CastOp0)
4444     return nullptr;
4445   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4446     return nullptr;
4447 
4448   Value *Op0Src = CastOp0->getOperand(0);
4449   Type *SrcTy = CastOp0->getSrcTy();
4450   Type *DestTy = CastOp0->getDestTy();
4451 
4452   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4453   // integer type is the same size as the pointer type.
4454   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4455     if (isa<VectorType>(SrcTy)) {
4456       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4457       DestTy = cast<VectorType>(DestTy)->getElementType();
4458     }
4459     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4460   };
4461   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4462       CompatibleSizes(SrcTy, DestTy)) {
4463     Value *NewOp1 = nullptr;
4464     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4465       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4466       if (PtrSrc->getType()->getPointerAddressSpace() ==
4467           Op0Src->getType()->getPointerAddressSpace()) {
4468         NewOp1 = PtrToIntOp1->getOperand(0);
4469         // If the pointer types don't match, insert a bitcast.
4470         if (Op0Src->getType() != NewOp1->getType())
4471           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4472       }
4473     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4474       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4475     }
4476 
4477     if (NewOp1)
4478       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4479   }
4480 
4481   return foldICmpWithZextOrSext(ICmp, Builder);
4482 }
4483 
4484 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4485   switch (BinaryOp) {
4486     default:
4487       llvm_unreachable("Unsupported binary op");
4488     case Instruction::Add:
4489     case Instruction::Sub:
4490       return match(RHS, m_Zero());
4491     case Instruction::Mul:
4492       return match(RHS, m_One());
4493   }
4494 }
4495 
4496 OverflowResult InstCombiner::computeOverflow(
4497     Instruction::BinaryOps BinaryOp, bool IsSigned,
4498     Value *LHS, Value *RHS, Instruction *CxtI) const {
4499   switch (BinaryOp) {
4500     default:
4501       llvm_unreachable("Unsupported binary op");
4502     case Instruction::Add:
4503       if (IsSigned)
4504         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4505       else
4506         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4507     case Instruction::Sub:
4508       if (IsSigned)
4509         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4510       else
4511         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4512     case Instruction::Mul:
4513       if (IsSigned)
4514         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4515       else
4516         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4517   }
4518 }
4519 
4520 bool InstCombiner::OptimizeOverflowCheck(
4521     Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS,
4522     Instruction &OrigI, Value *&Result, Constant *&Overflow) {
4523   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4524     std::swap(LHS, RHS);
4525 
4526   // If the overflow check was an add followed by a compare, the insertion point
4527   // may be pointing to the compare.  We want to insert the new instructions
4528   // before the add in case there are uses of the add between the add and the
4529   // compare.
4530   Builder.SetInsertPoint(&OrigI);
4531 
4532   if (isNeutralValue(BinaryOp, RHS)) {
4533     Result = LHS;
4534     Overflow = Builder.getFalse();
4535     return true;
4536   }
4537 
4538   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4539     case OverflowResult::MayOverflow:
4540       return false;
4541     case OverflowResult::AlwaysOverflowsLow:
4542     case OverflowResult::AlwaysOverflowsHigh:
4543       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4544       Result->takeName(&OrigI);
4545       Overflow = Builder.getTrue();
4546       return true;
4547     case OverflowResult::NeverOverflows:
4548       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4549       Result->takeName(&OrigI);
4550       Overflow = Builder.getFalse();
4551       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4552         if (IsSigned)
4553           Inst->setHasNoSignedWrap();
4554         else
4555           Inst->setHasNoUnsignedWrap();
4556       }
4557       return true;
4558   }
4559 
4560   llvm_unreachable("Unexpected overflow result");
4561 }
4562 
4563 /// Recognize and process idiom involving test for multiplication
4564 /// overflow.
4565 ///
4566 /// The caller has matched a pattern of the form:
4567 ///   I = cmp u (mul(zext A, zext B), V
4568 /// The function checks if this is a test for overflow and if so replaces
4569 /// multiplication with call to 'mul.with.overflow' intrinsic.
4570 ///
4571 /// \param I Compare instruction.
4572 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4573 ///               the compare instruction.  Must be of integer type.
4574 /// \param OtherVal The other argument of compare instruction.
4575 /// \returns Instruction which must replace the compare instruction, NULL if no
4576 ///          replacement required.
4577 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4578                                          Value *OtherVal, InstCombiner &IC) {
4579   // Don't bother doing this transformation for pointers, don't do it for
4580   // vectors.
4581   if (!isa<IntegerType>(MulVal->getType()))
4582     return nullptr;
4583 
4584   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4585   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4586   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4587   if (!MulInstr)
4588     return nullptr;
4589   assert(MulInstr->getOpcode() == Instruction::Mul);
4590 
4591   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4592        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4593   assert(LHS->getOpcode() == Instruction::ZExt);
4594   assert(RHS->getOpcode() == Instruction::ZExt);
4595   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4596 
4597   // Calculate type and width of the result produced by mul.with.overflow.
4598   Type *TyA = A->getType(), *TyB = B->getType();
4599   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4600            WidthB = TyB->getPrimitiveSizeInBits();
4601   unsigned MulWidth;
4602   Type *MulType;
4603   if (WidthB > WidthA) {
4604     MulWidth = WidthB;
4605     MulType = TyB;
4606   } else {
4607     MulWidth = WidthA;
4608     MulType = TyA;
4609   }
4610 
4611   // In order to replace the original mul with a narrower mul.with.overflow,
4612   // all uses must ignore upper bits of the product.  The number of used low
4613   // bits must be not greater than the width of mul.with.overflow.
4614   if (MulVal->hasNUsesOrMore(2))
4615     for (User *U : MulVal->users()) {
4616       if (U == &I)
4617         continue;
4618       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4619         // Check if truncation ignores bits above MulWidth.
4620         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4621         if (TruncWidth > MulWidth)
4622           return nullptr;
4623       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4624         // Check if AND ignores bits above MulWidth.
4625         if (BO->getOpcode() != Instruction::And)
4626           return nullptr;
4627         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4628           const APInt &CVal = CI->getValue();
4629           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4630             return nullptr;
4631         } else {
4632           // In this case we could have the operand of the binary operation
4633           // being defined in another block, and performing the replacement
4634           // could break the dominance relation.
4635           return nullptr;
4636         }
4637       } else {
4638         // Other uses prohibit this transformation.
4639         return nullptr;
4640       }
4641     }
4642 
4643   // Recognize patterns
4644   switch (I.getPredicate()) {
4645   case ICmpInst::ICMP_EQ:
4646   case ICmpInst::ICMP_NE:
4647     // Recognize pattern:
4648     //   mulval = mul(zext A, zext B)
4649     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4650     ConstantInt *CI;
4651     Value *ValToMask;
4652     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4653       if (ValToMask != MulVal)
4654         return nullptr;
4655       const APInt &CVal = CI->getValue() + 1;
4656       if (CVal.isPowerOf2()) {
4657         unsigned MaskWidth = CVal.logBase2();
4658         if (MaskWidth == MulWidth)
4659           break; // Recognized
4660       }
4661     }
4662     return nullptr;
4663 
4664   case ICmpInst::ICMP_UGT:
4665     // Recognize pattern:
4666     //   mulval = mul(zext A, zext B)
4667     //   cmp ugt mulval, max
4668     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4669       APInt MaxVal = APInt::getMaxValue(MulWidth);
4670       MaxVal = MaxVal.zext(CI->getBitWidth());
4671       if (MaxVal.eq(CI->getValue()))
4672         break; // Recognized
4673     }
4674     return nullptr;
4675 
4676   case ICmpInst::ICMP_UGE:
4677     // Recognize pattern:
4678     //   mulval = mul(zext A, zext B)
4679     //   cmp uge mulval, max+1
4680     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4681       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4682       if (MaxVal.eq(CI->getValue()))
4683         break; // Recognized
4684     }
4685     return nullptr;
4686 
4687   case ICmpInst::ICMP_ULE:
4688     // Recognize pattern:
4689     //   mulval = mul(zext A, zext B)
4690     //   cmp ule mulval, max
4691     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4692       APInt MaxVal = APInt::getMaxValue(MulWidth);
4693       MaxVal = MaxVal.zext(CI->getBitWidth());
4694       if (MaxVal.eq(CI->getValue()))
4695         break; // Recognized
4696     }
4697     return nullptr;
4698 
4699   case ICmpInst::ICMP_ULT:
4700     // Recognize pattern:
4701     //   mulval = mul(zext A, zext B)
4702     //   cmp ule mulval, max + 1
4703     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4704       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4705       if (MaxVal.eq(CI->getValue()))
4706         break; // Recognized
4707     }
4708     return nullptr;
4709 
4710   default:
4711     return nullptr;
4712   }
4713 
4714   InstCombiner::BuilderTy &Builder = IC.Builder;
4715   Builder.SetInsertPoint(MulInstr);
4716 
4717   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4718   Value *MulA = A, *MulB = B;
4719   if (WidthA < MulWidth)
4720     MulA = Builder.CreateZExt(A, MulType);
4721   if (WidthB < MulWidth)
4722     MulB = Builder.CreateZExt(B, MulType);
4723   Function *F = Intrinsic::getDeclaration(
4724       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4725   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4726   IC.Worklist.push(MulInstr);
4727 
4728   // If there are uses of mul result other than the comparison, we know that
4729   // they are truncation or binary AND. Change them to use result of
4730   // mul.with.overflow and adjust properly mask/size.
4731   if (MulVal->hasNUsesOrMore(2)) {
4732     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4733     for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4734       User *U = *UI++;
4735       if (U == &I || U == OtherVal)
4736         continue;
4737       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4738         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4739           IC.replaceInstUsesWith(*TI, Mul);
4740         else
4741           TI->setOperand(0, Mul);
4742       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4743         assert(BO->getOpcode() == Instruction::And);
4744         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4745         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4746         APInt ShortMask = CI->getValue().trunc(MulWidth);
4747         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4748         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4749         IC.replaceInstUsesWith(*BO, Zext);
4750       } else {
4751         llvm_unreachable("Unexpected Binary operation");
4752       }
4753       IC.Worklist.push(cast<Instruction>(U));
4754     }
4755   }
4756   if (isa<Instruction>(OtherVal))
4757     IC.Worklist.push(cast<Instruction>(OtherVal));
4758 
4759   // The original icmp gets replaced with the overflow value, maybe inverted
4760   // depending on predicate.
4761   bool Inverse = false;
4762   switch (I.getPredicate()) {
4763   case ICmpInst::ICMP_NE:
4764     break;
4765   case ICmpInst::ICMP_EQ:
4766     Inverse = true;
4767     break;
4768   case ICmpInst::ICMP_UGT:
4769   case ICmpInst::ICMP_UGE:
4770     if (I.getOperand(0) == MulVal)
4771       break;
4772     Inverse = true;
4773     break;
4774   case ICmpInst::ICMP_ULT:
4775   case ICmpInst::ICMP_ULE:
4776     if (I.getOperand(1) == MulVal)
4777       break;
4778     Inverse = true;
4779     break;
4780   default:
4781     llvm_unreachable("Unexpected predicate");
4782   }
4783   if (Inverse) {
4784     Value *Res = Builder.CreateExtractValue(Call, 1);
4785     return BinaryOperator::CreateNot(Res);
4786   }
4787 
4788   return ExtractValueInst::Create(Call, 1);
4789 }
4790 
4791 /// When performing a comparison against a constant, it is possible that not all
4792 /// the bits in the LHS are demanded. This helper method computes the mask that
4793 /// IS demanded.
4794 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4795   const APInt *RHS;
4796   if (!match(I.getOperand(1), m_APInt(RHS)))
4797     return APInt::getAllOnesValue(BitWidth);
4798 
4799   // If this is a normal comparison, it demands all bits. If it is a sign bit
4800   // comparison, it only demands the sign bit.
4801   bool UnusedBit;
4802   if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4803     return APInt::getSignMask(BitWidth);
4804 
4805   switch (I.getPredicate()) {
4806   // For a UGT comparison, we don't care about any bits that
4807   // correspond to the trailing ones of the comparand.  The value of these
4808   // bits doesn't impact the outcome of the comparison, because any value
4809   // greater than the RHS must differ in a bit higher than these due to carry.
4810   case ICmpInst::ICMP_UGT:
4811     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4812 
4813   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4814   // Any value less than the RHS must differ in a higher bit because of carries.
4815   case ICmpInst::ICMP_ULT:
4816     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4817 
4818   default:
4819     return APInt::getAllOnesValue(BitWidth);
4820   }
4821 }
4822 
4823 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4824 /// should be swapped.
4825 /// The decision is based on how many times these two operands are reused
4826 /// as subtract operands and their positions in those instructions.
4827 /// The rationale is that several architectures use the same instruction for
4828 /// both subtract and cmp. Thus, it is better if the order of those operands
4829 /// match.
4830 /// \return true if Op0 and Op1 should be swapped.
4831 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4832   // Filter out pointer values as those cannot appear directly in subtract.
4833   // FIXME: we may want to go through inttoptrs or bitcasts.
4834   if (Op0->getType()->isPointerTy())
4835     return false;
4836   // If a subtract already has the same operands as a compare, swapping would be
4837   // bad. If a subtract has the same operands as a compare but in reverse order,
4838   // then swapping is good.
4839   int GoodToSwap = 0;
4840   for (const User *U : Op0->users()) {
4841     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4842       GoodToSwap++;
4843     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4844       GoodToSwap--;
4845   }
4846   return GoodToSwap > 0;
4847 }
4848 
4849 /// Check that one use is in the same block as the definition and all
4850 /// other uses are in blocks dominated by a given block.
4851 ///
4852 /// \param DI Definition
4853 /// \param UI Use
4854 /// \param DB Block that must dominate all uses of \p DI outside
4855 ///           the parent block
4856 /// \return true when \p UI is the only use of \p DI in the parent block
4857 /// and all other uses of \p DI are in blocks dominated by \p DB.
4858 ///
4859 bool InstCombiner::dominatesAllUses(const Instruction *DI,
4860                                     const Instruction *UI,
4861                                     const BasicBlock *DB) const {
4862   assert(DI && UI && "Instruction not defined\n");
4863   // Ignore incomplete definitions.
4864   if (!DI->getParent())
4865     return false;
4866   // DI and UI must be in the same block.
4867   if (DI->getParent() != UI->getParent())
4868     return false;
4869   // Protect from self-referencing blocks.
4870   if (DI->getParent() == DB)
4871     return false;
4872   for (const User *U : DI->users()) {
4873     auto *Usr = cast<Instruction>(U);
4874     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4875       return false;
4876   }
4877   return true;
4878 }
4879 
4880 /// Return true when the instruction sequence within a block is select-cmp-br.
4881 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4882   const BasicBlock *BB = SI->getParent();
4883   if (!BB)
4884     return false;
4885   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4886   if (!BI || BI->getNumSuccessors() != 2)
4887     return false;
4888   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4889   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4890     return false;
4891   return true;
4892 }
4893 
4894 /// True when a select result is replaced by one of its operands
4895 /// in select-icmp sequence. This will eventually result in the elimination
4896 /// of the select.
4897 ///
4898 /// \param SI    Select instruction
4899 /// \param Icmp  Compare instruction
4900 /// \param SIOpd Operand that replaces the select
4901 ///
4902 /// Notes:
4903 /// - The replacement is global and requires dominator information
4904 /// - The caller is responsible for the actual replacement
4905 ///
4906 /// Example:
4907 ///
4908 /// entry:
4909 ///  %4 = select i1 %3, %C* %0, %C* null
4910 ///  %5 = icmp eq %C* %4, null
4911 ///  br i1 %5, label %9, label %7
4912 ///  ...
4913 ///  ; <label>:7                                       ; preds = %entry
4914 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4915 ///  ...
4916 ///
4917 /// can be transformed to
4918 ///
4919 ///  %5 = icmp eq %C* %0, null
4920 ///  %6 = select i1 %3, i1 %5, i1 true
4921 ///  br i1 %6, label %9, label %7
4922 ///  ...
4923 ///  ; <label>:7                                       ; preds = %entry
4924 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4925 ///
4926 /// Similar when the first operand of the select is a constant or/and
4927 /// the compare is for not equal rather than equal.
4928 ///
4929 /// NOTE: The function is only called when the select and compare constants
4930 /// are equal, the optimization can work only for EQ predicates. This is not a
4931 /// major restriction since a NE compare should be 'normalized' to an equal
4932 /// compare, which usually happens in the combiner and test case
4933 /// select-cmp-br.ll checks for it.
4934 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
4935                                              const ICmpInst *Icmp,
4936                                              const unsigned SIOpd) {
4937   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4938   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4939     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4940     // The check for the single predecessor is not the best that can be
4941     // done. But it protects efficiently against cases like when SI's
4942     // home block has two successors, Succ and Succ1, and Succ1 predecessor
4943     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4944     // replaced can be reached on either path. So the uniqueness check
4945     // guarantees that the path all uses of SI (outside SI's parent) are on
4946     // is disjoint from all other paths out of SI. But that information
4947     // is more expensive to compute, and the trade-off here is in favor
4948     // of compile-time. It should also be noticed that we check for a single
4949     // predecessor and not only uniqueness. This to handle the situation when
4950     // Succ and Succ1 points to the same basic block.
4951     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4952       NumSel++;
4953       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4954       return true;
4955     }
4956   }
4957   return false;
4958 }
4959 
4960 /// Try to fold the comparison based on range information we can get by checking
4961 /// whether bits are known to be zero or one in the inputs.
4962 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4963   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4964   Type *Ty = Op0->getType();
4965   ICmpInst::Predicate Pred = I.getPredicate();
4966 
4967   // Get scalar or pointer size.
4968   unsigned BitWidth = Ty->isIntOrIntVectorTy()
4969                           ? Ty->getScalarSizeInBits()
4970                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
4971 
4972   if (!BitWidth)
4973     return nullptr;
4974 
4975   KnownBits Op0Known(BitWidth);
4976   KnownBits Op1Known(BitWidth);
4977 
4978   if (SimplifyDemandedBits(&I, 0,
4979                            getDemandedBitsLHSMask(I, BitWidth),
4980                            Op0Known, 0))
4981     return &I;
4982 
4983   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4984                            Op1Known, 0))
4985     return &I;
4986 
4987   // Given the known and unknown bits, compute a range that the LHS could be
4988   // in.  Compute the Min, Max and RHS values based on the known bits. For the
4989   // EQ and NE we use unsigned values.
4990   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4991   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4992   if (I.isSigned()) {
4993     computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4994     computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4995   } else {
4996     computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4997     computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4998   }
4999 
5000   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5001   // out that the LHS or RHS is a constant. Constant fold this now, so that
5002   // code below can assume that Min != Max.
5003   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5004     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5005   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5006     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5007 
5008   // Based on the range information we know about the LHS, see if we can
5009   // simplify this comparison.  For example, (x&4) < 8 is always true.
5010   switch (Pred) {
5011   default:
5012     llvm_unreachable("Unknown icmp opcode!");
5013   case ICmpInst::ICMP_EQ:
5014   case ICmpInst::ICMP_NE: {
5015     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
5016       return Pred == CmpInst::ICMP_EQ
5017                  ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
5018                  : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5019     }
5020 
5021     // If all bits are known zero except for one, then we know at most one bit
5022     // is set. If the comparison is against zero, then this is a check to see if
5023     // *that* bit is set.
5024     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5025     if (Op1Known.isZero()) {
5026       // If the LHS is an AND with the same constant, look through it.
5027       Value *LHS = nullptr;
5028       const APInt *LHSC;
5029       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5030           *LHSC != Op0KnownZeroInverted)
5031         LHS = Op0;
5032 
5033       Value *X;
5034       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5035         APInt ValToCheck = Op0KnownZeroInverted;
5036         Type *XTy = X->getType();
5037         if (ValToCheck.isPowerOf2()) {
5038           // ((1 << X) & 8) == 0 -> X != 3
5039           // ((1 << X) & 8) != 0 -> X == 3
5040           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5041           auto NewPred = ICmpInst::getInversePredicate(Pred);
5042           return new ICmpInst(NewPred, X, CmpC);
5043         } else if ((++ValToCheck).isPowerOf2()) {
5044           // ((1 << X) & 7) == 0 -> X >= 3
5045           // ((1 << X) & 7) != 0 -> X  < 3
5046           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5047           auto NewPred =
5048               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5049           return new ICmpInst(NewPred, X, CmpC);
5050         }
5051       }
5052 
5053       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5054       const APInt *CI;
5055       if (Op0KnownZeroInverted.isOneValue() &&
5056           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5057         // ((8 >>u X) & 1) == 0 -> X != 3
5058         // ((8 >>u X) & 1) != 0 -> X == 3
5059         unsigned CmpVal = CI->countTrailingZeros();
5060         auto NewPred = ICmpInst::getInversePredicate(Pred);
5061         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5062       }
5063     }
5064     break;
5065   }
5066   case ICmpInst::ICMP_ULT: {
5067     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5068       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5069     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5070       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5071     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5072       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5073 
5074     const APInt *CmpC;
5075     if (match(Op1, m_APInt(CmpC))) {
5076       // A <u C -> A == C-1 if min(A)+1 == C
5077       if (*CmpC == Op0Min + 1)
5078         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5079                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5080       // X <u C --> X == 0, if the number of zero bits in the bottom of X
5081       // exceeds the log2 of C.
5082       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5083         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5084                             Constant::getNullValue(Op1->getType()));
5085     }
5086     break;
5087   }
5088   case ICmpInst::ICMP_UGT: {
5089     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5090       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5091     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5092       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5093     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5094       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5095 
5096     const APInt *CmpC;
5097     if (match(Op1, m_APInt(CmpC))) {
5098       // A >u C -> A == C+1 if max(a)-1 == C
5099       if (*CmpC == Op0Max - 1)
5100         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5101                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5102       // X >u C --> X != 0, if the number of zero bits in the bottom of X
5103       // exceeds the log2 of C.
5104       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5105         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5106                             Constant::getNullValue(Op1->getType()));
5107     }
5108     break;
5109   }
5110   case ICmpInst::ICMP_SLT: {
5111     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5112       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5113     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5114       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5115     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5116       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5117     const APInt *CmpC;
5118     if (match(Op1, m_APInt(CmpC))) {
5119       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5120         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5121                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5122     }
5123     break;
5124   }
5125   case ICmpInst::ICMP_SGT: {
5126     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5127       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5128     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5129       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5130     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5131       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5132     const APInt *CmpC;
5133     if (match(Op1, m_APInt(CmpC))) {
5134       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5135         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5136                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5137     }
5138     break;
5139   }
5140   case ICmpInst::ICMP_SGE:
5141     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5142     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5143       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5144     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5145       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5146     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5147       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5148     break;
5149   case ICmpInst::ICMP_SLE:
5150     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5151     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5152       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5153     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5154       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5155     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5156       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5157     break;
5158   case ICmpInst::ICMP_UGE:
5159     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5160     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5161       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5162     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5163       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5164     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5165       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5166     break;
5167   case ICmpInst::ICMP_ULE:
5168     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5169     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5170       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5171     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5172       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5173     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5174       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5175     break;
5176   }
5177 
5178   // Turn a signed comparison into an unsigned one if both operands are known to
5179   // have the same sign.
5180   if (I.isSigned() &&
5181       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5182        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5183     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5184 
5185   return nullptr;
5186 }
5187 
5188 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5189 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5190                                                Constant *C) {
5191   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5192          "Only for relational integer predicates.");
5193 
5194   Type *Type = C->getType();
5195   bool IsSigned = ICmpInst::isSigned(Pred);
5196 
5197   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5198   bool WillIncrement =
5199       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5200 
5201   // Check if the constant operand can be safely incremented/decremented
5202   // without overflowing/underflowing.
5203   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5204     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5205   };
5206 
5207   Constant *SafeReplacementConstant = nullptr;
5208   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5209     // Bail out if the constant can't be safely incremented/decremented.
5210     if (!ConstantIsOk(CI))
5211       return llvm::None;
5212   } else if (auto *VTy = dyn_cast<VectorType>(Type)) {
5213     unsigned NumElts = VTy->getNumElements();
5214     for (unsigned i = 0; i != NumElts; ++i) {
5215       Constant *Elt = C->getAggregateElement(i);
5216       if (!Elt)
5217         return llvm::None;
5218 
5219       if (isa<UndefValue>(Elt))
5220         continue;
5221 
5222       // Bail out if we can't determine if this constant is min/max or if we
5223       // know that this constant is min/max.
5224       auto *CI = dyn_cast<ConstantInt>(Elt);
5225       if (!CI || !ConstantIsOk(CI))
5226         return llvm::None;
5227 
5228       if (!SafeReplacementConstant)
5229         SafeReplacementConstant = CI;
5230     }
5231   } else {
5232     // ConstantExpr?
5233     return llvm::None;
5234   }
5235 
5236   // It may not be safe to change a compare predicate in the presence of
5237   // undefined elements, so replace those elements with the first safe constant
5238   // that we found.
5239   if (C->containsUndefElement()) {
5240     assert(SafeReplacementConstant && "Replacement constant not set");
5241     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5242   }
5243 
5244   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5245 
5246   // Increment or decrement the constant.
5247   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5248   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5249 
5250   return std::make_pair(NewPred, NewC);
5251 }
5252 
5253 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5254 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5255 /// allows them to be folded in visitICmpInst.
5256 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5257   ICmpInst::Predicate Pred = I.getPredicate();
5258   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5259       isCanonicalPredicate(Pred))
5260     return nullptr;
5261 
5262   Value *Op0 = I.getOperand(0);
5263   Value *Op1 = I.getOperand(1);
5264   auto *Op1C = dyn_cast<Constant>(Op1);
5265   if (!Op1C)
5266     return nullptr;
5267 
5268   auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5269   if (!FlippedStrictness)
5270     return nullptr;
5271 
5272   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5273 }
5274 
5275 /// If we have a comparison with a non-canonical predicate, if we can update
5276 /// all the users, invert the predicate and adjust all the users.
5277 static CmpInst *canonicalizeICmpPredicate(CmpInst &I) {
5278   // Is the predicate already canonical?
5279   CmpInst::Predicate Pred = I.getPredicate();
5280   if (isCanonicalPredicate(Pred))
5281     return nullptr;
5282 
5283   // Can all users be adjusted to predicate inversion?
5284   if (!canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5285     return nullptr;
5286 
5287   // Ok, we can canonicalize comparison!
5288   // Let's first invert the comparison's predicate.
5289   I.setPredicate(CmpInst::getInversePredicate(Pred));
5290   I.setName(I.getName() + ".not");
5291 
5292   // And now let's adjust every user.
5293   for (User *U : I.users()) {
5294     switch (cast<Instruction>(U)->getOpcode()) {
5295     case Instruction::Select: {
5296       auto *SI = cast<SelectInst>(U);
5297       SI->swapValues();
5298       SI->swapProfMetadata();
5299       break;
5300     }
5301     case Instruction::Br:
5302       cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
5303       break;
5304     case Instruction::Xor:
5305       U->replaceAllUsesWith(&I);
5306       break;
5307     default:
5308       llvm_unreachable("Got unexpected user - out of sync with "
5309                        "canFreelyInvertAllUsersOf() ?");
5310     }
5311   }
5312 
5313   return &I;
5314 }
5315 
5316 /// Integer compare with boolean values can always be turned into bitwise ops.
5317 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5318                                          InstCombiner::BuilderTy &Builder) {
5319   Value *A = I.getOperand(0), *B = I.getOperand(1);
5320   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5321 
5322   // A boolean compared to true/false can be simplified to Op0/true/false in
5323   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5324   // Cases not handled by InstSimplify are always 'not' of Op0.
5325   if (match(B, m_Zero())) {
5326     switch (I.getPredicate()) {
5327       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5328       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5329       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5330         return BinaryOperator::CreateNot(A);
5331       default:
5332         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5333     }
5334   } else if (match(B, m_One())) {
5335     switch (I.getPredicate()) {
5336       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5337       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5338       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5339         return BinaryOperator::CreateNot(A);
5340       default:
5341         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5342     }
5343   }
5344 
5345   switch (I.getPredicate()) {
5346   default:
5347     llvm_unreachable("Invalid icmp instruction!");
5348   case ICmpInst::ICMP_EQ:
5349     // icmp eq i1 A, B -> ~(A ^ B)
5350     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5351 
5352   case ICmpInst::ICMP_NE:
5353     // icmp ne i1 A, B -> A ^ B
5354     return BinaryOperator::CreateXor(A, B);
5355 
5356   case ICmpInst::ICMP_UGT:
5357     // icmp ugt -> icmp ult
5358     std::swap(A, B);
5359     LLVM_FALLTHROUGH;
5360   case ICmpInst::ICMP_ULT:
5361     // icmp ult i1 A, B -> ~A & B
5362     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5363 
5364   case ICmpInst::ICMP_SGT:
5365     // icmp sgt -> icmp slt
5366     std::swap(A, B);
5367     LLVM_FALLTHROUGH;
5368   case ICmpInst::ICMP_SLT:
5369     // icmp slt i1 A, B -> A & ~B
5370     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5371 
5372   case ICmpInst::ICMP_UGE:
5373     // icmp uge -> icmp ule
5374     std::swap(A, B);
5375     LLVM_FALLTHROUGH;
5376   case ICmpInst::ICMP_ULE:
5377     // icmp ule i1 A, B -> ~A | B
5378     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5379 
5380   case ICmpInst::ICMP_SGE:
5381     // icmp sge -> icmp sle
5382     std::swap(A, B);
5383     LLVM_FALLTHROUGH;
5384   case ICmpInst::ICMP_SLE:
5385     // icmp sle i1 A, B -> A | ~B
5386     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5387   }
5388 }
5389 
5390 // Transform pattern like:
5391 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5392 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5393 // Into:
5394 //   (X l>> Y) != 0
5395 //   (X l>> Y) == 0
5396 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5397                                             InstCombiner::BuilderTy &Builder) {
5398   ICmpInst::Predicate Pred, NewPred;
5399   Value *X, *Y;
5400   if (match(&Cmp,
5401             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5402     switch (Pred) {
5403     case ICmpInst::ICMP_ULE:
5404       NewPred = ICmpInst::ICMP_NE;
5405       break;
5406     case ICmpInst::ICMP_UGT:
5407       NewPred = ICmpInst::ICMP_EQ;
5408       break;
5409     default:
5410       return nullptr;
5411     }
5412   } else if (match(&Cmp, m_c_ICmp(Pred,
5413                                   m_OneUse(m_CombineOr(
5414                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5415                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5416                                             m_AllOnes()))),
5417                                   m_Value(X)))) {
5418     // The variant with 'add' is not canonical, (the variant with 'not' is)
5419     // we only get it because it has extra uses, and can't be canonicalized,
5420 
5421     switch (Pred) {
5422     case ICmpInst::ICMP_ULT:
5423       NewPred = ICmpInst::ICMP_NE;
5424       break;
5425     case ICmpInst::ICMP_UGE:
5426       NewPred = ICmpInst::ICMP_EQ;
5427       break;
5428     default:
5429       return nullptr;
5430     }
5431   } else
5432     return nullptr;
5433 
5434   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5435   Constant *Zero = Constant::getNullValue(NewX->getType());
5436   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5437 }
5438 
5439 static Instruction *foldVectorCmp(CmpInst &Cmp,
5440                                   InstCombiner::BuilderTy &Builder) {
5441   const CmpInst::Predicate Pred = Cmp.getPredicate();
5442   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5443   Value *V1, *V2;
5444   ArrayRef<int> M;
5445   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5446     return nullptr;
5447 
5448   // If both arguments of the cmp are shuffles that use the same mask and
5449   // shuffle within a single vector, move the shuffle after the cmp:
5450   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5451   Type *V1Ty = V1->getType();
5452   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5453       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5454     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5455     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5456   }
5457 
5458   // Try to canonicalize compare with splatted operand and splat constant.
5459   // TODO: We could generalize this for more than splats. See/use the code in
5460   //       InstCombiner::foldVectorBinop().
5461   Constant *C;
5462   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5463     return nullptr;
5464 
5465   // Length-changing splats are ok, so adjust the constants as needed:
5466   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5467   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5468   int MaskSplatIndex;
5469   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5470     // We allow undefs in matching, but this transform removes those for safety.
5471     // Demanded elements analysis should be able to recover some/all of that.
5472     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5473                                  ScalarC);
5474     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5475     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5476     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5477                                  NewM);
5478   }
5479 
5480   return nullptr;
5481 }
5482 
5483 // extract(uadd.with.overflow(A, B), 0) ult A
5484 //  -> extract(uadd.with.overflow(A, B), 1)
5485 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5486   CmpInst::Predicate Pred = I.getPredicate();
5487   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5488 
5489   Value *UAddOv;
5490   Value *A, *B;
5491   auto UAddOvResultPat = m_ExtractValue<0>(
5492       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5493   if (match(Op0, UAddOvResultPat) &&
5494       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5495        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5496         (match(A, m_One()) || match(B, m_One()))) ||
5497        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5498         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5499     // extract(uadd.with.overflow(A, B), 0) < A
5500     // extract(uadd.with.overflow(A, 1), 0) == 0
5501     // extract(uadd.with.overflow(A, -1), 0) != -1
5502     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5503   else if (match(Op1, UAddOvResultPat) &&
5504            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5505     // A > extract(uadd.with.overflow(A, B), 0)
5506     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5507   else
5508     return nullptr;
5509 
5510   return ExtractValueInst::Create(UAddOv, 1);
5511 }
5512 
5513 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5514   bool Changed = false;
5515   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5516   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5517   unsigned Op0Cplxity = getComplexity(Op0);
5518   unsigned Op1Cplxity = getComplexity(Op1);
5519 
5520   /// Orders the operands of the compare so that they are listed from most
5521   /// complex to least complex.  This puts constants before unary operators,
5522   /// before binary operators.
5523   if (Op0Cplxity < Op1Cplxity ||
5524       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5525     I.swapOperands();
5526     std::swap(Op0, Op1);
5527     Changed = true;
5528   }
5529 
5530   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5531     return replaceInstUsesWith(I, V);
5532 
5533   // Comparing -val or val with non-zero is the same as just comparing val
5534   // ie, abs(val) != 0 -> val != 0
5535   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5536     Value *Cond, *SelectTrue, *SelectFalse;
5537     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5538                             m_Value(SelectFalse)))) {
5539       if (Value *V = dyn_castNegVal(SelectTrue)) {
5540         if (V == SelectFalse)
5541           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5542       }
5543       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5544         if (V == SelectTrue)
5545           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5546       }
5547     }
5548   }
5549 
5550   if (Op0->getType()->isIntOrIntVectorTy(1))
5551     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5552       return Res;
5553 
5554   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5555     return Res;
5556 
5557   if (Instruction *Res = canonicalizeICmpPredicate(I))
5558     return Res;
5559 
5560   if (Instruction *Res = foldICmpWithConstant(I))
5561     return Res;
5562 
5563   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5564     return Res;
5565 
5566   if (Instruction *Res = foldICmpBinOp(I, Q))
5567     return Res;
5568 
5569   if (Instruction *Res = foldICmpUsingKnownBits(I))
5570     return Res;
5571 
5572   // Test if the ICmpInst instruction is used exclusively by a select as
5573   // part of a minimum or maximum operation. If so, refrain from doing
5574   // any other folding. This helps out other analyses which understand
5575   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5576   // and CodeGen. And in this case, at least one of the comparison
5577   // operands has at least one user besides the compare (the select),
5578   // which would often largely negate the benefit of folding anyway.
5579   //
5580   // Do the same for the other patterns recognized by matchSelectPattern.
5581   if (I.hasOneUse())
5582     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5583       Value *A, *B;
5584       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5585       if (SPR.Flavor != SPF_UNKNOWN)
5586         return nullptr;
5587     }
5588 
5589   // Do this after checking for min/max to prevent infinite looping.
5590   if (Instruction *Res = foldICmpWithZero(I))
5591     return Res;
5592 
5593   // FIXME: We only do this after checking for min/max to prevent infinite
5594   // looping caused by a reverse canonicalization of these patterns for min/max.
5595   // FIXME: The organization of folds is a mess. These would naturally go into
5596   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5597   // down here after the min/max restriction.
5598   ICmpInst::Predicate Pred = I.getPredicate();
5599   const APInt *C;
5600   if (match(Op1, m_APInt(C))) {
5601     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5602     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5603       Constant *Zero = Constant::getNullValue(Op0->getType());
5604       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5605     }
5606 
5607     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5608     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5609       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5610       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5611     }
5612   }
5613 
5614   if (Instruction *Res = foldICmpInstWithConstant(I))
5615     return Res;
5616 
5617   // Try to match comparison as a sign bit test. Intentionally do this after
5618   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5619   if (Instruction *New = foldSignBitTest(I))
5620     return New;
5621 
5622   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5623     return Res;
5624 
5625   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5626   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5627     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5628       return NI;
5629   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5630     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5631                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5632       return NI;
5633 
5634   // Try to optimize equality comparisons against alloca-based pointers.
5635   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5636     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5637     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
5638       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5639         return New;
5640     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
5641       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5642         return New;
5643   }
5644 
5645   if (Instruction *Res = foldICmpBitCast(I, Builder))
5646     return Res;
5647 
5648   // TODO: Hoist this above the min/max bailout.
5649   if (Instruction *R = foldICmpWithCastOp(I))
5650     return R;
5651 
5652   if (Instruction *Res = foldICmpWithMinMax(I))
5653     return Res;
5654 
5655   {
5656     Value *A, *B;
5657     // Transform (A & ~B) == 0 --> (A & B) != 0
5658     // and       (A & ~B) != 0 --> (A & B) == 0
5659     // if A is a power of 2.
5660     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5661         match(Op1, m_Zero()) &&
5662         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5663       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5664                           Op1);
5665 
5666     // ~X < ~Y --> Y < X
5667     // ~X < C -->  X > ~C
5668     if (match(Op0, m_Not(m_Value(A)))) {
5669       if (match(Op1, m_Not(m_Value(B))))
5670         return new ICmpInst(I.getPredicate(), B, A);
5671 
5672       const APInt *C;
5673       if (match(Op1, m_APInt(C)))
5674         return new ICmpInst(I.getSwappedPredicate(), A,
5675                             ConstantInt::get(Op1->getType(), ~(*C)));
5676     }
5677 
5678     Instruction *AddI = nullptr;
5679     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5680                                      m_Instruction(AddI))) &&
5681         isa<IntegerType>(A->getType())) {
5682       Value *Result;
5683       Constant *Overflow;
5684       // m_UAddWithOverflow can match patterns that do not include  an explicit
5685       // "add" instruction, so check the opcode of the matched op.
5686       if (AddI->getOpcode() == Instruction::Add &&
5687           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5688                                 Result, Overflow)) {
5689         replaceInstUsesWith(*AddI, Result);
5690         eraseInstFromFunction(*AddI);
5691         return replaceInstUsesWith(I, Overflow);
5692       }
5693     }
5694 
5695     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5696     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5697       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5698         return R;
5699     }
5700     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5701       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5702         return R;
5703     }
5704   }
5705 
5706   if (Instruction *Res = foldICmpEquality(I))
5707     return Res;
5708 
5709   if (Instruction *Res = foldICmpOfUAddOv(I))
5710     return Res;
5711 
5712   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5713   // an i1 which indicates whether or not we successfully did the swap.
5714   //
5715   // Replace comparisons between the old value and the expected value with the
5716   // indicator that 'cmpxchg' returns.
5717   //
5718   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5719   // spuriously fail.  In those cases, the old value may equal the expected
5720   // value but it is possible for the swap to not occur.
5721   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5722     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5723       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5724         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5725             !ACXI->isWeak())
5726           return ExtractValueInst::Create(ACXI, 1);
5727 
5728   {
5729     Value *X;
5730     const APInt *C;
5731     // icmp X+Cst, X
5732     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5733       return foldICmpAddOpConst(X, *C, I.getPredicate());
5734 
5735     // icmp X, X+Cst
5736     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5737       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5738   }
5739 
5740   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5741     return Res;
5742 
5743   if (I.getType()->isVectorTy())
5744     if (Instruction *Res = foldVectorCmp(I, Builder))
5745       return Res;
5746 
5747   return Changed ? &I : nullptr;
5748 }
5749 
5750 /// Fold fcmp ([us]itofp x, cst) if possible.
5751 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
5752                                                 Constant *RHSC) {
5753   if (!isa<ConstantFP>(RHSC)) return nullptr;
5754   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5755 
5756   // Get the width of the mantissa.  We don't want to hack on conversions that
5757   // might lose information from the integer, e.g. "i64 -> float"
5758   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5759   if (MantissaWidth == -1) return nullptr;  // Unknown.
5760 
5761   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5762 
5763   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5764 
5765   if (I.isEquality()) {
5766     FCmpInst::Predicate P = I.getPredicate();
5767     bool IsExact = false;
5768     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5769     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5770 
5771     // If the floating point constant isn't an integer value, we know if we will
5772     // ever compare equal / not equal to it.
5773     if (!IsExact) {
5774       // TODO: Can never be -0.0 and other non-representable values
5775       APFloat RHSRoundInt(RHS);
5776       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5777       if (RHS != RHSRoundInt) {
5778         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5779           return replaceInstUsesWith(I, Builder.getFalse());
5780 
5781         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5782         return replaceInstUsesWith(I, Builder.getTrue());
5783       }
5784     }
5785 
5786     // TODO: If the constant is exactly representable, is it always OK to do
5787     // equality compares as integer?
5788   }
5789 
5790   // Check to see that the input is converted from an integer type that is small
5791   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5792   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5793   unsigned InputSize = IntTy->getScalarSizeInBits();
5794 
5795   // Following test does NOT adjust InputSize downwards for signed inputs,
5796   // because the most negative value still requires all the mantissa bits
5797   // to distinguish it from one less than that value.
5798   if ((int)InputSize > MantissaWidth) {
5799     // Conversion would lose accuracy. Check if loss can impact comparison.
5800     int Exp = ilogb(RHS);
5801     if (Exp == APFloat::IEK_Inf) {
5802       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5803       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5804         // Conversion could create infinity.
5805         return nullptr;
5806     } else {
5807       // Note that if RHS is zero or NaN, then Exp is negative
5808       // and first condition is trivially false.
5809       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5810         // Conversion could affect comparison.
5811         return nullptr;
5812     }
5813   }
5814 
5815   // Otherwise, we can potentially simplify the comparison.  We know that it
5816   // will always come through as an integer value and we know the constant is
5817   // not a NAN (it would have been previously simplified).
5818   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5819 
5820   ICmpInst::Predicate Pred;
5821   switch (I.getPredicate()) {
5822   default: llvm_unreachable("Unexpected predicate!");
5823   case FCmpInst::FCMP_UEQ:
5824   case FCmpInst::FCMP_OEQ:
5825     Pred = ICmpInst::ICMP_EQ;
5826     break;
5827   case FCmpInst::FCMP_UGT:
5828   case FCmpInst::FCMP_OGT:
5829     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5830     break;
5831   case FCmpInst::FCMP_UGE:
5832   case FCmpInst::FCMP_OGE:
5833     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5834     break;
5835   case FCmpInst::FCMP_ULT:
5836   case FCmpInst::FCMP_OLT:
5837     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5838     break;
5839   case FCmpInst::FCMP_ULE:
5840   case FCmpInst::FCMP_OLE:
5841     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5842     break;
5843   case FCmpInst::FCMP_UNE:
5844   case FCmpInst::FCMP_ONE:
5845     Pred = ICmpInst::ICMP_NE;
5846     break;
5847   case FCmpInst::FCMP_ORD:
5848     return replaceInstUsesWith(I, Builder.getTrue());
5849   case FCmpInst::FCMP_UNO:
5850     return replaceInstUsesWith(I, Builder.getFalse());
5851   }
5852 
5853   // Now we know that the APFloat is a normal number, zero or inf.
5854 
5855   // See if the FP constant is too large for the integer.  For example,
5856   // comparing an i8 to 300.0.
5857   unsigned IntWidth = IntTy->getScalarSizeInBits();
5858 
5859   if (!LHSUnsigned) {
5860     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5861     // and large values.
5862     APFloat SMax(RHS.getSemantics());
5863     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5864                           APFloat::rmNearestTiesToEven);
5865     if (SMax < RHS) { // smax < 13123.0
5866       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5867           Pred == ICmpInst::ICMP_SLE)
5868         return replaceInstUsesWith(I, Builder.getTrue());
5869       return replaceInstUsesWith(I, Builder.getFalse());
5870     }
5871   } else {
5872     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5873     // +INF and large values.
5874     APFloat UMax(RHS.getSemantics());
5875     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5876                           APFloat::rmNearestTiesToEven);
5877     if (UMax < RHS) { // umax < 13123.0
5878       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5879           Pred == ICmpInst::ICMP_ULE)
5880         return replaceInstUsesWith(I, Builder.getTrue());
5881       return replaceInstUsesWith(I, Builder.getFalse());
5882     }
5883   }
5884 
5885   if (!LHSUnsigned) {
5886     // See if the RHS value is < SignedMin.
5887     APFloat SMin(RHS.getSemantics());
5888     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5889                           APFloat::rmNearestTiesToEven);
5890     if (SMin > RHS) { // smin > 12312.0
5891       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5892           Pred == ICmpInst::ICMP_SGE)
5893         return replaceInstUsesWith(I, Builder.getTrue());
5894       return replaceInstUsesWith(I, Builder.getFalse());
5895     }
5896   } else {
5897     // See if the RHS value is < UnsignedMin.
5898     APFloat UMin(RHS.getSemantics());
5899     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
5900                           APFloat::rmNearestTiesToEven);
5901     if (UMin > RHS) { // umin > 12312.0
5902       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5903           Pred == ICmpInst::ICMP_UGE)
5904         return replaceInstUsesWith(I, Builder.getTrue());
5905       return replaceInstUsesWith(I, Builder.getFalse());
5906     }
5907   }
5908 
5909   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5910   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5911   // casting the FP value to the integer value and back, checking for equality.
5912   // Don't do this for zero, because -0.0 is not fractional.
5913   Constant *RHSInt = LHSUnsigned
5914     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5915     : ConstantExpr::getFPToSI(RHSC, IntTy);
5916   if (!RHS.isZero()) {
5917     bool Equal = LHSUnsigned
5918       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5919       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5920     if (!Equal) {
5921       // If we had a comparison against a fractional value, we have to adjust
5922       // the compare predicate and sometimes the value.  RHSC is rounded towards
5923       // zero at this point.
5924       switch (Pred) {
5925       default: llvm_unreachable("Unexpected integer comparison!");
5926       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5927         return replaceInstUsesWith(I, Builder.getTrue());
5928       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5929         return replaceInstUsesWith(I, Builder.getFalse());
5930       case ICmpInst::ICMP_ULE:
5931         // (float)int <= 4.4   --> int <= 4
5932         // (float)int <= -4.4  --> false
5933         if (RHS.isNegative())
5934           return replaceInstUsesWith(I, Builder.getFalse());
5935         break;
5936       case ICmpInst::ICMP_SLE:
5937         // (float)int <= 4.4   --> int <= 4
5938         // (float)int <= -4.4  --> int < -4
5939         if (RHS.isNegative())
5940           Pred = ICmpInst::ICMP_SLT;
5941         break;
5942       case ICmpInst::ICMP_ULT:
5943         // (float)int < -4.4   --> false
5944         // (float)int < 4.4    --> int <= 4
5945         if (RHS.isNegative())
5946           return replaceInstUsesWith(I, Builder.getFalse());
5947         Pred = ICmpInst::ICMP_ULE;
5948         break;
5949       case ICmpInst::ICMP_SLT:
5950         // (float)int < -4.4   --> int < -4
5951         // (float)int < 4.4    --> int <= 4
5952         if (!RHS.isNegative())
5953           Pred = ICmpInst::ICMP_SLE;
5954         break;
5955       case ICmpInst::ICMP_UGT:
5956         // (float)int > 4.4    --> int > 4
5957         // (float)int > -4.4   --> true
5958         if (RHS.isNegative())
5959           return replaceInstUsesWith(I, Builder.getTrue());
5960         break;
5961       case ICmpInst::ICMP_SGT:
5962         // (float)int > 4.4    --> int > 4
5963         // (float)int > -4.4   --> int >= -4
5964         if (RHS.isNegative())
5965           Pred = ICmpInst::ICMP_SGE;
5966         break;
5967       case ICmpInst::ICMP_UGE:
5968         // (float)int >= -4.4   --> true
5969         // (float)int >= 4.4    --> int > 4
5970         if (RHS.isNegative())
5971           return replaceInstUsesWith(I, Builder.getTrue());
5972         Pred = ICmpInst::ICMP_UGT;
5973         break;
5974       case ICmpInst::ICMP_SGE:
5975         // (float)int >= -4.4   --> int >= -4
5976         // (float)int >= 4.4    --> int > 4
5977         if (!RHS.isNegative())
5978           Pred = ICmpInst::ICMP_SGT;
5979         break;
5980       }
5981     }
5982   }
5983 
5984   // Lower this FP comparison into an appropriate integer version of the
5985   // comparison.
5986   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5987 }
5988 
5989 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5990 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
5991                                               Constant *RHSC) {
5992   // When C is not 0.0 and infinities are not allowed:
5993   // (C / X) < 0.0 is a sign-bit test of X
5994   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5995   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5996   //
5997   // Proof:
5998   // Multiply (C / X) < 0.0 by X * X / C.
5999   // - X is non zero, if it is the flag 'ninf' is violated.
6000   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6001   //   the predicate. C is also non zero by definition.
6002   //
6003   // Thus X * X / C is non zero and the transformation is valid. [qed]
6004 
6005   FCmpInst::Predicate Pred = I.getPredicate();
6006 
6007   // Check that predicates are valid.
6008   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6009       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6010     return nullptr;
6011 
6012   // Check that RHS operand is zero.
6013   if (!match(RHSC, m_AnyZeroFP()))
6014     return nullptr;
6015 
6016   // Check fastmath flags ('ninf').
6017   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6018     return nullptr;
6019 
6020   // Check the properties of the dividend. It must not be zero to avoid a
6021   // division by zero (see Proof).
6022   const APFloat *C;
6023   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6024     return nullptr;
6025 
6026   if (C->isZero())
6027     return nullptr;
6028 
6029   // Get swapped predicate if necessary.
6030   if (C->isNegative())
6031     Pred = I.getSwappedPredicate();
6032 
6033   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6034 }
6035 
6036 /// Optimize fabs(X) compared with zero.
6037 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombiner &IC) {
6038   Value *X;
6039   if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
6040       !match(I.getOperand(1), m_PosZeroFP()))
6041     return nullptr;
6042 
6043   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6044     I->setPredicate(P);
6045     return IC.replaceOperand(*I, 0, X);
6046   };
6047 
6048   switch (I.getPredicate()) {
6049   case FCmpInst::FCMP_UGE:
6050   case FCmpInst::FCMP_OLT:
6051     // fabs(X) >= 0.0 --> true
6052     // fabs(X) <  0.0 --> false
6053     llvm_unreachable("fcmp should have simplified");
6054 
6055   case FCmpInst::FCMP_OGT:
6056     // fabs(X) > 0.0 --> X != 0.0
6057     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6058 
6059   case FCmpInst::FCMP_UGT:
6060     // fabs(X) u> 0.0 --> X u!= 0.0
6061     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6062 
6063   case FCmpInst::FCMP_OLE:
6064     // fabs(X) <= 0.0 --> X == 0.0
6065     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6066 
6067   case FCmpInst::FCMP_ULE:
6068     // fabs(X) u<= 0.0 --> X u== 0.0
6069     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6070 
6071   case FCmpInst::FCMP_OGE:
6072     // fabs(X) >= 0.0 --> !isnan(X)
6073     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6074     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6075 
6076   case FCmpInst::FCMP_ULT:
6077     // fabs(X) u< 0.0 --> isnan(X)
6078     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6079     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6080 
6081   case FCmpInst::FCMP_OEQ:
6082   case FCmpInst::FCMP_UEQ:
6083   case FCmpInst::FCMP_ONE:
6084   case FCmpInst::FCMP_UNE:
6085   case FCmpInst::FCMP_ORD:
6086   case FCmpInst::FCMP_UNO:
6087     // Look through the fabs() because it doesn't change anything but the sign.
6088     // fabs(X) == 0.0 --> X == 0.0,
6089     // fabs(X) != 0.0 --> X != 0.0
6090     // isnan(fabs(X)) --> isnan(X)
6091     // !isnan(fabs(X) --> !isnan(X)
6092     return replacePredAndOp0(&I, I.getPredicate(), X);
6093 
6094   default:
6095     return nullptr;
6096   }
6097 }
6098 
6099 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
6100   bool Changed = false;
6101 
6102   /// Orders the operands of the compare so that they are listed from most
6103   /// complex to least complex.  This puts constants before unary operators,
6104   /// before binary operators.
6105   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6106     I.swapOperands();
6107     Changed = true;
6108   }
6109 
6110   const CmpInst::Predicate Pred = I.getPredicate();
6111   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6112   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6113                                   SQ.getWithInstruction(&I)))
6114     return replaceInstUsesWith(I, V);
6115 
6116   // Simplify 'fcmp pred X, X'
6117   Type *OpType = Op0->getType();
6118   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6119   if (Op0 == Op1) {
6120     switch (Pred) {
6121       default: break;
6122     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6123     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6124     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6125     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6126       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6127       I.setPredicate(FCmpInst::FCMP_UNO);
6128       I.setOperand(1, Constant::getNullValue(OpType));
6129       return &I;
6130 
6131     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6132     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6133     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6134     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6135       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6136       I.setPredicate(FCmpInst::FCMP_ORD);
6137       I.setOperand(1, Constant::getNullValue(OpType));
6138       return &I;
6139     }
6140   }
6141 
6142   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6143   // then canonicalize the operand to 0.0.
6144   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6145     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6146       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6147 
6148     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6149       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6150   }
6151 
6152   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6153   Value *X, *Y;
6154   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6155     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6156 
6157   // Test if the FCmpInst instruction is used exclusively by a select as
6158   // part of a minimum or maximum operation. If so, refrain from doing
6159   // any other folding. This helps out other analyses which understand
6160   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6161   // and CodeGen. And in this case, at least one of the comparison
6162   // operands has at least one user besides the compare (the select),
6163   // which would often largely negate the benefit of folding anyway.
6164   if (I.hasOneUse())
6165     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6166       Value *A, *B;
6167       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6168       if (SPR.Flavor != SPF_UNKNOWN)
6169         return nullptr;
6170     }
6171 
6172   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6173   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6174   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6175     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6176 
6177   // Handle fcmp with instruction LHS and constant RHS.
6178   Instruction *LHSI;
6179   Constant *RHSC;
6180   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6181     switch (LHSI->getOpcode()) {
6182     case Instruction::PHI:
6183       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6184       // block.  If in the same block, we're encouraging jump threading.  If
6185       // not, we are just pessimizing the code by making an i1 phi.
6186       if (LHSI->getParent() == I.getParent())
6187         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6188           return NV;
6189       break;
6190     case Instruction::SIToFP:
6191     case Instruction::UIToFP:
6192       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6193         return NV;
6194       break;
6195     case Instruction::FDiv:
6196       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6197         return NV;
6198       break;
6199     case Instruction::Load:
6200       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6201         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6202           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6203               !cast<LoadInst>(LHSI)->isVolatile())
6204             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6205               return Res;
6206       break;
6207   }
6208   }
6209 
6210   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6211     return R;
6212 
6213   if (match(Op0, m_FNeg(m_Value(X)))) {
6214     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6215     Constant *C;
6216     if (match(Op1, m_Constant(C))) {
6217       Constant *NegC = ConstantExpr::getFNeg(C);
6218       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6219     }
6220   }
6221 
6222   if (match(Op0, m_FPExt(m_Value(X)))) {
6223     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6224     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6225       return new FCmpInst(Pred, X, Y, "", &I);
6226 
6227     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6228     const APFloat *C;
6229     if (match(Op1, m_APFloat(C))) {
6230       const fltSemantics &FPSem =
6231           X->getType()->getScalarType()->getFltSemantics();
6232       bool Lossy;
6233       APFloat TruncC = *C;
6234       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6235 
6236       // Avoid lossy conversions and denormals.
6237       // Zero is a special case that's OK to convert.
6238       APFloat Fabs = TruncC;
6239       Fabs.clearSign();
6240       if (!Lossy &&
6241           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6242         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6243         return new FCmpInst(Pred, X, NewC, "", &I);
6244       }
6245     }
6246   }
6247 
6248   if (I.getType()->isVectorTy())
6249     if (Instruction *Res = foldVectorCmp(I, Builder))
6250       return Res;
6251 
6252   return Changed ? &I : nullptr;
6253 }
6254