xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for cast operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/DIBuilder.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 #include <numeric>
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Analyze 'Val', seeing if it is a simple linear expression.
28 /// If so, decompose it, returning some value X, such that Val is
29 /// X*Scale+Offset.
30 ///
31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
32                                         uint64_t &Offset) {
33   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
34     Offset = CI->getZExtValue();
35     Scale  = 0;
36     return ConstantInt::get(Val->getType(), 0);
37   }
38 
39   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
40     // Cannot look past anything that might overflow.
41     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
42     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
43       Scale = 1;
44       Offset = 0;
45       return Val;
46     }
47 
48     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
49       if (I->getOpcode() == Instruction::Shl) {
50         // This is a value scaled by '1 << the shift amt'.
51         Scale = UINT64_C(1) << RHS->getZExtValue();
52         Offset = 0;
53         return I->getOperand(0);
54       }
55 
56       if (I->getOpcode() == Instruction::Mul) {
57         // This value is scaled by 'RHS'.
58         Scale = RHS->getZExtValue();
59         Offset = 0;
60         return I->getOperand(0);
61       }
62 
63       if (I->getOpcode() == Instruction::Add) {
64         // We have X+C.  Check to see if we really have (X*C2)+C1,
65         // where C1 is divisible by C2.
66         unsigned SubScale;
67         Value *SubVal =
68           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
69         Offset += RHS->getZExtValue();
70         Scale = SubScale;
71         return SubVal;
72       }
73     }
74   }
75 
76   // Otherwise, we can't look past this.
77   Scale = 1;
78   Offset = 0;
79   return Val;
80 }
81 
82 /// If we find a cast of an allocation instruction, try to eliminate the cast by
83 /// moving the type information into the alloc.
84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
85                                                    AllocaInst &AI) {
86   PointerType *PTy = cast<PointerType>(CI.getType());
87 
88   IRBuilderBase::InsertPointGuard Guard(Builder);
89   Builder.SetInsertPoint(&AI);
90 
91   // Get the type really allocated and the type casted to.
92   Type *AllocElTy = AI.getAllocatedType();
93   Type *CastElTy = PTy->getElementType();
94   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
95 
96   Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy);
97   Align CastElTyAlign = DL.getABITypeAlign(CastElTy);
98   if (CastElTyAlign < AllocElTyAlign) return nullptr;
99 
100   // If the allocation has multiple uses, only promote it if we are strictly
101   // increasing the alignment of the resultant allocation.  If we keep it the
102   // same, we open the door to infinite loops of various kinds.
103   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
104 
105   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
106   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
107   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
108 
109   // If the allocation has multiple uses, only promote it if we're not
110   // shrinking the amount of memory being allocated.
111   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
112   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
113   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
114 
115   // See if we can satisfy the modulus by pulling a scale out of the array
116   // size argument.
117   unsigned ArraySizeScale;
118   uint64_t ArrayOffset;
119   Value *NumElements = // See if the array size is a decomposable linear expr.
120     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
121 
122   // If we can now satisfy the modulus, by using a non-1 scale, we really can
123   // do the xform.
124   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
125       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
126 
127   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
128   Value *Amt = nullptr;
129   if (Scale == 1) {
130     Amt = NumElements;
131   } else {
132     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
133     // Insert before the alloca, not before the cast.
134     Amt = Builder.CreateMul(Amt, NumElements);
135   }
136 
137   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
138     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
139                                   Offset, true);
140     Amt = Builder.CreateAdd(Amt, Off);
141   }
142 
143   AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt);
144   New->setAlignment(AI.getAlign());
145   New->takeName(&AI);
146   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
147 
148   // If the allocation has multiple real uses, insert a cast and change all
149   // things that used it to use the new cast.  This will also hack on CI, but it
150   // will die soon.
151   if (!AI.hasOneUse()) {
152     // New is the allocation instruction, pointer typed. AI is the original
153     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
154     Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
155     replaceInstUsesWith(AI, NewCast);
156     eraseInstFromFunction(AI);
157   }
158   return replaceInstUsesWith(CI, New);
159 }
160 
161 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
162 /// true for, actually insert the code to evaluate the expression.
163 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
164                                              bool isSigned) {
165   if (Constant *C = dyn_cast<Constant>(V)) {
166     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
167     // If we got a constantexpr back, try to simplify it with DL info.
168     return ConstantFoldConstant(C, DL, &TLI);
169   }
170 
171   // Otherwise, it must be an instruction.
172   Instruction *I = cast<Instruction>(V);
173   Instruction *Res = nullptr;
174   unsigned Opc = I->getOpcode();
175   switch (Opc) {
176   case Instruction::Add:
177   case Instruction::Sub:
178   case Instruction::Mul:
179   case Instruction::And:
180   case Instruction::Or:
181   case Instruction::Xor:
182   case Instruction::AShr:
183   case Instruction::LShr:
184   case Instruction::Shl:
185   case Instruction::UDiv:
186   case Instruction::URem: {
187     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
188     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
189     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
190     break;
191   }
192   case Instruction::Trunc:
193   case Instruction::ZExt:
194   case Instruction::SExt:
195     // If the source type of the cast is the type we're trying for then we can
196     // just return the source.  There's no need to insert it because it is not
197     // new.
198     if (I->getOperand(0)->getType() == Ty)
199       return I->getOperand(0);
200 
201     // Otherwise, must be the same type of cast, so just reinsert a new one.
202     // This also handles the case of zext(trunc(x)) -> zext(x).
203     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
204                                       Opc == Instruction::SExt);
205     break;
206   case Instruction::Select: {
207     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
208     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
209     Res = SelectInst::Create(I->getOperand(0), True, False);
210     break;
211   }
212   case Instruction::PHI: {
213     PHINode *OPN = cast<PHINode>(I);
214     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
215     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
216       Value *V =
217           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
218       NPN->addIncoming(V, OPN->getIncomingBlock(i));
219     }
220     Res = NPN;
221     break;
222   }
223   default:
224     // TODO: Can handle more cases here.
225     llvm_unreachable("Unreachable!");
226   }
227 
228   Res->takeName(I);
229   return InsertNewInstWith(Res, *I);
230 }
231 
232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
233                                                         const CastInst *CI2) {
234   Type *SrcTy = CI1->getSrcTy();
235   Type *MidTy = CI1->getDestTy();
236   Type *DstTy = CI2->getDestTy();
237 
238   Instruction::CastOps firstOp = CI1->getOpcode();
239   Instruction::CastOps secondOp = CI2->getOpcode();
240   Type *SrcIntPtrTy =
241       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
242   Type *MidIntPtrTy =
243       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
244   Type *DstIntPtrTy =
245       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
246   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
247                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
248                                                 DstIntPtrTy);
249 
250   // We don't want to form an inttoptr or ptrtoint that converts to an integer
251   // type that differs from the pointer size.
252   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
253       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
254     Res = 0;
255 
256   return Instruction::CastOps(Res);
257 }
258 
259 /// Implement the transforms common to all CastInst visitors.
260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
261   Value *Src = CI.getOperand(0);
262 
263   // Try to eliminate a cast of a cast.
264   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
265     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
266       // The first cast (CSrc) is eliminable so we need to fix up or replace
267       // the second cast (CI). CSrc will then have a good chance of being dead.
268       auto *Ty = CI.getType();
269       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
270       // Point debug users of the dying cast to the new one.
271       if (CSrc->hasOneUse())
272         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
273       return Res;
274     }
275   }
276 
277   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
278     // We are casting a select. Try to fold the cast into the select if the
279     // select does not have a compare instruction with matching operand types
280     // or the select is likely better done in a narrow type.
281     // Creating a select with operands that are different sizes than its
282     // condition may inhibit other folds and lead to worse codegen.
283     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
284     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
285         (CI.getOpcode() == Instruction::Trunc &&
286          shouldChangeType(CI.getSrcTy(), CI.getType()))) {
287       if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
288         replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
289         return NV;
290       }
291     }
292   }
293 
294   // If we are casting a PHI, then fold the cast into the PHI.
295   if (auto *PN = dyn_cast<PHINode>(Src)) {
296     // Don't do this if it would create a PHI node with an illegal type from a
297     // legal type.
298     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
299         shouldChangeType(CI.getSrcTy(), CI.getType()))
300       if (Instruction *NV = foldOpIntoPhi(CI, PN))
301         return NV;
302   }
303 
304   return nullptr;
305 }
306 
307 /// Constants and extensions/truncates from the destination type are always
308 /// free to be evaluated in that type. This is a helper for canEvaluate*.
309 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
310   if (isa<Constant>(V))
311     return true;
312   Value *X;
313   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
314       X->getType() == Ty)
315     return true;
316 
317   return false;
318 }
319 
320 /// Filter out values that we can not evaluate in the destination type for free.
321 /// This is a helper for canEvaluate*.
322 static bool canNotEvaluateInType(Value *V, Type *Ty) {
323   assert(!isa<Constant>(V) && "Constant should already be handled.");
324   if (!isa<Instruction>(V))
325     return true;
326   // We don't extend or shrink something that has multiple uses --  doing so
327   // would require duplicating the instruction which isn't profitable.
328   if (!V->hasOneUse())
329     return true;
330 
331   return false;
332 }
333 
334 /// Return true if we can evaluate the specified expression tree as type Ty
335 /// instead of its larger type, and arrive with the same value.
336 /// This is used by code that tries to eliminate truncates.
337 ///
338 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
339 /// can be computed by computing V in the smaller type.  If V is an instruction,
340 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
341 /// makes sense if x and y can be efficiently truncated.
342 ///
343 /// This function works on both vectors and scalars.
344 ///
345 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
346                                  Instruction *CxtI) {
347   if (canAlwaysEvaluateInType(V, Ty))
348     return true;
349   if (canNotEvaluateInType(V, Ty))
350     return false;
351 
352   auto *I = cast<Instruction>(V);
353   Type *OrigTy = V->getType();
354   switch (I->getOpcode()) {
355   case Instruction::Add:
356   case Instruction::Sub:
357   case Instruction::Mul:
358   case Instruction::And:
359   case Instruction::Or:
360   case Instruction::Xor:
361     // These operators can all arbitrarily be extended or truncated.
362     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
363            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
364 
365   case Instruction::UDiv:
366   case Instruction::URem: {
367     // UDiv and URem can be truncated if all the truncated bits are zero.
368     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
369     uint32_t BitWidth = Ty->getScalarSizeInBits();
370     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
371     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
372     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
373         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
374       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
375              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
376     }
377     break;
378   }
379   case Instruction::Shl: {
380     // If we are truncating the result of this SHL, and if it's a shift of an
381     // inrange amount, we can always perform a SHL in a smaller type.
382     uint32_t BitWidth = Ty->getScalarSizeInBits();
383     KnownBits AmtKnownBits =
384         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
385     if (AmtKnownBits.getMaxValue().ult(BitWidth))
386       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
387              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
388     break;
389   }
390   case Instruction::LShr: {
391     // If this is a truncate of a logical shr, we can truncate it to a smaller
392     // lshr iff we know that the bits we would otherwise be shifting in are
393     // already zeros.
394     // TODO: It is enough to check that the bits we would be shifting in are
395     //       zero - use AmtKnownBits.getMaxValue().
396     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
397     uint32_t BitWidth = Ty->getScalarSizeInBits();
398     KnownBits AmtKnownBits =
399         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
400     APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
401     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
402         IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
403       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
404              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
405     }
406     break;
407   }
408   case Instruction::AShr: {
409     // If this is a truncate of an arithmetic shr, we can truncate it to a
410     // smaller ashr iff we know that all the bits from the sign bit of the
411     // original type and the sign bit of the truncate type are similar.
412     // TODO: It is enough to check that the bits we would be shifting in are
413     //       similar to sign bit of the truncate type.
414     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
415     uint32_t BitWidth = Ty->getScalarSizeInBits();
416     KnownBits AmtKnownBits =
417         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
418     unsigned ShiftedBits = OrigBitWidth - BitWidth;
419     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
420         ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
421       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
422              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
423     break;
424   }
425   case Instruction::Trunc:
426     // trunc(trunc(x)) -> trunc(x)
427     return true;
428   case Instruction::ZExt:
429   case Instruction::SExt:
430     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
431     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
432     return true;
433   case Instruction::Select: {
434     SelectInst *SI = cast<SelectInst>(I);
435     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
436            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
437   }
438   case Instruction::PHI: {
439     // We can change a phi if we can change all operands.  Note that we never
440     // get into trouble with cyclic PHIs here because we only consider
441     // instructions with a single use.
442     PHINode *PN = cast<PHINode>(I);
443     for (Value *IncValue : PN->incoming_values())
444       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
445         return false;
446     return true;
447   }
448   default:
449     // TODO: Can handle more cases here.
450     break;
451   }
452 
453   return false;
454 }
455 
456 /// Given a vector that is bitcast to an integer, optionally logically
457 /// right-shifted, and truncated, convert it to an extractelement.
458 /// Example (big endian):
459 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
460 ///   --->
461 ///   extractelement <4 x i32> %X, 1
462 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
463   Value *TruncOp = Trunc.getOperand(0);
464   Type *DestType = Trunc.getType();
465   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
466     return nullptr;
467 
468   Value *VecInput = nullptr;
469   ConstantInt *ShiftVal = nullptr;
470   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
471                                   m_LShr(m_BitCast(m_Value(VecInput)),
472                                          m_ConstantInt(ShiftVal)))) ||
473       !isa<VectorType>(VecInput->getType()))
474     return nullptr;
475 
476   VectorType *VecType = cast<VectorType>(VecInput->getType());
477   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
478   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
479   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
480 
481   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
482     return nullptr;
483 
484   // If the element type of the vector doesn't match the result type,
485   // bitcast it to a vector type that we can extract from.
486   unsigned NumVecElts = VecWidth / DestWidth;
487   if (VecType->getElementType() != DestType) {
488     VecType = FixedVectorType::get(DestType, NumVecElts);
489     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
490   }
491 
492   unsigned Elt = ShiftAmount / DestWidth;
493   if (IC.getDataLayout().isBigEndian())
494     Elt = NumVecElts - 1 - Elt;
495 
496   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
497 }
498 
499 /// Rotate left/right may occur in a wider type than necessary because of type
500 /// promotion rules. Try to narrow the inputs and convert to funnel shift.
501 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
502   assert((isa<VectorType>(Trunc.getSrcTy()) ||
503           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
504          "Don't narrow to an illegal scalar type");
505 
506   // Bail out on strange types. It is possible to handle some of these patterns
507   // even with non-power-of-2 sizes, but it is not a likely scenario.
508   Type *DestTy = Trunc.getType();
509   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
510   if (!isPowerOf2_32(NarrowWidth))
511     return nullptr;
512 
513   // First, find an or'd pair of opposite shifts with the same shifted operand:
514   // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
515   Value *Or0, *Or1;
516   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
517     return nullptr;
518 
519   Value *ShVal, *ShAmt0, *ShAmt1;
520   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
521       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
522     return nullptr;
523 
524   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
525   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
526   if (ShiftOpcode0 == ShiftOpcode1)
527     return nullptr;
528 
529   // Match the shift amount operands for a rotate pattern. This always matches
530   // a subtraction on the R operand.
531   auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
532     // The shift amounts may add up to the narrow bit width:
533     // (shl ShVal, L) | (lshr ShVal, Width - L)
534     if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
535       return L;
536 
537     // The shift amount may be masked with negation:
538     // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
539     Value *X;
540     unsigned Mask = Width - 1;
541     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
542         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
543       return X;
544 
545     // Same as above, but the shift amount may be extended after masking:
546     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
547         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
548       return X;
549 
550     return nullptr;
551   };
552 
553   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
554   bool SubIsOnLHS = false;
555   if (!ShAmt) {
556     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
557     SubIsOnLHS = true;
558   }
559   if (!ShAmt)
560     return nullptr;
561 
562   // The shifted value must have high zeros in the wide type. Typically, this
563   // will be a zext, but it could also be the result of an 'and' or 'shift'.
564   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
565   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
566   if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
567     return nullptr;
568 
569   // We have an unnecessarily wide rotate!
570   // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
571   // Narrow the inputs and convert to funnel shift intrinsic:
572   // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
573   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
574   Value *X = Builder.CreateTrunc(ShVal, DestTy);
575   bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) ||
576                 (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl);
577   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
578   Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
579   return IntrinsicInst::Create(F, { X, X, NarrowShAmt });
580 }
581 
582 /// Try to narrow the width of math or bitwise logic instructions by pulling a
583 /// truncate ahead of binary operators.
584 /// TODO: Transforms for truncated shifts should be moved into here.
585 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
586   Type *SrcTy = Trunc.getSrcTy();
587   Type *DestTy = Trunc.getType();
588   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
589     return nullptr;
590 
591   BinaryOperator *BinOp;
592   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
593     return nullptr;
594 
595   Value *BinOp0 = BinOp->getOperand(0);
596   Value *BinOp1 = BinOp->getOperand(1);
597   switch (BinOp->getOpcode()) {
598   case Instruction::And:
599   case Instruction::Or:
600   case Instruction::Xor:
601   case Instruction::Add:
602   case Instruction::Sub:
603   case Instruction::Mul: {
604     Constant *C;
605     if (match(BinOp0, m_Constant(C))) {
606       // trunc (binop C, X) --> binop (trunc C', X)
607       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
608       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
609       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
610     }
611     if (match(BinOp1, m_Constant(C))) {
612       // trunc (binop X, C) --> binop (trunc X, C')
613       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
614       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
615       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
616     }
617     Value *X;
618     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
619       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
620       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
621       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
622     }
623     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
624       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
625       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
626       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
627     }
628     break;
629   }
630 
631   default: break;
632   }
633 
634   if (Instruction *NarrowOr = narrowRotate(Trunc))
635     return NarrowOr;
636 
637   return nullptr;
638 }
639 
640 /// Try to narrow the width of a splat shuffle. This could be generalized to any
641 /// shuffle with a constant operand, but we limit the transform to avoid
642 /// creating a shuffle type that targets may not be able to lower effectively.
643 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
644                                        InstCombiner::BuilderTy &Builder) {
645   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
646   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
647       is_splat(Shuf->getShuffleMask()) &&
648       Shuf->getType() == Shuf->getOperand(0)->getType()) {
649     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
650     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
651     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
652     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask());
653   }
654 
655   return nullptr;
656 }
657 
658 /// Try to narrow the width of an insert element. This could be generalized for
659 /// any vector constant, but we limit the transform to insertion into undef to
660 /// avoid potential backend problems from unsupported insertion widths. This
661 /// could also be extended to handle the case of inserting a scalar constant
662 /// into a vector variable.
663 static Instruction *shrinkInsertElt(CastInst &Trunc,
664                                     InstCombiner::BuilderTy &Builder) {
665   Instruction::CastOps Opcode = Trunc.getOpcode();
666   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
667          "Unexpected instruction for shrinking");
668 
669   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
670   if (!InsElt || !InsElt->hasOneUse())
671     return nullptr;
672 
673   Type *DestTy = Trunc.getType();
674   Type *DestScalarTy = DestTy->getScalarType();
675   Value *VecOp = InsElt->getOperand(0);
676   Value *ScalarOp = InsElt->getOperand(1);
677   Value *Index = InsElt->getOperand(2);
678 
679   if (isa<UndefValue>(VecOp)) {
680     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
681     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
682     UndefValue *NarrowUndef = UndefValue::get(DestTy);
683     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
684     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
685   }
686 
687   return nullptr;
688 }
689 
690 Instruction *InstCombiner::visitTrunc(TruncInst &Trunc) {
691   if (Instruction *Result = commonCastTransforms(Trunc))
692     return Result;
693 
694   Value *Src = Trunc.getOperand(0);
695   Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
696   unsigned DestWidth = DestTy->getScalarSizeInBits();
697   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
698   ConstantInt *Cst;
699 
700   // Attempt to truncate the entire input expression tree to the destination
701   // type.   Only do this if the dest type is a simple type, don't convert the
702   // expression tree to something weird like i93 unless the source is also
703   // strange.
704   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
705       canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
706 
707     // If this cast is a truncate, evaluting in a different type always
708     // eliminates the cast, so it is always a win.
709     LLVM_DEBUG(
710         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
711                   " to avoid cast: "
712                << Trunc << '\n');
713     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
714     assert(Res->getType() == DestTy);
715     return replaceInstUsesWith(Trunc, Res);
716   }
717 
718   // For integer types, check if we can shorten the entire input expression to
719   // DestWidth * 2, which won't allow removing the truncate, but reducing the
720   // width may enable further optimizations, e.g. allowing for larger
721   // vectorization factors.
722   if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
723     if (DestWidth * 2 < SrcWidth) {
724       auto *NewDestTy = DestITy->getExtendedType();
725       if (shouldChangeType(SrcTy, NewDestTy) &&
726           canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
727         LLVM_DEBUG(
728             dbgs() << "ICE: EvaluateInDifferentType converting expression type"
729                       " to reduce the width of operand of"
730                    << Trunc << '\n');
731         Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
732         return new TruncInst(Res, DestTy);
733       }
734     }
735   }
736 
737   // Test if the trunc is the user of a select which is part of a
738   // minimum or maximum operation. If so, don't do any more simplification.
739   // Even simplifying demanded bits can break the canonical form of a
740   // min/max.
741   Value *LHS, *RHS;
742   if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
743     if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
744       return nullptr;
745 
746   // See if we can simplify any instructions used by the input whose sole
747   // purpose is to compute bits we don't care about.
748   if (SimplifyDemandedInstructionBits(Trunc))
749     return &Trunc;
750 
751   if (DestWidth == 1) {
752     Value *Zero = Constant::getNullValue(SrcTy);
753     if (DestTy->isIntegerTy()) {
754       // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
755       // TODO: We canonicalize to more instructions here because we are probably
756       // lacking equivalent analysis for trunc relative to icmp. There may also
757       // be codegen concerns. If those trunc limitations were removed, we could
758       // remove this transform.
759       Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
760       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
761     }
762 
763     // For vectors, we do not canonicalize all truncs to icmp, so optimize
764     // patterns that would be covered within visitICmpInst.
765     Value *X;
766     Constant *C;
767     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
768       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
769       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
770       Constant *MaskC = ConstantExpr::getShl(One, C);
771       Value *And = Builder.CreateAnd(X, MaskC);
772       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
773     }
774     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)),
775                                    m_Deferred(X))))) {
776       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
777       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
778       Constant *MaskC = ConstantExpr::getShl(One, C);
779       MaskC = ConstantExpr::getOr(MaskC, One);
780       Value *And = Builder.CreateAnd(X, MaskC);
781       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
782     }
783   }
784 
785   // FIXME: Maybe combine the next two transforms to handle the no cast case
786   // more efficiently. Support vector types. Cleanup code by using m_OneUse.
787 
788   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
789   Value *A = nullptr;
790   if (Src->hasOneUse() &&
791       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
792     // We have three types to worry about here, the type of A, the source of
793     // the truncate (MidSize), and the destination of the truncate. We know that
794     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
795     // between ASize and ResultSize.
796     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
797 
798     // If the shift amount is larger than the size of A, then the result is
799     // known to be zero because all the input bits got shifted out.
800     if (Cst->getZExtValue() >= ASize)
801       return replaceInstUsesWith(Trunc, Constant::getNullValue(DestTy));
802 
803     // Since we're doing an lshr and a zero extend, and know that the shift
804     // amount is smaller than ASize, it is always safe to do the shift in A's
805     // type, then zero extend or truncate to the result.
806     Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
807     Shift->takeName(Src);
808     return CastInst::CreateIntegerCast(Shift, DestTy, false);
809   }
810 
811   const APInt *C;
812   if (match(Src, m_LShr(m_SExt(m_Value(A)), m_APInt(C)))) {
813     unsigned AWidth = A->getType()->getScalarSizeInBits();
814     unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
815 
816     // If the shift is small enough, all zero bits created by the shift are
817     // removed by the trunc.
818     if (C->getZExtValue() <= MaxShiftAmt) {
819       // trunc (lshr (sext A), C) --> ashr A, C
820       if (A->getType() == DestTy) {
821         unsigned ShAmt = std::min((unsigned)C->getZExtValue(), DestWidth - 1);
822         return BinaryOperator::CreateAShr(A, ConstantInt::get(DestTy, ShAmt));
823       }
824       // The types are mismatched, so create a cast after shifting:
825       // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
826       if (Src->hasOneUse()) {
827         unsigned ShAmt = std::min((unsigned)C->getZExtValue(), AWidth - 1);
828         Value *Shift = Builder.CreateAShr(A, ShAmt);
829         return CastInst::CreateIntegerCast(Shift, DestTy, true);
830       }
831     }
832     // TODO: Mask high bits with 'and'.
833   }
834 
835   if (Instruction *I = narrowBinOp(Trunc))
836     return I;
837 
838   if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
839     return I;
840 
841   if (Instruction *I = shrinkInsertElt(Trunc, Builder))
842     return I;
843 
844   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
845       shouldChangeType(SrcTy, DestTy)) {
846     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
847     // dest type is native and cst < dest size.
848     if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
849         !match(A, m_Shr(m_Value(), m_Constant()))) {
850       // Skip shifts of shift by constants. It undoes a combine in
851       // FoldShiftByConstant and is the extend in reg pattern.
852       if (Cst->getValue().ult(DestWidth)) {
853         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
854 
855         return BinaryOperator::Create(
856           Instruction::Shl, NewTrunc,
857           ConstantInt::get(DestTy, Cst->getValue().trunc(DestWidth)));
858       }
859     }
860   }
861 
862   if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
863     return I;
864 
865   // Whenever an element is extracted from a vector, and then truncated,
866   // canonicalize by converting it to a bitcast followed by an
867   // extractelement.
868   //
869   // Example (little endian):
870   //   trunc (extractelement <4 x i64> %X, 0) to i32
871   //   --->
872   //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
873   Value *VecOp;
874   if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
875     auto *VecOpTy = cast<VectorType>(VecOp->getType());
876     unsigned VecNumElts = VecOpTy->getNumElements();
877 
878     // A badly fit destination size would result in an invalid cast.
879     if (SrcWidth % DestWidth == 0) {
880       uint64_t TruncRatio = SrcWidth / DestWidth;
881       uint64_t BitCastNumElts = VecNumElts * TruncRatio;
882       uint64_t VecOpIdx = Cst->getZExtValue();
883       uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
884                                          : VecOpIdx * TruncRatio;
885       assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
886              "overflow 32-bits");
887 
888       auto *BitCastTo = FixedVectorType::get(DestTy, BitCastNumElts);
889       Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
890       return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
891     }
892   }
893 
894   return nullptr;
895 }
896 
897 Instruction *InstCombiner::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext,
898                                              bool DoTransform) {
899   // If we are just checking for a icmp eq of a single bit and zext'ing it
900   // to an integer, then shift the bit to the appropriate place and then
901   // cast to integer to avoid the comparison.
902   const APInt *Op1CV;
903   if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
904 
905     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
906     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
907     if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
908         (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
909       if (!DoTransform) return Cmp;
910 
911       Value *In = Cmp->getOperand(0);
912       Value *Sh = ConstantInt::get(In->getType(),
913                                    In->getType()->getScalarSizeInBits() - 1);
914       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
915       if (In->getType() != Zext.getType())
916         In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
917 
918       if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) {
919         Constant *One = ConstantInt::get(In->getType(), 1);
920         In = Builder.CreateXor(In, One, In->getName() + ".not");
921       }
922 
923       return replaceInstUsesWith(Zext, In);
924     }
925 
926     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
927     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
928     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
929     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
930     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
931     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
932     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
933     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
934     if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
935         // This only works for EQ and NE
936         Cmp->isEquality()) {
937       // If Op1C some other power of two, convert:
938       KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
939 
940       APInt KnownZeroMask(~Known.Zero);
941       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
942         if (!DoTransform) return Cmp;
943 
944         bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE;
945         if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
946           // (X&4) == 2 --> false
947           // (X&4) != 2 --> true
948           Constant *Res = ConstantInt::get(Zext.getType(), isNE);
949           return replaceInstUsesWith(Zext, Res);
950         }
951 
952         uint32_t ShAmt = KnownZeroMask.logBase2();
953         Value *In = Cmp->getOperand(0);
954         if (ShAmt) {
955           // Perform a logical shr by shiftamt.
956           // Insert the shift to put the result in the low bit.
957           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
958                                   In->getName() + ".lobit");
959         }
960 
961         if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
962           Constant *One = ConstantInt::get(In->getType(), 1);
963           In = Builder.CreateXor(In, One);
964         }
965 
966         if (Zext.getType() == In->getType())
967           return replaceInstUsesWith(Zext, In);
968 
969         Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
970         return replaceInstUsesWith(Zext, IntCast);
971       }
972     }
973   }
974 
975   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
976   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
977   // may lead to additional simplifications.
978   if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
979     if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) {
980       Value *LHS = Cmp->getOperand(0);
981       Value *RHS = Cmp->getOperand(1);
982 
983       KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext);
984       KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext);
985 
986       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
987         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
988         APInt UnknownBit = ~KnownBits;
989         if (UnknownBit.countPopulation() == 1) {
990           if (!DoTransform) return Cmp;
991 
992           Value *Result = Builder.CreateXor(LHS, RHS);
993 
994           // Mask off any bits that are set and won't be shifted away.
995           if (KnownLHS.One.uge(UnknownBit))
996             Result = Builder.CreateAnd(Result,
997                                         ConstantInt::get(ITy, UnknownBit));
998 
999           // Shift the bit we're testing down to the lsb.
1000           Result = Builder.CreateLShr(
1001                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
1002 
1003           if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
1004             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
1005           Result->takeName(Cmp);
1006           return replaceInstUsesWith(Zext, Result);
1007         }
1008       }
1009     }
1010   }
1011 
1012   return nullptr;
1013 }
1014 
1015 /// Determine if the specified value can be computed in the specified wider type
1016 /// and produce the same low bits. If not, return false.
1017 ///
1018 /// If this function returns true, it can also return a non-zero number of bits
1019 /// (in BitsToClear) which indicates that the value it computes is correct for
1020 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
1021 /// out.  For example, to promote something like:
1022 ///
1023 ///   %B = trunc i64 %A to i32
1024 ///   %C = lshr i32 %B, 8
1025 ///   %E = zext i32 %C to i64
1026 ///
1027 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
1028 /// set to 8 to indicate that the promoted value needs to have bits 24-31
1029 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
1030 /// clear the top bits anyway, doing this has no extra cost.
1031 ///
1032 /// This function works on both vectors and scalars.
1033 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
1034                              InstCombiner &IC, Instruction *CxtI) {
1035   BitsToClear = 0;
1036   if (canAlwaysEvaluateInType(V, Ty))
1037     return true;
1038   if (canNotEvaluateInType(V, Ty))
1039     return false;
1040 
1041   auto *I = cast<Instruction>(V);
1042   unsigned Tmp;
1043   switch (I->getOpcode()) {
1044   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
1045   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
1046   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1047     return true;
1048   case Instruction::And:
1049   case Instruction::Or:
1050   case Instruction::Xor:
1051   case Instruction::Add:
1052   case Instruction::Sub:
1053   case Instruction::Mul:
1054     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1055         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1056       return false;
1057     // These can all be promoted if neither operand has 'bits to clear'.
1058     if (BitsToClear == 0 && Tmp == 0)
1059       return true;
1060 
1061     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1062     // other side, BitsToClear is ok.
1063     if (Tmp == 0 && I->isBitwiseLogicOp()) {
1064       // We use MaskedValueIsZero here for generality, but the case we care
1065       // about the most is constant RHS.
1066       unsigned VSize = V->getType()->getScalarSizeInBits();
1067       if (IC.MaskedValueIsZero(I->getOperand(1),
1068                                APInt::getHighBitsSet(VSize, BitsToClear),
1069                                0, CxtI)) {
1070         // If this is an And instruction and all of the BitsToClear are
1071         // known to be zero we can reset BitsToClear.
1072         if (I->getOpcode() == Instruction::And)
1073           BitsToClear = 0;
1074         return true;
1075       }
1076     }
1077 
1078     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1079     return false;
1080 
1081   case Instruction::Shl: {
1082     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1083     // upper bits we can reduce BitsToClear by the shift amount.
1084     const APInt *Amt;
1085     if (match(I->getOperand(1), m_APInt(Amt))) {
1086       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1087         return false;
1088       uint64_t ShiftAmt = Amt->getZExtValue();
1089       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1090       return true;
1091     }
1092     return false;
1093   }
1094   case Instruction::LShr: {
1095     // We can promote lshr(x, cst) if we can promote x.  This requires the
1096     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1097     const APInt *Amt;
1098     if (match(I->getOperand(1), m_APInt(Amt))) {
1099       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1100         return false;
1101       BitsToClear += Amt->getZExtValue();
1102       if (BitsToClear > V->getType()->getScalarSizeInBits())
1103         BitsToClear = V->getType()->getScalarSizeInBits();
1104       return true;
1105     }
1106     // Cannot promote variable LSHR.
1107     return false;
1108   }
1109   case Instruction::Select:
1110     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1111         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1112         // TODO: If important, we could handle the case when the BitsToClear are
1113         // known zero in the disagreeing side.
1114         Tmp != BitsToClear)
1115       return false;
1116     return true;
1117 
1118   case Instruction::PHI: {
1119     // We can change a phi if we can change all operands.  Note that we never
1120     // get into trouble with cyclic PHIs here because we only consider
1121     // instructions with a single use.
1122     PHINode *PN = cast<PHINode>(I);
1123     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1124       return false;
1125     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1126       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1127           // TODO: If important, we could handle the case when the BitsToClear
1128           // are known zero in the disagreeing input.
1129           Tmp != BitsToClear)
1130         return false;
1131     return true;
1132   }
1133   default:
1134     // TODO: Can handle more cases here.
1135     return false;
1136   }
1137 }
1138 
1139 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
1140   // If this zero extend is only used by a truncate, let the truncate be
1141   // eliminated before we try to optimize this zext.
1142   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1143     return nullptr;
1144 
1145   // If one of the common conversion will work, do it.
1146   if (Instruction *Result = commonCastTransforms(CI))
1147     return Result;
1148 
1149   Value *Src = CI.getOperand(0);
1150   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1151 
1152   // Try to extend the entire expression tree to the wide destination type.
1153   unsigned BitsToClear;
1154   if (shouldChangeType(SrcTy, DestTy) &&
1155       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1156     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1157            "Can't clear more bits than in SrcTy");
1158 
1159     // Okay, we can transform this!  Insert the new expression now.
1160     LLVM_DEBUG(
1161         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1162                   " to avoid zero extend: "
1163                << CI << '\n');
1164     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1165     assert(Res->getType() == DestTy);
1166 
1167     // Preserve debug values referring to Src if the zext is its last use.
1168     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1169       if (SrcOp->hasOneUse())
1170         replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1171 
1172     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1173     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1174 
1175     // If the high bits are already filled with zeros, just replace this
1176     // cast with the result.
1177     if (MaskedValueIsZero(Res,
1178                           APInt::getHighBitsSet(DestBitSize,
1179                                                 DestBitSize-SrcBitsKept),
1180                              0, &CI))
1181       return replaceInstUsesWith(CI, Res);
1182 
1183     // We need to emit an AND to clear the high bits.
1184     Constant *C = ConstantInt::get(Res->getType(),
1185                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1186     return BinaryOperator::CreateAnd(Res, C);
1187   }
1188 
1189   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1190   // types and if the sizes are just right we can convert this into a logical
1191   // 'and' which will be much cheaper than the pair of casts.
1192   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1193     // TODO: Subsume this into EvaluateInDifferentType.
1194 
1195     // Get the sizes of the types involved.  We know that the intermediate type
1196     // will be smaller than A or C, but don't know the relation between A and C.
1197     Value *A = CSrc->getOperand(0);
1198     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1199     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1200     unsigned DstSize = CI.getType()->getScalarSizeInBits();
1201     // If we're actually extending zero bits, then if
1202     // SrcSize <  DstSize: zext(a & mask)
1203     // SrcSize == DstSize: a & mask
1204     // SrcSize  > DstSize: trunc(a) & mask
1205     if (SrcSize < DstSize) {
1206       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1207       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1208       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1209       return new ZExtInst(And, CI.getType());
1210     }
1211 
1212     if (SrcSize == DstSize) {
1213       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1214       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1215                                                            AndValue));
1216     }
1217     if (SrcSize > DstSize) {
1218       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1219       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1220       return BinaryOperator::CreateAnd(Trunc,
1221                                        ConstantInt::get(Trunc->getType(),
1222                                                         AndValue));
1223     }
1224   }
1225 
1226   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src))
1227     return transformZExtICmp(Cmp, CI);
1228 
1229   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1230   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1231     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1232     // of the (zext icmp) can be eliminated. If so, immediately perform the
1233     // according elimination.
1234     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1235     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1236     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1237         (transformZExtICmp(LHS, CI, false) ||
1238          transformZExtICmp(RHS, CI, false))) {
1239       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1240       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1241       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1242       Value *Or = Builder.CreateOr(LCast, RCast, CI.getName());
1243       if (auto *OrInst = dyn_cast<Instruction>(Or))
1244         Builder.SetInsertPoint(OrInst);
1245 
1246       // Perform the elimination.
1247       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1248         transformZExtICmp(LHS, *LZExt);
1249       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1250         transformZExtICmp(RHS, *RZExt);
1251 
1252       return replaceInstUsesWith(CI, Or);
1253     }
1254   }
1255 
1256   // zext(trunc(X) & C) -> (X & zext(C)).
1257   Constant *C;
1258   Value *X;
1259   if (SrcI &&
1260       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1261       X->getType() == CI.getType())
1262     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1263 
1264   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1265   Value *And;
1266   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1267       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1268       X->getType() == CI.getType()) {
1269     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1270     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1271   }
1272 
1273   return nullptr;
1274 }
1275 
1276 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1277 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1278   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1279   ICmpInst::Predicate Pred = ICI->getPredicate();
1280 
1281   // Don't bother if Op1 isn't of vector or integer type.
1282   if (!Op1->getType()->isIntOrIntVectorTy())
1283     return nullptr;
1284 
1285   if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1286       (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1287     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1288     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1289     Value *Sh = ConstantInt::get(Op0->getType(),
1290                                  Op0->getType()->getScalarSizeInBits() - 1);
1291     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1292     if (In->getType() != CI.getType())
1293       In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1294 
1295     if (Pred == ICmpInst::ICMP_SGT)
1296       In = Builder.CreateNot(In, In->getName() + ".not");
1297     return replaceInstUsesWith(CI, In);
1298   }
1299 
1300   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1301     // If we know that only one bit of the LHS of the icmp can be set and we
1302     // have an equality comparison with zero or a power of 2, we can transform
1303     // the icmp and sext into bitwise/integer operations.
1304     if (ICI->hasOneUse() &&
1305         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1306       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1307 
1308       APInt KnownZeroMask(~Known.Zero);
1309       if (KnownZeroMask.isPowerOf2()) {
1310         Value *In = ICI->getOperand(0);
1311 
1312         // If the icmp tests for a known zero bit we can constant fold it.
1313         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1314           Value *V = Pred == ICmpInst::ICMP_NE ?
1315                        ConstantInt::getAllOnesValue(CI.getType()) :
1316                        ConstantInt::getNullValue(CI.getType());
1317           return replaceInstUsesWith(CI, V);
1318         }
1319 
1320         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1321           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1322           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1323           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1324           // Perform a right shift to place the desired bit in the LSB.
1325           if (ShiftAmt)
1326             In = Builder.CreateLShr(In,
1327                                     ConstantInt::get(In->getType(), ShiftAmt));
1328 
1329           // At this point "In" is either 1 or 0. Subtract 1 to turn
1330           // {1, 0} -> {0, -1}.
1331           In = Builder.CreateAdd(In,
1332                                  ConstantInt::getAllOnesValue(In->getType()),
1333                                  "sext");
1334         } else {
1335           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1336           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1337           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1338           // Perform a left shift to place the desired bit in the MSB.
1339           if (ShiftAmt)
1340             In = Builder.CreateShl(In,
1341                                    ConstantInt::get(In->getType(), ShiftAmt));
1342 
1343           // Distribute the bit over the whole bit width.
1344           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1345                                   KnownZeroMask.getBitWidth() - 1), "sext");
1346         }
1347 
1348         if (CI.getType() == In->getType())
1349           return replaceInstUsesWith(CI, In);
1350         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1351       }
1352     }
1353   }
1354 
1355   return nullptr;
1356 }
1357 
1358 /// Return true if we can take the specified value and return it as type Ty
1359 /// without inserting any new casts and without changing the value of the common
1360 /// low bits.  This is used by code that tries to promote integer operations to
1361 /// a wider types will allow us to eliminate the extension.
1362 ///
1363 /// This function works on both vectors and scalars.
1364 ///
1365 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1366   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1367          "Can't sign extend type to a smaller type");
1368   if (canAlwaysEvaluateInType(V, Ty))
1369     return true;
1370   if (canNotEvaluateInType(V, Ty))
1371     return false;
1372 
1373   auto *I = cast<Instruction>(V);
1374   switch (I->getOpcode()) {
1375   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1376   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1377   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1378     return true;
1379   case Instruction::And:
1380   case Instruction::Or:
1381   case Instruction::Xor:
1382   case Instruction::Add:
1383   case Instruction::Sub:
1384   case Instruction::Mul:
1385     // These operators can all arbitrarily be extended if their inputs can.
1386     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1387            canEvaluateSExtd(I->getOperand(1), Ty);
1388 
1389   //case Instruction::Shl:   TODO
1390   //case Instruction::LShr:  TODO
1391 
1392   case Instruction::Select:
1393     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1394            canEvaluateSExtd(I->getOperand(2), Ty);
1395 
1396   case Instruction::PHI: {
1397     // We can change a phi if we can change all operands.  Note that we never
1398     // get into trouble with cyclic PHIs here because we only consider
1399     // instructions with a single use.
1400     PHINode *PN = cast<PHINode>(I);
1401     for (Value *IncValue : PN->incoming_values())
1402       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1403     return true;
1404   }
1405   default:
1406     // TODO: Can handle more cases here.
1407     break;
1408   }
1409 
1410   return false;
1411 }
1412 
1413 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1414   // If this sign extend is only used by a truncate, let the truncate be
1415   // eliminated before we try to optimize this sext.
1416   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1417     return nullptr;
1418 
1419   if (Instruction *I = commonCastTransforms(CI))
1420     return I;
1421 
1422   Value *Src = CI.getOperand(0);
1423   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1424 
1425   // If we know that the value being extended is positive, we can use a zext
1426   // instead.
1427   KnownBits Known = computeKnownBits(Src, 0, &CI);
1428   if (Known.isNonNegative())
1429     return CastInst::Create(Instruction::ZExt, Src, DestTy);
1430 
1431   // Try to extend the entire expression tree to the wide destination type.
1432   if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1433     // Okay, we can transform this!  Insert the new expression now.
1434     LLVM_DEBUG(
1435         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1436                   " to avoid sign extend: "
1437                << CI << '\n');
1438     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1439     assert(Res->getType() == DestTy);
1440 
1441     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1442     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1443 
1444     // If the high bits are already filled with sign bit, just replace this
1445     // cast with the result.
1446     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1447       return replaceInstUsesWith(CI, Res);
1448 
1449     // We need to emit a shl + ashr to do the sign extend.
1450     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1451     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1452                                       ShAmt);
1453   }
1454 
1455   // If the input is a trunc from the destination type, then turn sext(trunc(x))
1456   // into shifts.
1457   Value *X;
1458   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1459     // sext(trunc(X)) --> ashr(shl(X, C), C)
1460     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1461     unsigned DestBitSize = DestTy->getScalarSizeInBits();
1462     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1463     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1464   }
1465 
1466   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1467     return transformSExtICmp(ICI, CI);
1468 
1469   // If the input is a shl/ashr pair of a same constant, then this is a sign
1470   // extension from a smaller value.  If we could trust arbitrary bitwidth
1471   // integers, we could turn this into a truncate to the smaller bit and then
1472   // use a sext for the whole extension.  Since we don't, look deeper and check
1473   // for a truncate.  If the source and dest are the same type, eliminate the
1474   // trunc and extend and just do shifts.  For example, turn:
1475   //   %a = trunc i32 %i to i8
1476   //   %b = shl i8 %a, 6
1477   //   %c = ashr i8 %b, 6
1478   //   %d = sext i8 %c to i32
1479   // into:
1480   //   %a = shl i32 %i, 30
1481   //   %d = ashr i32 %a, 30
1482   Value *A = nullptr;
1483   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1484   Constant *BA = nullptr, *CA = nullptr;
1485   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1486                         m_Constant(CA))) &&
1487       BA == CA && A->getType() == CI.getType()) {
1488     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1489     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1490     Constant *SizeDiff = ConstantInt::get(CA->getType(), SrcDstSize - MidSize);
1491     Constant *ShAmt = ConstantExpr::getAdd(CA, SizeDiff);
1492     Constant *ShAmtExt = ConstantExpr::getSExt(ShAmt, CI.getType());
1493     A = Builder.CreateShl(A, ShAmtExt, CI.getName());
1494     return BinaryOperator::CreateAShr(A, ShAmtExt);
1495   }
1496 
1497   return nullptr;
1498 }
1499 
1500 
1501 /// Return a Constant* for the specified floating-point constant if it fits
1502 /// in the specified FP type without changing its value.
1503 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1504   bool losesInfo;
1505   APFloat F = CFP->getValueAPF();
1506   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1507   return !losesInfo;
1508 }
1509 
1510 static Type *shrinkFPConstant(ConstantFP *CFP) {
1511   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1512     return nullptr;  // No constant folding of this.
1513   // See if the value can be truncated to half and then reextended.
1514   if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1515     return Type::getHalfTy(CFP->getContext());
1516   // See if the value can be truncated to float and then reextended.
1517   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1518     return Type::getFloatTy(CFP->getContext());
1519   if (CFP->getType()->isDoubleTy())
1520     return nullptr;  // Won't shrink.
1521   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1522     return Type::getDoubleTy(CFP->getContext());
1523   // Don't try to shrink to various long double types.
1524   return nullptr;
1525 }
1526 
1527 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1528 // type we can safely truncate all elements to.
1529 // TODO: Make these support undef elements.
1530 static Type *shrinkFPConstantVector(Value *V) {
1531   auto *CV = dyn_cast<Constant>(V);
1532   auto *CVVTy = dyn_cast<VectorType>(V->getType());
1533   if (!CV || !CVVTy)
1534     return nullptr;
1535 
1536   Type *MinType = nullptr;
1537 
1538   unsigned NumElts = CVVTy->getNumElements();
1539   for (unsigned i = 0; i != NumElts; ++i) {
1540     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1541     if (!CFP)
1542       return nullptr;
1543 
1544     Type *T = shrinkFPConstant(CFP);
1545     if (!T)
1546       return nullptr;
1547 
1548     // If we haven't found a type yet or this type has a larger mantissa than
1549     // our previous type, this is our new minimal type.
1550     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1551       MinType = T;
1552   }
1553 
1554   // Make a vector type from the minimal type.
1555   return FixedVectorType::get(MinType, NumElts);
1556 }
1557 
1558 /// Find the minimum FP type we can safely truncate to.
1559 static Type *getMinimumFPType(Value *V) {
1560   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1561     return FPExt->getOperand(0)->getType();
1562 
1563   // If this value is a constant, return the constant in the smallest FP type
1564   // that can accurately represent it.  This allows us to turn
1565   // (float)((double)X+2.0) into x+2.0f.
1566   if (auto *CFP = dyn_cast<ConstantFP>(V))
1567     if (Type *T = shrinkFPConstant(CFP))
1568       return T;
1569 
1570   // Try to shrink a vector of FP constants.
1571   if (Type *T = shrinkFPConstantVector(V))
1572     return T;
1573 
1574   return V->getType();
1575 }
1576 
1577 /// Return true if the cast from integer to FP can be proven to be exact for all
1578 /// possible inputs (the conversion does not lose any precision).
1579 static bool isKnownExactCastIntToFP(CastInst &I) {
1580   CastInst::CastOps Opcode = I.getOpcode();
1581   assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1582          "Unexpected cast");
1583   Value *Src = I.getOperand(0);
1584   Type *SrcTy = Src->getType();
1585   Type *FPTy = I.getType();
1586   bool IsSigned = Opcode == Instruction::SIToFP;
1587   int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1588 
1589   // Easy case - if the source integer type has less bits than the FP mantissa,
1590   // then the cast must be exact.
1591   int DestNumSigBits = FPTy->getFPMantissaWidth();
1592   if (SrcSize <= DestNumSigBits)
1593     return true;
1594 
1595   // Cast from FP to integer and back to FP is independent of the intermediate
1596   // integer width because of poison on overflow.
1597   Value *F;
1598   if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1599     // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1600     // potential rounding of negative FP input values.
1601     int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1602     if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1603       SrcNumSigBits++;
1604 
1605     // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1606     // significant bits than the destination (and make sure neither type is
1607     // weird -- ppc_fp128).
1608     if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1609         SrcNumSigBits <= DestNumSigBits)
1610       return true;
1611   }
1612 
1613   // TODO:
1614   // Try harder to find if the source integer type has less significant bits.
1615   // For example, compute number of sign bits or compute low bit mask.
1616   return false;
1617 }
1618 
1619 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) {
1620   if (Instruction *I = commonCastTransforms(FPT))
1621     return I;
1622 
1623   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1624   // simplify this expression to avoid one or more of the trunc/extend
1625   // operations if we can do so without changing the numerical results.
1626   //
1627   // The exact manner in which the widths of the operands interact to limit
1628   // what we can and cannot do safely varies from operation to operation, and
1629   // is explained below in the various case statements.
1630   Type *Ty = FPT.getType();
1631   auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1632   if (BO && BO->hasOneUse()) {
1633     Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
1634     Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
1635     unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1636     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1637     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1638     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1639     unsigned DstWidth = Ty->getFPMantissaWidth();
1640     switch (BO->getOpcode()) {
1641       default: break;
1642       case Instruction::FAdd:
1643       case Instruction::FSub:
1644         // For addition and subtraction, the infinitely precise result can
1645         // essentially be arbitrarily wide; proving that double rounding
1646         // will not occur because the result of OpI is exact (as we will for
1647         // FMul, for example) is hopeless.  However, we *can* nonetheless
1648         // frequently know that double rounding cannot occur (or that it is
1649         // innocuous) by taking advantage of the specific structure of
1650         // infinitely-precise results that admit double rounding.
1651         //
1652         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1653         // to represent both sources, we can guarantee that the double
1654         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1655         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1656         // for proof of this fact).
1657         //
1658         // Note: Figueroa does not consider the case where DstFormat !=
1659         // SrcFormat.  It's possible (likely even!) that this analysis
1660         // could be tightened for those cases, but they are rare (the main
1661         // case of interest here is (float)((double)float + float)).
1662         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1663           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1664           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1665           Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1666           RI->copyFastMathFlags(BO);
1667           return RI;
1668         }
1669         break;
1670       case Instruction::FMul:
1671         // For multiplication, the infinitely precise result has at most
1672         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1673         // that such a value can be exactly represented, then no double
1674         // rounding can possibly occur; we can safely perform the operation
1675         // in the destination format if it can represent both sources.
1676         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1677           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1678           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1679           return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1680         }
1681         break;
1682       case Instruction::FDiv:
1683         // For division, we use again use the bound from Figueroa's
1684         // dissertation.  I am entirely certain that this bound can be
1685         // tightened in the unbalanced operand case by an analysis based on
1686         // the diophantine rational approximation bound, but the well-known
1687         // condition used here is a good conservative first pass.
1688         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1689         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1690           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1691           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1692           return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1693         }
1694         break;
1695       case Instruction::FRem: {
1696         // Remainder is straightforward.  Remainder is always exact, so the
1697         // type of OpI doesn't enter into things at all.  We simply evaluate
1698         // in whichever source type is larger, then convert to the
1699         // destination type.
1700         if (SrcWidth == OpWidth)
1701           break;
1702         Value *LHS, *RHS;
1703         if (LHSWidth == SrcWidth) {
1704            LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1705            RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1706         } else {
1707            LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1708            RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1709         }
1710 
1711         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1712         return CastInst::CreateFPCast(ExactResult, Ty);
1713       }
1714     }
1715   }
1716 
1717   // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1718   Value *X;
1719   Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1720   if (Op && Op->hasOneUse()) {
1721     // FIXME: The FMF should propagate from the fptrunc, not the source op.
1722     IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1723     if (isa<FPMathOperator>(Op))
1724       Builder.setFastMathFlags(Op->getFastMathFlags());
1725 
1726     if (match(Op, m_FNeg(m_Value(X)))) {
1727       Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1728 
1729       return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1730     }
1731 
1732     // If we are truncating a select that has an extended operand, we can
1733     // narrow the other operand and do the select as a narrow op.
1734     Value *Cond, *X, *Y;
1735     if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1736         X->getType() == Ty) {
1737       // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1738       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1739       Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1740       return replaceInstUsesWith(FPT, Sel);
1741     }
1742     if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1743         X->getType() == Ty) {
1744       // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1745       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1746       Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1747       return replaceInstUsesWith(FPT, Sel);
1748     }
1749   }
1750 
1751   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1752     switch (II->getIntrinsicID()) {
1753     default: break;
1754     case Intrinsic::ceil:
1755     case Intrinsic::fabs:
1756     case Intrinsic::floor:
1757     case Intrinsic::nearbyint:
1758     case Intrinsic::rint:
1759     case Intrinsic::round:
1760     case Intrinsic::roundeven:
1761     case Intrinsic::trunc: {
1762       Value *Src = II->getArgOperand(0);
1763       if (!Src->hasOneUse())
1764         break;
1765 
1766       // Except for fabs, this transformation requires the input of the unary FP
1767       // operation to be itself an fpext from the type to which we're
1768       // truncating.
1769       if (II->getIntrinsicID() != Intrinsic::fabs) {
1770         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1771         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1772           break;
1773       }
1774 
1775       // Do unary FP operation on smaller type.
1776       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1777       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1778       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1779                                                      II->getIntrinsicID(), Ty);
1780       SmallVector<OperandBundleDef, 1> OpBundles;
1781       II->getOperandBundlesAsDefs(OpBundles);
1782       CallInst *NewCI =
1783           CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1784       NewCI->copyFastMathFlags(II);
1785       return NewCI;
1786     }
1787     }
1788   }
1789 
1790   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1791     return I;
1792 
1793   Value *Src = FPT.getOperand(0);
1794   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1795     auto *FPCast = cast<CastInst>(Src);
1796     if (isKnownExactCastIntToFP(*FPCast))
1797       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1798   }
1799 
1800   return nullptr;
1801 }
1802 
1803 Instruction *InstCombiner::visitFPExt(CastInst &FPExt) {
1804   // If the source operand is a cast from integer to FP and known exact, then
1805   // cast the integer operand directly to the destination type.
1806   Type *Ty = FPExt.getType();
1807   Value *Src = FPExt.getOperand(0);
1808   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1809     auto *FPCast = cast<CastInst>(Src);
1810     if (isKnownExactCastIntToFP(*FPCast))
1811       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1812   }
1813 
1814   return commonCastTransforms(FPExt);
1815 }
1816 
1817 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1818 /// This is safe if the intermediate type has enough bits in its mantissa to
1819 /// accurately represent all values of X.  For example, this won't work with
1820 /// i64 -> float -> i64.
1821 Instruction *InstCombiner::foldItoFPtoI(CastInst &FI) {
1822   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1823     return nullptr;
1824 
1825   auto *OpI = cast<CastInst>(FI.getOperand(0));
1826   Value *X = OpI->getOperand(0);
1827   Type *XType = X->getType();
1828   Type *DestType = FI.getType();
1829   bool IsOutputSigned = isa<FPToSIInst>(FI);
1830 
1831   // Since we can assume the conversion won't overflow, our decision as to
1832   // whether the input will fit in the float should depend on the minimum
1833   // of the input range and output range.
1834 
1835   // This means this is also safe for a signed input and unsigned output, since
1836   // a negative input would lead to undefined behavior.
1837   if (!isKnownExactCastIntToFP(*OpI)) {
1838     // The first cast may not round exactly based on the source integer width
1839     // and FP width, but the overflow UB rules can still allow this to fold.
1840     // If the destination type is narrow, that means the intermediate FP value
1841     // must be large enough to hold the source value exactly.
1842     // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1843     int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned;
1844     if (OutputSize > OpI->getType()->getFPMantissaWidth())
1845       return nullptr;
1846   }
1847 
1848   if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1849     bool IsInputSigned = isa<SIToFPInst>(OpI);
1850     if (IsInputSigned && IsOutputSigned)
1851       return new SExtInst(X, DestType);
1852     return new ZExtInst(X, DestType);
1853   }
1854   if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1855     return new TruncInst(X, DestType);
1856 
1857   assert(XType == DestType && "Unexpected types for int to FP to int casts");
1858   return replaceInstUsesWith(FI, X);
1859 }
1860 
1861 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1862   if (Instruction *I = foldItoFPtoI(FI))
1863     return I;
1864 
1865   return commonCastTransforms(FI);
1866 }
1867 
1868 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1869   if (Instruction *I = foldItoFPtoI(FI))
1870     return I;
1871 
1872   return commonCastTransforms(FI);
1873 }
1874 
1875 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1876   return commonCastTransforms(CI);
1877 }
1878 
1879 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1880   return commonCastTransforms(CI);
1881 }
1882 
1883 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1884   // If the source integer type is not the intptr_t type for this target, do a
1885   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1886   // cast to be exposed to other transforms.
1887   unsigned AS = CI.getAddressSpace();
1888   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1889       DL.getPointerSizeInBits(AS)) {
1890     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1891     // Handle vectors of pointers.
1892     if (auto *CIVTy = dyn_cast<VectorType>(CI.getType()))
1893       Ty = VectorType::get(Ty, CIVTy->getElementCount());
1894 
1895     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1896     return new IntToPtrInst(P, CI.getType());
1897   }
1898 
1899   if (Instruction *I = commonCastTransforms(CI))
1900     return I;
1901 
1902   return nullptr;
1903 }
1904 
1905 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
1906 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1907   Value *Src = CI.getOperand(0);
1908 
1909   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1910     // If casting the result of a getelementptr instruction with no offset, turn
1911     // this into a cast of the original pointer!
1912     if (GEP->hasAllZeroIndices() &&
1913         // If CI is an addrspacecast and GEP changes the poiner type, merging
1914         // GEP into CI would undo canonicalizing addrspacecast with different
1915         // pointer types, causing infinite loops.
1916         (!isa<AddrSpaceCastInst>(CI) ||
1917          GEP->getType() == GEP->getPointerOperandType())) {
1918       // Changing the cast operand is usually not a good idea but it is safe
1919       // here because the pointer operand is being replaced with another
1920       // pointer operand so the opcode doesn't need to change.
1921       return replaceOperand(CI, 0, GEP->getOperand(0));
1922     }
1923   }
1924 
1925   return commonCastTransforms(CI);
1926 }
1927 
1928 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1929   // If the destination integer type is not the intptr_t type for this target,
1930   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1931   // to be exposed to other transforms.
1932 
1933   Type *Ty = CI.getType();
1934   unsigned AS = CI.getPointerAddressSpace();
1935 
1936   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1937     return commonPointerCastTransforms(CI);
1938 
1939   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1940   if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1941     // Handle vectors of pointers.
1942     // FIXME: what should happen for scalable vectors?
1943     PtrTy = FixedVectorType::get(PtrTy, VTy->getNumElements());
1944   }
1945 
1946   Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1947   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1948 }
1949 
1950 /// This input value (which is known to have vector type) is being zero extended
1951 /// or truncated to the specified vector type. Since the zext/trunc is done
1952 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
1953 /// endianness will impact which end of the vector that is extended or
1954 /// truncated.
1955 ///
1956 /// A vector is always stored with index 0 at the lowest address, which
1957 /// corresponds to the most significant bits for a big endian stored integer and
1958 /// the least significant bits for little endian. A trunc/zext of an integer
1959 /// impacts the big end of the integer. Thus, we need to add/remove elements at
1960 /// the front of the vector for big endian targets, and the back of the vector
1961 /// for little endian targets.
1962 ///
1963 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1964 ///
1965 /// The source and destination vector types may have different element types.
1966 static Instruction *optimizeVectorResizeWithIntegerBitCasts(Value *InVal,
1967                                                             VectorType *DestTy,
1968                                                             InstCombiner &IC) {
1969   // We can only do this optimization if the output is a multiple of the input
1970   // element size, or the input is a multiple of the output element size.
1971   // Convert the input type to have the same element type as the output.
1972   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1973 
1974   if (SrcTy->getElementType() != DestTy->getElementType()) {
1975     // The input types don't need to be identical, but for now they must be the
1976     // same size.  There is no specific reason we couldn't handle things like
1977     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1978     // there yet.
1979     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1980         DestTy->getElementType()->getPrimitiveSizeInBits())
1981       return nullptr;
1982 
1983     SrcTy =
1984         FixedVectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1985     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1986   }
1987 
1988   bool IsBigEndian = IC.getDataLayout().isBigEndian();
1989   unsigned SrcElts = SrcTy->getNumElements();
1990   unsigned DestElts = DestTy->getNumElements();
1991 
1992   assert(SrcElts != DestElts && "Element counts should be different.");
1993 
1994   // Now that the element types match, get the shuffle mask and RHS of the
1995   // shuffle to use, which depends on whether we're increasing or decreasing the
1996   // size of the input.
1997   SmallVector<int, 16> ShuffleMaskStorage;
1998   ArrayRef<int> ShuffleMask;
1999   Value *V2;
2000 
2001   // Produce an identify shuffle mask for the src vector.
2002   ShuffleMaskStorage.resize(SrcElts);
2003   std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0);
2004 
2005   if (SrcElts > DestElts) {
2006     // If we're shrinking the number of elements (rewriting an integer
2007     // truncate), just shuffle in the elements corresponding to the least
2008     // significant bits from the input and use undef as the second shuffle
2009     // input.
2010     V2 = UndefValue::get(SrcTy);
2011     // Make sure the shuffle mask selects the "least significant bits" by
2012     // keeping elements from back of the src vector for big endian, and from the
2013     // front for little endian.
2014     ShuffleMask = ShuffleMaskStorage;
2015     if (IsBigEndian)
2016       ShuffleMask = ShuffleMask.take_back(DestElts);
2017     else
2018       ShuffleMask = ShuffleMask.take_front(DestElts);
2019   } else {
2020     // If we're increasing the number of elements (rewriting an integer zext),
2021     // shuffle in all of the elements from InVal. Fill the rest of the result
2022     // elements with zeros from a constant zero.
2023     V2 = Constant::getNullValue(SrcTy);
2024     // Use first elt from V2 when indicating zero in the shuffle mask.
2025     uint32_t NullElt = SrcElts;
2026     // Extend with null values in the "most significant bits" by adding elements
2027     // in front of the src vector for big endian, and at the back for little
2028     // endian.
2029     unsigned DeltaElts = DestElts - SrcElts;
2030     if (IsBigEndian)
2031       ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2032     else
2033       ShuffleMaskStorage.append(DeltaElts, NullElt);
2034     ShuffleMask = ShuffleMaskStorage;
2035   }
2036 
2037   return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2038 }
2039 
2040 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2041   return Value % Ty->getPrimitiveSizeInBits() == 0;
2042 }
2043 
2044 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2045   return Value / Ty->getPrimitiveSizeInBits();
2046 }
2047 
2048 /// V is a value which is inserted into a vector of VecEltTy.
2049 /// Look through the value to see if we can decompose it into
2050 /// insertions into the vector.  See the example in the comment for
2051 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
2052 /// The type of V is always a non-zero multiple of VecEltTy's size.
2053 /// Shift is the number of bits between the lsb of V and the lsb of
2054 /// the vector.
2055 ///
2056 /// This returns false if the pattern can't be matched or true if it can,
2057 /// filling in Elements with the elements found here.
2058 static bool collectInsertionElements(Value *V, unsigned Shift,
2059                                      SmallVectorImpl<Value *> &Elements,
2060                                      Type *VecEltTy, bool isBigEndian) {
2061   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2062          "Shift should be a multiple of the element type size");
2063 
2064   // Undef values never contribute useful bits to the result.
2065   if (isa<UndefValue>(V)) return true;
2066 
2067   // If we got down to a value of the right type, we win, try inserting into the
2068   // right element.
2069   if (V->getType() == VecEltTy) {
2070     // Inserting null doesn't actually insert any elements.
2071     if (Constant *C = dyn_cast<Constant>(V))
2072       if (C->isNullValue())
2073         return true;
2074 
2075     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2076     if (isBigEndian)
2077       ElementIndex = Elements.size() - ElementIndex - 1;
2078 
2079     // Fail if multiple elements are inserted into this slot.
2080     if (Elements[ElementIndex])
2081       return false;
2082 
2083     Elements[ElementIndex] = V;
2084     return true;
2085   }
2086 
2087   if (Constant *C = dyn_cast<Constant>(V)) {
2088     // Figure out the # elements this provides, and bitcast it or slice it up
2089     // as required.
2090     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2091                                         VecEltTy);
2092     // If the constant is the size of a vector element, we just need to bitcast
2093     // it to the right type so it gets properly inserted.
2094     if (NumElts == 1)
2095       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2096                                       Shift, Elements, VecEltTy, isBigEndian);
2097 
2098     // Okay, this is a constant that covers multiple elements.  Slice it up into
2099     // pieces and insert each element-sized piece into the vector.
2100     if (!isa<IntegerType>(C->getType()))
2101       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2102                                        C->getType()->getPrimitiveSizeInBits()));
2103     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2104     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2105 
2106     for (unsigned i = 0; i != NumElts; ++i) {
2107       unsigned ShiftI = Shift+i*ElementSize;
2108       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
2109                                                                   ShiftI));
2110       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2111       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
2112                                     isBigEndian))
2113         return false;
2114     }
2115     return true;
2116   }
2117 
2118   if (!V->hasOneUse()) return false;
2119 
2120   Instruction *I = dyn_cast<Instruction>(V);
2121   if (!I) return false;
2122   switch (I->getOpcode()) {
2123   default: return false; // Unhandled case.
2124   case Instruction::BitCast:
2125     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2126                                     isBigEndian);
2127   case Instruction::ZExt:
2128     if (!isMultipleOfTypeSize(
2129                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2130                               VecEltTy))
2131       return false;
2132     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2133                                     isBigEndian);
2134   case Instruction::Or:
2135     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2136                                     isBigEndian) &&
2137            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2138                                     isBigEndian);
2139   case Instruction::Shl: {
2140     // Must be shifting by a constant that is a multiple of the element size.
2141     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2142     if (!CI) return false;
2143     Shift += CI->getZExtValue();
2144     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2145     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2146                                     isBigEndian);
2147   }
2148 
2149   }
2150 }
2151 
2152 
2153 /// If the input is an 'or' instruction, we may be doing shifts and ors to
2154 /// assemble the elements of the vector manually.
2155 /// Try to rip the code out and replace it with insertelements.  This is to
2156 /// optimize code like this:
2157 ///
2158 ///    %tmp37 = bitcast float %inc to i32
2159 ///    %tmp38 = zext i32 %tmp37 to i64
2160 ///    %tmp31 = bitcast float %inc5 to i32
2161 ///    %tmp32 = zext i32 %tmp31 to i64
2162 ///    %tmp33 = shl i64 %tmp32, 32
2163 ///    %ins35 = or i64 %tmp33, %tmp38
2164 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2165 ///
2166 /// Into two insertelements that do "buildvector{%inc, %inc5}".
2167 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2168                                                 InstCombiner &IC) {
2169   VectorType *DestVecTy = cast<VectorType>(CI.getType());
2170   Value *IntInput = CI.getOperand(0);
2171 
2172   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2173   if (!collectInsertionElements(IntInput, 0, Elements,
2174                                 DestVecTy->getElementType(),
2175                                 IC.getDataLayout().isBigEndian()))
2176     return nullptr;
2177 
2178   // If we succeeded, we know that all of the element are specified by Elements
2179   // or are zero if Elements has a null entry.  Recast this as a set of
2180   // insertions.
2181   Value *Result = Constant::getNullValue(CI.getType());
2182   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2183     if (!Elements[i]) continue;  // Unset element.
2184 
2185     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2186                                             IC.Builder.getInt32(i));
2187   }
2188 
2189   return Result;
2190 }
2191 
2192 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2193 /// vector followed by extract element. The backend tends to handle bitcasts of
2194 /// vectors better than bitcasts of scalars because vector registers are
2195 /// usually not type-specific like scalar integer or scalar floating-point.
2196 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2197                                               InstCombiner &IC) {
2198   // TODO: Create and use a pattern matcher for ExtractElementInst.
2199   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2200   if (!ExtElt || !ExtElt->hasOneUse())
2201     return nullptr;
2202 
2203   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2204   // type to extract from.
2205   Type *DestType = BitCast.getType();
2206   if (!VectorType::isValidElementType(DestType))
2207     return nullptr;
2208 
2209   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
2210   auto *NewVecType = FixedVectorType::get(DestType, NumElts);
2211   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2212                                          NewVecType, "bc");
2213   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2214 }
2215 
2216 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2217 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2218                                             InstCombiner::BuilderTy &Builder) {
2219   Type *DestTy = BitCast.getType();
2220   BinaryOperator *BO;
2221   if (!DestTy->isIntOrIntVectorTy() ||
2222       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2223       !BO->isBitwiseLogicOp())
2224     return nullptr;
2225 
2226   // FIXME: This transform is restricted to vector types to avoid backend
2227   // problems caused by creating potentially illegal operations. If a fix-up is
2228   // added to handle that situation, we can remove this check.
2229   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2230     return nullptr;
2231 
2232   Value *X;
2233   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2234       X->getType() == DestTy && !isa<Constant>(X)) {
2235     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2236     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2237     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2238   }
2239 
2240   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2241       X->getType() == DestTy && !isa<Constant>(X)) {
2242     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2243     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2244     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2245   }
2246 
2247   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2248   // constant. This eases recognition of special constants for later ops.
2249   // Example:
2250   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2251   Constant *C;
2252   if (match(BO->getOperand(1), m_Constant(C))) {
2253     // bitcast (logic X, C) --> logic (bitcast X, C')
2254     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2255     Value *CastedC = Builder.CreateBitCast(C, DestTy);
2256     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2257   }
2258 
2259   return nullptr;
2260 }
2261 
2262 /// Change the type of a select if we can eliminate a bitcast.
2263 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2264                                       InstCombiner::BuilderTy &Builder) {
2265   Value *Cond, *TVal, *FVal;
2266   if (!match(BitCast.getOperand(0),
2267              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2268     return nullptr;
2269 
2270   // A vector select must maintain the same number of elements in its operands.
2271   Type *CondTy = Cond->getType();
2272   Type *DestTy = BitCast.getType();
2273   if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
2274     if (!DestTy->isVectorTy())
2275       return nullptr;
2276     if (cast<VectorType>(DestTy)->getNumElements() != CondVTy->getNumElements())
2277       return nullptr;
2278   }
2279 
2280   // FIXME: This transform is restricted from changing the select between
2281   // scalars and vectors to avoid backend problems caused by creating
2282   // potentially illegal operations. If a fix-up is added to handle that
2283   // situation, we can remove this check.
2284   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2285     return nullptr;
2286 
2287   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2288   Value *X;
2289   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2290       !isa<Constant>(X)) {
2291     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2292     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2293     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2294   }
2295 
2296   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2297       !isa<Constant>(X)) {
2298     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2299     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2300     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2301   }
2302 
2303   return nullptr;
2304 }
2305 
2306 /// Check if all users of CI are StoreInsts.
2307 static bool hasStoreUsersOnly(CastInst &CI) {
2308   for (User *U : CI.users()) {
2309     if (!isa<StoreInst>(U))
2310       return false;
2311   }
2312   return true;
2313 }
2314 
2315 /// This function handles following case
2316 ///
2317 ///     A  ->  B    cast
2318 ///     PHI
2319 ///     B  ->  A    cast
2320 ///
2321 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2322 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2323 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
2324   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2325   if (hasStoreUsersOnly(CI))
2326     return nullptr;
2327 
2328   Value *Src = CI.getOperand(0);
2329   Type *SrcTy = Src->getType();         // Type B
2330   Type *DestTy = CI.getType();          // Type A
2331 
2332   SmallVector<PHINode *, 4> PhiWorklist;
2333   SmallSetVector<PHINode *, 4> OldPhiNodes;
2334 
2335   // Find all of the A->B casts and PHI nodes.
2336   // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2337   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2338   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2339   PhiWorklist.push_back(PN);
2340   OldPhiNodes.insert(PN);
2341   while (!PhiWorklist.empty()) {
2342     auto *OldPN = PhiWorklist.pop_back_val();
2343     for (Value *IncValue : OldPN->incoming_values()) {
2344       if (isa<Constant>(IncValue))
2345         continue;
2346 
2347       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2348         // If there is a sequence of one or more load instructions, each loaded
2349         // value is used as address of later load instruction, bitcast is
2350         // necessary to change the value type, don't optimize it. For
2351         // simplicity we give up if the load address comes from another load.
2352         Value *Addr = LI->getOperand(0);
2353         if (Addr == &CI || isa<LoadInst>(Addr))
2354           return nullptr;
2355         if (LI->hasOneUse() && LI->isSimple())
2356           continue;
2357         // If a LoadInst has more than one use, changing the type of loaded
2358         // value may create another bitcast.
2359         return nullptr;
2360       }
2361 
2362       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2363         if (OldPhiNodes.insert(PNode))
2364           PhiWorklist.push_back(PNode);
2365         continue;
2366       }
2367 
2368       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2369       // We can't handle other instructions.
2370       if (!BCI)
2371         return nullptr;
2372 
2373       // Verify it's a A->B cast.
2374       Type *TyA = BCI->getOperand(0)->getType();
2375       Type *TyB = BCI->getType();
2376       if (TyA != DestTy || TyB != SrcTy)
2377         return nullptr;
2378     }
2379   }
2380 
2381   // Check that each user of each old PHI node is something that we can
2382   // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2383   for (auto *OldPN : OldPhiNodes) {
2384     for (User *V : OldPN->users()) {
2385       if (auto *SI = dyn_cast<StoreInst>(V)) {
2386         if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2387           return nullptr;
2388       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2389         // Verify it's a B->A cast.
2390         Type *TyB = BCI->getOperand(0)->getType();
2391         Type *TyA = BCI->getType();
2392         if (TyA != DestTy || TyB != SrcTy)
2393           return nullptr;
2394       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2395         // As long as the user is another old PHI node, then even if we don't
2396         // rewrite it, the PHI web we're considering won't have any users
2397         // outside itself, so it'll be dead.
2398         if (OldPhiNodes.count(PHI) == 0)
2399           return nullptr;
2400       } else {
2401         return nullptr;
2402       }
2403     }
2404   }
2405 
2406   // For each old PHI node, create a corresponding new PHI node with a type A.
2407   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2408   for (auto *OldPN : OldPhiNodes) {
2409     Builder.SetInsertPoint(OldPN);
2410     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2411     NewPNodes[OldPN] = NewPN;
2412   }
2413 
2414   // Fill in the operands of new PHI nodes.
2415   for (auto *OldPN : OldPhiNodes) {
2416     PHINode *NewPN = NewPNodes[OldPN];
2417     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2418       Value *V = OldPN->getOperand(j);
2419       Value *NewV = nullptr;
2420       if (auto *C = dyn_cast<Constant>(V)) {
2421         NewV = ConstantExpr::getBitCast(C, DestTy);
2422       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2423         // Explicitly perform load combine to make sure no opposing transform
2424         // can remove the bitcast in the meantime and trigger an infinite loop.
2425         Builder.SetInsertPoint(LI);
2426         NewV = combineLoadToNewType(*LI, DestTy);
2427         // Remove the old load and its use in the old phi, which itself becomes
2428         // dead once the whole transform finishes.
2429         replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
2430         eraseInstFromFunction(*LI);
2431       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2432         NewV = BCI->getOperand(0);
2433       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2434         NewV = NewPNodes[PrevPN];
2435       }
2436       assert(NewV);
2437       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2438     }
2439   }
2440 
2441   // Traverse all accumulated PHI nodes and process its users,
2442   // which are Stores and BitcCasts. Without this processing
2443   // NewPHI nodes could be replicated and could lead to extra
2444   // moves generated after DeSSA.
2445   // If there is a store with type B, change it to type A.
2446 
2447 
2448   // Replace users of BitCast B->A with NewPHI. These will help
2449   // later to get rid off a closure formed by OldPHI nodes.
2450   Instruction *RetVal = nullptr;
2451   for (auto *OldPN : OldPhiNodes) {
2452     PHINode *NewPN = NewPNodes[OldPN];
2453     for (auto It = OldPN->user_begin(), End = OldPN->user_end(); It != End; ) {
2454       User *V = *It;
2455       // We may remove this user, advance to avoid iterator invalidation.
2456       ++It;
2457       if (auto *SI = dyn_cast<StoreInst>(V)) {
2458         assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2459         Builder.SetInsertPoint(SI);
2460         auto *NewBC =
2461           cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2462         SI->setOperand(0, NewBC);
2463         Worklist.push(SI);
2464         assert(hasStoreUsersOnly(*NewBC));
2465       }
2466       else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2467         Type *TyB = BCI->getOperand(0)->getType();
2468         Type *TyA = BCI->getType();
2469         assert(TyA == DestTy && TyB == SrcTy);
2470         (void) TyA;
2471         (void) TyB;
2472         Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2473         if (BCI == &CI)
2474           RetVal = I;
2475       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2476         assert(OldPhiNodes.count(PHI) > 0);
2477         (void) PHI;
2478       } else {
2479         llvm_unreachable("all uses should be handled");
2480       }
2481     }
2482   }
2483 
2484   return RetVal;
2485 }
2486 
2487 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2488   // If the operands are integer typed then apply the integer transforms,
2489   // otherwise just apply the common ones.
2490   Value *Src = CI.getOperand(0);
2491   Type *SrcTy = Src->getType();
2492   Type *DestTy = CI.getType();
2493 
2494   // Get rid of casts from one type to the same type. These are useless and can
2495   // be replaced by the operand.
2496   if (DestTy == Src->getType())
2497     return replaceInstUsesWith(CI, Src);
2498 
2499   if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) {
2500     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2501     PointerType *DstPTy = cast<PointerType>(DestTy);
2502     Type *DstElTy = DstPTy->getElementType();
2503     Type *SrcElTy = SrcPTy->getElementType();
2504 
2505     // Casting pointers between the same type, but with different address spaces
2506     // is an addrspace cast rather than a bitcast.
2507     if ((DstElTy == SrcElTy) &&
2508         (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2509       return new AddrSpaceCastInst(Src, DestTy);
2510 
2511     // If we are casting a alloca to a pointer to a type of the same
2512     // size, rewrite the allocation instruction to allocate the "right" type.
2513     // There is no need to modify malloc calls because it is their bitcast that
2514     // needs to be cleaned up.
2515     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2516       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2517         return V;
2518 
2519     // When the type pointed to is not sized the cast cannot be
2520     // turned into a gep.
2521     Type *PointeeType =
2522         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2523     if (!PointeeType->isSized())
2524       return nullptr;
2525 
2526     // If the source and destination are pointers, and this cast is equivalent
2527     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2528     // This can enhance SROA and other transforms that want type-safe pointers.
2529     unsigned NumZeros = 0;
2530     while (SrcElTy && SrcElTy != DstElTy) {
2531       SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
2532       ++NumZeros;
2533     }
2534 
2535     // If we found a path from the src to dest, create the getelementptr now.
2536     if (SrcElTy == DstElTy) {
2537       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2538       GetElementPtrInst *GEP =
2539           GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs);
2540 
2541       // If the source pointer is dereferenceable, then assume it points to an
2542       // allocated object and apply "inbounds" to the GEP.
2543       bool CanBeNull;
2544       if (Src->getPointerDereferenceableBytes(DL, CanBeNull)) {
2545         // In a non-default address space (not 0), a null pointer can not be
2546         // assumed inbounds, so ignore that case (dereferenceable_or_null).
2547         // The reason is that 'null' is not treated differently in these address
2548         // spaces, and we consequently ignore the 'gep inbounds' special case
2549         // for 'null' which allows 'inbounds' on 'null' if the indices are
2550         // zeros.
2551         if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
2552           GEP->setIsInBounds();
2553       }
2554       return GEP;
2555     }
2556   }
2557 
2558   if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2559     // Beware: messing with this target-specific oddity may cause trouble.
2560     if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2561       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2562       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2563                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2564     }
2565 
2566     if (isa<IntegerType>(SrcTy)) {
2567       // If this is a cast from an integer to vector, check to see if the input
2568       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2569       // the casts with a shuffle and (potentially) a bitcast.
2570       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2571         CastInst *SrcCast = cast<CastInst>(Src);
2572         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2573           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2574             if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2575                     BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2576               return I;
2577       }
2578 
2579       // If the input is an 'or' instruction, we may be doing shifts and ors to
2580       // assemble the elements of the vector manually.  Try to rip the code out
2581       // and replace it with insertelements.
2582       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2583         return replaceInstUsesWith(CI, V);
2584     }
2585   }
2586 
2587   if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2588     if (SrcVTy->getNumElements() == 1) {
2589       // If our destination is not a vector, then make this a straight
2590       // scalar-scalar cast.
2591       if (!DestTy->isVectorTy()) {
2592         Value *Elem =
2593           Builder.CreateExtractElement(Src,
2594                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2595         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2596       }
2597 
2598       // Otherwise, see if our source is an insert. If so, then use the scalar
2599       // component directly:
2600       // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2601       if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2602         return new BitCastInst(InsElt->getOperand(1), DestTy);
2603     }
2604   }
2605 
2606   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2607     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2608     // a bitcast to a vector with the same # elts.
2609     Value *ShufOp0 = Shuf->getOperand(0);
2610     Value *ShufOp1 = Shuf->getOperand(1);
2611     unsigned NumShufElts = Shuf->getType()->getNumElements();
2612     unsigned NumSrcVecElts =
2613         cast<VectorType>(ShufOp0->getType())->getNumElements();
2614     if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2615         cast<VectorType>(DestTy)->getNumElements() == NumShufElts &&
2616         NumShufElts == NumSrcVecElts) {
2617       BitCastInst *Tmp;
2618       // If either of the operands is a cast from CI.getType(), then
2619       // evaluating the shuffle in the casted destination's type will allow
2620       // us to eliminate at least one cast.
2621       if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2622            Tmp->getOperand(0)->getType() == DestTy) ||
2623           ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2624            Tmp->getOperand(0)->getType() == DestTy)) {
2625         Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2626         Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2627         // Return a new shuffle vector.  Use the same element ID's, as we
2628         // know the vector types match #elts.
2629         return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2630       }
2631     }
2632 
2633     // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
2634     // a byte-swap:
2635     // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
2636     // TODO: We should match the related pattern for bitreverse.
2637     if (DestTy->isIntegerTy() &&
2638         DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2639         SrcTy->getScalarSizeInBits() == 8 && NumShufElts % 2 == 0 &&
2640         Shuf->hasOneUse() && Shuf->isReverse()) {
2641       assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2642       assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op");
2643       Function *Bswap =
2644           Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
2645       Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2646       return IntrinsicInst::Create(Bswap, { ScalarX });
2647     }
2648   }
2649 
2650   // Handle the A->B->A cast, and there is an intervening PHI node.
2651   if (PHINode *PN = dyn_cast<PHINode>(Src))
2652     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2653       return I;
2654 
2655   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2656     return I;
2657 
2658   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2659     return I;
2660 
2661   if (Instruction *I = foldBitCastSelect(CI, Builder))
2662     return I;
2663 
2664   if (SrcTy->isPointerTy())
2665     return commonPointerCastTransforms(CI);
2666   return commonCastTransforms(CI);
2667 }
2668 
2669 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2670   // If the destination pointer element type is not the same as the source's
2671   // first do a bitcast to the destination type, and then the addrspacecast.
2672   // This allows the cast to be exposed to other transforms.
2673   Value *Src = CI.getOperand(0);
2674   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2675   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2676 
2677   Type *DestElemTy = DestTy->getElementType();
2678   if (SrcTy->getElementType() != DestElemTy) {
2679     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2680     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2681       // Handle vectors of pointers.
2682       // FIXME: what should happen for scalable vectors?
2683       MidTy = FixedVectorType::get(MidTy, VT->getNumElements());
2684     }
2685 
2686     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2687     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2688   }
2689 
2690   return commonPointerCastTransforms(CI);
2691 }
2692