1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/KnownBits.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 // How many times is a select replaced by one of its operands? 34 STATISTIC(NumSel, "Number of select opts"); 35 36 37 /// Compute Result = In1+In2, returning true if the result overflowed for this 38 /// type. 39 static bool addWithOverflow(APInt &Result, const APInt &In1, 40 const APInt &In2, bool IsSigned = false) { 41 bool Overflow; 42 if (IsSigned) 43 Result = In1.sadd_ov(In2, Overflow); 44 else 45 Result = In1.uadd_ov(In2, Overflow); 46 47 return Overflow; 48 } 49 50 /// Compute Result = In1-In2, returning true if the result overflowed for this 51 /// type. 52 static bool subWithOverflow(APInt &Result, const APInt &In1, 53 const APInt &In2, bool IsSigned = false) { 54 bool Overflow; 55 if (IsSigned) 56 Result = In1.ssub_ov(In2, Overflow); 57 else 58 Result = In1.usub_ov(In2, Overflow); 59 60 return Overflow; 61 } 62 63 /// Given an icmp instruction, return true if any use of this comparison is a 64 /// branch on sign bit comparison. 65 static bool hasBranchUse(ICmpInst &I) { 66 for (auto *U : I.users()) 67 if (isa<BranchInst>(U)) 68 return true; 69 return false; 70 } 71 72 /// Returns true if the exploded icmp can be expressed as a signed comparison 73 /// to zero and updates the predicate accordingly. 74 /// The signedness of the comparison is preserved. 75 /// TODO: Refactor with decomposeBitTestICmp()? 76 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 77 if (!ICmpInst::isSigned(Pred)) 78 return false; 79 80 if (C.isNullValue()) 81 return ICmpInst::isRelational(Pred); 82 83 if (C.isOneValue()) { 84 if (Pred == ICmpInst::ICMP_SLT) { 85 Pred = ICmpInst::ICMP_SLE; 86 return true; 87 } 88 } else if (C.isAllOnesValue()) { 89 if (Pred == ICmpInst::ICMP_SGT) { 90 Pred = ICmpInst::ICMP_SGE; 91 return true; 92 } 93 } 94 95 return false; 96 } 97 98 /// Given a signed integer type and a set of known zero and one bits, compute 99 /// the maximum and minimum values that could have the specified known zero and 100 /// known one bits, returning them in Min/Max. 101 /// TODO: Move to method on KnownBits struct? 102 static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known, 103 APInt &Min, APInt &Max) { 104 assert(Known.getBitWidth() == Min.getBitWidth() && 105 Known.getBitWidth() == Max.getBitWidth() && 106 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 107 APInt UnknownBits = ~(Known.Zero|Known.One); 108 109 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 110 // bit if it is unknown. 111 Min = Known.One; 112 Max = Known.One|UnknownBits; 113 114 if (UnknownBits.isNegative()) { // Sign bit is unknown 115 Min.setSignBit(); 116 Max.clearSignBit(); 117 } 118 } 119 120 /// Given an unsigned integer type and a set of known zero and one bits, compute 121 /// the maximum and minimum values that could have the specified known zero and 122 /// known one bits, returning them in Min/Max. 123 /// TODO: Move to method on KnownBits struct? 124 static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known, 125 APInt &Min, APInt &Max) { 126 assert(Known.getBitWidth() == Min.getBitWidth() && 127 Known.getBitWidth() == Max.getBitWidth() && 128 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 129 APInt UnknownBits = ~(Known.Zero|Known.One); 130 131 // The minimum value is when the unknown bits are all zeros. 132 Min = Known.One; 133 // The maximum value is when the unknown bits are all ones. 134 Max = Known.One|UnknownBits; 135 } 136 137 /// This is called when we see this pattern: 138 /// cmp pred (load (gep GV, ...)), cmpcst 139 /// where GV is a global variable with a constant initializer. Try to simplify 140 /// this into some simple computation that does not need the load. For example 141 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 142 /// 143 /// If AndCst is non-null, then the loaded value is masked with that constant 144 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 145 Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, 146 GlobalVariable *GV, 147 CmpInst &ICI, 148 ConstantInt *AndCst) { 149 Constant *Init = GV->getInitializer(); 150 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 151 return nullptr; 152 153 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 154 // Don't blow up on huge arrays. 155 if (ArrayElementCount > MaxArraySizeForCombine) 156 return nullptr; 157 158 // There are many forms of this optimization we can handle, for now, just do 159 // the simple index into a single-dimensional array. 160 // 161 // Require: GEP GV, 0, i {{, constant indices}} 162 if (GEP->getNumOperands() < 3 || 163 !isa<ConstantInt>(GEP->getOperand(1)) || 164 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 165 isa<Constant>(GEP->getOperand(2))) 166 return nullptr; 167 168 // Check that indices after the variable are constants and in-range for the 169 // type they index. Collect the indices. This is typically for arrays of 170 // structs. 171 SmallVector<unsigned, 4> LaterIndices; 172 173 Type *EltTy = Init->getType()->getArrayElementType(); 174 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 175 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 176 if (!Idx) return nullptr; // Variable index. 177 178 uint64_t IdxVal = Idx->getZExtValue(); 179 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 180 181 if (StructType *STy = dyn_cast<StructType>(EltTy)) 182 EltTy = STy->getElementType(IdxVal); 183 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 184 if (IdxVal >= ATy->getNumElements()) return nullptr; 185 EltTy = ATy->getElementType(); 186 } else { 187 return nullptr; // Unknown type. 188 } 189 190 LaterIndices.push_back(IdxVal); 191 } 192 193 enum { Overdefined = -3, Undefined = -2 }; 194 195 // Variables for our state machines. 196 197 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 198 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 199 // and 87 is the second (and last) index. FirstTrueElement is -2 when 200 // undefined, otherwise set to the first true element. SecondTrueElement is 201 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 202 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 203 204 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 205 // form "i != 47 & i != 87". Same state transitions as for true elements. 206 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 207 208 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 209 /// define a state machine that triggers for ranges of values that the index 210 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 211 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 212 /// index in the range (inclusive). We use -2 for undefined here because we 213 /// use relative comparisons and don't want 0-1 to match -1. 214 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 215 216 // MagicBitvector - This is a magic bitvector where we set a bit if the 217 // comparison is true for element 'i'. If there are 64 elements or less in 218 // the array, this will fully represent all the comparison results. 219 uint64_t MagicBitvector = 0; 220 221 // Scan the array and see if one of our patterns matches. 222 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 223 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 224 Constant *Elt = Init->getAggregateElement(i); 225 if (!Elt) return nullptr; 226 227 // If this is indexing an array of structures, get the structure element. 228 if (!LaterIndices.empty()) 229 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 230 231 // If the element is masked, handle it. 232 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 233 234 // Find out if the comparison would be true or false for the i'th element. 235 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 236 CompareRHS, DL, &TLI); 237 // If the result is undef for this element, ignore it. 238 if (isa<UndefValue>(C)) { 239 // Extend range state machines to cover this element in case there is an 240 // undef in the middle of the range. 241 if (TrueRangeEnd == (int)i-1) 242 TrueRangeEnd = i; 243 if (FalseRangeEnd == (int)i-1) 244 FalseRangeEnd = i; 245 continue; 246 } 247 248 // If we can't compute the result for any of the elements, we have to give 249 // up evaluating the entire conditional. 250 if (!isa<ConstantInt>(C)) return nullptr; 251 252 // Otherwise, we know if the comparison is true or false for this element, 253 // update our state machines. 254 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 255 256 // State machine for single/double/range index comparison. 257 if (IsTrueForElt) { 258 // Update the TrueElement state machine. 259 if (FirstTrueElement == Undefined) 260 FirstTrueElement = TrueRangeEnd = i; // First true element. 261 else { 262 // Update double-compare state machine. 263 if (SecondTrueElement == Undefined) 264 SecondTrueElement = i; 265 else 266 SecondTrueElement = Overdefined; 267 268 // Update range state machine. 269 if (TrueRangeEnd == (int)i-1) 270 TrueRangeEnd = i; 271 else 272 TrueRangeEnd = Overdefined; 273 } 274 } else { 275 // Update the FalseElement state machine. 276 if (FirstFalseElement == Undefined) 277 FirstFalseElement = FalseRangeEnd = i; // First false element. 278 else { 279 // Update double-compare state machine. 280 if (SecondFalseElement == Undefined) 281 SecondFalseElement = i; 282 else 283 SecondFalseElement = Overdefined; 284 285 // Update range state machine. 286 if (FalseRangeEnd == (int)i-1) 287 FalseRangeEnd = i; 288 else 289 FalseRangeEnd = Overdefined; 290 } 291 } 292 293 // If this element is in range, update our magic bitvector. 294 if (i < 64 && IsTrueForElt) 295 MagicBitvector |= 1ULL << i; 296 297 // If all of our states become overdefined, bail out early. Since the 298 // predicate is expensive, only check it every 8 elements. This is only 299 // really useful for really huge arrays. 300 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 301 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 302 FalseRangeEnd == Overdefined) 303 return nullptr; 304 } 305 306 // Now that we've scanned the entire array, emit our new comparison(s). We 307 // order the state machines in complexity of the generated code. 308 Value *Idx = GEP->getOperand(2); 309 310 // If the index is larger than the pointer size of the target, truncate the 311 // index down like the GEP would do implicitly. We don't have to do this for 312 // an inbounds GEP because the index can't be out of range. 313 if (!GEP->isInBounds()) { 314 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 315 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 316 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 317 Idx = Builder.CreateTrunc(Idx, IntPtrTy); 318 } 319 320 // If the comparison is only true for one or two elements, emit direct 321 // comparisons. 322 if (SecondTrueElement != Overdefined) { 323 // None true -> false. 324 if (FirstTrueElement == Undefined) 325 return replaceInstUsesWith(ICI, Builder.getFalse()); 326 327 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 328 329 // True for one element -> 'i == 47'. 330 if (SecondTrueElement == Undefined) 331 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 332 333 // True for two elements -> 'i == 47 | i == 72'. 334 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 335 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 336 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 337 return BinaryOperator::CreateOr(C1, C2); 338 } 339 340 // If the comparison is only false for one or two elements, emit direct 341 // comparisons. 342 if (SecondFalseElement != Overdefined) { 343 // None false -> true. 344 if (FirstFalseElement == Undefined) 345 return replaceInstUsesWith(ICI, Builder.getTrue()); 346 347 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 348 349 // False for one element -> 'i != 47'. 350 if (SecondFalseElement == Undefined) 351 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 352 353 // False for two elements -> 'i != 47 & i != 72'. 354 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 355 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 356 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 357 return BinaryOperator::CreateAnd(C1, C2); 358 } 359 360 // If the comparison can be replaced with a range comparison for the elements 361 // where it is true, emit the range check. 362 if (TrueRangeEnd != Overdefined) { 363 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 364 365 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 366 if (FirstTrueElement) { 367 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 368 Idx = Builder.CreateAdd(Idx, Offs); 369 } 370 371 Value *End = ConstantInt::get(Idx->getType(), 372 TrueRangeEnd-FirstTrueElement+1); 373 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 374 } 375 376 // False range check. 377 if (FalseRangeEnd != Overdefined) { 378 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 379 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 380 if (FirstFalseElement) { 381 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 382 Idx = Builder.CreateAdd(Idx, Offs); 383 } 384 385 Value *End = ConstantInt::get(Idx->getType(), 386 FalseRangeEnd-FirstFalseElement); 387 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 388 } 389 390 // If a magic bitvector captures the entire comparison state 391 // of this load, replace it with computation that does: 392 // ((magic_cst >> i) & 1) != 0 393 { 394 Type *Ty = nullptr; 395 396 // Look for an appropriate type: 397 // - The type of Idx if the magic fits 398 // - The smallest fitting legal type 399 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 400 Ty = Idx->getType(); 401 else 402 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 403 404 if (Ty) { 405 Value *V = Builder.CreateIntCast(Idx, Ty, false); 406 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 407 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 408 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 409 } 410 } 411 412 return nullptr; 413 } 414 415 /// Return a value that can be used to compare the *offset* implied by a GEP to 416 /// zero. For example, if we have &A[i], we want to return 'i' for 417 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 418 /// are involved. The above expression would also be legal to codegen as 419 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 420 /// This latter form is less amenable to optimization though, and we are allowed 421 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 422 /// 423 /// If we can't emit an optimized form for this expression, this returns null. 424 /// 425 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 426 const DataLayout &DL) { 427 gep_type_iterator GTI = gep_type_begin(GEP); 428 429 // Check to see if this gep only has a single variable index. If so, and if 430 // any constant indices are a multiple of its scale, then we can compute this 431 // in terms of the scale of the variable index. For example, if the GEP 432 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 433 // because the expression will cross zero at the same point. 434 unsigned i, e = GEP->getNumOperands(); 435 int64_t Offset = 0; 436 for (i = 1; i != e; ++i, ++GTI) { 437 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 438 // Compute the aggregate offset of constant indices. 439 if (CI->isZero()) continue; 440 441 // Handle a struct index, which adds its field offset to the pointer. 442 if (StructType *STy = GTI.getStructTypeOrNull()) { 443 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 444 } else { 445 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 446 Offset += Size*CI->getSExtValue(); 447 } 448 } else { 449 // Found our variable index. 450 break; 451 } 452 } 453 454 // If there are no variable indices, we must have a constant offset, just 455 // evaluate it the general way. 456 if (i == e) return nullptr; 457 458 Value *VariableIdx = GEP->getOperand(i); 459 // Determine the scale factor of the variable element. For example, this is 460 // 4 if the variable index is into an array of i32. 461 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 462 463 // Verify that there are no other variable indices. If so, emit the hard way. 464 for (++i, ++GTI; i != e; ++i, ++GTI) { 465 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 466 if (!CI) return nullptr; 467 468 // Compute the aggregate offset of constant indices. 469 if (CI->isZero()) continue; 470 471 // Handle a struct index, which adds its field offset to the pointer. 472 if (StructType *STy = GTI.getStructTypeOrNull()) { 473 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 474 } else { 475 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 476 Offset += Size*CI->getSExtValue(); 477 } 478 } 479 480 // Okay, we know we have a single variable index, which must be a 481 // pointer/array/vector index. If there is no offset, life is simple, return 482 // the index. 483 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 484 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 485 if (Offset == 0) { 486 // Cast to intptrty in case a truncation occurs. If an extension is needed, 487 // we don't need to bother extending: the extension won't affect where the 488 // computation crosses zero. 489 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 490 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); 491 } 492 return VariableIdx; 493 } 494 495 // Otherwise, there is an index. The computation we will do will be modulo 496 // the pointer size. 497 Offset = SignExtend64(Offset, IntPtrWidth); 498 VariableScale = SignExtend64(VariableScale, IntPtrWidth); 499 500 // To do this transformation, any constant index must be a multiple of the 501 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 502 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 503 // multiple of the variable scale. 504 int64_t NewOffs = Offset / (int64_t)VariableScale; 505 if (Offset != NewOffs*(int64_t)VariableScale) 506 return nullptr; 507 508 // Okay, we can do this evaluation. Start by converting the index to intptr. 509 if (VariableIdx->getType() != IntPtrTy) 510 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, 511 true /*Signed*/); 512 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 513 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); 514 } 515 516 /// Returns true if we can rewrite Start as a GEP with pointer Base 517 /// and some integer offset. The nodes that need to be re-written 518 /// for this transformation will be added to Explored. 519 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 520 const DataLayout &DL, 521 SetVector<Value *> &Explored) { 522 SmallVector<Value *, 16> WorkList(1, Start); 523 Explored.insert(Base); 524 525 // The following traversal gives us an order which can be used 526 // when doing the final transformation. Since in the final 527 // transformation we create the PHI replacement instructions first, 528 // we don't have to get them in any particular order. 529 // 530 // However, for other instructions we will have to traverse the 531 // operands of an instruction first, which means that we have to 532 // do a post-order traversal. 533 while (!WorkList.empty()) { 534 SetVector<PHINode *> PHIs; 535 536 while (!WorkList.empty()) { 537 if (Explored.size() >= 100) 538 return false; 539 540 Value *V = WorkList.back(); 541 542 if (Explored.count(V) != 0) { 543 WorkList.pop_back(); 544 continue; 545 } 546 547 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 548 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 549 // We've found some value that we can't explore which is different from 550 // the base. Therefore we can't do this transformation. 551 return false; 552 553 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 554 auto *CI = dyn_cast<CastInst>(V); 555 if (!CI->isNoopCast(DL)) 556 return false; 557 558 if (Explored.count(CI->getOperand(0)) == 0) 559 WorkList.push_back(CI->getOperand(0)); 560 } 561 562 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 563 // We're limiting the GEP to having one index. This will preserve 564 // the original pointer type. We could handle more cases in the 565 // future. 566 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 567 GEP->getType() != Start->getType()) 568 return false; 569 570 if (Explored.count(GEP->getOperand(0)) == 0) 571 WorkList.push_back(GEP->getOperand(0)); 572 } 573 574 if (WorkList.back() == V) { 575 WorkList.pop_back(); 576 // We've finished visiting this node, mark it as such. 577 Explored.insert(V); 578 } 579 580 if (auto *PN = dyn_cast<PHINode>(V)) { 581 // We cannot transform PHIs on unsplittable basic blocks. 582 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 583 return false; 584 Explored.insert(PN); 585 PHIs.insert(PN); 586 } 587 } 588 589 // Explore the PHI nodes further. 590 for (auto *PN : PHIs) 591 for (Value *Op : PN->incoming_values()) 592 if (Explored.count(Op) == 0) 593 WorkList.push_back(Op); 594 } 595 596 // Make sure that we can do this. Since we can't insert GEPs in a basic 597 // block before a PHI node, we can't easily do this transformation if 598 // we have PHI node users of transformed instructions. 599 for (Value *Val : Explored) { 600 for (Value *Use : Val->uses()) { 601 602 auto *PHI = dyn_cast<PHINode>(Use); 603 auto *Inst = dyn_cast<Instruction>(Val); 604 605 if (Inst == Base || Inst == PHI || !Inst || !PHI || 606 Explored.count(PHI) == 0) 607 continue; 608 609 if (PHI->getParent() == Inst->getParent()) 610 return false; 611 } 612 } 613 return true; 614 } 615 616 // Sets the appropriate insert point on Builder where we can add 617 // a replacement Instruction for V (if that is possible). 618 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 619 bool Before = true) { 620 if (auto *PHI = dyn_cast<PHINode>(V)) { 621 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 622 return; 623 } 624 if (auto *I = dyn_cast<Instruction>(V)) { 625 if (!Before) 626 I = &*std::next(I->getIterator()); 627 Builder.SetInsertPoint(I); 628 return; 629 } 630 if (auto *A = dyn_cast<Argument>(V)) { 631 // Set the insertion point in the entry block. 632 BasicBlock &Entry = A->getParent()->getEntryBlock(); 633 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 634 return; 635 } 636 // Otherwise, this is a constant and we don't need to set a new 637 // insertion point. 638 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 639 } 640 641 /// Returns a re-written value of Start as an indexed GEP using Base as a 642 /// pointer. 643 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 644 const DataLayout &DL, 645 SetVector<Value *> &Explored) { 646 // Perform all the substitutions. This is a bit tricky because we can 647 // have cycles in our use-def chains. 648 // 1. Create the PHI nodes without any incoming values. 649 // 2. Create all the other values. 650 // 3. Add the edges for the PHI nodes. 651 // 4. Emit GEPs to get the original pointers. 652 // 5. Remove the original instructions. 653 Type *IndexType = IntegerType::get( 654 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 655 656 DenseMap<Value *, Value *> NewInsts; 657 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 658 659 // Create the new PHI nodes, without adding any incoming values. 660 for (Value *Val : Explored) { 661 if (Val == Base) 662 continue; 663 // Create empty phi nodes. This avoids cyclic dependencies when creating 664 // the remaining instructions. 665 if (auto *PHI = dyn_cast<PHINode>(Val)) 666 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 667 PHI->getName() + ".idx", PHI); 668 } 669 IRBuilder<> Builder(Base->getContext()); 670 671 // Create all the other instructions. 672 for (Value *Val : Explored) { 673 674 if (NewInsts.find(Val) != NewInsts.end()) 675 continue; 676 677 if (auto *CI = dyn_cast<CastInst>(Val)) { 678 // Don't get rid of the intermediate variable here; the store can grow 679 // the map which will invalidate the reference to the input value. 680 Value *V = NewInsts[CI->getOperand(0)]; 681 NewInsts[CI] = V; 682 continue; 683 } 684 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 685 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 686 : GEP->getOperand(1); 687 setInsertionPoint(Builder, GEP); 688 // Indices might need to be sign extended. GEPs will magically do 689 // this, but we need to do it ourselves here. 690 if (Index->getType()->getScalarSizeInBits() != 691 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 692 Index = Builder.CreateSExtOrTrunc( 693 Index, NewInsts[GEP->getOperand(0)]->getType(), 694 GEP->getOperand(0)->getName() + ".sext"); 695 } 696 697 auto *Op = NewInsts[GEP->getOperand(0)]; 698 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 699 NewInsts[GEP] = Index; 700 else 701 NewInsts[GEP] = Builder.CreateNSWAdd( 702 Op, Index, GEP->getOperand(0)->getName() + ".add"); 703 continue; 704 } 705 if (isa<PHINode>(Val)) 706 continue; 707 708 llvm_unreachable("Unexpected instruction type"); 709 } 710 711 // Add the incoming values to the PHI nodes. 712 for (Value *Val : Explored) { 713 if (Val == Base) 714 continue; 715 // All the instructions have been created, we can now add edges to the 716 // phi nodes. 717 if (auto *PHI = dyn_cast<PHINode>(Val)) { 718 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 719 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 720 Value *NewIncoming = PHI->getIncomingValue(I); 721 722 if (NewInsts.find(NewIncoming) != NewInsts.end()) 723 NewIncoming = NewInsts[NewIncoming]; 724 725 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 726 } 727 } 728 } 729 730 for (Value *Val : Explored) { 731 if (Val == Base) 732 continue; 733 734 // Depending on the type, for external users we have to emit 735 // a GEP or a GEP + ptrtoint. 736 setInsertionPoint(Builder, Val, false); 737 738 // If required, create an inttoptr instruction for Base. 739 Value *NewBase = Base; 740 if (!Base->getType()->isPointerTy()) 741 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 742 Start->getName() + "to.ptr"); 743 744 Value *GEP = Builder.CreateInBoundsGEP( 745 Start->getType()->getPointerElementType(), NewBase, 746 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 747 748 if (!Val->getType()->isPointerTy()) { 749 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 750 Val->getName() + ".conv"); 751 GEP = Cast; 752 } 753 Val->replaceAllUsesWith(GEP); 754 } 755 756 return NewInsts[Start]; 757 } 758 759 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 760 /// the input Value as a constant indexed GEP. Returns a pair containing 761 /// the GEPs Pointer and Index. 762 static std::pair<Value *, Value *> 763 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 764 Type *IndexType = IntegerType::get(V->getContext(), 765 DL.getIndexTypeSizeInBits(V->getType())); 766 767 Constant *Index = ConstantInt::getNullValue(IndexType); 768 while (true) { 769 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 770 // We accept only inbouds GEPs here to exclude the possibility of 771 // overflow. 772 if (!GEP->isInBounds()) 773 break; 774 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 775 GEP->getType() == V->getType()) { 776 V = GEP->getOperand(0); 777 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 778 Index = ConstantExpr::getAdd( 779 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 780 continue; 781 } 782 break; 783 } 784 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 785 if (!CI->isNoopCast(DL)) 786 break; 787 V = CI->getOperand(0); 788 continue; 789 } 790 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 791 if (!CI->isNoopCast(DL)) 792 break; 793 V = CI->getOperand(0); 794 continue; 795 } 796 break; 797 } 798 return {V, Index}; 799 } 800 801 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 802 /// We can look through PHIs, GEPs and casts in order to determine a common base 803 /// between GEPLHS and RHS. 804 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 805 ICmpInst::Predicate Cond, 806 const DataLayout &DL) { 807 // FIXME: Support vector of pointers. 808 if (GEPLHS->getType()->isVectorTy()) 809 return nullptr; 810 811 if (!GEPLHS->hasAllConstantIndices()) 812 return nullptr; 813 814 // Make sure the pointers have the same type. 815 if (GEPLHS->getType() != RHS->getType()) 816 return nullptr; 817 818 Value *PtrBase, *Index; 819 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 820 821 // The set of nodes that will take part in this transformation. 822 SetVector<Value *> Nodes; 823 824 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 825 return nullptr; 826 827 // We know we can re-write this as 828 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 829 // Since we've only looked through inbouds GEPs we know that we 830 // can't have overflow on either side. We can therefore re-write 831 // this as: 832 // OFFSET1 cmp OFFSET2 833 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 834 835 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 836 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 837 // offset. Since Index is the offset of LHS to the base pointer, we will now 838 // compare the offsets instead of comparing the pointers. 839 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 840 } 841 842 /// Fold comparisons between a GEP instruction and something else. At this point 843 /// we know that the GEP is on the LHS of the comparison. 844 Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 845 ICmpInst::Predicate Cond, 846 Instruction &I) { 847 // Don't transform signed compares of GEPs into index compares. Even if the 848 // GEP is inbounds, the final add of the base pointer can have signed overflow 849 // and would change the result of the icmp. 850 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 851 // the maximum signed value for the pointer type. 852 if (ICmpInst::isSigned(Cond)) 853 return nullptr; 854 855 // Look through bitcasts and addrspacecasts. We do not however want to remove 856 // 0 GEPs. 857 if (!isa<GetElementPtrInst>(RHS)) 858 RHS = RHS->stripPointerCasts(); 859 860 Value *PtrBase = GEPLHS->getOperand(0); 861 // FIXME: Support vector pointer GEPs. 862 if (PtrBase == RHS && GEPLHS->isInBounds() && 863 !GEPLHS->getType()->isVectorTy()) { 864 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 865 // This transformation (ignoring the base and scales) is valid because we 866 // know pointers can't overflow since the gep is inbounds. See if we can 867 // output an optimized form. 868 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); 869 870 // If not, synthesize the offset the hard way. 871 if (!Offset) 872 Offset = EmitGEPOffset(GEPLHS); 873 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 874 Constant::getNullValue(Offset->getType())); 875 } 876 877 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 878 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 879 !NullPointerIsDefined(I.getFunction(), 880 RHS->getType()->getPointerAddressSpace())) { 881 // For most address spaces, an allocation can't be placed at null, but null 882 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 883 // the only valid inbounds address derived from null, is null itself. 884 // Thus, we have four cases to consider: 885 // 1) Base == nullptr, Offset == 0 -> inbounds, null 886 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 887 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 888 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 889 // 890 // (Note if we're indexing a type of size 0, that simply collapses into one 891 // of the buckets above.) 892 // 893 // In general, we're allowed to make values less poison (i.e. remove 894 // sources of full UB), so in this case, we just select between the two 895 // non-poison cases (1 and 4 above). 896 // 897 // For vectors, we apply the same reasoning on a per-lane basis. 898 auto *Base = GEPLHS->getPointerOperand(); 899 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 900 int NumElts = cast<VectorType>(GEPLHS->getType())->getNumElements(); 901 Base = Builder.CreateVectorSplat(NumElts, Base); 902 } 903 return new ICmpInst(Cond, Base, 904 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 905 cast<Constant>(RHS), Base->getType())); 906 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 907 // If the base pointers are different, but the indices are the same, just 908 // compare the base pointer. 909 if (PtrBase != GEPRHS->getOperand(0)) { 910 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 911 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 912 GEPRHS->getOperand(0)->getType(); 913 if (IndicesTheSame) 914 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 915 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 916 IndicesTheSame = false; 917 break; 918 } 919 920 // If all indices are the same, just compare the base pointers. 921 Type *BaseType = GEPLHS->getOperand(0)->getType(); 922 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 923 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 924 925 // If we're comparing GEPs with two base pointers that only differ in type 926 // and both GEPs have only constant indices or just one use, then fold 927 // the compare with the adjusted indices. 928 // FIXME: Support vector of pointers. 929 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 930 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 931 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 932 PtrBase->stripPointerCasts() == 933 GEPRHS->getOperand(0)->stripPointerCasts() && 934 !GEPLHS->getType()->isVectorTy()) { 935 Value *LOffset = EmitGEPOffset(GEPLHS); 936 Value *ROffset = EmitGEPOffset(GEPRHS); 937 938 // If we looked through an addrspacecast between different sized address 939 // spaces, the LHS and RHS pointers are different sized 940 // integers. Truncate to the smaller one. 941 Type *LHSIndexTy = LOffset->getType(); 942 Type *RHSIndexTy = ROffset->getType(); 943 if (LHSIndexTy != RHSIndexTy) { 944 if (LHSIndexTy->getPrimitiveSizeInBits() < 945 RHSIndexTy->getPrimitiveSizeInBits()) { 946 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 947 } else 948 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 949 } 950 951 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 952 LOffset, ROffset); 953 return replaceInstUsesWith(I, Cmp); 954 } 955 956 // Otherwise, the base pointers are different and the indices are 957 // different. Try convert this to an indexed compare by looking through 958 // PHIs/casts. 959 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 960 } 961 962 // If one of the GEPs has all zero indices, recurse. 963 // FIXME: Handle vector of pointers. 964 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 965 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 966 ICmpInst::getSwappedPredicate(Cond), I); 967 968 // If the other GEP has all zero indices, recurse. 969 // FIXME: Handle vector of pointers. 970 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 971 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 972 973 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 974 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 975 // If the GEPs only differ by one index, compare it. 976 unsigned NumDifferences = 0; // Keep track of # differences. 977 unsigned DiffOperand = 0; // The operand that differs. 978 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 979 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 980 Type *LHSType = GEPLHS->getOperand(i)->getType(); 981 Type *RHSType = GEPRHS->getOperand(i)->getType(); 982 // FIXME: Better support for vector of pointers. 983 if (LHSType->getPrimitiveSizeInBits() != 984 RHSType->getPrimitiveSizeInBits() || 985 (GEPLHS->getType()->isVectorTy() && 986 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 987 // Irreconcilable differences. 988 NumDifferences = 2; 989 break; 990 } 991 992 if (NumDifferences++) break; 993 DiffOperand = i; 994 } 995 996 if (NumDifferences == 0) // SAME GEP? 997 return replaceInstUsesWith(I, // No comparison is needed here. 998 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 999 1000 else if (NumDifferences == 1 && GEPsInBounds) { 1001 Value *LHSV = GEPLHS->getOperand(DiffOperand); 1002 Value *RHSV = GEPRHS->getOperand(DiffOperand); 1003 // Make sure we do a signed comparison here. 1004 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 1005 } 1006 } 1007 1008 // Only lower this if the icmp is the only user of the GEP or if we expect 1009 // the result to fold to a constant! 1010 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 1011 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 1012 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1013 Value *L = EmitGEPOffset(GEPLHS); 1014 Value *R = EmitGEPOffset(GEPRHS); 1015 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1016 } 1017 } 1018 1019 // Try convert this to an indexed compare by looking through PHIs/casts as a 1020 // last resort. 1021 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1022 } 1023 1024 Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI, 1025 const AllocaInst *Alloca, 1026 const Value *Other) { 1027 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1028 1029 // It would be tempting to fold away comparisons between allocas and any 1030 // pointer not based on that alloca (e.g. an argument). However, even 1031 // though such pointers cannot alias, they can still compare equal. 1032 // 1033 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1034 // doesn't escape we can argue that it's impossible to guess its value, and we 1035 // can therefore act as if any such guesses are wrong. 1036 // 1037 // The code below checks that the alloca doesn't escape, and that it's only 1038 // used in a comparison once (the current instruction). The 1039 // single-comparison-use condition ensures that we're trivially folding all 1040 // comparisons against the alloca consistently, and avoids the risk of 1041 // erroneously folding a comparison of the pointer with itself. 1042 1043 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1044 1045 SmallVector<const Use *, 32> Worklist; 1046 for (const Use &U : Alloca->uses()) { 1047 if (Worklist.size() >= MaxIter) 1048 return nullptr; 1049 Worklist.push_back(&U); 1050 } 1051 1052 unsigned NumCmps = 0; 1053 while (!Worklist.empty()) { 1054 assert(Worklist.size() <= MaxIter); 1055 const Use *U = Worklist.pop_back_val(); 1056 const Value *V = U->getUser(); 1057 --MaxIter; 1058 1059 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1060 isa<SelectInst>(V)) { 1061 // Track the uses. 1062 } else if (isa<LoadInst>(V)) { 1063 // Loading from the pointer doesn't escape it. 1064 continue; 1065 } else if (const auto *SI = dyn_cast<StoreInst>(V)) { 1066 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1067 if (SI->getValueOperand() == U->get()) 1068 return nullptr; 1069 continue; 1070 } else if (isa<ICmpInst>(V)) { 1071 if (NumCmps++) 1072 return nullptr; // Found more than one cmp. 1073 continue; 1074 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1075 switch (Intrin->getIntrinsicID()) { 1076 // These intrinsics don't escape or compare the pointer. Memset is safe 1077 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1078 // we don't allow stores, so src cannot point to V. 1079 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1080 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1081 continue; 1082 default: 1083 return nullptr; 1084 } 1085 } else { 1086 return nullptr; 1087 } 1088 for (const Use &U : V->uses()) { 1089 if (Worklist.size() >= MaxIter) 1090 return nullptr; 1091 Worklist.push_back(&U); 1092 } 1093 } 1094 1095 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1096 return replaceInstUsesWith( 1097 ICI, 1098 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1099 } 1100 1101 /// Fold "icmp pred (X+C), X". 1102 Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C, 1103 ICmpInst::Predicate Pred) { 1104 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1105 // so the values can never be equal. Similarly for all other "or equals" 1106 // operators. 1107 assert(!!C && "C should not be zero!"); 1108 1109 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1110 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1111 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1112 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1113 Constant *R = ConstantInt::get(X->getType(), 1114 APInt::getMaxValue(C.getBitWidth()) - C); 1115 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1116 } 1117 1118 // (X+1) >u X --> X <u (0-1) --> X != 255 1119 // (X+2) >u X --> X <u (0-2) --> X <u 254 1120 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1121 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1122 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1123 ConstantInt::get(X->getType(), -C)); 1124 1125 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1126 1127 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1128 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1129 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1130 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1131 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1132 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1133 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1134 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1135 ConstantInt::get(X->getType(), SMax - C)); 1136 1137 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1138 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1139 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1140 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1141 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1142 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1143 1144 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1145 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1146 ConstantInt::get(X->getType(), SMax - (C - 1))); 1147 } 1148 1149 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1150 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1151 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1152 Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A, 1153 const APInt &AP1, 1154 const APInt &AP2) { 1155 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1156 1157 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1158 if (I.getPredicate() == I.ICMP_NE) 1159 Pred = CmpInst::getInversePredicate(Pred); 1160 return new ICmpInst(Pred, LHS, RHS); 1161 }; 1162 1163 // Don't bother doing any work for cases which InstSimplify handles. 1164 if (AP2.isNullValue()) 1165 return nullptr; 1166 1167 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1168 if (IsAShr) { 1169 if (AP2.isAllOnesValue()) 1170 return nullptr; 1171 if (AP2.isNegative() != AP1.isNegative()) 1172 return nullptr; 1173 if (AP2.sgt(AP1)) 1174 return nullptr; 1175 } 1176 1177 if (!AP1) 1178 // 'A' must be large enough to shift out the highest set bit. 1179 return getICmp(I.ICMP_UGT, A, 1180 ConstantInt::get(A->getType(), AP2.logBase2())); 1181 1182 if (AP1 == AP2) 1183 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1184 1185 int Shift; 1186 if (IsAShr && AP1.isNegative()) 1187 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1188 else 1189 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1190 1191 if (Shift > 0) { 1192 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1193 // There are multiple solutions if we are comparing against -1 and the LHS 1194 // of the ashr is not a power of two. 1195 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1196 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1197 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1198 } else if (AP1 == AP2.lshr(Shift)) { 1199 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1200 } 1201 } 1202 1203 // Shifting const2 will never be equal to const1. 1204 // FIXME: This should always be handled by InstSimplify? 1205 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1206 return replaceInstUsesWith(I, TorF); 1207 } 1208 1209 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1210 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1211 Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A, 1212 const APInt &AP1, 1213 const APInt &AP2) { 1214 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1215 1216 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1217 if (I.getPredicate() == I.ICMP_NE) 1218 Pred = CmpInst::getInversePredicate(Pred); 1219 return new ICmpInst(Pred, LHS, RHS); 1220 }; 1221 1222 // Don't bother doing any work for cases which InstSimplify handles. 1223 if (AP2.isNullValue()) 1224 return nullptr; 1225 1226 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1227 1228 if (!AP1 && AP2TrailingZeros != 0) 1229 return getICmp( 1230 I.ICMP_UGE, A, 1231 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1232 1233 if (AP1 == AP2) 1234 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1235 1236 // Get the distance between the lowest bits that are set. 1237 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1238 1239 if (Shift > 0 && AP2.shl(Shift) == AP1) 1240 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1241 1242 // Shifting const2 will never be equal to const1. 1243 // FIXME: This should always be handled by InstSimplify? 1244 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1245 return replaceInstUsesWith(I, TorF); 1246 } 1247 1248 /// The caller has matched a pattern of the form: 1249 /// I = icmp ugt (add (add A, B), CI2), CI1 1250 /// If this is of the form: 1251 /// sum = a + b 1252 /// if (sum+128 >u 255) 1253 /// Then replace it with llvm.sadd.with.overflow.i8. 1254 /// 1255 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1256 ConstantInt *CI2, ConstantInt *CI1, 1257 InstCombiner &IC) { 1258 // The transformation we're trying to do here is to transform this into an 1259 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1260 // with a narrower add, and discard the add-with-constant that is part of the 1261 // range check (if we can't eliminate it, this isn't profitable). 1262 1263 // In order to eliminate the add-with-constant, the compare can be its only 1264 // use. 1265 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1266 if (!AddWithCst->hasOneUse()) 1267 return nullptr; 1268 1269 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1270 if (!CI2->getValue().isPowerOf2()) 1271 return nullptr; 1272 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 1273 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1274 return nullptr; 1275 1276 // The width of the new add formed is 1 more than the bias. 1277 ++NewWidth; 1278 1279 // Check to see that CI1 is an all-ones value with NewWidth bits. 1280 if (CI1->getBitWidth() == NewWidth || 1281 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1282 return nullptr; 1283 1284 // This is only really a signed overflow check if the inputs have been 1285 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1286 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1287 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 1288 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 1289 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 1290 return nullptr; 1291 1292 // In order to replace the original add with a narrower 1293 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1294 // and truncates that discard the high bits of the add. Verify that this is 1295 // the case. 1296 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1297 for (User *U : OrigAdd->users()) { 1298 if (U == AddWithCst) 1299 continue; 1300 1301 // Only accept truncates for now. We would really like a nice recursive 1302 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1303 // chain to see which bits of a value are actually demanded. If the 1304 // original add had another add which was then immediately truncated, we 1305 // could still do the transformation. 1306 TruncInst *TI = dyn_cast<TruncInst>(U); 1307 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1308 return nullptr; 1309 } 1310 1311 // If the pattern matches, truncate the inputs to the narrower type and 1312 // use the sadd_with_overflow intrinsic to efficiently compute both the 1313 // result and the overflow bit. 1314 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1315 Function *F = Intrinsic::getDeclaration( 1316 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1317 1318 InstCombiner::BuilderTy &Builder = IC.Builder; 1319 1320 // Put the new code above the original add, in case there are any uses of the 1321 // add between the add and the compare. 1322 Builder.SetInsertPoint(OrigAdd); 1323 1324 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1325 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1326 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1327 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1328 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1329 1330 // The inner add was the result of the narrow add, zero extended to the 1331 // wider type. Replace it with the result computed by the intrinsic. 1332 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1333 IC.eraseInstFromFunction(*OrigAdd); 1334 1335 // The original icmp gets replaced with the overflow value. 1336 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1337 } 1338 1339 /// If we have: 1340 /// icmp eq/ne (urem/srem %x, %y), 0 1341 /// iff %y is a power-of-two, we can replace this with a bit test: 1342 /// icmp eq/ne (and %x, (add %y, -1)), 0 1343 Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1344 // This fold is only valid for equality predicates. 1345 if (!I.isEquality()) 1346 return nullptr; 1347 ICmpInst::Predicate Pred; 1348 Value *X, *Y, *Zero; 1349 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1350 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1351 return nullptr; 1352 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1353 return nullptr; 1354 // This may increase instruction count, we don't enforce that Y is a constant. 1355 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1356 Value *Masked = Builder.CreateAnd(X, Mask); 1357 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1358 } 1359 1360 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1361 /// by one-less-than-bitwidth into a sign test on the original value. 1362 Instruction *InstCombiner::foldSignBitTest(ICmpInst &I) { 1363 Instruction *Val; 1364 ICmpInst::Predicate Pred; 1365 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1366 return nullptr; 1367 1368 Value *X; 1369 Type *XTy; 1370 1371 Constant *C; 1372 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1373 XTy = X->getType(); 1374 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1375 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1376 APInt(XBitWidth, XBitWidth - 1)))) 1377 return nullptr; 1378 } else if (isa<BinaryOperator>(Val) && 1379 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1380 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1381 /*AnalyzeForSignBitExtraction=*/true))) { 1382 XTy = X->getType(); 1383 } else 1384 return nullptr; 1385 1386 return ICmpInst::Create(Instruction::ICmp, 1387 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1388 : ICmpInst::ICMP_SLT, 1389 X, ConstantInt::getNullValue(XTy)); 1390 } 1391 1392 // Handle icmp pred X, 0 1393 Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) { 1394 CmpInst::Predicate Pred = Cmp.getPredicate(); 1395 if (!match(Cmp.getOperand(1), m_Zero())) 1396 return nullptr; 1397 1398 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1399 if (Pred == ICmpInst::ICMP_SGT) { 1400 Value *A, *B; 1401 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); 1402 if (SPR.Flavor == SPF_SMIN) { 1403 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1404 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1405 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1406 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1407 } 1408 } 1409 1410 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1411 return New; 1412 1413 // Given: 1414 // icmp eq/ne (urem %x, %y), 0 1415 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1416 // icmp eq/ne %x, 0 1417 Value *X, *Y; 1418 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1419 ICmpInst::isEquality(Pred)) { 1420 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1421 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1422 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1423 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1424 } 1425 1426 return nullptr; 1427 } 1428 1429 /// Fold icmp Pred X, C. 1430 /// TODO: This code structure does not make sense. The saturating add fold 1431 /// should be moved to some other helper and extended as noted below (it is also 1432 /// possible that code has been made unnecessary - do we canonicalize IR to 1433 /// overflow/saturating intrinsics or not?). 1434 Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) { 1435 // Match the following pattern, which is a common idiom when writing 1436 // overflow-safe integer arithmetic functions. The source performs an addition 1437 // in wider type and explicitly checks for overflow using comparisons against 1438 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1439 // 1440 // TODO: This could probably be generalized to handle other overflow-safe 1441 // operations if we worked out the formulas to compute the appropriate magic 1442 // constants. 1443 // 1444 // sum = a + b 1445 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1446 CmpInst::Predicate Pred = Cmp.getPredicate(); 1447 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1448 Value *A, *B; 1449 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1450 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1451 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1452 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1453 return Res; 1454 1455 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1456 Constant *C = dyn_cast<Constant>(Op1); 1457 if (!C) 1458 return nullptr; 1459 1460 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1461 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1462 Type *Ty = Cmp.getType(); 1463 Builder.SetInsertPoint(Phi); 1464 PHINode *NewPhi = 1465 Builder.CreatePHI(Ty, Phi->getNumOperands()); 1466 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { 1467 auto *Input = 1468 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); 1469 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); 1470 NewPhi->addIncoming(BoolInput, Predecessor); 1471 } 1472 NewPhi->takeName(&Cmp); 1473 return replaceInstUsesWith(Cmp, NewPhi); 1474 } 1475 1476 return nullptr; 1477 } 1478 1479 /// Canonicalize icmp instructions based on dominating conditions. 1480 Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1481 // This is a cheap/incomplete check for dominance - just match a single 1482 // predecessor with a conditional branch. 1483 BasicBlock *CmpBB = Cmp.getParent(); 1484 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1485 if (!DomBB) 1486 return nullptr; 1487 1488 Value *DomCond; 1489 BasicBlock *TrueBB, *FalseBB; 1490 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1491 return nullptr; 1492 1493 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1494 "Predecessor block does not point to successor?"); 1495 1496 // The branch should get simplified. Don't bother simplifying this condition. 1497 if (TrueBB == FalseBB) 1498 return nullptr; 1499 1500 // Try to simplify this compare to T/F based on the dominating condition. 1501 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); 1502 if (Imp) 1503 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); 1504 1505 CmpInst::Predicate Pred = Cmp.getPredicate(); 1506 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1507 ICmpInst::Predicate DomPred; 1508 const APInt *C, *DomC; 1509 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1510 match(Y, m_APInt(C))) { 1511 // We have 2 compares of a variable with constants. Calculate the constant 1512 // ranges of those compares to see if we can transform the 2nd compare: 1513 // DomBB: 1514 // DomCond = icmp DomPred X, DomC 1515 // br DomCond, CmpBB, FalseBB 1516 // CmpBB: 1517 // Cmp = icmp Pred X, C 1518 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); 1519 ConstantRange DominatingCR = 1520 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1521 : ConstantRange::makeExactICmpRegion( 1522 CmpInst::getInversePredicate(DomPred), *DomC); 1523 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1524 ConstantRange Difference = DominatingCR.difference(CR); 1525 if (Intersection.isEmptySet()) 1526 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1527 if (Difference.isEmptySet()) 1528 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1529 1530 // Canonicalizing a sign bit comparison that gets used in a branch, 1531 // pessimizes codegen by generating branch on zero instruction instead 1532 // of a test and branch. So we avoid canonicalizing in such situations 1533 // because test and branch instruction has better branch displacement 1534 // than compare and branch instruction. 1535 bool UnusedBit; 1536 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1537 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1538 return nullptr; 1539 1540 if (const APInt *EqC = Intersection.getSingleElement()) 1541 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1542 if (const APInt *NeC = Difference.getSingleElement()) 1543 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1544 } 1545 1546 return nullptr; 1547 } 1548 1549 /// Fold icmp (trunc X, Y), C. 1550 Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp, 1551 TruncInst *Trunc, 1552 const APInt &C) { 1553 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1554 Value *X = Trunc->getOperand(0); 1555 if (C.isOneValue() && C.getBitWidth() > 1) { 1556 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1557 Value *V = nullptr; 1558 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1559 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1560 ConstantInt::get(V->getType(), 1)); 1561 } 1562 1563 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1564 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1565 // of the high bits truncated out of x are known. 1566 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1567 SrcBits = X->getType()->getScalarSizeInBits(); 1568 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1569 1570 // If all the high bits are known, we can do this xform. 1571 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { 1572 // Pull in the high bits from known-ones set. 1573 APInt NewRHS = C.zext(SrcBits); 1574 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1575 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); 1576 } 1577 } 1578 1579 return nullptr; 1580 } 1581 1582 /// Fold icmp (xor X, Y), C. 1583 Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp, 1584 BinaryOperator *Xor, 1585 const APInt &C) { 1586 Value *X = Xor->getOperand(0); 1587 Value *Y = Xor->getOperand(1); 1588 const APInt *XorC; 1589 if (!match(Y, m_APInt(XorC))) 1590 return nullptr; 1591 1592 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1593 // fold the xor. 1594 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1595 bool TrueIfSigned = false; 1596 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1597 1598 // If the sign bit of the XorCst is not set, there is no change to 1599 // the operation, just stop using the Xor. 1600 if (!XorC->isNegative()) 1601 return replaceOperand(Cmp, 0, X); 1602 1603 // Emit the opposite comparison. 1604 if (TrueIfSigned) 1605 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1606 ConstantInt::getAllOnesValue(X->getType())); 1607 else 1608 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1609 ConstantInt::getNullValue(X->getType())); 1610 } 1611 1612 if (Xor->hasOneUse()) { 1613 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1614 if (!Cmp.isEquality() && XorC->isSignMask()) { 1615 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1616 : Cmp.getSignedPredicate(); 1617 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1618 } 1619 1620 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1621 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1622 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate() 1623 : Cmp.getSignedPredicate(); 1624 Pred = Cmp.getSwappedPredicate(Pred); 1625 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1626 } 1627 } 1628 1629 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1630 if (Pred == ICmpInst::ICMP_UGT) { 1631 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1632 if (*XorC == ~C && (C + 1).isPowerOf2()) 1633 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1634 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1635 if (*XorC == C && (C + 1).isPowerOf2()) 1636 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1637 } 1638 if (Pred == ICmpInst::ICMP_ULT) { 1639 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1640 if (*XorC == -C && C.isPowerOf2()) 1641 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1642 ConstantInt::get(X->getType(), ~C)); 1643 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1644 if (*XorC == C && (-C).isPowerOf2()) 1645 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1646 ConstantInt::get(X->getType(), ~C)); 1647 } 1648 return nullptr; 1649 } 1650 1651 /// Fold icmp (and (sh X, Y), C2), C1. 1652 Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, 1653 const APInt &C1, const APInt &C2) { 1654 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1655 if (!Shift || !Shift->isShift()) 1656 return nullptr; 1657 1658 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1659 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1660 // code produced by the clang front-end, for bitfield access. 1661 // This seemingly simple opportunity to fold away a shift turns out to be 1662 // rather complicated. See PR17827 for details. 1663 unsigned ShiftOpcode = Shift->getOpcode(); 1664 bool IsShl = ShiftOpcode == Instruction::Shl; 1665 const APInt *C3; 1666 if (match(Shift->getOperand(1), m_APInt(C3))) { 1667 APInt NewAndCst, NewCmpCst; 1668 bool AnyCmpCstBitsShiftedOut; 1669 if (ShiftOpcode == Instruction::Shl) { 1670 // For a left shift, we can fold if the comparison is not signed. We can 1671 // also fold a signed comparison if the mask value and comparison value 1672 // are not negative. These constraints may not be obvious, but we can 1673 // prove that they are correct using an SMT solver. 1674 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1675 return nullptr; 1676 1677 NewCmpCst = C1.lshr(*C3); 1678 NewAndCst = C2.lshr(*C3); 1679 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1680 } else if (ShiftOpcode == Instruction::LShr) { 1681 // For a logical right shift, we can fold if the comparison is not signed. 1682 // We can also fold a signed comparison if the shifted mask value and the 1683 // shifted comparison value are not negative. These constraints may not be 1684 // obvious, but we can prove that they are correct using an SMT solver. 1685 NewCmpCst = C1.shl(*C3); 1686 NewAndCst = C2.shl(*C3); 1687 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1688 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1689 return nullptr; 1690 } else { 1691 // For an arithmetic shift, check that both constants don't use (in a 1692 // signed sense) the top bits being shifted out. 1693 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1694 NewCmpCst = C1.shl(*C3); 1695 NewAndCst = C2.shl(*C3); 1696 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1697 if (NewAndCst.ashr(*C3) != C2) 1698 return nullptr; 1699 } 1700 1701 if (AnyCmpCstBitsShiftedOut) { 1702 // If we shifted bits out, the fold is not going to work out. As a 1703 // special case, check to see if this means that the result is always 1704 // true or false now. 1705 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1706 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1707 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1708 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1709 } else { 1710 Value *NewAnd = Builder.CreateAnd( 1711 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1712 return new ICmpInst(Cmp.getPredicate(), 1713 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1714 } 1715 } 1716 1717 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1718 // preferable because it allows the C2 << Y expression to be hoisted out of a 1719 // loop if Y is invariant and X is not. 1720 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && 1721 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1722 // Compute C2 << Y. 1723 Value *NewShift = 1724 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1725 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1726 1727 // Compute X & (C2 << Y). 1728 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1729 return replaceOperand(Cmp, 0, NewAnd); 1730 } 1731 1732 return nullptr; 1733 } 1734 1735 /// Fold icmp (and X, C2), C1. 1736 Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp, 1737 BinaryOperator *And, 1738 const APInt &C1) { 1739 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1740 1741 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1742 // TODO: We canonicalize to the longer form for scalars because we have 1743 // better analysis/folds for icmp, and codegen may be better with icmp. 1744 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && 1745 match(And->getOperand(1), m_One())) 1746 return new TruncInst(And->getOperand(0), Cmp.getType()); 1747 1748 const APInt *C2; 1749 Value *X; 1750 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1751 return nullptr; 1752 1753 // Don't perform the following transforms if the AND has multiple uses 1754 if (!And->hasOneUse()) 1755 return nullptr; 1756 1757 if (Cmp.isEquality() && C1.isNullValue()) { 1758 // Restrict this fold to single-use 'and' (PR10267). 1759 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1760 if (C2->isSignMask()) { 1761 Constant *Zero = Constant::getNullValue(X->getType()); 1762 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1763 return new ICmpInst(NewPred, X, Zero); 1764 } 1765 1766 // Restrict this fold only for single-use 'and' (PR10267). 1767 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1768 if ((~(*C2) + 1).isPowerOf2()) { 1769 Constant *NegBOC = 1770 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); 1771 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1772 return new ICmpInst(NewPred, X, NegBOC); 1773 } 1774 } 1775 1776 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1777 // the input width without changing the value produced, eliminate the cast: 1778 // 1779 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1780 // 1781 // We can do this transformation if the constants do not have their sign bits 1782 // set or if it is an equality comparison. Extending a relational comparison 1783 // when we're checking the sign bit would not work. 1784 Value *W; 1785 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1786 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1787 // TODO: Is this a good transform for vectors? Wider types may reduce 1788 // throughput. Should this transform be limited (even for scalars) by using 1789 // shouldChangeType()? 1790 if (!Cmp.getType()->isVectorTy()) { 1791 Type *WideType = W->getType(); 1792 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1793 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1794 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1795 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1796 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1797 } 1798 } 1799 1800 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1801 return I; 1802 1803 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1804 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1805 // 1806 // iff pred isn't signed 1807 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && 1808 match(And->getOperand(1), m_One())) { 1809 Constant *One = cast<Constant>(And->getOperand(1)); 1810 Value *Or = And->getOperand(0); 1811 Value *A, *B, *LShr; 1812 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1813 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1814 unsigned UsesRemoved = 0; 1815 if (And->hasOneUse()) 1816 ++UsesRemoved; 1817 if (Or->hasOneUse()) 1818 ++UsesRemoved; 1819 if (LShr->hasOneUse()) 1820 ++UsesRemoved; 1821 1822 // Compute A & ((1 << B) | 1) 1823 Value *NewOr = nullptr; 1824 if (auto *C = dyn_cast<Constant>(B)) { 1825 if (UsesRemoved >= 1) 1826 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1827 } else { 1828 if (UsesRemoved >= 3) 1829 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1830 /*HasNUW=*/true), 1831 One, Or->getName()); 1832 } 1833 if (NewOr) { 1834 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1835 return replaceOperand(Cmp, 0, NewAnd); 1836 } 1837 } 1838 } 1839 1840 return nullptr; 1841 } 1842 1843 /// Fold icmp (and X, Y), C. 1844 Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp, 1845 BinaryOperator *And, 1846 const APInt &C) { 1847 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1848 return I; 1849 1850 // TODO: These all require that Y is constant too, so refactor with the above. 1851 1852 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1853 Value *X = And->getOperand(0); 1854 Value *Y = And->getOperand(1); 1855 if (auto *LI = dyn_cast<LoadInst>(X)) 1856 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1857 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1858 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1859 !LI->isVolatile() && isa<ConstantInt>(Y)) { 1860 ConstantInt *C2 = cast<ConstantInt>(Y); 1861 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) 1862 return Res; 1863 } 1864 1865 if (!Cmp.isEquality()) 1866 return nullptr; 1867 1868 // X & -C == -C -> X > u ~C 1869 // X & -C != -C -> X <= u ~C 1870 // iff C is a power of 2 1871 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { 1872 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT 1873 : CmpInst::ICMP_ULE; 1874 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1875 } 1876 1877 // (X & C2) == 0 -> (trunc X) >= 0 1878 // (X & C2) != 0 -> (trunc X) < 0 1879 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. 1880 const APInt *C2; 1881 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { 1882 int32_t ExactLogBase2 = C2->exactLogBase2(); 1883 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1884 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); 1885 if (auto *AndVTy = dyn_cast<VectorType>(And->getType())) 1886 NTy = FixedVectorType::get(NTy, AndVTy->getNumElements()); 1887 Value *Trunc = Builder.CreateTrunc(X, NTy); 1888 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE 1889 : CmpInst::ICMP_SLT; 1890 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); 1891 } 1892 } 1893 1894 return nullptr; 1895 } 1896 1897 /// Fold icmp (or X, Y), C. 1898 Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, 1899 const APInt &C) { 1900 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1901 if (C.isOneValue()) { 1902 // icmp slt signum(V) 1 --> icmp slt V, 1 1903 Value *V = nullptr; 1904 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 1905 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1906 ConstantInt::get(V->getType(), 1)); 1907 } 1908 1909 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 1910 const APInt *MaskC; 1911 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 1912 if (*MaskC == C && (C + 1).isPowerOf2()) { 1913 // X | C == C --> X <=u C 1914 // X | C != C --> X >u C 1915 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 1916 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 1917 return new ICmpInst(Pred, OrOp0, OrOp1); 1918 } 1919 1920 // More general: canonicalize 'equality with set bits mask' to 1921 // 'equality with clear bits mask'. 1922 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 1923 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 1924 if (Or->hasOneUse()) { 1925 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 1926 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 1927 return new ICmpInst(Pred, And, NewC); 1928 } 1929 } 1930 1931 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) 1932 return nullptr; 1933 1934 Value *P, *Q; 1935 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1936 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1937 // -> and (icmp eq P, null), (icmp eq Q, null). 1938 Value *CmpP = 1939 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 1940 Value *CmpQ = 1941 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 1942 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1943 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 1944 } 1945 1946 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to 1947 // a shorter form that has more potential to be folded even further. 1948 Value *X1, *X2, *X3, *X4; 1949 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && 1950 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { 1951 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1952 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1953 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); 1954 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); 1955 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1956 return BinaryOperator::Create(BOpc, Cmp12, Cmp34); 1957 } 1958 1959 return nullptr; 1960 } 1961 1962 /// Fold icmp (mul X, Y), C. 1963 Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp, 1964 BinaryOperator *Mul, 1965 const APInt &C) { 1966 const APInt *MulC; 1967 if (!match(Mul->getOperand(1), m_APInt(MulC))) 1968 return nullptr; 1969 1970 // If this is a test of the sign bit and the multiply is sign-preserving with 1971 // a constant operand, use the multiply LHS operand instead. 1972 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1973 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 1974 if (MulC->isNegative()) 1975 Pred = ICmpInst::getSwappedPredicate(Pred); 1976 return new ICmpInst(Pred, Mul->getOperand(0), 1977 Constant::getNullValue(Mul->getType())); 1978 } 1979 1980 return nullptr; 1981 } 1982 1983 /// Fold icmp (shl 1, Y), C. 1984 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 1985 const APInt &C) { 1986 Value *Y; 1987 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 1988 return nullptr; 1989 1990 Type *ShiftType = Shl->getType(); 1991 unsigned TypeBits = C.getBitWidth(); 1992 bool CIsPowerOf2 = C.isPowerOf2(); 1993 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1994 if (Cmp.isUnsigned()) { 1995 // (1 << Y) pred C -> Y pred Log2(C) 1996 if (!CIsPowerOf2) { 1997 // (1 << Y) < 30 -> Y <= 4 1998 // (1 << Y) <= 30 -> Y <= 4 1999 // (1 << Y) >= 30 -> Y > 4 2000 // (1 << Y) > 30 -> Y > 4 2001 if (Pred == ICmpInst::ICMP_ULT) 2002 Pred = ICmpInst::ICMP_ULE; 2003 else if (Pred == ICmpInst::ICMP_UGE) 2004 Pred = ICmpInst::ICMP_UGT; 2005 } 2006 2007 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 2008 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 2009 unsigned CLog2 = C.logBase2(); 2010 if (CLog2 == TypeBits - 1) { 2011 if (Pred == ICmpInst::ICMP_UGE) 2012 Pred = ICmpInst::ICMP_EQ; 2013 else if (Pred == ICmpInst::ICMP_ULT) 2014 Pred = ICmpInst::ICMP_NE; 2015 } 2016 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2017 } else if (Cmp.isSigned()) { 2018 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2019 if (C.isAllOnesValue()) { 2020 // (1 << Y) <= -1 -> Y == 31 2021 if (Pred == ICmpInst::ICMP_SLE) 2022 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2023 2024 // (1 << Y) > -1 -> Y != 31 2025 if (Pred == ICmpInst::ICMP_SGT) 2026 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2027 } else if (!C) { 2028 // (1 << Y) < 0 -> Y == 31 2029 // (1 << Y) <= 0 -> Y == 31 2030 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 2031 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2032 2033 // (1 << Y) >= 0 -> Y != 31 2034 // (1 << Y) > 0 -> Y != 31 2035 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 2036 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2037 } 2038 } else if (Cmp.isEquality() && CIsPowerOf2) { 2039 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); 2040 } 2041 2042 return nullptr; 2043 } 2044 2045 /// Fold icmp (shl X, Y), C. 2046 Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp, 2047 BinaryOperator *Shl, 2048 const APInt &C) { 2049 const APInt *ShiftVal; 2050 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2051 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2052 2053 const APInt *ShiftAmt; 2054 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2055 return foldICmpShlOne(Cmp, Shl, C); 2056 2057 // Check that the shift amount is in range. If not, don't perform undefined 2058 // shifts. When the shift is visited, it will be simplified. 2059 unsigned TypeBits = C.getBitWidth(); 2060 if (ShiftAmt->uge(TypeBits)) 2061 return nullptr; 2062 2063 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2064 Value *X = Shl->getOperand(0); 2065 Type *ShType = Shl->getType(); 2066 2067 // NSW guarantees that we are only shifting out sign bits from the high bits, 2068 // so we can ASHR the compare constant without needing a mask and eliminate 2069 // the shift. 2070 if (Shl->hasNoSignedWrap()) { 2071 if (Pred == ICmpInst::ICMP_SGT) { 2072 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2073 APInt ShiftedC = C.ashr(*ShiftAmt); 2074 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2075 } 2076 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2077 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2078 APInt ShiftedC = C.ashr(*ShiftAmt); 2079 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2080 } 2081 if (Pred == ICmpInst::ICMP_SLT) { 2082 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2083 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2084 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2085 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2086 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2087 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2088 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2089 } 2090 // If this is a signed comparison to 0 and the shift is sign preserving, 2091 // use the shift LHS operand instead; isSignTest may change 'Pred', so only 2092 // do that if we're sure to not continue on in this function. 2093 if (isSignTest(Pred, C)) 2094 return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); 2095 } 2096 2097 // NUW guarantees that we are only shifting out zero bits from the high bits, 2098 // so we can LSHR the compare constant without needing a mask and eliminate 2099 // the shift. 2100 if (Shl->hasNoUnsignedWrap()) { 2101 if (Pred == ICmpInst::ICMP_UGT) { 2102 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2103 APInt ShiftedC = C.lshr(*ShiftAmt); 2104 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2105 } 2106 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2107 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2108 APInt ShiftedC = C.lshr(*ShiftAmt); 2109 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2110 } 2111 if (Pred == ICmpInst::ICMP_ULT) { 2112 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2113 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2114 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2115 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2116 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2117 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2118 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2119 } 2120 } 2121 2122 if (Cmp.isEquality() && Shl->hasOneUse()) { 2123 // Strength-reduce the shift into an 'and'. 2124 Constant *Mask = ConstantInt::get( 2125 ShType, 2126 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2127 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2128 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2129 return new ICmpInst(Pred, And, LShrC); 2130 } 2131 2132 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2133 bool TrueIfSigned = false; 2134 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2135 // (X << 31) <s 0 --> (X & 1) != 0 2136 Constant *Mask = ConstantInt::get( 2137 ShType, 2138 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2139 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2140 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2141 And, Constant::getNullValue(ShType)); 2142 } 2143 2144 // Simplify 'shl' inequality test into 'and' equality test. 2145 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2146 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2147 if ((C + 1).isPowerOf2() && 2148 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2149 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2150 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2151 : ICmpInst::ICMP_NE, 2152 And, Constant::getNullValue(ShType)); 2153 } 2154 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2155 if (C.isPowerOf2() && 2156 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2157 Value *And = 2158 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2159 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2160 : ICmpInst::ICMP_NE, 2161 And, Constant::getNullValue(ShType)); 2162 } 2163 } 2164 2165 // Transform (icmp pred iM (shl iM %v, N), C) 2166 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2167 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2168 // This enables us to get rid of the shift in favor of a trunc that may be 2169 // free on the target. It has the additional benefit of comparing to a 2170 // smaller constant that may be more target-friendly. 2171 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2172 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && 2173 DL.isLegalInteger(TypeBits - Amt)) { 2174 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2175 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2176 TruncTy = FixedVectorType::get(TruncTy, ShVTy->getNumElements()); 2177 Constant *NewC = 2178 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2179 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2180 } 2181 2182 return nullptr; 2183 } 2184 2185 /// Fold icmp ({al}shr X, Y), C. 2186 Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp, 2187 BinaryOperator *Shr, 2188 const APInt &C) { 2189 // An exact shr only shifts out zero bits, so: 2190 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2191 Value *X = Shr->getOperand(0); 2192 CmpInst::Predicate Pred = Cmp.getPredicate(); 2193 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && 2194 C.isNullValue()) 2195 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2196 2197 const APInt *ShiftVal; 2198 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) 2199 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); 2200 2201 const APInt *ShiftAmt; 2202 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) 2203 return nullptr; 2204 2205 // Check that the shift amount is in range. If not, don't perform undefined 2206 // shifts. When the shift is visited it will be simplified. 2207 unsigned TypeBits = C.getBitWidth(); 2208 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); 2209 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2210 return nullptr; 2211 2212 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2213 bool IsExact = Shr->isExact(); 2214 Type *ShrTy = Shr->getType(); 2215 // TODO: If we could guarantee that InstSimplify would handle all of the 2216 // constant-value-based preconditions in the folds below, then we could assert 2217 // those conditions rather than checking them. This is difficult because of 2218 // undef/poison (PR34838). 2219 if (IsAShr) { 2220 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { 2221 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) 2222 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) 2223 APInt ShiftedC = C.shl(ShAmtVal); 2224 if (ShiftedC.ashr(ShAmtVal) == C) 2225 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2226 } 2227 if (Pred == CmpInst::ICMP_SGT) { 2228 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2229 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2230 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2231 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2232 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2233 } 2234 } else { 2235 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2236 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2237 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2238 APInt ShiftedC = C.shl(ShAmtVal); 2239 if (ShiftedC.lshr(ShAmtVal) == C) 2240 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2241 } 2242 if (Pred == CmpInst::ICMP_UGT) { 2243 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2244 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2245 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2246 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2247 } 2248 } 2249 2250 if (!Cmp.isEquality()) 2251 return nullptr; 2252 2253 // Handle equality comparisons of shift-by-constant. 2254 2255 // If the comparison constant changes with the shift, the comparison cannot 2256 // succeed (bits of the comparison constant cannot match the shifted value). 2257 // This should be known by InstSimplify and already be folded to true/false. 2258 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2259 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2260 "Expected icmp+shr simplify did not occur."); 2261 2262 // If the bits shifted out are known zero, compare the unshifted value: 2263 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2264 if (Shr->isExact()) 2265 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2266 2267 if (Shr->hasOneUse()) { 2268 // Canonicalize the shift into an 'and': 2269 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2270 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2271 Constant *Mask = ConstantInt::get(ShrTy, Val); 2272 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2273 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2274 } 2275 2276 return nullptr; 2277 } 2278 2279 Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp, 2280 BinaryOperator *SRem, 2281 const APInt &C) { 2282 // Match an 'is positive' or 'is negative' comparison of remainder by a 2283 // constant power-of-2 value: 2284 // (X % pow2C) sgt/slt 0 2285 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2286 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) 2287 return nullptr; 2288 2289 // TODO: The one-use check is standard because we do not typically want to 2290 // create longer instruction sequences, but this might be a special-case 2291 // because srem is not good for analysis or codegen. 2292 if (!SRem->hasOneUse()) 2293 return nullptr; 2294 2295 const APInt *DivisorC; 2296 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) 2297 return nullptr; 2298 2299 // Mask off the sign bit and the modulo bits (low-bits). 2300 Type *Ty = SRem->getType(); 2301 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2302 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2303 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2304 2305 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2306 // bit is set. Example: 2307 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2308 if (Pred == ICmpInst::ICMP_SGT) 2309 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2310 2311 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2312 // bit is set. Example: 2313 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2314 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2315 } 2316 2317 /// Fold icmp (udiv X, Y), C. 2318 Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp, 2319 BinaryOperator *UDiv, 2320 const APInt &C) { 2321 const APInt *C2; 2322 if (!match(UDiv->getOperand(0), m_APInt(C2))) 2323 return nullptr; 2324 2325 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2326 2327 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2328 Value *Y = UDiv->getOperand(1); 2329 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { 2330 assert(!C.isMaxValue() && 2331 "icmp ugt X, UINT_MAX should have been simplified already."); 2332 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2333 ConstantInt::get(Y->getType(), C2->udiv(C + 1))); 2334 } 2335 2336 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2337 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { 2338 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2339 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2340 ConstantInt::get(Y->getType(), C2->udiv(C))); 2341 } 2342 2343 return nullptr; 2344 } 2345 2346 /// Fold icmp ({su}div X, Y), C. 2347 Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp, 2348 BinaryOperator *Div, 2349 const APInt &C) { 2350 // Fold: icmp pred ([us]div X, C2), C -> range test 2351 // Fold this div into the comparison, producing a range check. 2352 // Determine, based on the divide type, what the range is being 2353 // checked. If there is an overflow on the low or high side, remember 2354 // it, otherwise compute the range [low, hi) bounding the new value. 2355 // See: InsertRangeTest above for the kinds of replacements possible. 2356 const APInt *C2; 2357 if (!match(Div->getOperand(1), m_APInt(C2))) 2358 return nullptr; 2359 2360 // FIXME: If the operand types don't match the type of the divide 2361 // then don't attempt this transform. The code below doesn't have the 2362 // logic to deal with a signed divide and an unsigned compare (and 2363 // vice versa). This is because (x /s C2) <s C produces different 2364 // results than (x /s C2) <u C or (x /u C2) <s C or even 2365 // (x /u C2) <u C. Simply casting the operands and result won't 2366 // work. :( The if statement below tests that condition and bails 2367 // if it finds it. 2368 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2369 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2370 return nullptr; 2371 2372 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2373 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2374 // division-by-constant cases should be present, we can not assert that they 2375 // have happened before we reach this icmp instruction. 2376 if (C2->isNullValue() || C2->isOneValue() || 2377 (DivIsSigned && C2->isAllOnesValue())) 2378 return nullptr; 2379 2380 // Compute Prod = C * C2. We are essentially solving an equation of 2381 // form X / C2 = C. We solve for X by multiplying C2 and C. 2382 // By solving for X, we can turn this into a range check instead of computing 2383 // a divide. 2384 APInt Prod = C * *C2; 2385 2386 // Determine if the product overflows by seeing if the product is not equal to 2387 // the divide. Make sure we do the same kind of divide as in the LHS 2388 // instruction that we're folding. 2389 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2390 2391 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2392 2393 // If the division is known to be exact, then there is no remainder from the 2394 // divide, so the covered range size is unit, otherwise it is the divisor. 2395 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2396 2397 // Figure out the interval that is being checked. For example, a comparison 2398 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2399 // Compute this interval based on the constants involved and the signedness of 2400 // the compare/divide. This computes a half-open interval, keeping track of 2401 // whether either value in the interval overflows. After analysis each 2402 // overflow variable is set to 0 if it's corresponding bound variable is valid 2403 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2404 int LoOverflow = 0, HiOverflow = 0; 2405 APInt LoBound, HiBound; 2406 2407 if (!DivIsSigned) { // udiv 2408 // e.g. X/5 op 3 --> [15, 20) 2409 LoBound = Prod; 2410 HiOverflow = LoOverflow = ProdOV; 2411 if (!HiOverflow) { 2412 // If this is not an exact divide, then many values in the range collapse 2413 // to the same result value. 2414 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2415 } 2416 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2417 if (C.isNullValue()) { // (X / pos) op 0 2418 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2419 LoBound = -(RangeSize - 1); 2420 HiBound = RangeSize; 2421 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2422 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2423 HiOverflow = LoOverflow = ProdOV; 2424 if (!HiOverflow) 2425 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2426 } else { // (X / pos) op neg 2427 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2428 HiBound = Prod + 1; 2429 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2430 if (!LoOverflow) { 2431 APInt DivNeg = -RangeSize; 2432 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2433 } 2434 } 2435 } else if (C2->isNegative()) { // Divisor is < 0. 2436 if (Div->isExact()) 2437 RangeSize.negate(); 2438 if (C.isNullValue()) { // (X / neg) op 0 2439 // e.g. X/-5 op 0 --> [-4, 5) 2440 LoBound = RangeSize + 1; 2441 HiBound = -RangeSize; 2442 if (HiBound == *C2) { // -INTMIN = INTMIN 2443 HiOverflow = 1; // [INTMIN+1, overflow) 2444 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2445 } 2446 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2447 // e.g. X/-5 op 3 --> [-19, -14) 2448 HiBound = Prod + 1; 2449 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2450 if (!LoOverflow) 2451 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 2452 } else { // (X / neg) op neg 2453 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2454 LoOverflow = HiOverflow = ProdOV; 2455 if (!HiOverflow) 2456 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2457 } 2458 2459 // Dividing by a negative swaps the condition. LT <-> GT 2460 Pred = ICmpInst::getSwappedPredicate(Pred); 2461 } 2462 2463 Value *X = Div->getOperand(0); 2464 switch (Pred) { 2465 default: llvm_unreachable("Unhandled icmp opcode!"); 2466 case ICmpInst::ICMP_EQ: 2467 if (LoOverflow && HiOverflow) 2468 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2469 if (HiOverflow) 2470 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2471 ICmpInst::ICMP_UGE, X, 2472 ConstantInt::get(Div->getType(), LoBound)); 2473 if (LoOverflow) 2474 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2475 ICmpInst::ICMP_ULT, X, 2476 ConstantInt::get(Div->getType(), HiBound)); 2477 return replaceInstUsesWith( 2478 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2479 case ICmpInst::ICMP_NE: 2480 if (LoOverflow && HiOverflow) 2481 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2482 if (HiOverflow) 2483 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 2484 ICmpInst::ICMP_ULT, X, 2485 ConstantInt::get(Div->getType(), LoBound)); 2486 if (LoOverflow) 2487 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 2488 ICmpInst::ICMP_UGE, X, 2489 ConstantInt::get(Div->getType(), HiBound)); 2490 return replaceInstUsesWith(Cmp, 2491 insertRangeTest(X, LoBound, HiBound, 2492 DivIsSigned, false)); 2493 case ICmpInst::ICMP_ULT: 2494 case ICmpInst::ICMP_SLT: 2495 if (LoOverflow == +1) // Low bound is greater than input range. 2496 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2497 if (LoOverflow == -1) // Low bound is less than input range. 2498 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2499 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); 2500 case ICmpInst::ICMP_UGT: 2501 case ICmpInst::ICMP_SGT: 2502 if (HiOverflow == +1) // High bound greater than input range. 2503 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2504 if (HiOverflow == -1) // High bound less than input range. 2505 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2506 if (Pred == ICmpInst::ICMP_UGT) 2507 return new ICmpInst(ICmpInst::ICMP_UGE, X, 2508 ConstantInt::get(Div->getType(), HiBound)); 2509 return new ICmpInst(ICmpInst::ICMP_SGE, X, 2510 ConstantInt::get(Div->getType(), HiBound)); 2511 } 2512 2513 return nullptr; 2514 } 2515 2516 /// Fold icmp (sub X, Y), C. 2517 Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp, 2518 BinaryOperator *Sub, 2519 const APInt &C) { 2520 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2521 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2522 const APInt *C2; 2523 APInt SubResult; 2524 2525 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0 2526 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) 2527 return new ICmpInst(Cmp.getPredicate(), Y, 2528 ConstantInt::get(Y->getType(), 0)); 2529 2530 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2531 if (match(X, m_APInt(C2)) && 2532 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || 2533 (Cmp.isSigned() && Sub->hasNoSignedWrap())) && 2534 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2535 return new ICmpInst(Cmp.getSwappedPredicate(), Y, 2536 ConstantInt::get(Y->getType(), SubResult)); 2537 2538 // The following transforms are only worth it if the only user of the subtract 2539 // is the icmp. 2540 if (!Sub->hasOneUse()) 2541 return nullptr; 2542 2543 if (Sub->hasNoSignedWrap()) { 2544 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2545 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) 2546 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2547 2548 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2549 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) 2550 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2551 2552 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2553 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) 2554 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2555 2556 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2557 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) 2558 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2559 } 2560 2561 if (!match(X, m_APInt(C2))) 2562 return nullptr; 2563 2564 // C2 - Y <u C -> (Y | (C - 1)) == C2 2565 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2566 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2567 (*C2 & (C - 1)) == (C - 1)) 2568 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2569 2570 // C2 - Y >u C -> (Y | C) != C2 2571 // iff C2 & C == C and C + 1 is a power of 2 2572 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2573 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2574 2575 return nullptr; 2576 } 2577 2578 /// Fold icmp (add X, Y), C. 2579 Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp, 2580 BinaryOperator *Add, 2581 const APInt &C) { 2582 Value *Y = Add->getOperand(1); 2583 const APInt *C2; 2584 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2585 return nullptr; 2586 2587 // Fold icmp pred (add X, C2), C. 2588 Value *X = Add->getOperand(0); 2589 Type *Ty = Add->getType(); 2590 CmpInst::Predicate Pred = Cmp.getPredicate(); 2591 2592 // If the add does not wrap, we can always adjust the compare by subtracting 2593 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2594 // are canonicalized to SGT/SLT/UGT/ULT. 2595 if ((Add->hasNoSignedWrap() && 2596 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2597 (Add->hasNoUnsignedWrap() && 2598 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2599 bool Overflow; 2600 APInt NewC = 2601 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2602 // If there is overflow, the result must be true or false. 2603 // TODO: Can we assert there is no overflow because InstSimplify always 2604 // handles those cases? 2605 if (!Overflow) 2606 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2607 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2608 } 2609 2610 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2611 const APInt &Upper = CR.getUpper(); 2612 const APInt &Lower = CR.getLower(); 2613 if (Cmp.isSigned()) { 2614 if (Lower.isSignMask()) 2615 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2616 if (Upper.isSignMask()) 2617 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2618 } else { 2619 if (Lower.isMinValue()) 2620 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2621 if (Upper.isMinValue()) 2622 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2623 } 2624 2625 if (!Add->hasOneUse()) 2626 return nullptr; 2627 2628 // X+C <u C2 -> (X & -C2) == C 2629 // iff C & (C2-1) == 0 2630 // C2 is a power of 2 2631 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2632 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2633 ConstantExpr::getNeg(cast<Constant>(Y))); 2634 2635 // X+C >u C2 -> (X & ~C2) != C 2636 // iff C & C2 == 0 2637 // C2+1 is a power of 2 2638 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2639 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2640 ConstantExpr::getNeg(cast<Constant>(Y))); 2641 2642 return nullptr; 2643 } 2644 2645 bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2646 Value *&RHS, ConstantInt *&Less, 2647 ConstantInt *&Equal, 2648 ConstantInt *&Greater) { 2649 // TODO: Generalize this to work with other comparison idioms or ensure 2650 // they get canonicalized into this form. 2651 2652 // select i1 (a == b), 2653 // i32 Equal, 2654 // i32 (select i1 (a < b), i32 Less, i32 Greater) 2655 // where Equal, Less and Greater are placeholders for any three constants. 2656 ICmpInst::Predicate PredA; 2657 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 2658 !ICmpInst::isEquality(PredA)) 2659 return false; 2660 Value *EqualVal = SI->getTrueValue(); 2661 Value *UnequalVal = SI->getFalseValue(); 2662 // We still can get non-canonical predicate here, so canonicalize. 2663 if (PredA == ICmpInst::ICMP_NE) 2664 std::swap(EqualVal, UnequalVal); 2665 if (!match(EqualVal, m_ConstantInt(Equal))) 2666 return false; 2667 ICmpInst::Predicate PredB; 2668 Value *LHS2, *RHS2; 2669 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 2670 m_ConstantInt(Less), m_ConstantInt(Greater)))) 2671 return false; 2672 // We can get predicate mismatch here, so canonicalize if possible: 2673 // First, ensure that 'LHS' match. 2674 if (LHS2 != LHS) { 2675 // x sgt y <--> y slt x 2676 std::swap(LHS2, RHS2); 2677 PredB = ICmpInst::getSwappedPredicate(PredB); 2678 } 2679 if (LHS2 != LHS) 2680 return false; 2681 // We also need to canonicalize 'RHS'. 2682 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 2683 // x sgt C-1 <--> x sge C <--> not(x slt C) 2684 auto FlippedStrictness = 2685 getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2)); 2686 if (!FlippedStrictness) 2687 return false; 2688 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); 2689 RHS2 = FlippedStrictness->second; 2690 // And kind-of perform the result swap. 2691 std::swap(Less, Greater); 2692 PredB = ICmpInst::ICMP_SLT; 2693 } 2694 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 2695 } 2696 2697 Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp, 2698 SelectInst *Select, 2699 ConstantInt *C) { 2700 2701 assert(C && "Cmp RHS should be a constant int!"); 2702 // If we're testing a constant value against the result of a three way 2703 // comparison, the result can be expressed directly in terms of the 2704 // original values being compared. Note: We could possibly be more 2705 // aggressive here and remove the hasOneUse test. The original select is 2706 // really likely to simplify or sink when we remove a test of the result. 2707 Value *OrigLHS, *OrigRHS; 2708 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 2709 if (Cmp.hasOneUse() && 2710 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 2711 C3GreaterThan)) { 2712 assert(C1LessThan && C2Equal && C3GreaterThan); 2713 2714 bool TrueWhenLessThan = 2715 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 2716 ->isAllOnesValue(); 2717 bool TrueWhenEqual = 2718 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 2719 ->isAllOnesValue(); 2720 bool TrueWhenGreaterThan = 2721 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 2722 ->isAllOnesValue(); 2723 2724 // This generates the new instruction that will replace the original Cmp 2725 // Instruction. Instead of enumerating the various combinations when 2726 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 2727 // false, we rely on chaining of ORs and future passes of InstCombine to 2728 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 2729 2730 // When none of the three constants satisfy the predicate for the RHS (C), 2731 // the entire original Cmp can be simplified to a false. 2732 Value *Cond = Builder.getFalse(); 2733 if (TrueWhenLessThan) 2734 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 2735 OrigLHS, OrigRHS)); 2736 if (TrueWhenEqual) 2737 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 2738 OrigLHS, OrigRHS)); 2739 if (TrueWhenGreaterThan) 2740 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 2741 OrigLHS, OrigRHS)); 2742 2743 return replaceInstUsesWith(Cmp, Cond); 2744 } 2745 return nullptr; 2746 } 2747 2748 static Instruction *foldICmpBitCast(ICmpInst &Cmp, 2749 InstCombiner::BuilderTy &Builder) { 2750 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 2751 if (!Bitcast) 2752 return nullptr; 2753 2754 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2755 Value *Op1 = Cmp.getOperand(1); 2756 Value *BCSrcOp = Bitcast->getOperand(0); 2757 2758 // Make sure the bitcast doesn't change the number of vector elements. 2759 if (Bitcast->getSrcTy()->getScalarSizeInBits() == 2760 Bitcast->getDestTy()->getScalarSizeInBits()) { 2761 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 2762 Value *X; 2763 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 2764 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 2765 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 2766 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 2767 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 2768 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 2769 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 2770 match(Op1, m_Zero())) 2771 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2772 2773 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 2774 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 2775 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 2776 2777 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 2778 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 2779 return new ICmpInst(Pred, X, 2780 ConstantInt::getAllOnesValue(X->getType())); 2781 } 2782 2783 // Zero-equality checks are preserved through unsigned floating-point casts: 2784 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 2785 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 2786 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 2787 if (Cmp.isEquality() && match(Op1, m_Zero())) 2788 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2789 2790 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 2791 // the FP extend/truncate because that cast does not change the sign-bit. 2792 // This is true for all standard IEEE-754 types and the X86 80-bit type. 2793 // The sign-bit is always the most significant bit in those types. 2794 const APInt *C; 2795 bool TrueIfSigned; 2796 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 2797 isSignBitCheck(Pred, *C, TrueIfSigned)) { 2798 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 2799 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 2800 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 2801 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 2802 Type *XType = X->getType(); 2803 2804 // We can't currently handle Power style floating point operations here. 2805 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { 2806 2807 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 2808 if (auto *XVTy = dyn_cast<VectorType>(XType)) 2809 NewType = FixedVectorType::get(NewType, XVTy->getNumElements()); 2810 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 2811 if (TrueIfSigned) 2812 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 2813 ConstantInt::getNullValue(NewType)); 2814 else 2815 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 2816 ConstantInt::getAllOnesValue(NewType)); 2817 } 2818 } 2819 } 2820 } 2821 2822 // Test to see if the operands of the icmp are casted versions of other 2823 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 2824 if (Bitcast->getType()->isPointerTy() && 2825 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 2826 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 2827 // so eliminate it as well. 2828 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 2829 Op1 = BC2->getOperand(0); 2830 2831 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); 2832 return new ICmpInst(Pred, BCSrcOp, Op1); 2833 } 2834 2835 // Folding: icmp <pred> iN X, C 2836 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 2837 // and C is a splat of a K-bit pattern 2838 // and SC is a constant vector = <C', C', C', ..., C'> 2839 // Into: 2840 // %E = extractelement <M x iK> %vec, i32 C' 2841 // icmp <pred> iK %E, trunc(C) 2842 const APInt *C; 2843 if (!match(Cmp.getOperand(1), m_APInt(C)) || 2844 !Bitcast->getType()->isIntegerTy() || 2845 !Bitcast->getSrcTy()->isIntOrIntVectorTy()) 2846 return nullptr; 2847 2848 Value *Vec; 2849 ArrayRef<int> Mask; 2850 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 2851 // Check whether every element of Mask is the same constant 2852 if (is_splat(Mask)) { 2853 auto *VecTy = cast<VectorType>(BCSrcOp->getType()); 2854 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 2855 if (C->isSplat(EltTy->getBitWidth())) { 2856 // Fold the icmp based on the value of C 2857 // If C is M copies of an iK sized bit pattern, 2858 // then: 2859 // => %E = extractelement <N x iK> %vec, i32 Elem 2860 // icmp <pred> iK %SplatVal, <pattern> 2861 Value *Elem = Builder.getInt32(Mask[0]); 2862 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 2863 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 2864 return new ICmpInst(Pred, Extract, NewC); 2865 } 2866 } 2867 } 2868 return nullptr; 2869 } 2870 2871 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 2872 /// where X is some kind of instruction. 2873 Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) { 2874 const APInt *C; 2875 if (!match(Cmp.getOperand(1), m_APInt(C))) 2876 return nullptr; 2877 2878 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { 2879 switch (BO->getOpcode()) { 2880 case Instruction::Xor: 2881 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) 2882 return I; 2883 break; 2884 case Instruction::And: 2885 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) 2886 return I; 2887 break; 2888 case Instruction::Or: 2889 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) 2890 return I; 2891 break; 2892 case Instruction::Mul: 2893 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) 2894 return I; 2895 break; 2896 case Instruction::Shl: 2897 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) 2898 return I; 2899 break; 2900 case Instruction::LShr: 2901 case Instruction::AShr: 2902 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) 2903 return I; 2904 break; 2905 case Instruction::SRem: 2906 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) 2907 return I; 2908 break; 2909 case Instruction::UDiv: 2910 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) 2911 return I; 2912 LLVM_FALLTHROUGH; 2913 case Instruction::SDiv: 2914 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) 2915 return I; 2916 break; 2917 case Instruction::Sub: 2918 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) 2919 return I; 2920 break; 2921 case Instruction::Add: 2922 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) 2923 return I; 2924 break; 2925 default: 2926 break; 2927 } 2928 // TODO: These folds could be refactored to be part of the above calls. 2929 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) 2930 return I; 2931 } 2932 2933 // Match against CmpInst LHS being instructions other than binary operators. 2934 2935 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { 2936 // For now, we only support constant integers while folding the 2937 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 2938 // similar to the cases handled by binary ops above. 2939 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 2940 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 2941 return I; 2942 } 2943 2944 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { 2945 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 2946 return I; 2947 } 2948 2949 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 2950 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 2951 return I; 2952 2953 return nullptr; 2954 } 2955 2956 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 2957 /// icmp eq/ne BO, C. 2958 Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, 2959 BinaryOperator *BO, 2960 const APInt &C) { 2961 // TODO: Some of these folds could work with arbitrary constants, but this 2962 // function is limited to scalar and vector splat constants. 2963 if (!Cmp.isEquality()) 2964 return nullptr; 2965 2966 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2967 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 2968 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 2969 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2970 2971 switch (BO->getOpcode()) { 2972 case Instruction::SRem: 2973 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2974 if (C.isNullValue() && BO->hasOneUse()) { 2975 const APInt *BOC; 2976 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 2977 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 2978 return new ICmpInst(Pred, NewRem, 2979 Constant::getNullValue(BO->getType())); 2980 } 2981 } 2982 break; 2983 case Instruction::Add: { 2984 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2985 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 2986 if (BO->hasOneUse()) 2987 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); 2988 } else if (C.isNullValue()) { 2989 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2990 // efficiently invertible, or if the add has just this one use. 2991 if (Value *NegVal = dyn_castNegVal(BOp1)) 2992 return new ICmpInst(Pred, BOp0, NegVal); 2993 if (Value *NegVal = dyn_castNegVal(BOp0)) 2994 return new ICmpInst(Pred, NegVal, BOp1); 2995 if (BO->hasOneUse()) { 2996 Value *Neg = Builder.CreateNeg(BOp1); 2997 Neg->takeName(BO); 2998 return new ICmpInst(Pred, BOp0, Neg); 2999 } 3000 } 3001 break; 3002 } 3003 case Instruction::Xor: 3004 if (BO->hasOneUse()) { 3005 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3006 // For the xor case, we can xor two constants together, eliminating 3007 // the explicit xor. 3008 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3009 } else if (C.isNullValue()) { 3010 // Replace ((xor A, B) != 0) with (A != B) 3011 return new ICmpInst(Pred, BOp0, BOp1); 3012 } 3013 } 3014 break; 3015 case Instruction::Sub: 3016 if (BO->hasOneUse()) { 3017 // Only check for constant LHS here, as constant RHS will be canonicalized 3018 // to add and use the fold above. 3019 if (Constant *BOC = dyn_cast<Constant>(BOp0)) { 3020 // Replace ((sub BOC, B) != C) with (B != BOC-C). 3021 return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS)); 3022 } else if (C.isNullValue()) { 3023 // Replace ((sub A, B) != 0) with (A != B). 3024 return new ICmpInst(Pred, BOp0, BOp1); 3025 } 3026 } 3027 break; 3028 case Instruction::Or: { 3029 const APInt *BOC; 3030 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3031 // Comparing if all bits outside of a constant mask are set? 3032 // Replace (X | C) == -1 with (X & ~C) == ~C. 3033 // This removes the -1 constant. 3034 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3035 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3036 return new ICmpInst(Pred, And, NotBOC); 3037 } 3038 break; 3039 } 3040 case Instruction::And: { 3041 const APInt *BOC; 3042 if (match(BOp1, m_APInt(BOC))) { 3043 // If we have ((X & C) == C), turn it into ((X & C) != 0). 3044 if (C == *BOC && C.isPowerOf2()) 3045 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, 3046 BO, Constant::getNullValue(RHS->getType())); 3047 } 3048 break; 3049 } 3050 case Instruction::Mul: 3051 if (C.isNullValue() && BO->hasNoSignedWrap()) { 3052 const APInt *BOC; 3053 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) { 3054 // The trivial case (mul X, 0) is handled by InstSimplify. 3055 // General case : (mul X, C) != 0 iff X != 0 3056 // (mul X, C) == 0 iff X == 0 3057 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType())); 3058 } 3059 } 3060 break; 3061 case Instruction::UDiv: 3062 if (C.isNullValue()) { 3063 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3064 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3065 return new ICmpInst(NewPred, BOp1, BOp0); 3066 } 3067 break; 3068 default: 3069 break; 3070 } 3071 return nullptr; 3072 } 3073 3074 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3075 Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp, 3076 IntrinsicInst *II, 3077 const APInt &C) { 3078 Type *Ty = II->getType(); 3079 unsigned BitWidth = C.getBitWidth(); 3080 switch (II->getIntrinsicID()) { 3081 case Intrinsic::bswap: 3082 // bswap(A) == C -> A == bswap(C) 3083 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3084 ConstantInt::get(Ty, C.byteSwap())); 3085 3086 case Intrinsic::ctlz: 3087 case Intrinsic::cttz: { 3088 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3089 if (C == BitWidth) 3090 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3091 ConstantInt::getNullValue(Ty)); 3092 3093 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3094 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3095 // Limit to one use to ensure we don't increase instruction count. 3096 unsigned Num = C.getLimitedValue(BitWidth); 3097 if (Num != BitWidth && II->hasOneUse()) { 3098 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3099 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3100 : APInt::getHighBitsSet(BitWidth, Num + 1); 3101 APInt Mask2 = IsTrailing 3102 ? APInt::getOneBitSet(BitWidth, Num) 3103 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3104 return new ICmpInst(Cmp.getPredicate(), 3105 Builder.CreateAnd(II->getArgOperand(0), Mask1), 3106 ConstantInt::get(Ty, Mask2)); 3107 } 3108 break; 3109 } 3110 3111 case Intrinsic::ctpop: { 3112 // popcount(A) == 0 -> A == 0 and likewise for != 3113 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3114 bool IsZero = C.isNullValue(); 3115 if (IsZero || C == BitWidth) 3116 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), 3117 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty)); 3118 3119 break; 3120 } 3121 3122 case Intrinsic::uadd_sat: { 3123 // uadd.sat(a, b) == 0 -> (a | b) == 0 3124 if (C.isNullValue()) { 3125 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3126 return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty)); 3127 } 3128 break; 3129 } 3130 3131 case Intrinsic::usub_sat: { 3132 // usub.sat(a, b) == 0 -> a <= b 3133 if (C.isNullValue()) { 3134 ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ 3135 ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3136 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3137 } 3138 break; 3139 } 3140 default: 3141 break; 3142 } 3143 3144 return nullptr; 3145 } 3146 3147 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3148 Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3149 IntrinsicInst *II, 3150 const APInt &C) { 3151 if (Cmp.isEquality()) 3152 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3153 3154 Type *Ty = II->getType(); 3155 unsigned BitWidth = C.getBitWidth(); 3156 switch (II->getIntrinsicID()) { 3157 case Intrinsic::ctlz: { 3158 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3159 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3160 unsigned Num = C.getLimitedValue(); 3161 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3162 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3163 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3164 } 3165 3166 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3167 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 3168 C.uge(1) && C.ule(BitWidth)) { 3169 unsigned Num = C.getLimitedValue(); 3170 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3171 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3172 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3173 } 3174 break; 3175 } 3176 case Intrinsic::cttz: { 3177 // Limit to one use to ensure we don't increase instruction count. 3178 if (!II->hasOneUse()) 3179 return nullptr; 3180 3181 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3182 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3183 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3184 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3185 Builder.CreateAnd(II->getArgOperand(0), Mask), 3186 ConstantInt::getNullValue(Ty)); 3187 } 3188 3189 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3190 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && 3191 C.uge(1) && C.ule(BitWidth)) { 3192 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3193 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3194 Builder.CreateAnd(II->getArgOperand(0), Mask), 3195 ConstantInt::getNullValue(Ty)); 3196 } 3197 break; 3198 } 3199 default: 3200 break; 3201 } 3202 3203 return nullptr; 3204 } 3205 3206 /// Handle icmp with constant (but not simple integer constant) RHS. 3207 Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3208 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3209 Constant *RHSC = dyn_cast<Constant>(Op1); 3210 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3211 if (!RHSC || !LHSI) 3212 return nullptr; 3213 3214 switch (LHSI->getOpcode()) { 3215 case Instruction::GetElementPtr: 3216 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3217 if (RHSC->isNullValue() && 3218 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3219 return new ICmpInst( 3220 I.getPredicate(), LHSI->getOperand(0), 3221 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3222 break; 3223 case Instruction::PHI: 3224 // Only fold icmp into the PHI if the phi and icmp are in the same 3225 // block. If in the same block, we're encouraging jump threading. If 3226 // not, we are just pessimizing the code by making an i1 phi. 3227 if (LHSI->getParent() == I.getParent()) 3228 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3229 return NV; 3230 break; 3231 case Instruction::Select: { 3232 // If either operand of the select is a constant, we can fold the 3233 // comparison into the select arms, which will cause one to be 3234 // constant folded and the select turned into a bitwise or. 3235 Value *Op1 = nullptr, *Op2 = nullptr; 3236 ConstantInt *CI = nullptr; 3237 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3238 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3239 CI = dyn_cast<ConstantInt>(Op1); 3240 } 3241 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3242 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3243 CI = dyn_cast<ConstantInt>(Op2); 3244 } 3245 3246 // We only want to perform this transformation if it will not lead to 3247 // additional code. This is true if either both sides of the select 3248 // fold to a constant (in which case the icmp is replaced with a select 3249 // which will usually simplify) or this is the only user of the 3250 // select (in which case we are trading a select+icmp for a simpler 3251 // select+icmp) or all uses of the select can be replaced based on 3252 // dominance information ("Global cases"). 3253 bool Transform = false; 3254 if (Op1 && Op2) 3255 Transform = true; 3256 else if (Op1 || Op2) { 3257 // Local case 3258 if (LHSI->hasOneUse()) 3259 Transform = true; 3260 // Global cases 3261 else if (CI && !CI->isZero()) 3262 // When Op1 is constant try replacing select with second operand. 3263 // Otherwise Op2 is constant and try replacing select with first 3264 // operand. 3265 Transform = 3266 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); 3267 } 3268 if (Transform) { 3269 if (!Op1) 3270 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, 3271 I.getName()); 3272 if (!Op2) 3273 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, 3274 I.getName()); 3275 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3276 } 3277 break; 3278 } 3279 case Instruction::IntToPtr: 3280 // icmp pred inttoptr(X), null -> icmp pred X, 0 3281 if (RHSC->isNullValue() && 3282 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3283 return new ICmpInst( 3284 I.getPredicate(), LHSI->getOperand(0), 3285 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3286 break; 3287 3288 case Instruction::Load: 3289 // Try to optimize things like "A[i] > 4" to index computations. 3290 if (GetElementPtrInst *GEP = 3291 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3292 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3293 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3294 !cast<LoadInst>(LHSI)->isVolatile()) 3295 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3296 return Res; 3297 } 3298 break; 3299 } 3300 3301 return nullptr; 3302 } 3303 3304 /// Some comparisons can be simplified. 3305 /// In this case, we are looking for comparisons that look like 3306 /// a check for a lossy truncation. 3307 /// Folds: 3308 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3309 /// Where Mask is some pattern that produces all-ones in low bits: 3310 /// (-1 >> y) 3311 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3312 /// ~(-1 << y) 3313 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3314 /// The Mask can be a constant, too. 3315 /// For some predicates, the operands are commutative. 3316 /// For others, x can only be on a specific side. 3317 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3318 InstCombiner::BuilderTy &Builder) { 3319 ICmpInst::Predicate SrcPred; 3320 Value *X, *M, *Y; 3321 auto m_VariableMask = m_CombineOr( 3322 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3323 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3324 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3325 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3326 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3327 if (!match(&I, m_c_ICmp(SrcPred, 3328 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 3329 m_Deferred(X)))) 3330 return nullptr; 3331 3332 ICmpInst::Predicate DstPred; 3333 switch (SrcPred) { 3334 case ICmpInst::Predicate::ICMP_EQ: 3335 // x & (-1 >> y) == x -> x u<= (-1 >> y) 3336 DstPred = ICmpInst::Predicate::ICMP_ULE; 3337 break; 3338 case ICmpInst::Predicate::ICMP_NE: 3339 // x & (-1 >> y) != x -> x u> (-1 >> y) 3340 DstPred = ICmpInst::Predicate::ICMP_UGT; 3341 break; 3342 case ICmpInst::Predicate::ICMP_ULT: 3343 // x & (-1 >> y) u< x -> x u> (-1 >> y) 3344 // x u> x & (-1 >> y) -> x u> (-1 >> y) 3345 DstPred = ICmpInst::Predicate::ICMP_UGT; 3346 break; 3347 case ICmpInst::Predicate::ICMP_UGE: 3348 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 3349 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 3350 DstPred = ICmpInst::Predicate::ICMP_ULE; 3351 break; 3352 case ICmpInst::Predicate::ICMP_SLT: 3353 // x & (-1 >> y) s< x -> x s> (-1 >> y) 3354 // x s> x & (-1 >> y) -> x s> (-1 >> y) 3355 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3356 return nullptr; 3357 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3358 return nullptr; 3359 DstPred = ICmpInst::Predicate::ICMP_SGT; 3360 break; 3361 case ICmpInst::Predicate::ICMP_SGE: 3362 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 3363 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 3364 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 3365 return nullptr; 3366 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 3367 return nullptr; 3368 DstPred = ICmpInst::Predicate::ICMP_SLE; 3369 break; 3370 case ICmpInst::Predicate::ICMP_SGT: 3371 case ICmpInst::Predicate::ICMP_SLE: 3372 return nullptr; 3373 case ICmpInst::Predicate::ICMP_UGT: 3374 case ICmpInst::Predicate::ICMP_ULE: 3375 llvm_unreachable("Instsimplify took care of commut. variant"); 3376 break; 3377 default: 3378 llvm_unreachable("All possible folds are handled."); 3379 } 3380 3381 // The mask value may be a vector constant that has undefined elements. But it 3382 // may not be safe to propagate those undefs into the new compare, so replace 3383 // those elements by copying an existing, defined, and safe scalar constant. 3384 Type *OpTy = M->getType(); 3385 auto *VecC = dyn_cast<Constant>(M); 3386 if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) { 3387 auto *OpVTy = cast<VectorType>(OpTy); 3388 Constant *SafeReplacementConstant = nullptr; 3389 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 3390 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 3391 SafeReplacementConstant = VecC->getAggregateElement(i); 3392 break; 3393 } 3394 } 3395 assert(SafeReplacementConstant && "Failed to find undef replacement"); 3396 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 3397 } 3398 3399 return Builder.CreateICmp(DstPred, X, M); 3400 } 3401 3402 /// Some comparisons can be simplified. 3403 /// In this case, we are looking for comparisons that look like 3404 /// a check for a lossy signed truncation. 3405 /// Folds: (MaskedBits is a constant.) 3406 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 3407 /// Into: 3408 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 3409 /// Where KeptBits = bitwidth(%x) - MaskedBits 3410 static Value * 3411 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 3412 InstCombiner::BuilderTy &Builder) { 3413 ICmpInst::Predicate SrcPred; 3414 Value *X; 3415 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 3416 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 3417 if (!match(&I, m_c_ICmp(SrcPred, 3418 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 3419 m_APInt(C1))), 3420 m_Deferred(X)))) 3421 return nullptr; 3422 3423 // Potential handling of non-splats: for each element: 3424 // * if both are undef, replace with constant 0. 3425 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 3426 // * if both are not undef, and are different, bailout. 3427 // * else, only one is undef, then pick the non-undef one. 3428 3429 // The shift amount must be equal. 3430 if (*C0 != *C1) 3431 return nullptr; 3432 const APInt &MaskedBits = *C0; 3433 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 3434 3435 ICmpInst::Predicate DstPred; 3436 switch (SrcPred) { 3437 case ICmpInst::Predicate::ICMP_EQ: 3438 // ((%x << MaskedBits) a>> MaskedBits) == %x 3439 // => 3440 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 3441 DstPred = ICmpInst::Predicate::ICMP_ULT; 3442 break; 3443 case ICmpInst::Predicate::ICMP_NE: 3444 // ((%x << MaskedBits) a>> MaskedBits) != %x 3445 // => 3446 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 3447 DstPred = ICmpInst::Predicate::ICMP_UGE; 3448 break; 3449 // FIXME: are more folds possible? 3450 default: 3451 return nullptr; 3452 } 3453 3454 auto *XType = X->getType(); 3455 const unsigned XBitWidth = XType->getScalarSizeInBits(); 3456 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 3457 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 3458 3459 // KeptBits = bitwidth(%x) - MaskedBits 3460 const APInt KeptBits = BitWidth - MaskedBits; 3461 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 3462 // ICmpCst = (1 << KeptBits) 3463 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 3464 assert(ICmpCst.isPowerOf2()); 3465 // AddCst = (1 << (KeptBits-1)) 3466 const APInt AddCst = ICmpCst.lshr(1); 3467 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 3468 3469 // T0 = add %x, AddCst 3470 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 3471 // T1 = T0 DstPred ICmpCst 3472 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 3473 3474 return T1; 3475 } 3476 3477 // Given pattern: 3478 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3479 // we should move shifts to the same hand of 'and', i.e. rewrite as 3480 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3481 // We are only interested in opposite logical shifts here. 3482 // One of the shifts can be truncated. 3483 // If we can, we want to end up creating 'lshr' shift. 3484 static Value * 3485 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 3486 InstCombiner::BuilderTy &Builder) { 3487 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 3488 !I.getOperand(0)->hasOneUse()) 3489 return nullptr; 3490 3491 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 3492 3493 // Look for an 'and' of two logical shifts, one of which may be truncated. 3494 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 3495 Instruction *XShift, *MaybeTruncation, *YShift; 3496 if (!match( 3497 I.getOperand(0), 3498 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 3499 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 3500 m_AnyLogicalShift, m_Instruction(YShift))), 3501 m_Instruction(MaybeTruncation))))) 3502 return nullptr; 3503 3504 // We potentially looked past 'trunc', but only when matching YShift, 3505 // therefore YShift must have the widest type. 3506 Instruction *WidestShift = YShift; 3507 // Therefore XShift must have the shallowest type. 3508 // Or they both have identical types if there was no truncation. 3509 Instruction *NarrowestShift = XShift; 3510 3511 Type *WidestTy = WidestShift->getType(); 3512 Type *NarrowestTy = NarrowestShift->getType(); 3513 assert(NarrowestTy == I.getOperand(0)->getType() && 3514 "We did not look past any shifts while matching XShift though."); 3515 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 3516 3517 // If YShift is a 'lshr', swap the shifts around. 3518 if (match(YShift, m_LShr(m_Value(), m_Value()))) 3519 std::swap(XShift, YShift); 3520 3521 // The shifts must be in opposite directions. 3522 auto XShiftOpcode = XShift->getOpcode(); 3523 if (XShiftOpcode == YShift->getOpcode()) 3524 return nullptr; // Do not care about same-direction shifts here. 3525 3526 Value *X, *XShAmt, *Y, *YShAmt; 3527 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 3528 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 3529 3530 // If one of the values being shifted is a constant, then we will end with 3531 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 3532 // however, we will need to ensure that we won't increase instruction count. 3533 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 3534 // At least one of the hands of the 'and' should be one-use shift. 3535 if (!match(I.getOperand(0), 3536 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 3537 return nullptr; 3538 if (HadTrunc) { 3539 // Due to the 'trunc', we will need to widen X. For that either the old 3540 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 3541 if (!MaybeTruncation->hasOneUse() && 3542 !NarrowestShift->getOperand(1)->hasOneUse()) 3543 return nullptr; 3544 } 3545 } 3546 3547 // We have two shift amounts from two different shifts. The types of those 3548 // shift amounts may not match. If that's the case let's bailout now. 3549 if (XShAmt->getType() != YShAmt->getType()) 3550 return nullptr; 3551 3552 // As input, we have the following pattern: 3553 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 3554 // We want to rewrite that as: 3555 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 3556 // While we know that originally (Q+K) would not overflow 3557 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 3558 // shift amounts. so it may now overflow in smaller bitwidth. 3559 // To ensure that does not happen, we need to ensure that the total maximal 3560 // shift amount is still representable in that smaller bit width. 3561 unsigned MaximalPossibleTotalShiftAmount = 3562 (WidestTy->getScalarSizeInBits() - 1) + 3563 (NarrowestTy->getScalarSizeInBits() - 1); 3564 APInt MaximalRepresentableShiftAmount = 3565 APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits()); 3566 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 3567 return nullptr; 3568 3569 // Can we fold (XShAmt+YShAmt) ? 3570 auto *NewShAmt = dyn_cast_or_null<Constant>( 3571 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 3572 /*isNUW=*/false, SQ.getWithInstruction(&I))); 3573 if (!NewShAmt) 3574 return nullptr; 3575 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 3576 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 3577 3578 // Is the new shift amount smaller than the bit width? 3579 // FIXME: could also rely on ConstantRange. 3580 if (!match(NewShAmt, 3581 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 3582 APInt(WidestBitWidth, WidestBitWidth)))) 3583 return nullptr; 3584 3585 // An extra legality check is needed if we had trunc-of-lshr. 3586 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 3587 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 3588 WidestShift]() { 3589 // It isn't obvious whether it's worth it to analyze non-constants here. 3590 // Also, let's basically give up on non-splat cases, pessimizing vectors. 3591 // If *any* of these preconditions matches we can perform the fold. 3592 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 3593 ? NewShAmt->getSplatValue() 3594 : NewShAmt; 3595 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 3596 if (NewShAmtSplat && 3597 (NewShAmtSplat->isNullValue() || 3598 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 3599 return true; 3600 // We consider *min* leading zeros so a single outlier 3601 // blocks the transform as opposed to allowing it. 3602 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 3603 KnownBits Known = computeKnownBits(C, SQ.DL); 3604 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3605 // If the value being shifted has at most lowest bit set we can fold. 3606 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3607 if (MaxActiveBits <= 1) 3608 return true; 3609 // Precondition: NewShAmt u<= countLeadingZeros(C) 3610 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 3611 return true; 3612 } 3613 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 3614 KnownBits Known = computeKnownBits(C, SQ.DL); 3615 unsigned MinLeadZero = Known.countMinLeadingZeros(); 3616 // If the value being shifted has at most lowest bit set we can fold. 3617 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 3618 if (MaxActiveBits <= 1) 3619 return true; 3620 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 3621 if (NewShAmtSplat) { 3622 APInt AdjNewShAmt = 3623 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 3624 if (AdjNewShAmt.ule(MinLeadZero)) 3625 return true; 3626 } 3627 } 3628 return false; // Can't tell if it's ok. 3629 }; 3630 if (!CanFold()) 3631 return nullptr; 3632 } 3633 3634 // All good, we can do this fold. 3635 X = Builder.CreateZExt(X, WidestTy); 3636 Y = Builder.CreateZExt(Y, WidestTy); 3637 // The shift is the same that was for X. 3638 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 3639 ? Builder.CreateLShr(X, NewShAmt) 3640 : Builder.CreateShl(X, NewShAmt); 3641 Value *T1 = Builder.CreateAnd(T0, Y); 3642 return Builder.CreateICmp(I.getPredicate(), T1, 3643 Constant::getNullValue(WidestTy)); 3644 } 3645 3646 /// Fold 3647 /// (-1 u/ x) u< y 3648 /// ((x * y) u/ x) != y 3649 /// to 3650 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit 3651 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 3652 /// will mean that we are looking for the opposite answer. 3653 Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) { 3654 ICmpInst::Predicate Pred; 3655 Value *X, *Y; 3656 Instruction *Mul; 3657 bool NeedNegation; 3658 // Look for: (-1 u/ x) u</u>= y 3659 if (!I.isEquality() && 3660 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 3661 m_Value(Y)))) { 3662 Mul = nullptr; 3663 3664 // Are we checking that overflow does not happen, or does happen? 3665 switch (Pred) { 3666 case ICmpInst::Predicate::ICMP_ULT: 3667 NeedNegation = false; 3668 break; // OK 3669 case ICmpInst::Predicate::ICMP_UGE: 3670 NeedNegation = true; 3671 break; // OK 3672 default: 3673 return nullptr; // Wrong predicate. 3674 } 3675 } else // Look for: ((x * y) u/ x) !=/== y 3676 if (I.isEquality() && 3677 match(&I, m_c_ICmp(Pred, m_Value(Y), 3678 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 3679 m_Value(X)), 3680 m_Instruction(Mul)), 3681 m_Deferred(X)))))) { 3682 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 3683 } else 3684 return nullptr; 3685 3686 BuilderTy::InsertPointGuard Guard(Builder); 3687 // If the pattern included (x * y), we'll want to insert new instructions 3688 // right before that original multiplication so that we can replace it. 3689 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 3690 if (MulHadOtherUses) 3691 Builder.SetInsertPoint(Mul); 3692 3693 Function *F = Intrinsic::getDeclaration( 3694 I.getModule(), Intrinsic::umul_with_overflow, X->getType()); 3695 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul"); 3696 3697 // If the multiplication was used elsewhere, to ensure that we don't leave 3698 // "duplicate" instructions, replace uses of that original multiplication 3699 // with the multiplication result from the with.overflow intrinsic. 3700 if (MulHadOtherUses) 3701 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val")); 3702 3703 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov"); 3704 if (NeedNegation) // This technically increases instruction count. 3705 Res = Builder.CreateNot(Res, "umul.not.ov"); 3706 3707 // If we replaced the mul, erase it. Do this after all uses of Builder, 3708 // as the mul is used as insertion point. 3709 if (MulHadOtherUses) 3710 eraseInstFromFunction(*Mul); 3711 3712 return Res; 3713 } 3714 3715 /// Try to fold icmp (binop), X or icmp X, (binop). 3716 /// TODO: A large part of this logic is duplicated in InstSimplify's 3717 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 3718 /// duplication. 3719 Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) { 3720 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3721 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3722 3723 // Special logic for binary operators. 3724 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3725 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3726 if (!BO0 && !BO1) 3727 return nullptr; 3728 3729 const CmpInst::Predicate Pred = I.getPredicate(); 3730 Value *X; 3731 3732 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 3733 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 3734 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 3735 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3736 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 3737 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 3738 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 3739 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3740 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 3741 3742 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3743 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3744 NoOp0WrapProblem = 3745 ICmpInst::isEquality(Pred) || 3746 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3747 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3748 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3749 NoOp1WrapProblem = 3750 ICmpInst::isEquality(Pred) || 3751 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3752 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3753 3754 // Analyze the case when either Op0 or Op1 is an add instruction. 3755 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3756 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3757 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3758 A = BO0->getOperand(0); 3759 B = BO0->getOperand(1); 3760 } 3761 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3762 C = BO1->getOperand(0); 3763 D = BO1->getOperand(1); 3764 } 3765 3766 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 3767 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 3768 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3769 return new ICmpInst(Pred, A == Op1 ? B : A, 3770 Constant::getNullValue(Op1->getType())); 3771 3772 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 3773 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 3774 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3775 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3776 C == Op0 ? D : C); 3777 3778 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 3779 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 3780 NoOp1WrapProblem) { 3781 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3782 Value *Y, *Z; 3783 if (A == C) { 3784 // C + B == C + D -> B == D 3785 Y = B; 3786 Z = D; 3787 } else if (A == D) { 3788 // D + B == C + D -> B == C 3789 Y = B; 3790 Z = C; 3791 } else if (B == C) { 3792 // A + C == C + D -> A == D 3793 Y = A; 3794 Z = D; 3795 } else { 3796 assert(B == D); 3797 // A + D == C + D -> A == C 3798 Y = A; 3799 Z = C; 3800 } 3801 return new ICmpInst(Pred, Y, Z); 3802 } 3803 3804 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 3805 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3806 match(B, m_AllOnes())) 3807 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3808 3809 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 3810 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3811 match(B, m_AllOnes())) 3812 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3813 3814 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 3815 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 3816 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3817 3818 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 3819 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 3820 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3821 3822 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 3823 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3824 match(D, m_AllOnes())) 3825 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3826 3827 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 3828 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3829 match(D, m_AllOnes())) 3830 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3831 3832 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 3833 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 3834 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3835 3836 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 3837 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 3838 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3839 3840 // TODO: The subtraction-related identities shown below also hold, but 3841 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 3842 // wouldn't happen even if they were implemented. 3843 // 3844 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 3845 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 3846 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 3847 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 3848 3849 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 3850 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 3851 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 3852 3853 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 3854 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 3855 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 3856 3857 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 3858 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 3859 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 3860 3861 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 3862 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 3863 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 3864 3865 // if C1 has greater magnitude than C2: 3866 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 3867 // s.t. C3 = C1 - C2 3868 // 3869 // if C2 has greater magnitude than C1: 3870 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 3871 // s.t. C3 = C2 - C1 3872 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3873 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3874 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3875 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3876 const APInt &AP1 = C1->getValue(); 3877 const APInt &AP2 = C2->getValue(); 3878 if (AP1.isNegative() == AP2.isNegative()) { 3879 APInt AP1Abs = C1->getValue().abs(); 3880 APInt AP2Abs = C2->getValue().abs(); 3881 if (AP1Abs.uge(AP2Abs)) { 3882 ConstantInt *C3 = Builder.getInt(AP1 - AP2); 3883 Value *NewAdd = Builder.CreateNSWAdd(A, C3); 3884 return new ICmpInst(Pred, NewAdd, C); 3885 } else { 3886 ConstantInt *C3 = Builder.getInt(AP2 - AP1); 3887 Value *NewAdd = Builder.CreateNSWAdd(C, C3); 3888 return new ICmpInst(Pred, A, NewAdd); 3889 } 3890 } 3891 } 3892 3893 // Analyze the case when either Op0 or Op1 is a sub instruction. 3894 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3895 A = nullptr; 3896 B = nullptr; 3897 C = nullptr; 3898 D = nullptr; 3899 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3900 A = BO0->getOperand(0); 3901 B = BO0->getOperand(1); 3902 } 3903 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3904 C = BO1->getOperand(0); 3905 D = BO1->getOperand(1); 3906 } 3907 3908 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 3909 if (A == Op1 && NoOp0WrapProblem) 3910 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3911 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 3912 if (C == Op0 && NoOp1WrapProblem) 3913 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3914 3915 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 3916 // (A - B) u>/u<= A --> B u>/u<= A 3917 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 3918 return new ICmpInst(Pred, B, A); 3919 // C u</u>= (C - D) --> C u</u>= D 3920 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 3921 return new ICmpInst(Pred, C, D); 3922 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 3923 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 3924 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3925 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 3926 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 3927 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 3928 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 3929 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 3930 3931 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 3932 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 3933 return new ICmpInst(Pred, A, C); 3934 3935 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 3936 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 3937 return new ICmpInst(Pred, D, B); 3938 3939 // icmp (0-X) < cst --> x > -cst 3940 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3941 Value *X; 3942 if (match(BO0, m_Neg(m_Value(X)))) 3943 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 3944 if (RHSC->isNotMinSignedValue()) 3945 return new ICmpInst(I.getSwappedPredicate(), X, 3946 ConstantExpr::getNeg(RHSC)); 3947 } 3948 3949 BinaryOperator *SRem = nullptr; 3950 // icmp (srem X, Y), Y 3951 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 3952 SRem = BO0; 3953 // icmp Y, (srem X, Y) 3954 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3955 Op0 == BO1->getOperand(1)) 3956 SRem = BO1; 3957 if (SRem) { 3958 // We don't check hasOneUse to avoid increasing register pressure because 3959 // the value we use is the same value this instruction was already using. 3960 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3961 default: 3962 break; 3963 case ICmpInst::ICMP_EQ: 3964 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3965 case ICmpInst::ICMP_NE: 3966 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3967 case ICmpInst::ICMP_SGT: 3968 case ICmpInst::ICMP_SGE: 3969 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3970 Constant::getAllOnesValue(SRem->getType())); 3971 case ICmpInst::ICMP_SLT: 3972 case ICmpInst::ICMP_SLE: 3973 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3974 Constant::getNullValue(SRem->getType())); 3975 } 3976 } 3977 3978 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 3979 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 3980 switch (BO0->getOpcode()) { 3981 default: 3982 break; 3983 case Instruction::Add: 3984 case Instruction::Sub: 3985 case Instruction::Xor: { 3986 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 3987 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 3988 3989 const APInt *C; 3990 if (match(BO0->getOperand(1), m_APInt(C))) { 3991 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 3992 if (C->isSignMask()) { 3993 ICmpInst::Predicate NewPred = 3994 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 3995 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 3996 } 3997 3998 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 3999 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4000 ICmpInst::Predicate NewPred = 4001 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate(); 4002 NewPred = I.getSwappedPredicate(NewPred); 4003 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4004 } 4005 } 4006 break; 4007 } 4008 case Instruction::Mul: { 4009 if (!I.isEquality()) 4010 break; 4011 4012 const APInt *C; 4013 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && 4014 !C->isOneValue()) { 4015 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4016 // Mask = -1 >> count-trailing-zeros(C). 4017 if (unsigned TZs = C->countTrailingZeros()) { 4018 Constant *Mask = ConstantInt::get( 4019 BO0->getType(), 4020 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4021 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4022 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4023 return new ICmpInst(Pred, And1, And2); 4024 } 4025 // If there are no trailing zeros in the multiplier, just eliminate 4026 // the multiplies (no masking is needed): 4027 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y 4028 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4029 } 4030 break; 4031 } 4032 case Instruction::UDiv: 4033 case Instruction::LShr: 4034 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4035 break; 4036 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4037 4038 case Instruction::SDiv: 4039 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4040 break; 4041 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4042 4043 case Instruction::AShr: 4044 if (!BO0->isExact() || !BO1->isExact()) 4045 break; 4046 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4047 4048 case Instruction::Shl: { 4049 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4050 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4051 if (!NUW && !NSW) 4052 break; 4053 if (!NSW && I.isSigned()) 4054 break; 4055 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4056 } 4057 } 4058 } 4059 4060 if (BO0) { 4061 // Transform A & (L - 1) `ult` L --> L != 0 4062 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4063 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4064 4065 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4066 auto *Zero = Constant::getNullValue(BO0->getType()); 4067 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4068 } 4069 } 4070 4071 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I)) 4072 return replaceInstUsesWith(I, V); 4073 4074 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4075 return replaceInstUsesWith(I, V); 4076 4077 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4078 return replaceInstUsesWith(I, V); 4079 4080 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4081 return replaceInstUsesWith(I, V); 4082 4083 return nullptr; 4084 } 4085 4086 /// Fold icmp Pred min|max(X, Y), X. 4087 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4088 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4089 Value *Op0 = Cmp.getOperand(0); 4090 Value *X = Cmp.getOperand(1); 4091 4092 // Canonicalize minimum or maximum operand to LHS of the icmp. 4093 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4094 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4095 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4096 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4097 std::swap(Op0, X); 4098 Pred = Cmp.getSwappedPredicate(); 4099 } 4100 4101 Value *Y; 4102 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4103 // smin(X, Y) == X --> X s<= Y 4104 // smin(X, Y) s>= X --> X s<= Y 4105 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4106 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4107 4108 // smin(X, Y) != X --> X s> Y 4109 // smin(X, Y) s< X --> X s> Y 4110 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4111 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4112 4113 // These cases should be handled in InstSimplify: 4114 // smin(X, Y) s<= X --> true 4115 // smin(X, Y) s> X --> false 4116 return nullptr; 4117 } 4118 4119 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4120 // smax(X, Y) == X --> X s>= Y 4121 // smax(X, Y) s<= X --> X s>= Y 4122 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4123 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4124 4125 // smax(X, Y) != X --> X s< Y 4126 // smax(X, Y) s> X --> X s< Y 4127 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4128 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4129 4130 // These cases should be handled in InstSimplify: 4131 // smax(X, Y) s>= X --> true 4132 // smax(X, Y) s< X --> false 4133 return nullptr; 4134 } 4135 4136 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4137 // umin(X, Y) == X --> X u<= Y 4138 // umin(X, Y) u>= X --> X u<= Y 4139 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4140 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4141 4142 // umin(X, Y) != X --> X u> Y 4143 // umin(X, Y) u< X --> X u> Y 4144 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4145 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4146 4147 // These cases should be handled in InstSimplify: 4148 // umin(X, Y) u<= X --> true 4149 // umin(X, Y) u> X --> false 4150 return nullptr; 4151 } 4152 4153 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4154 // umax(X, Y) == X --> X u>= Y 4155 // umax(X, Y) u<= X --> X u>= Y 4156 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4157 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4158 4159 // umax(X, Y) != X --> X u< Y 4160 // umax(X, Y) u> X --> X u< Y 4161 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 4162 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 4163 4164 // These cases should be handled in InstSimplify: 4165 // umax(X, Y) u>= X --> true 4166 // umax(X, Y) u< X --> false 4167 return nullptr; 4168 } 4169 4170 return nullptr; 4171 } 4172 4173 Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) { 4174 if (!I.isEquality()) 4175 return nullptr; 4176 4177 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4178 const CmpInst::Predicate Pred = I.getPredicate(); 4179 Value *A, *B, *C, *D; 4180 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4181 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4182 Value *OtherVal = A == Op1 ? B : A; 4183 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4184 } 4185 4186 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4187 // A^c1 == C^c2 --> A == C^(c1^c2) 4188 ConstantInt *C1, *C2; 4189 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 4190 Op1->hasOneUse()) { 4191 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 4192 Value *Xor = Builder.CreateXor(C, NC); 4193 return new ICmpInst(Pred, A, Xor); 4194 } 4195 4196 // A^B == A^D -> B == D 4197 if (A == C) 4198 return new ICmpInst(Pred, B, D); 4199 if (A == D) 4200 return new ICmpInst(Pred, B, C); 4201 if (B == C) 4202 return new ICmpInst(Pred, A, D); 4203 if (B == D) 4204 return new ICmpInst(Pred, A, C); 4205 } 4206 } 4207 4208 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 4209 // A == (A^B) -> B == 0 4210 Value *OtherVal = A == Op0 ? B : A; 4211 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 4212 } 4213 4214 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4215 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4216 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4217 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4218 4219 if (A == C) { 4220 X = B; 4221 Y = D; 4222 Z = A; 4223 } else if (A == D) { 4224 X = B; 4225 Y = C; 4226 Z = A; 4227 } else if (B == C) { 4228 X = A; 4229 Y = D; 4230 Z = B; 4231 } else if (B == D) { 4232 X = A; 4233 Y = C; 4234 Z = B; 4235 } 4236 4237 if (X) { // Build (X^Y) & Z 4238 Op1 = Builder.CreateXor(X, Y); 4239 Op1 = Builder.CreateAnd(Op1, Z); 4240 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 4241 } 4242 } 4243 4244 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4245 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4246 ConstantInt *Cst1; 4247 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && 4248 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4249 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4250 match(Op1, m_ZExt(m_Value(A))))) { 4251 APInt Pow2 = Cst1->getValue() + 1; 4252 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4253 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4254 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 4255 } 4256 4257 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4258 // For lshr and ashr pairs. 4259 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4260 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4261 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4262 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4263 unsigned TypeBits = Cst1->getBitWidth(); 4264 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4265 if (ShAmt < TypeBits && ShAmt != 0) { 4266 ICmpInst::Predicate NewPred = 4267 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 4268 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4269 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4270 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); 4271 } 4272 } 4273 4274 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4275 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4276 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4277 unsigned TypeBits = Cst1->getBitWidth(); 4278 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4279 if (ShAmt < TypeBits && ShAmt != 0) { 4280 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 4281 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4282 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 4283 I.getName() + ".mask"); 4284 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 4285 } 4286 } 4287 4288 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4289 // "icmp (and X, mask), cst" 4290 uint64_t ShAmt = 0; 4291 if (Op0->hasOneUse() && 4292 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 4293 match(Op1, m_ConstantInt(Cst1)) && 4294 // Only do this when A has multiple uses. This is most important to do 4295 // when it exposes other optimizations. 4296 !A->hasOneUse()) { 4297 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4298 4299 if (ShAmt < ASize) { 4300 APInt MaskV = 4301 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4302 MaskV <<= ShAmt; 4303 4304 APInt CmpV = Cst1->getValue().zext(ASize); 4305 CmpV <<= ShAmt; 4306 4307 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 4308 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 4309 } 4310 } 4311 4312 // If both operands are byte-swapped or bit-reversed, just compare the 4313 // original values. 4314 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() 4315 // and handle more intrinsics. 4316 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || 4317 (match(Op0, m_BitReverse(m_Value(A))) && 4318 match(Op1, m_BitReverse(m_Value(B))))) 4319 return new ICmpInst(Pred, A, B); 4320 4321 // Canonicalize checking for a power-of-2-or-zero value: 4322 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 4323 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 4324 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 4325 m_Deferred(A)))) || 4326 !match(Op1, m_ZeroInt())) 4327 A = nullptr; 4328 4329 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 4330 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 4331 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 4332 A = Op1; 4333 else if (match(Op1, 4334 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 4335 A = Op0; 4336 4337 if (A) { 4338 Type *Ty = A->getType(); 4339 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 4340 return Pred == ICmpInst::ICMP_EQ 4341 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) 4342 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); 4343 } 4344 4345 return nullptr; 4346 } 4347 4348 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, 4349 InstCombiner::BuilderTy &Builder) { 4350 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 4351 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 4352 Value *X; 4353 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 4354 return nullptr; 4355 4356 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 4357 bool IsSignedCmp = ICmp.isSigned(); 4358 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { 4359 // If the signedness of the two casts doesn't agree (i.e. one is a sext 4360 // and the other is a zext), then we can't handle this. 4361 // TODO: This is too strict. We can handle some predicates (equality?). 4362 if (CastOp0->getOpcode() != CastOp1->getOpcode()) 4363 return nullptr; 4364 4365 // Not an extension from the same type? 4366 Value *Y = CastOp1->getOperand(0); 4367 Type *XTy = X->getType(), *YTy = Y->getType(); 4368 if (XTy != YTy) { 4369 // One of the casts must have one use because we are creating a new cast. 4370 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) 4371 return nullptr; 4372 // Extend the narrower operand to the type of the wider operand. 4373 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 4374 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); 4375 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 4376 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); 4377 else 4378 return nullptr; 4379 } 4380 4381 // (zext X) == (zext Y) --> X == Y 4382 // (sext X) == (sext Y) --> X == Y 4383 if (ICmp.isEquality()) 4384 return new ICmpInst(ICmp.getPredicate(), X, Y); 4385 4386 // A signed comparison of sign extended values simplifies into a 4387 // signed comparison. 4388 if (IsSignedCmp && IsSignedExt) 4389 return new ICmpInst(ICmp.getPredicate(), X, Y); 4390 4391 // The other three cases all fold into an unsigned comparison. 4392 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 4393 } 4394 4395 // Below here, we are only folding a compare with constant. 4396 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 4397 if (!C) 4398 return nullptr; 4399 4400 // Compute the constant that would happen if we truncated to SrcTy then 4401 // re-extended to DestTy. 4402 Type *SrcTy = CastOp0->getSrcTy(); 4403 Type *DestTy = CastOp0->getDestTy(); 4404 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 4405 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 4406 4407 // If the re-extended constant didn't change... 4408 if (Res2 == C) { 4409 if (ICmp.isEquality()) 4410 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4411 4412 // A signed comparison of sign extended values simplifies into a 4413 // signed comparison. 4414 if (IsSignedExt && IsSignedCmp) 4415 return new ICmpInst(ICmp.getPredicate(), X, Res1); 4416 4417 // The other three cases all fold into an unsigned comparison. 4418 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 4419 } 4420 4421 // The re-extended constant changed, partly changed (in the case of a vector), 4422 // or could not be determined to be equal (in the case of a constant 4423 // expression), so the constant cannot be represented in the shorter type. 4424 // All the cases that fold to true or false will have already been handled 4425 // by SimplifyICmpInst, so only deal with the tricky case. 4426 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 4427 return nullptr; 4428 4429 // Is source op positive? 4430 // icmp ult (sext X), C --> icmp sgt X, -1 4431 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 4432 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 4433 4434 // Is source op negative? 4435 // icmp ugt (sext X), C --> icmp slt X, 0 4436 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 4437 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 4438 } 4439 4440 /// Handle icmp (cast x), (cast or constant). 4441 Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) { 4442 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 4443 if (!CastOp0) 4444 return nullptr; 4445 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 4446 return nullptr; 4447 4448 Value *Op0Src = CastOp0->getOperand(0); 4449 Type *SrcTy = CastOp0->getSrcTy(); 4450 Type *DestTy = CastOp0->getDestTy(); 4451 4452 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 4453 // integer type is the same size as the pointer type. 4454 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 4455 if (isa<VectorType>(SrcTy)) { 4456 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 4457 DestTy = cast<VectorType>(DestTy)->getElementType(); 4458 } 4459 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 4460 }; 4461 if (CastOp0->getOpcode() == Instruction::PtrToInt && 4462 CompatibleSizes(SrcTy, DestTy)) { 4463 Value *NewOp1 = nullptr; 4464 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 4465 Value *PtrSrc = PtrToIntOp1->getOperand(0); 4466 if (PtrSrc->getType()->getPointerAddressSpace() == 4467 Op0Src->getType()->getPointerAddressSpace()) { 4468 NewOp1 = PtrToIntOp1->getOperand(0); 4469 // If the pointer types don't match, insert a bitcast. 4470 if (Op0Src->getType() != NewOp1->getType()) 4471 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 4472 } 4473 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 4474 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 4475 } 4476 4477 if (NewOp1) 4478 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 4479 } 4480 4481 return foldICmpWithZextOrSext(ICmp, Builder); 4482 } 4483 4484 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { 4485 switch (BinaryOp) { 4486 default: 4487 llvm_unreachable("Unsupported binary op"); 4488 case Instruction::Add: 4489 case Instruction::Sub: 4490 return match(RHS, m_Zero()); 4491 case Instruction::Mul: 4492 return match(RHS, m_One()); 4493 } 4494 } 4495 4496 OverflowResult InstCombiner::computeOverflow( 4497 Instruction::BinaryOps BinaryOp, bool IsSigned, 4498 Value *LHS, Value *RHS, Instruction *CxtI) const { 4499 switch (BinaryOp) { 4500 default: 4501 llvm_unreachable("Unsupported binary op"); 4502 case Instruction::Add: 4503 if (IsSigned) 4504 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 4505 else 4506 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 4507 case Instruction::Sub: 4508 if (IsSigned) 4509 return computeOverflowForSignedSub(LHS, RHS, CxtI); 4510 else 4511 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 4512 case Instruction::Mul: 4513 if (IsSigned) 4514 return computeOverflowForSignedMul(LHS, RHS, CxtI); 4515 else 4516 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 4517 } 4518 } 4519 4520 bool InstCombiner::OptimizeOverflowCheck( 4521 Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, 4522 Instruction &OrigI, Value *&Result, Constant *&Overflow) { 4523 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 4524 std::swap(LHS, RHS); 4525 4526 // If the overflow check was an add followed by a compare, the insertion point 4527 // may be pointing to the compare. We want to insert the new instructions 4528 // before the add in case there are uses of the add between the add and the 4529 // compare. 4530 Builder.SetInsertPoint(&OrigI); 4531 4532 if (isNeutralValue(BinaryOp, RHS)) { 4533 Result = LHS; 4534 Overflow = Builder.getFalse(); 4535 return true; 4536 } 4537 4538 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 4539 case OverflowResult::MayOverflow: 4540 return false; 4541 case OverflowResult::AlwaysOverflowsLow: 4542 case OverflowResult::AlwaysOverflowsHigh: 4543 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4544 Result->takeName(&OrigI); 4545 Overflow = Builder.getTrue(); 4546 return true; 4547 case OverflowResult::NeverOverflows: 4548 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 4549 Result->takeName(&OrigI); 4550 Overflow = Builder.getFalse(); 4551 if (auto *Inst = dyn_cast<Instruction>(Result)) { 4552 if (IsSigned) 4553 Inst->setHasNoSignedWrap(); 4554 else 4555 Inst->setHasNoUnsignedWrap(); 4556 } 4557 return true; 4558 } 4559 4560 llvm_unreachable("Unexpected overflow result"); 4561 } 4562 4563 /// Recognize and process idiom involving test for multiplication 4564 /// overflow. 4565 /// 4566 /// The caller has matched a pattern of the form: 4567 /// I = cmp u (mul(zext A, zext B), V 4568 /// The function checks if this is a test for overflow and if so replaces 4569 /// multiplication with call to 'mul.with.overflow' intrinsic. 4570 /// 4571 /// \param I Compare instruction. 4572 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 4573 /// the compare instruction. Must be of integer type. 4574 /// \param OtherVal The other argument of compare instruction. 4575 /// \returns Instruction which must replace the compare instruction, NULL if no 4576 /// replacement required. 4577 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 4578 Value *OtherVal, InstCombiner &IC) { 4579 // Don't bother doing this transformation for pointers, don't do it for 4580 // vectors. 4581 if (!isa<IntegerType>(MulVal->getType())) 4582 return nullptr; 4583 4584 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 4585 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 4586 auto *MulInstr = dyn_cast<Instruction>(MulVal); 4587 if (!MulInstr) 4588 return nullptr; 4589 assert(MulInstr->getOpcode() == Instruction::Mul); 4590 4591 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 4592 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 4593 assert(LHS->getOpcode() == Instruction::ZExt); 4594 assert(RHS->getOpcode() == Instruction::ZExt); 4595 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 4596 4597 // Calculate type and width of the result produced by mul.with.overflow. 4598 Type *TyA = A->getType(), *TyB = B->getType(); 4599 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 4600 WidthB = TyB->getPrimitiveSizeInBits(); 4601 unsigned MulWidth; 4602 Type *MulType; 4603 if (WidthB > WidthA) { 4604 MulWidth = WidthB; 4605 MulType = TyB; 4606 } else { 4607 MulWidth = WidthA; 4608 MulType = TyA; 4609 } 4610 4611 // In order to replace the original mul with a narrower mul.with.overflow, 4612 // all uses must ignore upper bits of the product. The number of used low 4613 // bits must be not greater than the width of mul.with.overflow. 4614 if (MulVal->hasNUsesOrMore(2)) 4615 for (User *U : MulVal->users()) { 4616 if (U == &I) 4617 continue; 4618 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4619 // Check if truncation ignores bits above MulWidth. 4620 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 4621 if (TruncWidth > MulWidth) 4622 return nullptr; 4623 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4624 // Check if AND ignores bits above MulWidth. 4625 if (BO->getOpcode() != Instruction::And) 4626 return nullptr; 4627 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 4628 const APInt &CVal = CI->getValue(); 4629 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 4630 return nullptr; 4631 } else { 4632 // In this case we could have the operand of the binary operation 4633 // being defined in another block, and performing the replacement 4634 // could break the dominance relation. 4635 return nullptr; 4636 } 4637 } else { 4638 // Other uses prohibit this transformation. 4639 return nullptr; 4640 } 4641 } 4642 4643 // Recognize patterns 4644 switch (I.getPredicate()) { 4645 case ICmpInst::ICMP_EQ: 4646 case ICmpInst::ICMP_NE: 4647 // Recognize pattern: 4648 // mulval = mul(zext A, zext B) 4649 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 4650 ConstantInt *CI; 4651 Value *ValToMask; 4652 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 4653 if (ValToMask != MulVal) 4654 return nullptr; 4655 const APInt &CVal = CI->getValue() + 1; 4656 if (CVal.isPowerOf2()) { 4657 unsigned MaskWidth = CVal.logBase2(); 4658 if (MaskWidth == MulWidth) 4659 break; // Recognized 4660 } 4661 } 4662 return nullptr; 4663 4664 case ICmpInst::ICMP_UGT: 4665 // Recognize pattern: 4666 // mulval = mul(zext A, zext B) 4667 // cmp ugt mulval, max 4668 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4669 APInt MaxVal = APInt::getMaxValue(MulWidth); 4670 MaxVal = MaxVal.zext(CI->getBitWidth()); 4671 if (MaxVal.eq(CI->getValue())) 4672 break; // Recognized 4673 } 4674 return nullptr; 4675 4676 case ICmpInst::ICMP_UGE: 4677 // Recognize pattern: 4678 // mulval = mul(zext A, zext B) 4679 // cmp uge mulval, max+1 4680 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4681 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4682 if (MaxVal.eq(CI->getValue())) 4683 break; // Recognized 4684 } 4685 return nullptr; 4686 4687 case ICmpInst::ICMP_ULE: 4688 // Recognize pattern: 4689 // mulval = mul(zext A, zext B) 4690 // cmp ule mulval, max 4691 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4692 APInt MaxVal = APInt::getMaxValue(MulWidth); 4693 MaxVal = MaxVal.zext(CI->getBitWidth()); 4694 if (MaxVal.eq(CI->getValue())) 4695 break; // Recognized 4696 } 4697 return nullptr; 4698 4699 case ICmpInst::ICMP_ULT: 4700 // Recognize pattern: 4701 // mulval = mul(zext A, zext B) 4702 // cmp ule mulval, max + 1 4703 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 4704 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 4705 if (MaxVal.eq(CI->getValue())) 4706 break; // Recognized 4707 } 4708 return nullptr; 4709 4710 default: 4711 return nullptr; 4712 } 4713 4714 InstCombiner::BuilderTy &Builder = IC.Builder; 4715 Builder.SetInsertPoint(MulInstr); 4716 4717 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 4718 Value *MulA = A, *MulB = B; 4719 if (WidthA < MulWidth) 4720 MulA = Builder.CreateZExt(A, MulType); 4721 if (WidthB < MulWidth) 4722 MulB = Builder.CreateZExt(B, MulType); 4723 Function *F = Intrinsic::getDeclaration( 4724 I.getModule(), Intrinsic::umul_with_overflow, MulType); 4725 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 4726 IC.Worklist.push(MulInstr); 4727 4728 // If there are uses of mul result other than the comparison, we know that 4729 // they are truncation or binary AND. Change them to use result of 4730 // mul.with.overflow and adjust properly mask/size. 4731 if (MulVal->hasNUsesOrMore(2)) { 4732 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 4733 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) { 4734 User *U = *UI++; 4735 if (U == &I || U == OtherVal) 4736 continue; 4737 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 4738 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 4739 IC.replaceInstUsesWith(*TI, Mul); 4740 else 4741 TI->setOperand(0, Mul); 4742 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 4743 assert(BO->getOpcode() == Instruction::And); 4744 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 4745 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 4746 APInt ShortMask = CI->getValue().trunc(MulWidth); 4747 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 4748 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 4749 IC.replaceInstUsesWith(*BO, Zext); 4750 } else { 4751 llvm_unreachable("Unexpected Binary operation"); 4752 } 4753 IC.Worklist.push(cast<Instruction>(U)); 4754 } 4755 } 4756 if (isa<Instruction>(OtherVal)) 4757 IC.Worklist.push(cast<Instruction>(OtherVal)); 4758 4759 // The original icmp gets replaced with the overflow value, maybe inverted 4760 // depending on predicate. 4761 bool Inverse = false; 4762 switch (I.getPredicate()) { 4763 case ICmpInst::ICMP_NE: 4764 break; 4765 case ICmpInst::ICMP_EQ: 4766 Inverse = true; 4767 break; 4768 case ICmpInst::ICMP_UGT: 4769 case ICmpInst::ICMP_UGE: 4770 if (I.getOperand(0) == MulVal) 4771 break; 4772 Inverse = true; 4773 break; 4774 case ICmpInst::ICMP_ULT: 4775 case ICmpInst::ICMP_ULE: 4776 if (I.getOperand(1) == MulVal) 4777 break; 4778 Inverse = true; 4779 break; 4780 default: 4781 llvm_unreachable("Unexpected predicate"); 4782 } 4783 if (Inverse) { 4784 Value *Res = Builder.CreateExtractValue(Call, 1); 4785 return BinaryOperator::CreateNot(Res); 4786 } 4787 4788 return ExtractValueInst::Create(Call, 1); 4789 } 4790 4791 /// When performing a comparison against a constant, it is possible that not all 4792 /// the bits in the LHS are demanded. This helper method computes the mask that 4793 /// IS demanded. 4794 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 4795 const APInt *RHS; 4796 if (!match(I.getOperand(1), m_APInt(RHS))) 4797 return APInt::getAllOnesValue(BitWidth); 4798 4799 // If this is a normal comparison, it demands all bits. If it is a sign bit 4800 // comparison, it only demands the sign bit. 4801 bool UnusedBit; 4802 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 4803 return APInt::getSignMask(BitWidth); 4804 4805 switch (I.getPredicate()) { 4806 // For a UGT comparison, we don't care about any bits that 4807 // correspond to the trailing ones of the comparand. The value of these 4808 // bits doesn't impact the outcome of the comparison, because any value 4809 // greater than the RHS must differ in a bit higher than these due to carry. 4810 case ICmpInst::ICMP_UGT: 4811 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); 4812 4813 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 4814 // Any value less than the RHS must differ in a higher bit because of carries. 4815 case ICmpInst::ICMP_ULT: 4816 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); 4817 4818 default: 4819 return APInt::getAllOnesValue(BitWidth); 4820 } 4821 } 4822 4823 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst 4824 /// should be swapped. 4825 /// The decision is based on how many times these two operands are reused 4826 /// as subtract operands and their positions in those instructions. 4827 /// The rationale is that several architectures use the same instruction for 4828 /// both subtract and cmp. Thus, it is better if the order of those operands 4829 /// match. 4830 /// \return true if Op0 and Op1 should be swapped. 4831 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { 4832 // Filter out pointer values as those cannot appear directly in subtract. 4833 // FIXME: we may want to go through inttoptrs or bitcasts. 4834 if (Op0->getType()->isPointerTy()) 4835 return false; 4836 // If a subtract already has the same operands as a compare, swapping would be 4837 // bad. If a subtract has the same operands as a compare but in reverse order, 4838 // then swapping is good. 4839 int GoodToSwap = 0; 4840 for (const User *U : Op0->users()) { 4841 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 4842 GoodToSwap++; 4843 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 4844 GoodToSwap--; 4845 } 4846 return GoodToSwap > 0; 4847 } 4848 4849 /// Check that one use is in the same block as the definition and all 4850 /// other uses are in blocks dominated by a given block. 4851 /// 4852 /// \param DI Definition 4853 /// \param UI Use 4854 /// \param DB Block that must dominate all uses of \p DI outside 4855 /// the parent block 4856 /// \return true when \p UI is the only use of \p DI in the parent block 4857 /// and all other uses of \p DI are in blocks dominated by \p DB. 4858 /// 4859 bool InstCombiner::dominatesAllUses(const Instruction *DI, 4860 const Instruction *UI, 4861 const BasicBlock *DB) const { 4862 assert(DI && UI && "Instruction not defined\n"); 4863 // Ignore incomplete definitions. 4864 if (!DI->getParent()) 4865 return false; 4866 // DI and UI must be in the same block. 4867 if (DI->getParent() != UI->getParent()) 4868 return false; 4869 // Protect from self-referencing blocks. 4870 if (DI->getParent() == DB) 4871 return false; 4872 for (const User *U : DI->users()) { 4873 auto *Usr = cast<Instruction>(U); 4874 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 4875 return false; 4876 } 4877 return true; 4878 } 4879 4880 /// Return true when the instruction sequence within a block is select-cmp-br. 4881 static bool isChainSelectCmpBranch(const SelectInst *SI) { 4882 const BasicBlock *BB = SI->getParent(); 4883 if (!BB) 4884 return false; 4885 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 4886 if (!BI || BI->getNumSuccessors() != 2) 4887 return false; 4888 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 4889 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 4890 return false; 4891 return true; 4892 } 4893 4894 /// True when a select result is replaced by one of its operands 4895 /// in select-icmp sequence. This will eventually result in the elimination 4896 /// of the select. 4897 /// 4898 /// \param SI Select instruction 4899 /// \param Icmp Compare instruction 4900 /// \param SIOpd Operand that replaces the select 4901 /// 4902 /// Notes: 4903 /// - The replacement is global and requires dominator information 4904 /// - The caller is responsible for the actual replacement 4905 /// 4906 /// Example: 4907 /// 4908 /// entry: 4909 /// %4 = select i1 %3, %C* %0, %C* null 4910 /// %5 = icmp eq %C* %4, null 4911 /// br i1 %5, label %9, label %7 4912 /// ... 4913 /// ; <label>:7 ; preds = %entry 4914 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 4915 /// ... 4916 /// 4917 /// can be transformed to 4918 /// 4919 /// %5 = icmp eq %C* %0, null 4920 /// %6 = select i1 %3, i1 %5, i1 true 4921 /// br i1 %6, label %9, label %7 4922 /// ... 4923 /// ; <label>:7 ; preds = %entry 4924 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 4925 /// 4926 /// Similar when the first operand of the select is a constant or/and 4927 /// the compare is for not equal rather than equal. 4928 /// 4929 /// NOTE: The function is only called when the select and compare constants 4930 /// are equal, the optimization can work only for EQ predicates. This is not a 4931 /// major restriction since a NE compare should be 'normalized' to an equal 4932 /// compare, which usually happens in the combiner and test case 4933 /// select-cmp-br.ll checks for it. 4934 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 4935 const ICmpInst *Icmp, 4936 const unsigned SIOpd) { 4937 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 4938 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 4939 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 4940 // The check for the single predecessor is not the best that can be 4941 // done. But it protects efficiently against cases like when SI's 4942 // home block has two successors, Succ and Succ1, and Succ1 predecessor 4943 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 4944 // replaced can be reached on either path. So the uniqueness check 4945 // guarantees that the path all uses of SI (outside SI's parent) are on 4946 // is disjoint from all other paths out of SI. But that information 4947 // is more expensive to compute, and the trade-off here is in favor 4948 // of compile-time. It should also be noticed that we check for a single 4949 // predecessor and not only uniqueness. This to handle the situation when 4950 // Succ and Succ1 points to the same basic block. 4951 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 4952 NumSel++; 4953 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 4954 return true; 4955 } 4956 } 4957 return false; 4958 } 4959 4960 /// Try to fold the comparison based on range information we can get by checking 4961 /// whether bits are known to be zero or one in the inputs. 4962 Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) { 4963 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4964 Type *Ty = Op0->getType(); 4965 ICmpInst::Predicate Pred = I.getPredicate(); 4966 4967 // Get scalar or pointer size. 4968 unsigned BitWidth = Ty->isIntOrIntVectorTy() 4969 ? Ty->getScalarSizeInBits() 4970 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 4971 4972 if (!BitWidth) 4973 return nullptr; 4974 4975 KnownBits Op0Known(BitWidth); 4976 KnownBits Op1Known(BitWidth); 4977 4978 if (SimplifyDemandedBits(&I, 0, 4979 getDemandedBitsLHSMask(I, BitWidth), 4980 Op0Known, 0)) 4981 return &I; 4982 4983 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), 4984 Op1Known, 0)) 4985 return &I; 4986 4987 // Given the known and unknown bits, compute a range that the LHS could be 4988 // in. Compute the Min, Max and RHS values based on the known bits. For the 4989 // EQ and NE we use unsigned values. 4990 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 4991 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 4992 if (I.isSigned()) { 4993 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4994 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4995 } else { 4996 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max); 4997 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max); 4998 } 4999 5000 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 5001 // out that the LHS or RHS is a constant. Constant fold this now, so that 5002 // code below can assume that Min != Max. 5003 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 5004 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 5005 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 5006 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 5007 5008 // Based on the range information we know about the LHS, see if we can 5009 // simplify this comparison. For example, (x&4) < 8 is always true. 5010 switch (Pred) { 5011 default: 5012 llvm_unreachable("Unknown icmp opcode!"); 5013 case ICmpInst::ICMP_EQ: 5014 case ICmpInst::ICMP_NE: { 5015 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) { 5016 return Pred == CmpInst::ICMP_EQ 5017 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())) 5018 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5019 } 5020 5021 // If all bits are known zero except for one, then we know at most one bit 5022 // is set. If the comparison is against zero, then this is a check to see if 5023 // *that* bit is set. 5024 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 5025 if (Op1Known.isZero()) { 5026 // If the LHS is an AND with the same constant, look through it. 5027 Value *LHS = nullptr; 5028 const APInt *LHSC; 5029 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 5030 *LHSC != Op0KnownZeroInverted) 5031 LHS = Op0; 5032 5033 Value *X; 5034 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 5035 APInt ValToCheck = Op0KnownZeroInverted; 5036 Type *XTy = X->getType(); 5037 if (ValToCheck.isPowerOf2()) { 5038 // ((1 << X) & 8) == 0 -> X != 3 5039 // ((1 << X) & 8) != 0 -> X == 3 5040 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5041 auto NewPred = ICmpInst::getInversePredicate(Pred); 5042 return new ICmpInst(NewPred, X, CmpC); 5043 } else if ((++ValToCheck).isPowerOf2()) { 5044 // ((1 << X) & 7) == 0 -> X >= 3 5045 // ((1 << X) & 7) != 0 -> X < 3 5046 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); 5047 auto NewPred = 5048 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 5049 return new ICmpInst(NewPred, X, CmpC); 5050 } 5051 } 5052 5053 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. 5054 const APInt *CI; 5055 if (Op0KnownZeroInverted.isOneValue() && 5056 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { 5057 // ((8 >>u X) & 1) == 0 -> X != 3 5058 // ((8 >>u X) & 1) != 0 -> X == 3 5059 unsigned CmpVal = CI->countTrailingZeros(); 5060 auto NewPred = ICmpInst::getInversePredicate(Pred); 5061 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); 5062 } 5063 } 5064 break; 5065 } 5066 case ICmpInst::ICMP_ULT: { 5067 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 5068 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5069 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 5070 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5071 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 5072 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5073 5074 const APInt *CmpC; 5075 if (match(Op1, m_APInt(CmpC))) { 5076 // A <u C -> A == C-1 if min(A)+1 == C 5077 if (*CmpC == Op0Min + 1) 5078 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5079 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5080 // X <u C --> X == 0, if the number of zero bits in the bottom of X 5081 // exceeds the log2 of C. 5082 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 5083 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5084 Constant::getNullValue(Op1->getType())); 5085 } 5086 break; 5087 } 5088 case ICmpInst::ICMP_UGT: { 5089 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 5090 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5091 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 5092 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5093 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 5094 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5095 5096 const APInt *CmpC; 5097 if (match(Op1, m_APInt(CmpC))) { 5098 // A >u C -> A == C+1 if max(a)-1 == C 5099 if (*CmpC == Op0Max - 1) 5100 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5101 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5102 // X >u C --> X != 0, if the number of zero bits in the bottom of X 5103 // exceeds the log2 of C. 5104 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 5105 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 5106 Constant::getNullValue(Op1->getType())); 5107 } 5108 break; 5109 } 5110 case ICmpInst::ICMP_SLT: { 5111 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 5112 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5113 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 5114 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5115 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 5116 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5117 const APInt *CmpC; 5118 if (match(Op1, m_APInt(CmpC))) { 5119 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 5120 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5121 ConstantInt::get(Op1->getType(), *CmpC - 1)); 5122 } 5123 break; 5124 } 5125 case ICmpInst::ICMP_SGT: { 5126 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 5127 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5128 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 5129 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5130 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 5131 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 5132 const APInt *CmpC; 5133 if (match(Op1, m_APInt(CmpC))) { 5134 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 5135 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 5136 ConstantInt::get(Op1->getType(), *CmpC + 1)); 5137 } 5138 break; 5139 } 5140 case ICmpInst::ICMP_SGE: 5141 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 5142 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 5143 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5144 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 5145 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5146 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 5147 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5148 break; 5149 case ICmpInst::ICMP_SLE: 5150 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 5151 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 5152 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5153 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 5154 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5155 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 5156 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5157 break; 5158 case ICmpInst::ICMP_UGE: 5159 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 5160 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 5161 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5162 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 5163 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5164 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 5165 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5166 break; 5167 case ICmpInst::ICMP_ULE: 5168 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 5169 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 5170 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 5171 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 5172 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 5173 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 5174 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 5175 break; 5176 } 5177 5178 // Turn a signed comparison into an unsigned one if both operands are known to 5179 // have the same sign. 5180 if (I.isSigned() && 5181 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 5182 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 5183 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 5184 5185 return nullptr; 5186 } 5187 5188 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> 5189 llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 5190 Constant *C) { 5191 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 5192 "Only for relational integer predicates."); 5193 5194 Type *Type = C->getType(); 5195 bool IsSigned = ICmpInst::isSigned(Pred); 5196 5197 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 5198 bool WillIncrement = 5199 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 5200 5201 // Check if the constant operand can be safely incremented/decremented 5202 // without overflowing/underflowing. 5203 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 5204 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 5205 }; 5206 5207 Constant *SafeReplacementConstant = nullptr; 5208 if (auto *CI = dyn_cast<ConstantInt>(C)) { 5209 // Bail out if the constant can't be safely incremented/decremented. 5210 if (!ConstantIsOk(CI)) 5211 return llvm::None; 5212 } else if (auto *VTy = dyn_cast<VectorType>(Type)) { 5213 unsigned NumElts = VTy->getNumElements(); 5214 for (unsigned i = 0; i != NumElts; ++i) { 5215 Constant *Elt = C->getAggregateElement(i); 5216 if (!Elt) 5217 return llvm::None; 5218 5219 if (isa<UndefValue>(Elt)) 5220 continue; 5221 5222 // Bail out if we can't determine if this constant is min/max or if we 5223 // know that this constant is min/max. 5224 auto *CI = dyn_cast<ConstantInt>(Elt); 5225 if (!CI || !ConstantIsOk(CI)) 5226 return llvm::None; 5227 5228 if (!SafeReplacementConstant) 5229 SafeReplacementConstant = CI; 5230 } 5231 } else { 5232 // ConstantExpr? 5233 return llvm::None; 5234 } 5235 5236 // It may not be safe to change a compare predicate in the presence of 5237 // undefined elements, so replace those elements with the first safe constant 5238 // that we found. 5239 if (C->containsUndefElement()) { 5240 assert(SafeReplacementConstant && "Replacement constant not set"); 5241 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 5242 } 5243 5244 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 5245 5246 // Increment or decrement the constant. 5247 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 5248 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 5249 5250 return std::make_pair(NewPred, NewC); 5251 } 5252 5253 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 5254 /// it into the appropriate icmp lt or icmp gt instruction. This transform 5255 /// allows them to be folded in visitICmpInst. 5256 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 5257 ICmpInst::Predicate Pred = I.getPredicate(); 5258 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 5259 isCanonicalPredicate(Pred)) 5260 return nullptr; 5261 5262 Value *Op0 = I.getOperand(0); 5263 Value *Op1 = I.getOperand(1); 5264 auto *Op1C = dyn_cast<Constant>(Op1); 5265 if (!Op1C) 5266 return nullptr; 5267 5268 auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 5269 if (!FlippedStrictness) 5270 return nullptr; 5271 5272 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 5273 } 5274 5275 /// If we have a comparison with a non-canonical predicate, if we can update 5276 /// all the users, invert the predicate and adjust all the users. 5277 static CmpInst *canonicalizeICmpPredicate(CmpInst &I) { 5278 // Is the predicate already canonical? 5279 CmpInst::Predicate Pred = I.getPredicate(); 5280 if (isCanonicalPredicate(Pred)) 5281 return nullptr; 5282 5283 // Can all users be adjusted to predicate inversion? 5284 if (!canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 5285 return nullptr; 5286 5287 // Ok, we can canonicalize comparison! 5288 // Let's first invert the comparison's predicate. 5289 I.setPredicate(CmpInst::getInversePredicate(Pred)); 5290 I.setName(I.getName() + ".not"); 5291 5292 // And now let's adjust every user. 5293 for (User *U : I.users()) { 5294 switch (cast<Instruction>(U)->getOpcode()) { 5295 case Instruction::Select: { 5296 auto *SI = cast<SelectInst>(U); 5297 SI->swapValues(); 5298 SI->swapProfMetadata(); 5299 break; 5300 } 5301 case Instruction::Br: 5302 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 5303 break; 5304 case Instruction::Xor: 5305 U->replaceAllUsesWith(&I); 5306 break; 5307 default: 5308 llvm_unreachable("Got unexpected user - out of sync with " 5309 "canFreelyInvertAllUsersOf() ?"); 5310 } 5311 } 5312 5313 return &I; 5314 } 5315 5316 /// Integer compare with boolean values can always be turned into bitwise ops. 5317 static Instruction *canonicalizeICmpBool(ICmpInst &I, 5318 InstCombiner::BuilderTy &Builder) { 5319 Value *A = I.getOperand(0), *B = I.getOperand(1); 5320 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 5321 5322 // A boolean compared to true/false can be simplified to Op0/true/false in 5323 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 5324 // Cases not handled by InstSimplify are always 'not' of Op0. 5325 if (match(B, m_Zero())) { 5326 switch (I.getPredicate()) { 5327 case CmpInst::ICMP_EQ: // A == 0 -> !A 5328 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 5329 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 5330 return BinaryOperator::CreateNot(A); 5331 default: 5332 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5333 } 5334 } else if (match(B, m_One())) { 5335 switch (I.getPredicate()) { 5336 case CmpInst::ICMP_NE: // A != 1 -> !A 5337 case CmpInst::ICMP_ULT: // A <u 1 -> !A 5338 case CmpInst::ICMP_SGT: // A >s -1 -> !A 5339 return BinaryOperator::CreateNot(A); 5340 default: 5341 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 5342 } 5343 } 5344 5345 switch (I.getPredicate()) { 5346 default: 5347 llvm_unreachable("Invalid icmp instruction!"); 5348 case ICmpInst::ICMP_EQ: 5349 // icmp eq i1 A, B -> ~(A ^ B) 5350 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 5351 5352 case ICmpInst::ICMP_NE: 5353 // icmp ne i1 A, B -> A ^ B 5354 return BinaryOperator::CreateXor(A, B); 5355 5356 case ICmpInst::ICMP_UGT: 5357 // icmp ugt -> icmp ult 5358 std::swap(A, B); 5359 LLVM_FALLTHROUGH; 5360 case ICmpInst::ICMP_ULT: 5361 // icmp ult i1 A, B -> ~A & B 5362 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 5363 5364 case ICmpInst::ICMP_SGT: 5365 // icmp sgt -> icmp slt 5366 std::swap(A, B); 5367 LLVM_FALLTHROUGH; 5368 case ICmpInst::ICMP_SLT: 5369 // icmp slt i1 A, B -> A & ~B 5370 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 5371 5372 case ICmpInst::ICMP_UGE: 5373 // icmp uge -> icmp ule 5374 std::swap(A, B); 5375 LLVM_FALLTHROUGH; 5376 case ICmpInst::ICMP_ULE: 5377 // icmp ule i1 A, B -> ~A | B 5378 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 5379 5380 case ICmpInst::ICMP_SGE: 5381 // icmp sge -> icmp sle 5382 std::swap(A, B); 5383 LLVM_FALLTHROUGH; 5384 case ICmpInst::ICMP_SLE: 5385 // icmp sle i1 A, B -> A | ~B 5386 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 5387 } 5388 } 5389 5390 // Transform pattern like: 5391 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 5392 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 5393 // Into: 5394 // (X l>> Y) != 0 5395 // (X l>> Y) == 0 5396 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 5397 InstCombiner::BuilderTy &Builder) { 5398 ICmpInst::Predicate Pred, NewPred; 5399 Value *X, *Y; 5400 if (match(&Cmp, 5401 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 5402 switch (Pred) { 5403 case ICmpInst::ICMP_ULE: 5404 NewPred = ICmpInst::ICMP_NE; 5405 break; 5406 case ICmpInst::ICMP_UGT: 5407 NewPred = ICmpInst::ICMP_EQ; 5408 break; 5409 default: 5410 return nullptr; 5411 } 5412 } else if (match(&Cmp, m_c_ICmp(Pred, 5413 m_OneUse(m_CombineOr( 5414 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 5415 m_Add(m_Shl(m_One(), m_Value(Y)), 5416 m_AllOnes()))), 5417 m_Value(X)))) { 5418 // The variant with 'add' is not canonical, (the variant with 'not' is) 5419 // we only get it because it has extra uses, and can't be canonicalized, 5420 5421 switch (Pred) { 5422 case ICmpInst::ICMP_ULT: 5423 NewPred = ICmpInst::ICMP_NE; 5424 break; 5425 case ICmpInst::ICMP_UGE: 5426 NewPred = ICmpInst::ICMP_EQ; 5427 break; 5428 default: 5429 return nullptr; 5430 } 5431 } else 5432 return nullptr; 5433 5434 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 5435 Constant *Zero = Constant::getNullValue(NewX->getType()); 5436 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 5437 } 5438 5439 static Instruction *foldVectorCmp(CmpInst &Cmp, 5440 InstCombiner::BuilderTy &Builder) { 5441 const CmpInst::Predicate Pred = Cmp.getPredicate(); 5442 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 5443 Value *V1, *V2; 5444 ArrayRef<int> M; 5445 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 5446 return nullptr; 5447 5448 // If both arguments of the cmp are shuffles that use the same mask and 5449 // shuffle within a single vector, move the shuffle after the cmp: 5450 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 5451 Type *V1Ty = V1->getType(); 5452 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 5453 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 5454 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 5455 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); 5456 } 5457 5458 // Try to canonicalize compare with splatted operand and splat constant. 5459 // TODO: We could generalize this for more than splats. See/use the code in 5460 // InstCombiner::foldVectorBinop(). 5461 Constant *C; 5462 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 5463 return nullptr; 5464 5465 // Length-changing splats are ok, so adjust the constants as needed: 5466 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 5467 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 5468 int MaskSplatIndex; 5469 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 5470 // We allow undefs in matching, but this transform removes those for safety. 5471 // Demanded elements analysis should be able to recover some/all of that. 5472 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 5473 ScalarC); 5474 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 5475 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 5476 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), 5477 NewM); 5478 } 5479 5480 return nullptr; 5481 } 5482 5483 // extract(uadd.with.overflow(A, B), 0) ult A 5484 // -> extract(uadd.with.overflow(A, B), 1) 5485 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 5486 CmpInst::Predicate Pred = I.getPredicate(); 5487 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5488 5489 Value *UAddOv; 5490 Value *A, *B; 5491 auto UAddOvResultPat = m_ExtractValue<0>( 5492 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 5493 if (match(Op0, UAddOvResultPat) && 5494 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 5495 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 5496 (match(A, m_One()) || match(B, m_One()))) || 5497 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 5498 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 5499 // extract(uadd.with.overflow(A, B), 0) < A 5500 // extract(uadd.with.overflow(A, 1), 0) == 0 5501 // extract(uadd.with.overflow(A, -1), 0) != -1 5502 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 5503 else if (match(Op1, UAddOvResultPat) && 5504 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 5505 // A > extract(uadd.with.overflow(A, B), 0) 5506 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 5507 else 5508 return nullptr; 5509 5510 return ExtractValueInst::Create(UAddOv, 1); 5511 } 5512 5513 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 5514 bool Changed = false; 5515 const SimplifyQuery Q = SQ.getWithInstruction(&I); 5516 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5517 unsigned Op0Cplxity = getComplexity(Op0); 5518 unsigned Op1Cplxity = getComplexity(Op1); 5519 5520 /// Orders the operands of the compare so that they are listed from most 5521 /// complex to least complex. This puts constants before unary operators, 5522 /// before binary operators. 5523 if (Op0Cplxity < Op1Cplxity || 5524 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 5525 I.swapOperands(); 5526 std::swap(Op0, Op1); 5527 Changed = true; 5528 } 5529 5530 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 5531 return replaceInstUsesWith(I, V); 5532 5533 // Comparing -val or val with non-zero is the same as just comparing val 5534 // ie, abs(val) != 0 -> val != 0 5535 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 5536 Value *Cond, *SelectTrue, *SelectFalse; 5537 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 5538 m_Value(SelectFalse)))) { 5539 if (Value *V = dyn_castNegVal(SelectTrue)) { 5540 if (V == SelectFalse) 5541 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5542 } 5543 else if (Value *V = dyn_castNegVal(SelectFalse)) { 5544 if (V == SelectTrue) 5545 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 5546 } 5547 } 5548 } 5549 5550 if (Op0->getType()->isIntOrIntVectorTy(1)) 5551 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 5552 return Res; 5553 5554 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 5555 return Res; 5556 5557 if (Instruction *Res = canonicalizeICmpPredicate(I)) 5558 return Res; 5559 5560 if (Instruction *Res = foldICmpWithConstant(I)) 5561 return Res; 5562 5563 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 5564 return Res; 5565 5566 if (Instruction *Res = foldICmpBinOp(I, Q)) 5567 return Res; 5568 5569 if (Instruction *Res = foldICmpUsingKnownBits(I)) 5570 return Res; 5571 5572 // Test if the ICmpInst instruction is used exclusively by a select as 5573 // part of a minimum or maximum operation. If so, refrain from doing 5574 // any other folding. This helps out other analyses which understand 5575 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 5576 // and CodeGen. And in this case, at least one of the comparison 5577 // operands has at least one user besides the compare (the select), 5578 // which would often largely negate the benefit of folding anyway. 5579 // 5580 // Do the same for the other patterns recognized by matchSelectPattern. 5581 if (I.hasOneUse()) 5582 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 5583 Value *A, *B; 5584 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 5585 if (SPR.Flavor != SPF_UNKNOWN) 5586 return nullptr; 5587 } 5588 5589 // Do this after checking for min/max to prevent infinite looping. 5590 if (Instruction *Res = foldICmpWithZero(I)) 5591 return Res; 5592 5593 // FIXME: We only do this after checking for min/max to prevent infinite 5594 // looping caused by a reverse canonicalization of these patterns for min/max. 5595 // FIXME: The organization of folds is a mess. These would naturally go into 5596 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 5597 // down here after the min/max restriction. 5598 ICmpInst::Predicate Pred = I.getPredicate(); 5599 const APInt *C; 5600 if (match(Op1, m_APInt(C))) { 5601 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 5602 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 5603 Constant *Zero = Constant::getNullValue(Op0->getType()); 5604 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 5605 } 5606 5607 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 5608 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 5609 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 5610 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 5611 } 5612 } 5613 5614 if (Instruction *Res = foldICmpInstWithConstant(I)) 5615 return Res; 5616 5617 // Try to match comparison as a sign bit test. Intentionally do this after 5618 // foldICmpInstWithConstant() to potentially let other folds to happen first. 5619 if (Instruction *New = foldSignBitTest(I)) 5620 return New; 5621 5622 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 5623 return Res; 5624 5625 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 5626 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 5627 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 5628 return NI; 5629 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 5630 if (Instruction *NI = foldGEPICmp(GEP, Op0, 5631 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 5632 return NI; 5633 5634 // Try to optimize equality comparisons against alloca-based pointers. 5635 if (Op0->getType()->isPointerTy() && I.isEquality()) { 5636 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 5637 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 5638 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) 5639 return New; 5640 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 5641 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) 5642 return New; 5643 } 5644 5645 if (Instruction *Res = foldICmpBitCast(I, Builder)) 5646 return Res; 5647 5648 // TODO: Hoist this above the min/max bailout. 5649 if (Instruction *R = foldICmpWithCastOp(I)) 5650 return R; 5651 5652 if (Instruction *Res = foldICmpWithMinMax(I)) 5653 return Res; 5654 5655 { 5656 Value *A, *B; 5657 // Transform (A & ~B) == 0 --> (A & B) != 0 5658 // and (A & ~B) != 0 --> (A & B) == 0 5659 // if A is a power of 2. 5660 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 5661 match(Op1, m_Zero()) && 5662 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 5663 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 5664 Op1); 5665 5666 // ~X < ~Y --> Y < X 5667 // ~X < C --> X > ~C 5668 if (match(Op0, m_Not(m_Value(A)))) { 5669 if (match(Op1, m_Not(m_Value(B)))) 5670 return new ICmpInst(I.getPredicate(), B, A); 5671 5672 const APInt *C; 5673 if (match(Op1, m_APInt(C))) 5674 return new ICmpInst(I.getSwappedPredicate(), A, 5675 ConstantInt::get(Op1->getType(), ~(*C))); 5676 } 5677 5678 Instruction *AddI = nullptr; 5679 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 5680 m_Instruction(AddI))) && 5681 isa<IntegerType>(A->getType())) { 5682 Value *Result; 5683 Constant *Overflow; 5684 // m_UAddWithOverflow can match patterns that do not include an explicit 5685 // "add" instruction, so check the opcode of the matched op. 5686 if (AddI->getOpcode() == Instruction::Add && 5687 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 5688 Result, Overflow)) { 5689 replaceInstUsesWith(*AddI, Result); 5690 eraseInstFromFunction(*AddI); 5691 return replaceInstUsesWith(I, Overflow); 5692 } 5693 } 5694 5695 // (zext a) * (zext b) --> llvm.umul.with.overflow. 5696 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5697 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 5698 return R; 5699 } 5700 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 5701 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 5702 return R; 5703 } 5704 } 5705 5706 if (Instruction *Res = foldICmpEquality(I)) 5707 return Res; 5708 5709 if (Instruction *Res = foldICmpOfUAddOv(I)) 5710 return Res; 5711 5712 // The 'cmpxchg' instruction returns an aggregate containing the old value and 5713 // an i1 which indicates whether or not we successfully did the swap. 5714 // 5715 // Replace comparisons between the old value and the expected value with the 5716 // indicator that 'cmpxchg' returns. 5717 // 5718 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 5719 // spuriously fail. In those cases, the old value may equal the expected 5720 // value but it is possible for the swap to not occur. 5721 if (I.getPredicate() == ICmpInst::ICMP_EQ) 5722 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 5723 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 5724 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 5725 !ACXI->isWeak()) 5726 return ExtractValueInst::Create(ACXI, 1); 5727 5728 { 5729 Value *X; 5730 const APInt *C; 5731 // icmp X+Cst, X 5732 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 5733 return foldICmpAddOpConst(X, *C, I.getPredicate()); 5734 5735 // icmp X, X+Cst 5736 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 5737 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 5738 } 5739 5740 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 5741 return Res; 5742 5743 if (I.getType()->isVectorTy()) 5744 if (Instruction *Res = foldVectorCmp(I, Builder)) 5745 return Res; 5746 5747 return Changed ? &I : nullptr; 5748 } 5749 5750 /// Fold fcmp ([us]itofp x, cst) if possible. 5751 Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, 5752 Constant *RHSC) { 5753 if (!isa<ConstantFP>(RHSC)) return nullptr; 5754 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 5755 5756 // Get the width of the mantissa. We don't want to hack on conversions that 5757 // might lose information from the integer, e.g. "i64 -> float" 5758 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 5759 if (MantissaWidth == -1) return nullptr; // Unknown. 5760 5761 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 5762 5763 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 5764 5765 if (I.isEquality()) { 5766 FCmpInst::Predicate P = I.getPredicate(); 5767 bool IsExact = false; 5768 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 5769 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 5770 5771 // If the floating point constant isn't an integer value, we know if we will 5772 // ever compare equal / not equal to it. 5773 if (!IsExact) { 5774 // TODO: Can never be -0.0 and other non-representable values 5775 APFloat RHSRoundInt(RHS); 5776 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 5777 if (RHS != RHSRoundInt) { 5778 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 5779 return replaceInstUsesWith(I, Builder.getFalse()); 5780 5781 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 5782 return replaceInstUsesWith(I, Builder.getTrue()); 5783 } 5784 } 5785 5786 // TODO: If the constant is exactly representable, is it always OK to do 5787 // equality compares as integer? 5788 } 5789 5790 // Check to see that the input is converted from an integer type that is small 5791 // enough that preserves all bits. TODO: check here for "known" sign bits. 5792 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 5793 unsigned InputSize = IntTy->getScalarSizeInBits(); 5794 5795 // Following test does NOT adjust InputSize downwards for signed inputs, 5796 // because the most negative value still requires all the mantissa bits 5797 // to distinguish it from one less than that value. 5798 if ((int)InputSize > MantissaWidth) { 5799 // Conversion would lose accuracy. Check if loss can impact comparison. 5800 int Exp = ilogb(RHS); 5801 if (Exp == APFloat::IEK_Inf) { 5802 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 5803 if (MaxExponent < (int)InputSize - !LHSUnsigned) 5804 // Conversion could create infinity. 5805 return nullptr; 5806 } else { 5807 // Note that if RHS is zero or NaN, then Exp is negative 5808 // and first condition is trivially false. 5809 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 5810 // Conversion could affect comparison. 5811 return nullptr; 5812 } 5813 } 5814 5815 // Otherwise, we can potentially simplify the comparison. We know that it 5816 // will always come through as an integer value and we know the constant is 5817 // not a NAN (it would have been previously simplified). 5818 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 5819 5820 ICmpInst::Predicate Pred; 5821 switch (I.getPredicate()) { 5822 default: llvm_unreachable("Unexpected predicate!"); 5823 case FCmpInst::FCMP_UEQ: 5824 case FCmpInst::FCMP_OEQ: 5825 Pred = ICmpInst::ICMP_EQ; 5826 break; 5827 case FCmpInst::FCMP_UGT: 5828 case FCmpInst::FCMP_OGT: 5829 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 5830 break; 5831 case FCmpInst::FCMP_UGE: 5832 case FCmpInst::FCMP_OGE: 5833 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 5834 break; 5835 case FCmpInst::FCMP_ULT: 5836 case FCmpInst::FCMP_OLT: 5837 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 5838 break; 5839 case FCmpInst::FCMP_ULE: 5840 case FCmpInst::FCMP_OLE: 5841 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 5842 break; 5843 case FCmpInst::FCMP_UNE: 5844 case FCmpInst::FCMP_ONE: 5845 Pred = ICmpInst::ICMP_NE; 5846 break; 5847 case FCmpInst::FCMP_ORD: 5848 return replaceInstUsesWith(I, Builder.getTrue()); 5849 case FCmpInst::FCMP_UNO: 5850 return replaceInstUsesWith(I, Builder.getFalse()); 5851 } 5852 5853 // Now we know that the APFloat is a normal number, zero or inf. 5854 5855 // See if the FP constant is too large for the integer. For example, 5856 // comparing an i8 to 300.0. 5857 unsigned IntWidth = IntTy->getScalarSizeInBits(); 5858 5859 if (!LHSUnsigned) { 5860 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 5861 // and large values. 5862 APFloat SMax(RHS.getSemantics()); 5863 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 5864 APFloat::rmNearestTiesToEven); 5865 if (SMax < RHS) { // smax < 13123.0 5866 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 5867 Pred == ICmpInst::ICMP_SLE) 5868 return replaceInstUsesWith(I, Builder.getTrue()); 5869 return replaceInstUsesWith(I, Builder.getFalse()); 5870 } 5871 } else { 5872 // If the RHS value is > UnsignedMax, fold the comparison. This handles 5873 // +INF and large values. 5874 APFloat UMax(RHS.getSemantics()); 5875 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 5876 APFloat::rmNearestTiesToEven); 5877 if (UMax < RHS) { // umax < 13123.0 5878 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 5879 Pred == ICmpInst::ICMP_ULE) 5880 return replaceInstUsesWith(I, Builder.getTrue()); 5881 return replaceInstUsesWith(I, Builder.getFalse()); 5882 } 5883 } 5884 5885 if (!LHSUnsigned) { 5886 // See if the RHS value is < SignedMin. 5887 APFloat SMin(RHS.getSemantics()); 5888 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 5889 APFloat::rmNearestTiesToEven); 5890 if (SMin > RHS) { // smin > 12312.0 5891 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 5892 Pred == ICmpInst::ICMP_SGE) 5893 return replaceInstUsesWith(I, Builder.getTrue()); 5894 return replaceInstUsesWith(I, Builder.getFalse()); 5895 } 5896 } else { 5897 // See if the RHS value is < UnsignedMin. 5898 APFloat UMin(RHS.getSemantics()); 5899 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 5900 APFloat::rmNearestTiesToEven); 5901 if (UMin > RHS) { // umin > 12312.0 5902 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 5903 Pred == ICmpInst::ICMP_UGE) 5904 return replaceInstUsesWith(I, Builder.getTrue()); 5905 return replaceInstUsesWith(I, Builder.getFalse()); 5906 } 5907 } 5908 5909 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 5910 // [0, UMAX], but it may still be fractional. See if it is fractional by 5911 // casting the FP value to the integer value and back, checking for equality. 5912 // Don't do this for zero, because -0.0 is not fractional. 5913 Constant *RHSInt = LHSUnsigned 5914 ? ConstantExpr::getFPToUI(RHSC, IntTy) 5915 : ConstantExpr::getFPToSI(RHSC, IntTy); 5916 if (!RHS.isZero()) { 5917 bool Equal = LHSUnsigned 5918 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 5919 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 5920 if (!Equal) { 5921 // If we had a comparison against a fractional value, we have to adjust 5922 // the compare predicate and sometimes the value. RHSC is rounded towards 5923 // zero at this point. 5924 switch (Pred) { 5925 default: llvm_unreachable("Unexpected integer comparison!"); 5926 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 5927 return replaceInstUsesWith(I, Builder.getTrue()); 5928 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 5929 return replaceInstUsesWith(I, Builder.getFalse()); 5930 case ICmpInst::ICMP_ULE: 5931 // (float)int <= 4.4 --> int <= 4 5932 // (float)int <= -4.4 --> false 5933 if (RHS.isNegative()) 5934 return replaceInstUsesWith(I, Builder.getFalse()); 5935 break; 5936 case ICmpInst::ICMP_SLE: 5937 // (float)int <= 4.4 --> int <= 4 5938 // (float)int <= -4.4 --> int < -4 5939 if (RHS.isNegative()) 5940 Pred = ICmpInst::ICMP_SLT; 5941 break; 5942 case ICmpInst::ICMP_ULT: 5943 // (float)int < -4.4 --> false 5944 // (float)int < 4.4 --> int <= 4 5945 if (RHS.isNegative()) 5946 return replaceInstUsesWith(I, Builder.getFalse()); 5947 Pred = ICmpInst::ICMP_ULE; 5948 break; 5949 case ICmpInst::ICMP_SLT: 5950 // (float)int < -4.4 --> int < -4 5951 // (float)int < 4.4 --> int <= 4 5952 if (!RHS.isNegative()) 5953 Pred = ICmpInst::ICMP_SLE; 5954 break; 5955 case ICmpInst::ICMP_UGT: 5956 // (float)int > 4.4 --> int > 4 5957 // (float)int > -4.4 --> true 5958 if (RHS.isNegative()) 5959 return replaceInstUsesWith(I, Builder.getTrue()); 5960 break; 5961 case ICmpInst::ICMP_SGT: 5962 // (float)int > 4.4 --> int > 4 5963 // (float)int > -4.4 --> int >= -4 5964 if (RHS.isNegative()) 5965 Pred = ICmpInst::ICMP_SGE; 5966 break; 5967 case ICmpInst::ICMP_UGE: 5968 // (float)int >= -4.4 --> true 5969 // (float)int >= 4.4 --> int > 4 5970 if (RHS.isNegative()) 5971 return replaceInstUsesWith(I, Builder.getTrue()); 5972 Pred = ICmpInst::ICMP_UGT; 5973 break; 5974 case ICmpInst::ICMP_SGE: 5975 // (float)int >= -4.4 --> int >= -4 5976 // (float)int >= 4.4 --> int > 4 5977 if (!RHS.isNegative()) 5978 Pred = ICmpInst::ICMP_SGT; 5979 break; 5980 } 5981 } 5982 } 5983 5984 // Lower this FP comparison into an appropriate integer version of the 5985 // comparison. 5986 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 5987 } 5988 5989 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 5990 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 5991 Constant *RHSC) { 5992 // When C is not 0.0 and infinities are not allowed: 5993 // (C / X) < 0.0 is a sign-bit test of X 5994 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 5995 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 5996 // 5997 // Proof: 5998 // Multiply (C / X) < 0.0 by X * X / C. 5999 // - X is non zero, if it is the flag 'ninf' is violated. 6000 // - C defines the sign of X * X * C. Thus it also defines whether to swap 6001 // the predicate. C is also non zero by definition. 6002 // 6003 // Thus X * X / C is non zero and the transformation is valid. [qed] 6004 6005 FCmpInst::Predicate Pred = I.getPredicate(); 6006 6007 // Check that predicates are valid. 6008 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 6009 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 6010 return nullptr; 6011 6012 // Check that RHS operand is zero. 6013 if (!match(RHSC, m_AnyZeroFP())) 6014 return nullptr; 6015 6016 // Check fastmath flags ('ninf'). 6017 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 6018 return nullptr; 6019 6020 // Check the properties of the dividend. It must not be zero to avoid a 6021 // division by zero (see Proof). 6022 const APFloat *C; 6023 if (!match(LHSI->getOperand(0), m_APFloat(C))) 6024 return nullptr; 6025 6026 if (C->isZero()) 6027 return nullptr; 6028 6029 // Get swapped predicate if necessary. 6030 if (C->isNegative()) 6031 Pred = I.getSwappedPredicate(); 6032 6033 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 6034 } 6035 6036 /// Optimize fabs(X) compared with zero. 6037 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombiner &IC) { 6038 Value *X; 6039 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) || 6040 !match(I.getOperand(1), m_PosZeroFP())) 6041 return nullptr; 6042 6043 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 6044 I->setPredicate(P); 6045 return IC.replaceOperand(*I, 0, X); 6046 }; 6047 6048 switch (I.getPredicate()) { 6049 case FCmpInst::FCMP_UGE: 6050 case FCmpInst::FCMP_OLT: 6051 // fabs(X) >= 0.0 --> true 6052 // fabs(X) < 0.0 --> false 6053 llvm_unreachable("fcmp should have simplified"); 6054 6055 case FCmpInst::FCMP_OGT: 6056 // fabs(X) > 0.0 --> X != 0.0 6057 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 6058 6059 case FCmpInst::FCMP_UGT: 6060 // fabs(X) u> 0.0 --> X u!= 0.0 6061 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 6062 6063 case FCmpInst::FCMP_OLE: 6064 // fabs(X) <= 0.0 --> X == 0.0 6065 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 6066 6067 case FCmpInst::FCMP_ULE: 6068 // fabs(X) u<= 0.0 --> X u== 0.0 6069 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 6070 6071 case FCmpInst::FCMP_OGE: 6072 // fabs(X) >= 0.0 --> !isnan(X) 6073 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6074 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 6075 6076 case FCmpInst::FCMP_ULT: 6077 // fabs(X) u< 0.0 --> isnan(X) 6078 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 6079 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 6080 6081 case FCmpInst::FCMP_OEQ: 6082 case FCmpInst::FCMP_UEQ: 6083 case FCmpInst::FCMP_ONE: 6084 case FCmpInst::FCMP_UNE: 6085 case FCmpInst::FCMP_ORD: 6086 case FCmpInst::FCMP_UNO: 6087 // Look through the fabs() because it doesn't change anything but the sign. 6088 // fabs(X) == 0.0 --> X == 0.0, 6089 // fabs(X) != 0.0 --> X != 0.0 6090 // isnan(fabs(X)) --> isnan(X) 6091 // !isnan(fabs(X) --> !isnan(X) 6092 return replacePredAndOp0(&I, I.getPredicate(), X); 6093 6094 default: 6095 return nullptr; 6096 } 6097 } 6098 6099 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 6100 bool Changed = false; 6101 6102 /// Orders the operands of the compare so that they are listed from most 6103 /// complex to least complex. This puts constants before unary operators, 6104 /// before binary operators. 6105 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 6106 I.swapOperands(); 6107 Changed = true; 6108 } 6109 6110 const CmpInst::Predicate Pred = I.getPredicate(); 6111 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6112 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 6113 SQ.getWithInstruction(&I))) 6114 return replaceInstUsesWith(I, V); 6115 6116 // Simplify 'fcmp pred X, X' 6117 Type *OpType = Op0->getType(); 6118 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 6119 if (Op0 == Op1) { 6120 switch (Pred) { 6121 default: break; 6122 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 6123 case FCmpInst::FCMP_ULT: // True if unordered or less than 6124 case FCmpInst::FCMP_UGT: // True if unordered or greater than 6125 case FCmpInst::FCMP_UNE: // True if unordered or not equal 6126 // Canonicalize these to be 'fcmp uno %X, 0.0'. 6127 I.setPredicate(FCmpInst::FCMP_UNO); 6128 I.setOperand(1, Constant::getNullValue(OpType)); 6129 return &I; 6130 6131 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 6132 case FCmpInst::FCMP_OEQ: // True if ordered and equal 6133 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 6134 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 6135 // Canonicalize these to be 'fcmp ord %X, 0.0'. 6136 I.setPredicate(FCmpInst::FCMP_ORD); 6137 I.setOperand(1, Constant::getNullValue(OpType)); 6138 return &I; 6139 } 6140 } 6141 6142 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 6143 // then canonicalize the operand to 0.0. 6144 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 6145 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) 6146 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); 6147 6148 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) 6149 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6150 } 6151 6152 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 6153 Value *X, *Y; 6154 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 6155 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 6156 6157 // Test if the FCmpInst instruction is used exclusively by a select as 6158 // part of a minimum or maximum operation. If so, refrain from doing 6159 // any other folding. This helps out other analyses which understand 6160 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6161 // and CodeGen. And in this case, at least one of the comparison 6162 // operands has at least one user besides the compare (the select), 6163 // which would often largely negate the benefit of folding anyway. 6164 if (I.hasOneUse()) 6165 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6166 Value *A, *B; 6167 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6168 if (SPR.Flavor != SPF_UNKNOWN) 6169 return nullptr; 6170 } 6171 6172 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 6173 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 6174 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 6175 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); 6176 6177 // Handle fcmp with instruction LHS and constant RHS. 6178 Instruction *LHSI; 6179 Constant *RHSC; 6180 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 6181 switch (LHSI->getOpcode()) { 6182 case Instruction::PHI: 6183 // Only fold fcmp into the PHI if the phi and fcmp are in the same 6184 // block. If in the same block, we're encouraging jump threading. If 6185 // not, we are just pessimizing the code by making an i1 phi. 6186 if (LHSI->getParent() == I.getParent()) 6187 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 6188 return NV; 6189 break; 6190 case Instruction::SIToFP: 6191 case Instruction::UIToFP: 6192 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 6193 return NV; 6194 break; 6195 case Instruction::FDiv: 6196 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 6197 return NV; 6198 break; 6199 case Instruction::Load: 6200 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 6201 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 6202 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 6203 !cast<LoadInst>(LHSI)->isVolatile()) 6204 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) 6205 return Res; 6206 break; 6207 } 6208 } 6209 6210 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 6211 return R; 6212 6213 if (match(Op0, m_FNeg(m_Value(X)))) { 6214 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 6215 Constant *C; 6216 if (match(Op1, m_Constant(C))) { 6217 Constant *NegC = ConstantExpr::getFNeg(C); 6218 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 6219 } 6220 } 6221 6222 if (match(Op0, m_FPExt(m_Value(X)))) { 6223 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 6224 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 6225 return new FCmpInst(Pred, X, Y, "", &I); 6226 6227 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 6228 const APFloat *C; 6229 if (match(Op1, m_APFloat(C))) { 6230 const fltSemantics &FPSem = 6231 X->getType()->getScalarType()->getFltSemantics(); 6232 bool Lossy; 6233 APFloat TruncC = *C; 6234 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 6235 6236 // Avoid lossy conversions and denormals. 6237 // Zero is a special case that's OK to convert. 6238 APFloat Fabs = TruncC; 6239 Fabs.clearSign(); 6240 if (!Lossy && 6241 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { 6242 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 6243 return new FCmpInst(Pred, X, NewC, "", &I); 6244 } 6245 } 6246 } 6247 6248 if (I.getType()->isVectorTy()) 6249 if (Instruction *Res = foldVectorCmp(I, Builder)) 6250 return Res; 6251 6252 return Changed ? &I : nullptr; 6253 } 6254