1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitICmp and visitFCmp functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/CaptureTracking.h" 18 #include "llvm/Analysis/CmpInstAnalysis.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/VectorUtils.h" 22 #include "llvm/IR/ConstantRange.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/GetElementPtrTypeIterator.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/KnownBits.h" 28 #include "llvm/Transforms/InstCombine/InstCombiner.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define DEBUG_TYPE "instcombine" 34 35 // How many times is a select replaced by one of its operands? 36 STATISTIC(NumSel, "Number of select opts"); 37 38 39 /// Compute Result = In1+In2, returning true if the result overflowed for this 40 /// type. 41 static bool addWithOverflow(APInt &Result, const APInt &In1, 42 const APInt &In2, bool IsSigned = false) { 43 bool Overflow; 44 if (IsSigned) 45 Result = In1.sadd_ov(In2, Overflow); 46 else 47 Result = In1.uadd_ov(In2, Overflow); 48 49 return Overflow; 50 } 51 52 /// Compute Result = In1-In2, returning true if the result overflowed for this 53 /// type. 54 static bool subWithOverflow(APInt &Result, const APInt &In1, 55 const APInt &In2, bool IsSigned = false) { 56 bool Overflow; 57 if (IsSigned) 58 Result = In1.ssub_ov(In2, Overflow); 59 else 60 Result = In1.usub_ov(In2, Overflow); 61 62 return Overflow; 63 } 64 65 /// Given an icmp instruction, return true if any use of this comparison is a 66 /// branch on sign bit comparison. 67 static bool hasBranchUse(ICmpInst &I) { 68 for (auto *U : I.users()) 69 if (isa<BranchInst>(U)) 70 return true; 71 return false; 72 } 73 74 /// Returns true if the exploded icmp can be expressed as a signed comparison 75 /// to zero and updates the predicate accordingly. 76 /// The signedness of the comparison is preserved. 77 /// TODO: Refactor with decomposeBitTestICmp()? 78 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { 79 if (!ICmpInst::isSigned(Pred)) 80 return false; 81 82 if (C.isZero()) 83 return ICmpInst::isRelational(Pred); 84 85 if (C.isOne()) { 86 if (Pred == ICmpInst::ICMP_SLT) { 87 Pred = ICmpInst::ICMP_SLE; 88 return true; 89 } 90 } else if (C.isAllOnes()) { 91 if (Pred == ICmpInst::ICMP_SGT) { 92 Pred = ICmpInst::ICMP_SGE; 93 return true; 94 } 95 } 96 97 return false; 98 } 99 100 /// This is called when we see this pattern: 101 /// cmp pred (load (gep GV, ...)), cmpcst 102 /// where GV is a global variable with a constant initializer. Try to simplify 103 /// this into some simple computation that does not need the load. For example 104 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 105 /// 106 /// If AndCst is non-null, then the loaded value is masked with that constant 107 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 108 Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal( 109 LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, 110 ConstantInt *AndCst) { 111 if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() || 112 GV->getValueType() != GEP->getSourceElementType() || 113 !GV->isConstant() || !GV->hasDefinitiveInitializer()) 114 return nullptr; 115 116 Constant *Init = GV->getInitializer(); 117 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 118 return nullptr; 119 120 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 121 // Don't blow up on huge arrays. 122 if (ArrayElementCount > MaxArraySizeForCombine) 123 return nullptr; 124 125 // There are many forms of this optimization we can handle, for now, just do 126 // the simple index into a single-dimensional array. 127 // 128 // Require: GEP GV, 0, i {{, constant indices}} 129 if (GEP->getNumOperands() < 3 || 130 !isa<ConstantInt>(GEP->getOperand(1)) || 131 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 132 isa<Constant>(GEP->getOperand(2))) 133 return nullptr; 134 135 // Check that indices after the variable are constants and in-range for the 136 // type they index. Collect the indices. This is typically for arrays of 137 // structs. 138 SmallVector<unsigned, 4> LaterIndices; 139 140 Type *EltTy = Init->getType()->getArrayElementType(); 141 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 142 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 143 if (!Idx) return nullptr; // Variable index. 144 145 uint64_t IdxVal = Idx->getZExtValue(); 146 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 147 148 if (StructType *STy = dyn_cast<StructType>(EltTy)) 149 EltTy = STy->getElementType(IdxVal); 150 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 151 if (IdxVal >= ATy->getNumElements()) return nullptr; 152 EltTy = ATy->getElementType(); 153 } else { 154 return nullptr; // Unknown type. 155 } 156 157 LaterIndices.push_back(IdxVal); 158 } 159 160 enum { Overdefined = -3, Undefined = -2 }; 161 162 // Variables for our state machines. 163 164 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 165 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 166 // and 87 is the second (and last) index. FirstTrueElement is -2 when 167 // undefined, otherwise set to the first true element. SecondTrueElement is 168 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 169 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 170 171 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 172 // form "i != 47 & i != 87". Same state transitions as for true elements. 173 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 174 175 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 176 /// define a state machine that triggers for ranges of values that the index 177 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 178 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 179 /// index in the range (inclusive). We use -2 for undefined here because we 180 /// use relative comparisons and don't want 0-1 to match -1. 181 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 182 183 // MagicBitvector - This is a magic bitvector where we set a bit if the 184 // comparison is true for element 'i'. If there are 64 elements or less in 185 // the array, this will fully represent all the comparison results. 186 uint64_t MagicBitvector = 0; 187 188 // Scan the array and see if one of our patterns matches. 189 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 190 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 191 Constant *Elt = Init->getAggregateElement(i); 192 if (!Elt) return nullptr; 193 194 // If this is indexing an array of structures, get the structure element. 195 if (!LaterIndices.empty()) { 196 Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices); 197 if (!Elt) 198 return nullptr; 199 } 200 201 // If the element is masked, handle it. 202 if (AndCst) { 203 Elt = ConstantFoldBinaryOpOperands(Instruction::And, Elt, AndCst, DL); 204 if (!Elt) 205 return nullptr; 206 } 207 208 // Find out if the comparison would be true or false for the i'th element. 209 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 210 CompareRHS, DL, &TLI); 211 // If the result is undef for this element, ignore it. 212 if (isa<UndefValue>(C)) { 213 // Extend range state machines to cover this element in case there is an 214 // undef in the middle of the range. 215 if (TrueRangeEnd == (int)i-1) 216 TrueRangeEnd = i; 217 if (FalseRangeEnd == (int)i-1) 218 FalseRangeEnd = i; 219 continue; 220 } 221 222 // If we can't compute the result for any of the elements, we have to give 223 // up evaluating the entire conditional. 224 if (!isa<ConstantInt>(C)) return nullptr; 225 226 // Otherwise, we know if the comparison is true or false for this element, 227 // update our state machines. 228 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 229 230 // State machine for single/double/range index comparison. 231 if (IsTrueForElt) { 232 // Update the TrueElement state machine. 233 if (FirstTrueElement == Undefined) 234 FirstTrueElement = TrueRangeEnd = i; // First true element. 235 else { 236 // Update double-compare state machine. 237 if (SecondTrueElement == Undefined) 238 SecondTrueElement = i; 239 else 240 SecondTrueElement = Overdefined; 241 242 // Update range state machine. 243 if (TrueRangeEnd == (int)i-1) 244 TrueRangeEnd = i; 245 else 246 TrueRangeEnd = Overdefined; 247 } 248 } else { 249 // Update the FalseElement state machine. 250 if (FirstFalseElement == Undefined) 251 FirstFalseElement = FalseRangeEnd = i; // First false element. 252 else { 253 // Update double-compare state machine. 254 if (SecondFalseElement == Undefined) 255 SecondFalseElement = i; 256 else 257 SecondFalseElement = Overdefined; 258 259 // Update range state machine. 260 if (FalseRangeEnd == (int)i-1) 261 FalseRangeEnd = i; 262 else 263 FalseRangeEnd = Overdefined; 264 } 265 } 266 267 // If this element is in range, update our magic bitvector. 268 if (i < 64 && IsTrueForElt) 269 MagicBitvector |= 1ULL << i; 270 271 // If all of our states become overdefined, bail out early. Since the 272 // predicate is expensive, only check it every 8 elements. This is only 273 // really useful for really huge arrays. 274 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 275 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 276 FalseRangeEnd == Overdefined) 277 return nullptr; 278 } 279 280 // Now that we've scanned the entire array, emit our new comparison(s). We 281 // order the state machines in complexity of the generated code. 282 Value *Idx = GEP->getOperand(2); 283 284 // If the index is larger than the pointer offset size of the target, truncate 285 // the index down like the GEP would do implicitly. We don't have to do this 286 // for an inbounds GEP because the index can't be out of range. 287 if (!GEP->isInBounds()) { 288 Type *PtrIdxTy = DL.getIndexType(GEP->getType()); 289 unsigned OffsetSize = PtrIdxTy->getIntegerBitWidth(); 290 if (Idx->getType()->getPrimitiveSizeInBits().getFixedValue() > OffsetSize) 291 Idx = Builder.CreateTrunc(Idx, PtrIdxTy); 292 } 293 294 // If inbounds keyword is not present, Idx * ElementSize can overflow. 295 // Let's assume that ElementSize is 2 and the wanted value is at offset 0. 296 // Then, there are two possible values for Idx to match offset 0: 297 // 0x00..00, 0x80..00. 298 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the 299 // comparison is false if Idx was 0x80..00. 300 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx. 301 unsigned ElementSize = 302 DL.getTypeAllocSize(Init->getType()->getArrayElementType()); 303 auto MaskIdx = [&](Value *Idx) { 304 if (!GEP->isInBounds() && llvm::countr_zero(ElementSize) != 0) { 305 Value *Mask = ConstantInt::get(Idx->getType(), -1); 306 Mask = Builder.CreateLShr(Mask, llvm::countr_zero(ElementSize)); 307 Idx = Builder.CreateAnd(Idx, Mask); 308 } 309 return Idx; 310 }; 311 312 // If the comparison is only true for one or two elements, emit direct 313 // comparisons. 314 if (SecondTrueElement != Overdefined) { 315 Idx = MaskIdx(Idx); 316 // None true -> false. 317 if (FirstTrueElement == Undefined) 318 return replaceInstUsesWith(ICI, Builder.getFalse()); 319 320 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 321 322 // True for one element -> 'i == 47'. 323 if (SecondTrueElement == Undefined) 324 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 325 326 // True for two elements -> 'i == 47 | i == 72'. 327 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); 328 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 329 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); 330 return BinaryOperator::CreateOr(C1, C2); 331 } 332 333 // If the comparison is only false for one or two elements, emit direct 334 // comparisons. 335 if (SecondFalseElement != Overdefined) { 336 Idx = MaskIdx(Idx); 337 // None false -> true. 338 if (FirstFalseElement == Undefined) 339 return replaceInstUsesWith(ICI, Builder.getTrue()); 340 341 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 342 343 // False for one element -> 'i != 47'. 344 if (SecondFalseElement == Undefined) 345 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 346 347 // False for two elements -> 'i != 47 & i != 72'. 348 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); 349 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 350 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); 351 return BinaryOperator::CreateAnd(C1, C2); 352 } 353 354 // If the comparison can be replaced with a range comparison for the elements 355 // where it is true, emit the range check. 356 if (TrueRangeEnd != Overdefined) { 357 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 358 Idx = MaskIdx(Idx); 359 360 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 361 if (FirstTrueElement) { 362 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 363 Idx = Builder.CreateAdd(Idx, Offs); 364 } 365 366 Value *End = ConstantInt::get(Idx->getType(), 367 TrueRangeEnd-FirstTrueElement+1); 368 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 369 } 370 371 // False range check. 372 if (FalseRangeEnd != Overdefined) { 373 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 374 Idx = MaskIdx(Idx); 375 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 376 if (FirstFalseElement) { 377 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 378 Idx = Builder.CreateAdd(Idx, Offs); 379 } 380 381 Value *End = ConstantInt::get(Idx->getType(), 382 FalseRangeEnd-FirstFalseElement); 383 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 384 } 385 386 // If a magic bitvector captures the entire comparison state 387 // of this load, replace it with computation that does: 388 // ((magic_cst >> i) & 1) != 0 389 { 390 Type *Ty = nullptr; 391 392 // Look for an appropriate type: 393 // - The type of Idx if the magic fits 394 // - The smallest fitting legal type 395 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 396 Ty = Idx->getType(); 397 else 398 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 399 400 if (Ty) { 401 Idx = MaskIdx(Idx); 402 Value *V = Builder.CreateIntCast(Idx, Ty, false); 403 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 404 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); 405 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 406 } 407 } 408 409 return nullptr; 410 } 411 412 /// Returns true if we can rewrite Start as a GEP with pointer Base 413 /// and some integer offset. The nodes that need to be re-written 414 /// for this transformation will be added to Explored. 415 static bool canRewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 416 const DataLayout &DL, 417 SetVector<Value *> &Explored) { 418 SmallVector<Value *, 16> WorkList(1, Start); 419 Explored.insert(Base); 420 421 // The following traversal gives us an order which can be used 422 // when doing the final transformation. Since in the final 423 // transformation we create the PHI replacement instructions first, 424 // we don't have to get them in any particular order. 425 // 426 // However, for other instructions we will have to traverse the 427 // operands of an instruction first, which means that we have to 428 // do a post-order traversal. 429 while (!WorkList.empty()) { 430 SetVector<PHINode *> PHIs; 431 432 while (!WorkList.empty()) { 433 if (Explored.size() >= 100) 434 return false; 435 436 Value *V = WorkList.back(); 437 438 if (Explored.contains(V)) { 439 WorkList.pop_back(); 440 continue; 441 } 442 443 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 444 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) 445 // We've found some value that we can't explore which is different from 446 // the base. Therefore we can't do this transformation. 447 return false; 448 449 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 450 auto *CI = cast<CastInst>(V); 451 if (!CI->isNoopCast(DL)) 452 return false; 453 454 if (!Explored.contains(CI->getOperand(0))) 455 WorkList.push_back(CI->getOperand(0)); 456 } 457 458 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 459 // We're limiting the GEP to having one index. This will preserve 460 // the original pointer type. We could handle more cases in the 461 // future. 462 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 463 GEP->getSourceElementType() != ElemTy) 464 return false; 465 466 if (!Explored.contains(GEP->getOperand(0))) 467 WorkList.push_back(GEP->getOperand(0)); 468 } 469 470 if (WorkList.back() == V) { 471 WorkList.pop_back(); 472 // We've finished visiting this node, mark it as such. 473 Explored.insert(V); 474 } 475 476 if (auto *PN = dyn_cast<PHINode>(V)) { 477 // We cannot transform PHIs on unsplittable basic blocks. 478 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 479 return false; 480 Explored.insert(PN); 481 PHIs.insert(PN); 482 } 483 } 484 485 // Explore the PHI nodes further. 486 for (auto *PN : PHIs) 487 for (Value *Op : PN->incoming_values()) 488 if (!Explored.contains(Op)) 489 WorkList.push_back(Op); 490 } 491 492 // Make sure that we can do this. Since we can't insert GEPs in a basic 493 // block before a PHI node, we can't easily do this transformation if 494 // we have PHI node users of transformed instructions. 495 for (Value *Val : Explored) { 496 for (Value *Use : Val->uses()) { 497 498 auto *PHI = dyn_cast<PHINode>(Use); 499 auto *Inst = dyn_cast<Instruction>(Val); 500 501 if (Inst == Base || Inst == PHI || !Inst || !PHI || 502 !Explored.contains(PHI)) 503 continue; 504 505 if (PHI->getParent() == Inst->getParent()) 506 return false; 507 } 508 } 509 return true; 510 } 511 512 // Sets the appropriate insert point on Builder where we can add 513 // a replacement Instruction for V (if that is possible). 514 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 515 bool Before = true) { 516 if (auto *PHI = dyn_cast<PHINode>(V)) { 517 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 518 return; 519 } 520 if (auto *I = dyn_cast<Instruction>(V)) { 521 if (!Before) 522 I = &*std::next(I->getIterator()); 523 Builder.SetInsertPoint(I); 524 return; 525 } 526 if (auto *A = dyn_cast<Argument>(V)) { 527 // Set the insertion point in the entry block. 528 BasicBlock &Entry = A->getParent()->getEntryBlock(); 529 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 530 return; 531 } 532 // Otherwise, this is a constant and we don't need to set a new 533 // insertion point. 534 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 535 } 536 537 /// Returns a re-written value of Start as an indexed GEP using Base as a 538 /// pointer. 539 static Value *rewriteGEPAsOffset(Type *ElemTy, Value *Start, Value *Base, 540 const DataLayout &DL, 541 SetVector<Value *> &Explored, 542 InstCombiner &IC) { 543 // Perform all the substitutions. This is a bit tricky because we can 544 // have cycles in our use-def chains. 545 // 1. Create the PHI nodes without any incoming values. 546 // 2. Create all the other values. 547 // 3. Add the edges for the PHI nodes. 548 // 4. Emit GEPs to get the original pointers. 549 // 5. Remove the original instructions. 550 Type *IndexType = IntegerType::get( 551 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); 552 553 DenseMap<Value *, Value *> NewInsts; 554 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 555 556 // Create the new PHI nodes, without adding any incoming values. 557 for (Value *Val : Explored) { 558 if (Val == Base) 559 continue; 560 // Create empty phi nodes. This avoids cyclic dependencies when creating 561 // the remaining instructions. 562 if (auto *PHI = dyn_cast<PHINode>(Val)) 563 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 564 PHI->getName() + ".idx", PHI); 565 } 566 IRBuilder<> Builder(Base->getContext()); 567 568 // Create all the other instructions. 569 for (Value *Val : Explored) { 570 571 if (NewInsts.contains(Val)) 572 continue; 573 574 if (auto *CI = dyn_cast<CastInst>(Val)) { 575 // Don't get rid of the intermediate variable here; the store can grow 576 // the map which will invalidate the reference to the input value. 577 Value *V = NewInsts[CI->getOperand(0)]; 578 NewInsts[CI] = V; 579 continue; 580 } 581 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 582 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 583 : GEP->getOperand(1); 584 setInsertionPoint(Builder, GEP); 585 // Indices might need to be sign extended. GEPs will magically do 586 // this, but we need to do it ourselves here. 587 if (Index->getType()->getScalarSizeInBits() != 588 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 589 Index = Builder.CreateSExtOrTrunc( 590 Index, NewInsts[GEP->getOperand(0)]->getType(), 591 GEP->getOperand(0)->getName() + ".sext"); 592 } 593 594 auto *Op = NewInsts[GEP->getOperand(0)]; 595 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) 596 NewInsts[GEP] = Index; 597 else 598 NewInsts[GEP] = Builder.CreateNSWAdd( 599 Op, Index, GEP->getOperand(0)->getName() + ".add"); 600 continue; 601 } 602 if (isa<PHINode>(Val)) 603 continue; 604 605 llvm_unreachable("Unexpected instruction type"); 606 } 607 608 // Add the incoming values to the PHI nodes. 609 for (Value *Val : Explored) { 610 if (Val == Base) 611 continue; 612 // All the instructions have been created, we can now add edges to the 613 // phi nodes. 614 if (auto *PHI = dyn_cast<PHINode>(Val)) { 615 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 616 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 617 Value *NewIncoming = PHI->getIncomingValue(I); 618 619 if (NewInsts.contains(NewIncoming)) 620 NewIncoming = NewInsts[NewIncoming]; 621 622 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 623 } 624 } 625 } 626 627 PointerType *PtrTy = 628 ElemTy->getPointerTo(Start->getType()->getPointerAddressSpace()); 629 for (Value *Val : Explored) { 630 if (Val == Base) 631 continue; 632 633 // Depending on the type, for external users we have to emit 634 // a GEP or a GEP + ptrtoint. 635 setInsertionPoint(Builder, Val, false); 636 637 // Cast base to the expected type. 638 Value *NewVal = Builder.CreateBitOrPointerCast( 639 Base, PtrTy, Start->getName() + "to.ptr"); 640 NewVal = Builder.CreateInBoundsGEP(ElemTy, NewVal, ArrayRef(NewInsts[Val]), 641 Val->getName() + ".ptr"); 642 NewVal = Builder.CreateBitOrPointerCast( 643 NewVal, Val->getType(), Val->getName() + ".conv"); 644 IC.replaceInstUsesWith(*cast<Instruction>(Val), NewVal); 645 // Add old instruction to worklist for DCE. We don't directly remove it 646 // here because the original compare is one of the users. 647 IC.addToWorklist(cast<Instruction>(Val)); 648 } 649 650 return NewInsts[Start]; 651 } 652 653 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 654 /// the input Value as a constant indexed GEP. Returns a pair containing 655 /// the GEPs Pointer and Index. 656 static std::pair<Value *, Value *> 657 getAsConstantIndexedAddress(Type *ElemTy, Value *V, const DataLayout &DL) { 658 Type *IndexType = IntegerType::get(V->getContext(), 659 DL.getIndexTypeSizeInBits(V->getType())); 660 661 Constant *Index = ConstantInt::getNullValue(IndexType); 662 while (true) { 663 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 664 // We accept only inbouds GEPs here to exclude the possibility of 665 // overflow. 666 if (!GEP->isInBounds()) 667 break; 668 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 669 GEP->getSourceElementType() == ElemTy) { 670 V = GEP->getOperand(0); 671 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 672 Index = ConstantExpr::getAdd( 673 Index, ConstantExpr::getSExtOrTrunc(GEPIndex, IndexType)); 674 continue; 675 } 676 break; 677 } 678 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 679 if (!CI->isNoopCast(DL)) 680 break; 681 V = CI->getOperand(0); 682 continue; 683 } 684 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 685 if (!CI->isNoopCast(DL)) 686 break; 687 V = CI->getOperand(0); 688 continue; 689 } 690 break; 691 } 692 return {V, Index}; 693 } 694 695 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 696 /// We can look through PHIs, GEPs and casts in order to determine a common base 697 /// between GEPLHS and RHS. 698 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 699 ICmpInst::Predicate Cond, 700 const DataLayout &DL, 701 InstCombiner &IC) { 702 // FIXME: Support vector of pointers. 703 if (GEPLHS->getType()->isVectorTy()) 704 return nullptr; 705 706 if (!GEPLHS->hasAllConstantIndices()) 707 return nullptr; 708 709 Type *ElemTy = GEPLHS->getSourceElementType(); 710 Value *PtrBase, *Index; 711 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(ElemTy, GEPLHS, DL); 712 713 // The set of nodes that will take part in this transformation. 714 SetVector<Value *> Nodes; 715 716 if (!canRewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes)) 717 return nullptr; 718 719 // We know we can re-write this as 720 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 721 // Since we've only looked through inbouds GEPs we know that we 722 // can't have overflow on either side. We can therefore re-write 723 // this as: 724 // OFFSET1 cmp OFFSET2 725 Value *NewRHS = rewriteGEPAsOffset(ElemTy, RHS, PtrBase, DL, Nodes, IC); 726 727 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 728 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 729 // offset. Since Index is the offset of LHS to the base pointer, we will now 730 // compare the offsets instead of comparing the pointers. 731 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 732 } 733 734 /// Fold comparisons between a GEP instruction and something else. At this point 735 /// we know that the GEP is on the LHS of the comparison. 736 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 737 ICmpInst::Predicate Cond, 738 Instruction &I) { 739 // Don't transform signed compares of GEPs into index compares. Even if the 740 // GEP is inbounds, the final add of the base pointer can have signed overflow 741 // and would change the result of the icmp. 742 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 743 // the maximum signed value for the pointer type. 744 if (ICmpInst::isSigned(Cond)) 745 return nullptr; 746 747 // Look through bitcasts and addrspacecasts. We do not however want to remove 748 // 0 GEPs. 749 if (!isa<GetElementPtrInst>(RHS)) 750 RHS = RHS->stripPointerCasts(); 751 752 Value *PtrBase = GEPLHS->getOperand(0); 753 if (PtrBase == RHS && (GEPLHS->isInBounds() || ICmpInst::isEquality(Cond))) { 754 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 755 Value *Offset = EmitGEPOffset(GEPLHS); 756 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 757 Constant::getNullValue(Offset->getType())); 758 } 759 760 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && 761 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && 762 !NullPointerIsDefined(I.getFunction(), 763 RHS->getType()->getPointerAddressSpace())) { 764 // For most address spaces, an allocation can't be placed at null, but null 765 // itself is treated as a 0 size allocation in the in bounds rules. Thus, 766 // the only valid inbounds address derived from null, is null itself. 767 // Thus, we have four cases to consider: 768 // 1) Base == nullptr, Offset == 0 -> inbounds, null 769 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds 770 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) 771 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) 772 // 773 // (Note if we're indexing a type of size 0, that simply collapses into one 774 // of the buckets above.) 775 // 776 // In general, we're allowed to make values less poison (i.e. remove 777 // sources of full UB), so in this case, we just select between the two 778 // non-poison cases (1 and 4 above). 779 // 780 // For vectors, we apply the same reasoning on a per-lane basis. 781 auto *Base = GEPLHS->getPointerOperand(); 782 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { 783 auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); 784 Base = Builder.CreateVectorSplat(EC, Base); 785 } 786 return new ICmpInst(Cond, Base, 787 ConstantExpr::getPointerBitCastOrAddrSpaceCast( 788 cast<Constant>(RHS), Base->getType())); 789 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 790 // If the base pointers are different, but the indices are the same, just 791 // compare the base pointer. 792 if (PtrBase != GEPRHS->getOperand(0)) { 793 bool IndicesTheSame = 794 GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 795 GEPLHS->getPointerOperand()->getType() == 796 GEPRHS->getPointerOperand()->getType() && 797 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType(); 798 if (IndicesTheSame) 799 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 800 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 801 IndicesTheSame = false; 802 break; 803 } 804 805 // If all indices are the same, just compare the base pointers. 806 Type *BaseType = GEPLHS->getOperand(0)->getType(); 807 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) 808 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 809 810 // If we're comparing GEPs with two base pointers that only differ in type 811 // and both GEPs have only constant indices or just one use, then fold 812 // the compare with the adjusted indices. 813 // FIXME: Support vector of pointers. 814 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 815 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 816 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 817 PtrBase->stripPointerCasts() == 818 GEPRHS->getOperand(0)->stripPointerCasts() && 819 !GEPLHS->getType()->isVectorTy()) { 820 Value *LOffset = EmitGEPOffset(GEPLHS); 821 Value *ROffset = EmitGEPOffset(GEPRHS); 822 823 // If we looked through an addrspacecast between different sized address 824 // spaces, the LHS and RHS pointers are different sized 825 // integers. Truncate to the smaller one. 826 Type *LHSIndexTy = LOffset->getType(); 827 Type *RHSIndexTy = ROffset->getType(); 828 if (LHSIndexTy != RHSIndexTy) { 829 if (LHSIndexTy->getPrimitiveSizeInBits().getFixedValue() < 830 RHSIndexTy->getPrimitiveSizeInBits().getFixedValue()) { 831 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); 832 } else 833 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); 834 } 835 836 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), 837 LOffset, ROffset); 838 return replaceInstUsesWith(I, Cmp); 839 } 840 841 // Otherwise, the base pointers are different and the indices are 842 // different. Try convert this to an indexed compare by looking through 843 // PHIs/casts. 844 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this); 845 } 846 847 // If one of the GEPs has all zero indices, recurse. 848 // FIXME: Handle vector of pointers. 849 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) 850 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 851 ICmpInst::getSwappedPredicate(Cond), I); 852 853 // If the other GEP has all zero indices, recurse. 854 // FIXME: Handle vector of pointers. 855 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) 856 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 857 858 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 859 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() && 860 GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) { 861 // If the GEPs only differ by one index, compare it. 862 unsigned NumDifferences = 0; // Keep track of # differences. 863 unsigned DiffOperand = 0; // The operand that differs. 864 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 865 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 866 Type *LHSType = GEPLHS->getOperand(i)->getType(); 867 Type *RHSType = GEPRHS->getOperand(i)->getType(); 868 // FIXME: Better support for vector of pointers. 869 if (LHSType->getPrimitiveSizeInBits() != 870 RHSType->getPrimitiveSizeInBits() || 871 (GEPLHS->getType()->isVectorTy() && 872 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { 873 // Irreconcilable differences. 874 NumDifferences = 2; 875 break; 876 } 877 878 if (NumDifferences++) break; 879 DiffOperand = i; 880 } 881 882 if (NumDifferences == 0) // SAME GEP? 883 return replaceInstUsesWith(I, // No comparison is needed here. 884 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); 885 886 else if (NumDifferences == 1 && GEPsInBounds) { 887 Value *LHSV = GEPLHS->getOperand(DiffOperand); 888 Value *RHSV = GEPRHS->getOperand(DiffOperand); 889 // Make sure we do a signed comparison here. 890 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 891 } 892 } 893 894 // Only lower this if the icmp is the only user of the GEP or if we expect 895 // the result to fold to a constant! 896 if ((GEPsInBounds || CmpInst::isEquality(Cond)) && 897 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 898 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 899 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 900 Value *L = EmitGEPOffset(GEPLHS); 901 Value *R = EmitGEPOffset(GEPRHS); 902 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 903 } 904 } 905 906 // Try convert this to an indexed compare by looking through PHIs/casts as a 907 // last resort. 908 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this); 909 } 910 911 bool InstCombinerImpl::foldAllocaCmp(AllocaInst *Alloca) { 912 // It would be tempting to fold away comparisons between allocas and any 913 // pointer not based on that alloca (e.g. an argument). However, even 914 // though such pointers cannot alias, they can still compare equal. 915 // 916 // But LLVM doesn't specify where allocas get their memory, so if the alloca 917 // doesn't escape we can argue that it's impossible to guess its value, and we 918 // can therefore act as if any such guesses are wrong. 919 // 920 // However, we need to ensure that this folding is consistent: We can't fold 921 // one comparison to false, and then leave a different comparison against the 922 // same value alone (as it might evaluate to true at runtime, leading to a 923 // contradiction). As such, this code ensures that all comparisons are folded 924 // at the same time, and there are no other escapes. 925 926 struct CmpCaptureTracker : public CaptureTracker { 927 AllocaInst *Alloca; 928 bool Captured = false; 929 /// The value of the map is a bit mask of which icmp operands the alloca is 930 /// used in. 931 SmallMapVector<ICmpInst *, unsigned, 4> ICmps; 932 933 CmpCaptureTracker(AllocaInst *Alloca) : Alloca(Alloca) {} 934 935 void tooManyUses() override { Captured = true; } 936 937 bool captured(const Use *U) override { 938 auto *ICmp = dyn_cast<ICmpInst>(U->getUser()); 939 // We need to check that U is based *only* on the alloca, and doesn't 940 // have other contributions from a select/phi operand. 941 // TODO: We could check whether getUnderlyingObjects() reduces to one 942 // object, which would allow looking through phi nodes. 943 if (ICmp && ICmp->isEquality() && getUnderlyingObject(*U) == Alloca) { 944 // Collect equality icmps of the alloca, and don't treat them as 945 // captures. 946 auto Res = ICmps.insert({ICmp, 0}); 947 Res.first->second |= 1u << U->getOperandNo(); 948 return false; 949 } 950 951 Captured = true; 952 return true; 953 } 954 }; 955 956 CmpCaptureTracker Tracker(Alloca); 957 PointerMayBeCaptured(Alloca, &Tracker); 958 if (Tracker.Captured) 959 return false; 960 961 bool Changed = false; 962 for (auto [ICmp, Operands] : Tracker.ICmps) { 963 switch (Operands) { 964 case 1: 965 case 2: { 966 // The alloca is only used in one icmp operand. Assume that the 967 // equality is false. 968 auto *Res = ConstantInt::get( 969 ICmp->getType(), ICmp->getPredicate() == ICmpInst::ICMP_NE); 970 replaceInstUsesWith(*ICmp, Res); 971 eraseInstFromFunction(*ICmp); 972 Changed = true; 973 break; 974 } 975 case 3: 976 // Both icmp operands are based on the alloca, so this is comparing 977 // pointer offsets, without leaking any information about the address 978 // of the alloca. Ignore such comparisons. 979 break; 980 default: 981 llvm_unreachable("Cannot happen"); 982 } 983 } 984 985 return Changed; 986 } 987 988 /// Fold "icmp pred (X+C), X". 989 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, 990 ICmpInst::Predicate Pred) { 991 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 992 // so the values can never be equal. Similarly for all other "or equals" 993 // operators. 994 assert(!!C && "C should not be zero!"); 995 996 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 997 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 998 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 999 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1000 Constant *R = ConstantInt::get(X->getType(), 1001 APInt::getMaxValue(C.getBitWidth()) - C); 1002 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1003 } 1004 1005 // (X+1) >u X --> X <u (0-1) --> X != 255 1006 // (X+2) >u X --> X <u (0-2) --> X <u 254 1007 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1008 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1009 return new ICmpInst(ICmpInst::ICMP_ULT, X, 1010 ConstantInt::get(X->getType(), -C)); 1011 1012 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); 1013 1014 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1015 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1016 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1017 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1018 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1019 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1020 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1021 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1022 ConstantInt::get(X->getType(), SMax - C)); 1023 1024 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1025 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1026 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1027 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1028 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1029 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1030 1031 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1032 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1033 ConstantInt::get(X->getType(), SMax - (C - 1))); 1034 } 1035 1036 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> 1037 /// (icmp eq/ne A, Log2(AP2/AP1)) -> 1038 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). 1039 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, 1040 const APInt &AP1, 1041 const APInt &AP2) { 1042 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1043 1044 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1045 if (I.getPredicate() == I.ICMP_NE) 1046 Pred = CmpInst::getInversePredicate(Pred); 1047 return new ICmpInst(Pred, LHS, RHS); 1048 }; 1049 1050 // Don't bother doing any work for cases which InstSimplify handles. 1051 if (AP2.isZero()) 1052 return nullptr; 1053 1054 bool IsAShr = isa<AShrOperator>(I.getOperand(0)); 1055 if (IsAShr) { 1056 if (AP2.isAllOnes()) 1057 return nullptr; 1058 if (AP2.isNegative() != AP1.isNegative()) 1059 return nullptr; 1060 if (AP2.sgt(AP1)) 1061 return nullptr; 1062 } 1063 1064 if (!AP1) 1065 // 'A' must be large enough to shift out the highest set bit. 1066 return getICmp(I.ICMP_UGT, A, 1067 ConstantInt::get(A->getType(), AP2.logBase2())); 1068 1069 if (AP1 == AP2) 1070 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1071 1072 int Shift; 1073 if (IsAShr && AP1.isNegative()) 1074 Shift = AP1.countl_one() - AP2.countl_one(); 1075 else 1076 Shift = AP1.countl_zero() - AP2.countl_zero(); 1077 1078 if (Shift > 0) { 1079 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1080 // There are multiple solutions if we are comparing against -1 and the LHS 1081 // of the ashr is not a power of two. 1082 if (AP1.isAllOnes() && !AP2.isPowerOf2()) 1083 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1084 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1085 } else if (AP1 == AP2.lshr(Shift)) { 1086 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1087 } 1088 } 1089 1090 // Shifting const2 will never be equal to const1. 1091 // FIXME: This should always be handled by InstSimplify? 1092 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1093 return replaceInstUsesWith(I, TorF); 1094 } 1095 1096 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> 1097 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). 1098 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, 1099 const APInt &AP1, 1100 const APInt &AP2) { 1101 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1102 1103 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1104 if (I.getPredicate() == I.ICMP_NE) 1105 Pred = CmpInst::getInversePredicate(Pred); 1106 return new ICmpInst(Pred, LHS, RHS); 1107 }; 1108 1109 // Don't bother doing any work for cases which InstSimplify handles. 1110 if (AP2.isZero()) 1111 return nullptr; 1112 1113 unsigned AP2TrailingZeros = AP2.countr_zero(); 1114 1115 if (!AP1 && AP2TrailingZeros != 0) 1116 return getICmp( 1117 I.ICMP_UGE, A, 1118 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1119 1120 if (AP1 == AP2) 1121 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1122 1123 // Get the distance between the lowest bits that are set. 1124 int Shift = AP1.countr_zero() - AP2TrailingZeros; 1125 1126 if (Shift > 0 && AP2.shl(Shift) == AP1) 1127 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1128 1129 // Shifting const2 will never be equal to const1. 1130 // FIXME: This should always be handled by InstSimplify? 1131 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); 1132 return replaceInstUsesWith(I, TorF); 1133 } 1134 1135 /// The caller has matched a pattern of the form: 1136 /// I = icmp ugt (add (add A, B), CI2), CI1 1137 /// If this is of the form: 1138 /// sum = a + b 1139 /// if (sum+128 >u 255) 1140 /// Then replace it with llvm.sadd.with.overflow.i8. 1141 /// 1142 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 1143 ConstantInt *CI2, ConstantInt *CI1, 1144 InstCombinerImpl &IC) { 1145 // The transformation we're trying to do here is to transform this into an 1146 // llvm.sadd.with.overflow. To do this, we have to replace the original add 1147 // with a narrower add, and discard the add-with-constant that is part of the 1148 // range check (if we can't eliminate it, this isn't profitable). 1149 1150 // In order to eliminate the add-with-constant, the compare can be its only 1151 // use. 1152 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 1153 if (!AddWithCst->hasOneUse()) 1154 return nullptr; 1155 1156 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 1157 if (!CI2->getValue().isPowerOf2()) 1158 return nullptr; 1159 unsigned NewWidth = CI2->getValue().countr_zero(); 1160 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) 1161 return nullptr; 1162 1163 // The width of the new add formed is 1 more than the bias. 1164 ++NewWidth; 1165 1166 // Check to see that CI1 is an all-ones value with NewWidth bits. 1167 if (CI1->getBitWidth() == NewWidth || 1168 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 1169 return nullptr; 1170 1171 // This is only really a signed overflow check if the inputs have been 1172 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 1173 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 1174 if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth || 1175 IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth) 1176 return nullptr; 1177 1178 // In order to replace the original add with a narrower 1179 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 1180 // and truncates that discard the high bits of the add. Verify that this is 1181 // the case. 1182 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 1183 for (User *U : OrigAdd->users()) { 1184 if (U == AddWithCst) 1185 continue; 1186 1187 // Only accept truncates for now. We would really like a nice recursive 1188 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 1189 // chain to see which bits of a value are actually demanded. If the 1190 // original add had another add which was then immediately truncated, we 1191 // could still do the transformation. 1192 TruncInst *TI = dyn_cast<TruncInst>(U); 1193 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 1194 return nullptr; 1195 } 1196 1197 // If the pattern matches, truncate the inputs to the narrower type and 1198 // use the sadd_with_overflow intrinsic to efficiently compute both the 1199 // result and the overflow bit. 1200 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 1201 Function *F = Intrinsic::getDeclaration( 1202 I.getModule(), Intrinsic::sadd_with_overflow, NewType); 1203 1204 InstCombiner::BuilderTy &Builder = IC.Builder; 1205 1206 // Put the new code above the original add, in case there are any uses of the 1207 // add between the add and the compare. 1208 Builder.SetInsertPoint(OrigAdd); 1209 1210 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); 1211 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); 1212 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); 1213 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); 1214 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); 1215 1216 // The inner add was the result of the narrow add, zero extended to the 1217 // wider type. Replace it with the result computed by the intrinsic. 1218 IC.replaceInstUsesWith(*OrigAdd, ZExt); 1219 IC.eraseInstFromFunction(*OrigAdd); 1220 1221 // The original icmp gets replaced with the overflow value. 1222 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 1223 } 1224 1225 /// If we have: 1226 /// icmp eq/ne (urem/srem %x, %y), 0 1227 /// iff %y is a power-of-two, we can replace this with a bit test: 1228 /// icmp eq/ne (and %x, (add %y, -1)), 0 1229 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { 1230 // This fold is only valid for equality predicates. 1231 if (!I.isEquality()) 1232 return nullptr; 1233 ICmpInst::Predicate Pred; 1234 Value *X, *Y, *Zero; 1235 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), 1236 m_CombineAnd(m_Zero(), m_Value(Zero))))) 1237 return nullptr; 1238 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) 1239 return nullptr; 1240 // This may increase instruction count, we don't enforce that Y is a constant. 1241 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); 1242 Value *Masked = Builder.CreateAnd(X, Mask); 1243 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); 1244 } 1245 1246 /// Fold equality-comparison between zero and any (maybe truncated) right-shift 1247 /// by one-less-than-bitwidth into a sign test on the original value. 1248 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { 1249 Instruction *Val; 1250 ICmpInst::Predicate Pred; 1251 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) 1252 return nullptr; 1253 1254 Value *X; 1255 Type *XTy; 1256 1257 Constant *C; 1258 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { 1259 XTy = X->getType(); 1260 unsigned XBitWidth = XTy->getScalarSizeInBits(); 1261 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1262 APInt(XBitWidth, XBitWidth - 1)))) 1263 return nullptr; 1264 } else if (isa<BinaryOperator>(Val) && 1265 (X = reassociateShiftAmtsOfTwoSameDirectionShifts( 1266 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), 1267 /*AnalyzeForSignBitExtraction=*/true))) { 1268 XTy = X->getType(); 1269 } else 1270 return nullptr; 1271 1272 return ICmpInst::Create(Instruction::ICmp, 1273 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE 1274 : ICmpInst::ICMP_SLT, 1275 X, ConstantInt::getNullValue(XTy)); 1276 } 1277 1278 // Handle icmp pred X, 0 1279 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { 1280 CmpInst::Predicate Pred = Cmp.getPredicate(); 1281 if (!match(Cmp.getOperand(1), m_Zero())) 1282 return nullptr; 1283 1284 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 1285 if (Pred == ICmpInst::ICMP_SGT) { 1286 Value *A, *B; 1287 if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) { 1288 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) 1289 return new ICmpInst(Pred, B, Cmp.getOperand(1)); 1290 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) 1291 return new ICmpInst(Pred, A, Cmp.getOperand(1)); 1292 } 1293 } 1294 1295 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) 1296 return New; 1297 1298 // Given: 1299 // icmp eq/ne (urem %x, %y), 0 1300 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 1301 // icmp eq/ne %x, 0 1302 Value *X, *Y; 1303 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && 1304 ICmpInst::isEquality(Pred)) { 1305 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1306 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1307 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 1308 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1309 } 1310 1311 // (icmp eq/ne (mul X Y)) -> (icmp eq/ne X/Y) if we know about whether X/Y are 1312 // odd/non-zero/there is no overflow. 1313 if (match(Cmp.getOperand(0), m_Mul(m_Value(X), m_Value(Y))) && 1314 ICmpInst::isEquality(Pred)) { 1315 1316 KnownBits XKnown = computeKnownBits(X, 0, &Cmp); 1317 // if X % 2 != 0 1318 // (icmp eq/ne Y) 1319 if (XKnown.countMaxTrailingZeros() == 0) 1320 return new ICmpInst(Pred, Y, Cmp.getOperand(1)); 1321 1322 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); 1323 // if Y % 2 != 0 1324 // (icmp eq/ne X) 1325 if (YKnown.countMaxTrailingZeros() == 0) 1326 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1327 1328 auto *BO0 = cast<OverflowingBinaryOperator>(Cmp.getOperand(0)); 1329 if (BO0->hasNoUnsignedWrap() || BO0->hasNoSignedWrap()) { 1330 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); 1331 // `isKnownNonZero` does more analysis than just `!KnownBits.One.isZero()` 1332 // but to avoid unnecessary work, first just if this is an obvious case. 1333 1334 // if X non-zero and NoOverflow(X * Y) 1335 // (icmp eq/ne Y) 1336 if (!XKnown.One.isZero() || isKnownNonZero(X, DL, 0, Q.AC, Q.CxtI, Q.DT)) 1337 return new ICmpInst(Pred, Y, Cmp.getOperand(1)); 1338 1339 // if Y non-zero and NoOverflow(X * Y) 1340 // (icmp eq/ne X) 1341 if (!YKnown.One.isZero() || isKnownNonZero(Y, DL, 0, Q.AC, Q.CxtI, Q.DT)) 1342 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 1343 } 1344 // Note, we are skipping cases: 1345 // if Y % 2 != 0 AND X % 2 != 0 1346 // (false/true) 1347 // if X non-zero and Y non-zero and NoOverflow(X * Y) 1348 // (false/true) 1349 // Those can be simplified later as we would have already replaced the (icmp 1350 // eq/ne (mul X, Y)) with (icmp eq/ne X/Y) and if X/Y is known non-zero that 1351 // will fold to a constant elsewhere. 1352 } 1353 return nullptr; 1354 } 1355 1356 /// Fold icmp Pred X, C. 1357 /// TODO: This code structure does not make sense. The saturating add fold 1358 /// should be moved to some other helper and extended as noted below (it is also 1359 /// possible that code has been made unnecessary - do we canonicalize IR to 1360 /// overflow/saturating intrinsics or not?). 1361 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { 1362 // Match the following pattern, which is a common idiom when writing 1363 // overflow-safe integer arithmetic functions. The source performs an addition 1364 // in wider type and explicitly checks for overflow using comparisons against 1365 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. 1366 // 1367 // TODO: This could probably be generalized to handle other overflow-safe 1368 // operations if we worked out the formulas to compute the appropriate magic 1369 // constants. 1370 // 1371 // sum = a + b 1372 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 1373 CmpInst::Predicate Pred = Cmp.getPredicate(); 1374 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); 1375 Value *A, *B; 1376 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI 1377 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && 1378 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 1379 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) 1380 return Res; 1381 1382 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). 1383 Constant *C = dyn_cast<Constant>(Op1); 1384 if (!C) 1385 return nullptr; 1386 1387 if (auto *Phi = dyn_cast<PHINode>(Op0)) 1388 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { 1389 SmallVector<Constant *> Ops; 1390 for (Value *V : Phi->incoming_values()) { 1391 Constant *Res = 1392 ConstantFoldCompareInstOperands(Pred, cast<Constant>(V), C, DL); 1393 if (!Res) 1394 return nullptr; 1395 Ops.push_back(Res); 1396 } 1397 Builder.SetInsertPoint(Phi); 1398 PHINode *NewPhi = Builder.CreatePHI(Cmp.getType(), Phi->getNumOperands()); 1399 for (auto [V, Pred] : zip(Ops, Phi->blocks())) 1400 NewPhi->addIncoming(V, Pred); 1401 return replaceInstUsesWith(Cmp, NewPhi); 1402 } 1403 1404 return nullptr; 1405 } 1406 1407 /// Canonicalize icmp instructions based on dominating conditions. 1408 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { 1409 // This is a cheap/incomplete check for dominance - just match a single 1410 // predecessor with a conditional branch. 1411 BasicBlock *CmpBB = Cmp.getParent(); 1412 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1413 if (!DomBB) 1414 return nullptr; 1415 1416 Value *DomCond; 1417 BasicBlock *TrueBB, *FalseBB; 1418 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1419 return nullptr; 1420 1421 assert((TrueBB == CmpBB || FalseBB == CmpBB) && 1422 "Predecessor block does not point to successor?"); 1423 1424 // The branch should get simplified. Don't bother simplifying this condition. 1425 if (TrueBB == FalseBB) 1426 return nullptr; 1427 1428 // We already checked simple implication in InstSimplify, only handle complex 1429 // cases here. 1430 1431 CmpInst::Predicate Pred = Cmp.getPredicate(); 1432 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); 1433 ICmpInst::Predicate DomPred; 1434 const APInt *C, *DomC; 1435 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && 1436 match(Y, m_APInt(C))) { 1437 // We have 2 compares of a variable with constants. Calculate the constant 1438 // ranges of those compares to see if we can transform the 2nd compare: 1439 // DomBB: 1440 // DomCond = icmp DomPred X, DomC 1441 // br DomCond, CmpBB, FalseBB 1442 // CmpBB: 1443 // Cmp = icmp Pred X, C 1444 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C); 1445 ConstantRange DominatingCR = 1446 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) 1447 : ConstantRange::makeExactICmpRegion( 1448 CmpInst::getInversePredicate(DomPred), *DomC); 1449 ConstantRange Intersection = DominatingCR.intersectWith(CR); 1450 ConstantRange Difference = DominatingCR.difference(CR); 1451 if (Intersection.isEmptySet()) 1452 return replaceInstUsesWith(Cmp, Builder.getFalse()); 1453 if (Difference.isEmptySet()) 1454 return replaceInstUsesWith(Cmp, Builder.getTrue()); 1455 1456 // Canonicalizing a sign bit comparison that gets used in a branch, 1457 // pessimizes codegen by generating branch on zero instruction instead 1458 // of a test and branch. So we avoid canonicalizing in such situations 1459 // because test and branch instruction has better branch displacement 1460 // than compare and branch instruction. 1461 bool UnusedBit; 1462 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); 1463 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) 1464 return nullptr; 1465 1466 // Avoid an infinite loop with min/max canonicalization. 1467 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics. 1468 if (Cmp.hasOneUse() && 1469 match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value()))) 1470 return nullptr; 1471 1472 if (const APInt *EqC = Intersection.getSingleElement()) 1473 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); 1474 if (const APInt *NeC = Difference.getSingleElement()) 1475 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); 1476 } 1477 1478 return nullptr; 1479 } 1480 1481 /// Fold icmp (trunc X), C. 1482 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, 1483 TruncInst *Trunc, 1484 const APInt &C) { 1485 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1486 Value *X = Trunc->getOperand(0); 1487 if (C.isOne() && C.getBitWidth() > 1) { 1488 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1489 Value *V = nullptr; 1490 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) 1491 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1492 ConstantInt::get(V->getType(), 1)); 1493 } 1494 1495 Type *SrcTy = X->getType(); 1496 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), 1497 SrcBits = SrcTy->getScalarSizeInBits(); 1498 1499 // TODO: Handle any shifted constant by subtracting trailing zeros. 1500 // TODO: Handle non-equality predicates. 1501 Value *Y; 1502 if (Cmp.isEquality() && match(X, m_Shl(m_One(), m_Value(Y)))) { 1503 // (trunc (1 << Y) to iN) == 0 --> Y u>= N 1504 // (trunc (1 << Y) to iN) != 0 --> Y u< N 1505 if (C.isZero()) { 1506 auto NewPred = (Pred == Cmp.ICMP_EQ) ? Cmp.ICMP_UGE : Cmp.ICMP_ULT; 1507 return new ICmpInst(NewPred, Y, ConstantInt::get(SrcTy, DstBits)); 1508 } 1509 // (trunc (1 << Y) to iN) == 2**C --> Y == C 1510 // (trunc (1 << Y) to iN) != 2**C --> Y != C 1511 if (C.isPowerOf2()) 1512 return new ICmpInst(Pred, Y, ConstantInt::get(SrcTy, C.logBase2())); 1513 } 1514 1515 if (Cmp.isEquality() && Trunc->hasOneUse()) { 1516 // Canonicalize to a mask and wider compare if the wide type is suitable: 1517 // (trunc X to i8) == C --> (X & 0xff) == (zext C) 1518 if (!SrcTy->isVectorTy() && shouldChangeType(DstBits, SrcBits)) { 1519 Constant *Mask = 1520 ConstantInt::get(SrcTy, APInt::getLowBitsSet(SrcBits, DstBits)); 1521 Value *And = Builder.CreateAnd(X, Mask); 1522 Constant *WideC = ConstantInt::get(SrcTy, C.zext(SrcBits)); 1523 return new ICmpInst(Pred, And, WideC); 1524 } 1525 1526 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1527 // of the high bits truncated out of x are known. 1528 KnownBits Known = computeKnownBits(X, 0, &Cmp); 1529 1530 // If all the high bits are known, we can do this xform. 1531 if ((Known.Zero | Known.One).countl_one() >= SrcBits - DstBits) { 1532 // Pull in the high bits from known-ones set. 1533 APInt NewRHS = C.zext(SrcBits); 1534 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); 1535 return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, NewRHS)); 1536 } 1537 } 1538 1539 // Look through truncated right-shift of the sign-bit for a sign-bit check: 1540 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0 1541 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1 1542 Value *ShOp; 1543 const APInt *ShAmtC; 1544 bool TrueIfSigned; 1545 if (isSignBitCheck(Pred, C, TrueIfSigned) && 1546 match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) && 1547 DstBits == SrcBits - ShAmtC->getZExtValue()) { 1548 return TrueIfSigned ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp, 1549 ConstantInt::getNullValue(SrcTy)) 1550 : new ICmpInst(ICmpInst::ICMP_SGT, ShOp, 1551 ConstantInt::getAllOnesValue(SrcTy)); 1552 } 1553 1554 return nullptr; 1555 } 1556 1557 /// Fold icmp (xor X, Y), C. 1558 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, 1559 BinaryOperator *Xor, 1560 const APInt &C) { 1561 if (Instruction *I = foldICmpXorShiftConst(Cmp, Xor, C)) 1562 return I; 1563 1564 Value *X = Xor->getOperand(0); 1565 Value *Y = Xor->getOperand(1); 1566 const APInt *XorC; 1567 if (!match(Y, m_APInt(XorC))) 1568 return nullptr; 1569 1570 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1571 // fold the xor. 1572 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1573 bool TrueIfSigned = false; 1574 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { 1575 1576 // If the sign bit of the XorCst is not set, there is no change to 1577 // the operation, just stop using the Xor. 1578 if (!XorC->isNegative()) 1579 return replaceOperand(Cmp, 0, X); 1580 1581 // Emit the opposite comparison. 1582 if (TrueIfSigned) 1583 return new ICmpInst(ICmpInst::ICMP_SGT, X, 1584 ConstantInt::getAllOnesValue(X->getType())); 1585 else 1586 return new ICmpInst(ICmpInst::ICMP_SLT, X, 1587 ConstantInt::getNullValue(X->getType())); 1588 } 1589 1590 if (Xor->hasOneUse()) { 1591 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) 1592 if (!Cmp.isEquality() && XorC->isSignMask()) { 1593 Pred = Cmp.getFlippedSignednessPredicate(); 1594 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1595 } 1596 1597 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) 1598 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { 1599 Pred = Cmp.getFlippedSignednessPredicate(); 1600 Pred = Cmp.getSwappedPredicate(Pred); 1601 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); 1602 } 1603 } 1604 1605 // Mask constant magic can eliminate an 'xor' with unsigned compares. 1606 if (Pred == ICmpInst::ICMP_UGT) { 1607 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) 1608 if (*XorC == ~C && (C + 1).isPowerOf2()) 1609 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 1610 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) 1611 if (*XorC == C && (C + 1).isPowerOf2()) 1612 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 1613 } 1614 if (Pred == ICmpInst::ICMP_ULT) { 1615 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) 1616 if (*XorC == -C && C.isPowerOf2()) 1617 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1618 ConstantInt::get(X->getType(), ~C)); 1619 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) 1620 if (*XorC == C && (-C).isPowerOf2()) 1621 return new ICmpInst(ICmpInst::ICMP_UGT, X, 1622 ConstantInt::get(X->getType(), ~C)); 1623 } 1624 return nullptr; 1625 } 1626 1627 /// For power-of-2 C: 1628 /// ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1) 1629 /// ((X s>> ShiftC) ^ X) u> (C - 1) --> (X + C) u> ((C << 1) - 1) 1630 Instruction *InstCombinerImpl::foldICmpXorShiftConst(ICmpInst &Cmp, 1631 BinaryOperator *Xor, 1632 const APInt &C) { 1633 CmpInst::Predicate Pred = Cmp.getPredicate(); 1634 APInt PowerOf2; 1635 if (Pred == ICmpInst::ICMP_ULT) 1636 PowerOf2 = C; 1637 else if (Pred == ICmpInst::ICMP_UGT && !C.isMaxValue()) 1638 PowerOf2 = C + 1; 1639 else 1640 return nullptr; 1641 if (!PowerOf2.isPowerOf2()) 1642 return nullptr; 1643 Value *X; 1644 const APInt *ShiftC; 1645 if (!match(Xor, m_OneUse(m_c_Xor(m_Value(X), 1646 m_AShr(m_Deferred(X), m_APInt(ShiftC)))))) 1647 return nullptr; 1648 uint64_t Shift = ShiftC->getLimitedValue(); 1649 Type *XType = X->getType(); 1650 if (Shift == 0 || PowerOf2.isMinSignedValue()) 1651 return nullptr; 1652 Value *Add = Builder.CreateAdd(X, ConstantInt::get(XType, PowerOf2)); 1653 APInt Bound = 1654 Pred == ICmpInst::ICMP_ULT ? PowerOf2 << 1 : ((PowerOf2 << 1) - 1); 1655 return new ICmpInst(Pred, Add, ConstantInt::get(XType, Bound)); 1656 } 1657 1658 /// Fold icmp (and (sh X, Y), C2), C1. 1659 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, 1660 BinaryOperator *And, 1661 const APInt &C1, 1662 const APInt &C2) { 1663 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); 1664 if (!Shift || !Shift->isShift()) 1665 return nullptr; 1666 1667 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could 1668 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in 1669 // code produced by the clang front-end, for bitfield access. 1670 // This seemingly simple opportunity to fold away a shift turns out to be 1671 // rather complicated. See PR17827 for details. 1672 unsigned ShiftOpcode = Shift->getOpcode(); 1673 bool IsShl = ShiftOpcode == Instruction::Shl; 1674 const APInt *C3; 1675 if (match(Shift->getOperand(1), m_APInt(C3))) { 1676 APInt NewAndCst, NewCmpCst; 1677 bool AnyCmpCstBitsShiftedOut; 1678 if (ShiftOpcode == Instruction::Shl) { 1679 // For a left shift, we can fold if the comparison is not signed. We can 1680 // also fold a signed comparison if the mask value and comparison value 1681 // are not negative. These constraints may not be obvious, but we can 1682 // prove that they are correct using an SMT solver. 1683 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) 1684 return nullptr; 1685 1686 NewCmpCst = C1.lshr(*C3); 1687 NewAndCst = C2.lshr(*C3); 1688 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; 1689 } else if (ShiftOpcode == Instruction::LShr) { 1690 // For a logical right shift, we can fold if the comparison is not signed. 1691 // We can also fold a signed comparison if the shifted mask value and the 1692 // shifted comparison value are not negative. These constraints may not be 1693 // obvious, but we can prove that they are correct using an SMT solver. 1694 NewCmpCst = C1.shl(*C3); 1695 NewAndCst = C2.shl(*C3); 1696 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; 1697 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) 1698 return nullptr; 1699 } else { 1700 // For an arithmetic shift, check that both constants don't use (in a 1701 // signed sense) the top bits being shifted out. 1702 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); 1703 NewCmpCst = C1.shl(*C3); 1704 NewAndCst = C2.shl(*C3); 1705 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; 1706 if (NewAndCst.ashr(*C3) != C2) 1707 return nullptr; 1708 } 1709 1710 if (AnyCmpCstBitsShiftedOut) { 1711 // If we shifted bits out, the fold is not going to work out. As a 1712 // special case, check to see if this means that the result is always 1713 // true or false now. 1714 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) 1715 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); 1716 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1717 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); 1718 } else { 1719 Value *NewAnd = Builder.CreateAnd( 1720 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); 1721 return new ICmpInst(Cmp.getPredicate(), 1722 NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); 1723 } 1724 } 1725 1726 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is 1727 // preferable because it allows the C2 << Y expression to be hoisted out of a 1728 // loop if Y is invariant and X is not. 1729 if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() && 1730 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { 1731 // Compute C2 << Y. 1732 Value *NewShift = 1733 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) 1734 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); 1735 1736 // Compute X & (C2 << Y). 1737 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); 1738 return replaceOperand(Cmp, 0, NewAnd); 1739 } 1740 1741 return nullptr; 1742 } 1743 1744 /// Fold icmp (and X, C2), C1. 1745 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, 1746 BinaryOperator *And, 1747 const APInt &C1) { 1748 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; 1749 1750 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 1751 // TODO: We canonicalize to the longer form for scalars because we have 1752 // better analysis/folds for icmp, and codegen may be better with icmp. 1753 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() && 1754 match(And->getOperand(1), m_One())) 1755 return new TruncInst(And->getOperand(0), Cmp.getType()); 1756 1757 const APInt *C2; 1758 Value *X; 1759 if (!match(And, m_And(m_Value(X), m_APInt(C2)))) 1760 return nullptr; 1761 1762 // Don't perform the following transforms if the AND has multiple uses 1763 if (!And->hasOneUse()) 1764 return nullptr; 1765 1766 if (Cmp.isEquality() && C1.isZero()) { 1767 // Restrict this fold to single-use 'and' (PR10267). 1768 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 1769 if (C2->isSignMask()) { 1770 Constant *Zero = Constant::getNullValue(X->getType()); 1771 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 1772 return new ICmpInst(NewPred, X, Zero); 1773 } 1774 1775 APInt NewC2 = *C2; 1776 KnownBits Know = computeKnownBits(And->getOperand(0), 0, And); 1777 // Set high zeros of C2 to allow matching negated power-of-2. 1778 NewC2 = *C2 | APInt::getHighBitsSet(C2->getBitWidth(), 1779 Know.countMinLeadingZeros()); 1780 1781 // Restrict this fold only for single-use 'and' (PR10267). 1782 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. 1783 if (NewC2.isNegatedPowerOf2()) { 1784 Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2); 1785 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 1786 return new ICmpInst(NewPred, X, NegBOC); 1787 } 1788 } 1789 1790 // If the LHS is an 'and' of a truncate and we can widen the and/compare to 1791 // the input width without changing the value produced, eliminate the cast: 1792 // 1793 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' 1794 // 1795 // We can do this transformation if the constants do not have their sign bits 1796 // set or if it is an equality comparison. Extending a relational comparison 1797 // when we're checking the sign bit would not work. 1798 Value *W; 1799 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && 1800 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { 1801 // TODO: Is this a good transform for vectors? Wider types may reduce 1802 // throughput. Should this transform be limited (even for scalars) by using 1803 // shouldChangeType()? 1804 if (!Cmp.getType()->isVectorTy()) { 1805 Type *WideType = W->getType(); 1806 unsigned WideScalarBits = WideType->getScalarSizeInBits(); 1807 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); 1808 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); 1809 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); 1810 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); 1811 } 1812 } 1813 1814 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) 1815 return I; 1816 1817 // (icmp pred (and (or (lshr A, B), A), 1), 0) --> 1818 // (icmp pred (and A, (or (shl 1, B), 1), 0)) 1819 // 1820 // iff pred isn't signed 1821 if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() && 1822 match(And->getOperand(1), m_One())) { 1823 Constant *One = cast<Constant>(And->getOperand(1)); 1824 Value *Or = And->getOperand(0); 1825 Value *A, *B, *LShr; 1826 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && 1827 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { 1828 unsigned UsesRemoved = 0; 1829 if (And->hasOneUse()) 1830 ++UsesRemoved; 1831 if (Or->hasOneUse()) 1832 ++UsesRemoved; 1833 if (LShr->hasOneUse()) 1834 ++UsesRemoved; 1835 1836 // Compute A & ((1 << B) | 1) 1837 unsigned RequireUsesRemoved = match(B, m_ImmConstant()) ? 1 : 3; 1838 if (UsesRemoved >= RequireUsesRemoved) { 1839 Value *NewOr = 1840 Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), 1841 /*HasNUW=*/true), 1842 One, Or->getName()); 1843 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); 1844 return replaceOperand(Cmp, 0, NewAnd); 1845 } 1846 } 1847 } 1848 1849 return nullptr; 1850 } 1851 1852 /// Fold icmp (and X, Y), C. 1853 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, 1854 BinaryOperator *And, 1855 const APInt &C) { 1856 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) 1857 return I; 1858 1859 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 1860 bool TrueIfNeg; 1861 if (isSignBitCheck(Pred, C, TrueIfNeg)) { 1862 // ((X - 1) & ~X) < 0 --> X == 0 1863 // ((X - 1) & ~X) >= 0 --> X != 0 1864 Value *X; 1865 if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) && 1866 match(And->getOperand(1), m_Not(m_Specific(X)))) { 1867 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1868 return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType())); 1869 } 1870 // (X & X) < 0 --> X == MinSignedC 1871 // (X & X) > -1 --> X != MinSignedC 1872 if (match(And, m_c_And(m_Neg(m_Value(X)), m_Deferred(X)))) { 1873 Constant *MinSignedC = ConstantInt::get( 1874 X->getType(), 1875 APInt::getSignedMinValue(X->getType()->getScalarSizeInBits())); 1876 auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1877 return new ICmpInst(NewPred, X, MinSignedC); 1878 } 1879 } 1880 1881 // TODO: These all require that Y is constant too, so refactor with the above. 1882 1883 // Try to optimize things like "A[i] & 42 == 0" to index computations. 1884 Value *X = And->getOperand(0); 1885 Value *Y = And->getOperand(1); 1886 if (auto *C2 = dyn_cast<ConstantInt>(Y)) 1887 if (auto *LI = dyn_cast<LoadInst>(X)) 1888 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1889 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1890 if (Instruction *Res = 1891 foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2)) 1892 return Res; 1893 1894 if (!Cmp.isEquality()) 1895 return nullptr; 1896 1897 // X & -C == -C -> X > u ~C 1898 // X & -C != -C -> X <= u ~C 1899 // iff C is a power of 2 1900 if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) { 1901 auto NewPred = 1902 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE; 1903 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); 1904 } 1905 1906 // If we are testing the intersection of 2 select-of-nonzero-constants with no 1907 // common bits set, it's the same as checking if exactly one select condition 1908 // is set: 1909 // ((A ? TC : FC) & (B ? TC : FC)) == 0 --> xor A, B 1910 // ((A ? TC : FC) & (B ? TC : FC)) != 0 --> not(xor A, B) 1911 // TODO: Generalize for non-constant values. 1912 // TODO: Handle signed/unsigned predicates. 1913 // TODO: Handle other bitwise logic connectors. 1914 // TODO: Extend to handle a non-zero compare constant. 1915 if (C.isZero() && (Pred == CmpInst::ICMP_EQ || And->hasOneUse())) { 1916 assert(Cmp.isEquality() && "Not expecting non-equality predicates"); 1917 Value *A, *B; 1918 const APInt *TC, *FC; 1919 if (match(X, m_Select(m_Value(A), m_APInt(TC), m_APInt(FC))) && 1920 match(Y, 1921 m_Select(m_Value(B), m_SpecificInt(*TC), m_SpecificInt(*FC))) && 1922 !TC->isZero() && !FC->isZero() && !TC->intersects(*FC)) { 1923 Value *R = Builder.CreateXor(A, B); 1924 if (Pred == CmpInst::ICMP_NE) 1925 R = Builder.CreateNot(R); 1926 return replaceInstUsesWith(Cmp, R); 1927 } 1928 } 1929 1930 // ((zext i1 X) & Y) == 0 --> !((trunc Y) & X) 1931 // ((zext i1 X) & Y) != 0 --> ((trunc Y) & X) 1932 // ((zext i1 X) & Y) == 1 --> ((trunc Y) & X) 1933 // ((zext i1 X) & Y) != 1 --> !((trunc Y) & X) 1934 if (match(And, m_OneUse(m_c_And(m_OneUse(m_ZExt(m_Value(X))), m_Value(Y)))) && 1935 X->getType()->isIntOrIntVectorTy(1) && (C.isZero() || C.isOne())) { 1936 Value *TruncY = Builder.CreateTrunc(Y, X->getType()); 1937 if (C.isZero() ^ (Pred == CmpInst::ICMP_NE)) { 1938 Value *And = Builder.CreateAnd(TruncY, X); 1939 return BinaryOperator::CreateNot(And); 1940 } 1941 return BinaryOperator::CreateAnd(TruncY, X); 1942 } 1943 1944 return nullptr; 1945 } 1946 1947 /// Fold icmp eq/ne (or (xor (X1, X2), xor(X3, X4))), 0. 1948 static Value *foldICmpOrXorChain(ICmpInst &Cmp, BinaryOperator *Or, 1949 InstCombiner::BuilderTy &Builder) { 1950 // Are we using xors to bitwise check for a pair or pairs of (in)equalities? 1951 // Convert to a shorter form that has more potential to be folded even 1952 // further. 1953 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) 1954 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) 1955 // ((X1 ^ X2) || (X3 ^ X4) || (X5 ^ X6)) == 0 --> 1956 // (X1 == X2) && (X3 == X4) && (X5 == X6) 1957 // ((X1 ^ X2) || (X3 ^ X4) || (X5 ^ X6)) != 0 --> 1958 // (X1 != X2) || (X3 != X4) || (X5 != X6) 1959 // TODO: Implement for sub 1960 SmallVector<std::pair<Value *, Value *>, 2> CmpValues; 1961 SmallVector<Value *, 16> WorkList(1, Or); 1962 1963 while (!WorkList.empty()) { 1964 auto MatchOrOperatorArgument = [&](Value *OrOperatorArgument) { 1965 Value *Lhs, *Rhs; 1966 1967 if (match(OrOperatorArgument, 1968 m_OneUse(m_Xor(m_Value(Lhs), m_Value(Rhs))))) { 1969 CmpValues.emplace_back(Lhs, Rhs); 1970 } else { 1971 WorkList.push_back(OrOperatorArgument); 1972 } 1973 }; 1974 1975 Value *CurrentValue = WorkList.pop_back_val(); 1976 Value *OrOperatorLhs, *OrOperatorRhs; 1977 1978 if (!match(CurrentValue, 1979 m_Or(m_Value(OrOperatorLhs), m_Value(OrOperatorRhs)))) { 1980 return nullptr; 1981 } 1982 1983 MatchOrOperatorArgument(OrOperatorRhs); 1984 MatchOrOperatorArgument(OrOperatorLhs); 1985 } 1986 1987 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1988 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1989 Value *LhsCmp = Builder.CreateICmp(Pred, CmpValues.rbegin()->first, 1990 CmpValues.rbegin()->second); 1991 1992 for (auto It = CmpValues.rbegin() + 1; It != CmpValues.rend(); ++It) { 1993 Value *RhsCmp = Builder.CreateICmp(Pred, It->first, It->second); 1994 LhsCmp = Builder.CreateBinOp(BOpc, LhsCmp, RhsCmp); 1995 } 1996 1997 return LhsCmp; 1998 } 1999 2000 /// Fold icmp (or X, Y), C. 2001 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, 2002 BinaryOperator *Or, 2003 const APInt &C) { 2004 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2005 if (C.isOne()) { 2006 // icmp slt signum(V) 1 --> icmp slt V, 1 2007 Value *V = nullptr; 2008 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) 2009 return new ICmpInst(ICmpInst::ICMP_SLT, V, 2010 ConstantInt::get(V->getType(), 1)); 2011 } 2012 2013 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); 2014 const APInt *MaskC; 2015 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { 2016 if (*MaskC == C && (C + 1).isPowerOf2()) { 2017 // X | C == C --> X <=u C 2018 // X | C != C --> X >u C 2019 // iff C+1 is a power of 2 (C is a bitmask of the low bits) 2020 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; 2021 return new ICmpInst(Pred, OrOp0, OrOp1); 2022 } 2023 2024 // More general: canonicalize 'equality with set bits mask' to 2025 // 'equality with clear bits mask'. 2026 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC 2027 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC 2028 if (Or->hasOneUse()) { 2029 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); 2030 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); 2031 return new ICmpInst(Pred, And, NewC); 2032 } 2033 } 2034 2035 // (X | (X-1)) s< 0 --> X s< 1 2036 // (X | (X-1)) s> -1 --> X s> 0 2037 Value *X; 2038 bool TrueIfSigned; 2039 if (isSignBitCheck(Pred, C, TrueIfSigned) && 2040 match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) { 2041 auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT; 2042 Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0); 2043 return new ICmpInst(NewPred, X, NewC); 2044 } 2045 2046 const APInt *OrC; 2047 // icmp(X | OrC, C) --> icmp(X, 0) 2048 if (C.isNonNegative() && match(Or, m_Or(m_Value(X), m_APInt(OrC)))) { 2049 switch (Pred) { 2050 // X | OrC s< C --> X s< 0 iff OrC s>= C s>= 0 2051 case ICmpInst::ICMP_SLT: 2052 // X | OrC s>= C --> X s>= 0 iff OrC s>= C s>= 0 2053 case ICmpInst::ICMP_SGE: 2054 if (OrC->sge(C)) 2055 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 2056 break; 2057 // X | OrC s<= C --> X s< 0 iff OrC s> C s>= 0 2058 case ICmpInst::ICMP_SLE: 2059 // X | OrC s> C --> X s>= 0 iff OrC s> C s>= 0 2060 case ICmpInst::ICMP_SGT: 2061 if (OrC->sgt(C)) 2062 return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred), X, 2063 ConstantInt::getNullValue(X->getType())); 2064 break; 2065 default: 2066 break; 2067 } 2068 } 2069 2070 if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse()) 2071 return nullptr; 2072 2073 Value *P, *Q; 2074 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 2075 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 2076 // -> and (icmp eq P, null), (icmp eq Q, null). 2077 Value *CmpP = 2078 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); 2079 Value *CmpQ = 2080 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); 2081 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2082 return BinaryOperator::Create(BOpc, CmpP, CmpQ); 2083 } 2084 2085 if (Value *V = foldICmpOrXorChain(Cmp, Or, Builder)) 2086 return replaceInstUsesWith(Cmp, V); 2087 2088 return nullptr; 2089 } 2090 2091 /// Fold icmp (mul X, Y), C. 2092 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, 2093 BinaryOperator *Mul, 2094 const APInt &C) { 2095 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2096 Type *MulTy = Mul->getType(); 2097 Value *X = Mul->getOperand(0); 2098 2099 // If there's no overflow: 2100 // X * X == 0 --> X == 0 2101 // X * X != 0 --> X != 0 2102 if (Cmp.isEquality() && C.isZero() && X == Mul->getOperand(1) && 2103 (Mul->hasNoUnsignedWrap() || Mul->hasNoSignedWrap())) 2104 return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy)); 2105 2106 const APInt *MulC; 2107 if (!match(Mul->getOperand(1), m_APInt(MulC))) 2108 return nullptr; 2109 2110 // If this is a test of the sign bit and the multiply is sign-preserving with 2111 // a constant operand, use the multiply LHS operand instead: 2112 // (X * +MulC) < 0 --> X < 0 2113 // (X * -MulC) < 0 --> X > 0 2114 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { 2115 if (MulC->isNegative()) 2116 Pred = ICmpInst::getSwappedPredicate(Pred); 2117 return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy)); 2118 } 2119 2120 if (MulC->isZero()) 2121 return nullptr; 2122 2123 // If the multiply does not wrap or the constant is odd, try to divide the 2124 // compare constant by the multiplication factor. 2125 if (Cmp.isEquality()) { 2126 // (mul nsw X, MulC) eq/ne C --> X eq/ne C /s MulC 2127 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) { 2128 Constant *NewC = ConstantInt::get(MulTy, C.sdiv(*MulC)); 2129 return new ICmpInst(Pred, X, NewC); 2130 } 2131 2132 // C % MulC == 0 is weaker than we could use if MulC is odd because it 2133 // correct to transform if MulC * N == C including overflow. I.e with i8 2134 // (icmp eq (mul X, 5), 101) -> (icmp eq X, 225) but since 101 % 5 != 0, we 2135 // miss that case. 2136 if (C.urem(*MulC).isZero()) { 2137 // (mul nuw X, MulC) eq/ne C --> X eq/ne C /u MulC 2138 // (mul X, OddC) eq/ne N * C --> X eq/ne N 2139 if ((*MulC & 1).isOne() || Mul->hasNoUnsignedWrap()) { 2140 Constant *NewC = ConstantInt::get(MulTy, C.udiv(*MulC)); 2141 return new ICmpInst(Pred, X, NewC); 2142 } 2143 } 2144 } 2145 2146 // With a matching no-overflow guarantee, fold the constants: 2147 // (X * MulC) < C --> X < (C / MulC) 2148 // (X * MulC) > C --> X > (C / MulC) 2149 // TODO: Assert that Pred is not equal to SGE, SLE, UGE, ULE? 2150 Constant *NewC = nullptr; 2151 if (Mul->hasNoSignedWrap() && ICmpInst::isSigned(Pred)) { 2152 // MININT / -1 --> overflow. 2153 if (C.isMinSignedValue() && MulC->isAllOnes()) 2154 return nullptr; 2155 if (MulC->isNegative()) 2156 Pred = ICmpInst::getSwappedPredicate(Pred); 2157 2158 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2159 NewC = ConstantInt::get( 2160 MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::UP)); 2161 } else { 2162 assert((Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGT) && 2163 "Unexpected predicate"); 2164 NewC = ConstantInt::get( 2165 MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::DOWN)); 2166 } 2167 } else if (Mul->hasNoUnsignedWrap() && ICmpInst::isUnsigned(Pred)) { 2168 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) { 2169 NewC = ConstantInt::get( 2170 MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::UP)); 2171 } else { 2172 assert((Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 2173 "Unexpected predicate"); 2174 NewC = ConstantInt::get( 2175 MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::DOWN)); 2176 } 2177 } 2178 2179 return NewC ? new ICmpInst(Pred, X, NewC) : nullptr; 2180 } 2181 2182 /// Fold icmp (shl 1, Y), C. 2183 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, 2184 const APInt &C) { 2185 Value *Y; 2186 if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) 2187 return nullptr; 2188 2189 Type *ShiftType = Shl->getType(); 2190 unsigned TypeBits = C.getBitWidth(); 2191 bool CIsPowerOf2 = C.isPowerOf2(); 2192 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2193 if (Cmp.isUnsigned()) { 2194 // (1 << Y) pred C -> Y pred Log2(C) 2195 if (!CIsPowerOf2) { 2196 // (1 << Y) < 30 -> Y <= 4 2197 // (1 << Y) <= 30 -> Y <= 4 2198 // (1 << Y) >= 30 -> Y > 4 2199 // (1 << Y) > 30 -> Y > 4 2200 if (Pred == ICmpInst::ICMP_ULT) 2201 Pred = ICmpInst::ICMP_ULE; 2202 else if (Pred == ICmpInst::ICMP_UGE) 2203 Pred = ICmpInst::ICMP_UGT; 2204 } 2205 2206 unsigned CLog2 = C.logBase2(); 2207 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); 2208 } else if (Cmp.isSigned()) { 2209 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); 2210 // (1 << Y) > 0 -> Y != 31 2211 // (1 << Y) > C -> Y != 31 if C is negative. 2212 if (Pred == ICmpInst::ICMP_SGT && C.sle(0)) 2213 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); 2214 2215 // (1 << Y) < 0 -> Y == 31 2216 // (1 << Y) < 1 -> Y == 31 2217 // (1 << Y) < C -> Y == 31 if C is negative and not signed min. 2218 // Exclude signed min by subtracting 1 and lower the upper bound to 0. 2219 if (Pred == ICmpInst::ICMP_SLT && (C-1).sle(0)) 2220 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); 2221 } 2222 2223 return nullptr; 2224 } 2225 2226 /// Fold icmp (shl X, Y), C. 2227 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, 2228 BinaryOperator *Shl, 2229 const APInt &C) { 2230 const APInt *ShiftVal; 2231 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) 2232 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); 2233 2234 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2235 // (icmp pred (shl nuw&nsw X, Y), Csle0) 2236 // -> (icmp pred X, Csle0) 2237 // 2238 // The idea is the nuw/nsw essentially freeze the sign bit for the shift op 2239 // so X's must be what is used. 2240 if (C.sle(0) && Shl->hasNoUnsignedWrap() && Shl->hasNoSignedWrap()) 2241 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); 2242 2243 // (icmp eq/ne (shl nuw|nsw X, Y), 0) 2244 // -> (icmp eq/ne X, 0) 2245 if (ICmpInst::isEquality(Pred) && C.isZero() && 2246 (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap())) 2247 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); 2248 2249 // (icmp slt (shl nsw X, Y), 0/1) 2250 // -> (icmp slt X, 0/1) 2251 // (icmp sgt (shl nsw X, Y), 0/-1) 2252 // -> (icmp sgt X, 0/-1) 2253 // 2254 // NB: sge/sle with a constant will canonicalize to sgt/slt. 2255 if (Shl->hasNoSignedWrap() && 2256 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) 2257 if (C.isZero() || (Pred == ICmpInst::ICMP_SGT ? C.isAllOnes() : C.isOne())) 2258 return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1)); 2259 2260 const APInt *ShiftAmt; 2261 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) 2262 return foldICmpShlOne(Cmp, Shl, C); 2263 2264 // Check that the shift amount is in range. If not, don't perform undefined 2265 // shifts. When the shift is visited, it will be simplified. 2266 unsigned TypeBits = C.getBitWidth(); 2267 if (ShiftAmt->uge(TypeBits)) 2268 return nullptr; 2269 2270 Value *X = Shl->getOperand(0); 2271 Type *ShType = Shl->getType(); 2272 2273 // NSW guarantees that we are only shifting out sign bits from the high bits, 2274 // so we can ASHR the compare constant without needing a mask and eliminate 2275 // the shift. 2276 if (Shl->hasNoSignedWrap()) { 2277 if (Pred == ICmpInst::ICMP_SGT) { 2278 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) 2279 APInt ShiftedC = C.ashr(*ShiftAmt); 2280 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2281 } 2282 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2283 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { 2284 APInt ShiftedC = C.ashr(*ShiftAmt); 2285 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2286 } 2287 if (Pred == ICmpInst::ICMP_SLT) { 2288 // SLE is the same as above, but SLE is canonicalized to SLT, so convert: 2289 // (X << S) <=s C is equiv to X <=s (C >> S) for all C 2290 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX 2291 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN 2292 assert(!C.isMinSignedValue() && "Unexpected icmp slt"); 2293 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; 2294 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2295 } 2296 } 2297 2298 // NUW guarantees that we are only shifting out zero bits from the high bits, 2299 // so we can LSHR the compare constant without needing a mask and eliminate 2300 // the shift. 2301 if (Shl->hasNoUnsignedWrap()) { 2302 if (Pred == ICmpInst::ICMP_UGT) { 2303 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) 2304 APInt ShiftedC = C.lshr(*ShiftAmt); 2305 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2306 } 2307 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2308 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { 2309 APInt ShiftedC = C.lshr(*ShiftAmt); 2310 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2311 } 2312 if (Pred == ICmpInst::ICMP_ULT) { 2313 // ULE is the same as above, but ULE is canonicalized to ULT, so convert: 2314 // (X << S) <=u C is equiv to X <=u (C >> S) for all C 2315 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u 2316 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 2317 assert(C.ugt(0) && "ult 0 should have been eliminated"); 2318 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; 2319 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); 2320 } 2321 } 2322 2323 if (Cmp.isEquality() && Shl->hasOneUse()) { 2324 // Strength-reduce the shift into an 'and'. 2325 Constant *Mask = ConstantInt::get( 2326 ShType, 2327 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); 2328 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2329 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); 2330 return new ICmpInst(Pred, And, LShrC); 2331 } 2332 2333 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2334 bool TrueIfSigned = false; 2335 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { 2336 // (X << 31) <s 0 --> (X & 1) != 0 2337 Constant *Mask = ConstantInt::get( 2338 ShType, 2339 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); 2340 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); 2341 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2342 And, Constant::getNullValue(ShType)); 2343 } 2344 2345 // Simplify 'shl' inequality test into 'and' equality test. 2346 if (Cmp.isUnsigned() && Shl->hasOneUse()) { 2347 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 2348 if ((C + 1).isPowerOf2() && 2349 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { 2350 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); 2351 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ 2352 : ICmpInst::ICMP_NE, 2353 And, Constant::getNullValue(ShType)); 2354 } 2355 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 2356 if (C.isPowerOf2() && 2357 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 2358 Value *And = 2359 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); 2360 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ 2361 : ICmpInst::ICMP_NE, 2362 And, Constant::getNullValue(ShType)); 2363 } 2364 } 2365 2366 // Transform (icmp pred iM (shl iM %v, N), C) 2367 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) 2368 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. 2369 // This enables us to get rid of the shift in favor of a trunc that may be 2370 // free on the target. It has the additional benefit of comparing to a 2371 // smaller constant that may be more target-friendly. 2372 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); 2373 if (Shl->hasOneUse() && Amt != 0 && C.countr_zero() >= Amt && 2374 DL.isLegalInteger(TypeBits - Amt)) { 2375 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); 2376 if (auto *ShVTy = dyn_cast<VectorType>(ShType)) 2377 TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); 2378 Constant *NewC = 2379 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); 2380 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); 2381 } 2382 2383 return nullptr; 2384 } 2385 2386 /// Fold icmp ({al}shr X, Y), C. 2387 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, 2388 BinaryOperator *Shr, 2389 const APInt &C) { 2390 // An exact shr only shifts out zero bits, so: 2391 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 2392 Value *X = Shr->getOperand(0); 2393 CmpInst::Predicate Pred = Cmp.getPredicate(); 2394 if (Cmp.isEquality() && Shr->isExact() && C.isZero()) 2395 return new ICmpInst(Pred, X, Cmp.getOperand(1)); 2396 2397 bool IsAShr = Shr->getOpcode() == Instruction::AShr; 2398 const APInt *ShiftValC; 2399 if (match(X, m_APInt(ShiftValC))) { 2400 if (Cmp.isEquality()) 2401 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC); 2402 2403 // (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0 2404 // (ShiftValC >> Y) <s 0 --> Y == 0 with ShiftValC < 0 2405 bool TrueIfSigned; 2406 if (!IsAShr && ShiftValC->isNegative() && 2407 isSignBitCheck(Pred, C, TrueIfSigned)) 2408 return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE, 2409 Shr->getOperand(1), 2410 ConstantInt::getNullValue(X->getType())); 2411 2412 // If the shifted constant is a power-of-2, test the shift amount directly: 2413 // (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC)) 2414 // (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC)) 2415 if (!IsAShr && ShiftValC->isPowerOf2() && 2416 (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) { 2417 bool IsUGT = Pred == CmpInst::ICMP_UGT; 2418 assert(ShiftValC->uge(C) && "Expected simplify of compare"); 2419 assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify"); 2420 2421 unsigned CmpLZ = IsUGT ? C.countl_zero() : (C - 1).countl_zero(); 2422 unsigned ShiftLZ = ShiftValC->countl_zero(); 2423 Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ); 2424 auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; 2425 return new ICmpInst(NewPred, Shr->getOperand(1), NewC); 2426 } 2427 } 2428 2429 const APInt *ShiftAmtC; 2430 if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC))) 2431 return nullptr; 2432 2433 // Check that the shift amount is in range. If not, don't perform undefined 2434 // shifts. When the shift is visited it will be simplified. 2435 unsigned TypeBits = C.getBitWidth(); 2436 unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits); 2437 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 2438 return nullptr; 2439 2440 bool IsExact = Shr->isExact(); 2441 Type *ShrTy = Shr->getType(); 2442 // TODO: If we could guarantee that InstSimplify would handle all of the 2443 // constant-value-based preconditions in the folds below, then we could assert 2444 // those conditions rather than checking them. This is difficult because of 2445 // undef/poison (PR34838). 2446 if (IsAShr) { 2447 if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) { 2448 // When ShAmtC can be shifted losslessly: 2449 // icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC) 2450 // icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC) 2451 APInt ShiftedC = C.shl(ShAmtVal); 2452 if (ShiftedC.ashr(ShAmtVal) == C) 2453 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2454 } 2455 if (Pred == CmpInst::ICMP_SGT) { 2456 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 2457 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2458 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && 2459 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) 2460 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2461 } 2462 if (Pred == CmpInst::ICMP_UGT) { 2463 // icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2464 // 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd 2465 // clause accounts for that pattern. 2466 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2467 if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) || 2468 (C + 1).shl(ShAmtVal).isMinSignedValue()) 2469 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2470 } 2471 2472 // If the compare constant has significant bits above the lowest sign-bit, 2473 // then convert an unsigned cmp to a test of the sign-bit: 2474 // (ashr X, ShiftC) u> C --> X s< 0 2475 // (ashr X, ShiftC) u< C --> X s> -1 2476 if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { 2477 if (Pred == CmpInst::ICMP_UGT) { 2478 return new ICmpInst(CmpInst::ICMP_SLT, X, 2479 ConstantInt::getNullValue(ShrTy)); 2480 } 2481 if (Pred == CmpInst::ICMP_ULT) { 2482 return new ICmpInst(CmpInst::ICMP_SGT, X, 2483 ConstantInt::getAllOnesValue(ShrTy)); 2484 } 2485 } 2486 } else { 2487 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { 2488 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) 2489 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) 2490 APInt ShiftedC = C.shl(ShAmtVal); 2491 if (ShiftedC.lshr(ShAmtVal) == C) 2492 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2493 } 2494 if (Pred == CmpInst::ICMP_UGT) { 2495 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 2496 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; 2497 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) 2498 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); 2499 } 2500 } 2501 2502 if (!Cmp.isEquality()) 2503 return nullptr; 2504 2505 // Handle equality comparisons of shift-by-constant. 2506 2507 // If the comparison constant changes with the shift, the comparison cannot 2508 // succeed (bits of the comparison constant cannot match the shifted value). 2509 // This should be known by InstSimplify and already be folded to true/false. 2510 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || 2511 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && 2512 "Expected icmp+shr simplify did not occur."); 2513 2514 // If the bits shifted out are known zero, compare the unshifted value: 2515 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 2516 if (Shr->isExact()) 2517 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); 2518 2519 if (C.isZero()) { 2520 // == 0 is u< 1. 2521 if (Pred == CmpInst::ICMP_EQ) 2522 return new ICmpInst(CmpInst::ICMP_ULT, X, 2523 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal))); 2524 else 2525 return new ICmpInst(CmpInst::ICMP_UGT, X, 2526 ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1)); 2527 } 2528 2529 if (Shr->hasOneUse()) { 2530 // Canonicalize the shift into an 'and': 2531 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) 2532 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 2533 Constant *Mask = ConstantInt::get(ShrTy, Val); 2534 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); 2535 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); 2536 } 2537 2538 return nullptr; 2539 } 2540 2541 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, 2542 BinaryOperator *SRem, 2543 const APInt &C) { 2544 // Match an 'is positive' or 'is negative' comparison of remainder by a 2545 // constant power-of-2 value: 2546 // (X % pow2C) sgt/slt 0 2547 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 2548 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT && 2549 Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2550 return nullptr; 2551 2552 // TODO: The one-use check is standard because we do not typically want to 2553 // create longer instruction sequences, but this might be a special-case 2554 // because srem is not good for analysis or codegen. 2555 if (!SRem->hasOneUse()) 2556 return nullptr; 2557 2558 const APInt *DivisorC; 2559 if (!match(SRem->getOperand(1), m_Power2(DivisorC))) 2560 return nullptr; 2561 2562 // For cmp_sgt/cmp_slt only zero valued C is handled. 2563 // For cmp_eq/cmp_ne only positive valued C is handled. 2564 if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) && 2565 !C.isZero()) || 2566 ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2567 !C.isStrictlyPositive())) 2568 return nullptr; 2569 2570 // Mask off the sign bit and the modulo bits (low-bits). 2571 Type *Ty = SRem->getType(); 2572 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); 2573 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); 2574 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); 2575 2576 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) 2577 return new ICmpInst(Pred, And, ConstantInt::get(Ty, C)); 2578 2579 // For 'is positive?' check that the sign-bit is clear and at least 1 masked 2580 // bit is set. Example: 2581 // (i8 X % 32) s> 0 --> (X & 159) s> 0 2582 if (Pred == ICmpInst::ICMP_SGT) 2583 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); 2584 2585 // For 'is negative?' check that the sign-bit is set and at least 1 masked 2586 // bit is set. Example: 2587 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 2588 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); 2589 } 2590 2591 /// Fold icmp (udiv X, Y), C. 2592 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, 2593 BinaryOperator *UDiv, 2594 const APInt &C) { 2595 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2596 Value *X = UDiv->getOperand(0); 2597 Value *Y = UDiv->getOperand(1); 2598 Type *Ty = UDiv->getType(); 2599 2600 const APInt *C2; 2601 if (!match(X, m_APInt(C2))) 2602 return nullptr; 2603 2604 assert(*C2 != 0 && "udiv 0, X should have been simplified already."); 2605 2606 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) 2607 if (Pred == ICmpInst::ICMP_UGT) { 2608 assert(!C.isMaxValue() && 2609 "icmp ugt X, UINT_MAX should have been simplified already."); 2610 return new ICmpInst(ICmpInst::ICMP_ULE, Y, 2611 ConstantInt::get(Ty, C2->udiv(C + 1))); 2612 } 2613 2614 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) 2615 if (Pred == ICmpInst::ICMP_ULT) { 2616 assert(C != 0 && "icmp ult X, 0 should have been simplified already."); 2617 return new ICmpInst(ICmpInst::ICMP_UGT, Y, 2618 ConstantInt::get(Ty, C2->udiv(C))); 2619 } 2620 2621 return nullptr; 2622 } 2623 2624 /// Fold icmp ({su}div X, Y), C. 2625 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, 2626 BinaryOperator *Div, 2627 const APInt &C) { 2628 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2629 Value *X = Div->getOperand(0); 2630 Value *Y = Div->getOperand(1); 2631 Type *Ty = Div->getType(); 2632 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; 2633 2634 // If unsigned division and the compare constant is bigger than 2635 // UMAX/2 (negative), there's only one pair of values that satisfies an 2636 // equality check, so eliminate the division: 2637 // (X u/ Y) == C --> (X == C) && (Y == 1) 2638 // (X u/ Y) != C --> (X != C) || (Y != 1) 2639 // Similarly, if signed division and the compare constant is exactly SMIN: 2640 // (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1) 2641 // (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1) 2642 if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() && 2643 (!DivIsSigned || C.isMinSignedValue())) { 2644 Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C)); 2645 Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1)); 2646 auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 2647 return BinaryOperator::Create(Logic, XBig, YOne); 2648 } 2649 2650 // Fold: icmp pred ([us]div X, C2), C -> range test 2651 // Fold this div into the comparison, producing a range check. 2652 // Determine, based on the divide type, what the range is being 2653 // checked. If there is an overflow on the low or high side, remember 2654 // it, otherwise compute the range [low, hi) bounding the new value. 2655 // See: InsertRangeTest above for the kinds of replacements possible. 2656 const APInt *C2; 2657 if (!match(Y, m_APInt(C2))) 2658 return nullptr; 2659 2660 // FIXME: If the operand types don't match the type of the divide 2661 // then don't attempt this transform. The code below doesn't have the 2662 // logic to deal with a signed divide and an unsigned compare (and 2663 // vice versa). This is because (x /s C2) <s C produces different 2664 // results than (x /s C2) <u C or (x /u C2) <s C or even 2665 // (x /u C2) <u C. Simply casting the operands and result won't 2666 // work. :( The if statement below tests that condition and bails 2667 // if it finds it. 2668 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) 2669 return nullptr; 2670 2671 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with 2672 // INT_MIN will also fail if the divisor is 1. Although folds of all these 2673 // division-by-constant cases should be present, we can not assert that they 2674 // have happened before we reach this icmp instruction. 2675 if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes())) 2676 return nullptr; 2677 2678 // Compute Prod = C * C2. We are essentially solving an equation of 2679 // form X / C2 = C. We solve for X by multiplying C2 and C. 2680 // By solving for X, we can turn this into a range check instead of computing 2681 // a divide. 2682 APInt Prod = C * *C2; 2683 2684 // Determine if the product overflows by seeing if the product is not equal to 2685 // the divide. Make sure we do the same kind of divide as in the LHS 2686 // instruction that we're folding. 2687 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; 2688 2689 // If the division is known to be exact, then there is no remainder from the 2690 // divide, so the covered range size is unit, otherwise it is the divisor. 2691 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; 2692 2693 // Figure out the interval that is being checked. For example, a comparison 2694 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 2695 // Compute this interval based on the constants involved and the signedness of 2696 // the compare/divide. This computes a half-open interval, keeping track of 2697 // whether either value in the interval overflows. After analysis each 2698 // overflow variable is set to 0 if it's corresponding bound variable is valid 2699 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 2700 int LoOverflow = 0, HiOverflow = 0; 2701 APInt LoBound, HiBound; 2702 2703 if (!DivIsSigned) { // udiv 2704 // e.g. X/5 op 3 --> [15, 20) 2705 LoBound = Prod; 2706 HiOverflow = LoOverflow = ProdOV; 2707 if (!HiOverflow) { 2708 // If this is not an exact divide, then many values in the range collapse 2709 // to the same result value. 2710 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); 2711 } 2712 } else if (C2->isStrictlyPositive()) { // Divisor is > 0. 2713 if (C.isZero()) { // (X / pos) op 0 2714 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 2715 LoBound = -(RangeSize - 1); 2716 HiBound = RangeSize; 2717 } else if (C.isStrictlyPositive()) { // (X / pos) op pos 2718 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 2719 HiOverflow = LoOverflow = ProdOV; 2720 if (!HiOverflow) 2721 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); 2722 } else { // (X / pos) op neg 2723 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 2724 HiBound = Prod + 1; 2725 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 2726 if (!LoOverflow) { 2727 APInt DivNeg = -RangeSize; 2728 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 2729 } 2730 } 2731 } else if (C2->isNegative()) { // Divisor is < 0. 2732 if (Div->isExact()) 2733 RangeSize.negate(); 2734 if (C.isZero()) { // (X / neg) op 0 2735 // e.g. X/-5 op 0 --> [-4, 5) 2736 LoBound = RangeSize + 1; 2737 HiBound = -RangeSize; 2738 if (HiBound == *C2) { // -INTMIN = INTMIN 2739 HiOverflow = 1; // [INTMIN+1, overflow) 2740 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN 2741 } 2742 } else if (C.isStrictlyPositive()) { // (X / neg) op pos 2743 // e.g. X/-5 op 3 --> [-19, -14) 2744 HiBound = Prod + 1; 2745 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 2746 if (!LoOverflow) 2747 LoOverflow = 2748 addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0; 2749 } else { // (X / neg) op neg 2750 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 2751 LoOverflow = HiOverflow = ProdOV; 2752 if (!HiOverflow) 2753 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); 2754 } 2755 2756 // Dividing by a negative swaps the condition. LT <-> GT 2757 Pred = ICmpInst::getSwappedPredicate(Pred); 2758 } 2759 2760 switch (Pred) { 2761 default: 2762 llvm_unreachable("Unhandled icmp predicate!"); 2763 case ICmpInst::ICMP_EQ: 2764 if (LoOverflow && HiOverflow) 2765 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2766 if (HiOverflow) 2767 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2768 X, ConstantInt::get(Ty, LoBound)); 2769 if (LoOverflow) 2770 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2771 X, ConstantInt::get(Ty, HiBound)); 2772 return replaceInstUsesWith( 2773 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); 2774 case ICmpInst::ICMP_NE: 2775 if (LoOverflow && HiOverflow) 2776 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2777 if (HiOverflow) 2778 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 2779 X, ConstantInt::get(Ty, LoBound)); 2780 if (LoOverflow) 2781 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, 2782 X, ConstantInt::get(Ty, HiBound)); 2783 return replaceInstUsesWith( 2784 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false)); 2785 case ICmpInst::ICMP_ULT: 2786 case ICmpInst::ICMP_SLT: 2787 if (LoOverflow == +1) // Low bound is greater than input range. 2788 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2789 if (LoOverflow == -1) // Low bound is less than input range. 2790 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2791 return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound)); 2792 case ICmpInst::ICMP_UGT: 2793 case ICmpInst::ICMP_SGT: 2794 if (HiOverflow == +1) // High bound greater than input range. 2795 return replaceInstUsesWith(Cmp, Builder.getFalse()); 2796 if (HiOverflow == -1) // High bound less than input range. 2797 return replaceInstUsesWith(Cmp, Builder.getTrue()); 2798 if (Pred == ICmpInst::ICMP_UGT) 2799 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound)); 2800 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound)); 2801 } 2802 2803 return nullptr; 2804 } 2805 2806 /// Fold icmp (sub X, Y), C. 2807 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, 2808 BinaryOperator *Sub, 2809 const APInt &C) { 2810 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); 2811 ICmpInst::Predicate Pred = Cmp.getPredicate(); 2812 Type *Ty = Sub->getType(); 2813 2814 // (SubC - Y) == C) --> Y == (SubC - C) 2815 // (SubC - Y) != C) --> Y != (SubC - C) 2816 Constant *SubC; 2817 if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) { 2818 return new ICmpInst(Pred, Y, 2819 ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C))); 2820 } 2821 2822 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) 2823 const APInt *C2; 2824 APInt SubResult; 2825 ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate(); 2826 bool HasNSW = Sub->hasNoSignedWrap(); 2827 bool HasNUW = Sub->hasNoUnsignedWrap(); 2828 if (match(X, m_APInt(C2)) && 2829 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) && 2830 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) 2831 return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult)); 2832 2833 // X - Y == 0 --> X == Y. 2834 // X - Y != 0 --> X != Y. 2835 // TODO: We allow this with multiple uses as long as the other uses are not 2836 // in phis. The phi use check is guarding against a codegen regression 2837 // for a loop test. If the backend could undo this (and possibly 2838 // subsequent transforms), we would not need this hack. 2839 if (Cmp.isEquality() && C.isZero() && 2840 none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); })) 2841 return new ICmpInst(Pred, X, Y); 2842 2843 // The following transforms are only worth it if the only user of the subtract 2844 // is the icmp. 2845 // TODO: This is an artificial restriction for all of the transforms below 2846 // that only need a single replacement icmp. Can these use the phi test 2847 // like the transform above here? 2848 if (!Sub->hasOneUse()) 2849 return nullptr; 2850 2851 if (Sub->hasNoSignedWrap()) { 2852 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) 2853 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 2854 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 2855 2856 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) 2857 if (Pred == ICmpInst::ICMP_SGT && C.isZero()) 2858 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 2859 2860 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) 2861 if (Pred == ICmpInst::ICMP_SLT && C.isZero()) 2862 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 2863 2864 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) 2865 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 2866 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 2867 } 2868 2869 if (!match(X, m_APInt(C2))) 2870 return nullptr; 2871 2872 // C2 - Y <u C -> (Y | (C - 1)) == C2 2873 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 2874 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && 2875 (*C2 & (C - 1)) == (C - 1)) 2876 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); 2877 2878 // C2 - Y >u C -> (Y | C) != C2 2879 // iff C2 & C == C and C + 1 is a power of 2 2880 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) 2881 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); 2882 2883 // We have handled special cases that reduce. 2884 // Canonicalize any remaining sub to add as: 2885 // (C2 - Y) > C --> (Y + ~C2) < ~C 2886 Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub", 2887 HasNUW, HasNSW); 2888 return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C)); 2889 } 2890 2891 /// Fold icmp (add X, Y), C. 2892 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, 2893 BinaryOperator *Add, 2894 const APInt &C) { 2895 Value *Y = Add->getOperand(1); 2896 const APInt *C2; 2897 if (Cmp.isEquality() || !match(Y, m_APInt(C2))) 2898 return nullptr; 2899 2900 // Fold icmp pred (add X, C2), C. 2901 Value *X = Add->getOperand(0); 2902 Type *Ty = Add->getType(); 2903 const CmpInst::Predicate Pred = Cmp.getPredicate(); 2904 2905 // If the add does not wrap, we can always adjust the compare by subtracting 2906 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE 2907 // are canonicalized to SGT/SLT/UGT/ULT. 2908 if ((Add->hasNoSignedWrap() && 2909 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || 2910 (Add->hasNoUnsignedWrap() && 2911 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { 2912 bool Overflow; 2913 APInt NewC = 2914 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); 2915 // If there is overflow, the result must be true or false. 2916 // TODO: Can we assert there is no overflow because InstSimplify always 2917 // handles those cases? 2918 if (!Overflow) 2919 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) 2920 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); 2921 } 2922 2923 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); 2924 const APInt &Upper = CR.getUpper(); 2925 const APInt &Lower = CR.getLower(); 2926 if (Cmp.isSigned()) { 2927 if (Lower.isSignMask()) 2928 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); 2929 if (Upper.isSignMask()) 2930 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); 2931 } else { 2932 if (Lower.isMinValue()) 2933 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); 2934 if (Upper.isMinValue()) 2935 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); 2936 } 2937 2938 // This set of folds is intentionally placed after folds that use no-wrapping 2939 // flags because those folds are likely better for later analysis/codegen. 2940 const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2941 const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2942 2943 // Fold compare with offset to opposite sign compare if it eliminates offset: 2944 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX) 2945 if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax) 2946 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2))); 2947 2948 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN) 2949 if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin) 2950 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2))); 2951 2952 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1) 2953 if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1) 2954 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C)); 2955 2956 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2) 2957 if (Pred == CmpInst::ICMP_SLT && C == *C2) 2958 return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax)); 2959 2960 // (X + -1) <u C --> X <=u C (if X is never null) 2961 if (Pred == CmpInst::ICMP_ULT && C2->isAllOnes()) { 2962 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); 2963 if (llvm::isKnownNonZero(X, DL, 0, Q.AC, Q.CxtI, Q.DT)) 2964 return new ICmpInst(ICmpInst::ICMP_ULE, X, ConstantInt::get(Ty, C)); 2965 } 2966 2967 if (!Add->hasOneUse()) 2968 return nullptr; 2969 2970 // X+C <u C2 -> (X & -C2) == C 2971 // iff C & (C2-1) == 0 2972 // C2 is a power of 2 2973 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) 2974 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), 2975 ConstantExpr::getNeg(cast<Constant>(Y))); 2976 2977 // X+C >u C2 -> (X & ~C2) != C 2978 // iff C & C2 == 0 2979 // C2+1 is a power of 2 2980 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) 2981 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), 2982 ConstantExpr::getNeg(cast<Constant>(Y))); 2983 2984 // The range test idiom can use either ult or ugt. Arbitrarily canonicalize 2985 // to the ult form. 2986 // X+C2 >u C -> X+(C2-C-1) <u ~C 2987 if (Pred == ICmpInst::ICMP_UGT) 2988 return new ICmpInst(ICmpInst::ICMP_ULT, 2989 Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)), 2990 ConstantInt::get(Ty, ~C)); 2991 2992 return nullptr; 2993 } 2994 2995 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, 2996 Value *&RHS, ConstantInt *&Less, 2997 ConstantInt *&Equal, 2998 ConstantInt *&Greater) { 2999 // TODO: Generalize this to work with other comparison idioms or ensure 3000 // they get canonicalized into this form. 3001 3002 // select i1 (a == b), 3003 // i32 Equal, 3004 // i32 (select i1 (a < b), i32 Less, i32 Greater) 3005 // where Equal, Less and Greater are placeholders for any three constants. 3006 ICmpInst::Predicate PredA; 3007 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || 3008 !ICmpInst::isEquality(PredA)) 3009 return false; 3010 Value *EqualVal = SI->getTrueValue(); 3011 Value *UnequalVal = SI->getFalseValue(); 3012 // We still can get non-canonical predicate here, so canonicalize. 3013 if (PredA == ICmpInst::ICMP_NE) 3014 std::swap(EqualVal, UnequalVal); 3015 if (!match(EqualVal, m_ConstantInt(Equal))) 3016 return false; 3017 ICmpInst::Predicate PredB; 3018 Value *LHS2, *RHS2; 3019 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), 3020 m_ConstantInt(Less), m_ConstantInt(Greater)))) 3021 return false; 3022 // We can get predicate mismatch here, so canonicalize if possible: 3023 // First, ensure that 'LHS' match. 3024 if (LHS2 != LHS) { 3025 // x sgt y <--> y slt x 3026 std::swap(LHS2, RHS2); 3027 PredB = ICmpInst::getSwappedPredicate(PredB); 3028 } 3029 if (LHS2 != LHS) 3030 return false; 3031 // We also need to canonicalize 'RHS'. 3032 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { 3033 // x sgt C-1 <--> x sge C <--> not(x slt C) 3034 auto FlippedStrictness = 3035 InstCombiner::getFlippedStrictnessPredicateAndConstant( 3036 PredB, cast<Constant>(RHS2)); 3037 if (!FlippedStrictness) 3038 return false; 3039 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && 3040 "basic correctness failure"); 3041 RHS2 = FlippedStrictness->second; 3042 // And kind-of perform the result swap. 3043 std::swap(Less, Greater); 3044 PredB = ICmpInst::ICMP_SLT; 3045 } 3046 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; 3047 } 3048 3049 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, 3050 SelectInst *Select, 3051 ConstantInt *C) { 3052 3053 assert(C && "Cmp RHS should be a constant int!"); 3054 // If we're testing a constant value against the result of a three way 3055 // comparison, the result can be expressed directly in terms of the 3056 // original values being compared. Note: We could possibly be more 3057 // aggressive here and remove the hasOneUse test. The original select is 3058 // really likely to simplify or sink when we remove a test of the result. 3059 Value *OrigLHS, *OrigRHS; 3060 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; 3061 if (Cmp.hasOneUse() && 3062 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, 3063 C3GreaterThan)) { 3064 assert(C1LessThan && C2Equal && C3GreaterThan); 3065 3066 bool TrueWhenLessThan = 3067 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) 3068 ->isAllOnesValue(); 3069 bool TrueWhenEqual = 3070 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) 3071 ->isAllOnesValue(); 3072 bool TrueWhenGreaterThan = 3073 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) 3074 ->isAllOnesValue(); 3075 3076 // This generates the new instruction that will replace the original Cmp 3077 // Instruction. Instead of enumerating the various combinations when 3078 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus 3079 // false, we rely on chaining of ORs and future passes of InstCombine to 3080 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). 3081 3082 // When none of the three constants satisfy the predicate for the RHS (C), 3083 // the entire original Cmp can be simplified to a false. 3084 Value *Cond = Builder.getFalse(); 3085 if (TrueWhenLessThan) 3086 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, 3087 OrigLHS, OrigRHS)); 3088 if (TrueWhenEqual) 3089 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, 3090 OrigLHS, OrigRHS)); 3091 if (TrueWhenGreaterThan) 3092 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, 3093 OrigLHS, OrigRHS)); 3094 3095 return replaceInstUsesWith(Cmp, Cond); 3096 } 3097 return nullptr; 3098 } 3099 3100 Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) { 3101 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); 3102 if (!Bitcast) 3103 return nullptr; 3104 3105 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3106 Value *Op1 = Cmp.getOperand(1); 3107 Value *BCSrcOp = Bitcast->getOperand(0); 3108 Type *SrcType = Bitcast->getSrcTy(); 3109 Type *DstType = Bitcast->getType(); 3110 3111 // Make sure the bitcast doesn't change between scalar and vector and 3112 // doesn't change the number of vector elements. 3113 if (SrcType->isVectorTy() == DstType->isVectorTy() && 3114 SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) { 3115 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. 3116 Value *X; 3117 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { 3118 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 3119 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 3120 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 3121 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 3122 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || 3123 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && 3124 match(Op1, m_Zero())) 3125 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 3126 3127 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 3128 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) 3129 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); 3130 3131 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 3132 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) 3133 return new ICmpInst(Pred, X, 3134 ConstantInt::getAllOnesValue(X->getType())); 3135 } 3136 3137 // Zero-equality checks are preserved through unsigned floating-point casts: 3138 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 3139 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 3140 if (match(BCSrcOp, m_UIToFP(m_Value(X)))) 3141 if (Cmp.isEquality() && match(Op1, m_Zero())) 3142 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); 3143 3144 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate 3145 // the FP extend/truncate because that cast does not change the sign-bit. 3146 // This is true for all standard IEEE-754 types and the X86 80-bit type. 3147 // The sign-bit is always the most significant bit in those types. 3148 const APInt *C; 3149 bool TrueIfSigned; 3150 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && 3151 isSignBitCheck(Pred, *C, TrueIfSigned)) { 3152 if (match(BCSrcOp, m_FPExt(m_Value(X))) || 3153 match(BCSrcOp, m_FPTrunc(m_Value(X)))) { 3154 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 3155 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 3156 Type *XType = X->getType(); 3157 3158 // We can't currently handle Power style floating point operations here. 3159 if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) { 3160 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); 3161 if (auto *XVTy = dyn_cast<VectorType>(XType)) 3162 NewType = VectorType::get(NewType, XVTy->getElementCount()); 3163 Value *NewBitcast = Builder.CreateBitCast(X, NewType); 3164 if (TrueIfSigned) 3165 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, 3166 ConstantInt::getNullValue(NewType)); 3167 else 3168 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, 3169 ConstantInt::getAllOnesValue(NewType)); 3170 } 3171 } 3172 } 3173 } 3174 3175 // Test to see if the operands of the icmp are casted versions of other 3176 // values. If the ptr->ptr cast can be stripped off both arguments, do so. 3177 if (DstType->isPointerTy() && (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 3178 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 3179 // so eliminate it as well. 3180 if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) 3181 Op1 = BC2->getOperand(0); 3182 3183 Op1 = Builder.CreateBitCast(Op1, SrcType); 3184 return new ICmpInst(Pred, BCSrcOp, Op1); 3185 } 3186 3187 const APInt *C; 3188 if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() || 3189 !SrcType->isIntOrIntVectorTy()) 3190 return nullptr; 3191 3192 // If this is checking if all elements of a vector compare are set or not, 3193 // invert the casted vector equality compare and test if all compare 3194 // elements are clear or not. Compare against zero is generally easier for 3195 // analysis and codegen. 3196 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0 3197 // Example: are all elements equal? --> are zero elements not equal? 3198 // TODO: Try harder to reduce compare of 2 freely invertible operands? 3199 if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse() && 3200 isFreeToInvert(BCSrcOp, BCSrcOp->hasOneUse())) { 3201 Value *Cast = Builder.CreateBitCast(Builder.CreateNot(BCSrcOp), DstType); 3202 return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType)); 3203 } 3204 3205 // If this is checking if all elements of an extended vector are clear or not, 3206 // compare in a narrow type to eliminate the extend: 3207 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0 3208 Value *X; 3209 if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() && 3210 match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) { 3211 if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) { 3212 Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits()); 3213 Value *NewCast = Builder.CreateBitCast(X, NewType); 3214 return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType)); 3215 } 3216 } 3217 3218 // Folding: icmp <pred> iN X, C 3219 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN 3220 // and C is a splat of a K-bit pattern 3221 // and SC is a constant vector = <C', C', C', ..., C'> 3222 // Into: 3223 // %E = extractelement <M x iK> %vec, i32 C' 3224 // icmp <pred> iK %E, trunc(C) 3225 Value *Vec; 3226 ArrayRef<int> Mask; 3227 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { 3228 // Check whether every element of Mask is the same constant 3229 if (all_equal(Mask)) { 3230 auto *VecTy = cast<VectorType>(SrcType); 3231 auto *EltTy = cast<IntegerType>(VecTy->getElementType()); 3232 if (C->isSplat(EltTy->getBitWidth())) { 3233 // Fold the icmp based on the value of C 3234 // If C is M copies of an iK sized bit pattern, 3235 // then: 3236 // => %E = extractelement <N x iK> %vec, i32 Elem 3237 // icmp <pred> iK %SplatVal, <pattern> 3238 Value *Elem = Builder.getInt32(Mask[0]); 3239 Value *Extract = Builder.CreateExtractElement(Vec, Elem); 3240 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); 3241 return new ICmpInst(Pred, Extract, NewC); 3242 } 3243 } 3244 } 3245 return nullptr; 3246 } 3247 3248 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3249 /// where X is some kind of instruction. 3250 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { 3251 const APInt *C; 3252 3253 if (match(Cmp.getOperand(1), m_APInt(C))) { 3254 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) 3255 if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C)) 3256 return I; 3257 3258 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) 3259 // For now, we only support constant integers while folding the 3260 // ICMP(SELECT)) pattern. We can extend this to support vector of integers 3261 // similar to the cases handled by binary ops above. 3262 if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) 3263 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) 3264 return I; 3265 3266 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) 3267 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) 3268 return I; 3269 3270 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) 3271 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) 3272 return I; 3273 3274 // (extractval ([s/u]subo X, Y), 0) == 0 --> X == Y 3275 // (extractval ([s/u]subo X, Y), 0) != 0 --> X != Y 3276 // TODO: This checks one-use, but that is not strictly necessary. 3277 Value *Cmp0 = Cmp.getOperand(0); 3278 Value *X, *Y; 3279 if (C->isZero() && Cmp.isEquality() && Cmp0->hasOneUse() && 3280 (match(Cmp0, 3281 m_ExtractValue<0>(m_Intrinsic<Intrinsic::ssub_with_overflow>( 3282 m_Value(X), m_Value(Y)))) || 3283 match(Cmp0, 3284 m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 3285 m_Value(X), m_Value(Y)))))) 3286 return new ICmpInst(Cmp.getPredicate(), X, Y); 3287 } 3288 3289 if (match(Cmp.getOperand(1), m_APIntAllowUndef(C))) 3290 return foldICmpInstWithConstantAllowUndef(Cmp, *C); 3291 3292 return nullptr; 3293 } 3294 3295 /// Fold an icmp equality instruction with binary operator LHS and constant RHS: 3296 /// icmp eq/ne BO, C. 3297 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( 3298 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { 3299 // TODO: Some of these folds could work with arbitrary constants, but this 3300 // function is limited to scalar and vector splat constants. 3301 if (!Cmp.isEquality()) 3302 return nullptr; 3303 3304 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3305 bool isICMP_NE = Pred == ICmpInst::ICMP_NE; 3306 Constant *RHS = cast<Constant>(Cmp.getOperand(1)); 3307 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 3308 3309 switch (BO->getOpcode()) { 3310 case Instruction::SRem: 3311 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 3312 if (C.isZero() && BO->hasOneUse()) { 3313 const APInt *BOC; 3314 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { 3315 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); 3316 return new ICmpInst(Pred, NewRem, 3317 Constant::getNullValue(BO->getType())); 3318 } 3319 } 3320 break; 3321 case Instruction::Add: { 3322 // (A + C2) == C --> A == (C - C2) 3323 // (A + C2) != C --> A != (C - C2) 3324 // TODO: Remove the one-use limitation? See discussion in D58633. 3325 if (Constant *C2 = dyn_cast<Constant>(BOp1)) { 3326 if (BO->hasOneUse()) 3327 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, C2)); 3328 } else if (C.isZero()) { 3329 // Replace ((add A, B) != 0) with (A != -B) if A or B is 3330 // efficiently invertible, or if the add has just this one use. 3331 if (Value *NegVal = dyn_castNegVal(BOp1)) 3332 return new ICmpInst(Pred, BOp0, NegVal); 3333 if (Value *NegVal = dyn_castNegVal(BOp0)) 3334 return new ICmpInst(Pred, NegVal, BOp1); 3335 if (BO->hasOneUse()) { 3336 Value *Neg = Builder.CreateNeg(BOp1); 3337 Neg->takeName(BO); 3338 return new ICmpInst(Pred, BOp0, Neg); 3339 } 3340 } 3341 break; 3342 } 3343 case Instruction::Xor: 3344 if (BO->hasOneUse()) { 3345 if (Constant *BOC = dyn_cast<Constant>(BOp1)) { 3346 // For the xor case, we can xor two constants together, eliminating 3347 // the explicit xor. 3348 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); 3349 } else if (C.isZero()) { 3350 // Replace ((xor A, B) != 0) with (A != B) 3351 return new ICmpInst(Pred, BOp0, BOp1); 3352 } 3353 } 3354 break; 3355 case Instruction::Or: { 3356 const APInt *BOC; 3357 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { 3358 // Comparing if all bits outside of a constant mask are set? 3359 // Replace (X | C) == -1 with (X & ~C) == ~C. 3360 // This removes the -1 constant. 3361 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); 3362 Value *And = Builder.CreateAnd(BOp0, NotBOC); 3363 return new ICmpInst(Pred, And, NotBOC); 3364 } 3365 break; 3366 } 3367 case Instruction::UDiv: 3368 case Instruction::SDiv: 3369 if (BO->isExact()) { 3370 // div exact X, Y eq/ne 0 -> X eq/ne 0 3371 // div exact X, Y eq/ne 1 -> X eq/ne Y 3372 // div exact X, Y eq/ne C -> 3373 // if Y * C never-overflow && OneUse: 3374 // -> Y * C eq/ne X 3375 if (C.isZero()) 3376 return new ICmpInst(Pred, BOp0, Constant::getNullValue(BO->getType())); 3377 else if (C.isOne()) 3378 return new ICmpInst(Pred, BOp0, BOp1); 3379 else if (BO->hasOneUse()) { 3380 OverflowResult OR = computeOverflow( 3381 Instruction::Mul, BO->getOpcode() == Instruction::SDiv, BOp1, 3382 Cmp.getOperand(1), BO); 3383 if (OR == OverflowResult::NeverOverflows) { 3384 Value *YC = 3385 Builder.CreateMul(BOp1, ConstantInt::get(BO->getType(), C)); 3386 return new ICmpInst(Pred, YC, BOp0); 3387 } 3388 } 3389 } 3390 if (BO->getOpcode() == Instruction::UDiv && C.isZero()) { 3391 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3392 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3393 return new ICmpInst(NewPred, BOp1, BOp0); 3394 } 3395 break; 3396 default: 3397 break; 3398 } 3399 return nullptr; 3400 } 3401 3402 static Instruction *foldCtpopPow2Test(ICmpInst &I, IntrinsicInst *CtpopLhs, 3403 const APInt &CRhs, 3404 InstCombiner::BuilderTy &Builder, 3405 const SimplifyQuery &Q) { 3406 assert(CtpopLhs->getIntrinsicID() == Intrinsic::ctpop && 3407 "Non-ctpop intrin in ctpop fold"); 3408 if (!CtpopLhs->hasOneUse()) 3409 return nullptr; 3410 3411 // Power of 2 test: 3412 // isPow2OrZero : ctpop(X) u< 2 3413 // isPow2 : ctpop(X) == 1 3414 // NotPow2OrZero: ctpop(X) u> 1 3415 // NotPow2 : ctpop(X) != 1 3416 // If we know any bit of X can be folded to: 3417 // IsPow2 : X & (~Bit) == 0 3418 // NotPow2 : X & (~Bit) != 0 3419 const ICmpInst::Predicate Pred = I.getPredicate(); 3420 if (((I.isEquality() || Pred == ICmpInst::ICMP_UGT) && CRhs == 1) || 3421 (Pred == ICmpInst::ICMP_ULT && CRhs == 2)) { 3422 Value *Op = CtpopLhs->getArgOperand(0); 3423 KnownBits OpKnown = computeKnownBits(Op, Q.DL, 3424 /*Depth*/ 0, Q.AC, Q.CxtI, Q.DT); 3425 // No need to check for count > 1, that should be already constant folded. 3426 if (OpKnown.countMinPopulation() == 1) { 3427 Value *And = Builder.CreateAnd( 3428 Op, Constant::getIntegerValue(Op->getType(), ~(OpKnown.One))); 3429 return new ICmpInst( 3430 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_ULT) 3431 ? ICmpInst::ICMP_EQ 3432 : ICmpInst::ICMP_NE, 3433 And, Constant::getNullValue(Op->getType())); 3434 } 3435 } 3436 3437 return nullptr; 3438 } 3439 3440 /// Fold an equality icmp with LLVM intrinsic and constant operand. 3441 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( 3442 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { 3443 Type *Ty = II->getType(); 3444 unsigned BitWidth = C.getBitWidth(); 3445 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3446 3447 switch (II->getIntrinsicID()) { 3448 case Intrinsic::abs: 3449 // abs(A) == 0 -> A == 0 3450 // abs(A) == INT_MIN -> A == INT_MIN 3451 if (C.isZero() || C.isMinSignedValue()) 3452 return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C)); 3453 break; 3454 3455 case Intrinsic::bswap: 3456 // bswap(A) == C -> A == bswap(C) 3457 return new ICmpInst(Pred, II->getArgOperand(0), 3458 ConstantInt::get(Ty, C.byteSwap())); 3459 3460 case Intrinsic::bitreverse: 3461 // bitreverse(A) == C -> A == bitreverse(C) 3462 return new ICmpInst(Pred, II->getArgOperand(0), 3463 ConstantInt::get(Ty, C.reverseBits())); 3464 3465 case Intrinsic::ctlz: 3466 case Intrinsic::cttz: { 3467 // ctz(A) == bitwidth(A) -> A == 0 and likewise for != 3468 if (C == BitWidth) 3469 return new ICmpInst(Pred, II->getArgOperand(0), 3470 ConstantInt::getNullValue(Ty)); 3471 3472 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set 3473 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. 3474 // Limit to one use to ensure we don't increase instruction count. 3475 unsigned Num = C.getLimitedValue(BitWidth); 3476 if (Num != BitWidth && II->hasOneUse()) { 3477 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; 3478 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) 3479 : APInt::getHighBitsSet(BitWidth, Num + 1); 3480 APInt Mask2 = IsTrailing 3481 ? APInt::getOneBitSet(BitWidth, Num) 3482 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3483 return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1), 3484 ConstantInt::get(Ty, Mask2)); 3485 } 3486 break; 3487 } 3488 3489 case Intrinsic::ctpop: { 3490 // popcount(A) == 0 -> A == 0 and likewise for != 3491 // popcount(A) == bitwidth(A) -> A == -1 and likewise for != 3492 bool IsZero = C.isZero(); 3493 if (IsZero || C == BitWidth) 3494 return new ICmpInst(Pred, II->getArgOperand(0), 3495 IsZero ? Constant::getNullValue(Ty) 3496 : Constant::getAllOnesValue(Ty)); 3497 3498 break; 3499 } 3500 3501 case Intrinsic::fshl: 3502 case Intrinsic::fshr: 3503 if (II->getArgOperand(0) == II->getArgOperand(1)) { 3504 const APInt *RotAmtC; 3505 // ror(X, RotAmtC) == C --> X == rol(C, RotAmtC) 3506 // rol(X, RotAmtC) == C --> X == ror(C, RotAmtC) 3507 if (match(II->getArgOperand(2), m_APInt(RotAmtC))) 3508 return new ICmpInst(Pred, II->getArgOperand(0), 3509 II->getIntrinsicID() == Intrinsic::fshl 3510 ? ConstantInt::get(Ty, C.rotr(*RotAmtC)) 3511 : ConstantInt::get(Ty, C.rotl(*RotAmtC))); 3512 } 3513 break; 3514 3515 case Intrinsic::umax: 3516 case Intrinsic::uadd_sat: { 3517 // uadd.sat(a, b) == 0 -> (a | b) == 0 3518 // umax(a, b) == 0 -> (a | b) == 0 3519 if (C.isZero() && II->hasOneUse()) { 3520 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); 3521 return new ICmpInst(Pred, Or, Constant::getNullValue(Ty)); 3522 } 3523 break; 3524 } 3525 3526 case Intrinsic::ssub_sat: 3527 // ssub.sat(a, b) == 0 -> a == b 3528 if (C.isZero()) 3529 return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1)); 3530 break; 3531 case Intrinsic::usub_sat: { 3532 // usub.sat(a, b) == 0 -> a <= b 3533 if (C.isZero()) { 3534 ICmpInst::Predicate NewPred = 3535 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; 3536 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); 3537 } 3538 break; 3539 } 3540 default: 3541 break; 3542 } 3543 3544 return nullptr; 3545 } 3546 3547 /// Fold an icmp with LLVM intrinsics 3548 static Instruction * 3549 foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp, 3550 InstCombiner::BuilderTy &Builder) { 3551 assert(Cmp.isEquality()); 3552 3553 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3554 Value *Op0 = Cmp.getOperand(0); 3555 Value *Op1 = Cmp.getOperand(1); 3556 const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0); 3557 const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1); 3558 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID()) 3559 return nullptr; 3560 3561 switch (IIOp0->getIntrinsicID()) { 3562 case Intrinsic::bswap: 3563 case Intrinsic::bitreverse: 3564 // If both operands are byte-swapped or bit-reversed, just compare the 3565 // original values. 3566 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3567 case Intrinsic::fshl: 3568 case Intrinsic::fshr: { 3569 // If both operands are rotated by same amount, just compare the 3570 // original values. 3571 if (IIOp0->getOperand(0) != IIOp0->getOperand(1)) 3572 break; 3573 if (IIOp1->getOperand(0) != IIOp1->getOperand(1)) 3574 break; 3575 if (IIOp0->getOperand(2) == IIOp1->getOperand(2)) 3576 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0)); 3577 3578 // rotate(X, AmtX) == rotate(Y, AmtY) 3579 // -> rotate(X, AmtX - AmtY) == Y 3580 // Do this if either both rotates have one use or if only one has one use 3581 // and AmtX/AmtY are constants. 3582 unsigned OneUses = IIOp0->hasOneUse() + IIOp1->hasOneUse(); 3583 if (OneUses == 2 || 3584 (OneUses == 1 && match(IIOp0->getOperand(2), m_ImmConstant()) && 3585 match(IIOp1->getOperand(2), m_ImmConstant()))) { 3586 Value *SubAmt = 3587 Builder.CreateSub(IIOp0->getOperand(2), IIOp1->getOperand(2)); 3588 Value *CombinedRotate = Builder.CreateIntrinsic( 3589 Op0->getType(), IIOp0->getIntrinsicID(), 3590 {IIOp0->getOperand(0), IIOp0->getOperand(0), SubAmt}); 3591 return new ICmpInst(Pred, IIOp1->getOperand(0), CombinedRotate); 3592 } 3593 } break; 3594 default: 3595 break; 3596 } 3597 3598 return nullptr; 3599 } 3600 3601 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C 3602 /// where X is some kind of instruction and C is AllowUndef. 3603 /// TODO: Move more folds which allow undef to this function. 3604 Instruction * 3605 InstCombinerImpl::foldICmpInstWithConstantAllowUndef(ICmpInst &Cmp, 3606 const APInt &C) { 3607 const ICmpInst::Predicate Pred = Cmp.getPredicate(); 3608 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) { 3609 switch (II->getIntrinsicID()) { 3610 default: 3611 break; 3612 case Intrinsic::fshl: 3613 case Intrinsic::fshr: 3614 if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) { 3615 // (rot X, ?) == 0/-1 --> X == 0/-1 3616 if (C.isZero() || C.isAllOnes()) 3617 return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1)); 3618 } 3619 break; 3620 } 3621 } 3622 3623 return nullptr; 3624 } 3625 3626 /// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C. 3627 Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp, 3628 BinaryOperator *BO, 3629 const APInt &C) { 3630 switch (BO->getOpcode()) { 3631 case Instruction::Xor: 3632 if (Instruction *I = foldICmpXorConstant(Cmp, BO, C)) 3633 return I; 3634 break; 3635 case Instruction::And: 3636 if (Instruction *I = foldICmpAndConstant(Cmp, BO, C)) 3637 return I; 3638 break; 3639 case Instruction::Or: 3640 if (Instruction *I = foldICmpOrConstant(Cmp, BO, C)) 3641 return I; 3642 break; 3643 case Instruction::Mul: 3644 if (Instruction *I = foldICmpMulConstant(Cmp, BO, C)) 3645 return I; 3646 break; 3647 case Instruction::Shl: 3648 if (Instruction *I = foldICmpShlConstant(Cmp, BO, C)) 3649 return I; 3650 break; 3651 case Instruction::LShr: 3652 case Instruction::AShr: 3653 if (Instruction *I = foldICmpShrConstant(Cmp, BO, C)) 3654 return I; 3655 break; 3656 case Instruction::SRem: 3657 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C)) 3658 return I; 3659 break; 3660 case Instruction::UDiv: 3661 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C)) 3662 return I; 3663 [[fallthrough]]; 3664 case Instruction::SDiv: 3665 if (Instruction *I = foldICmpDivConstant(Cmp, BO, C)) 3666 return I; 3667 break; 3668 case Instruction::Sub: 3669 if (Instruction *I = foldICmpSubConstant(Cmp, BO, C)) 3670 return I; 3671 break; 3672 case Instruction::Add: 3673 if (Instruction *I = foldICmpAddConstant(Cmp, BO, C)) 3674 return I; 3675 break; 3676 default: 3677 break; 3678 } 3679 3680 // TODO: These folds could be refactored to be part of the above calls. 3681 return foldICmpBinOpEqualityWithConstant(Cmp, BO, C); 3682 } 3683 3684 static Instruction * 3685 foldICmpUSubSatOrUAddSatWithConstant(ICmpInst::Predicate Pred, 3686 SaturatingInst *II, const APInt &C, 3687 InstCombiner::BuilderTy &Builder) { 3688 // This transform may end up producing more than one instruction for the 3689 // intrinsic, so limit it to one user of the intrinsic. 3690 if (!II->hasOneUse()) 3691 return nullptr; 3692 3693 // Let Y = [add/sub]_sat(X, C) pred C2 3694 // SatVal = The saturating value for the operation 3695 // WillWrap = Whether or not the operation will underflow / overflow 3696 // => Y = (WillWrap ? SatVal : (X binop C)) pred C2 3697 // => Y = WillWrap ? (SatVal pred C2) : ((X binop C) pred C2) 3698 // 3699 // When (SatVal pred C2) is true, then 3700 // Y = WillWrap ? true : ((X binop C) pred C2) 3701 // => Y = WillWrap || ((X binop C) pred C2) 3702 // else 3703 // Y = WillWrap ? false : ((X binop C) pred C2) 3704 // => Y = !WillWrap ? ((X binop C) pred C2) : false 3705 // => Y = !WillWrap && ((X binop C) pred C2) 3706 Value *Op0 = II->getOperand(0); 3707 Value *Op1 = II->getOperand(1); 3708 3709 const APInt *COp1; 3710 // This transform only works when the intrinsic has an integral constant or 3711 // splat vector as the second operand. 3712 if (!match(Op1, m_APInt(COp1))) 3713 return nullptr; 3714 3715 APInt SatVal; 3716 switch (II->getIntrinsicID()) { 3717 default: 3718 llvm_unreachable( 3719 "This function only works with usub_sat and uadd_sat for now!"); 3720 case Intrinsic::uadd_sat: 3721 SatVal = APInt::getAllOnes(C.getBitWidth()); 3722 break; 3723 case Intrinsic::usub_sat: 3724 SatVal = APInt::getZero(C.getBitWidth()); 3725 break; 3726 } 3727 3728 // Check (SatVal pred C2) 3729 bool SatValCheck = ICmpInst::compare(SatVal, C, Pred); 3730 3731 // !WillWrap. 3732 ConstantRange C1 = ConstantRange::makeExactNoWrapRegion( 3733 II->getBinaryOp(), *COp1, II->getNoWrapKind()); 3734 3735 // WillWrap. 3736 if (SatValCheck) 3737 C1 = C1.inverse(); 3738 3739 ConstantRange C2 = ConstantRange::makeExactICmpRegion(Pred, C); 3740 if (II->getBinaryOp() == Instruction::Add) 3741 C2 = C2.sub(*COp1); 3742 else 3743 C2 = C2.add(*COp1); 3744 3745 Instruction::BinaryOps CombiningOp = 3746 SatValCheck ? Instruction::BinaryOps::Or : Instruction::BinaryOps::And; 3747 3748 std::optional<ConstantRange> Combination; 3749 if (CombiningOp == Instruction::BinaryOps::Or) 3750 Combination = C1.exactUnionWith(C2); 3751 else /* CombiningOp == Instruction::BinaryOps::And */ 3752 Combination = C1.exactIntersectWith(C2); 3753 3754 if (!Combination) 3755 return nullptr; 3756 3757 CmpInst::Predicate EquivPred; 3758 APInt EquivInt; 3759 APInt EquivOffset; 3760 3761 Combination->getEquivalentICmp(EquivPred, EquivInt, EquivOffset); 3762 3763 return new ICmpInst( 3764 EquivPred, 3765 Builder.CreateAdd(Op0, ConstantInt::get(Op1->getType(), EquivOffset)), 3766 ConstantInt::get(Op1->getType(), EquivInt)); 3767 } 3768 3769 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. 3770 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, 3771 IntrinsicInst *II, 3772 const APInt &C) { 3773 ICmpInst::Predicate Pred = Cmp.getPredicate(); 3774 3775 // Handle folds that apply for any kind of icmp. 3776 switch (II->getIntrinsicID()) { 3777 default: 3778 break; 3779 case Intrinsic::uadd_sat: 3780 case Intrinsic::usub_sat: 3781 if (auto *Folded = foldICmpUSubSatOrUAddSatWithConstant( 3782 Pred, cast<SaturatingInst>(II), C, Builder)) 3783 return Folded; 3784 break; 3785 case Intrinsic::ctpop: { 3786 const SimplifyQuery Q = SQ.getWithInstruction(&Cmp); 3787 if (Instruction *R = foldCtpopPow2Test(Cmp, II, C, Builder, Q)) 3788 return R; 3789 } break; 3790 } 3791 3792 if (Cmp.isEquality()) 3793 return foldICmpEqIntrinsicWithConstant(Cmp, II, C); 3794 3795 Type *Ty = II->getType(); 3796 unsigned BitWidth = C.getBitWidth(); 3797 switch (II->getIntrinsicID()) { 3798 case Intrinsic::ctpop: { 3799 // (ctpop X > BitWidth - 1) --> X == -1 3800 Value *X = II->getArgOperand(0); 3801 if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) 3802 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, 3803 ConstantInt::getAllOnesValue(Ty)); 3804 // (ctpop X < BitWidth) --> X != -1 3805 if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) 3806 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, 3807 ConstantInt::getAllOnesValue(Ty)); 3808 break; 3809 } 3810 case Intrinsic::ctlz: { 3811 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 3812 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3813 unsigned Num = C.getLimitedValue(); 3814 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); 3815 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, 3816 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3817 } 3818 3819 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 3820 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3821 unsigned Num = C.getLimitedValue(); 3822 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); 3823 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, 3824 II->getArgOperand(0), ConstantInt::get(Ty, Limit)); 3825 } 3826 break; 3827 } 3828 case Intrinsic::cttz: { 3829 // Limit to one use to ensure we don't increase instruction count. 3830 if (!II->hasOneUse()) 3831 return nullptr; 3832 3833 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 3834 if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { 3835 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); 3836 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, 3837 Builder.CreateAnd(II->getArgOperand(0), Mask), 3838 ConstantInt::getNullValue(Ty)); 3839 } 3840 3841 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 3842 if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { 3843 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); 3844 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, 3845 Builder.CreateAnd(II->getArgOperand(0), Mask), 3846 ConstantInt::getNullValue(Ty)); 3847 } 3848 break; 3849 } 3850 case Intrinsic::ssub_sat: 3851 // ssub.sat(a, b) spred 0 -> a spred b 3852 if (ICmpInst::isSigned(Pred)) { 3853 if (C.isZero()) 3854 return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1)); 3855 // X s<= 0 is cannonicalized to X s< 1 3856 if (Pred == ICmpInst::ICMP_SLT && C.isOne()) 3857 return new ICmpInst(ICmpInst::ICMP_SLE, II->getArgOperand(0), 3858 II->getArgOperand(1)); 3859 // X s>= 0 is cannonicalized to X s> -1 3860 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes()) 3861 return new ICmpInst(ICmpInst::ICMP_SGE, II->getArgOperand(0), 3862 II->getArgOperand(1)); 3863 } 3864 break; 3865 default: 3866 break; 3867 } 3868 3869 return nullptr; 3870 } 3871 3872 /// Handle icmp with constant (but not simple integer constant) RHS. 3873 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { 3874 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3875 Constant *RHSC = dyn_cast<Constant>(Op1); 3876 Instruction *LHSI = dyn_cast<Instruction>(Op0); 3877 if (!RHSC || !LHSI) 3878 return nullptr; 3879 3880 switch (LHSI->getOpcode()) { 3881 case Instruction::GetElementPtr: 3882 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3883 if (RHSC->isNullValue() && 3884 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3885 return new ICmpInst( 3886 I.getPredicate(), LHSI->getOperand(0), 3887 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3888 break; 3889 case Instruction::PHI: 3890 // Only fold icmp into the PHI if the phi and icmp are in the same 3891 // block. If in the same block, we're encouraging jump threading. If 3892 // not, we are just pessimizing the code by making an i1 phi. 3893 if (LHSI->getParent() == I.getParent()) 3894 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 3895 return NV; 3896 break; 3897 case Instruction::IntToPtr: 3898 // icmp pred inttoptr(X), null -> icmp pred X, 0 3899 if (RHSC->isNullValue() && 3900 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3901 return new ICmpInst( 3902 I.getPredicate(), LHSI->getOperand(0), 3903 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3904 break; 3905 3906 case Instruction::Load: 3907 // Try to optimize things like "A[i] > 4" to index computations. 3908 if (GetElementPtrInst *GEP = 3909 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 3910 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3911 if (Instruction *Res = 3912 foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I)) 3913 return Res; 3914 break; 3915 } 3916 3917 return nullptr; 3918 } 3919 3920 Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred, 3921 SelectInst *SI, Value *RHS, 3922 const ICmpInst &I) { 3923 // Try to fold the comparison into the select arms, which will cause the 3924 // select to be converted into a logical and/or. 3925 auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * { 3926 if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ)) 3927 return Res; 3928 if (std::optional<bool> Impl = isImpliedCondition( 3929 SI->getCondition(), Pred, Op, RHS, DL, SelectCondIsTrue)) 3930 return ConstantInt::get(I.getType(), *Impl); 3931 return nullptr; 3932 }; 3933 3934 ConstantInt *CI = nullptr; 3935 Value *Op1 = SimplifyOp(SI->getOperand(1), true); 3936 if (Op1) 3937 CI = dyn_cast<ConstantInt>(Op1); 3938 3939 Value *Op2 = SimplifyOp(SI->getOperand(2), false); 3940 if (Op2) 3941 CI = dyn_cast<ConstantInt>(Op2); 3942 3943 // We only want to perform this transformation if it will not lead to 3944 // additional code. This is true if either both sides of the select 3945 // fold to a constant (in which case the icmp is replaced with a select 3946 // which will usually simplify) or this is the only user of the 3947 // select (in which case we are trading a select+icmp for a simpler 3948 // select+icmp) or all uses of the select can be replaced based on 3949 // dominance information ("Global cases"). 3950 bool Transform = false; 3951 if (Op1 && Op2) 3952 Transform = true; 3953 else if (Op1 || Op2) { 3954 // Local case 3955 if (SI->hasOneUse()) 3956 Transform = true; 3957 // Global cases 3958 else if (CI && !CI->isZero()) 3959 // When Op1 is constant try replacing select with second operand. 3960 // Otherwise Op2 is constant and try replacing select with first 3961 // operand. 3962 Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1); 3963 } 3964 if (Transform) { 3965 if (!Op1) 3966 Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName()); 3967 if (!Op2) 3968 Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName()); 3969 return SelectInst::Create(SI->getOperand(0), Op1, Op2); 3970 } 3971 3972 return nullptr; 3973 } 3974 3975 /// Some comparisons can be simplified. 3976 /// In this case, we are looking for comparisons that look like 3977 /// a check for a lossy truncation. 3978 /// Folds: 3979 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask 3980 /// Where Mask is some pattern that produces all-ones in low bits: 3981 /// (-1 >> y) 3982 /// ((-1 << y) >> y) <- non-canonical, has extra uses 3983 /// ~(-1 << y) 3984 /// ((1 << y) + (-1)) <- non-canonical, has extra uses 3985 /// The Mask can be a constant, too. 3986 /// For some predicates, the operands are commutative. 3987 /// For others, x can only be on a specific side. 3988 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, 3989 InstCombiner::BuilderTy &Builder) { 3990 ICmpInst::Predicate SrcPred; 3991 Value *X, *M, *Y; 3992 auto m_VariableMask = m_CombineOr( 3993 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), 3994 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), 3995 m_CombineOr(m_LShr(m_AllOnes(), m_Value()), 3996 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); 3997 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); 3998 if (!match(&I, m_c_ICmp(SrcPred, 3999 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), 4000 m_Deferred(X)))) 4001 return nullptr; 4002 4003 ICmpInst::Predicate DstPred; 4004 switch (SrcPred) { 4005 case ICmpInst::Predicate::ICMP_EQ: 4006 // x & (-1 >> y) == x -> x u<= (-1 >> y) 4007 DstPred = ICmpInst::Predicate::ICMP_ULE; 4008 break; 4009 case ICmpInst::Predicate::ICMP_NE: 4010 // x & (-1 >> y) != x -> x u> (-1 >> y) 4011 DstPred = ICmpInst::Predicate::ICMP_UGT; 4012 break; 4013 case ICmpInst::Predicate::ICMP_ULT: 4014 // x & (-1 >> y) u< x -> x u> (-1 >> y) 4015 // x u> x & (-1 >> y) -> x u> (-1 >> y) 4016 DstPred = ICmpInst::Predicate::ICMP_UGT; 4017 break; 4018 case ICmpInst::Predicate::ICMP_UGE: 4019 // x & (-1 >> y) u>= x -> x u<= (-1 >> y) 4020 // x u<= x & (-1 >> y) -> x u<= (-1 >> y) 4021 DstPred = ICmpInst::Predicate::ICMP_ULE; 4022 break; 4023 case ICmpInst::Predicate::ICMP_SLT: 4024 // x & (-1 >> y) s< x -> x s> (-1 >> y) 4025 // x s> x & (-1 >> y) -> x s> (-1 >> y) 4026 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 4027 return nullptr; 4028 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 4029 return nullptr; 4030 DstPred = ICmpInst::Predicate::ICMP_SGT; 4031 break; 4032 case ICmpInst::Predicate::ICMP_SGE: 4033 // x & (-1 >> y) s>= x -> x s<= (-1 >> y) 4034 // x s<= x & (-1 >> y) -> x s<= (-1 >> y) 4035 if (!match(M, m_Constant())) // Can not do this fold with non-constant. 4036 return nullptr; 4037 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. 4038 return nullptr; 4039 DstPred = ICmpInst::Predicate::ICMP_SLE; 4040 break; 4041 case ICmpInst::Predicate::ICMP_SGT: 4042 case ICmpInst::Predicate::ICMP_SLE: 4043 return nullptr; 4044 case ICmpInst::Predicate::ICMP_UGT: 4045 case ICmpInst::Predicate::ICMP_ULE: 4046 llvm_unreachable("Instsimplify took care of commut. variant"); 4047 break; 4048 default: 4049 llvm_unreachable("All possible folds are handled."); 4050 } 4051 4052 // The mask value may be a vector constant that has undefined elements. But it 4053 // may not be safe to propagate those undefs into the new compare, so replace 4054 // those elements by copying an existing, defined, and safe scalar constant. 4055 Type *OpTy = M->getType(); 4056 auto *VecC = dyn_cast<Constant>(M); 4057 auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); 4058 if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { 4059 Constant *SafeReplacementConstant = nullptr; 4060 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { 4061 if (!isa<UndefValue>(VecC->getAggregateElement(i))) { 4062 SafeReplacementConstant = VecC->getAggregateElement(i); 4063 break; 4064 } 4065 } 4066 assert(SafeReplacementConstant && "Failed to find undef replacement"); 4067 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); 4068 } 4069 4070 return Builder.CreateICmp(DstPred, X, M); 4071 } 4072 4073 /// Some comparisons can be simplified. 4074 /// In this case, we are looking for comparisons that look like 4075 /// a check for a lossy signed truncation. 4076 /// Folds: (MaskedBits is a constant.) 4077 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x 4078 /// Into: 4079 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) 4080 /// Where KeptBits = bitwidth(%x) - MaskedBits 4081 static Value * 4082 foldICmpWithTruncSignExtendedVal(ICmpInst &I, 4083 InstCombiner::BuilderTy &Builder) { 4084 ICmpInst::Predicate SrcPred; 4085 Value *X; 4086 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. 4087 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. 4088 if (!match(&I, m_c_ICmp(SrcPred, 4089 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), 4090 m_APInt(C1))), 4091 m_Deferred(X)))) 4092 return nullptr; 4093 4094 // Potential handling of non-splats: for each element: 4095 // * if both are undef, replace with constant 0. 4096 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. 4097 // * if both are not undef, and are different, bailout. 4098 // * else, only one is undef, then pick the non-undef one. 4099 4100 // The shift amount must be equal. 4101 if (*C0 != *C1) 4102 return nullptr; 4103 const APInt &MaskedBits = *C0; 4104 assert(MaskedBits != 0 && "shift by zero should be folded away already."); 4105 4106 ICmpInst::Predicate DstPred; 4107 switch (SrcPred) { 4108 case ICmpInst::Predicate::ICMP_EQ: 4109 // ((%x << MaskedBits) a>> MaskedBits) == %x 4110 // => 4111 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) 4112 DstPred = ICmpInst::Predicate::ICMP_ULT; 4113 break; 4114 case ICmpInst::Predicate::ICMP_NE: 4115 // ((%x << MaskedBits) a>> MaskedBits) != %x 4116 // => 4117 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) 4118 DstPred = ICmpInst::Predicate::ICMP_UGE; 4119 break; 4120 // FIXME: are more folds possible? 4121 default: 4122 return nullptr; 4123 } 4124 4125 auto *XType = X->getType(); 4126 const unsigned XBitWidth = XType->getScalarSizeInBits(); 4127 const APInt BitWidth = APInt(XBitWidth, XBitWidth); 4128 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); 4129 4130 // KeptBits = bitwidth(%x) - MaskedBits 4131 const APInt KeptBits = BitWidth - MaskedBits; 4132 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); 4133 // ICmpCst = (1 << KeptBits) 4134 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); 4135 assert(ICmpCst.isPowerOf2()); 4136 // AddCst = (1 << (KeptBits-1)) 4137 const APInt AddCst = ICmpCst.lshr(1); 4138 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); 4139 4140 // T0 = add %x, AddCst 4141 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); 4142 // T1 = T0 DstPred ICmpCst 4143 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); 4144 4145 return T1; 4146 } 4147 4148 // Given pattern: 4149 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 4150 // we should move shifts to the same hand of 'and', i.e. rewrite as 4151 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 4152 // We are only interested in opposite logical shifts here. 4153 // One of the shifts can be truncated. 4154 // If we can, we want to end up creating 'lshr' shift. 4155 static Value * 4156 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, 4157 InstCombiner::BuilderTy &Builder) { 4158 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || 4159 !I.getOperand(0)->hasOneUse()) 4160 return nullptr; 4161 4162 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); 4163 4164 // Look for an 'and' of two logical shifts, one of which may be truncated. 4165 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. 4166 Instruction *XShift, *MaybeTruncation, *YShift; 4167 if (!match( 4168 I.getOperand(0), 4169 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), 4170 m_CombineAnd(m_TruncOrSelf(m_CombineAnd( 4171 m_AnyLogicalShift, m_Instruction(YShift))), 4172 m_Instruction(MaybeTruncation))))) 4173 return nullptr; 4174 4175 // We potentially looked past 'trunc', but only when matching YShift, 4176 // therefore YShift must have the widest type. 4177 Instruction *WidestShift = YShift; 4178 // Therefore XShift must have the shallowest type. 4179 // Or they both have identical types if there was no truncation. 4180 Instruction *NarrowestShift = XShift; 4181 4182 Type *WidestTy = WidestShift->getType(); 4183 Type *NarrowestTy = NarrowestShift->getType(); 4184 assert(NarrowestTy == I.getOperand(0)->getType() && 4185 "We did not look past any shifts while matching XShift though."); 4186 bool HadTrunc = WidestTy != I.getOperand(0)->getType(); 4187 4188 // If YShift is a 'lshr', swap the shifts around. 4189 if (match(YShift, m_LShr(m_Value(), m_Value()))) 4190 std::swap(XShift, YShift); 4191 4192 // The shifts must be in opposite directions. 4193 auto XShiftOpcode = XShift->getOpcode(); 4194 if (XShiftOpcode == YShift->getOpcode()) 4195 return nullptr; // Do not care about same-direction shifts here. 4196 4197 Value *X, *XShAmt, *Y, *YShAmt; 4198 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); 4199 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); 4200 4201 // If one of the values being shifted is a constant, then we will end with 4202 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, 4203 // however, we will need to ensure that we won't increase instruction count. 4204 if (!isa<Constant>(X) && !isa<Constant>(Y)) { 4205 // At least one of the hands of the 'and' should be one-use shift. 4206 if (!match(I.getOperand(0), 4207 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) 4208 return nullptr; 4209 if (HadTrunc) { 4210 // Due to the 'trunc', we will need to widen X. For that either the old 4211 // 'trunc' or the shift amt in the non-truncated shift should be one-use. 4212 if (!MaybeTruncation->hasOneUse() && 4213 !NarrowestShift->getOperand(1)->hasOneUse()) 4214 return nullptr; 4215 } 4216 } 4217 4218 // We have two shift amounts from two different shifts. The types of those 4219 // shift amounts may not match. If that's the case let's bailout now. 4220 if (XShAmt->getType() != YShAmt->getType()) 4221 return nullptr; 4222 4223 // As input, we have the following pattern: 4224 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 4225 // We want to rewrite that as: 4226 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) 4227 // While we know that originally (Q+K) would not overflow 4228 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 4229 // shift amounts. so it may now overflow in smaller bitwidth. 4230 // To ensure that does not happen, we need to ensure that the total maximal 4231 // shift amount is still representable in that smaller bit width. 4232 unsigned MaximalPossibleTotalShiftAmount = 4233 (WidestTy->getScalarSizeInBits() - 1) + 4234 (NarrowestTy->getScalarSizeInBits() - 1); 4235 APInt MaximalRepresentableShiftAmount = 4236 APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits()); 4237 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) 4238 return nullptr; 4239 4240 // Can we fold (XShAmt+YShAmt) ? 4241 auto *NewShAmt = dyn_cast_or_null<Constant>( 4242 simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, 4243 /*isNUW=*/false, SQ.getWithInstruction(&I))); 4244 if (!NewShAmt) 4245 return nullptr; 4246 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); 4247 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); 4248 4249 // Is the new shift amount smaller than the bit width? 4250 // FIXME: could also rely on ConstantRange. 4251 if (!match(NewShAmt, 4252 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 4253 APInt(WidestBitWidth, WidestBitWidth)))) 4254 return nullptr; 4255 4256 // An extra legality check is needed if we had trunc-of-lshr. 4257 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { 4258 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, 4259 WidestShift]() { 4260 // It isn't obvious whether it's worth it to analyze non-constants here. 4261 // Also, let's basically give up on non-splat cases, pessimizing vectors. 4262 // If *any* of these preconditions matches we can perform the fold. 4263 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() 4264 ? NewShAmt->getSplatValue() 4265 : NewShAmt; 4266 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. 4267 if (NewShAmtSplat && 4268 (NewShAmtSplat->isNullValue() || 4269 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) 4270 return true; 4271 // We consider *min* leading zeros so a single outlier 4272 // blocks the transform as opposed to allowing it. 4273 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { 4274 KnownBits Known = computeKnownBits(C, SQ.DL); 4275 unsigned MinLeadZero = Known.countMinLeadingZeros(); 4276 // If the value being shifted has at most lowest bit set we can fold. 4277 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 4278 if (MaxActiveBits <= 1) 4279 return true; 4280 // Precondition: NewShAmt u<= countLeadingZeros(C) 4281 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) 4282 return true; 4283 } 4284 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { 4285 KnownBits Known = computeKnownBits(C, SQ.DL); 4286 unsigned MinLeadZero = Known.countMinLeadingZeros(); 4287 // If the value being shifted has at most lowest bit set we can fold. 4288 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; 4289 if (MaxActiveBits <= 1) 4290 return true; 4291 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) 4292 if (NewShAmtSplat) { 4293 APInt AdjNewShAmt = 4294 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); 4295 if (AdjNewShAmt.ule(MinLeadZero)) 4296 return true; 4297 } 4298 } 4299 return false; // Can't tell if it's ok. 4300 }; 4301 if (!CanFold()) 4302 return nullptr; 4303 } 4304 4305 // All good, we can do this fold. 4306 X = Builder.CreateZExt(X, WidestTy); 4307 Y = Builder.CreateZExt(Y, WidestTy); 4308 // The shift is the same that was for X. 4309 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr 4310 ? Builder.CreateLShr(X, NewShAmt) 4311 : Builder.CreateShl(X, NewShAmt); 4312 Value *T1 = Builder.CreateAnd(T0, Y); 4313 return Builder.CreateICmp(I.getPredicate(), T1, 4314 Constant::getNullValue(WidestTy)); 4315 } 4316 4317 /// Fold 4318 /// (-1 u/ x) u< y 4319 /// ((x * y) ?/ x) != y 4320 /// to 4321 /// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit 4322 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate 4323 /// will mean that we are looking for the opposite answer. 4324 Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) { 4325 ICmpInst::Predicate Pred; 4326 Value *X, *Y; 4327 Instruction *Mul; 4328 Instruction *Div; 4329 bool NeedNegation; 4330 // Look for: (-1 u/ x) u</u>= y 4331 if (!I.isEquality() && 4332 match(&I, m_c_ICmp(Pred, 4333 m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), 4334 m_Instruction(Div)), 4335 m_Value(Y)))) { 4336 Mul = nullptr; 4337 4338 // Are we checking that overflow does not happen, or does happen? 4339 switch (Pred) { 4340 case ICmpInst::Predicate::ICMP_ULT: 4341 NeedNegation = false; 4342 break; // OK 4343 case ICmpInst::Predicate::ICMP_UGE: 4344 NeedNegation = true; 4345 break; // OK 4346 default: 4347 return nullptr; // Wrong predicate. 4348 } 4349 } else // Look for: ((x * y) / x) !=/== y 4350 if (I.isEquality() && 4351 match(&I, 4352 m_c_ICmp(Pred, m_Value(Y), 4353 m_CombineAnd( 4354 m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), 4355 m_Value(X)), 4356 m_Instruction(Mul)), 4357 m_Deferred(X))), 4358 m_Instruction(Div))))) { 4359 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; 4360 } else 4361 return nullptr; 4362 4363 BuilderTy::InsertPointGuard Guard(Builder); 4364 // If the pattern included (x * y), we'll want to insert new instructions 4365 // right before that original multiplication so that we can replace it. 4366 bool MulHadOtherUses = Mul && !Mul->hasOneUse(); 4367 if (MulHadOtherUses) 4368 Builder.SetInsertPoint(Mul); 4369 4370 Function *F = Intrinsic::getDeclaration(I.getModule(), 4371 Div->getOpcode() == Instruction::UDiv 4372 ? Intrinsic::umul_with_overflow 4373 : Intrinsic::smul_with_overflow, 4374 X->getType()); 4375 CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul"); 4376 4377 // If the multiplication was used elsewhere, to ensure that we don't leave 4378 // "duplicate" instructions, replace uses of that original multiplication 4379 // with the multiplication result from the with.overflow intrinsic. 4380 if (MulHadOtherUses) 4381 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val")); 4382 4383 Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov"); 4384 if (NeedNegation) // This technically increases instruction count. 4385 Res = Builder.CreateNot(Res, "mul.not.ov"); 4386 4387 // If we replaced the mul, erase it. Do this after all uses of Builder, 4388 // as the mul is used as insertion point. 4389 if (MulHadOtherUses) 4390 eraseInstFromFunction(*Mul); 4391 4392 return Res; 4393 } 4394 4395 static Instruction *foldICmpXNegX(ICmpInst &I, 4396 InstCombiner::BuilderTy &Builder) { 4397 CmpInst::Predicate Pred; 4398 Value *X; 4399 if (match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) { 4400 4401 if (ICmpInst::isSigned(Pred)) 4402 Pred = ICmpInst::getSwappedPredicate(Pred); 4403 else if (ICmpInst::isUnsigned(Pred)) 4404 Pred = ICmpInst::getSignedPredicate(Pred); 4405 // else for equality-comparisons just keep the predicate. 4406 4407 return ICmpInst::Create(Instruction::ICmp, Pred, X, 4408 Constant::getNullValue(X->getType()), I.getName()); 4409 } 4410 4411 // A value is not equal to its negation unless that value is 0 or 4412 // MinSignedValue, ie: a != -a --> (a & MaxSignedVal) != 0 4413 if (match(&I, m_c_ICmp(Pred, m_OneUse(m_Neg(m_Value(X))), m_Deferred(X))) && 4414 ICmpInst::isEquality(Pred)) { 4415 Type *Ty = X->getType(); 4416 uint32_t BitWidth = Ty->getScalarSizeInBits(); 4417 Constant *MaxSignedVal = 4418 ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth)); 4419 Value *And = Builder.CreateAnd(X, MaxSignedVal); 4420 Constant *Zero = Constant::getNullValue(Ty); 4421 return CmpInst::Create(Instruction::ICmp, Pred, And, Zero); 4422 } 4423 4424 return nullptr; 4425 } 4426 4427 static Instruction *foldICmpXorXX(ICmpInst &I, const SimplifyQuery &Q, 4428 InstCombinerImpl &IC) { 4429 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A; 4430 // Normalize xor operand as operand 0. 4431 CmpInst::Predicate Pred = I.getPredicate(); 4432 if (match(Op1, m_c_Xor(m_Specific(Op0), m_Value()))) { 4433 std::swap(Op0, Op1); 4434 Pred = ICmpInst::getSwappedPredicate(Pred); 4435 } 4436 if (!match(Op0, m_c_Xor(m_Specific(Op1), m_Value(A)))) 4437 return nullptr; 4438 4439 // icmp (X ^ Y_NonZero) u>= X --> icmp (X ^ Y_NonZero) u> X 4440 // icmp (X ^ Y_NonZero) u<= X --> icmp (X ^ Y_NonZero) u< X 4441 // icmp (X ^ Y_NonZero) s>= X --> icmp (X ^ Y_NonZero) s> X 4442 // icmp (X ^ Y_NonZero) s<= X --> icmp (X ^ Y_NonZero) s< X 4443 CmpInst::Predicate PredOut = CmpInst::getStrictPredicate(Pred); 4444 if (PredOut != Pred && 4445 isKnownNonZero(A, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4446 return new ICmpInst(PredOut, Op0, Op1); 4447 4448 return nullptr; 4449 } 4450 4451 /// Try to fold icmp (binop), X or icmp X, (binop). 4452 /// TODO: A large part of this logic is duplicated in InstSimplify's 4453 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code 4454 /// duplication. 4455 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, 4456 const SimplifyQuery &SQ) { 4457 const SimplifyQuery Q = SQ.getWithInstruction(&I); 4458 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4459 4460 // Special logic for binary operators. 4461 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 4462 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 4463 if (!BO0 && !BO1) 4464 return nullptr; 4465 4466 if (Instruction *NewICmp = foldICmpXNegX(I, Builder)) 4467 return NewICmp; 4468 4469 const CmpInst::Predicate Pred = I.getPredicate(); 4470 Value *X; 4471 4472 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. 4473 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X 4474 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && 4475 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4476 return new ICmpInst(Pred, Builder.CreateNot(Op1), X); 4477 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 4478 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && 4479 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4480 return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); 4481 4482 { 4483 // (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1 4484 Constant *C; 4485 if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)), 4486 m_ImmConstant(C)))) && 4487 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { 4488 Constant *C2 = ConstantExpr::getNot(C); 4489 return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1); 4490 } 4491 // Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X 4492 if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)), 4493 m_ImmConstant(C)))) && 4494 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) { 4495 Constant *C2 = ConstantExpr::getNot(C); 4496 return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X)); 4497 } 4498 } 4499 4500 { 4501 // Similar to above: an unsigned overflow comparison may use offset + mask: 4502 // ((Op1 + C) & C) u< Op1 --> Op1 != 0 4503 // ((Op1 + C) & C) u>= Op1 --> Op1 == 0 4504 // Op0 u> ((Op0 + C) & C) --> Op0 != 0 4505 // Op0 u<= ((Op0 + C) & C) --> Op0 == 0 4506 BinaryOperator *BO; 4507 const APInt *C; 4508 if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) && 4509 match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4510 match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowUndef(*C)))) { 4511 CmpInst::Predicate NewPred = 4512 Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4513 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4514 return new ICmpInst(NewPred, Op1, Zero); 4515 } 4516 4517 if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 4518 match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) && 4519 match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowUndef(*C)))) { 4520 CmpInst::Predicate NewPred = 4521 Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 4522 Constant *Zero = ConstantInt::getNullValue(Op1->getType()); 4523 return new ICmpInst(NewPred, Op0, Zero); 4524 } 4525 } 4526 4527 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 4528 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 4529 NoOp0WrapProblem = 4530 ICmpInst::isEquality(Pred) || 4531 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 4532 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 4533 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 4534 NoOp1WrapProblem = 4535 ICmpInst::isEquality(Pred) || 4536 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 4537 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 4538 4539 // Analyze the case when either Op0 or Op1 is an add instruction. 4540 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 4541 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 4542 if (BO0 && BO0->getOpcode() == Instruction::Add) { 4543 A = BO0->getOperand(0); 4544 B = BO0->getOperand(1); 4545 } 4546 if (BO1 && BO1->getOpcode() == Instruction::Add) { 4547 C = BO1->getOperand(0); 4548 D = BO1->getOperand(1); 4549 } 4550 4551 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. 4552 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. 4553 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 4554 return new ICmpInst(Pred, A == Op1 ? B : A, 4555 Constant::getNullValue(Op1->getType())); 4556 4557 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. 4558 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. 4559 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 4560 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 4561 C == Op0 ? D : C); 4562 4563 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. 4564 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && 4565 NoOp1WrapProblem) { 4566 // Determine Y and Z in the form icmp (X+Y), (X+Z). 4567 Value *Y, *Z; 4568 if (A == C) { 4569 // C + B == C + D -> B == D 4570 Y = B; 4571 Z = D; 4572 } else if (A == D) { 4573 // D + B == C + D -> B == C 4574 Y = B; 4575 Z = C; 4576 } else if (B == C) { 4577 // A + C == C + D -> A == D 4578 Y = A; 4579 Z = D; 4580 } else { 4581 assert(B == D); 4582 // A + D == C + D -> A == C 4583 Y = A; 4584 Z = C; 4585 } 4586 return new ICmpInst(Pred, Y, Z); 4587 } 4588 4589 // icmp slt (A + -1), Op1 -> icmp sle A, Op1 4590 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 4591 match(B, m_AllOnes())) 4592 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 4593 4594 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 4595 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 4596 match(B, m_AllOnes())) 4597 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 4598 4599 // icmp sle (A + 1), Op1 -> icmp slt A, Op1 4600 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) 4601 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 4602 4603 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 4604 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) 4605 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 4606 4607 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C 4608 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 4609 match(D, m_AllOnes())) 4610 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 4611 4612 // icmp sle Op0, (C + -1) -> icmp slt Op0, C 4613 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 4614 match(D, m_AllOnes())) 4615 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 4616 4617 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C 4618 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) 4619 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 4620 4621 // icmp slt Op0, (C + 1) -> icmp sle Op0, C 4622 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) 4623 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 4624 4625 // TODO: The subtraction-related identities shown below also hold, but 4626 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations 4627 // wouldn't happen even if they were implemented. 4628 // 4629 // icmp ult (A - 1), Op1 -> icmp ule A, Op1 4630 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 4631 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C 4632 // icmp ule Op0, (C - 1) -> icmp ult Op0, C 4633 4634 // icmp ule (A + 1), Op0 -> icmp ult A, Op1 4635 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) 4636 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); 4637 4638 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 4639 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) 4640 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); 4641 4642 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C 4643 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) 4644 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); 4645 4646 // icmp ult Op0, (C + 1) -> icmp ule Op0, C 4647 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) 4648 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); 4649 4650 // if C1 has greater magnitude than C2: 4651 // icmp (A + C1), (C + C2) -> icmp (A + C3), C 4652 // s.t. C3 = C1 - C2 4653 // 4654 // if C2 has greater magnitude than C1: 4655 // icmp (A + C1), (C + C2) -> icmp A, (C + C3) 4656 // s.t. C3 = C2 - C1 4657 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 4658 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) { 4659 const APInt *AP1, *AP2; 4660 // TODO: Support non-uniform vectors. 4661 // TODO: Allow undef passthrough if B AND D's element is undef. 4662 if (match(B, m_APIntAllowUndef(AP1)) && match(D, m_APIntAllowUndef(AP2)) && 4663 AP1->isNegative() == AP2->isNegative()) { 4664 APInt AP1Abs = AP1->abs(); 4665 APInt AP2Abs = AP2->abs(); 4666 if (AP1Abs.uge(AP2Abs)) { 4667 APInt Diff = *AP1 - *AP2; 4668 bool HasNUW = BO0->hasNoUnsignedWrap() && Diff.ule(*AP1); 4669 bool HasNSW = BO0->hasNoSignedWrap(); 4670 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4671 Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW); 4672 return new ICmpInst(Pred, NewAdd, C); 4673 } else { 4674 APInt Diff = *AP2 - *AP1; 4675 bool HasNUW = BO1->hasNoUnsignedWrap() && Diff.ule(*AP2); 4676 bool HasNSW = BO1->hasNoSignedWrap(); 4677 Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff); 4678 Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW); 4679 return new ICmpInst(Pred, A, NewAdd); 4680 } 4681 } 4682 Constant *Cst1, *Cst2; 4683 if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) && 4684 ICmpInst::isEquality(Pred)) { 4685 Constant *Diff = ConstantExpr::getSub(Cst2, Cst1); 4686 Value *NewAdd = Builder.CreateAdd(C, Diff); 4687 return new ICmpInst(Pred, A, NewAdd); 4688 } 4689 } 4690 4691 // Analyze the case when either Op0 or Op1 is a sub instruction. 4692 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 4693 A = nullptr; 4694 B = nullptr; 4695 C = nullptr; 4696 D = nullptr; 4697 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 4698 A = BO0->getOperand(0); 4699 B = BO0->getOperand(1); 4700 } 4701 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 4702 C = BO1->getOperand(0); 4703 D = BO1->getOperand(1); 4704 } 4705 4706 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. 4707 if (A == Op1 && NoOp0WrapProblem) 4708 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 4709 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. 4710 if (C == Op0 && NoOp1WrapProblem) 4711 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 4712 4713 // Convert sub-with-unsigned-overflow comparisons into a comparison of args. 4714 // (A - B) u>/u<= A --> B u>/u<= A 4715 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) 4716 return new ICmpInst(Pred, B, A); 4717 // C u</u>= (C - D) --> C u</u>= D 4718 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) 4719 return new ICmpInst(Pred, C, D); 4720 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 4721 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 4722 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4723 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); 4724 // C u<=/u> (C - D) --> C u</u>= D iff B != 0 4725 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && 4726 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 4727 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); 4728 4729 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. 4730 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) 4731 return new ICmpInst(Pred, A, C); 4732 4733 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. 4734 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) 4735 return new ICmpInst(Pred, D, B); 4736 4737 // icmp (0-X) < cst --> x > -cst 4738 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 4739 Value *X; 4740 if (match(BO0, m_Neg(m_Value(X)))) 4741 if (Constant *RHSC = dyn_cast<Constant>(Op1)) 4742 if (RHSC->isNotMinSignedValue()) 4743 return new ICmpInst(I.getSwappedPredicate(), X, 4744 ConstantExpr::getNeg(RHSC)); 4745 } 4746 4747 if (Instruction * R = foldICmpXorXX(I, Q, *this)) 4748 return R; 4749 4750 { 4751 // Try to remove shared multiplier from comparison: 4752 // X * Z u{lt/le/gt/ge}/eq/ne Y * Z 4753 Value *X, *Y, *Z; 4754 if (Pred == ICmpInst::getUnsignedPredicate(Pred) && 4755 ((match(Op0, m_Mul(m_Value(X), m_Value(Z))) && 4756 match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))) || 4757 (match(Op0, m_Mul(m_Value(Z), m_Value(X))) && 4758 match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))))) { 4759 bool NonZero; 4760 if (ICmpInst::isEquality(Pred)) { 4761 KnownBits ZKnown = computeKnownBits(Z, 0, &I); 4762 // if Z % 2 != 0 4763 // X * Z eq/ne Y * Z -> X eq/ne Y 4764 if (ZKnown.countMaxTrailingZeros() == 0) 4765 return new ICmpInst(Pred, X, Y); 4766 NonZero = !ZKnown.One.isZero() || 4767 isKnownNonZero(Z, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 4768 // if Z != 0 and nsw(X * Z) and nsw(Y * Z) 4769 // X * Z eq/ne Y * Z -> X eq/ne Y 4770 if (NonZero && BO0 && BO1 && BO0->hasNoSignedWrap() && 4771 BO1->hasNoSignedWrap()) 4772 return new ICmpInst(Pred, X, Y); 4773 } else 4774 NonZero = isKnownNonZero(Z, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 4775 4776 // If Z != 0 and nuw(X * Z) and nuw(Y * Z) 4777 // X * Z u{lt/le/gt/ge}/eq/ne Y * Z -> X u{lt/le/gt/ge}/eq/ne Y 4778 if (NonZero && BO0 && BO1 && BO0->hasNoUnsignedWrap() && 4779 BO1->hasNoUnsignedWrap()) 4780 return new ICmpInst(Pred, X, Y); 4781 } 4782 } 4783 4784 BinaryOperator *SRem = nullptr; 4785 // icmp (srem X, Y), Y 4786 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) 4787 SRem = BO0; 4788 // icmp Y, (srem X, Y) 4789 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 4790 Op0 == BO1->getOperand(1)) 4791 SRem = BO1; 4792 if (SRem) { 4793 // We don't check hasOneUse to avoid increasing register pressure because 4794 // the value we use is the same value this instruction was already using. 4795 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 4796 default: 4797 break; 4798 case ICmpInst::ICMP_EQ: 4799 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 4800 case ICmpInst::ICMP_NE: 4801 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 4802 case ICmpInst::ICMP_SGT: 4803 case ICmpInst::ICMP_SGE: 4804 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 4805 Constant::getAllOnesValue(SRem->getType())); 4806 case ICmpInst::ICMP_SLT: 4807 case ICmpInst::ICMP_SLE: 4808 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 4809 Constant::getNullValue(SRem->getType())); 4810 } 4811 } 4812 4813 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && 4814 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { 4815 switch (BO0->getOpcode()) { 4816 default: 4817 break; 4818 case Instruction::Add: 4819 case Instruction::Sub: 4820 case Instruction::Xor: { 4821 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4822 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4823 4824 const APInt *C; 4825 if (match(BO0->getOperand(1), m_APInt(C))) { 4826 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 4827 if (C->isSignMask()) { 4828 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4829 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4830 } 4831 4832 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b 4833 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { 4834 ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); 4835 NewPred = I.getSwappedPredicate(NewPred); 4836 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); 4837 } 4838 } 4839 break; 4840 } 4841 case Instruction::Mul: { 4842 if (!I.isEquality()) 4843 break; 4844 4845 const APInt *C; 4846 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() && 4847 !C->isOne()) { 4848 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) 4849 // Mask = -1 >> count-trailing-zeros(C). 4850 if (unsigned TZs = C->countr_zero()) { 4851 Constant *Mask = ConstantInt::get( 4852 BO0->getType(), 4853 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); 4854 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); 4855 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); 4856 return new ICmpInst(Pred, And1, And2); 4857 } 4858 } 4859 break; 4860 } 4861 case Instruction::UDiv: 4862 case Instruction::LShr: 4863 if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) 4864 break; 4865 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4866 4867 case Instruction::SDiv: 4868 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) 4869 break; 4870 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4871 4872 case Instruction::AShr: 4873 if (!BO0->isExact() || !BO1->isExact()) 4874 break; 4875 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4876 4877 case Instruction::Shl: { 4878 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4879 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4880 if (!NUW && !NSW) 4881 break; 4882 if (!NSW && I.isSigned()) 4883 break; 4884 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); 4885 } 4886 } 4887 } 4888 4889 if (BO0) { 4890 // Transform A & (L - 1) `ult` L --> L != 0 4891 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4892 auto BitwiseAnd = m_c_And(m_Value(), LSubOne); 4893 4894 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { 4895 auto *Zero = Constant::getNullValue(BO0->getType()); 4896 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4897 } 4898 } 4899 4900 // For unsigned predicates / eq / ne: 4901 // icmp pred (x << 1), x --> icmp getSignedPredicate(pred) x, 0 4902 // icmp pred x, (x << 1) --> icmp getSignedPredicate(pred) 0, x 4903 if (!ICmpInst::isSigned(Pred)) { 4904 if (match(Op0, m_Shl(m_Specific(Op1), m_One()))) 4905 return new ICmpInst(ICmpInst::getSignedPredicate(Pred), Op1, 4906 Constant::getNullValue(Op1->getType())); 4907 else if (match(Op1, m_Shl(m_Specific(Op0), m_One()))) 4908 return new ICmpInst(ICmpInst::getSignedPredicate(Pred), 4909 Constant::getNullValue(Op0->getType()), Op0); 4910 } 4911 4912 if (Value *V = foldMultiplicationOverflowCheck(I)) 4913 return replaceInstUsesWith(I, V); 4914 4915 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) 4916 return replaceInstUsesWith(I, V); 4917 4918 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) 4919 return replaceInstUsesWith(I, V); 4920 4921 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) 4922 return replaceInstUsesWith(I, V); 4923 4924 return nullptr; 4925 } 4926 4927 /// Fold icmp Pred min|max(X, Y), X. 4928 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { 4929 ICmpInst::Predicate Pred = Cmp.getPredicate(); 4930 Value *Op0 = Cmp.getOperand(0); 4931 Value *X = Cmp.getOperand(1); 4932 4933 // Canonicalize minimum or maximum operand to LHS of the icmp. 4934 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || 4935 match(X, m_c_SMax(m_Specific(Op0), m_Value())) || 4936 match(X, m_c_UMin(m_Specific(Op0), m_Value())) || 4937 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { 4938 std::swap(Op0, X); 4939 Pred = Cmp.getSwappedPredicate(); 4940 } 4941 4942 Value *Y; 4943 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { 4944 // smin(X, Y) == X --> X s<= Y 4945 // smin(X, Y) s>= X --> X s<= Y 4946 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) 4947 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); 4948 4949 // smin(X, Y) != X --> X s> Y 4950 // smin(X, Y) s< X --> X s> Y 4951 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) 4952 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); 4953 4954 // These cases should be handled in InstSimplify: 4955 // smin(X, Y) s<= X --> true 4956 // smin(X, Y) s> X --> false 4957 return nullptr; 4958 } 4959 4960 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { 4961 // smax(X, Y) == X --> X s>= Y 4962 // smax(X, Y) s<= X --> X s>= Y 4963 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) 4964 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); 4965 4966 // smax(X, Y) != X --> X s< Y 4967 // smax(X, Y) s> X --> X s< Y 4968 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) 4969 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); 4970 4971 // These cases should be handled in InstSimplify: 4972 // smax(X, Y) s>= X --> true 4973 // smax(X, Y) s< X --> false 4974 return nullptr; 4975 } 4976 4977 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { 4978 // umin(X, Y) == X --> X u<= Y 4979 // umin(X, Y) u>= X --> X u<= Y 4980 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) 4981 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); 4982 4983 // umin(X, Y) != X --> X u> Y 4984 // umin(X, Y) u< X --> X u> Y 4985 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) 4986 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); 4987 4988 // These cases should be handled in InstSimplify: 4989 // umin(X, Y) u<= X --> true 4990 // umin(X, Y) u> X --> false 4991 return nullptr; 4992 } 4993 4994 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { 4995 // umax(X, Y) == X --> X u>= Y 4996 // umax(X, Y) u<= X --> X u>= Y 4997 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) 4998 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); 4999 5000 // umax(X, Y) != X --> X u< Y 5001 // umax(X, Y) u> X --> X u< Y 5002 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) 5003 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); 5004 5005 // These cases should be handled in InstSimplify: 5006 // umax(X, Y) u>= X --> true 5007 // umax(X, Y) u< X --> false 5008 return nullptr; 5009 } 5010 5011 return nullptr; 5012 } 5013 5014 // Canonicalize checking for a power-of-2-or-zero value: 5015 static Instruction *foldICmpPow2Test(ICmpInst &I, 5016 InstCombiner::BuilderTy &Builder) { 5017 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5018 const CmpInst::Predicate Pred = I.getPredicate(); 5019 Value *A = nullptr; 5020 bool CheckIs; 5021 if (I.isEquality()) { 5022 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) 5023 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) 5024 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), 5025 m_Deferred(A)))) || 5026 !match(Op1, m_ZeroInt())) 5027 A = nullptr; 5028 5029 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) 5030 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) 5031 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) 5032 A = Op1; 5033 else if (match(Op1, 5034 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) 5035 A = Op0; 5036 5037 CheckIs = Pred == ICmpInst::ICMP_EQ; 5038 } else if (ICmpInst::isUnsigned(Pred)) { 5039 // (A ^ (A-1)) u>= A --> ctpop(A) < 2 (two commuted variants) 5040 // ((A-1) ^ A) u< A --> ctpop(A) > 1 (two commuted variants) 5041 5042 if ((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && 5043 match(Op0, m_OneUse(m_c_Xor(m_Add(m_Specific(Op1), m_AllOnes()), 5044 m_Specific(Op1))))) { 5045 A = Op1; 5046 CheckIs = Pred == ICmpInst::ICMP_UGE; 5047 } else if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) && 5048 match(Op1, m_OneUse(m_c_Xor(m_Add(m_Specific(Op0), m_AllOnes()), 5049 m_Specific(Op0))))) { 5050 A = Op0; 5051 CheckIs = Pred == ICmpInst::ICMP_ULE; 5052 } 5053 } 5054 5055 if (A) { 5056 Type *Ty = A->getType(); 5057 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); 5058 return CheckIs ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, 5059 ConstantInt::get(Ty, 2)) 5060 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, 5061 ConstantInt::get(Ty, 1)); 5062 } 5063 5064 return nullptr; 5065 } 5066 5067 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { 5068 if (!I.isEquality()) 5069 return nullptr; 5070 5071 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 5072 const CmpInst::Predicate Pred = I.getPredicate(); 5073 Value *A, *B, *C, *D; 5074 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 5075 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 5076 Value *OtherVal = A == Op1 ? B : A; 5077 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 5078 } 5079 5080 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 5081 // A^c1 == C^c2 --> A == C^(c1^c2) 5082 ConstantInt *C1, *C2; 5083 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && 5084 Op1->hasOneUse()) { 5085 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); 5086 Value *Xor = Builder.CreateXor(C, NC); 5087 return new ICmpInst(Pred, A, Xor); 5088 } 5089 5090 // A^B == A^D -> B == D 5091 if (A == C) 5092 return new ICmpInst(Pred, B, D); 5093 if (A == D) 5094 return new ICmpInst(Pred, B, C); 5095 if (B == C) 5096 return new ICmpInst(Pred, A, D); 5097 if (B == D) 5098 return new ICmpInst(Pred, A, C); 5099 } 5100 } 5101 5102 // canoncalize: 5103 // (icmp eq/ne (and X, C), X) 5104 // -> (icmp eq/ne (and X, ~C), 0) 5105 { 5106 Constant *CMask; 5107 A = nullptr; 5108 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_ImmConstant(CMask))))) 5109 A = Op1; 5110 else if (match(Op1, m_OneUse(m_And(m_Specific(Op0), m_ImmConstant(CMask))))) 5111 A = Op0; 5112 if (A) 5113 return new ICmpInst(Pred, Builder.CreateAnd(A, Builder.CreateNot(CMask)), 5114 Constant::getNullValue(A->getType())); 5115 } 5116 5117 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { 5118 // A == (A^B) -> B == 0 5119 Value *OtherVal = A == Op0 ? B : A; 5120 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); 5121 } 5122 5123 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 5124 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 5125 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 5126 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 5127 5128 if (A == C) { 5129 X = B; 5130 Y = D; 5131 Z = A; 5132 } else if (A == D) { 5133 X = B; 5134 Y = C; 5135 Z = A; 5136 } else if (B == C) { 5137 X = A; 5138 Y = D; 5139 Z = B; 5140 } else if (B == D) { 5141 X = A; 5142 Y = C; 5143 Z = B; 5144 } 5145 5146 if (X) { // Build (X^Y) & Z 5147 Op1 = Builder.CreateXor(X, Y); 5148 Op1 = Builder.CreateAnd(Op1, Z); 5149 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); 5150 } 5151 } 5152 5153 { 5154 // Similar to above, but specialized for constant because invert is needed: 5155 // (X | C) == (Y | C) --> (X ^ Y) & ~C == 0 5156 Value *X, *Y; 5157 Constant *C; 5158 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) && 5159 match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) { 5160 Value *Xor = Builder.CreateXor(X, Y); 5161 Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C)); 5162 return new ICmpInst(Pred, And, Constant::getNullValue(And->getType())); 5163 } 5164 } 5165 5166 if (match(Op1, m_ZExt(m_Value(A))) && 5167 (Op0->hasOneUse() || Op1->hasOneUse())) { 5168 // (B & (Pow2C-1)) == zext A --> A == trunc B 5169 // (B & (Pow2C-1)) != zext A --> A != trunc B 5170 const APInt *MaskC; 5171 if (match(Op0, m_And(m_Value(B), m_LowBitMask(MaskC))) && 5172 MaskC->countr_one() == A->getType()->getScalarSizeInBits()) 5173 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); 5174 } 5175 5176 // Test if 2 values have different or same signbits: 5177 // (X u>> BitWidth - 1) == zext (Y s> -1) --> (X ^ Y) < 0 5178 // (X u>> BitWidth - 1) != zext (Y s> -1) --> (X ^ Y) > -1 5179 // (X s>> BitWidth - 1) == sext (Y s> -1) --> (X ^ Y) < 0 5180 // (X s>> BitWidth - 1) != sext (Y s> -1) --> (X ^ Y) > -1 5181 Instruction *ExtI; 5182 if (match(Op1, m_CombineAnd(m_Instruction(ExtI), m_ZExtOrSExt(m_Value(A)))) && 5183 (Op0->hasOneUse() || Op1->hasOneUse())) { 5184 unsigned OpWidth = Op0->getType()->getScalarSizeInBits(); 5185 Instruction *ShiftI; 5186 Value *X, *Y; 5187 ICmpInst::Predicate Pred2; 5188 if (match(Op0, m_CombineAnd(m_Instruction(ShiftI), 5189 m_Shr(m_Value(X), 5190 m_SpecificIntAllowUndef(OpWidth - 1)))) && 5191 match(A, m_ICmp(Pred2, m_Value(Y), m_AllOnes())) && 5192 Pred2 == ICmpInst::ICMP_SGT && X->getType() == Y->getType()) { 5193 unsigned ExtOpc = ExtI->getOpcode(); 5194 unsigned ShiftOpc = ShiftI->getOpcode(); 5195 if ((ExtOpc == Instruction::ZExt && ShiftOpc == Instruction::LShr) || 5196 (ExtOpc == Instruction::SExt && ShiftOpc == Instruction::AShr)) { 5197 Value *Xor = Builder.CreateXor(X, Y, "xor.signbits"); 5198 Value *R = (Pred == ICmpInst::ICMP_EQ) ? Builder.CreateIsNeg(Xor) 5199 : Builder.CreateIsNotNeg(Xor); 5200 return replaceInstUsesWith(I, R); 5201 } 5202 } 5203 } 5204 5205 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 5206 // For lshr and ashr pairs. 5207 const APInt *AP1, *AP2; 5208 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowUndef(AP1)))) && 5209 match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowUndef(AP2))))) || 5210 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowUndef(AP1)))) && 5211 match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowUndef(AP2)))))) { 5212 if (AP1 != AP2) 5213 return nullptr; 5214 unsigned TypeBits = AP1->getBitWidth(); 5215 unsigned ShAmt = AP1->getLimitedValue(TypeBits); 5216 if (ShAmt < TypeBits && ShAmt != 0) { 5217 ICmpInst::Predicate NewPred = 5218 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 5219 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 5220 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 5221 return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal)); 5222 } 5223 } 5224 5225 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 5226 ConstantInt *Cst1; 5227 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 5228 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 5229 unsigned TypeBits = Cst1->getBitWidth(); 5230 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 5231 if (ShAmt < TypeBits && ShAmt != 0) { 5232 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); 5233 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 5234 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), 5235 I.getName() + ".mask"); 5236 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); 5237 } 5238 } 5239 5240 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 5241 // "icmp (and X, mask), cst" 5242 uint64_t ShAmt = 0; 5243 if (Op0->hasOneUse() && 5244 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && 5245 match(Op1, m_ConstantInt(Cst1)) && 5246 // Only do this when A has multiple uses. This is most important to do 5247 // when it exposes other optimizations. 5248 !A->hasOneUse()) { 5249 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 5250 5251 if (ShAmt < ASize) { 5252 APInt MaskV = 5253 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 5254 MaskV <<= ShAmt; 5255 5256 APInt CmpV = Cst1->getValue().zext(ASize); 5257 CmpV <<= ShAmt; 5258 5259 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); 5260 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); 5261 } 5262 } 5263 5264 if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I, Builder)) 5265 return ICmp; 5266 5267 // Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the 5268 // top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX", 5269 // which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps 5270 // of instcombine. 5271 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5272 if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) && 5273 match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) && 5274 A->getType()->getScalarSizeInBits() == BitWidth * 2 && 5275 (I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) { 5276 APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1); 5277 Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C)); 5278 return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT 5279 : ICmpInst::ICMP_UGE, 5280 Add, ConstantInt::get(A->getType(), C.shl(1))); 5281 } 5282 5283 // Canonicalize: 5284 // Assume B_Pow2 != 0 5285 // 1. A & B_Pow2 != B_Pow2 -> A & B_Pow2 == 0 5286 // 2. A & B_Pow2 == B_Pow2 -> A & B_Pow2 != 0 5287 if (match(Op0, m_c_And(m_Specific(Op1), m_Value())) && 5288 isKnownToBeAPowerOfTwo(Op1, /* OrZero */ false, 0, &I)) 5289 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0, 5290 ConstantInt::getNullValue(Op0->getType())); 5291 5292 if (match(Op1, m_c_And(m_Specific(Op0), m_Value())) && 5293 isKnownToBeAPowerOfTwo(Op0, /* OrZero */ false, 0, &I)) 5294 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op1, 5295 ConstantInt::getNullValue(Op1->getType())); 5296 5297 // Canonicalize: 5298 // icmp eq/ne X, OneUse(rotate-right(X)) 5299 // -> icmp eq/ne X, rotate-left(X) 5300 // We generally try to convert rotate-right -> rotate-left, this just 5301 // canonicalizes another case. 5302 CmpInst::Predicate PredUnused = Pred; 5303 if (match(&I, m_c_ICmp(PredUnused, m_Value(A), 5304 m_OneUse(m_Intrinsic<Intrinsic::fshr>( 5305 m_Deferred(A), m_Deferred(A), m_Value(B)))))) 5306 return new ICmpInst( 5307 Pred, A, 5308 Builder.CreateIntrinsic(Op0->getType(), Intrinsic::fshl, {A, A, B})); 5309 5310 return nullptr; 5311 } 5312 5313 Instruction *InstCombinerImpl::foldICmpWithTrunc(ICmpInst &ICmp) { 5314 ICmpInst::Predicate Pred = ICmp.getPredicate(); 5315 Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1); 5316 5317 // Try to canonicalize trunc + compare-to-constant into a mask + cmp. 5318 // The trunc masks high bits while the compare may effectively mask low bits. 5319 Value *X; 5320 const APInt *C; 5321 if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C))) 5322 return nullptr; 5323 5324 // This matches patterns corresponding to tests of the signbit as well as: 5325 // (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?) 5326 // (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?) 5327 APInt Mask; 5328 if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) { 5329 Value *And = Builder.CreateAnd(X, Mask); 5330 Constant *Zero = ConstantInt::getNullValue(X->getType()); 5331 return new ICmpInst(Pred, And, Zero); 5332 } 5333 5334 unsigned SrcBits = X->getType()->getScalarSizeInBits(); 5335 if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) { 5336 // If C is a negative power-of-2 (high-bit mask): 5337 // (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?) 5338 Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits)); 5339 Value *And = Builder.CreateAnd(X, MaskC); 5340 return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC); 5341 } 5342 5343 if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) { 5344 // If C is not-of-power-of-2 (one clear bit): 5345 // (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?) 5346 Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits)); 5347 Value *And = Builder.CreateAnd(X, MaskC); 5348 return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC); 5349 } 5350 5351 if (auto *II = dyn_cast<IntrinsicInst>(X)) { 5352 if (II->getIntrinsicID() == Intrinsic::cttz || 5353 II->getIntrinsicID() == Intrinsic::ctlz) { 5354 unsigned MaxRet = SrcBits; 5355 // If the "is_zero_poison" argument is set, then we know at least 5356 // one bit is set in the input, so the result is always at least one 5357 // less than the full bitwidth of that input. 5358 if (match(II->getArgOperand(1), m_One())) 5359 MaxRet--; 5360 5361 // Make sure the destination is wide enough to hold the largest output of 5362 // the intrinsic. 5363 if (llvm::Log2_32(MaxRet) + 1 <= Op0->getType()->getScalarSizeInBits()) 5364 if (Instruction *I = 5365 foldICmpIntrinsicWithConstant(ICmp, II, C->zext(SrcBits))) 5366 return I; 5367 } 5368 } 5369 5370 return nullptr; 5371 } 5372 5373 Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) { 5374 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); 5375 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); 5376 Value *X; 5377 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) 5378 return nullptr; 5379 5380 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; 5381 bool IsSignedCmp = ICmp.isSigned(); 5382 5383 // icmp Pred (ext X), (ext Y) 5384 Value *Y; 5385 if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) { 5386 bool IsZext0 = isa<ZExtOperator>(ICmp.getOperand(0)); 5387 bool IsZext1 = isa<ZExtOperator>(ICmp.getOperand(1)); 5388 5389 if (IsZext0 != IsZext1) { 5390 // If X and Y and both i1 5391 // (icmp eq/ne (zext X) (sext Y)) 5392 // eq -> (icmp eq (or X, Y), 0) 5393 // ne -> (icmp ne (or X, Y), 0) 5394 if (ICmp.isEquality() && X->getType()->isIntOrIntVectorTy(1) && 5395 Y->getType()->isIntOrIntVectorTy(1)) 5396 return new ICmpInst(ICmp.getPredicate(), Builder.CreateOr(X, Y), 5397 Constant::getNullValue(X->getType())); 5398 5399 // If we have mismatched casts, treat the zext of a non-negative source as 5400 // a sext to simulate matching casts. Otherwise, we are done. 5401 // TODO: Can we handle some predicates (equality) without non-negative? 5402 if ((IsZext0 && isKnownNonNegative(X, DL, 0, &AC, &ICmp, &DT)) || 5403 (IsZext1 && isKnownNonNegative(Y, DL, 0, &AC, &ICmp, &DT))) 5404 IsSignedExt = true; 5405 else 5406 return nullptr; 5407 } 5408 5409 // Not an extension from the same type? 5410 Type *XTy = X->getType(), *YTy = Y->getType(); 5411 if (XTy != YTy) { 5412 // One of the casts must have one use because we are creating a new cast. 5413 if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse()) 5414 return nullptr; 5415 // Extend the narrower operand to the type of the wider operand. 5416 CastInst::CastOps CastOpcode = 5417 IsSignedExt ? Instruction::SExt : Instruction::ZExt; 5418 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) 5419 X = Builder.CreateCast(CastOpcode, X, YTy); 5420 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) 5421 Y = Builder.CreateCast(CastOpcode, Y, XTy); 5422 else 5423 return nullptr; 5424 } 5425 5426 // (zext X) == (zext Y) --> X == Y 5427 // (sext X) == (sext Y) --> X == Y 5428 if (ICmp.isEquality()) 5429 return new ICmpInst(ICmp.getPredicate(), X, Y); 5430 5431 // A signed comparison of sign extended values simplifies into a 5432 // signed comparison. 5433 if (IsSignedCmp && IsSignedExt) 5434 return new ICmpInst(ICmp.getPredicate(), X, Y); 5435 5436 // The other three cases all fold into an unsigned comparison. 5437 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); 5438 } 5439 5440 // Below here, we are only folding a compare with constant. 5441 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 5442 if (!C) 5443 return nullptr; 5444 5445 // Compute the constant that would happen if we truncated to SrcTy then 5446 // re-extended to DestTy. 5447 Type *SrcTy = CastOp0->getSrcTy(); 5448 Type *DestTy = CastOp0->getDestTy(); 5449 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 5450 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); 5451 5452 // If the re-extended constant didn't change... 5453 if (Res2 == C) { 5454 if (ICmp.isEquality()) 5455 return new ICmpInst(ICmp.getPredicate(), X, Res1); 5456 5457 // A signed comparison of sign extended values simplifies into a 5458 // signed comparison. 5459 if (IsSignedExt && IsSignedCmp) 5460 return new ICmpInst(ICmp.getPredicate(), X, Res1); 5461 5462 // The other three cases all fold into an unsigned comparison. 5463 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); 5464 } 5465 5466 // The re-extended constant changed, partly changed (in the case of a vector), 5467 // or could not be determined to be equal (in the case of a constant 5468 // expression), so the constant cannot be represented in the shorter type. 5469 // All the cases that fold to true or false will have already been handled 5470 // by simplifyICmpInst, so only deal with the tricky case. 5471 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) 5472 return nullptr; 5473 5474 // Is source op positive? 5475 // icmp ult (sext X), C --> icmp sgt X, -1 5476 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 5477 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); 5478 5479 // Is source op negative? 5480 // icmp ugt (sext X), C --> icmp slt X, 0 5481 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 5482 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); 5483 } 5484 5485 /// Handle icmp (cast x), (cast or constant). 5486 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { 5487 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as 5488 // icmp compares only pointer's value. 5489 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2. 5490 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0)); 5491 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1)); 5492 if (SimplifiedOp0 || SimplifiedOp1) 5493 return new ICmpInst(ICmp.getPredicate(), 5494 SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0), 5495 SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1)); 5496 5497 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); 5498 if (!CastOp0) 5499 return nullptr; 5500 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) 5501 return nullptr; 5502 5503 Value *Op0Src = CastOp0->getOperand(0); 5504 Type *SrcTy = CastOp0->getSrcTy(); 5505 Type *DestTy = CastOp0->getDestTy(); 5506 5507 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 5508 // integer type is the same size as the pointer type. 5509 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { 5510 if (isa<VectorType>(SrcTy)) { 5511 SrcTy = cast<VectorType>(SrcTy)->getElementType(); 5512 DestTy = cast<VectorType>(DestTy)->getElementType(); 5513 } 5514 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); 5515 }; 5516 if (CastOp0->getOpcode() == Instruction::PtrToInt && 5517 CompatibleSizes(SrcTy, DestTy)) { 5518 Value *NewOp1 = nullptr; 5519 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 5520 Value *PtrSrc = PtrToIntOp1->getOperand(0); 5521 if (PtrSrc->getType()->getPointerAddressSpace() == 5522 Op0Src->getType()->getPointerAddressSpace()) { 5523 NewOp1 = PtrToIntOp1->getOperand(0); 5524 // If the pointer types don't match, insert a bitcast. 5525 if (Op0Src->getType() != NewOp1->getType()) 5526 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); 5527 } 5528 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 5529 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); 5530 } 5531 5532 if (NewOp1) 5533 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); 5534 } 5535 5536 if (Instruction *R = foldICmpWithTrunc(ICmp)) 5537 return R; 5538 5539 return foldICmpWithZextOrSext(ICmp); 5540 } 5541 5542 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS, bool IsSigned) { 5543 switch (BinaryOp) { 5544 default: 5545 llvm_unreachable("Unsupported binary op"); 5546 case Instruction::Add: 5547 case Instruction::Sub: 5548 return match(RHS, m_Zero()); 5549 case Instruction::Mul: 5550 return !(RHS->getType()->isIntOrIntVectorTy(1) && IsSigned) && 5551 match(RHS, m_One()); 5552 } 5553 } 5554 5555 OverflowResult 5556 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, 5557 bool IsSigned, Value *LHS, Value *RHS, 5558 Instruction *CxtI) const { 5559 switch (BinaryOp) { 5560 default: 5561 llvm_unreachable("Unsupported binary op"); 5562 case Instruction::Add: 5563 if (IsSigned) 5564 return computeOverflowForSignedAdd(LHS, RHS, CxtI); 5565 else 5566 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); 5567 case Instruction::Sub: 5568 if (IsSigned) 5569 return computeOverflowForSignedSub(LHS, RHS, CxtI); 5570 else 5571 return computeOverflowForUnsignedSub(LHS, RHS, CxtI); 5572 case Instruction::Mul: 5573 if (IsSigned) 5574 return computeOverflowForSignedMul(LHS, RHS, CxtI); 5575 else 5576 return computeOverflowForUnsignedMul(LHS, RHS, CxtI); 5577 } 5578 } 5579 5580 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, 5581 bool IsSigned, Value *LHS, 5582 Value *RHS, Instruction &OrigI, 5583 Value *&Result, 5584 Constant *&Overflow) { 5585 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 5586 std::swap(LHS, RHS); 5587 5588 // If the overflow check was an add followed by a compare, the insertion point 5589 // may be pointing to the compare. We want to insert the new instructions 5590 // before the add in case there are uses of the add between the add and the 5591 // compare. 5592 Builder.SetInsertPoint(&OrigI); 5593 5594 Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); 5595 if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) 5596 OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); 5597 5598 if (isNeutralValue(BinaryOp, RHS, IsSigned)) { 5599 Result = LHS; 5600 Overflow = ConstantInt::getFalse(OverflowTy); 5601 return true; 5602 } 5603 5604 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { 5605 case OverflowResult::MayOverflow: 5606 return false; 5607 case OverflowResult::AlwaysOverflowsLow: 5608 case OverflowResult::AlwaysOverflowsHigh: 5609 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 5610 Result->takeName(&OrigI); 5611 Overflow = ConstantInt::getTrue(OverflowTy); 5612 return true; 5613 case OverflowResult::NeverOverflows: 5614 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); 5615 Result->takeName(&OrigI); 5616 Overflow = ConstantInt::getFalse(OverflowTy); 5617 if (auto *Inst = dyn_cast<Instruction>(Result)) { 5618 if (IsSigned) 5619 Inst->setHasNoSignedWrap(); 5620 else 5621 Inst->setHasNoUnsignedWrap(); 5622 } 5623 return true; 5624 } 5625 5626 llvm_unreachable("Unexpected overflow result"); 5627 } 5628 5629 /// Recognize and process idiom involving test for multiplication 5630 /// overflow. 5631 /// 5632 /// The caller has matched a pattern of the form: 5633 /// I = cmp u (mul(zext A, zext B), V 5634 /// The function checks if this is a test for overflow and if so replaces 5635 /// multiplication with call to 'mul.with.overflow' intrinsic. 5636 /// 5637 /// \param I Compare instruction. 5638 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 5639 /// the compare instruction. Must be of integer type. 5640 /// \param OtherVal The other argument of compare instruction. 5641 /// \returns Instruction which must replace the compare instruction, NULL if no 5642 /// replacement required. 5643 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, 5644 Value *OtherVal, 5645 InstCombinerImpl &IC) { 5646 // Don't bother doing this transformation for pointers, don't do it for 5647 // vectors. 5648 if (!isa<IntegerType>(MulVal->getType())) 5649 return nullptr; 5650 5651 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 5652 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 5653 auto *MulInstr = dyn_cast<Instruction>(MulVal); 5654 if (!MulInstr) 5655 return nullptr; 5656 assert(MulInstr->getOpcode() == Instruction::Mul); 5657 5658 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 5659 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 5660 assert(LHS->getOpcode() == Instruction::ZExt); 5661 assert(RHS->getOpcode() == Instruction::ZExt); 5662 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 5663 5664 // Calculate type and width of the result produced by mul.with.overflow. 5665 Type *TyA = A->getType(), *TyB = B->getType(); 5666 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 5667 WidthB = TyB->getPrimitiveSizeInBits(); 5668 unsigned MulWidth; 5669 Type *MulType; 5670 if (WidthB > WidthA) { 5671 MulWidth = WidthB; 5672 MulType = TyB; 5673 } else { 5674 MulWidth = WidthA; 5675 MulType = TyA; 5676 } 5677 5678 // In order to replace the original mul with a narrower mul.with.overflow, 5679 // all uses must ignore upper bits of the product. The number of used low 5680 // bits must be not greater than the width of mul.with.overflow. 5681 if (MulVal->hasNUsesOrMore(2)) 5682 for (User *U : MulVal->users()) { 5683 if (U == &I) 5684 continue; 5685 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5686 // Check if truncation ignores bits above MulWidth. 5687 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 5688 if (TruncWidth > MulWidth) 5689 return nullptr; 5690 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5691 // Check if AND ignores bits above MulWidth. 5692 if (BO->getOpcode() != Instruction::And) 5693 return nullptr; 5694 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 5695 const APInt &CVal = CI->getValue(); 5696 if (CVal.getBitWidth() - CVal.countl_zero() > MulWidth) 5697 return nullptr; 5698 } else { 5699 // In this case we could have the operand of the binary operation 5700 // being defined in another block, and performing the replacement 5701 // could break the dominance relation. 5702 return nullptr; 5703 } 5704 } else { 5705 // Other uses prohibit this transformation. 5706 return nullptr; 5707 } 5708 } 5709 5710 // Recognize patterns 5711 switch (I.getPredicate()) { 5712 case ICmpInst::ICMP_EQ: 5713 case ICmpInst::ICMP_NE: 5714 // Recognize pattern: 5715 // mulval = mul(zext A, zext B) 5716 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 5717 ConstantInt *CI; 5718 Value *ValToMask; 5719 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 5720 if (ValToMask != MulVal) 5721 return nullptr; 5722 const APInt &CVal = CI->getValue() + 1; 5723 if (CVal.isPowerOf2()) { 5724 unsigned MaskWidth = CVal.logBase2(); 5725 if (MaskWidth == MulWidth) 5726 break; // Recognized 5727 } 5728 } 5729 return nullptr; 5730 5731 case ICmpInst::ICMP_UGT: 5732 // Recognize pattern: 5733 // mulval = mul(zext A, zext B) 5734 // cmp ugt mulval, max 5735 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5736 APInt MaxVal = APInt::getMaxValue(MulWidth); 5737 MaxVal = MaxVal.zext(CI->getBitWidth()); 5738 if (MaxVal.eq(CI->getValue())) 5739 break; // Recognized 5740 } 5741 return nullptr; 5742 5743 case ICmpInst::ICMP_UGE: 5744 // Recognize pattern: 5745 // mulval = mul(zext A, zext B) 5746 // cmp uge mulval, max+1 5747 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5748 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5749 if (MaxVal.eq(CI->getValue())) 5750 break; // Recognized 5751 } 5752 return nullptr; 5753 5754 case ICmpInst::ICMP_ULE: 5755 // Recognize pattern: 5756 // mulval = mul(zext A, zext B) 5757 // cmp ule mulval, max 5758 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5759 APInt MaxVal = APInt::getMaxValue(MulWidth); 5760 MaxVal = MaxVal.zext(CI->getBitWidth()); 5761 if (MaxVal.eq(CI->getValue())) 5762 break; // Recognized 5763 } 5764 return nullptr; 5765 5766 case ICmpInst::ICMP_ULT: 5767 // Recognize pattern: 5768 // mulval = mul(zext A, zext B) 5769 // cmp ule mulval, max + 1 5770 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 5771 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 5772 if (MaxVal.eq(CI->getValue())) 5773 break; // Recognized 5774 } 5775 return nullptr; 5776 5777 default: 5778 return nullptr; 5779 } 5780 5781 InstCombiner::BuilderTy &Builder = IC.Builder; 5782 Builder.SetInsertPoint(MulInstr); 5783 5784 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 5785 Value *MulA = A, *MulB = B; 5786 if (WidthA < MulWidth) 5787 MulA = Builder.CreateZExt(A, MulType); 5788 if (WidthB < MulWidth) 5789 MulB = Builder.CreateZExt(B, MulType); 5790 Function *F = Intrinsic::getDeclaration( 5791 I.getModule(), Intrinsic::umul_with_overflow, MulType); 5792 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); 5793 IC.addToWorklist(MulInstr); 5794 5795 // If there are uses of mul result other than the comparison, we know that 5796 // they are truncation or binary AND. Change them to use result of 5797 // mul.with.overflow and adjust properly mask/size. 5798 if (MulVal->hasNUsesOrMore(2)) { 5799 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); 5800 for (User *U : make_early_inc_range(MulVal->users())) { 5801 if (U == &I || U == OtherVal) 5802 continue; 5803 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 5804 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 5805 IC.replaceInstUsesWith(*TI, Mul); 5806 else 5807 TI->setOperand(0, Mul); 5808 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 5809 assert(BO->getOpcode() == Instruction::And); 5810 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 5811 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 5812 APInt ShortMask = CI->getValue().trunc(MulWidth); 5813 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); 5814 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); 5815 IC.replaceInstUsesWith(*BO, Zext); 5816 } else { 5817 llvm_unreachable("Unexpected Binary operation"); 5818 } 5819 IC.addToWorklist(cast<Instruction>(U)); 5820 } 5821 } 5822 if (isa<Instruction>(OtherVal)) 5823 IC.addToWorklist(cast<Instruction>(OtherVal)); 5824 5825 // The original icmp gets replaced with the overflow value, maybe inverted 5826 // depending on predicate. 5827 bool Inverse = false; 5828 switch (I.getPredicate()) { 5829 case ICmpInst::ICMP_NE: 5830 break; 5831 case ICmpInst::ICMP_EQ: 5832 Inverse = true; 5833 break; 5834 case ICmpInst::ICMP_UGT: 5835 case ICmpInst::ICMP_UGE: 5836 if (I.getOperand(0) == MulVal) 5837 break; 5838 Inverse = true; 5839 break; 5840 case ICmpInst::ICMP_ULT: 5841 case ICmpInst::ICMP_ULE: 5842 if (I.getOperand(1) == MulVal) 5843 break; 5844 Inverse = true; 5845 break; 5846 default: 5847 llvm_unreachable("Unexpected predicate"); 5848 } 5849 if (Inverse) { 5850 Value *Res = Builder.CreateExtractValue(Call, 1); 5851 return BinaryOperator::CreateNot(Res); 5852 } 5853 5854 return ExtractValueInst::Create(Call, 1); 5855 } 5856 5857 /// When performing a comparison against a constant, it is possible that not all 5858 /// the bits in the LHS are demanded. This helper method computes the mask that 5859 /// IS demanded. 5860 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { 5861 const APInt *RHS; 5862 if (!match(I.getOperand(1), m_APInt(RHS))) 5863 return APInt::getAllOnes(BitWidth); 5864 5865 // If this is a normal comparison, it demands all bits. If it is a sign bit 5866 // comparison, it only demands the sign bit. 5867 bool UnusedBit; 5868 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) 5869 return APInt::getSignMask(BitWidth); 5870 5871 switch (I.getPredicate()) { 5872 // For a UGT comparison, we don't care about any bits that 5873 // correspond to the trailing ones of the comparand. The value of these 5874 // bits doesn't impact the outcome of the comparison, because any value 5875 // greater than the RHS must differ in a bit higher than these due to carry. 5876 case ICmpInst::ICMP_UGT: 5877 return APInt::getBitsSetFrom(BitWidth, RHS->countr_one()); 5878 5879 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 5880 // Any value less than the RHS must differ in a higher bit because of carries. 5881 case ICmpInst::ICMP_ULT: 5882 return APInt::getBitsSetFrom(BitWidth, RHS->countr_zero()); 5883 5884 default: 5885 return APInt::getAllOnes(BitWidth); 5886 } 5887 } 5888 5889 /// Check that one use is in the same block as the definition and all 5890 /// other uses are in blocks dominated by a given block. 5891 /// 5892 /// \param DI Definition 5893 /// \param UI Use 5894 /// \param DB Block that must dominate all uses of \p DI outside 5895 /// the parent block 5896 /// \return true when \p UI is the only use of \p DI in the parent block 5897 /// and all other uses of \p DI are in blocks dominated by \p DB. 5898 /// 5899 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, 5900 const Instruction *UI, 5901 const BasicBlock *DB) const { 5902 assert(DI && UI && "Instruction not defined\n"); 5903 // Ignore incomplete definitions. 5904 if (!DI->getParent()) 5905 return false; 5906 // DI and UI must be in the same block. 5907 if (DI->getParent() != UI->getParent()) 5908 return false; 5909 // Protect from self-referencing blocks. 5910 if (DI->getParent() == DB) 5911 return false; 5912 for (const User *U : DI->users()) { 5913 auto *Usr = cast<Instruction>(U); 5914 if (Usr != UI && !DT.dominates(DB, Usr->getParent())) 5915 return false; 5916 } 5917 return true; 5918 } 5919 5920 /// Return true when the instruction sequence within a block is select-cmp-br. 5921 static bool isChainSelectCmpBranch(const SelectInst *SI) { 5922 const BasicBlock *BB = SI->getParent(); 5923 if (!BB) 5924 return false; 5925 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 5926 if (!BI || BI->getNumSuccessors() != 2) 5927 return false; 5928 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 5929 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 5930 return false; 5931 return true; 5932 } 5933 5934 /// True when a select result is replaced by one of its operands 5935 /// in select-icmp sequence. This will eventually result in the elimination 5936 /// of the select. 5937 /// 5938 /// \param SI Select instruction 5939 /// \param Icmp Compare instruction 5940 /// \param SIOpd Operand that replaces the select 5941 /// 5942 /// Notes: 5943 /// - The replacement is global and requires dominator information 5944 /// - The caller is responsible for the actual replacement 5945 /// 5946 /// Example: 5947 /// 5948 /// entry: 5949 /// %4 = select i1 %3, %C* %0, %C* null 5950 /// %5 = icmp eq %C* %4, null 5951 /// br i1 %5, label %9, label %7 5952 /// ... 5953 /// ; <label>:7 ; preds = %entry 5954 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 5955 /// ... 5956 /// 5957 /// can be transformed to 5958 /// 5959 /// %5 = icmp eq %C* %0, null 5960 /// %6 = select i1 %3, i1 %5, i1 true 5961 /// br i1 %6, label %9, label %7 5962 /// ... 5963 /// ; <label>:7 ; preds = %entry 5964 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 5965 /// 5966 /// Similar when the first operand of the select is a constant or/and 5967 /// the compare is for not equal rather than equal. 5968 /// 5969 /// NOTE: The function is only called when the select and compare constants 5970 /// are equal, the optimization can work only for EQ predicates. This is not a 5971 /// major restriction since a NE compare should be 'normalized' to an equal 5972 /// compare, which usually happens in the combiner and test case 5973 /// select-cmp-br.ll checks for it. 5974 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, 5975 const ICmpInst *Icmp, 5976 const unsigned SIOpd) { 5977 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 5978 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 5979 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 5980 // The check for the single predecessor is not the best that can be 5981 // done. But it protects efficiently against cases like when SI's 5982 // home block has two successors, Succ and Succ1, and Succ1 predecessor 5983 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 5984 // replaced can be reached on either path. So the uniqueness check 5985 // guarantees that the path all uses of SI (outside SI's parent) are on 5986 // is disjoint from all other paths out of SI. But that information 5987 // is more expensive to compute, and the trade-off here is in favor 5988 // of compile-time. It should also be noticed that we check for a single 5989 // predecessor and not only uniqueness. This to handle the situation when 5990 // Succ and Succ1 points to the same basic block. 5991 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 5992 NumSel++; 5993 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 5994 return true; 5995 } 5996 } 5997 return false; 5998 } 5999 6000 /// Try to fold the comparison based on range information we can get by checking 6001 /// whether bits are known to be zero or one in the inputs. 6002 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { 6003 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6004 Type *Ty = Op0->getType(); 6005 ICmpInst::Predicate Pred = I.getPredicate(); 6006 6007 // Get scalar or pointer size. 6008 unsigned BitWidth = Ty->isIntOrIntVectorTy() 6009 ? Ty->getScalarSizeInBits() 6010 : DL.getPointerTypeSizeInBits(Ty->getScalarType()); 6011 6012 if (!BitWidth) 6013 return nullptr; 6014 6015 KnownBits Op0Known(BitWidth); 6016 KnownBits Op1Known(BitWidth); 6017 6018 if (SimplifyDemandedBits(&I, 0, 6019 getDemandedBitsLHSMask(I, BitWidth), 6020 Op0Known, 0)) 6021 return &I; 6022 6023 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known, 0)) 6024 return &I; 6025 6026 // Given the known and unknown bits, compute a range that the LHS could be 6027 // in. Compute the Min, Max and RHS values based on the known bits. For the 6028 // EQ and NE we use unsigned values. 6029 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 6030 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 6031 if (I.isSigned()) { 6032 Op0Min = Op0Known.getSignedMinValue(); 6033 Op0Max = Op0Known.getSignedMaxValue(); 6034 Op1Min = Op1Known.getSignedMinValue(); 6035 Op1Max = Op1Known.getSignedMaxValue(); 6036 } else { 6037 Op0Min = Op0Known.getMinValue(); 6038 Op0Max = Op0Known.getMaxValue(); 6039 Op1Min = Op1Known.getMinValue(); 6040 Op1Max = Op1Known.getMaxValue(); 6041 } 6042 6043 // If Min and Max are known to be the same, then SimplifyDemandedBits figured 6044 // out that the LHS or RHS is a constant. Constant fold this now, so that 6045 // code below can assume that Min != Max. 6046 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 6047 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); 6048 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 6049 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); 6050 6051 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a 6052 // min/max canonical compare with some other compare. That could lead to 6053 // conflict with select canonicalization and infinite looping. 6054 // FIXME: This constraint may go away if min/max intrinsics are canonical. 6055 auto isMinMaxCmp = [&](Instruction &Cmp) { 6056 if (!Cmp.hasOneUse()) 6057 return false; 6058 Value *A, *B; 6059 SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor; 6060 if (!SelectPatternResult::isMinOrMax(SPF)) 6061 return false; 6062 return match(Op0, m_MaxOrMin(m_Value(), m_Value())) || 6063 match(Op1, m_MaxOrMin(m_Value(), m_Value())); 6064 }; 6065 if (!isMinMaxCmp(I)) { 6066 switch (Pred) { 6067 default: 6068 break; 6069 case ICmpInst::ICMP_ULT: { 6070 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 6071 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6072 const APInt *CmpC; 6073 if (match(Op1, m_APInt(CmpC))) { 6074 // A <u C -> A == C-1 if min(A)+1 == C 6075 if (*CmpC == Op0Min + 1) 6076 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6077 ConstantInt::get(Op1->getType(), *CmpC - 1)); 6078 // X <u C --> X == 0, if the number of zero bits in the bottom of X 6079 // exceeds the log2 of C. 6080 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) 6081 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6082 Constant::getNullValue(Op1->getType())); 6083 } 6084 break; 6085 } 6086 case ICmpInst::ICMP_UGT: { 6087 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 6088 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6089 const APInt *CmpC; 6090 if (match(Op1, m_APInt(CmpC))) { 6091 // A >u C -> A == C+1 if max(a)-1 == C 6092 if (*CmpC == Op0Max - 1) 6093 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6094 ConstantInt::get(Op1->getType(), *CmpC + 1)); 6095 // X >u C --> X != 0, if the number of zero bits in the bottom of X 6096 // exceeds the log2 of C. 6097 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) 6098 return new ICmpInst(ICmpInst::ICMP_NE, Op0, 6099 Constant::getNullValue(Op1->getType())); 6100 } 6101 break; 6102 } 6103 case ICmpInst::ICMP_SLT: { 6104 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 6105 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6106 const APInt *CmpC; 6107 if (match(Op1, m_APInt(CmpC))) { 6108 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C 6109 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6110 ConstantInt::get(Op1->getType(), *CmpC - 1)); 6111 } 6112 break; 6113 } 6114 case ICmpInst::ICMP_SGT: { 6115 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 6116 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 6117 const APInt *CmpC; 6118 if (match(Op1, m_APInt(CmpC))) { 6119 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C 6120 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 6121 ConstantInt::get(Op1->getType(), *CmpC + 1)); 6122 } 6123 break; 6124 } 6125 } 6126 } 6127 6128 // Based on the range information we know about the LHS, see if we can 6129 // simplify this comparison. For example, (x&4) < 8 is always true. 6130 switch (Pred) { 6131 default: 6132 llvm_unreachable("Unknown icmp opcode!"); 6133 case ICmpInst::ICMP_EQ: 6134 case ICmpInst::ICMP_NE: { 6135 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 6136 return replaceInstUsesWith( 6137 I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); 6138 6139 // If all bits are known zero except for one, then we know at most one bit 6140 // is set. If the comparison is against zero, then this is a check to see if 6141 // *that* bit is set. 6142 APInt Op0KnownZeroInverted = ~Op0Known.Zero; 6143 if (Op1Known.isZero()) { 6144 // If the LHS is an AND with the same constant, look through it. 6145 Value *LHS = nullptr; 6146 const APInt *LHSC; 6147 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || 6148 *LHSC != Op0KnownZeroInverted) 6149 LHS = Op0; 6150 6151 Value *X; 6152 const APInt *C1; 6153 if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) { 6154 Type *XTy = X->getType(); 6155 unsigned Log2C1 = C1->countr_zero(); 6156 APInt C2 = Op0KnownZeroInverted; 6157 APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1; 6158 if (C2Pow2.isPowerOf2()) { 6159 // iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2): 6160 // ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1)) 6161 // ((C1 << X) & C2) != 0 -> X < (Log2(C2+C1) - Log2(C1)) 6162 unsigned Log2C2 = C2Pow2.countr_zero(); 6163 auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1); 6164 auto NewPred = 6165 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; 6166 return new ICmpInst(NewPred, X, CmpC); 6167 } 6168 } 6169 } 6170 6171 // Op0 eq C_Pow2 -> Op0 ne 0 if Op0 is known to be C_Pow2 or zero. 6172 if (Op1Known.isConstant() && Op1Known.getConstant().isPowerOf2() && 6173 (Op0Known & Op1Known) == Op0Known) 6174 return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0, 6175 ConstantInt::getNullValue(Op1->getType())); 6176 break; 6177 } 6178 case ICmpInst::ICMP_ULT: { 6179 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 6180 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6181 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 6182 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6183 break; 6184 } 6185 case ICmpInst::ICMP_UGT: { 6186 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 6187 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6188 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 6189 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6190 break; 6191 } 6192 case ICmpInst::ICMP_SLT: { 6193 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 6194 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6195 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 6196 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6197 break; 6198 } 6199 case ICmpInst::ICMP_SGT: { 6200 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 6201 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6202 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 6203 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6204 break; 6205 } 6206 case ICmpInst::ICMP_SGE: 6207 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 6208 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 6209 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6210 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 6211 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6212 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) 6213 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6214 break; 6215 case ICmpInst::ICMP_SLE: 6216 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 6217 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 6218 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6219 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 6220 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6221 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) 6222 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6223 break; 6224 case ICmpInst::ICMP_UGE: 6225 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 6226 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 6227 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6228 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 6229 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6230 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) 6231 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6232 break; 6233 case ICmpInst::ICMP_ULE: 6234 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 6235 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 6236 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6237 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 6238 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6239 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) 6240 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); 6241 break; 6242 } 6243 6244 // Turn a signed comparison into an unsigned one if both operands are known to 6245 // have the same sign. 6246 if (I.isSigned() && 6247 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || 6248 (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) 6249 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 6250 6251 return nullptr; 6252 } 6253 6254 /// If one operand of an icmp is effectively a bool (value range of {0,1}), 6255 /// then try to reduce patterns based on that limit. 6256 Instruction *InstCombinerImpl::foldICmpUsingBoolRange(ICmpInst &I) { 6257 Value *X, *Y; 6258 ICmpInst::Predicate Pred; 6259 6260 // X must be 0 and bool must be true for "ULT": 6261 // X <u (zext i1 Y) --> (X == 0) & Y 6262 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) && 6263 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT) 6264 return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y); 6265 6266 // X must be 0 or bool must be true for "ULE": 6267 // X <=u (sext i1 Y) --> (X == 0) | Y 6268 if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) && 6269 Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE) 6270 return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y); 6271 6272 const APInt *C; 6273 if (match(I.getOperand(0), m_c_Add(m_ZExt(m_Value(X)), m_SExt(m_Value(Y)))) && 6274 match(I.getOperand(1), m_APInt(C)) && 6275 X->getType()->isIntOrIntVectorTy(1) && 6276 Y->getType()->isIntOrIntVectorTy(1)) { 6277 unsigned BitWidth = C->getBitWidth(); 6278 Pred = I.getPredicate(); 6279 APInt Zero = APInt::getZero(BitWidth); 6280 APInt MinusOne = APInt::getAllOnes(BitWidth); 6281 APInt One(BitWidth, 1); 6282 if ((C->sgt(Zero) && Pred == ICmpInst::ICMP_SGT) || 6283 (C->slt(Zero) && Pred == ICmpInst::ICMP_SLT)) 6284 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 6285 if ((C->sgt(One) && Pred == ICmpInst::ICMP_SLT) || 6286 (C->slt(MinusOne) && Pred == ICmpInst::ICMP_SGT)) 6287 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 6288 6289 if (I.getOperand(0)->hasOneUse()) { 6290 APInt NewC = *C; 6291 // canonicalize predicate to eq/ne 6292 if ((*C == Zero && Pred == ICmpInst::ICMP_SLT) || 6293 (*C != Zero && *C != MinusOne && Pred == ICmpInst::ICMP_UGT)) { 6294 // x s< 0 in [-1, 1] --> x == -1 6295 // x u> 1(or any const !=0 !=-1) in [-1, 1] --> x == -1 6296 NewC = MinusOne; 6297 Pred = ICmpInst::ICMP_EQ; 6298 } else if ((*C == MinusOne && Pred == ICmpInst::ICMP_SGT) || 6299 (*C != Zero && *C != One && Pred == ICmpInst::ICMP_ULT)) { 6300 // x s> -1 in [-1, 1] --> x != -1 6301 // x u< -1 in [-1, 1] --> x != -1 6302 Pred = ICmpInst::ICMP_NE; 6303 } else if (*C == Zero && Pred == ICmpInst::ICMP_SGT) { 6304 // x s> 0 in [-1, 1] --> x == 1 6305 NewC = One; 6306 Pred = ICmpInst::ICMP_EQ; 6307 } else if (*C == One && Pred == ICmpInst::ICMP_SLT) { 6308 // x s< 1 in [-1, 1] --> x != 1 6309 Pred = ICmpInst::ICMP_NE; 6310 } 6311 6312 if (NewC == MinusOne) { 6313 if (Pred == ICmpInst::ICMP_EQ) 6314 return BinaryOperator::CreateAnd(Builder.CreateNot(X), Y); 6315 if (Pred == ICmpInst::ICMP_NE) 6316 return BinaryOperator::CreateOr(X, Builder.CreateNot(Y)); 6317 } else if (NewC == One) { 6318 if (Pred == ICmpInst::ICMP_EQ) 6319 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Y)); 6320 if (Pred == ICmpInst::ICMP_NE) 6321 return BinaryOperator::CreateOr(Builder.CreateNot(X), Y); 6322 } 6323 } 6324 } 6325 6326 return nullptr; 6327 } 6328 6329 std::optional<std::pair<CmpInst::Predicate, Constant *>> 6330 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, 6331 Constant *C) { 6332 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && 6333 "Only for relational integer predicates."); 6334 6335 Type *Type = C->getType(); 6336 bool IsSigned = ICmpInst::isSigned(Pred); 6337 6338 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); 6339 bool WillIncrement = 6340 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; 6341 6342 // Check if the constant operand can be safely incremented/decremented 6343 // without overflowing/underflowing. 6344 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { 6345 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); 6346 }; 6347 6348 Constant *SafeReplacementConstant = nullptr; 6349 if (auto *CI = dyn_cast<ConstantInt>(C)) { 6350 // Bail out if the constant can't be safely incremented/decremented. 6351 if (!ConstantIsOk(CI)) 6352 return std::nullopt; 6353 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { 6354 unsigned NumElts = FVTy->getNumElements(); 6355 for (unsigned i = 0; i != NumElts; ++i) { 6356 Constant *Elt = C->getAggregateElement(i); 6357 if (!Elt) 6358 return std::nullopt; 6359 6360 if (isa<UndefValue>(Elt)) 6361 continue; 6362 6363 // Bail out if we can't determine if this constant is min/max or if we 6364 // know that this constant is min/max. 6365 auto *CI = dyn_cast<ConstantInt>(Elt); 6366 if (!CI || !ConstantIsOk(CI)) 6367 return std::nullopt; 6368 6369 if (!SafeReplacementConstant) 6370 SafeReplacementConstant = CI; 6371 } 6372 } else { 6373 // ConstantExpr? 6374 return std::nullopt; 6375 } 6376 6377 // It may not be safe to change a compare predicate in the presence of 6378 // undefined elements, so replace those elements with the first safe constant 6379 // that we found. 6380 // TODO: in case of poison, it is safe; let's replace undefs only. 6381 if (C->containsUndefOrPoisonElement()) { 6382 assert(SafeReplacementConstant && "Replacement constant not set"); 6383 C = Constant::replaceUndefsWith(C, SafeReplacementConstant); 6384 } 6385 6386 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); 6387 6388 // Increment or decrement the constant. 6389 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); 6390 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); 6391 6392 return std::make_pair(NewPred, NewC); 6393 } 6394 6395 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 6396 /// it into the appropriate icmp lt or icmp gt instruction. This transform 6397 /// allows them to be folded in visitICmpInst. 6398 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 6399 ICmpInst::Predicate Pred = I.getPredicate(); 6400 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || 6401 InstCombiner::isCanonicalPredicate(Pred)) 6402 return nullptr; 6403 6404 Value *Op0 = I.getOperand(0); 6405 Value *Op1 = I.getOperand(1); 6406 auto *Op1C = dyn_cast<Constant>(Op1); 6407 if (!Op1C) 6408 return nullptr; 6409 6410 auto FlippedStrictness = 6411 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); 6412 if (!FlippedStrictness) 6413 return nullptr; 6414 6415 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); 6416 } 6417 6418 /// If we have a comparison with a non-canonical predicate, if we can update 6419 /// all the users, invert the predicate and adjust all the users. 6420 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { 6421 // Is the predicate already canonical? 6422 CmpInst::Predicate Pred = I.getPredicate(); 6423 if (InstCombiner::isCanonicalPredicate(Pred)) 6424 return nullptr; 6425 6426 // Can all users be adjusted to predicate inversion? 6427 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 6428 return nullptr; 6429 6430 // Ok, we can canonicalize comparison! 6431 // Let's first invert the comparison's predicate. 6432 I.setPredicate(CmpInst::getInversePredicate(Pred)); 6433 I.setName(I.getName() + ".not"); 6434 6435 // And, adapt users. 6436 freelyInvertAllUsersOf(&I); 6437 6438 return &I; 6439 } 6440 6441 /// Integer compare with boolean values can always be turned into bitwise ops. 6442 static Instruction *canonicalizeICmpBool(ICmpInst &I, 6443 InstCombiner::BuilderTy &Builder) { 6444 Value *A = I.getOperand(0), *B = I.getOperand(1); 6445 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); 6446 6447 // A boolean compared to true/false can be simplified to Op0/true/false in 6448 // 14 out of the 20 (10 predicates * 2 constants) possible combinations. 6449 // Cases not handled by InstSimplify are always 'not' of Op0. 6450 if (match(B, m_Zero())) { 6451 switch (I.getPredicate()) { 6452 case CmpInst::ICMP_EQ: // A == 0 -> !A 6453 case CmpInst::ICMP_ULE: // A <=u 0 -> !A 6454 case CmpInst::ICMP_SGE: // A >=s 0 -> !A 6455 return BinaryOperator::CreateNot(A); 6456 default: 6457 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 6458 } 6459 } else if (match(B, m_One())) { 6460 switch (I.getPredicate()) { 6461 case CmpInst::ICMP_NE: // A != 1 -> !A 6462 case CmpInst::ICMP_ULT: // A <u 1 -> !A 6463 case CmpInst::ICMP_SGT: // A >s -1 -> !A 6464 return BinaryOperator::CreateNot(A); 6465 default: 6466 llvm_unreachable("ICmp i1 X, C not simplified as expected."); 6467 } 6468 } 6469 6470 switch (I.getPredicate()) { 6471 default: 6472 llvm_unreachable("Invalid icmp instruction!"); 6473 case ICmpInst::ICMP_EQ: 6474 // icmp eq i1 A, B -> ~(A ^ B) 6475 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 6476 6477 case ICmpInst::ICMP_NE: 6478 // icmp ne i1 A, B -> A ^ B 6479 return BinaryOperator::CreateXor(A, B); 6480 6481 case ICmpInst::ICMP_UGT: 6482 // icmp ugt -> icmp ult 6483 std::swap(A, B); 6484 [[fallthrough]]; 6485 case ICmpInst::ICMP_ULT: 6486 // icmp ult i1 A, B -> ~A & B 6487 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 6488 6489 case ICmpInst::ICMP_SGT: 6490 // icmp sgt -> icmp slt 6491 std::swap(A, B); 6492 [[fallthrough]]; 6493 case ICmpInst::ICMP_SLT: 6494 // icmp slt i1 A, B -> A & ~B 6495 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); 6496 6497 case ICmpInst::ICMP_UGE: 6498 // icmp uge -> icmp ule 6499 std::swap(A, B); 6500 [[fallthrough]]; 6501 case ICmpInst::ICMP_ULE: 6502 // icmp ule i1 A, B -> ~A | B 6503 return BinaryOperator::CreateOr(Builder.CreateNot(A), B); 6504 6505 case ICmpInst::ICMP_SGE: 6506 // icmp sge -> icmp sle 6507 std::swap(A, B); 6508 [[fallthrough]]; 6509 case ICmpInst::ICMP_SLE: 6510 // icmp sle i1 A, B -> A | ~B 6511 return BinaryOperator::CreateOr(Builder.CreateNot(B), A); 6512 } 6513 } 6514 6515 // Transform pattern like: 6516 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X 6517 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X 6518 // Into: 6519 // (X l>> Y) != 0 6520 // (X l>> Y) == 0 6521 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, 6522 InstCombiner::BuilderTy &Builder) { 6523 ICmpInst::Predicate Pred, NewPred; 6524 Value *X, *Y; 6525 if (match(&Cmp, 6526 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { 6527 switch (Pred) { 6528 case ICmpInst::ICMP_ULE: 6529 NewPred = ICmpInst::ICMP_NE; 6530 break; 6531 case ICmpInst::ICMP_UGT: 6532 NewPred = ICmpInst::ICMP_EQ; 6533 break; 6534 default: 6535 return nullptr; 6536 } 6537 } else if (match(&Cmp, m_c_ICmp(Pred, 6538 m_OneUse(m_CombineOr( 6539 m_Not(m_Shl(m_AllOnes(), m_Value(Y))), 6540 m_Add(m_Shl(m_One(), m_Value(Y)), 6541 m_AllOnes()))), 6542 m_Value(X)))) { 6543 // The variant with 'add' is not canonical, (the variant with 'not' is) 6544 // we only get it because it has extra uses, and can't be canonicalized, 6545 6546 switch (Pred) { 6547 case ICmpInst::ICMP_ULT: 6548 NewPred = ICmpInst::ICMP_NE; 6549 break; 6550 case ICmpInst::ICMP_UGE: 6551 NewPred = ICmpInst::ICMP_EQ; 6552 break; 6553 default: 6554 return nullptr; 6555 } 6556 } else 6557 return nullptr; 6558 6559 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); 6560 Constant *Zero = Constant::getNullValue(NewX->getType()); 6561 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); 6562 } 6563 6564 static Instruction *foldVectorCmp(CmpInst &Cmp, 6565 InstCombiner::BuilderTy &Builder) { 6566 const CmpInst::Predicate Pred = Cmp.getPredicate(); 6567 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); 6568 Value *V1, *V2; 6569 6570 auto createCmpReverse = [&](CmpInst::Predicate Pred, Value *X, Value *Y) { 6571 Value *V = Builder.CreateCmp(Pred, X, Y, Cmp.getName()); 6572 if (auto *I = dyn_cast<Instruction>(V)) 6573 I->copyIRFlags(&Cmp); 6574 Module *M = Cmp.getModule(); 6575 Function *F = Intrinsic::getDeclaration( 6576 M, Intrinsic::experimental_vector_reverse, V->getType()); 6577 return CallInst::Create(F, V); 6578 }; 6579 6580 if (match(LHS, m_VecReverse(m_Value(V1)))) { 6581 // cmp Pred, rev(V1), rev(V2) --> rev(cmp Pred, V1, V2) 6582 if (match(RHS, m_VecReverse(m_Value(V2))) && 6583 (LHS->hasOneUse() || RHS->hasOneUse())) 6584 return createCmpReverse(Pred, V1, V2); 6585 6586 // cmp Pred, rev(V1), RHSSplat --> rev(cmp Pred, V1, RHSSplat) 6587 if (LHS->hasOneUse() && isSplatValue(RHS)) 6588 return createCmpReverse(Pred, V1, RHS); 6589 } 6590 // cmp Pred, LHSSplat, rev(V2) --> rev(cmp Pred, LHSSplat, V2) 6591 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2))))) 6592 return createCmpReverse(Pred, LHS, V2); 6593 6594 ArrayRef<int> M; 6595 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) 6596 return nullptr; 6597 6598 // If both arguments of the cmp are shuffles that use the same mask and 6599 // shuffle within a single vector, move the shuffle after the cmp: 6600 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M 6601 Type *V1Ty = V1->getType(); 6602 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && 6603 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { 6604 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); 6605 return new ShuffleVectorInst(NewCmp, M); 6606 } 6607 6608 // Try to canonicalize compare with splatted operand and splat constant. 6609 // TODO: We could generalize this for more than splats. See/use the code in 6610 // InstCombiner::foldVectorBinop(). 6611 Constant *C; 6612 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) 6613 return nullptr; 6614 6615 // Length-changing splats are ok, so adjust the constants as needed: 6616 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M 6617 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); 6618 int MaskSplatIndex; 6619 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { 6620 // We allow undefs in matching, but this transform removes those for safety. 6621 // Demanded elements analysis should be able to recover some/all of that. 6622 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), 6623 ScalarC); 6624 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); 6625 Value *NewCmp = Builder.CreateCmp(Pred, V1, C); 6626 return new ShuffleVectorInst(NewCmp, NewM); 6627 } 6628 6629 return nullptr; 6630 } 6631 6632 // extract(uadd.with.overflow(A, B), 0) ult A 6633 // -> extract(uadd.with.overflow(A, B), 1) 6634 static Instruction *foldICmpOfUAddOv(ICmpInst &I) { 6635 CmpInst::Predicate Pred = I.getPredicate(); 6636 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6637 6638 Value *UAddOv; 6639 Value *A, *B; 6640 auto UAddOvResultPat = m_ExtractValue<0>( 6641 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); 6642 if (match(Op0, UAddOvResultPat) && 6643 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || 6644 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && 6645 (match(A, m_One()) || match(B, m_One()))) || 6646 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && 6647 (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) 6648 // extract(uadd.with.overflow(A, B), 0) < A 6649 // extract(uadd.with.overflow(A, 1), 0) == 0 6650 // extract(uadd.with.overflow(A, -1), 0) != -1 6651 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); 6652 else if (match(Op1, UAddOvResultPat) && 6653 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) 6654 // A > extract(uadd.with.overflow(A, B), 0) 6655 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); 6656 else 6657 return nullptr; 6658 6659 return ExtractValueInst::Create(UAddOv, 1); 6660 } 6661 6662 static Instruction *foldICmpInvariantGroup(ICmpInst &I) { 6663 if (!I.getOperand(0)->getType()->isPointerTy() || 6664 NullPointerIsDefined( 6665 I.getParent()->getParent(), 6666 I.getOperand(0)->getType()->getPointerAddressSpace())) { 6667 return nullptr; 6668 } 6669 Instruction *Op; 6670 if (match(I.getOperand(0), m_Instruction(Op)) && 6671 match(I.getOperand(1), m_Zero()) && 6672 Op->isLaunderOrStripInvariantGroup()) { 6673 return ICmpInst::Create(Instruction::ICmp, I.getPredicate(), 6674 Op->getOperand(0), I.getOperand(1)); 6675 } 6676 return nullptr; 6677 } 6678 6679 /// This function folds patterns produced by lowering of reduce idioms, such as 6680 /// llvm.vector.reduce.and which are lowered into instruction chains. This code 6681 /// attempts to generate fewer number of scalar comparisons instead of vector 6682 /// comparisons when possible. 6683 static Instruction *foldReductionIdiom(ICmpInst &I, 6684 InstCombiner::BuilderTy &Builder, 6685 const DataLayout &DL) { 6686 if (I.getType()->isVectorTy()) 6687 return nullptr; 6688 ICmpInst::Predicate OuterPred, InnerPred; 6689 Value *LHS, *RHS; 6690 6691 // Match lowering of @llvm.vector.reduce.and. Turn 6692 /// %vec_ne = icmp ne <8 x i8> %lhs, %rhs 6693 /// %scalar_ne = bitcast <8 x i1> %vec_ne to i8 6694 /// %res = icmp <pred> i8 %scalar_ne, 0 6695 /// 6696 /// into 6697 /// 6698 /// %lhs.scalar = bitcast <8 x i8> %lhs to i64 6699 /// %rhs.scalar = bitcast <8 x i8> %rhs to i64 6700 /// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar 6701 /// 6702 /// for <pred> in {ne, eq}. 6703 if (!match(&I, m_ICmp(OuterPred, 6704 m_OneUse(m_BitCast(m_OneUse( 6705 m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))), 6706 m_Zero()))) 6707 return nullptr; 6708 auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType()); 6709 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy()) 6710 return nullptr; 6711 unsigned NumBits = 6712 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth(); 6713 // TODO: Relax this to "not wider than max legal integer type"? 6714 if (!DL.isLegalInteger(NumBits)) 6715 return nullptr; 6716 6717 if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) { 6718 auto *ScalarTy = Builder.getIntNTy(NumBits); 6719 LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar"); 6720 RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar"); 6721 return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS, 6722 I.getName()); 6723 } 6724 6725 return nullptr; 6726 } 6727 6728 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { 6729 bool Changed = false; 6730 const SimplifyQuery Q = SQ.getWithInstruction(&I); 6731 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 6732 unsigned Op0Cplxity = getComplexity(Op0); 6733 unsigned Op1Cplxity = getComplexity(Op1); 6734 6735 /// Orders the operands of the compare so that they are listed from most 6736 /// complex to least complex. This puts constants before unary operators, 6737 /// before binary operators. 6738 if (Op0Cplxity < Op1Cplxity) { 6739 I.swapOperands(); 6740 std::swap(Op0, Op1); 6741 Changed = true; 6742 } 6743 6744 if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) 6745 return replaceInstUsesWith(I, V); 6746 6747 // Comparing -val or val with non-zero is the same as just comparing val 6748 // ie, abs(val) != 0 -> val != 0 6749 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 6750 Value *Cond, *SelectTrue, *SelectFalse; 6751 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 6752 m_Value(SelectFalse)))) { 6753 if (Value *V = dyn_castNegVal(SelectTrue)) { 6754 if (V == SelectFalse) 6755 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6756 } 6757 else if (Value *V = dyn_castNegVal(SelectFalse)) { 6758 if (V == SelectTrue) 6759 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 6760 } 6761 } 6762 } 6763 6764 if (Op0->getType()->isIntOrIntVectorTy(1)) 6765 if (Instruction *Res = canonicalizeICmpBool(I, Builder)) 6766 return Res; 6767 6768 if (Instruction *Res = canonicalizeCmpWithConstant(I)) 6769 return Res; 6770 6771 if (Instruction *Res = canonicalizeICmpPredicate(I)) 6772 return Res; 6773 6774 if (Instruction *Res = foldICmpWithConstant(I)) 6775 return Res; 6776 6777 if (Instruction *Res = foldICmpWithDominatingICmp(I)) 6778 return Res; 6779 6780 if (Instruction *Res = foldICmpUsingBoolRange(I)) 6781 return Res; 6782 6783 if (Instruction *Res = foldICmpUsingKnownBits(I)) 6784 return Res; 6785 6786 // Test if the ICmpInst instruction is used exclusively by a select as 6787 // part of a minimum or maximum operation. If so, refrain from doing 6788 // any other folding. This helps out other analyses which understand 6789 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 6790 // and CodeGen. And in this case, at least one of the comparison 6791 // operands has at least one user besides the compare (the select), 6792 // which would often largely negate the benefit of folding anyway. 6793 // 6794 // Do the same for the other patterns recognized by matchSelectPattern. 6795 if (I.hasOneUse()) 6796 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 6797 Value *A, *B; 6798 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 6799 if (SPR.Flavor != SPF_UNKNOWN) 6800 return nullptr; 6801 } 6802 6803 // Do this after checking for min/max to prevent infinite looping. 6804 if (Instruction *Res = foldICmpWithZero(I)) 6805 return Res; 6806 6807 // FIXME: We only do this after checking for min/max to prevent infinite 6808 // looping caused by a reverse canonicalization of these patterns for min/max. 6809 // FIXME: The organization of folds is a mess. These would naturally go into 6810 // canonicalizeCmpWithConstant(), but we can't move all of the above folds 6811 // down here after the min/max restriction. 6812 ICmpInst::Predicate Pred = I.getPredicate(); 6813 const APInt *C; 6814 if (match(Op1, m_APInt(C))) { 6815 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set 6816 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { 6817 Constant *Zero = Constant::getNullValue(Op0->getType()); 6818 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); 6819 } 6820 6821 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear 6822 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { 6823 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); 6824 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); 6825 } 6826 } 6827 6828 // The folds in here may rely on wrapping flags and special constants, so 6829 // they can break up min/max idioms in some cases but not seemingly similar 6830 // patterns. 6831 // FIXME: It may be possible to enhance select folding to make this 6832 // unnecessary. It may also be moot if we canonicalize to min/max 6833 // intrinsics. 6834 if (Instruction *Res = foldICmpBinOp(I, Q)) 6835 return Res; 6836 6837 if (Instruction *Res = foldICmpInstWithConstant(I)) 6838 return Res; 6839 6840 // Try to match comparison as a sign bit test. Intentionally do this after 6841 // foldICmpInstWithConstant() to potentially let other folds to happen first. 6842 if (Instruction *New = foldSignBitTest(I)) 6843 return New; 6844 6845 if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) 6846 return Res; 6847 6848 // Try to optimize 'icmp GEP, P' or 'icmp P, GEP'. 6849 if (auto *GEP = dyn_cast<GEPOperator>(Op0)) 6850 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) 6851 return NI; 6852 if (auto *GEP = dyn_cast<GEPOperator>(Op1)) 6853 if (Instruction *NI = foldGEPICmp(GEP, Op0, I.getSwappedPredicate(), I)) 6854 return NI; 6855 6856 if (auto *SI = dyn_cast<SelectInst>(Op0)) 6857 if (Instruction *NI = foldSelectICmp(I.getPredicate(), SI, Op1, I)) 6858 return NI; 6859 if (auto *SI = dyn_cast<SelectInst>(Op1)) 6860 if (Instruction *NI = foldSelectICmp(I.getSwappedPredicate(), SI, Op0, I)) 6861 return NI; 6862 6863 // In case of a comparison with two select instructions having the same 6864 // condition, check whether one of the resulting branches can be simplified. 6865 // If so, just compare the other branch and select the appropriate result. 6866 // For example: 6867 // %tmp1 = select i1 %cmp, i32 %y, i32 %x 6868 // %tmp2 = select i1 %cmp, i32 %z, i32 %x 6869 // %cmp2 = icmp slt i32 %tmp2, %tmp1 6870 // The icmp will result false for the false value of selects and the result 6871 // will depend upon the comparison of true values of selects if %cmp is 6872 // true. Thus, transform this into: 6873 // %cmp = icmp slt i32 %y, %z 6874 // %sel = select i1 %cond, i1 %cmp, i1 false 6875 // This handles similar cases to transform. 6876 { 6877 Value *Cond, *A, *B, *C, *D; 6878 if (match(Op0, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) && 6879 match(Op1, m_Select(m_Specific(Cond), m_Value(C), m_Value(D))) && 6880 (Op0->hasOneUse() || Op1->hasOneUse())) { 6881 // Check whether comparison of TrueValues can be simplified 6882 if (Value *Res = simplifyICmpInst(Pred, A, C, SQ)) { 6883 Value *NewICMP = Builder.CreateICmp(Pred, B, D); 6884 return SelectInst::Create(Cond, Res, NewICMP); 6885 } 6886 // Check whether comparison of FalseValues can be simplified 6887 if (Value *Res = simplifyICmpInst(Pred, B, D, SQ)) { 6888 Value *NewICMP = Builder.CreateICmp(Pred, A, C); 6889 return SelectInst::Create(Cond, NewICMP, Res); 6890 } 6891 } 6892 } 6893 6894 // Try to optimize equality comparisons against alloca-based pointers. 6895 if (Op0->getType()->isPointerTy() && I.isEquality()) { 6896 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 6897 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) 6898 if (foldAllocaCmp(Alloca)) 6899 return nullptr; 6900 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) 6901 if (foldAllocaCmp(Alloca)) 6902 return nullptr; 6903 } 6904 6905 if (Instruction *Res = foldICmpBitCast(I)) 6906 return Res; 6907 6908 // TODO: Hoist this above the min/max bailout. 6909 if (Instruction *R = foldICmpWithCastOp(I)) 6910 return R; 6911 6912 if (Instruction *Res = foldICmpWithMinMax(I)) 6913 return Res; 6914 6915 { 6916 Value *A, *B; 6917 // Transform (A & ~B) == 0 --> (A & B) != 0 6918 // and (A & ~B) != 0 --> (A & B) == 0 6919 // if A is a power of 2. 6920 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 6921 match(Op1, m_Zero()) && 6922 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) 6923 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), 6924 Op1); 6925 6926 // ~X < ~Y --> Y < X 6927 // ~X < C --> X > ~C 6928 if (match(Op0, m_Not(m_Value(A)))) { 6929 if (match(Op1, m_Not(m_Value(B)))) 6930 return new ICmpInst(I.getPredicate(), B, A); 6931 6932 const APInt *C; 6933 if (match(Op1, m_APInt(C))) 6934 return new ICmpInst(I.getSwappedPredicate(), A, 6935 ConstantInt::get(Op1->getType(), ~(*C))); 6936 } 6937 6938 Instruction *AddI = nullptr; 6939 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 6940 m_Instruction(AddI))) && 6941 isa<IntegerType>(A->getType())) { 6942 Value *Result; 6943 Constant *Overflow; 6944 // m_UAddWithOverflow can match patterns that do not include an explicit 6945 // "add" instruction, so check the opcode of the matched op. 6946 if (AddI->getOpcode() == Instruction::Add && 6947 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, 6948 Result, Overflow)) { 6949 replaceInstUsesWith(*AddI, Result); 6950 eraseInstFromFunction(*AddI); 6951 return replaceInstUsesWith(I, Overflow); 6952 } 6953 } 6954 6955 // (zext a) * (zext b) --> llvm.umul.with.overflow. 6956 if (match(Op0, m_NUWMul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6957 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) 6958 return R; 6959 } 6960 if (match(Op1, m_NUWMul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 6961 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) 6962 return R; 6963 } 6964 } 6965 6966 if (Instruction *Res = foldICmpEquality(I)) 6967 return Res; 6968 6969 if (Instruction *Res = foldICmpPow2Test(I, Builder)) 6970 return Res; 6971 6972 if (Instruction *Res = foldICmpOfUAddOv(I)) 6973 return Res; 6974 6975 // The 'cmpxchg' instruction returns an aggregate containing the old value and 6976 // an i1 which indicates whether or not we successfully did the swap. 6977 // 6978 // Replace comparisons between the old value and the expected value with the 6979 // indicator that 'cmpxchg' returns. 6980 // 6981 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 6982 // spuriously fail. In those cases, the old value may equal the expected 6983 // value but it is possible for the swap to not occur. 6984 if (I.getPredicate() == ICmpInst::ICMP_EQ) 6985 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 6986 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 6987 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 6988 !ACXI->isWeak()) 6989 return ExtractValueInst::Create(ACXI, 1); 6990 6991 { 6992 Value *X; 6993 const APInt *C; 6994 // icmp X+Cst, X 6995 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) 6996 return foldICmpAddOpConst(X, *C, I.getPredicate()); 6997 6998 // icmp X, X+Cst 6999 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) 7000 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); 7001 } 7002 7003 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) 7004 return Res; 7005 7006 if (I.getType()->isVectorTy()) 7007 if (Instruction *Res = foldVectorCmp(I, Builder)) 7008 return Res; 7009 7010 if (Instruction *Res = foldICmpInvariantGroup(I)) 7011 return Res; 7012 7013 if (Instruction *Res = foldReductionIdiom(I, Builder, DL)) 7014 return Res; 7015 7016 return Changed ? &I : nullptr; 7017 } 7018 7019 /// Fold fcmp ([us]itofp x, cst) if possible. 7020 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, 7021 Instruction *LHSI, 7022 Constant *RHSC) { 7023 if (!isa<ConstantFP>(RHSC)) return nullptr; 7024 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 7025 7026 // Get the width of the mantissa. We don't want to hack on conversions that 7027 // might lose information from the integer, e.g. "i64 -> float" 7028 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 7029 if (MantissaWidth == -1) return nullptr; // Unknown. 7030 7031 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 7032 7033 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 7034 7035 if (I.isEquality()) { 7036 FCmpInst::Predicate P = I.getPredicate(); 7037 bool IsExact = false; 7038 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 7039 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 7040 7041 // If the floating point constant isn't an integer value, we know if we will 7042 // ever compare equal / not equal to it. 7043 if (!IsExact) { 7044 // TODO: Can never be -0.0 and other non-representable values 7045 APFloat RHSRoundInt(RHS); 7046 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 7047 if (RHS != RHSRoundInt) { 7048 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 7049 return replaceInstUsesWith(I, Builder.getFalse()); 7050 7051 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 7052 return replaceInstUsesWith(I, Builder.getTrue()); 7053 } 7054 } 7055 7056 // TODO: If the constant is exactly representable, is it always OK to do 7057 // equality compares as integer? 7058 } 7059 7060 // Check to see that the input is converted from an integer type that is small 7061 // enough that preserves all bits. TODO: check here for "known" sign bits. 7062 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 7063 unsigned InputSize = IntTy->getScalarSizeInBits(); 7064 7065 // Following test does NOT adjust InputSize downwards for signed inputs, 7066 // because the most negative value still requires all the mantissa bits 7067 // to distinguish it from one less than that value. 7068 if ((int)InputSize > MantissaWidth) { 7069 // Conversion would lose accuracy. Check if loss can impact comparison. 7070 int Exp = ilogb(RHS); 7071 if (Exp == APFloat::IEK_Inf) { 7072 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 7073 if (MaxExponent < (int)InputSize - !LHSUnsigned) 7074 // Conversion could create infinity. 7075 return nullptr; 7076 } else { 7077 // Note that if RHS is zero or NaN, then Exp is negative 7078 // and first condition is trivially false. 7079 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 7080 // Conversion could affect comparison. 7081 return nullptr; 7082 } 7083 } 7084 7085 // Otherwise, we can potentially simplify the comparison. We know that it 7086 // will always come through as an integer value and we know the constant is 7087 // not a NAN (it would have been previously simplified). 7088 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 7089 7090 ICmpInst::Predicate Pred; 7091 switch (I.getPredicate()) { 7092 default: llvm_unreachable("Unexpected predicate!"); 7093 case FCmpInst::FCMP_UEQ: 7094 case FCmpInst::FCMP_OEQ: 7095 Pred = ICmpInst::ICMP_EQ; 7096 break; 7097 case FCmpInst::FCMP_UGT: 7098 case FCmpInst::FCMP_OGT: 7099 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 7100 break; 7101 case FCmpInst::FCMP_UGE: 7102 case FCmpInst::FCMP_OGE: 7103 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 7104 break; 7105 case FCmpInst::FCMP_ULT: 7106 case FCmpInst::FCMP_OLT: 7107 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 7108 break; 7109 case FCmpInst::FCMP_ULE: 7110 case FCmpInst::FCMP_OLE: 7111 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 7112 break; 7113 case FCmpInst::FCMP_UNE: 7114 case FCmpInst::FCMP_ONE: 7115 Pred = ICmpInst::ICMP_NE; 7116 break; 7117 case FCmpInst::FCMP_ORD: 7118 return replaceInstUsesWith(I, Builder.getTrue()); 7119 case FCmpInst::FCMP_UNO: 7120 return replaceInstUsesWith(I, Builder.getFalse()); 7121 } 7122 7123 // Now we know that the APFloat is a normal number, zero or inf. 7124 7125 // See if the FP constant is too large for the integer. For example, 7126 // comparing an i8 to 300.0. 7127 unsigned IntWidth = IntTy->getScalarSizeInBits(); 7128 7129 if (!LHSUnsigned) { 7130 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 7131 // and large values. 7132 APFloat SMax(RHS.getSemantics()); 7133 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 7134 APFloat::rmNearestTiesToEven); 7135 if (SMax < RHS) { // smax < 13123.0 7136 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 7137 Pred == ICmpInst::ICMP_SLE) 7138 return replaceInstUsesWith(I, Builder.getTrue()); 7139 return replaceInstUsesWith(I, Builder.getFalse()); 7140 } 7141 } else { 7142 // If the RHS value is > UnsignedMax, fold the comparison. This handles 7143 // +INF and large values. 7144 APFloat UMax(RHS.getSemantics()); 7145 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 7146 APFloat::rmNearestTiesToEven); 7147 if (UMax < RHS) { // umax < 13123.0 7148 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 7149 Pred == ICmpInst::ICMP_ULE) 7150 return replaceInstUsesWith(I, Builder.getTrue()); 7151 return replaceInstUsesWith(I, Builder.getFalse()); 7152 } 7153 } 7154 7155 if (!LHSUnsigned) { 7156 // See if the RHS value is < SignedMin. 7157 APFloat SMin(RHS.getSemantics()); 7158 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 7159 APFloat::rmNearestTiesToEven); 7160 if (SMin > RHS) { // smin > 12312.0 7161 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 7162 Pred == ICmpInst::ICMP_SGE) 7163 return replaceInstUsesWith(I, Builder.getTrue()); 7164 return replaceInstUsesWith(I, Builder.getFalse()); 7165 } 7166 } else { 7167 // See if the RHS value is < UnsignedMin. 7168 APFloat UMin(RHS.getSemantics()); 7169 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, 7170 APFloat::rmNearestTiesToEven); 7171 if (UMin > RHS) { // umin > 12312.0 7172 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 7173 Pred == ICmpInst::ICMP_UGE) 7174 return replaceInstUsesWith(I, Builder.getTrue()); 7175 return replaceInstUsesWith(I, Builder.getFalse()); 7176 } 7177 } 7178 7179 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 7180 // [0, UMAX], but it may still be fractional. See if it is fractional by 7181 // casting the FP value to the integer value and back, checking for equality. 7182 // Don't do this for zero, because -0.0 is not fractional. 7183 Constant *RHSInt = LHSUnsigned 7184 ? ConstantExpr::getFPToUI(RHSC, IntTy) 7185 : ConstantExpr::getFPToSI(RHSC, IntTy); 7186 if (!RHS.isZero()) { 7187 bool Equal = LHSUnsigned 7188 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 7189 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 7190 if (!Equal) { 7191 // If we had a comparison against a fractional value, we have to adjust 7192 // the compare predicate and sometimes the value. RHSC is rounded towards 7193 // zero at this point. 7194 switch (Pred) { 7195 default: llvm_unreachable("Unexpected integer comparison!"); 7196 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 7197 return replaceInstUsesWith(I, Builder.getTrue()); 7198 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 7199 return replaceInstUsesWith(I, Builder.getFalse()); 7200 case ICmpInst::ICMP_ULE: 7201 // (float)int <= 4.4 --> int <= 4 7202 // (float)int <= -4.4 --> false 7203 if (RHS.isNegative()) 7204 return replaceInstUsesWith(I, Builder.getFalse()); 7205 break; 7206 case ICmpInst::ICMP_SLE: 7207 // (float)int <= 4.4 --> int <= 4 7208 // (float)int <= -4.4 --> int < -4 7209 if (RHS.isNegative()) 7210 Pred = ICmpInst::ICMP_SLT; 7211 break; 7212 case ICmpInst::ICMP_ULT: 7213 // (float)int < -4.4 --> false 7214 // (float)int < 4.4 --> int <= 4 7215 if (RHS.isNegative()) 7216 return replaceInstUsesWith(I, Builder.getFalse()); 7217 Pred = ICmpInst::ICMP_ULE; 7218 break; 7219 case ICmpInst::ICMP_SLT: 7220 // (float)int < -4.4 --> int < -4 7221 // (float)int < 4.4 --> int <= 4 7222 if (!RHS.isNegative()) 7223 Pred = ICmpInst::ICMP_SLE; 7224 break; 7225 case ICmpInst::ICMP_UGT: 7226 // (float)int > 4.4 --> int > 4 7227 // (float)int > -4.4 --> true 7228 if (RHS.isNegative()) 7229 return replaceInstUsesWith(I, Builder.getTrue()); 7230 break; 7231 case ICmpInst::ICMP_SGT: 7232 // (float)int > 4.4 --> int > 4 7233 // (float)int > -4.4 --> int >= -4 7234 if (RHS.isNegative()) 7235 Pred = ICmpInst::ICMP_SGE; 7236 break; 7237 case ICmpInst::ICMP_UGE: 7238 // (float)int >= -4.4 --> true 7239 // (float)int >= 4.4 --> int > 4 7240 if (RHS.isNegative()) 7241 return replaceInstUsesWith(I, Builder.getTrue()); 7242 Pred = ICmpInst::ICMP_UGT; 7243 break; 7244 case ICmpInst::ICMP_SGE: 7245 // (float)int >= -4.4 --> int >= -4 7246 // (float)int >= 4.4 --> int > 4 7247 if (!RHS.isNegative()) 7248 Pred = ICmpInst::ICMP_SGT; 7249 break; 7250 } 7251 } 7252 } 7253 7254 // Lower this FP comparison into an appropriate integer version of the 7255 // comparison. 7256 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 7257 } 7258 7259 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. 7260 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, 7261 Constant *RHSC) { 7262 // When C is not 0.0 and infinities are not allowed: 7263 // (C / X) < 0.0 is a sign-bit test of X 7264 // (C / X) < 0.0 --> X < 0.0 (if C is positive) 7265 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) 7266 // 7267 // Proof: 7268 // Multiply (C / X) < 0.0 by X * X / C. 7269 // - X is non zero, if it is the flag 'ninf' is violated. 7270 // - C defines the sign of X * X * C. Thus it also defines whether to swap 7271 // the predicate. C is also non zero by definition. 7272 // 7273 // Thus X * X / C is non zero and the transformation is valid. [qed] 7274 7275 FCmpInst::Predicate Pred = I.getPredicate(); 7276 7277 // Check that predicates are valid. 7278 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && 7279 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) 7280 return nullptr; 7281 7282 // Check that RHS operand is zero. 7283 if (!match(RHSC, m_AnyZeroFP())) 7284 return nullptr; 7285 7286 // Check fastmath flags ('ninf'). 7287 if (!LHSI->hasNoInfs() || !I.hasNoInfs()) 7288 return nullptr; 7289 7290 // Check the properties of the dividend. It must not be zero to avoid a 7291 // division by zero (see Proof). 7292 const APFloat *C; 7293 if (!match(LHSI->getOperand(0), m_APFloat(C))) 7294 return nullptr; 7295 7296 if (C->isZero()) 7297 return nullptr; 7298 7299 // Get swapped predicate if necessary. 7300 if (C->isNegative()) 7301 Pred = I.getSwappedPredicate(); 7302 7303 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); 7304 } 7305 7306 /// Optimize fabs(X) compared with zero. 7307 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { 7308 Value *X; 7309 if (!match(I.getOperand(0), m_FAbs(m_Value(X)))) 7310 return nullptr; 7311 7312 const APFloat *C; 7313 if (!match(I.getOperand(1), m_APFloat(C))) 7314 return nullptr; 7315 7316 if (!C->isPosZero()) { 7317 if (!C->isSmallestNormalized()) 7318 return nullptr; 7319 7320 const Function *F = I.getFunction(); 7321 DenormalMode Mode = F->getDenormalMode(C->getSemantics()); 7322 if (Mode.Input == DenormalMode::PreserveSign || 7323 Mode.Input == DenormalMode::PositiveZero) { 7324 7325 auto replaceFCmp = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 7326 Constant *Zero = ConstantFP::getZero(X->getType()); 7327 return new FCmpInst(P, X, Zero, "", I); 7328 }; 7329 7330 switch (I.getPredicate()) { 7331 case FCmpInst::FCMP_OLT: 7332 // fcmp olt fabs(x), smallest_normalized_number -> fcmp oeq x, 0.0 7333 return replaceFCmp(&I, FCmpInst::FCMP_OEQ, X); 7334 case FCmpInst::FCMP_UGE: 7335 // fcmp uge fabs(x), smallest_normalized_number -> fcmp une x, 0.0 7336 return replaceFCmp(&I, FCmpInst::FCMP_UNE, X); 7337 case FCmpInst::FCMP_OGE: 7338 // fcmp oge fabs(x), smallest_normalized_number -> fcmp one x, 0.0 7339 return replaceFCmp(&I, FCmpInst::FCMP_ONE, X); 7340 case FCmpInst::FCMP_ULT: 7341 // fcmp ult fabs(x), smallest_normalized_number -> fcmp ueq x, 0.0 7342 return replaceFCmp(&I, FCmpInst::FCMP_UEQ, X); 7343 default: 7344 break; 7345 } 7346 } 7347 7348 return nullptr; 7349 } 7350 7351 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { 7352 I->setPredicate(P); 7353 return IC.replaceOperand(*I, 0, X); 7354 }; 7355 7356 switch (I.getPredicate()) { 7357 case FCmpInst::FCMP_UGE: 7358 case FCmpInst::FCMP_OLT: 7359 // fabs(X) >= 0.0 --> true 7360 // fabs(X) < 0.0 --> false 7361 llvm_unreachable("fcmp should have simplified"); 7362 7363 case FCmpInst::FCMP_OGT: 7364 // fabs(X) > 0.0 --> X != 0.0 7365 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); 7366 7367 case FCmpInst::FCMP_UGT: 7368 // fabs(X) u> 0.0 --> X u!= 0.0 7369 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); 7370 7371 case FCmpInst::FCMP_OLE: 7372 // fabs(X) <= 0.0 --> X == 0.0 7373 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); 7374 7375 case FCmpInst::FCMP_ULE: 7376 // fabs(X) u<= 0.0 --> X u== 0.0 7377 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); 7378 7379 case FCmpInst::FCMP_OGE: 7380 // fabs(X) >= 0.0 --> !isnan(X) 7381 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 7382 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); 7383 7384 case FCmpInst::FCMP_ULT: 7385 // fabs(X) u< 0.0 --> isnan(X) 7386 assert(!I.hasNoNaNs() && "fcmp should have simplified"); 7387 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); 7388 7389 case FCmpInst::FCMP_OEQ: 7390 case FCmpInst::FCMP_UEQ: 7391 case FCmpInst::FCMP_ONE: 7392 case FCmpInst::FCMP_UNE: 7393 case FCmpInst::FCMP_ORD: 7394 case FCmpInst::FCMP_UNO: 7395 // Look through the fabs() because it doesn't change anything but the sign. 7396 // fabs(X) == 0.0 --> X == 0.0, 7397 // fabs(X) != 0.0 --> X != 0.0 7398 // isnan(fabs(X)) --> isnan(X) 7399 // !isnan(fabs(X) --> !isnan(X) 7400 return replacePredAndOp0(&I, I.getPredicate(), X); 7401 7402 default: 7403 return nullptr; 7404 } 7405 } 7406 7407 static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) { 7408 CmpInst::Predicate Pred = I.getPredicate(); 7409 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 7410 7411 // Canonicalize fneg as Op1. 7412 if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) { 7413 std::swap(Op0, Op1); 7414 Pred = I.getSwappedPredicate(); 7415 } 7416 7417 if (!match(Op1, m_FNeg(m_Specific(Op0)))) 7418 return nullptr; 7419 7420 // Replace the negated operand with 0.0: 7421 // fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0 7422 Constant *Zero = ConstantFP::getZero(Op0->getType()); 7423 return new FCmpInst(Pred, Op0, Zero, "", &I); 7424 } 7425 7426 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { 7427 bool Changed = false; 7428 7429 /// Orders the operands of the compare so that they are listed from most 7430 /// complex to least complex. This puts constants before unary operators, 7431 /// before binary operators. 7432 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 7433 I.swapOperands(); 7434 Changed = true; 7435 } 7436 7437 const CmpInst::Predicate Pred = I.getPredicate(); 7438 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 7439 if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), 7440 SQ.getWithInstruction(&I))) 7441 return replaceInstUsesWith(I, V); 7442 7443 // Simplify 'fcmp pred X, X' 7444 Type *OpType = Op0->getType(); 7445 assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); 7446 if (Op0 == Op1) { 7447 switch (Pred) { 7448 default: break; 7449 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 7450 case FCmpInst::FCMP_ULT: // True if unordered or less than 7451 case FCmpInst::FCMP_UGT: // True if unordered or greater than 7452 case FCmpInst::FCMP_UNE: // True if unordered or not equal 7453 // Canonicalize these to be 'fcmp uno %X, 0.0'. 7454 I.setPredicate(FCmpInst::FCMP_UNO); 7455 I.setOperand(1, Constant::getNullValue(OpType)); 7456 return &I; 7457 7458 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 7459 case FCmpInst::FCMP_OEQ: // True if ordered and equal 7460 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 7461 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 7462 // Canonicalize these to be 'fcmp ord %X, 0.0'. 7463 I.setPredicate(FCmpInst::FCMP_ORD); 7464 I.setOperand(1, Constant::getNullValue(OpType)); 7465 return &I; 7466 } 7467 } 7468 7469 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, 7470 // then canonicalize the operand to 0.0. 7471 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { 7472 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, DL, &TLI, 0, 7473 &AC, &I, &DT)) 7474 return replaceOperand(I, 0, ConstantFP::getZero(OpType)); 7475 7476 if (!match(Op1, m_PosZeroFP()) && 7477 isKnownNeverNaN(Op1, DL, &TLI, 0, &AC, &I, &DT)) 7478 return replaceOperand(I, 1, ConstantFP::getZero(OpType)); 7479 } 7480 7481 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y 7482 Value *X, *Y; 7483 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 7484 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); 7485 7486 if (Instruction *R = foldFCmpFNegCommonOp(I)) 7487 return R; 7488 7489 // Test if the FCmpInst instruction is used exclusively by a select as 7490 // part of a minimum or maximum operation. If so, refrain from doing 7491 // any other folding. This helps out other analyses which understand 7492 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 7493 // and CodeGen. And in this case, at least one of the comparison 7494 // operands has at least one user besides the compare (the select), 7495 // which would often largely negate the benefit of folding anyway. 7496 if (I.hasOneUse()) 7497 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { 7498 Value *A, *B; 7499 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 7500 if (SPR.Flavor != SPF_UNKNOWN) 7501 return nullptr; 7502 } 7503 7504 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: 7505 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 7506 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) 7507 return replaceOperand(I, 1, ConstantFP::getZero(OpType)); 7508 7509 // Ignore signbit of bitcasted int when comparing equality to FP 0.0: 7510 // fcmp oeq/une (bitcast X), 0.0 --> (and X, SignMaskC) ==/!= 0 7511 if (match(Op1, m_PosZeroFP()) && 7512 match(Op0, m_OneUse(m_BitCast(m_Value(X)))) && 7513 X->getType()->isVectorTy() == OpType->isVectorTy() && 7514 X->getType()->getScalarSizeInBits() == OpType->getScalarSizeInBits()) { 7515 ICmpInst::Predicate IntPred = ICmpInst::BAD_ICMP_PREDICATE; 7516 if (Pred == FCmpInst::FCMP_OEQ) 7517 IntPred = ICmpInst::ICMP_EQ; 7518 else if (Pred == FCmpInst::FCMP_UNE) 7519 IntPred = ICmpInst::ICMP_NE; 7520 7521 if (IntPred != ICmpInst::BAD_ICMP_PREDICATE) { 7522 Type *IntTy = X->getType(); 7523 const APInt &SignMask = ~APInt::getSignMask(IntTy->getScalarSizeInBits()); 7524 Value *MaskX = Builder.CreateAnd(X, ConstantInt::get(IntTy, SignMask)); 7525 return new ICmpInst(IntPred, MaskX, ConstantInt::getNullValue(IntTy)); 7526 } 7527 } 7528 7529 // Handle fcmp with instruction LHS and constant RHS. 7530 Instruction *LHSI; 7531 Constant *RHSC; 7532 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { 7533 switch (LHSI->getOpcode()) { 7534 case Instruction::PHI: 7535 // Only fold fcmp into the PHI if the phi and fcmp are in the same 7536 // block. If in the same block, we're encouraging jump threading. If 7537 // not, we are just pessimizing the code by making an i1 phi. 7538 if (LHSI->getParent() == I.getParent()) 7539 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) 7540 return NV; 7541 break; 7542 case Instruction::SIToFP: 7543 case Instruction::UIToFP: 7544 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) 7545 return NV; 7546 break; 7547 case Instruction::FDiv: 7548 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) 7549 return NV; 7550 break; 7551 case Instruction::Load: 7552 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) 7553 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 7554 if (Instruction *Res = foldCmpLoadFromIndexedGlobal( 7555 cast<LoadInst>(LHSI), GEP, GV, I)) 7556 return Res; 7557 break; 7558 } 7559 } 7560 7561 if (Instruction *R = foldFabsWithFcmpZero(I, *this)) 7562 return R; 7563 7564 if (match(Op0, m_FNeg(m_Value(X)))) { 7565 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C 7566 Constant *C; 7567 if (match(Op1, m_Constant(C))) 7568 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 7569 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); 7570 } 7571 7572 if (match(Op0, m_FPExt(m_Value(X)))) { 7573 // fcmp (fpext X), (fpext Y) -> fcmp X, Y 7574 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) 7575 return new FCmpInst(Pred, X, Y, "", &I); 7576 7577 const APFloat *C; 7578 if (match(Op1, m_APFloat(C))) { 7579 const fltSemantics &FPSem = 7580 X->getType()->getScalarType()->getFltSemantics(); 7581 bool Lossy; 7582 APFloat TruncC = *C; 7583 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); 7584 7585 if (Lossy) { 7586 // X can't possibly equal the higher-precision constant, so reduce any 7587 // equality comparison. 7588 // TODO: Other predicates can be handled via getFCmpCode(). 7589 switch (Pred) { 7590 case FCmpInst::FCMP_OEQ: 7591 // X is ordered and equal to an impossible constant --> false 7592 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 7593 case FCmpInst::FCMP_ONE: 7594 // X is ordered and not equal to an impossible constant --> ordered 7595 return new FCmpInst(FCmpInst::FCMP_ORD, X, 7596 ConstantFP::getZero(X->getType())); 7597 case FCmpInst::FCMP_UEQ: 7598 // X is unordered or equal to an impossible constant --> unordered 7599 return new FCmpInst(FCmpInst::FCMP_UNO, X, 7600 ConstantFP::getZero(X->getType())); 7601 case FCmpInst::FCMP_UNE: 7602 // X is unordered or not equal to an impossible constant --> true 7603 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 7604 default: 7605 break; 7606 } 7607 } 7608 7609 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless 7610 // Avoid lossy conversions and denormals. 7611 // Zero is a special case that's OK to convert. 7612 APFloat Fabs = TruncC; 7613 Fabs.clearSign(); 7614 if (!Lossy && 7615 (Fabs.isZero() || !(Fabs < APFloat::getSmallestNormalized(FPSem)))) { 7616 Constant *NewC = ConstantFP::get(X->getType(), TruncC); 7617 return new FCmpInst(Pred, X, NewC, "", &I); 7618 } 7619 } 7620 } 7621 7622 // Convert a sign-bit test of an FP value into a cast and integer compare. 7623 // TODO: Simplify if the copysign constant is 0.0 or NaN. 7624 // TODO: Handle non-zero compare constants. 7625 // TODO: Handle other predicates. 7626 const APFloat *C; 7627 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C), 7628 m_Value(X)))) && 7629 match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) { 7630 Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits()); 7631 if (auto *VecTy = dyn_cast<VectorType>(OpType)) 7632 IntType = VectorType::get(IntType, VecTy->getElementCount()); 7633 7634 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0 7635 if (Pred == FCmpInst::FCMP_OLT) { 7636 Value *IntX = Builder.CreateBitCast(X, IntType); 7637 return new ICmpInst(ICmpInst::ICMP_SLT, IntX, 7638 ConstantInt::getNullValue(IntType)); 7639 } 7640 } 7641 7642 { 7643 Value *CanonLHS = nullptr, *CanonRHS = nullptr; 7644 match(Op0, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonLHS))); 7645 match(Op1, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonRHS))); 7646 7647 // (canonicalize(x) == x) => (x == x) 7648 if (CanonLHS == Op1) 7649 return new FCmpInst(Pred, Op1, Op1, "", &I); 7650 7651 // (x == canonicalize(x)) => (x == x) 7652 if (CanonRHS == Op0) 7653 return new FCmpInst(Pred, Op0, Op0, "", &I); 7654 7655 // (canonicalize(x) == canonicalize(y)) => (x == y) 7656 if (CanonLHS && CanonRHS) 7657 return new FCmpInst(Pred, CanonLHS, CanonRHS, "", &I); 7658 } 7659 7660 if (I.getType()->isVectorTy()) 7661 if (Instruction *Res = foldVectorCmp(I, Builder)) 7662 return Res; 7663 7664 return Changed ? &I : nullptr; 7665 } 7666