xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for cast operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/DebugInfo.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
21 #include <optional>
22 
23 using namespace llvm;
24 using namespace PatternMatch;
25 
26 #define DEBUG_TYPE "instcombine"
27 
28 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
29 /// true for, actually insert the code to evaluate the expression.
30 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
31                                                  bool isSigned) {
32   if (Constant *C = dyn_cast<Constant>(V))
33     return ConstantFoldIntegerCast(C, Ty, isSigned, DL);
34 
35   // Otherwise, it must be an instruction.
36   Instruction *I = cast<Instruction>(V);
37   Instruction *Res = nullptr;
38   unsigned Opc = I->getOpcode();
39   switch (Opc) {
40   case Instruction::Add:
41   case Instruction::Sub:
42   case Instruction::Mul:
43   case Instruction::And:
44   case Instruction::Or:
45   case Instruction::Xor:
46   case Instruction::AShr:
47   case Instruction::LShr:
48   case Instruction::Shl:
49   case Instruction::UDiv:
50   case Instruction::URem: {
51     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
52     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
53     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
54     break;
55   }
56   case Instruction::Trunc:
57   case Instruction::ZExt:
58   case Instruction::SExt:
59     // If the source type of the cast is the type we're trying for then we can
60     // just return the source.  There's no need to insert it because it is not
61     // new.
62     if (I->getOperand(0)->getType() == Ty)
63       return I->getOperand(0);
64 
65     // Otherwise, must be the same type of cast, so just reinsert a new one.
66     // This also handles the case of zext(trunc(x)) -> zext(x).
67     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
68                                       Opc == Instruction::SExt);
69     break;
70   case Instruction::Select: {
71     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
72     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
73     Res = SelectInst::Create(I->getOperand(0), True, False);
74     break;
75   }
76   case Instruction::PHI: {
77     PHINode *OPN = cast<PHINode>(I);
78     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
79     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
80       Value *V =
81           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
82       NPN->addIncoming(V, OPN->getIncomingBlock(i));
83     }
84     Res = NPN;
85     break;
86   }
87   case Instruction::FPToUI:
88   case Instruction::FPToSI:
89     Res = CastInst::Create(
90       static_cast<Instruction::CastOps>(Opc), I->getOperand(0), Ty);
91     break;
92   case Instruction::Call:
93     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
94       switch (II->getIntrinsicID()) {
95       default:
96         llvm_unreachable("Unsupported call!");
97       case Intrinsic::vscale: {
98         Function *Fn =
99             Intrinsic::getDeclaration(I->getModule(), Intrinsic::vscale, {Ty});
100         Res = CallInst::Create(Fn->getFunctionType(), Fn);
101         break;
102       }
103       }
104     }
105     break;
106   case Instruction::ShuffleVector: {
107     auto *ScalarTy = cast<VectorType>(Ty)->getElementType();
108     auto *VTy = cast<VectorType>(I->getOperand(0)->getType());
109     auto *FixedTy = VectorType::get(ScalarTy, VTy->getElementCount());
110     Value *Op0 = EvaluateInDifferentType(I->getOperand(0), FixedTy, isSigned);
111     Value *Op1 = EvaluateInDifferentType(I->getOperand(1), FixedTy, isSigned);
112     Res = new ShuffleVectorInst(Op0, Op1,
113                                 cast<ShuffleVectorInst>(I)->getShuffleMask());
114     break;
115   }
116   default:
117     // TODO: Can handle more cases here.
118     llvm_unreachable("Unreachable!");
119   }
120 
121   Res->takeName(I);
122   return InsertNewInstWith(Res, I->getIterator());
123 }
124 
125 Instruction::CastOps
126 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
127                                        const CastInst *CI2) {
128   Type *SrcTy = CI1->getSrcTy();
129   Type *MidTy = CI1->getDestTy();
130   Type *DstTy = CI2->getDestTy();
131 
132   Instruction::CastOps firstOp = CI1->getOpcode();
133   Instruction::CastOps secondOp = CI2->getOpcode();
134   Type *SrcIntPtrTy =
135       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
136   Type *MidIntPtrTy =
137       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
138   Type *DstIntPtrTy =
139       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
140   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
141                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
142                                                 DstIntPtrTy);
143 
144   // We don't want to form an inttoptr or ptrtoint that converts to an integer
145   // type that differs from the pointer size.
146   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
147       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
148     Res = 0;
149 
150   return Instruction::CastOps(Res);
151 }
152 
153 /// Implement the transforms common to all CastInst visitors.
154 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
155   Value *Src = CI.getOperand(0);
156   Type *Ty = CI.getType();
157 
158   if (auto *SrcC = dyn_cast<Constant>(Src))
159     if (Constant *Res = ConstantFoldCastOperand(CI.getOpcode(), SrcC, Ty, DL))
160       return replaceInstUsesWith(CI, Res);
161 
162   // Try to eliminate a cast of a cast.
163   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
164     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
165       // The first cast (CSrc) is eliminable so we need to fix up or replace
166       // the second cast (CI). CSrc will then have a good chance of being dead.
167       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
168       // Point debug users of the dying cast to the new one.
169       if (CSrc->hasOneUse())
170         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
171       return Res;
172     }
173   }
174 
175   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
176     // We are casting a select. Try to fold the cast into the select if the
177     // select does not have a compare instruction with matching operand types
178     // or the select is likely better done in a narrow type.
179     // Creating a select with operands that are different sizes than its
180     // condition may inhibit other folds and lead to worse codegen.
181     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
182     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
183         (CI.getOpcode() == Instruction::Trunc &&
184          shouldChangeType(CI.getSrcTy(), CI.getType()))) {
185 
186       // If it's a bitcast involving vectors, make sure it has the same number
187       // of elements on both sides.
188       if (CI.getOpcode() != Instruction::BitCast ||
189           match(&CI, m_ElementWiseBitCast(m_Value()))) {
190         if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
191           replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
192           return NV;
193         }
194       }
195     }
196   }
197 
198   // If we are casting a PHI, then fold the cast into the PHI.
199   if (auto *PN = dyn_cast<PHINode>(Src)) {
200     // Don't do this if it would create a PHI node with an illegal type from a
201     // legal type.
202     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
203         shouldChangeType(CI.getSrcTy(), CI.getType()))
204       if (Instruction *NV = foldOpIntoPhi(CI, PN))
205         return NV;
206   }
207 
208   // Canonicalize a unary shuffle after the cast if neither operation changes
209   // the size or element size of the input vector.
210   // TODO: We could allow size-changing ops if that doesn't harm codegen.
211   // cast (shuffle X, Mask) --> shuffle (cast X), Mask
212   Value *X;
213   ArrayRef<int> Mask;
214   if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) {
215     // TODO: Allow scalable vectors?
216     auto *SrcTy = dyn_cast<FixedVectorType>(X->getType());
217     auto *DestTy = dyn_cast<FixedVectorType>(Ty);
218     if (SrcTy && DestTy &&
219         SrcTy->getNumElements() == DestTy->getNumElements() &&
220         SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
221       Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy);
222       return new ShuffleVectorInst(CastX, Mask);
223     }
224   }
225 
226   return nullptr;
227 }
228 
229 /// Constants and extensions/truncates from the destination type are always
230 /// free to be evaluated in that type. This is a helper for canEvaluate*.
231 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
232   if (isa<Constant>(V))
233     return match(V, m_ImmConstant());
234 
235   Value *X;
236   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
237       X->getType() == Ty)
238     return true;
239 
240   return false;
241 }
242 
243 /// Filter out values that we can not evaluate in the destination type for free.
244 /// This is a helper for canEvaluate*.
245 static bool canNotEvaluateInType(Value *V, Type *Ty) {
246   if (!isa<Instruction>(V))
247     return true;
248   // We don't extend or shrink something that has multiple uses --  doing so
249   // would require duplicating the instruction which isn't profitable.
250   if (!V->hasOneUse())
251     return true;
252 
253   return false;
254 }
255 
256 /// Return true if we can evaluate the specified expression tree as type Ty
257 /// instead of its larger type, and arrive with the same value.
258 /// This is used by code that tries to eliminate truncates.
259 ///
260 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
261 /// can be computed by computing V in the smaller type.  If V is an instruction,
262 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
263 /// makes sense if x and y can be efficiently truncated.
264 ///
265 /// This function works on both vectors and scalars.
266 ///
267 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
268                                  Instruction *CxtI) {
269   if (canAlwaysEvaluateInType(V, Ty))
270     return true;
271   if (canNotEvaluateInType(V, Ty))
272     return false;
273 
274   auto *I = cast<Instruction>(V);
275   Type *OrigTy = V->getType();
276   switch (I->getOpcode()) {
277   case Instruction::Add:
278   case Instruction::Sub:
279   case Instruction::Mul:
280   case Instruction::And:
281   case Instruction::Or:
282   case Instruction::Xor:
283     // These operators can all arbitrarily be extended or truncated.
284     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
285            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
286 
287   case Instruction::UDiv:
288   case Instruction::URem: {
289     // UDiv and URem can be truncated if all the truncated bits are zero.
290     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
291     uint32_t BitWidth = Ty->getScalarSizeInBits();
292     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
293     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
294     // Do not preserve the original context instruction. Simplifying div/rem
295     // based on later context may introduce a trap.
296     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, I) &&
297         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, I)) {
298       return canEvaluateTruncated(I->getOperand(0), Ty, IC, I) &&
299              canEvaluateTruncated(I->getOperand(1), Ty, IC, I);
300     }
301     break;
302   }
303   case Instruction::Shl: {
304     // If we are truncating the result of this SHL, and if it's a shift of an
305     // inrange amount, we can always perform a SHL in a smaller type.
306     uint32_t BitWidth = Ty->getScalarSizeInBits();
307     KnownBits AmtKnownBits =
308         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
309     if (AmtKnownBits.getMaxValue().ult(BitWidth))
310       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
311              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
312     break;
313   }
314   case Instruction::LShr: {
315     // If this is a truncate of a logical shr, we can truncate it to a smaller
316     // lshr iff we know that the bits we would otherwise be shifting in are
317     // already zeros.
318     // TODO: It is enough to check that the bits we would be shifting in are
319     //       zero - use AmtKnownBits.getMaxValue().
320     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
321     uint32_t BitWidth = Ty->getScalarSizeInBits();
322     KnownBits AmtKnownBits =
323         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
324     APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
325     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
326         IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
327       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
328              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
329     }
330     break;
331   }
332   case Instruction::AShr: {
333     // If this is a truncate of an arithmetic shr, we can truncate it to a
334     // smaller ashr iff we know that all the bits from the sign bit of the
335     // original type and the sign bit of the truncate type are similar.
336     // TODO: It is enough to check that the bits we would be shifting in are
337     //       similar to sign bit of the truncate type.
338     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
339     uint32_t BitWidth = Ty->getScalarSizeInBits();
340     KnownBits AmtKnownBits =
341         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
342     unsigned ShiftedBits = OrigBitWidth - BitWidth;
343     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
344         ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
345       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
346              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
347     break;
348   }
349   case Instruction::Trunc:
350     // trunc(trunc(x)) -> trunc(x)
351     return true;
352   case Instruction::ZExt:
353   case Instruction::SExt:
354     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
355     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
356     return true;
357   case Instruction::Select: {
358     SelectInst *SI = cast<SelectInst>(I);
359     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
360            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
361   }
362   case Instruction::PHI: {
363     // We can change a phi if we can change all operands.  Note that we never
364     // get into trouble with cyclic PHIs here because we only consider
365     // instructions with a single use.
366     PHINode *PN = cast<PHINode>(I);
367     for (Value *IncValue : PN->incoming_values())
368       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
369         return false;
370     return true;
371   }
372   case Instruction::FPToUI:
373   case Instruction::FPToSI: {
374     // If the integer type can hold the max FP value, it is safe to cast
375     // directly to that type. Otherwise, we may create poison via overflow
376     // that did not exist in the original code.
377     Type *InputTy = I->getOperand(0)->getType()->getScalarType();
378     const fltSemantics &Semantics = InputTy->getFltSemantics();
379     uint32_t MinBitWidth =
380       APFloatBase::semanticsIntSizeInBits(Semantics,
381           I->getOpcode() == Instruction::FPToSI);
382     return Ty->getScalarSizeInBits() >= MinBitWidth;
383   }
384   case Instruction::ShuffleVector:
385     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
386            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
387   default:
388     // TODO: Can handle more cases here.
389     break;
390   }
391 
392   return false;
393 }
394 
395 /// Given a vector that is bitcast to an integer, optionally logically
396 /// right-shifted, and truncated, convert it to an extractelement.
397 /// Example (big endian):
398 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
399 ///   --->
400 ///   extractelement <4 x i32> %X, 1
401 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
402                                          InstCombinerImpl &IC) {
403   Value *TruncOp = Trunc.getOperand(0);
404   Type *DestType = Trunc.getType();
405   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
406     return nullptr;
407 
408   Value *VecInput = nullptr;
409   ConstantInt *ShiftVal = nullptr;
410   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
411                                   m_LShr(m_BitCast(m_Value(VecInput)),
412                                          m_ConstantInt(ShiftVal)))) ||
413       !isa<VectorType>(VecInput->getType()))
414     return nullptr;
415 
416   VectorType *VecType = cast<VectorType>(VecInput->getType());
417   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
418   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
419   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
420 
421   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
422     return nullptr;
423 
424   // If the element type of the vector doesn't match the result type,
425   // bitcast it to a vector type that we can extract from.
426   unsigned NumVecElts = VecWidth / DestWidth;
427   if (VecType->getElementType() != DestType) {
428     VecType = FixedVectorType::get(DestType, NumVecElts);
429     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
430   }
431 
432   unsigned Elt = ShiftAmount / DestWidth;
433   if (IC.getDataLayout().isBigEndian())
434     Elt = NumVecElts - 1 - Elt;
435 
436   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
437 }
438 
439 /// Funnel/Rotate left/right may occur in a wider type than necessary because of
440 /// type promotion rules. Try to narrow the inputs and convert to funnel shift.
441 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
442   assert((isa<VectorType>(Trunc.getSrcTy()) ||
443           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
444          "Don't narrow to an illegal scalar type");
445 
446   // Bail out on strange types. It is possible to handle some of these patterns
447   // even with non-power-of-2 sizes, but it is not a likely scenario.
448   Type *DestTy = Trunc.getType();
449   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
450   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
451   if (!isPowerOf2_32(NarrowWidth))
452     return nullptr;
453 
454   // First, find an or'd pair of opposite shifts:
455   // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
456   BinaryOperator *Or0, *Or1;
457   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
458     return nullptr;
459 
460   Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
461   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
462       !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
463       Or0->getOpcode() == Or1->getOpcode())
464     return nullptr;
465 
466   // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
467   if (Or0->getOpcode() == BinaryOperator::LShr) {
468     std::swap(Or0, Or1);
469     std::swap(ShVal0, ShVal1);
470     std::swap(ShAmt0, ShAmt1);
471   }
472   assert(Or0->getOpcode() == BinaryOperator::Shl &&
473          Or1->getOpcode() == BinaryOperator::LShr &&
474          "Illegal or(shift,shift) pair");
475 
476   // Match the shift amount operands for a funnel/rotate pattern. This always
477   // matches a subtraction on the R operand.
478   auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
479     // The shift amounts may add up to the narrow bit width:
480     // (shl ShVal0, L) | (lshr ShVal1, Width - L)
481     // If this is a funnel shift (different operands are shifted), then the
482     // shift amount can not over-shift (create poison) in the narrow type.
483     unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth);
484     APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth);
485     if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask))
486       if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
487         return L;
488 
489     // The following patterns currently only work for rotation patterns.
490     // TODO: Add more general funnel-shift compatible patterns.
491     if (ShVal0 != ShVal1)
492       return nullptr;
493 
494     // The shift amount may be masked with negation:
495     // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
496     Value *X;
497     unsigned Mask = Width - 1;
498     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
499         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
500       return X;
501 
502     // Same as above, but the shift amount may be extended after masking:
503     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
504         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
505       return X;
506 
507     return nullptr;
508   };
509 
510   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
511   bool IsFshl = true; // Sub on LSHR.
512   if (!ShAmt) {
513     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
514     IsFshl = false; // Sub on SHL.
515   }
516   if (!ShAmt)
517     return nullptr;
518 
519   // The right-shifted value must have high zeros in the wide type (for example
520   // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are
521   // truncated, so those do not matter.
522   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
523   if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
524     return nullptr;
525 
526   // Adjust the width of ShAmt for narrowed funnel shift operation:
527   // - Zero-extend if ShAmt is narrower than the destination type.
528   // - Truncate if ShAmt is wider, discarding non-significant high-order bits.
529   // This prepares ShAmt for llvm.fshl.i8(trunc(ShVal), trunc(ShVal),
530   // zext/trunc(ShAmt)).
531   Value *NarrowShAmt = Builder.CreateZExtOrTrunc(ShAmt, DestTy);
532 
533   Value *X, *Y;
534   X = Y = Builder.CreateTrunc(ShVal0, DestTy);
535   if (ShVal0 != ShVal1)
536     Y = Builder.CreateTrunc(ShVal1, DestTy);
537   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
538   Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
539   return CallInst::Create(F, {X, Y, NarrowShAmt});
540 }
541 
542 /// Try to narrow the width of math or bitwise logic instructions by pulling a
543 /// truncate ahead of binary operators.
544 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
545   Type *SrcTy = Trunc.getSrcTy();
546   Type *DestTy = Trunc.getType();
547   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
548   unsigned DestWidth = DestTy->getScalarSizeInBits();
549 
550   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
551     return nullptr;
552 
553   BinaryOperator *BinOp;
554   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
555     return nullptr;
556 
557   Value *BinOp0 = BinOp->getOperand(0);
558   Value *BinOp1 = BinOp->getOperand(1);
559   switch (BinOp->getOpcode()) {
560   case Instruction::And:
561   case Instruction::Or:
562   case Instruction::Xor:
563   case Instruction::Add:
564   case Instruction::Sub:
565   case Instruction::Mul: {
566     Constant *C;
567     if (match(BinOp0, m_Constant(C))) {
568       // trunc (binop C, X) --> binop (trunc C', X)
569       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
570       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
571       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
572     }
573     if (match(BinOp1, m_Constant(C))) {
574       // trunc (binop X, C) --> binop (trunc X, C')
575       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
576       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
577       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
578     }
579     Value *X;
580     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
581       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
582       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
583       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
584     }
585     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
586       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
587       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
588       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
589     }
590     break;
591   }
592   case Instruction::LShr:
593   case Instruction::AShr: {
594     // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
595     Value *A;
596     Constant *C;
597     if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) {
598       unsigned MaxShiftAmt = SrcWidth - DestWidth;
599       // If the shift is small enough, all zero/sign bits created by the shift
600       // are removed by the trunc.
601       if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
602                                       APInt(SrcWidth, MaxShiftAmt)))) {
603         auto *OldShift = cast<Instruction>(Trunc.getOperand(0));
604         bool IsExact = OldShift->isExact();
605         if (Constant *ShAmt = ConstantFoldIntegerCast(C, A->getType(),
606                                                       /*IsSigned*/ true, DL)) {
607           ShAmt = Constant::mergeUndefsWith(ShAmt, C);
608           Value *Shift =
609               OldShift->getOpcode() == Instruction::AShr
610                   ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
611                   : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
612           return CastInst::CreateTruncOrBitCast(Shift, DestTy);
613         }
614       }
615     }
616     break;
617   }
618   default: break;
619   }
620 
621   if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
622     return NarrowOr;
623 
624   return nullptr;
625 }
626 
627 /// Try to narrow the width of a splat shuffle. This could be generalized to any
628 /// shuffle with a constant operand, but we limit the transform to avoid
629 /// creating a shuffle type that targets may not be able to lower effectively.
630 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
631                                        InstCombiner::BuilderTy &Builder) {
632   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
633   if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) &&
634       all_equal(Shuf->getShuffleMask()) &&
635       Shuf->getType() == Shuf->getOperand(0)->getType()) {
636     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask
637     // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask
638     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
639     return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask());
640   }
641 
642   return nullptr;
643 }
644 
645 /// Try to narrow the width of an insert element. This could be generalized for
646 /// any vector constant, but we limit the transform to insertion into undef to
647 /// avoid potential backend problems from unsupported insertion widths. This
648 /// could also be extended to handle the case of inserting a scalar constant
649 /// into a vector variable.
650 static Instruction *shrinkInsertElt(CastInst &Trunc,
651                                     InstCombiner::BuilderTy &Builder) {
652   Instruction::CastOps Opcode = Trunc.getOpcode();
653   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
654          "Unexpected instruction for shrinking");
655 
656   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
657   if (!InsElt || !InsElt->hasOneUse())
658     return nullptr;
659 
660   Type *DestTy = Trunc.getType();
661   Type *DestScalarTy = DestTy->getScalarType();
662   Value *VecOp = InsElt->getOperand(0);
663   Value *ScalarOp = InsElt->getOperand(1);
664   Value *Index = InsElt->getOperand(2);
665 
666   if (match(VecOp, m_Undef())) {
667     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
668     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
669     UndefValue *NarrowUndef = UndefValue::get(DestTy);
670     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
671     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
672   }
673 
674   return nullptr;
675 }
676 
677 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
678   if (Instruction *Result = commonCastTransforms(Trunc))
679     return Result;
680 
681   Value *Src = Trunc.getOperand(0);
682   Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
683   unsigned DestWidth = DestTy->getScalarSizeInBits();
684   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
685 
686   // Attempt to truncate the entire input expression tree to the destination
687   // type.   Only do this if the dest type is a simple type, don't convert the
688   // expression tree to something weird like i93 unless the source is also
689   // strange.
690   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
691       canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
692 
693     // If this cast is a truncate, evaluting in a different type always
694     // eliminates the cast, so it is always a win.
695     LLVM_DEBUG(
696         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
697                   " to avoid cast: "
698                << Trunc << '\n');
699     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
700     assert(Res->getType() == DestTy);
701     return replaceInstUsesWith(Trunc, Res);
702   }
703 
704   // For integer types, check if we can shorten the entire input expression to
705   // DestWidth * 2, which won't allow removing the truncate, but reducing the
706   // width may enable further optimizations, e.g. allowing for larger
707   // vectorization factors.
708   if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
709     if (DestWidth * 2 < SrcWidth) {
710       auto *NewDestTy = DestITy->getExtendedType();
711       if (shouldChangeType(SrcTy, NewDestTy) &&
712           canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
713         LLVM_DEBUG(
714             dbgs() << "ICE: EvaluateInDifferentType converting expression type"
715                       " to reduce the width of operand of"
716                    << Trunc << '\n');
717         Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
718         return new TruncInst(Res, DestTy);
719       }
720     }
721   }
722 
723   // Test if the trunc is the user of a select which is part of a
724   // minimum or maximum operation. If so, don't do any more simplification.
725   // Even simplifying demanded bits can break the canonical form of a
726   // min/max.
727   Value *LHS, *RHS;
728   if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
729     if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
730       return nullptr;
731 
732   // See if we can simplify any instructions used by the input whose sole
733   // purpose is to compute bits we don't care about.
734   if (SimplifyDemandedInstructionBits(Trunc))
735     return &Trunc;
736 
737   if (DestWidth == 1) {
738     Value *Zero = Constant::getNullValue(SrcTy);
739 
740     Value *X;
741     const APInt *C1;
742     Constant *C2;
743     if (match(Src, m_OneUse(m_Shr(m_Shl(m_Power2(C1), m_Value(X)),
744                                   m_ImmConstant(C2))))) {
745       // trunc ((C1 << X) >> C2) to i1 --> X == (C2-cttz(C1)), where C1 is pow2
746       Constant *Log2C1 = ConstantInt::get(SrcTy, C1->exactLogBase2());
747       Constant *CmpC = ConstantExpr::getSub(C2, Log2C1);
748       return new ICmpInst(ICmpInst::ICMP_EQ, X, CmpC);
749     }
750 
751     Constant *C;
752     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_ImmConstant(C))))) {
753       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
754       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
755       Value *MaskC = Builder.CreateShl(One, C);
756       Value *And = Builder.CreateAnd(X, MaskC);
757       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
758     }
759     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_ImmConstant(C)),
760                                    m_Deferred(X))))) {
761       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
762       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
763       Value *MaskC = Builder.CreateShl(One, C);
764       Value *And = Builder.CreateAnd(X, Builder.CreateOr(MaskC, One));
765       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
766     }
767 
768     {
769       const APInt *C;
770       if (match(Src, m_Shl(m_APInt(C), m_Value(X))) && (*C)[0] == 1) {
771         // trunc (C << X) to i1 --> X == 0, where C is odd
772         return new ICmpInst(ICmpInst::Predicate::ICMP_EQ, X, Zero);
773       }
774     }
775 
776     if (Trunc.hasNoUnsignedWrap() || Trunc.hasNoSignedWrap()) {
777       Value *X, *Y;
778       if (match(Src, m_Xor(m_Value(X), m_Value(Y))))
779         return new ICmpInst(ICmpInst::ICMP_NE, X, Y);
780     }
781   }
782 
783   Value *A, *B;
784   Constant *C;
785   if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
786     unsigned AWidth = A->getType()->getScalarSizeInBits();
787     unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
788     auto *OldSh = cast<Instruction>(Src);
789     bool IsExact = OldSh->isExact();
790 
791     // If the shift is small enough, all zero bits created by the shift are
792     // removed by the trunc.
793     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
794                                     APInt(SrcWidth, MaxShiftAmt)))) {
795       auto GetNewShAmt = [&](unsigned Width) {
796         Constant *MaxAmt = ConstantInt::get(SrcTy, Width - 1, false);
797         Constant *Cmp =
798             ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, C, MaxAmt, DL);
799         Constant *ShAmt = ConstantFoldSelectInstruction(Cmp, C, MaxAmt);
800         return ConstantFoldCastOperand(Instruction::Trunc, ShAmt, A->getType(),
801                                        DL);
802       };
803 
804       // trunc (lshr (sext A), C) --> ashr A, C
805       if (A->getType() == DestTy) {
806         Constant *ShAmt = GetNewShAmt(DestWidth);
807         ShAmt = Constant::mergeUndefsWith(ShAmt, C);
808         return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
809                        : BinaryOperator::CreateAShr(A, ShAmt);
810       }
811       // The types are mismatched, so create a cast after shifting:
812       // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
813       if (Src->hasOneUse()) {
814         Constant *ShAmt = GetNewShAmt(AWidth);
815         Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
816         return CastInst::CreateIntegerCast(Shift, DestTy, true);
817       }
818     }
819     // TODO: Mask high bits with 'and'.
820   }
821 
822   if (Instruction *I = narrowBinOp(Trunc))
823     return I;
824 
825   if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
826     return I;
827 
828   if (Instruction *I = shrinkInsertElt(Trunc, Builder))
829     return I;
830 
831   if (Src->hasOneUse() &&
832       (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
833     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
834     // dest type is native and cst < dest size.
835     if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
836         !match(A, m_Shr(m_Value(), m_Constant()))) {
837       // Skip shifts of shift by constants. It undoes a combine in
838       // FoldShiftByConstant and is the extend in reg pattern.
839       APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
840       if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
841         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
842         return BinaryOperator::Create(Instruction::Shl, NewTrunc,
843                                       ConstantExpr::getTrunc(C, DestTy));
844       }
845     }
846   }
847 
848   if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
849     return I;
850 
851   // Whenever an element is extracted from a vector, and then truncated,
852   // canonicalize by converting it to a bitcast followed by an
853   // extractelement.
854   //
855   // Example (little endian):
856   //   trunc (extractelement <4 x i64> %X, 0) to i32
857   //   --->
858   //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
859   Value *VecOp;
860   ConstantInt *Cst;
861   if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
862     auto *VecOpTy = cast<VectorType>(VecOp->getType());
863     auto VecElts = VecOpTy->getElementCount();
864 
865     // A badly fit destination size would result in an invalid cast.
866     if (SrcWidth % DestWidth == 0) {
867       uint64_t TruncRatio = SrcWidth / DestWidth;
868       uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
869       uint64_t VecOpIdx = Cst->getZExtValue();
870       uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
871                                          : VecOpIdx * TruncRatio;
872       assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
873              "overflow 32-bits");
874 
875       auto *BitCastTo =
876           VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
877       Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
878       return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
879     }
880   }
881 
882   // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C)
883   if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)),
884                                                        m_Value(B))))) {
885     unsigned AWidth = A->getType()->getScalarSizeInBits();
886     if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) {
887       Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth);
888       Value *NarrowCtlz =
889           Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B});
890       return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff);
891     }
892   }
893 
894   if (match(Src, m_VScale())) {
895     if (Trunc.getFunction() &&
896         Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
897       Attribute Attr =
898           Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange);
899       if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
900         if (Log2_32(*MaxVScale) < DestWidth) {
901           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
902           return replaceInstUsesWith(Trunc, VScale);
903         }
904       }
905     }
906   }
907 
908   bool Changed = false;
909   if (!Trunc.hasNoSignedWrap() &&
910       ComputeMaxSignificantBits(Src, /*Depth=*/0, &Trunc) <= DestWidth) {
911     Trunc.setHasNoSignedWrap(true);
912     Changed = true;
913   }
914   if (!Trunc.hasNoUnsignedWrap() &&
915       MaskedValueIsZero(Src, APInt::getBitsSetFrom(SrcWidth, DestWidth),
916                         /*Depth=*/0, &Trunc)) {
917     Trunc.setHasNoUnsignedWrap(true);
918     Changed = true;
919   }
920 
921   return Changed ? &Trunc : nullptr;
922 }
923 
924 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp,
925                                                  ZExtInst &Zext) {
926   // If we are just checking for a icmp eq of a single bit and zext'ing it
927   // to an integer, then shift the bit to the appropriate place and then
928   // cast to integer to avoid the comparison.
929 
930   // FIXME: This set of transforms does not check for extra uses and/or creates
931   //        an extra instruction (an optional final cast is not included
932   //        in the transform comments). We may also want to favor icmp over
933   //        shifts in cases of equal instructions because icmp has better
934   //        analysis in general (invert the transform).
935 
936   const APInt *Op1CV;
937   if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
938 
939     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
940     if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) {
941       Value *In = Cmp->getOperand(0);
942       Value *Sh = ConstantInt::get(In->getType(),
943                                    In->getType()->getScalarSizeInBits() - 1);
944       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
945       if (In->getType() != Zext.getType())
946         In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
947 
948       return replaceInstUsesWith(Zext, In);
949     }
950 
951     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
952     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
953     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
954     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
955 
956     if (Op1CV->isZero() && Cmp->isEquality()) {
957       // Exactly 1 possible 1? But not the high-bit because that is
958       // canonicalized to this form.
959       KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
960       APInt KnownZeroMask(~Known.Zero);
961       uint32_t ShAmt = KnownZeroMask.logBase2();
962       bool IsExpectShAmt = KnownZeroMask.isPowerOf2() &&
963                            (Zext.getType()->getScalarSizeInBits() != ShAmt + 1);
964       if (IsExpectShAmt &&
965           (Cmp->getOperand(0)->getType() == Zext.getType() ||
966            Cmp->getPredicate() == ICmpInst::ICMP_NE || ShAmt == 0)) {
967         Value *In = Cmp->getOperand(0);
968         if (ShAmt) {
969           // Perform a logical shr by shiftamt.
970           // Insert the shift to put the result in the low bit.
971           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
972                                   In->getName() + ".lobit");
973         }
974 
975         // Toggle the low bit for "X == 0".
976         if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
977           In = Builder.CreateXor(In, ConstantInt::get(In->getType(), 1));
978 
979         if (Zext.getType() == In->getType())
980           return replaceInstUsesWith(Zext, In);
981 
982         Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
983         return replaceInstUsesWith(Zext, IntCast);
984       }
985     }
986   }
987 
988   if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
989     // Test if a bit is clear/set using a shifted-one mask:
990     // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1
991     // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1
992     Value *X, *ShAmt;
993     if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) &&
994         match(Cmp->getOperand(0),
995               m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) {
996       if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
997         X = Builder.CreateNot(X);
998       Value *Lshr = Builder.CreateLShr(X, ShAmt);
999       Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1));
1000       return replaceInstUsesWith(Zext, And1);
1001     }
1002   }
1003 
1004   return nullptr;
1005 }
1006 
1007 /// Determine if the specified value can be computed in the specified wider type
1008 /// and produce the same low bits. If not, return false.
1009 ///
1010 /// If this function returns true, it can also return a non-zero number of bits
1011 /// (in BitsToClear) which indicates that the value it computes is correct for
1012 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
1013 /// out.  For example, to promote something like:
1014 ///
1015 ///   %B = trunc i64 %A to i32
1016 ///   %C = lshr i32 %B, 8
1017 ///   %E = zext i32 %C to i64
1018 ///
1019 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
1020 /// set to 8 to indicate that the promoted value needs to have bits 24-31
1021 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
1022 /// clear the top bits anyway, doing this has no extra cost.
1023 ///
1024 /// This function works on both vectors and scalars.
1025 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
1026                              InstCombinerImpl &IC, Instruction *CxtI) {
1027   BitsToClear = 0;
1028   if (canAlwaysEvaluateInType(V, Ty))
1029     return true;
1030   if (canNotEvaluateInType(V, Ty))
1031     return false;
1032 
1033   auto *I = cast<Instruction>(V);
1034   unsigned Tmp;
1035   switch (I->getOpcode()) {
1036   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
1037   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
1038   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1039     return true;
1040   case Instruction::And:
1041   case Instruction::Or:
1042   case Instruction::Xor:
1043   case Instruction::Add:
1044   case Instruction::Sub:
1045   case Instruction::Mul:
1046     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1047         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1048       return false;
1049     // These can all be promoted if neither operand has 'bits to clear'.
1050     if (BitsToClear == 0 && Tmp == 0)
1051       return true;
1052 
1053     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1054     // other side, BitsToClear is ok.
1055     if (Tmp == 0 && I->isBitwiseLogicOp()) {
1056       // We use MaskedValueIsZero here for generality, but the case we care
1057       // about the most is constant RHS.
1058       unsigned VSize = V->getType()->getScalarSizeInBits();
1059       if (IC.MaskedValueIsZero(I->getOperand(1),
1060                                APInt::getHighBitsSet(VSize, BitsToClear),
1061                                0, CxtI)) {
1062         // If this is an And instruction and all of the BitsToClear are
1063         // known to be zero we can reset BitsToClear.
1064         if (I->getOpcode() == Instruction::And)
1065           BitsToClear = 0;
1066         return true;
1067       }
1068     }
1069 
1070     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1071     return false;
1072 
1073   case Instruction::Shl: {
1074     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1075     // upper bits we can reduce BitsToClear by the shift amount.
1076     const APInt *Amt;
1077     if (match(I->getOperand(1), m_APInt(Amt))) {
1078       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1079         return false;
1080       uint64_t ShiftAmt = Amt->getZExtValue();
1081       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1082       return true;
1083     }
1084     return false;
1085   }
1086   case Instruction::LShr: {
1087     // We can promote lshr(x, cst) if we can promote x.  This requires the
1088     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1089     const APInt *Amt;
1090     if (match(I->getOperand(1), m_APInt(Amt))) {
1091       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1092         return false;
1093       BitsToClear += Amt->getZExtValue();
1094       if (BitsToClear > V->getType()->getScalarSizeInBits())
1095         BitsToClear = V->getType()->getScalarSizeInBits();
1096       return true;
1097     }
1098     // Cannot promote variable LSHR.
1099     return false;
1100   }
1101   case Instruction::Select:
1102     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1103         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1104         // TODO: If important, we could handle the case when the BitsToClear are
1105         // known zero in the disagreeing side.
1106         Tmp != BitsToClear)
1107       return false;
1108     return true;
1109 
1110   case Instruction::PHI: {
1111     // We can change a phi if we can change all operands.  Note that we never
1112     // get into trouble with cyclic PHIs here because we only consider
1113     // instructions with a single use.
1114     PHINode *PN = cast<PHINode>(I);
1115     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1116       return false;
1117     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1118       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1119           // TODO: If important, we could handle the case when the BitsToClear
1120           // are known zero in the disagreeing input.
1121           Tmp != BitsToClear)
1122         return false;
1123     return true;
1124   }
1125   case Instruction::Call:
1126     // llvm.vscale() can always be executed in larger type, because the
1127     // value is automatically zero-extended.
1128     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1129       if (II->getIntrinsicID() == Intrinsic::vscale)
1130         return true;
1131     return false;
1132   default:
1133     // TODO: Can handle more cases here.
1134     return false;
1135   }
1136 }
1137 
1138 Instruction *InstCombinerImpl::visitZExt(ZExtInst &Zext) {
1139   // If this zero extend is only used by a truncate, let the truncate be
1140   // eliminated before we try to optimize this zext.
1141   if (Zext.hasOneUse() && isa<TruncInst>(Zext.user_back()) &&
1142       !isa<Constant>(Zext.getOperand(0)))
1143     return nullptr;
1144 
1145   // If one of the common conversion will work, do it.
1146   if (Instruction *Result = commonCastTransforms(Zext))
1147     return Result;
1148 
1149   Value *Src = Zext.getOperand(0);
1150   Type *SrcTy = Src->getType(), *DestTy = Zext.getType();
1151 
1152   // zext nneg bool x -> 0
1153   if (SrcTy->isIntOrIntVectorTy(1) && Zext.hasNonNeg())
1154     return replaceInstUsesWith(Zext, Constant::getNullValue(Zext.getType()));
1155 
1156   // Try to extend the entire expression tree to the wide destination type.
1157   unsigned BitsToClear;
1158   if (shouldChangeType(SrcTy, DestTy) &&
1159       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &Zext)) {
1160     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1161            "Can't clear more bits than in SrcTy");
1162 
1163     // Okay, we can transform this!  Insert the new expression now.
1164     LLVM_DEBUG(
1165         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1166                   " to avoid zero extend: "
1167                << Zext << '\n');
1168     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1169     assert(Res->getType() == DestTy);
1170 
1171     // Preserve debug values referring to Src if the zext is its last use.
1172     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1173       if (SrcOp->hasOneUse())
1174         replaceAllDbgUsesWith(*SrcOp, *Res, Zext, DT);
1175 
1176     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear;
1177     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1178 
1179     // If the high bits are already filled with zeros, just replace this
1180     // cast with the result.
1181     if (MaskedValueIsZero(Res,
1182                           APInt::getHighBitsSet(DestBitSize,
1183                                                 DestBitSize - SrcBitsKept),
1184                              0, &Zext))
1185       return replaceInstUsesWith(Zext, Res);
1186 
1187     // We need to emit an AND to clear the high bits.
1188     Constant *C = ConstantInt::get(Res->getType(),
1189                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1190     return BinaryOperator::CreateAnd(Res, C);
1191   }
1192 
1193   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1194   // types and if the sizes are just right we can convert this into a logical
1195   // 'and' which will be much cheaper than the pair of casts.
1196   if (auto *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1197     // TODO: Subsume this into EvaluateInDifferentType.
1198 
1199     // Get the sizes of the types involved.  We know that the intermediate type
1200     // will be smaller than A or C, but don't know the relation between A and C.
1201     Value *A = CSrc->getOperand(0);
1202     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1203     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1204     unsigned DstSize = DestTy->getScalarSizeInBits();
1205     // If we're actually extending zero bits, then if
1206     // SrcSize <  DstSize: zext(a & mask)
1207     // SrcSize == DstSize: a & mask
1208     // SrcSize  > DstSize: trunc(a) & mask
1209     if (SrcSize < DstSize) {
1210       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1211       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1212       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1213       return new ZExtInst(And, DestTy);
1214     }
1215 
1216     if (SrcSize == DstSize) {
1217       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1218       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1219                                                            AndValue));
1220     }
1221     if (SrcSize > DstSize) {
1222       Value *Trunc = Builder.CreateTrunc(A, DestTy);
1223       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1224       return BinaryOperator::CreateAnd(Trunc,
1225                                        ConstantInt::get(Trunc->getType(),
1226                                                         AndValue));
1227     }
1228   }
1229 
1230   if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1231     return transformZExtICmp(Cmp, Zext);
1232 
1233   // zext(trunc(X) & C) -> (X & zext(C)).
1234   Constant *C;
1235   Value *X;
1236   if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1237       X->getType() == DestTy)
1238     return BinaryOperator::CreateAnd(X, Builder.CreateZExt(C, DestTy));
1239 
1240   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1241   Value *And;
1242   if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1243       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1244       X->getType() == DestTy) {
1245     Value *ZC = Builder.CreateZExt(C, DestTy);
1246     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1247   }
1248 
1249   // If we are truncating, masking, and then zexting back to the original type,
1250   // that's just a mask. This is not handled by canEvaluateZextd if the
1251   // intermediate values have extra uses. This could be generalized further for
1252   // a non-constant mask operand.
1253   // zext (and (trunc X), C) --> and X, (zext C)
1254   if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) &&
1255       X->getType() == DestTy) {
1256     Value *ZextC = Builder.CreateZExt(C, DestTy);
1257     return BinaryOperator::CreateAnd(X, ZextC);
1258   }
1259 
1260   if (match(Src, m_VScale())) {
1261     if (Zext.getFunction() &&
1262         Zext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1263       Attribute Attr =
1264           Zext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1265       if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1266         unsigned TypeWidth = Src->getType()->getScalarSizeInBits();
1267         if (Log2_32(*MaxVScale) < TypeWidth) {
1268           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1269           return replaceInstUsesWith(Zext, VScale);
1270         }
1271       }
1272     }
1273   }
1274 
1275   if (!Zext.hasNonNeg()) {
1276     // If this zero extend is only used by a shift, add nneg flag.
1277     if (Zext.hasOneUse() &&
1278         SrcTy->getScalarSizeInBits() >
1279             Log2_64_Ceil(DestTy->getScalarSizeInBits()) &&
1280         match(Zext.user_back(), m_Shift(m_Value(), m_Specific(&Zext)))) {
1281       Zext.setNonNeg();
1282       return &Zext;
1283     }
1284 
1285     if (isKnownNonNegative(Src, SQ.getWithInstruction(&Zext))) {
1286       Zext.setNonNeg();
1287       return &Zext;
1288     }
1289   }
1290 
1291   return nullptr;
1292 }
1293 
1294 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1295 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp,
1296                                                  SExtInst &Sext) {
1297   Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1298   ICmpInst::Predicate Pred = Cmp->getPredicate();
1299 
1300   // Don't bother if Op1 isn't of vector or integer type.
1301   if (!Op1->getType()->isIntOrIntVectorTy())
1302     return nullptr;
1303 
1304   if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) {
1305     // sext (x <s 0) --> ashr x, 31 (all ones if negative)
1306     Value *Sh = ConstantInt::get(Op0->getType(),
1307                                  Op0->getType()->getScalarSizeInBits() - 1);
1308     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1309     if (In->getType() != Sext.getType())
1310       In = Builder.CreateIntCast(In, Sext.getType(), true /*SExt*/);
1311 
1312     return replaceInstUsesWith(Sext, In);
1313   }
1314 
1315   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1316     // If we know that only one bit of the LHS of the icmp can be set and we
1317     // have an equality comparison with zero or a power of 2, we can transform
1318     // the icmp and sext into bitwise/integer operations.
1319     if (Cmp->hasOneUse() &&
1320         Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1321       KnownBits Known = computeKnownBits(Op0, 0, &Sext);
1322 
1323       APInt KnownZeroMask(~Known.Zero);
1324       if (KnownZeroMask.isPowerOf2()) {
1325         Value *In = Cmp->getOperand(0);
1326 
1327         // If the icmp tests for a known zero bit we can constant fold it.
1328         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1329           Value *V = Pred == ICmpInst::ICMP_NE ?
1330                        ConstantInt::getAllOnesValue(Sext.getType()) :
1331                        ConstantInt::getNullValue(Sext.getType());
1332           return replaceInstUsesWith(Sext, V);
1333         }
1334 
1335         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1336           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1337           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1338           unsigned ShiftAmt = KnownZeroMask.countr_zero();
1339           // Perform a right shift to place the desired bit in the LSB.
1340           if (ShiftAmt)
1341             In = Builder.CreateLShr(In,
1342                                     ConstantInt::get(In->getType(), ShiftAmt));
1343 
1344           // At this point "In" is either 1 or 0. Subtract 1 to turn
1345           // {1, 0} -> {0, -1}.
1346           In = Builder.CreateAdd(In,
1347                                  ConstantInt::getAllOnesValue(In->getType()),
1348                                  "sext");
1349         } else {
1350           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1351           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1352           unsigned ShiftAmt = KnownZeroMask.countl_zero();
1353           // Perform a left shift to place the desired bit in the MSB.
1354           if (ShiftAmt)
1355             In = Builder.CreateShl(In,
1356                                    ConstantInt::get(In->getType(), ShiftAmt));
1357 
1358           // Distribute the bit over the whole bit width.
1359           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1360                                   KnownZeroMask.getBitWidth() - 1), "sext");
1361         }
1362 
1363         if (Sext.getType() == In->getType())
1364           return replaceInstUsesWith(Sext, In);
1365         return CastInst::CreateIntegerCast(In, Sext.getType(), true/*SExt*/);
1366       }
1367     }
1368   }
1369 
1370   return nullptr;
1371 }
1372 
1373 /// Return true if we can take the specified value and return it as type Ty
1374 /// without inserting any new casts and without changing the value of the common
1375 /// low bits.  This is used by code that tries to promote integer operations to
1376 /// a wider types will allow us to eliminate the extension.
1377 ///
1378 /// This function works on both vectors and scalars.
1379 ///
1380 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1381   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1382          "Can't sign extend type to a smaller type");
1383   if (canAlwaysEvaluateInType(V, Ty))
1384     return true;
1385   if (canNotEvaluateInType(V, Ty))
1386     return false;
1387 
1388   auto *I = cast<Instruction>(V);
1389   switch (I->getOpcode()) {
1390   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1391   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1392   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1393     return true;
1394   case Instruction::And:
1395   case Instruction::Or:
1396   case Instruction::Xor:
1397   case Instruction::Add:
1398   case Instruction::Sub:
1399   case Instruction::Mul:
1400     // These operators can all arbitrarily be extended if their inputs can.
1401     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1402            canEvaluateSExtd(I->getOperand(1), Ty);
1403 
1404   //case Instruction::Shl:   TODO
1405   //case Instruction::LShr:  TODO
1406 
1407   case Instruction::Select:
1408     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1409            canEvaluateSExtd(I->getOperand(2), Ty);
1410 
1411   case Instruction::PHI: {
1412     // We can change a phi if we can change all operands.  Note that we never
1413     // get into trouble with cyclic PHIs here because we only consider
1414     // instructions with a single use.
1415     PHINode *PN = cast<PHINode>(I);
1416     for (Value *IncValue : PN->incoming_values())
1417       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1418     return true;
1419   }
1420   default:
1421     // TODO: Can handle more cases here.
1422     break;
1423   }
1424 
1425   return false;
1426 }
1427 
1428 Instruction *InstCombinerImpl::visitSExt(SExtInst &Sext) {
1429   // If this sign extend is only used by a truncate, let the truncate be
1430   // eliminated before we try to optimize this sext.
1431   if (Sext.hasOneUse() && isa<TruncInst>(Sext.user_back()))
1432     return nullptr;
1433 
1434   if (Instruction *I = commonCastTransforms(Sext))
1435     return I;
1436 
1437   Value *Src = Sext.getOperand(0);
1438   Type *SrcTy = Src->getType(), *DestTy = Sext.getType();
1439   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1440   unsigned DestBitSize = DestTy->getScalarSizeInBits();
1441 
1442   // If the value being extended is zero or positive, use a zext instead.
1443   if (isKnownNonNegative(Src, SQ.getWithInstruction(&Sext))) {
1444     auto CI = CastInst::Create(Instruction::ZExt, Src, DestTy);
1445     CI->setNonNeg(true);
1446     return CI;
1447   }
1448 
1449   // Try to extend the entire expression tree to the wide destination type.
1450   if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1451     // Okay, we can transform this!  Insert the new expression now.
1452     LLVM_DEBUG(
1453         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1454                   " to avoid sign extend: "
1455                << Sext << '\n');
1456     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1457     assert(Res->getType() == DestTy);
1458 
1459     // If the high bits are already filled with sign bit, just replace this
1460     // cast with the result.
1461     if (ComputeNumSignBits(Res, 0, &Sext) > DestBitSize - SrcBitSize)
1462       return replaceInstUsesWith(Sext, Res);
1463 
1464     // We need to emit a shl + ashr to do the sign extend.
1465     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1466     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1467                                       ShAmt);
1468   }
1469 
1470   Value *X;
1471   if (match(Src, m_Trunc(m_Value(X)))) {
1472     // If the input has more sign bits than bits truncated, then convert
1473     // directly to final type.
1474     unsigned XBitSize = X->getType()->getScalarSizeInBits();
1475     if (ComputeNumSignBits(X, 0, &Sext) > XBitSize - SrcBitSize)
1476       return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true);
1477 
1478     // If input is a trunc from the destination type, then convert into shifts.
1479     if (Src->hasOneUse() && X->getType() == DestTy) {
1480       // sext (trunc X) --> ashr (shl X, C), C
1481       Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1482       return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1483     }
1484 
1485     // If we are replacing shifted-in high zero bits with sign bits, convert
1486     // the logic shift to arithmetic shift and eliminate the cast to
1487     // intermediate type:
1488     // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C)
1489     Value *Y;
1490     if (Src->hasOneUse() &&
1491         match(X, m_LShr(m_Value(Y),
1492                         m_SpecificIntAllowPoison(XBitSize - SrcBitSize)))) {
1493       Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize);
1494       return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1495     }
1496   }
1497 
1498   if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1499     return transformSExtICmp(Cmp, Sext);
1500 
1501   // If the input is a shl/ashr pair of a same constant, then this is a sign
1502   // extension from a smaller value.  If we could trust arbitrary bitwidth
1503   // integers, we could turn this into a truncate to the smaller bit and then
1504   // use a sext for the whole extension.  Since we don't, look deeper and check
1505   // for a truncate.  If the source and dest are the same type, eliminate the
1506   // trunc and extend and just do shifts.  For example, turn:
1507   //   %a = trunc i32 %i to i8
1508   //   %b = shl i8 %a, C
1509   //   %c = ashr i8 %b, C
1510   //   %d = sext i8 %c to i32
1511   // into:
1512   //   %a = shl i32 %i, 32-(8-C)
1513   //   %d = ashr i32 %a, 32-(8-C)
1514   Value *A = nullptr;
1515   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1516   Constant *BA = nullptr, *CA = nullptr;
1517   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1518                         m_ImmConstant(CA))) &&
1519       BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
1520     Constant *WideCurrShAmt =
1521         ConstantFoldCastOperand(Instruction::SExt, CA, DestTy, DL);
1522     assert(WideCurrShAmt && "Constant folding of ImmConstant cannot fail");
1523     Constant *NumLowbitsLeft = ConstantExpr::getSub(
1524         ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
1525     Constant *NewShAmt = ConstantExpr::getSub(
1526         ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
1527         NumLowbitsLeft);
1528     NewShAmt =
1529         Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
1530     A = Builder.CreateShl(A, NewShAmt, Sext.getName());
1531     return BinaryOperator::CreateAShr(A, NewShAmt);
1532   }
1533 
1534   // Splatting a bit of constant-index across a value:
1535   // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1
1536   // If the dest type is different, use a cast (adjust use check).
1537   if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)),
1538                                  m_SpecificInt(SrcBitSize - 1))))) {
1539     Type *XTy = X->getType();
1540     unsigned XBitSize = XTy->getScalarSizeInBits();
1541     Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize);
1542     Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1);
1543     if (XTy == DestTy)
1544       return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC),
1545                                         AshrAmtC);
1546     if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) {
1547       Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC);
1548       return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1549     }
1550   }
1551 
1552   if (match(Src, m_VScale())) {
1553     if (Sext.getFunction() &&
1554         Sext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1555       Attribute Attr =
1556           Sext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1557       if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1558         if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) {
1559           Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1560           return replaceInstUsesWith(Sext, VScale);
1561         }
1562       }
1563     }
1564   }
1565 
1566   return nullptr;
1567 }
1568 
1569 /// Return a Constant* for the specified floating-point constant if it fits
1570 /// in the specified FP type without changing its value.
1571 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1572   bool losesInfo;
1573   APFloat F = CFP->getValueAPF();
1574   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1575   return !losesInfo;
1576 }
1577 
1578 static Type *shrinkFPConstant(ConstantFP *CFP, bool PreferBFloat) {
1579   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1580     return nullptr;  // No constant folding of this.
1581   // See if the value can be truncated to bfloat and then reextended.
1582   if (PreferBFloat && fitsInFPType(CFP, APFloat::BFloat()))
1583     return Type::getBFloatTy(CFP->getContext());
1584   // See if the value can be truncated to half and then reextended.
1585   if (!PreferBFloat && fitsInFPType(CFP, APFloat::IEEEhalf()))
1586     return Type::getHalfTy(CFP->getContext());
1587   // See if the value can be truncated to float and then reextended.
1588   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1589     return Type::getFloatTy(CFP->getContext());
1590   if (CFP->getType()->isDoubleTy())
1591     return nullptr;  // Won't shrink.
1592   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1593     return Type::getDoubleTy(CFP->getContext());
1594   // Don't try to shrink to various long double types.
1595   return nullptr;
1596 }
1597 
1598 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1599 // type we can safely truncate all elements to.
1600 static Type *shrinkFPConstantVector(Value *V, bool PreferBFloat) {
1601   auto *CV = dyn_cast<Constant>(V);
1602   auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
1603   if (!CV || !CVVTy)
1604     return nullptr;
1605 
1606   Type *MinType = nullptr;
1607 
1608   unsigned NumElts = CVVTy->getNumElements();
1609 
1610   // For fixed-width vectors we find the minimal type by looking
1611   // through the constant values of the vector.
1612   for (unsigned i = 0; i != NumElts; ++i) {
1613     if (isa<UndefValue>(CV->getAggregateElement(i)))
1614       continue;
1615 
1616     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1617     if (!CFP)
1618       return nullptr;
1619 
1620     Type *T = shrinkFPConstant(CFP, PreferBFloat);
1621     if (!T)
1622       return nullptr;
1623 
1624     // If we haven't found a type yet or this type has a larger mantissa than
1625     // our previous type, this is our new minimal type.
1626     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1627       MinType = T;
1628   }
1629 
1630   // Make a vector type from the minimal type.
1631   return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr;
1632 }
1633 
1634 /// Find the minimum FP type we can safely truncate to.
1635 static Type *getMinimumFPType(Value *V, bool PreferBFloat) {
1636   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1637     return FPExt->getOperand(0)->getType();
1638 
1639   // If this value is a constant, return the constant in the smallest FP type
1640   // that can accurately represent it.  This allows us to turn
1641   // (float)((double)X+2.0) into x+2.0f.
1642   if (auto *CFP = dyn_cast<ConstantFP>(V))
1643     if (Type *T = shrinkFPConstant(CFP, PreferBFloat))
1644       return T;
1645 
1646   // We can only correctly find a minimum type for a scalable vector when it is
1647   // a splat. For splats of constant values the fpext is wrapped up as a
1648   // ConstantExpr.
1649   if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
1650     if (FPCExt->getOpcode() == Instruction::FPExt)
1651       return FPCExt->getOperand(0)->getType();
1652 
1653   // Try to shrink a vector of FP constants. This returns nullptr on scalable
1654   // vectors
1655   if (Type *T = shrinkFPConstantVector(V, PreferBFloat))
1656     return T;
1657 
1658   return V->getType();
1659 }
1660 
1661 /// Return true if the cast from integer to FP can be proven to be exact for all
1662 /// possible inputs (the conversion does not lose any precision).
1663 static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) {
1664   CastInst::CastOps Opcode = I.getOpcode();
1665   assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1666          "Unexpected cast");
1667   Value *Src = I.getOperand(0);
1668   Type *SrcTy = Src->getType();
1669   Type *FPTy = I.getType();
1670   bool IsSigned = Opcode == Instruction::SIToFP;
1671   int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1672 
1673   // Easy case - if the source integer type has less bits than the FP mantissa,
1674   // then the cast must be exact.
1675   int DestNumSigBits = FPTy->getFPMantissaWidth();
1676   if (SrcSize <= DestNumSigBits)
1677     return true;
1678 
1679   // Cast from FP to integer and back to FP is independent of the intermediate
1680   // integer width because of poison on overflow.
1681   Value *F;
1682   if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1683     // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1684     // potential rounding of negative FP input values.
1685     int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1686     if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1687       SrcNumSigBits++;
1688 
1689     // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1690     // significant bits than the destination (and make sure neither type is
1691     // weird -- ppc_fp128).
1692     if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1693         SrcNumSigBits <= DestNumSigBits)
1694       return true;
1695   }
1696 
1697   // TODO:
1698   // Try harder to find if the source integer type has less significant bits.
1699   // For example, compute number of sign bits.
1700   KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I);
1701   int SigBits = (int)SrcTy->getScalarSizeInBits() -
1702                 SrcKnown.countMinLeadingZeros() -
1703                 SrcKnown.countMinTrailingZeros();
1704   if (SigBits <= DestNumSigBits)
1705     return true;
1706 
1707   return false;
1708 }
1709 
1710 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
1711   if (Instruction *I = commonCastTransforms(FPT))
1712     return I;
1713 
1714   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1715   // simplify this expression to avoid one or more of the trunc/extend
1716   // operations if we can do so without changing the numerical results.
1717   //
1718   // The exact manner in which the widths of the operands interact to limit
1719   // what we can and cannot do safely varies from operation to operation, and
1720   // is explained below in the various case statements.
1721   Type *Ty = FPT.getType();
1722   auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1723   if (BO && BO->hasOneUse()) {
1724     Type *LHSMinType =
1725         getMinimumFPType(BO->getOperand(0), /*PreferBFloat=*/Ty->isBFloatTy());
1726     Type *RHSMinType =
1727         getMinimumFPType(BO->getOperand(1), /*PreferBFloat=*/Ty->isBFloatTy());
1728     unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1729     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1730     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1731     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1732     unsigned DstWidth = Ty->getFPMantissaWidth();
1733     switch (BO->getOpcode()) {
1734       default: break;
1735       case Instruction::FAdd:
1736       case Instruction::FSub:
1737         // For addition and subtraction, the infinitely precise result can
1738         // essentially be arbitrarily wide; proving that double rounding
1739         // will not occur because the result of OpI is exact (as we will for
1740         // FMul, for example) is hopeless.  However, we *can* nonetheless
1741         // frequently know that double rounding cannot occur (or that it is
1742         // innocuous) by taking advantage of the specific structure of
1743         // infinitely-precise results that admit double rounding.
1744         //
1745         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1746         // to represent both sources, we can guarantee that the double
1747         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1748         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1749         // for proof of this fact).
1750         //
1751         // Note: Figueroa does not consider the case where DstFormat !=
1752         // SrcFormat.  It's possible (likely even!) that this analysis
1753         // could be tightened for those cases, but they are rare (the main
1754         // case of interest here is (float)((double)float + float)).
1755         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1756           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1757           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1758           Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1759           RI->copyFastMathFlags(BO);
1760           return RI;
1761         }
1762         break;
1763       case Instruction::FMul:
1764         // For multiplication, the infinitely precise result has at most
1765         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1766         // that such a value can be exactly represented, then no double
1767         // rounding can possibly occur; we can safely perform the operation
1768         // in the destination format if it can represent both sources.
1769         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1770           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1771           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1772           return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1773         }
1774         break;
1775       case Instruction::FDiv:
1776         // For division, we use again use the bound from Figueroa's
1777         // dissertation.  I am entirely certain that this bound can be
1778         // tightened in the unbalanced operand case by an analysis based on
1779         // the diophantine rational approximation bound, but the well-known
1780         // condition used here is a good conservative first pass.
1781         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1782         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1783           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1784           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1785           return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1786         }
1787         break;
1788       case Instruction::FRem: {
1789         // Remainder is straightforward.  Remainder is always exact, so the
1790         // type of OpI doesn't enter into things at all.  We simply evaluate
1791         // in whichever source type is larger, then convert to the
1792         // destination type.
1793         if (SrcWidth == OpWidth)
1794           break;
1795         Value *LHS, *RHS;
1796         if (LHSWidth == SrcWidth) {
1797            LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1798            RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1799         } else {
1800            LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1801            RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1802         }
1803 
1804         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1805         return CastInst::CreateFPCast(ExactResult, Ty);
1806       }
1807     }
1808   }
1809 
1810   // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1811   Value *X;
1812   Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1813   if (Op && Op->hasOneUse()) {
1814     // FIXME: The FMF should propagate from the fptrunc, not the source op.
1815     IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1816     if (isa<FPMathOperator>(Op))
1817       Builder.setFastMathFlags(Op->getFastMathFlags());
1818 
1819     if (match(Op, m_FNeg(m_Value(X)))) {
1820       Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1821 
1822       return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1823     }
1824 
1825     // If we are truncating a select that has an extended operand, we can
1826     // narrow the other operand and do the select as a narrow op.
1827     Value *Cond, *X, *Y;
1828     if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1829         X->getType() == Ty) {
1830       // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1831       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1832       Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1833       return replaceInstUsesWith(FPT, Sel);
1834     }
1835     if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1836         X->getType() == Ty) {
1837       // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1838       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1839       Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1840       return replaceInstUsesWith(FPT, Sel);
1841     }
1842   }
1843 
1844   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1845     switch (II->getIntrinsicID()) {
1846     default: break;
1847     case Intrinsic::ceil:
1848     case Intrinsic::fabs:
1849     case Intrinsic::floor:
1850     case Intrinsic::nearbyint:
1851     case Intrinsic::rint:
1852     case Intrinsic::round:
1853     case Intrinsic::roundeven:
1854     case Intrinsic::trunc: {
1855       Value *Src = II->getArgOperand(0);
1856       if (!Src->hasOneUse())
1857         break;
1858 
1859       // Except for fabs, this transformation requires the input of the unary FP
1860       // operation to be itself an fpext from the type to which we're
1861       // truncating.
1862       if (II->getIntrinsicID() != Intrinsic::fabs) {
1863         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1864         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1865           break;
1866       }
1867 
1868       // Do unary FP operation on smaller type.
1869       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1870       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1871       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1872                                                      II->getIntrinsicID(), Ty);
1873       SmallVector<OperandBundleDef, 1> OpBundles;
1874       II->getOperandBundlesAsDefs(OpBundles);
1875       CallInst *NewCI =
1876           CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1877       NewCI->copyFastMathFlags(II);
1878       return NewCI;
1879     }
1880     }
1881   }
1882 
1883   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1884     return I;
1885 
1886   Value *Src = FPT.getOperand(0);
1887   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1888     auto *FPCast = cast<CastInst>(Src);
1889     if (isKnownExactCastIntToFP(*FPCast, *this))
1890       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1891   }
1892 
1893   return nullptr;
1894 }
1895 
1896 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
1897   // If the source operand is a cast from integer to FP and known exact, then
1898   // cast the integer operand directly to the destination type.
1899   Type *Ty = FPExt.getType();
1900   Value *Src = FPExt.getOperand(0);
1901   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1902     auto *FPCast = cast<CastInst>(Src);
1903     if (isKnownExactCastIntToFP(*FPCast, *this))
1904       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1905   }
1906 
1907   return commonCastTransforms(FPExt);
1908 }
1909 
1910 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1911 /// This is safe if the intermediate type has enough bits in its mantissa to
1912 /// accurately represent all values of X.  For example, this won't work with
1913 /// i64 -> float -> i64.
1914 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
1915   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1916     return nullptr;
1917 
1918   auto *OpI = cast<CastInst>(FI.getOperand(0));
1919   Value *X = OpI->getOperand(0);
1920   Type *XType = X->getType();
1921   Type *DestType = FI.getType();
1922   bool IsOutputSigned = isa<FPToSIInst>(FI);
1923 
1924   // Since we can assume the conversion won't overflow, our decision as to
1925   // whether the input will fit in the float should depend on the minimum
1926   // of the input range and output range.
1927 
1928   // This means this is also safe for a signed input and unsigned output, since
1929   // a negative input would lead to undefined behavior.
1930   if (!isKnownExactCastIntToFP(*OpI, *this)) {
1931     // The first cast may not round exactly based on the source integer width
1932     // and FP width, but the overflow UB rules can still allow this to fold.
1933     // If the destination type is narrow, that means the intermediate FP value
1934     // must be large enough to hold the source value exactly.
1935     // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1936     int OutputSize = (int)DestType->getScalarSizeInBits();
1937     if (OutputSize > OpI->getType()->getFPMantissaWidth())
1938       return nullptr;
1939   }
1940 
1941   if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1942     bool IsInputSigned = isa<SIToFPInst>(OpI);
1943     if (IsInputSigned && IsOutputSigned)
1944       return new SExtInst(X, DestType);
1945     return new ZExtInst(X, DestType);
1946   }
1947   if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1948     return new TruncInst(X, DestType);
1949 
1950   assert(XType == DestType && "Unexpected types for int to FP to int casts");
1951   return replaceInstUsesWith(FI, X);
1952 }
1953 
1954 static Instruction *foldFPtoI(Instruction &FI, InstCombiner &IC) {
1955   // fpto{u/s}i non-norm --> 0
1956   FPClassTest Mask =
1957       FI.getOpcode() == Instruction::FPToUI ? fcPosNormal : fcNormal;
1958   KnownFPClass FPClass =
1959       computeKnownFPClass(FI.getOperand(0), Mask, /*Depth=*/0,
1960                           IC.getSimplifyQuery().getWithInstruction(&FI));
1961   if (FPClass.isKnownNever(Mask))
1962     return IC.replaceInstUsesWith(FI, ConstantInt::getNullValue(FI.getType()));
1963 
1964   return nullptr;
1965 }
1966 
1967 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
1968   if (Instruction *I = foldItoFPtoI(FI))
1969     return I;
1970 
1971   if (Instruction *I = foldFPtoI(FI, *this))
1972     return I;
1973 
1974   return commonCastTransforms(FI);
1975 }
1976 
1977 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
1978   if (Instruction *I = foldItoFPtoI(FI))
1979     return I;
1980 
1981   if (Instruction *I = foldFPtoI(FI, *this))
1982     return I;
1983 
1984   return commonCastTransforms(FI);
1985 }
1986 
1987 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
1988   if (Instruction *R = commonCastTransforms(CI))
1989     return R;
1990   if (!CI.hasNonNeg() && isKnownNonNegative(CI.getOperand(0), SQ)) {
1991     CI.setNonNeg();
1992     return &CI;
1993   }
1994   return nullptr;
1995 }
1996 
1997 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
1998   if (Instruction *R = commonCastTransforms(CI))
1999     return R;
2000   if (isKnownNonNegative(CI.getOperand(0), SQ)) {
2001     auto *UI =
2002         CastInst::Create(Instruction::UIToFP, CI.getOperand(0), CI.getType());
2003     UI->setNonNeg(true);
2004     return UI;
2005   }
2006   return nullptr;
2007 }
2008 
2009 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
2010   // If the source integer type is not the intptr_t type for this target, do a
2011   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
2012   // cast to be exposed to other transforms.
2013   unsigned AS = CI.getAddressSpace();
2014   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
2015       DL.getPointerSizeInBits(AS)) {
2016     Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
2017         DL.getIntPtrType(CI.getContext(), AS));
2018     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
2019     return new IntToPtrInst(P, CI.getType());
2020   }
2021 
2022   if (Instruction *I = commonCastTransforms(CI))
2023     return I;
2024 
2025   return nullptr;
2026 }
2027 
2028 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
2029   // If the destination integer type is not the intptr_t type for this target,
2030   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
2031   // to be exposed to other transforms.
2032   Value *SrcOp = CI.getPointerOperand();
2033   Type *SrcTy = SrcOp->getType();
2034   Type *Ty = CI.getType();
2035   unsigned AS = CI.getPointerAddressSpace();
2036   unsigned TySize = Ty->getScalarSizeInBits();
2037   unsigned PtrSize = DL.getPointerSizeInBits(AS);
2038   if (TySize != PtrSize) {
2039     Type *IntPtrTy =
2040         SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
2041     Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
2042     return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
2043   }
2044 
2045   // (ptrtoint (ptrmask P, M))
2046   //    -> (and (ptrtoint P), M)
2047   // This is generally beneficial as `and` is better supported than `ptrmask`.
2048   Value *Ptr, *Mask;
2049   if (match(SrcOp, m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(Ptr),
2050                                                             m_Value(Mask)))) &&
2051       Mask->getType() == Ty)
2052     return BinaryOperator::CreateAnd(Builder.CreatePtrToInt(Ptr, Ty), Mask);
2053 
2054   if (auto *GEP = dyn_cast<GEPOperator>(SrcOp)) {
2055     // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use.
2056     // While this can increase the number of instructions it doesn't actually
2057     // increase the overall complexity since the arithmetic is just part of
2058     // the GEP otherwise.
2059     if (GEP->hasOneUse() &&
2060         isa<ConstantPointerNull>(GEP->getPointerOperand())) {
2061       return replaceInstUsesWith(CI,
2062                                  Builder.CreateIntCast(EmitGEPOffset(GEP), Ty,
2063                                                        /*isSigned=*/false));
2064     }
2065 
2066     // (ptrtoint (gep (inttoptr Base), ...)) -> Base + Offset
2067     Value *Base;
2068     if (GEP->hasOneUse() &&
2069         match(GEP->getPointerOperand(), m_OneUse(m_IntToPtr(m_Value(Base)))) &&
2070         Base->getType() == Ty) {
2071       Value *Offset = EmitGEPOffset(GEP);
2072       auto *NewOp = BinaryOperator::CreateAdd(Base, Offset);
2073       if (GEP->hasNoUnsignedWrap() ||
2074           (GEP->hasNoUnsignedSignedWrap() &&
2075            isKnownNonNegative(Offset, SQ.getWithInstruction(&CI))))
2076         NewOp->setHasNoUnsignedWrap(true);
2077       return NewOp;
2078     }
2079   }
2080 
2081   Value *Vec, *Scalar, *Index;
2082   if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
2083                                         m_Value(Scalar), m_Value(Index)))) &&
2084       Vec->getType() == Ty) {
2085     assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
2086     // Convert the scalar to int followed by insert to eliminate one cast:
2087     // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
2088     Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
2089     return InsertElementInst::Create(Vec, NewCast, Index);
2090   }
2091 
2092   return commonCastTransforms(CI);
2093 }
2094 
2095 /// This input value (which is known to have vector type) is being zero extended
2096 /// or truncated to the specified vector type. Since the zext/trunc is done
2097 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
2098 /// endianness will impact which end of the vector that is extended or
2099 /// truncated.
2100 ///
2101 /// A vector is always stored with index 0 at the lowest address, which
2102 /// corresponds to the most significant bits for a big endian stored integer and
2103 /// the least significant bits for little endian. A trunc/zext of an integer
2104 /// impacts the big end of the integer. Thus, we need to add/remove elements at
2105 /// the front of the vector for big endian targets, and the back of the vector
2106 /// for little endian targets.
2107 ///
2108 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
2109 ///
2110 /// The source and destination vector types may have different element types.
2111 static Instruction *
2112 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
2113                                         InstCombinerImpl &IC) {
2114   // We can only do this optimization if the output is a multiple of the input
2115   // element size, or the input is a multiple of the output element size.
2116   // Convert the input type to have the same element type as the output.
2117   VectorType *SrcTy = cast<VectorType>(InVal->getType());
2118 
2119   if (SrcTy->getElementType() != DestTy->getElementType()) {
2120     // The input types don't need to be identical, but for now they must be the
2121     // same size.  There is no specific reason we couldn't handle things like
2122     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2123     // there yet.
2124     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2125         DestTy->getElementType()->getPrimitiveSizeInBits())
2126       return nullptr;
2127 
2128     SrcTy =
2129         FixedVectorType::get(DestTy->getElementType(),
2130                              cast<FixedVectorType>(SrcTy)->getNumElements());
2131     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2132   }
2133 
2134   bool IsBigEndian = IC.getDataLayout().isBigEndian();
2135   unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2136   unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2137 
2138   assert(SrcElts != DestElts && "Element counts should be different.");
2139 
2140   // Now that the element types match, get the shuffle mask and RHS of the
2141   // shuffle to use, which depends on whether we're increasing or decreasing the
2142   // size of the input.
2143   auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts));
2144   ArrayRef<int> ShuffleMask;
2145   Value *V2;
2146 
2147   if (SrcElts > DestElts) {
2148     // If we're shrinking the number of elements (rewriting an integer
2149     // truncate), just shuffle in the elements corresponding to the least
2150     // significant bits from the input and use poison as the second shuffle
2151     // input.
2152     V2 = PoisonValue::get(SrcTy);
2153     // Make sure the shuffle mask selects the "least significant bits" by
2154     // keeping elements from back of the src vector for big endian, and from the
2155     // front for little endian.
2156     ShuffleMask = ShuffleMaskStorage;
2157     if (IsBigEndian)
2158       ShuffleMask = ShuffleMask.take_back(DestElts);
2159     else
2160       ShuffleMask = ShuffleMask.take_front(DestElts);
2161   } else {
2162     // If we're increasing the number of elements (rewriting an integer zext),
2163     // shuffle in all of the elements from InVal. Fill the rest of the result
2164     // elements with zeros from a constant zero.
2165     V2 = Constant::getNullValue(SrcTy);
2166     // Use first elt from V2 when indicating zero in the shuffle mask.
2167     uint32_t NullElt = SrcElts;
2168     // Extend with null values in the "most significant bits" by adding elements
2169     // in front of the src vector for big endian, and at the back for little
2170     // endian.
2171     unsigned DeltaElts = DestElts - SrcElts;
2172     if (IsBigEndian)
2173       ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2174     else
2175       ShuffleMaskStorage.append(DeltaElts, NullElt);
2176     ShuffleMask = ShuffleMaskStorage;
2177   }
2178 
2179   return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2180 }
2181 
2182 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2183   return Value % Ty->getPrimitiveSizeInBits() == 0;
2184 }
2185 
2186 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2187   return Value / Ty->getPrimitiveSizeInBits();
2188 }
2189 
2190 /// V is a value which is inserted into a vector of VecEltTy.
2191 /// Look through the value to see if we can decompose it into
2192 /// insertions into the vector.  See the example in the comment for
2193 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
2194 /// The type of V is always a non-zero multiple of VecEltTy's size.
2195 /// Shift is the number of bits between the lsb of V and the lsb of
2196 /// the vector.
2197 ///
2198 /// This returns false if the pattern can't be matched or true if it can,
2199 /// filling in Elements with the elements found here.
2200 static bool collectInsertionElements(Value *V, unsigned Shift,
2201                                      SmallVectorImpl<Value *> &Elements,
2202                                      Type *VecEltTy, bool isBigEndian) {
2203   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2204          "Shift should be a multiple of the element type size");
2205 
2206   // Undef values never contribute useful bits to the result.
2207   if (isa<UndefValue>(V)) return true;
2208 
2209   // If we got down to a value of the right type, we win, try inserting into the
2210   // right element.
2211   if (V->getType() == VecEltTy) {
2212     // Inserting null doesn't actually insert any elements.
2213     if (Constant *C = dyn_cast<Constant>(V))
2214       if (C->isNullValue())
2215         return true;
2216 
2217     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2218     if (isBigEndian)
2219       ElementIndex = Elements.size() - ElementIndex - 1;
2220 
2221     // Fail if multiple elements are inserted into this slot.
2222     if (Elements[ElementIndex])
2223       return false;
2224 
2225     Elements[ElementIndex] = V;
2226     return true;
2227   }
2228 
2229   if (Constant *C = dyn_cast<Constant>(V)) {
2230     // Figure out the # elements this provides, and bitcast it or slice it up
2231     // as required.
2232     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2233                                         VecEltTy);
2234     // If the constant is the size of a vector element, we just need to bitcast
2235     // it to the right type so it gets properly inserted.
2236     if (NumElts == 1)
2237       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2238                                       Shift, Elements, VecEltTy, isBigEndian);
2239 
2240     // Okay, this is a constant that covers multiple elements.  Slice it up into
2241     // pieces and insert each element-sized piece into the vector.
2242     if (!isa<IntegerType>(C->getType()))
2243       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2244                                        C->getType()->getPrimitiveSizeInBits()));
2245     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2246     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2247 
2248     for (unsigned i = 0; i != NumElts; ++i) {
2249       unsigned ShiftI = i * ElementSize;
2250       Constant *Piece = ConstantFoldBinaryInstruction(
2251           Instruction::LShr, C, ConstantInt::get(C->getType(), ShiftI));
2252       if (!Piece)
2253         return false;
2254 
2255       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2256       if (!collectInsertionElements(Piece, ShiftI + Shift, Elements, VecEltTy,
2257                                     isBigEndian))
2258         return false;
2259     }
2260     return true;
2261   }
2262 
2263   if (!V->hasOneUse()) return false;
2264 
2265   Instruction *I = dyn_cast<Instruction>(V);
2266   if (!I) return false;
2267   switch (I->getOpcode()) {
2268   default: return false; // Unhandled case.
2269   case Instruction::BitCast:
2270     if (I->getOperand(0)->getType()->isVectorTy())
2271       return false;
2272     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2273                                     isBigEndian);
2274   case Instruction::ZExt:
2275     if (!isMultipleOfTypeSize(
2276                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2277                               VecEltTy))
2278       return false;
2279     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2280                                     isBigEndian);
2281   case Instruction::Or:
2282     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2283                                     isBigEndian) &&
2284            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2285                                     isBigEndian);
2286   case Instruction::Shl: {
2287     // Must be shifting by a constant that is a multiple of the element size.
2288     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2289     if (!CI) return false;
2290     Shift += CI->getZExtValue();
2291     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2292     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2293                                     isBigEndian);
2294   }
2295 
2296   }
2297 }
2298 
2299 
2300 /// If the input is an 'or' instruction, we may be doing shifts and ors to
2301 /// assemble the elements of the vector manually.
2302 /// Try to rip the code out and replace it with insertelements.  This is to
2303 /// optimize code like this:
2304 ///
2305 ///    %tmp37 = bitcast float %inc to i32
2306 ///    %tmp38 = zext i32 %tmp37 to i64
2307 ///    %tmp31 = bitcast float %inc5 to i32
2308 ///    %tmp32 = zext i32 %tmp31 to i64
2309 ///    %tmp33 = shl i64 %tmp32, 32
2310 ///    %ins35 = or i64 %tmp33, %tmp38
2311 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2312 ///
2313 /// Into two insertelements that do "buildvector{%inc, %inc5}".
2314 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2315                                                 InstCombinerImpl &IC) {
2316   auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2317   Value *IntInput = CI.getOperand(0);
2318 
2319   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2320   if (!collectInsertionElements(IntInput, 0, Elements,
2321                                 DestVecTy->getElementType(),
2322                                 IC.getDataLayout().isBigEndian()))
2323     return nullptr;
2324 
2325   // If we succeeded, we know that all of the element are specified by Elements
2326   // or are zero if Elements has a null entry.  Recast this as a set of
2327   // insertions.
2328   Value *Result = Constant::getNullValue(CI.getType());
2329   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2330     if (!Elements[i]) continue;  // Unset element.
2331 
2332     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2333                                             IC.Builder.getInt32(i));
2334   }
2335 
2336   return Result;
2337 }
2338 
2339 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2340 /// vector followed by extract element. The backend tends to handle bitcasts of
2341 /// vectors better than bitcasts of scalars because vector registers are
2342 /// usually not type-specific like scalar integer or scalar floating-point.
2343 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2344                                               InstCombinerImpl &IC) {
2345   Value *VecOp, *Index;
2346   if (!match(BitCast.getOperand(0),
2347              m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index)))))
2348     return nullptr;
2349 
2350   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2351   // type to extract from.
2352   Type *DestType = BitCast.getType();
2353   VectorType *VecType = cast<VectorType>(VecOp->getType());
2354   if (VectorType::isValidElementType(DestType)) {
2355     auto *NewVecType = VectorType::get(DestType, VecType);
2356     auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc");
2357     return ExtractElementInst::Create(NewBC, Index);
2358   }
2359 
2360   // Only solve DestType is vector to avoid inverse transform in visitBitCast.
2361   // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest)
2362   auto *FixedVType = dyn_cast<FixedVectorType>(VecType);
2363   if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1)
2364     return CastInst::Create(Instruction::BitCast, VecOp, DestType);
2365 
2366   return nullptr;
2367 }
2368 
2369 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2370 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2371                                             InstCombiner::BuilderTy &Builder) {
2372   Type *DestTy = BitCast.getType();
2373   BinaryOperator *BO;
2374 
2375   if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2376       !BO->isBitwiseLogicOp())
2377     return nullptr;
2378 
2379   // FIXME: This transform is restricted to vector types to avoid backend
2380   // problems caused by creating potentially illegal operations. If a fix-up is
2381   // added to handle that situation, we can remove this check.
2382   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2383     return nullptr;
2384 
2385   if (DestTy->isFPOrFPVectorTy()) {
2386     Value *X, *Y;
2387     // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y))
2388     if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2389         match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) {
2390       if (X->getType()->isFPOrFPVectorTy() &&
2391           Y->getType()->isIntOrIntVectorTy()) {
2392         Value *CastedOp =
2393             Builder.CreateBitCast(BO->getOperand(0), Y->getType());
2394         Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y);
2395         return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2396       }
2397       if (X->getType()->isIntOrIntVectorTy() &&
2398           Y->getType()->isFPOrFPVectorTy()) {
2399         Value *CastedOp =
2400             Builder.CreateBitCast(BO->getOperand(1), X->getType());
2401         Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X);
2402         return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2403       }
2404     }
2405     return nullptr;
2406   }
2407 
2408   if (!DestTy->isIntOrIntVectorTy())
2409     return nullptr;
2410 
2411   Value *X;
2412   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2413       X->getType() == DestTy && !isa<Constant>(X)) {
2414     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2415     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2416     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2417   }
2418 
2419   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2420       X->getType() == DestTy && !isa<Constant>(X)) {
2421     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2422     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2423     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2424   }
2425 
2426   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2427   // constant. This eases recognition of special constants for later ops.
2428   // Example:
2429   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2430   Constant *C;
2431   if (match(BO->getOperand(1), m_Constant(C))) {
2432     // bitcast (logic X, C) --> logic (bitcast X, C')
2433     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2434     Value *CastedC = Builder.CreateBitCast(C, DestTy);
2435     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2436   }
2437 
2438   return nullptr;
2439 }
2440 
2441 /// Change the type of a select if we can eliminate a bitcast.
2442 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2443                                       InstCombiner::BuilderTy &Builder) {
2444   Value *Cond, *TVal, *FVal;
2445   if (!match(BitCast.getOperand(0),
2446              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2447     return nullptr;
2448 
2449   // A vector select must maintain the same number of elements in its operands.
2450   Type *CondTy = Cond->getType();
2451   Type *DestTy = BitCast.getType();
2452   if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
2453     if (!DestTy->isVectorTy() ||
2454         CondVTy->getElementCount() !=
2455             cast<VectorType>(DestTy)->getElementCount())
2456       return nullptr;
2457 
2458   // FIXME: This transform is restricted from changing the select between
2459   // scalars and vectors to avoid backend problems caused by creating
2460   // potentially illegal operations. If a fix-up is added to handle that
2461   // situation, we can remove this check.
2462   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2463     return nullptr;
2464 
2465   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2466   Value *X;
2467   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2468       !isa<Constant>(X)) {
2469     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2470     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2471     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2472   }
2473 
2474   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2475       !isa<Constant>(X)) {
2476     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2477     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2478     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2479   }
2480 
2481   return nullptr;
2482 }
2483 
2484 /// Check if all users of CI are StoreInsts.
2485 static bool hasStoreUsersOnly(CastInst &CI) {
2486   for (User *U : CI.users()) {
2487     if (!isa<StoreInst>(U))
2488       return false;
2489   }
2490   return true;
2491 }
2492 
2493 /// This function handles following case
2494 ///
2495 ///     A  ->  B    cast
2496 ///     PHI
2497 ///     B  ->  A    cast
2498 ///
2499 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2500 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2501 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2502                                                       PHINode *PN) {
2503   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2504   if (hasStoreUsersOnly(CI))
2505     return nullptr;
2506 
2507   Value *Src = CI.getOperand(0);
2508   Type *SrcTy = Src->getType();         // Type B
2509   Type *DestTy = CI.getType();          // Type A
2510 
2511   SmallVector<PHINode *, 4> PhiWorklist;
2512   SmallSetVector<PHINode *, 4> OldPhiNodes;
2513 
2514   // Find all of the A->B casts and PHI nodes.
2515   // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2516   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2517   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2518   PhiWorklist.push_back(PN);
2519   OldPhiNodes.insert(PN);
2520   while (!PhiWorklist.empty()) {
2521     auto *OldPN = PhiWorklist.pop_back_val();
2522     for (Value *IncValue : OldPN->incoming_values()) {
2523       if (isa<Constant>(IncValue))
2524         continue;
2525 
2526       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2527         // If there is a sequence of one or more load instructions, each loaded
2528         // value is used as address of later load instruction, bitcast is
2529         // necessary to change the value type, don't optimize it. For
2530         // simplicity we give up if the load address comes from another load.
2531         Value *Addr = LI->getOperand(0);
2532         if (Addr == &CI || isa<LoadInst>(Addr))
2533           return nullptr;
2534         // Don't tranform "load <256 x i32>, <256 x i32>*" to
2535         // "load x86_amx, x86_amx*", because x86_amx* is invalid.
2536         // TODO: Remove this check when bitcast between vector and x86_amx
2537         // is replaced with a specific intrinsic.
2538         if (DestTy->isX86_AMXTy())
2539           return nullptr;
2540         if (LI->hasOneUse() && LI->isSimple())
2541           continue;
2542         // If a LoadInst has more than one use, changing the type of loaded
2543         // value may create another bitcast.
2544         return nullptr;
2545       }
2546 
2547       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2548         if (OldPhiNodes.insert(PNode))
2549           PhiWorklist.push_back(PNode);
2550         continue;
2551       }
2552 
2553       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2554       // We can't handle other instructions.
2555       if (!BCI)
2556         return nullptr;
2557 
2558       // Verify it's a A->B cast.
2559       Type *TyA = BCI->getOperand(0)->getType();
2560       Type *TyB = BCI->getType();
2561       if (TyA != DestTy || TyB != SrcTy)
2562         return nullptr;
2563     }
2564   }
2565 
2566   // Check that each user of each old PHI node is something that we can
2567   // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2568   for (auto *OldPN : OldPhiNodes) {
2569     for (User *V : OldPN->users()) {
2570       if (auto *SI = dyn_cast<StoreInst>(V)) {
2571         if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2572           return nullptr;
2573       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2574         // Verify it's a B->A cast.
2575         Type *TyB = BCI->getOperand(0)->getType();
2576         Type *TyA = BCI->getType();
2577         if (TyA != DestTy || TyB != SrcTy)
2578           return nullptr;
2579       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2580         // As long as the user is another old PHI node, then even if we don't
2581         // rewrite it, the PHI web we're considering won't have any users
2582         // outside itself, so it'll be dead.
2583         if (!OldPhiNodes.contains(PHI))
2584           return nullptr;
2585       } else {
2586         return nullptr;
2587       }
2588     }
2589   }
2590 
2591   // For each old PHI node, create a corresponding new PHI node with a type A.
2592   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2593   for (auto *OldPN : OldPhiNodes) {
2594     Builder.SetInsertPoint(OldPN);
2595     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2596     NewPNodes[OldPN] = NewPN;
2597   }
2598 
2599   // Fill in the operands of new PHI nodes.
2600   for (auto *OldPN : OldPhiNodes) {
2601     PHINode *NewPN = NewPNodes[OldPN];
2602     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2603       Value *V = OldPN->getOperand(j);
2604       Value *NewV = nullptr;
2605       if (auto *C = dyn_cast<Constant>(V)) {
2606         NewV = ConstantExpr::getBitCast(C, DestTy);
2607       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2608         // Explicitly perform load combine to make sure no opposing transform
2609         // can remove the bitcast in the meantime and trigger an infinite loop.
2610         Builder.SetInsertPoint(LI);
2611         NewV = combineLoadToNewType(*LI, DestTy);
2612         // Remove the old load and its use in the old phi, which itself becomes
2613         // dead once the whole transform finishes.
2614         replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
2615         eraseInstFromFunction(*LI);
2616       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2617         NewV = BCI->getOperand(0);
2618       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2619         NewV = NewPNodes[PrevPN];
2620       }
2621       assert(NewV);
2622       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2623     }
2624   }
2625 
2626   // Traverse all accumulated PHI nodes and process its users,
2627   // which are Stores and BitcCasts. Without this processing
2628   // NewPHI nodes could be replicated and could lead to extra
2629   // moves generated after DeSSA.
2630   // If there is a store with type B, change it to type A.
2631 
2632 
2633   // Replace users of BitCast B->A with NewPHI. These will help
2634   // later to get rid off a closure formed by OldPHI nodes.
2635   Instruction *RetVal = nullptr;
2636   for (auto *OldPN : OldPhiNodes) {
2637     PHINode *NewPN = NewPNodes[OldPN];
2638     for (User *V : make_early_inc_range(OldPN->users())) {
2639       if (auto *SI = dyn_cast<StoreInst>(V)) {
2640         assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2641         Builder.SetInsertPoint(SI);
2642         auto *NewBC =
2643           cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2644         SI->setOperand(0, NewBC);
2645         Worklist.push(SI);
2646         assert(hasStoreUsersOnly(*NewBC));
2647       }
2648       else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2649         Type *TyB = BCI->getOperand(0)->getType();
2650         Type *TyA = BCI->getType();
2651         assert(TyA == DestTy && TyB == SrcTy);
2652         (void) TyA;
2653         (void) TyB;
2654         Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2655         if (BCI == &CI)
2656           RetVal = I;
2657       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2658         assert(OldPhiNodes.contains(PHI));
2659         (void) PHI;
2660       } else {
2661         llvm_unreachable("all uses should be handled");
2662       }
2663     }
2664   }
2665 
2666   return RetVal;
2667 }
2668 
2669 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
2670   // If the operands are integer typed then apply the integer transforms,
2671   // otherwise just apply the common ones.
2672   Value *Src = CI.getOperand(0);
2673   Type *SrcTy = Src->getType();
2674   Type *DestTy = CI.getType();
2675 
2676   // Get rid of casts from one type to the same type. These are useless and can
2677   // be replaced by the operand.
2678   if (DestTy == Src->getType())
2679     return replaceInstUsesWith(CI, Src);
2680 
2681   if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2682     // Beware: messing with this target-specific oddity may cause trouble.
2683     if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2684       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2685       return InsertElementInst::Create(PoisonValue::get(DestTy), Elem,
2686                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2687     }
2688 
2689     if (isa<IntegerType>(SrcTy)) {
2690       // If this is a cast from an integer to vector, check to see if the input
2691       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2692       // the casts with a shuffle and (potentially) a bitcast.
2693       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2694         CastInst *SrcCast = cast<CastInst>(Src);
2695         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2696           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2697             if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2698                     BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2699               return I;
2700       }
2701 
2702       // If the input is an 'or' instruction, we may be doing shifts and ors to
2703       // assemble the elements of the vector manually.  Try to rip the code out
2704       // and replace it with insertelements.
2705       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2706         return replaceInstUsesWith(CI, V);
2707     }
2708   }
2709 
2710   if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2711     if (SrcVTy->getNumElements() == 1) {
2712       // If our destination is not a vector, then make this a straight
2713       // scalar-scalar cast.
2714       if (!DestTy->isVectorTy()) {
2715         Value *Elem =
2716           Builder.CreateExtractElement(Src,
2717                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2718         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2719       }
2720 
2721       // Otherwise, see if our source is an insert. If so, then use the scalar
2722       // component directly:
2723       // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2724       if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2725         return new BitCastInst(InsElt->getOperand(1), DestTy);
2726     }
2727 
2728     // Convert an artificial vector insert into more analyzable bitwise logic.
2729     unsigned BitWidth = DestTy->getScalarSizeInBits();
2730     Value *X, *Y;
2731     uint64_t IndexC;
2732     if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))),
2733                                         m_Value(Y), m_ConstantInt(IndexC)))) &&
2734         DestTy->isIntegerTy() && X->getType() == DestTy &&
2735         Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) {
2736       // Adjust for big endian - the LSBs are at the high index.
2737       if (DL.isBigEndian())
2738         IndexC = SrcVTy->getNumElements() - 1 - IndexC;
2739 
2740       // We only handle (endian-normalized) insert to index 0. Any other insert
2741       // would require a left-shift, so that is an extra instruction.
2742       if (IndexC == 0) {
2743         // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y)
2744         unsigned EltWidth = Y->getType()->getScalarSizeInBits();
2745         APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth);
2746         Value *AndX = Builder.CreateAnd(X, MaskC);
2747         Value *ZextY = Builder.CreateZExt(Y, DestTy);
2748         return BinaryOperator::CreateOr(AndX, ZextY);
2749       }
2750     }
2751   }
2752 
2753   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2754     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2755     // a bitcast to a vector with the same # elts.
2756     Value *ShufOp0 = Shuf->getOperand(0);
2757     Value *ShufOp1 = Shuf->getOperand(1);
2758     auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
2759     auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
2760     if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2761         cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
2762         ShufElts == SrcVecElts) {
2763       BitCastInst *Tmp;
2764       // If either of the operands is a cast from CI.getType(), then
2765       // evaluating the shuffle in the casted destination's type will allow
2766       // us to eliminate at least one cast.
2767       if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2768            Tmp->getOperand(0)->getType() == DestTy) ||
2769           ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2770            Tmp->getOperand(0)->getType() == DestTy)) {
2771         Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2772         Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2773         // Return a new shuffle vector.  Use the same element ID's, as we
2774         // know the vector types match #elts.
2775         return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2776       }
2777     }
2778 
2779     // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized
2780     // as a byte/bit swap:
2781     // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X)
2782     // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X)
2783     if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 &&
2784         Shuf->hasOneUse() && Shuf->isReverse()) {
2785       unsigned IntrinsicNum = 0;
2786       if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2787           SrcTy->getScalarSizeInBits() == 8) {
2788         IntrinsicNum = Intrinsic::bswap;
2789       } else if (SrcTy->getScalarSizeInBits() == 1) {
2790         IntrinsicNum = Intrinsic::bitreverse;
2791       }
2792       if (IntrinsicNum != 0) {
2793         assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2794         assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op");
2795         Function *BswapOrBitreverse =
2796             Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy);
2797         Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2798         return CallInst::Create(BswapOrBitreverse, {ScalarX});
2799       }
2800     }
2801   }
2802 
2803   // Handle the A->B->A cast, and there is an intervening PHI node.
2804   if (PHINode *PN = dyn_cast<PHINode>(Src))
2805     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2806       return I;
2807 
2808   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2809     return I;
2810 
2811   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2812     return I;
2813 
2814   if (Instruction *I = foldBitCastSelect(CI, Builder))
2815     return I;
2816 
2817   return commonCastTransforms(CI);
2818 }
2819 
2820 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2821   return commonCastTransforms(CI);
2822 }
2823