1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for cast operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/PatternMatch.h" 18 #include "llvm/Support/KnownBits.h" 19 #include "llvm/Transforms/InstCombine/InstCombiner.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Analyze 'Val', seeing if it is a simple linear expression. 26 /// If so, decompose it, returning some value X, such that Val is 27 /// X*Scale+Offset. 28 /// 29 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 30 uint64_t &Offset) { 31 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 32 Offset = CI->getZExtValue(); 33 Scale = 0; 34 return ConstantInt::get(Val->getType(), 0); 35 } 36 37 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 38 // Cannot look past anything that might overflow. 39 // We specifically require nuw because we store the Scale in an unsigned 40 // and perform an unsigned divide on it. 41 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 42 if (OBI && !OBI->hasNoUnsignedWrap()) { 43 Scale = 1; 44 Offset = 0; 45 return Val; 46 } 47 48 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 49 if (I->getOpcode() == Instruction::Shl) { 50 // This is a value scaled by '1 << the shift amt'. 51 Scale = UINT64_C(1) << RHS->getZExtValue(); 52 Offset = 0; 53 return I->getOperand(0); 54 } 55 56 if (I->getOpcode() == Instruction::Mul) { 57 // This value is scaled by 'RHS'. 58 Scale = RHS->getZExtValue(); 59 Offset = 0; 60 return I->getOperand(0); 61 } 62 63 if (I->getOpcode() == Instruction::Add) { 64 // We have X+C. Check to see if we really have (X*C2)+C1, 65 // where C1 is divisible by C2. 66 unsigned SubScale; 67 Value *SubVal = 68 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 69 Offset += RHS->getZExtValue(); 70 Scale = SubScale; 71 return SubVal; 72 } 73 } 74 } 75 76 // Otherwise, we can't look past this. 77 Scale = 1; 78 Offset = 0; 79 return Val; 80 } 81 82 /// If we find a cast of an allocation instruction, try to eliminate the cast by 83 /// moving the type information into the alloc. 84 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI, 85 AllocaInst &AI) { 86 PointerType *PTy = cast<PointerType>(CI.getType()); 87 // Opaque pointers don't have an element type we could replace with. 88 if (PTy->isOpaque()) 89 return nullptr; 90 91 IRBuilderBase::InsertPointGuard Guard(Builder); 92 Builder.SetInsertPoint(&AI); 93 94 // Get the type really allocated and the type casted to. 95 Type *AllocElTy = AI.getAllocatedType(); 96 Type *CastElTy = PTy->getNonOpaquePointerElementType(); 97 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 98 99 // This optimisation does not work for cases where the cast type 100 // is scalable and the allocated type is not. This because we need to 101 // know how many times the casted type fits into the allocated type. 102 // For the opposite case where the allocated type is scalable and the 103 // cast type is not this leads to poor code quality due to the 104 // introduction of 'vscale' into the calculations. It seems better to 105 // bail out for this case too until we've done a proper cost-benefit 106 // analysis. 107 bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy); 108 bool CastIsScalable = isa<ScalableVectorType>(CastElTy); 109 if (AllocIsScalable != CastIsScalable) return nullptr; 110 111 Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy); 112 Align CastElTyAlign = DL.getABITypeAlign(CastElTy); 113 if (CastElTyAlign < AllocElTyAlign) return nullptr; 114 115 // If the allocation has multiple uses, only promote it if we are strictly 116 // increasing the alignment of the resultant allocation. If we keep it the 117 // same, we open the door to infinite loops of various kinds. 118 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 119 120 // The alloc and cast types should be either both fixed or both scalable. 121 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize(); 122 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize(); 123 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 124 125 // If the allocation has multiple uses, only promote it if we're not 126 // shrinking the amount of memory being allocated. 127 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize(); 128 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize(); 129 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 130 131 // See if we can satisfy the modulus by pulling a scale out of the array 132 // size argument. 133 unsigned ArraySizeScale; 134 uint64_t ArrayOffset; 135 Value *NumElements = // See if the array size is a decomposable linear expr. 136 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 137 138 // If we can now satisfy the modulus, by using a non-1 scale, we really can 139 // do the xform. 140 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 141 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 142 143 // We don't currently support arrays of scalable types. 144 assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0)); 145 146 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 147 Value *Amt = nullptr; 148 if (Scale == 1) { 149 Amt = NumElements; 150 } else { 151 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 152 // Insert before the alloca, not before the cast. 153 Amt = Builder.CreateMul(Amt, NumElements); 154 } 155 156 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 157 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 158 Offset, true); 159 Amt = Builder.CreateAdd(Amt, Off); 160 } 161 162 AllocaInst *New = Builder.CreateAlloca(CastElTy, AI.getAddressSpace(), Amt); 163 New->setAlignment(AI.getAlign()); 164 New->takeName(&AI); 165 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 166 167 // If the allocation has multiple real uses, insert a cast and change all 168 // things that used it to use the new cast. This will also hack on CI, but it 169 // will die soon. 170 if (!AI.hasOneUse()) { 171 // New is the allocation instruction, pointer typed. AI is the original 172 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 173 Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast"); 174 replaceInstUsesWith(AI, NewCast); 175 eraseInstFromFunction(AI); 176 } 177 return replaceInstUsesWith(CI, New); 178 } 179 180 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 181 /// true for, actually insert the code to evaluate the expression. 182 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, 183 bool isSigned) { 184 if (Constant *C = dyn_cast<Constant>(V)) { 185 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 186 // If we got a constantexpr back, try to simplify it with DL info. 187 return ConstantFoldConstant(C, DL, &TLI); 188 } 189 190 // Otherwise, it must be an instruction. 191 Instruction *I = cast<Instruction>(V); 192 Instruction *Res = nullptr; 193 unsigned Opc = I->getOpcode(); 194 switch (Opc) { 195 case Instruction::Add: 196 case Instruction::Sub: 197 case Instruction::Mul: 198 case Instruction::And: 199 case Instruction::Or: 200 case Instruction::Xor: 201 case Instruction::AShr: 202 case Instruction::LShr: 203 case Instruction::Shl: 204 case Instruction::UDiv: 205 case Instruction::URem: { 206 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 207 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 208 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 209 break; 210 } 211 case Instruction::Trunc: 212 case Instruction::ZExt: 213 case Instruction::SExt: 214 // If the source type of the cast is the type we're trying for then we can 215 // just return the source. There's no need to insert it because it is not 216 // new. 217 if (I->getOperand(0)->getType() == Ty) 218 return I->getOperand(0); 219 220 // Otherwise, must be the same type of cast, so just reinsert a new one. 221 // This also handles the case of zext(trunc(x)) -> zext(x). 222 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 223 Opc == Instruction::SExt); 224 break; 225 case Instruction::Select: { 226 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 227 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 228 Res = SelectInst::Create(I->getOperand(0), True, False); 229 break; 230 } 231 case Instruction::PHI: { 232 PHINode *OPN = cast<PHINode>(I); 233 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 234 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 235 Value *V = 236 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 237 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 238 } 239 Res = NPN; 240 break; 241 } 242 default: 243 // TODO: Can handle more cases here. 244 llvm_unreachable("Unreachable!"); 245 } 246 247 Res->takeName(I); 248 return InsertNewInstWith(Res, *I); 249 } 250 251 Instruction::CastOps 252 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, 253 const CastInst *CI2) { 254 Type *SrcTy = CI1->getSrcTy(); 255 Type *MidTy = CI1->getDestTy(); 256 Type *DstTy = CI2->getDestTy(); 257 258 Instruction::CastOps firstOp = CI1->getOpcode(); 259 Instruction::CastOps secondOp = CI2->getOpcode(); 260 Type *SrcIntPtrTy = 261 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 262 Type *MidIntPtrTy = 263 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 264 Type *DstIntPtrTy = 265 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 266 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 267 DstTy, SrcIntPtrTy, MidIntPtrTy, 268 DstIntPtrTy); 269 270 // We don't want to form an inttoptr or ptrtoint that converts to an integer 271 // type that differs from the pointer size. 272 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 273 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 274 Res = 0; 275 276 return Instruction::CastOps(Res); 277 } 278 279 /// Implement the transforms common to all CastInst visitors. 280 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { 281 Value *Src = CI.getOperand(0); 282 Type *Ty = CI.getType(); 283 284 // Try to eliminate a cast of a cast. 285 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 286 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 287 // The first cast (CSrc) is eliminable so we need to fix up or replace 288 // the second cast (CI). CSrc will then have a good chance of being dead. 289 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 290 // Point debug users of the dying cast to the new one. 291 if (CSrc->hasOneUse()) 292 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 293 return Res; 294 } 295 } 296 297 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 298 // We are casting a select. Try to fold the cast into the select if the 299 // select does not have a compare instruction with matching operand types 300 // or the select is likely better done in a narrow type. 301 // Creating a select with operands that are different sizes than its 302 // condition may inhibit other folds and lead to worse codegen. 303 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 304 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() || 305 (CI.getOpcode() == Instruction::Trunc && 306 shouldChangeType(CI.getSrcTy(), CI.getType()))) { 307 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 308 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 309 return NV; 310 } 311 } 312 } 313 314 // If we are casting a PHI, then fold the cast into the PHI. 315 if (auto *PN = dyn_cast<PHINode>(Src)) { 316 // Don't do this if it would create a PHI node with an illegal type from a 317 // legal type. 318 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 319 shouldChangeType(CI.getSrcTy(), CI.getType())) 320 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 321 return NV; 322 } 323 324 // Canonicalize a unary shuffle after the cast if neither operation changes 325 // the size or element size of the input vector. 326 // TODO: We could allow size-changing ops if that doesn't harm codegen. 327 // cast (shuffle X, Mask) --> shuffle (cast X), Mask 328 Value *X; 329 ArrayRef<int> Mask; 330 if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) { 331 // TODO: Allow scalable vectors? 332 auto *SrcTy = dyn_cast<FixedVectorType>(X->getType()); 333 auto *DestTy = dyn_cast<FixedVectorType>(Ty); 334 if (SrcTy && DestTy && 335 SrcTy->getNumElements() == DestTy->getNumElements() && 336 SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) { 337 Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy); 338 return new ShuffleVectorInst(CastX, Mask); 339 } 340 } 341 342 return nullptr; 343 } 344 345 /// Constants and extensions/truncates from the destination type are always 346 /// free to be evaluated in that type. This is a helper for canEvaluate*. 347 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 348 if (isa<Constant>(V)) 349 return true; 350 Value *X; 351 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 352 X->getType() == Ty) 353 return true; 354 355 return false; 356 } 357 358 /// Filter out values that we can not evaluate in the destination type for free. 359 /// This is a helper for canEvaluate*. 360 static bool canNotEvaluateInType(Value *V, Type *Ty) { 361 assert(!isa<Constant>(V) && "Constant should already be handled."); 362 if (!isa<Instruction>(V)) 363 return true; 364 // We don't extend or shrink something that has multiple uses -- doing so 365 // would require duplicating the instruction which isn't profitable. 366 if (!V->hasOneUse()) 367 return true; 368 369 return false; 370 } 371 372 /// Return true if we can evaluate the specified expression tree as type Ty 373 /// instead of its larger type, and arrive with the same value. 374 /// This is used by code that tries to eliminate truncates. 375 /// 376 /// Ty will always be a type smaller than V. We should return true if trunc(V) 377 /// can be computed by computing V in the smaller type. If V is an instruction, 378 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 379 /// makes sense if x and y can be efficiently truncated. 380 /// 381 /// This function works on both vectors and scalars. 382 /// 383 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, 384 Instruction *CxtI) { 385 if (canAlwaysEvaluateInType(V, Ty)) 386 return true; 387 if (canNotEvaluateInType(V, Ty)) 388 return false; 389 390 auto *I = cast<Instruction>(V); 391 Type *OrigTy = V->getType(); 392 switch (I->getOpcode()) { 393 case Instruction::Add: 394 case Instruction::Sub: 395 case Instruction::Mul: 396 case Instruction::And: 397 case Instruction::Or: 398 case Instruction::Xor: 399 // These operators can all arbitrarily be extended or truncated. 400 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 401 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 402 403 case Instruction::UDiv: 404 case Instruction::URem: { 405 // UDiv and URem can be truncated if all the truncated bits are zero. 406 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 407 uint32_t BitWidth = Ty->getScalarSizeInBits(); 408 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 409 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 410 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 411 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 412 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 413 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 414 } 415 break; 416 } 417 case Instruction::Shl: { 418 // If we are truncating the result of this SHL, and if it's a shift of an 419 // inrange amount, we can always perform a SHL in a smaller type. 420 uint32_t BitWidth = Ty->getScalarSizeInBits(); 421 KnownBits AmtKnownBits = 422 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 423 if (AmtKnownBits.getMaxValue().ult(BitWidth)) 424 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 425 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 426 break; 427 } 428 case Instruction::LShr: { 429 // If this is a truncate of a logical shr, we can truncate it to a smaller 430 // lshr iff we know that the bits we would otherwise be shifting in are 431 // already zeros. 432 // TODO: It is enough to check that the bits we would be shifting in are 433 // zero - use AmtKnownBits.getMaxValue(). 434 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 435 uint32_t BitWidth = Ty->getScalarSizeInBits(); 436 KnownBits AmtKnownBits = 437 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 438 APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 439 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 440 IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) { 441 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 442 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 443 } 444 break; 445 } 446 case Instruction::AShr: { 447 // If this is a truncate of an arithmetic shr, we can truncate it to a 448 // smaller ashr iff we know that all the bits from the sign bit of the 449 // original type and the sign bit of the truncate type are similar. 450 // TODO: It is enough to check that the bits we would be shifting in are 451 // similar to sign bit of the truncate type. 452 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 453 uint32_t BitWidth = Ty->getScalarSizeInBits(); 454 KnownBits AmtKnownBits = 455 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 456 unsigned ShiftedBits = OrigBitWidth - BitWidth; 457 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 458 ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 459 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 460 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 461 break; 462 } 463 case Instruction::Trunc: 464 // trunc(trunc(x)) -> trunc(x) 465 return true; 466 case Instruction::ZExt: 467 case Instruction::SExt: 468 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 469 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 470 return true; 471 case Instruction::Select: { 472 SelectInst *SI = cast<SelectInst>(I); 473 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 474 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 475 } 476 case Instruction::PHI: { 477 // We can change a phi if we can change all operands. Note that we never 478 // get into trouble with cyclic PHIs here because we only consider 479 // instructions with a single use. 480 PHINode *PN = cast<PHINode>(I); 481 for (Value *IncValue : PN->incoming_values()) 482 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 483 return false; 484 return true; 485 } 486 default: 487 // TODO: Can handle more cases here. 488 break; 489 } 490 491 return false; 492 } 493 494 /// Given a vector that is bitcast to an integer, optionally logically 495 /// right-shifted, and truncated, convert it to an extractelement. 496 /// Example (big endian): 497 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 498 /// ---> 499 /// extractelement <4 x i32> %X, 1 500 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, 501 InstCombinerImpl &IC) { 502 Value *TruncOp = Trunc.getOperand(0); 503 Type *DestType = Trunc.getType(); 504 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 505 return nullptr; 506 507 Value *VecInput = nullptr; 508 ConstantInt *ShiftVal = nullptr; 509 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 510 m_LShr(m_BitCast(m_Value(VecInput)), 511 m_ConstantInt(ShiftVal)))) || 512 !isa<VectorType>(VecInput->getType())) 513 return nullptr; 514 515 VectorType *VecType = cast<VectorType>(VecInput->getType()); 516 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 517 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 518 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 519 520 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 521 return nullptr; 522 523 // If the element type of the vector doesn't match the result type, 524 // bitcast it to a vector type that we can extract from. 525 unsigned NumVecElts = VecWidth / DestWidth; 526 if (VecType->getElementType() != DestType) { 527 VecType = FixedVectorType::get(DestType, NumVecElts); 528 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 529 } 530 531 unsigned Elt = ShiftAmount / DestWidth; 532 if (IC.getDataLayout().isBigEndian()) 533 Elt = NumVecElts - 1 - Elt; 534 535 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 536 } 537 538 /// Funnel/Rotate left/right may occur in a wider type than necessary because of 539 /// type promotion rules. Try to narrow the inputs and convert to funnel shift. 540 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { 541 assert((isa<VectorType>(Trunc.getSrcTy()) || 542 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 543 "Don't narrow to an illegal scalar type"); 544 545 // Bail out on strange types. It is possible to handle some of these patterns 546 // even with non-power-of-2 sizes, but it is not a likely scenario. 547 Type *DestTy = Trunc.getType(); 548 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 549 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 550 if (!isPowerOf2_32(NarrowWidth)) 551 return nullptr; 552 553 // First, find an or'd pair of opposite shifts: 554 // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) 555 BinaryOperator *Or0, *Or1; 556 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 557 return nullptr; 558 559 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 560 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 561 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 562 Or0->getOpcode() == Or1->getOpcode()) 563 return nullptr; 564 565 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 566 if (Or0->getOpcode() == BinaryOperator::LShr) { 567 std::swap(Or0, Or1); 568 std::swap(ShVal0, ShVal1); 569 std::swap(ShAmt0, ShAmt1); 570 } 571 assert(Or0->getOpcode() == BinaryOperator::Shl && 572 Or1->getOpcode() == BinaryOperator::LShr && 573 "Illegal or(shift,shift) pair"); 574 575 // Match the shift amount operands for a funnel/rotate pattern. This always 576 // matches a subtraction on the R operand. 577 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 578 // The shift amounts may add up to the narrow bit width: 579 // (shl ShVal0, L) | (lshr ShVal1, Width - L) 580 // If this is a funnel shift (different operands are shifted), then the 581 // shift amount can not over-shift (create poison) in the narrow type. 582 unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth); 583 APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth); 584 if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask)) 585 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 586 return L; 587 588 // The following patterns currently only work for rotation patterns. 589 // TODO: Add more general funnel-shift compatible patterns. 590 if (ShVal0 != ShVal1) 591 return nullptr; 592 593 // The shift amount may be masked with negation: 594 // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) 595 Value *X; 596 unsigned Mask = Width - 1; 597 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 598 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 599 return X; 600 601 // Same as above, but the shift amount may be extended after masking: 602 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 603 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 604 return X; 605 606 return nullptr; 607 }; 608 609 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 610 bool IsFshl = true; // Sub on LSHR. 611 if (!ShAmt) { 612 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 613 IsFshl = false; // Sub on SHL. 614 } 615 if (!ShAmt) 616 return nullptr; 617 618 // The right-shifted value must have high zeros in the wide type (for example 619 // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are 620 // truncated, so those do not matter. 621 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 622 if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc)) 623 return nullptr; 624 625 // We have an unnecessarily wide rotate! 626 // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt)) 627 // Narrow the inputs and convert to funnel shift intrinsic: 628 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) 629 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 630 Value *X, *Y; 631 X = Y = Builder.CreateTrunc(ShVal0, DestTy); 632 if (ShVal0 != ShVal1) 633 Y = Builder.CreateTrunc(ShVal1, DestTy); 634 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 635 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 636 return CallInst::Create(F, {X, Y, NarrowShAmt}); 637 } 638 639 /// Try to narrow the width of math or bitwise logic instructions by pulling a 640 /// truncate ahead of binary operators. 641 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { 642 Type *SrcTy = Trunc.getSrcTy(); 643 Type *DestTy = Trunc.getType(); 644 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 645 unsigned DestWidth = DestTy->getScalarSizeInBits(); 646 647 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 648 return nullptr; 649 650 BinaryOperator *BinOp; 651 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 652 return nullptr; 653 654 Value *BinOp0 = BinOp->getOperand(0); 655 Value *BinOp1 = BinOp->getOperand(1); 656 switch (BinOp->getOpcode()) { 657 case Instruction::And: 658 case Instruction::Or: 659 case Instruction::Xor: 660 case Instruction::Add: 661 case Instruction::Sub: 662 case Instruction::Mul: { 663 Constant *C; 664 if (match(BinOp0, m_Constant(C))) { 665 // trunc (binop C, X) --> binop (trunc C', X) 666 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 667 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 668 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 669 } 670 if (match(BinOp1, m_Constant(C))) { 671 // trunc (binop X, C) --> binop (trunc X, C') 672 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 673 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 674 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 675 } 676 Value *X; 677 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 678 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 679 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 680 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 681 } 682 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 683 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 684 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 685 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 686 } 687 break; 688 } 689 case Instruction::LShr: 690 case Instruction::AShr: { 691 // trunc (*shr (trunc A), C) --> trunc(*shr A, C) 692 Value *A; 693 Constant *C; 694 if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) { 695 unsigned MaxShiftAmt = SrcWidth - DestWidth; 696 // If the shift is small enough, all zero/sign bits created by the shift 697 // are removed by the trunc. 698 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 699 APInt(SrcWidth, MaxShiftAmt)))) { 700 auto *OldShift = cast<Instruction>(Trunc.getOperand(0)); 701 bool IsExact = OldShift->isExact(); 702 auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true); 703 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 704 Value *Shift = 705 OldShift->getOpcode() == Instruction::AShr 706 ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact) 707 : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact); 708 return CastInst::CreateTruncOrBitCast(Shift, DestTy); 709 } 710 } 711 break; 712 } 713 default: break; 714 } 715 716 if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) 717 return NarrowOr; 718 719 return nullptr; 720 } 721 722 /// Try to narrow the width of a splat shuffle. This could be generalized to any 723 /// shuffle with a constant operand, but we limit the transform to avoid 724 /// creating a shuffle type that targets may not be able to lower effectively. 725 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 726 InstCombiner::BuilderTy &Builder) { 727 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 728 if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) && 729 is_splat(Shuf->getShuffleMask()) && 730 Shuf->getType() == Shuf->getOperand(0)->getType()) { 731 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask 732 // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask 733 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 734 return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask()); 735 } 736 737 return nullptr; 738 } 739 740 /// Try to narrow the width of an insert element. This could be generalized for 741 /// any vector constant, but we limit the transform to insertion into undef to 742 /// avoid potential backend problems from unsupported insertion widths. This 743 /// could also be extended to handle the case of inserting a scalar constant 744 /// into a vector variable. 745 static Instruction *shrinkInsertElt(CastInst &Trunc, 746 InstCombiner::BuilderTy &Builder) { 747 Instruction::CastOps Opcode = Trunc.getOpcode(); 748 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 749 "Unexpected instruction for shrinking"); 750 751 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 752 if (!InsElt || !InsElt->hasOneUse()) 753 return nullptr; 754 755 Type *DestTy = Trunc.getType(); 756 Type *DestScalarTy = DestTy->getScalarType(); 757 Value *VecOp = InsElt->getOperand(0); 758 Value *ScalarOp = InsElt->getOperand(1); 759 Value *Index = InsElt->getOperand(2); 760 761 if (match(VecOp, m_Undef())) { 762 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 763 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 764 UndefValue *NarrowUndef = UndefValue::get(DestTy); 765 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 766 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 767 } 768 769 return nullptr; 770 } 771 772 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { 773 if (Instruction *Result = commonCastTransforms(Trunc)) 774 return Result; 775 776 Value *Src = Trunc.getOperand(0); 777 Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); 778 unsigned DestWidth = DestTy->getScalarSizeInBits(); 779 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 780 781 // Attempt to truncate the entire input expression tree to the destination 782 // type. Only do this if the dest type is a simple type, don't convert the 783 // expression tree to something weird like i93 unless the source is also 784 // strange. 785 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 786 canEvaluateTruncated(Src, DestTy, *this, &Trunc)) { 787 788 // If this cast is a truncate, evaluting in a different type always 789 // eliminates the cast, so it is always a win. 790 LLVM_DEBUG( 791 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 792 " to avoid cast: " 793 << Trunc << '\n'); 794 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 795 assert(Res->getType() == DestTy); 796 return replaceInstUsesWith(Trunc, Res); 797 } 798 799 // For integer types, check if we can shorten the entire input expression to 800 // DestWidth * 2, which won't allow removing the truncate, but reducing the 801 // width may enable further optimizations, e.g. allowing for larger 802 // vectorization factors. 803 if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) { 804 if (DestWidth * 2 < SrcWidth) { 805 auto *NewDestTy = DestITy->getExtendedType(); 806 if (shouldChangeType(SrcTy, NewDestTy) && 807 canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) { 808 LLVM_DEBUG( 809 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 810 " to reduce the width of operand of" 811 << Trunc << '\n'); 812 Value *Res = EvaluateInDifferentType(Src, NewDestTy, false); 813 return new TruncInst(Res, DestTy); 814 } 815 } 816 } 817 818 // Test if the trunc is the user of a select which is part of a 819 // minimum or maximum operation. If so, don't do any more simplification. 820 // Even simplifying demanded bits can break the canonical form of a 821 // min/max. 822 Value *LHS, *RHS; 823 if (SelectInst *Sel = dyn_cast<SelectInst>(Src)) 824 if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN) 825 return nullptr; 826 827 // See if we can simplify any instructions used by the input whose sole 828 // purpose is to compute bits we don't care about. 829 if (SimplifyDemandedInstructionBits(Trunc)) 830 return &Trunc; 831 832 if (DestWidth == 1) { 833 Value *Zero = Constant::getNullValue(SrcTy); 834 if (DestTy->isIntegerTy()) { 835 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 836 // TODO: We canonicalize to more instructions here because we are probably 837 // lacking equivalent analysis for trunc relative to icmp. There may also 838 // be codegen concerns. If those trunc limitations were removed, we could 839 // remove this transform. 840 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 841 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 842 } 843 844 // For vectors, we do not canonicalize all truncs to icmp, so optimize 845 // patterns that would be covered within visitICmpInst. 846 Value *X; 847 Constant *C; 848 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) { 849 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 850 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 851 Constant *MaskC = ConstantExpr::getShl(One, C); 852 Value *And = Builder.CreateAnd(X, MaskC); 853 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 854 } 855 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)), 856 m_Deferred(X))))) { 857 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 858 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 859 Constant *MaskC = ConstantExpr::getShl(One, C); 860 MaskC = ConstantExpr::getOr(MaskC, One); 861 Value *And = Builder.CreateAnd(X, MaskC); 862 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 863 } 864 } 865 866 Value *A, *B; 867 Constant *C; 868 if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) { 869 unsigned AWidth = A->getType()->getScalarSizeInBits(); 870 unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth); 871 auto *OldSh = cast<Instruction>(Src); 872 bool IsExact = OldSh->isExact(); 873 874 // If the shift is small enough, all zero bits created by the shift are 875 // removed by the trunc. 876 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 877 APInt(SrcWidth, MaxShiftAmt)))) { 878 // trunc (lshr (sext A), C) --> ashr A, C 879 if (A->getType() == DestTy) { 880 Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false); 881 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 882 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 883 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 884 return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt) 885 : BinaryOperator::CreateAShr(A, ShAmt); 886 } 887 // The types are mismatched, so create a cast after shifting: 888 // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) 889 if (Src->hasOneUse()) { 890 Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false); 891 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 892 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 893 Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact); 894 return CastInst::CreateIntegerCast(Shift, DestTy, true); 895 } 896 } 897 // TODO: Mask high bits with 'and'. 898 } 899 900 if (Instruction *I = narrowBinOp(Trunc)) 901 return I; 902 903 if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) 904 return I; 905 906 if (Instruction *I = shrinkInsertElt(Trunc, Builder)) 907 return I; 908 909 if (Src->hasOneUse() && 910 (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) { 911 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 912 // dest type is native and cst < dest size. 913 if (match(Src, m_Shl(m_Value(A), m_Constant(C))) && 914 !match(A, m_Shr(m_Value(), m_Constant()))) { 915 // Skip shifts of shift by constants. It undoes a combine in 916 // FoldShiftByConstant and is the extend in reg pattern. 917 APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); 918 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) { 919 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 920 return BinaryOperator::Create(Instruction::Shl, NewTrunc, 921 ConstantExpr::getTrunc(C, DestTy)); 922 } 923 } 924 } 925 926 if (Instruction *I = foldVecTruncToExtElt(Trunc, *this)) 927 return I; 928 929 // Whenever an element is extracted from a vector, and then truncated, 930 // canonicalize by converting it to a bitcast followed by an 931 // extractelement. 932 // 933 // Example (little endian): 934 // trunc (extractelement <4 x i64> %X, 0) to i32 935 // ---> 936 // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 937 Value *VecOp; 938 ConstantInt *Cst; 939 if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) { 940 auto *VecOpTy = cast<VectorType>(VecOp->getType()); 941 auto VecElts = VecOpTy->getElementCount(); 942 943 // A badly fit destination size would result in an invalid cast. 944 if (SrcWidth % DestWidth == 0) { 945 uint64_t TruncRatio = SrcWidth / DestWidth; 946 uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; 947 uint64_t VecOpIdx = Cst->getZExtValue(); 948 uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1 949 : VecOpIdx * TruncRatio; 950 assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && 951 "overflow 32-bits"); 952 953 auto *BitCastTo = 954 VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable()); 955 Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo); 956 return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx)); 957 } 958 } 959 960 // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C) 961 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)), 962 m_Value(B))))) { 963 unsigned AWidth = A->getType()->getScalarSizeInBits(); 964 if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) { 965 Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth); 966 Value *NarrowCtlz = 967 Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B}); 968 return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff); 969 } 970 } 971 972 if (match(Src, m_VScale(DL))) { 973 if (Trunc.getFunction() && 974 Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 975 Attribute Attr = 976 Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange); 977 if (Optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 978 if (Log2_32(*MaxVScale) < DestWidth) { 979 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 980 return replaceInstUsesWith(Trunc, VScale); 981 } 982 } 983 } 984 } 985 986 return nullptr; 987 } 988 989 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext) { 990 // If we are just checking for a icmp eq of a single bit and zext'ing it 991 // to an integer, then shift the bit to the appropriate place and then 992 // cast to integer to avoid the comparison. 993 994 // FIXME: This set of transforms does not check for extra uses and/or creates 995 // an extra instruction (an optional final cast is not included 996 // in the transform comments). We may also want to favor icmp over 997 // shifts in cases of equal instructions because icmp has better 998 // analysis in general (invert the transform). 999 1000 const APInt *Op1CV; 1001 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { 1002 1003 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 1004 if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) { 1005 Value *In = Cmp->getOperand(0); 1006 Value *Sh = ConstantInt::get(In->getType(), 1007 In->getType()->getScalarSizeInBits() - 1); 1008 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 1009 if (In->getType() != Zext.getType()) 1010 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); 1011 1012 return replaceInstUsesWith(Zext, In); 1013 } 1014 1015 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 1016 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 1017 // zext (X == 1) to i32 --> X iff X has only the low bit set. 1018 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 1019 // zext (X != 0) to i32 --> X iff X has only the low bit set. 1020 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 1021 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 1022 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 1023 if ((Op1CV->isZero() || Op1CV->isPowerOf2()) && 1024 // This only works for EQ and NE 1025 Cmp->isEquality()) { 1026 // If Op1C some other power of two, convert: 1027 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); 1028 1029 APInt KnownZeroMask(~Known.Zero); 1030 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 1031 bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE; 1032 if (!Op1CV->isZero() && (*Op1CV != KnownZeroMask)) { 1033 // (X&4) == 2 --> false 1034 // (X&4) != 2 --> true 1035 Constant *Res = ConstantInt::get(Zext.getType(), isNE); 1036 return replaceInstUsesWith(Zext, Res); 1037 } 1038 1039 uint32_t ShAmt = KnownZeroMask.logBase2(); 1040 Value *In = Cmp->getOperand(0); 1041 if (ShAmt) { 1042 // Perform a logical shr by shiftamt. 1043 // Insert the shift to put the result in the low bit. 1044 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 1045 In->getName() + ".lobit"); 1046 } 1047 1048 if (!Op1CV->isZero() == isNE) { // Toggle the low bit. 1049 Constant *One = ConstantInt::get(In->getType(), 1); 1050 In = Builder.CreateXor(In, One); 1051 } 1052 1053 if (Zext.getType() == In->getType()) 1054 return replaceInstUsesWith(Zext, In); 1055 1056 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); 1057 return replaceInstUsesWith(Zext, IntCast); 1058 } 1059 } 1060 } 1061 1062 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { 1063 // Test if a bit is clear/set using a shifted-one mask: 1064 // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1 1065 // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1 1066 Value *X, *ShAmt; 1067 if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) && 1068 match(Cmp->getOperand(0), 1069 m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) { 1070 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1071 X = Builder.CreateNot(X); 1072 Value *Lshr = Builder.CreateLShr(X, ShAmt); 1073 Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1)); 1074 return replaceInstUsesWith(Zext, And1); 1075 } 1076 1077 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 1078 // It is also profitable to transform icmp eq into not(xor(A, B)) because 1079 // that may lead to additional simplifications. 1080 if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) { 1081 Value *LHS = Cmp->getOperand(0); 1082 Value *RHS = Cmp->getOperand(1); 1083 1084 KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext); 1085 KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext); 1086 1087 if (KnownLHS == KnownRHS) { 1088 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 1089 APInt UnknownBit = ~KnownBits; 1090 if (UnknownBit.countPopulation() == 1) { 1091 Value *Result = Builder.CreateXor(LHS, RHS); 1092 1093 // Mask off any bits that are set and won't be shifted away. 1094 if (KnownLHS.One.uge(UnknownBit)) 1095 Result = Builder.CreateAnd(Result, 1096 ConstantInt::get(ITy, UnknownBit)); 1097 1098 // Shift the bit we're testing down to the lsb. 1099 Result = Builder.CreateLShr( 1100 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 1101 1102 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1103 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 1104 Result->takeName(Cmp); 1105 return replaceInstUsesWith(Zext, Result); 1106 } 1107 } 1108 } 1109 } 1110 1111 return nullptr; 1112 } 1113 1114 /// Determine if the specified value can be computed in the specified wider type 1115 /// and produce the same low bits. If not, return false. 1116 /// 1117 /// If this function returns true, it can also return a non-zero number of bits 1118 /// (in BitsToClear) which indicates that the value it computes is correct for 1119 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 1120 /// out. For example, to promote something like: 1121 /// 1122 /// %B = trunc i64 %A to i32 1123 /// %C = lshr i32 %B, 8 1124 /// %E = zext i32 %C to i64 1125 /// 1126 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 1127 /// set to 8 to indicate that the promoted value needs to have bits 24-31 1128 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 1129 /// clear the top bits anyway, doing this has no extra cost. 1130 /// 1131 /// This function works on both vectors and scalars. 1132 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 1133 InstCombinerImpl &IC, Instruction *CxtI) { 1134 BitsToClear = 0; 1135 if (canAlwaysEvaluateInType(V, Ty)) 1136 return true; 1137 if (canNotEvaluateInType(V, Ty)) 1138 return false; 1139 1140 auto *I = cast<Instruction>(V); 1141 unsigned Tmp; 1142 switch (I->getOpcode()) { 1143 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 1144 case Instruction::SExt: // zext(sext(x)) -> sext(x). 1145 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 1146 return true; 1147 case Instruction::And: 1148 case Instruction::Or: 1149 case Instruction::Xor: 1150 case Instruction::Add: 1151 case Instruction::Sub: 1152 case Instruction::Mul: 1153 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1154 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1155 return false; 1156 // These can all be promoted if neither operand has 'bits to clear'. 1157 if (BitsToClear == 0 && Tmp == 0) 1158 return true; 1159 1160 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1161 // other side, BitsToClear is ok. 1162 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1163 // We use MaskedValueIsZero here for generality, but the case we care 1164 // about the most is constant RHS. 1165 unsigned VSize = V->getType()->getScalarSizeInBits(); 1166 if (IC.MaskedValueIsZero(I->getOperand(1), 1167 APInt::getHighBitsSet(VSize, BitsToClear), 1168 0, CxtI)) { 1169 // If this is an And instruction and all of the BitsToClear are 1170 // known to be zero we can reset BitsToClear. 1171 if (I->getOpcode() == Instruction::And) 1172 BitsToClear = 0; 1173 return true; 1174 } 1175 } 1176 1177 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1178 return false; 1179 1180 case Instruction::Shl: { 1181 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1182 // upper bits we can reduce BitsToClear by the shift amount. 1183 const APInt *Amt; 1184 if (match(I->getOperand(1), m_APInt(Amt))) { 1185 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1186 return false; 1187 uint64_t ShiftAmt = Amt->getZExtValue(); 1188 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1189 return true; 1190 } 1191 return false; 1192 } 1193 case Instruction::LShr: { 1194 // We can promote lshr(x, cst) if we can promote x. This requires the 1195 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1196 const APInt *Amt; 1197 if (match(I->getOperand(1), m_APInt(Amt))) { 1198 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1199 return false; 1200 BitsToClear += Amt->getZExtValue(); 1201 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1202 BitsToClear = V->getType()->getScalarSizeInBits(); 1203 return true; 1204 } 1205 // Cannot promote variable LSHR. 1206 return false; 1207 } 1208 case Instruction::Select: 1209 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1210 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1211 // TODO: If important, we could handle the case when the BitsToClear are 1212 // known zero in the disagreeing side. 1213 Tmp != BitsToClear) 1214 return false; 1215 return true; 1216 1217 case Instruction::PHI: { 1218 // We can change a phi if we can change all operands. Note that we never 1219 // get into trouble with cyclic PHIs here because we only consider 1220 // instructions with a single use. 1221 PHINode *PN = cast<PHINode>(I); 1222 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1223 return false; 1224 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1225 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1226 // TODO: If important, we could handle the case when the BitsToClear 1227 // are known zero in the disagreeing input. 1228 Tmp != BitsToClear) 1229 return false; 1230 return true; 1231 } 1232 default: 1233 // TODO: Can handle more cases here. 1234 return false; 1235 } 1236 } 1237 1238 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) { 1239 // If this zero extend is only used by a truncate, let the truncate be 1240 // eliminated before we try to optimize this zext. 1241 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1242 return nullptr; 1243 1244 // If one of the common conversion will work, do it. 1245 if (Instruction *Result = commonCastTransforms(CI)) 1246 return Result; 1247 1248 Value *Src = CI.getOperand(0); 1249 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1250 1251 // Try to extend the entire expression tree to the wide destination type. 1252 unsigned BitsToClear; 1253 if (shouldChangeType(SrcTy, DestTy) && 1254 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1255 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1256 "Can't clear more bits than in SrcTy"); 1257 1258 // Okay, we can transform this! Insert the new expression now. 1259 LLVM_DEBUG( 1260 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1261 " to avoid zero extend: " 1262 << CI << '\n'); 1263 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1264 assert(Res->getType() == DestTy); 1265 1266 // Preserve debug values referring to Src if the zext is its last use. 1267 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1268 if (SrcOp->hasOneUse()) 1269 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1270 1271 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1272 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1273 1274 // If the high bits are already filled with zeros, just replace this 1275 // cast with the result. 1276 if (MaskedValueIsZero(Res, 1277 APInt::getHighBitsSet(DestBitSize, 1278 DestBitSize-SrcBitsKept), 1279 0, &CI)) 1280 return replaceInstUsesWith(CI, Res); 1281 1282 // We need to emit an AND to clear the high bits. 1283 Constant *C = ConstantInt::get(Res->getType(), 1284 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1285 return BinaryOperator::CreateAnd(Res, C); 1286 } 1287 1288 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1289 // types and if the sizes are just right we can convert this into a logical 1290 // 'and' which will be much cheaper than the pair of casts. 1291 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1292 // TODO: Subsume this into EvaluateInDifferentType. 1293 1294 // Get the sizes of the types involved. We know that the intermediate type 1295 // will be smaller than A or C, but don't know the relation between A and C. 1296 Value *A = CSrc->getOperand(0); 1297 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1298 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1299 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1300 // If we're actually extending zero bits, then if 1301 // SrcSize < DstSize: zext(a & mask) 1302 // SrcSize == DstSize: a & mask 1303 // SrcSize > DstSize: trunc(a) & mask 1304 if (SrcSize < DstSize) { 1305 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1306 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1307 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1308 return new ZExtInst(And, CI.getType()); 1309 } 1310 1311 if (SrcSize == DstSize) { 1312 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1313 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1314 AndValue)); 1315 } 1316 if (SrcSize > DstSize) { 1317 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1318 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1319 return BinaryOperator::CreateAnd(Trunc, 1320 ConstantInt::get(Trunc->getType(), 1321 AndValue)); 1322 } 1323 } 1324 1325 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src)) 1326 return transformZExtICmp(Cmp, CI); 1327 1328 // zext(trunc(X) & C) -> (X & zext(C)). 1329 Constant *C; 1330 Value *X; 1331 if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1332 X->getType() == CI.getType()) 1333 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1334 1335 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1336 Value *And; 1337 if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1338 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1339 X->getType() == CI.getType()) { 1340 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1341 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1342 } 1343 1344 if (match(Src, m_VScale(DL))) { 1345 if (CI.getFunction() && 1346 CI.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1347 Attribute Attr = CI.getFunction()->getFnAttribute(Attribute::VScaleRange); 1348 if (Optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1349 unsigned TypeWidth = Src->getType()->getScalarSizeInBits(); 1350 if (Log2_32(*MaxVScale) < TypeWidth) { 1351 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1352 return replaceInstUsesWith(CI, VScale); 1353 } 1354 } 1355 } 1356 } 1357 1358 return nullptr; 1359 } 1360 1361 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1362 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI, 1363 Instruction &CI) { 1364 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1365 ICmpInst::Predicate Pred = ICI->getPredicate(); 1366 1367 // Don't bother if Op1 isn't of vector or integer type. 1368 if (!Op1->getType()->isIntOrIntVectorTy()) 1369 return nullptr; 1370 1371 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1372 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1373 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1374 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1375 Value *Sh = ConstantInt::get(Op0->getType(), 1376 Op0->getType()->getScalarSizeInBits() - 1); 1377 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1378 if (In->getType() != CI.getType()) 1379 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1380 1381 if (Pred == ICmpInst::ICMP_SGT) 1382 In = Builder.CreateNot(In, In->getName() + ".not"); 1383 return replaceInstUsesWith(CI, In); 1384 } 1385 1386 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1387 // If we know that only one bit of the LHS of the icmp can be set and we 1388 // have an equality comparison with zero or a power of 2, we can transform 1389 // the icmp and sext into bitwise/integer operations. 1390 if (ICI->hasOneUse() && 1391 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1392 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1393 1394 APInt KnownZeroMask(~Known.Zero); 1395 if (KnownZeroMask.isPowerOf2()) { 1396 Value *In = ICI->getOperand(0); 1397 1398 // If the icmp tests for a known zero bit we can constant fold it. 1399 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1400 Value *V = Pred == ICmpInst::ICMP_NE ? 1401 ConstantInt::getAllOnesValue(CI.getType()) : 1402 ConstantInt::getNullValue(CI.getType()); 1403 return replaceInstUsesWith(CI, V); 1404 } 1405 1406 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1407 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1408 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1409 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1410 // Perform a right shift to place the desired bit in the LSB. 1411 if (ShiftAmt) 1412 In = Builder.CreateLShr(In, 1413 ConstantInt::get(In->getType(), ShiftAmt)); 1414 1415 // At this point "In" is either 1 or 0. Subtract 1 to turn 1416 // {1, 0} -> {0, -1}. 1417 In = Builder.CreateAdd(In, 1418 ConstantInt::getAllOnesValue(In->getType()), 1419 "sext"); 1420 } else { 1421 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1422 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1423 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1424 // Perform a left shift to place the desired bit in the MSB. 1425 if (ShiftAmt) 1426 In = Builder.CreateShl(In, 1427 ConstantInt::get(In->getType(), ShiftAmt)); 1428 1429 // Distribute the bit over the whole bit width. 1430 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1431 KnownZeroMask.getBitWidth() - 1), "sext"); 1432 } 1433 1434 if (CI.getType() == In->getType()) 1435 return replaceInstUsesWith(CI, In); 1436 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1437 } 1438 } 1439 } 1440 1441 return nullptr; 1442 } 1443 1444 /// Return true if we can take the specified value and return it as type Ty 1445 /// without inserting any new casts and without changing the value of the common 1446 /// low bits. This is used by code that tries to promote integer operations to 1447 /// a wider types will allow us to eliminate the extension. 1448 /// 1449 /// This function works on both vectors and scalars. 1450 /// 1451 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1452 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1453 "Can't sign extend type to a smaller type"); 1454 if (canAlwaysEvaluateInType(V, Ty)) 1455 return true; 1456 if (canNotEvaluateInType(V, Ty)) 1457 return false; 1458 1459 auto *I = cast<Instruction>(V); 1460 switch (I->getOpcode()) { 1461 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1462 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1463 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1464 return true; 1465 case Instruction::And: 1466 case Instruction::Or: 1467 case Instruction::Xor: 1468 case Instruction::Add: 1469 case Instruction::Sub: 1470 case Instruction::Mul: 1471 // These operators can all arbitrarily be extended if their inputs can. 1472 return canEvaluateSExtd(I->getOperand(0), Ty) && 1473 canEvaluateSExtd(I->getOperand(1), Ty); 1474 1475 //case Instruction::Shl: TODO 1476 //case Instruction::LShr: TODO 1477 1478 case Instruction::Select: 1479 return canEvaluateSExtd(I->getOperand(1), Ty) && 1480 canEvaluateSExtd(I->getOperand(2), Ty); 1481 1482 case Instruction::PHI: { 1483 // We can change a phi if we can change all operands. Note that we never 1484 // get into trouble with cyclic PHIs here because we only consider 1485 // instructions with a single use. 1486 PHINode *PN = cast<PHINode>(I); 1487 for (Value *IncValue : PN->incoming_values()) 1488 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1489 return true; 1490 } 1491 default: 1492 // TODO: Can handle more cases here. 1493 break; 1494 } 1495 1496 return false; 1497 } 1498 1499 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) { 1500 // If this sign extend is only used by a truncate, let the truncate be 1501 // eliminated before we try to optimize this sext. 1502 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1503 return nullptr; 1504 1505 if (Instruction *I = commonCastTransforms(CI)) 1506 return I; 1507 1508 Value *Src = CI.getOperand(0); 1509 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1510 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1511 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1512 1513 // If the value being extended is zero or positive, use a zext instead. 1514 if (isKnownNonNegative(Src, DL, 0, &AC, &CI, &DT)) 1515 return CastInst::Create(Instruction::ZExt, Src, DestTy); 1516 1517 // Try to extend the entire expression tree to the wide destination type. 1518 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1519 // Okay, we can transform this! Insert the new expression now. 1520 LLVM_DEBUG( 1521 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1522 " to avoid sign extend: " 1523 << CI << '\n'); 1524 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1525 assert(Res->getType() == DestTy); 1526 1527 // If the high bits are already filled with sign bit, just replace this 1528 // cast with the result. 1529 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1530 return replaceInstUsesWith(CI, Res); 1531 1532 // We need to emit a shl + ashr to do the sign extend. 1533 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1534 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1535 ShAmt); 1536 } 1537 1538 Value *X; 1539 if (match(Src, m_Trunc(m_Value(X)))) { 1540 // If the input has more sign bits than bits truncated, then convert 1541 // directly to final type. 1542 unsigned XBitSize = X->getType()->getScalarSizeInBits(); 1543 if (ComputeNumSignBits(X, 0, &CI) > XBitSize - SrcBitSize) 1544 return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true); 1545 1546 // If input is a trunc from the destination type, then convert into shifts. 1547 if (Src->hasOneUse() && X->getType() == DestTy) { 1548 // sext (trunc X) --> ashr (shl X, C), C 1549 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1550 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1551 } 1552 1553 // If we are replacing shifted-in high zero bits with sign bits, convert 1554 // the logic shift to arithmetic shift and eliminate the cast to 1555 // intermediate type: 1556 // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C) 1557 Value *Y; 1558 if (Src->hasOneUse() && 1559 match(X, m_LShr(m_Value(Y), 1560 m_SpecificIntAllowUndef(XBitSize - SrcBitSize)))) { 1561 Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize); 1562 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1563 } 1564 } 1565 1566 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1567 return transformSExtICmp(ICI, CI); 1568 1569 // If the input is a shl/ashr pair of a same constant, then this is a sign 1570 // extension from a smaller value. If we could trust arbitrary bitwidth 1571 // integers, we could turn this into a truncate to the smaller bit and then 1572 // use a sext for the whole extension. Since we don't, look deeper and check 1573 // for a truncate. If the source and dest are the same type, eliminate the 1574 // trunc and extend and just do shifts. For example, turn: 1575 // %a = trunc i32 %i to i8 1576 // %b = shl i8 %a, C 1577 // %c = ashr i8 %b, C 1578 // %d = sext i8 %c to i32 1579 // into: 1580 // %a = shl i32 %i, 32-(8-C) 1581 // %d = ashr i32 %a, 32-(8-C) 1582 Value *A = nullptr; 1583 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1584 Constant *BA = nullptr, *CA = nullptr; 1585 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)), 1586 m_Constant(CA))) && 1587 BA->isElementWiseEqual(CA) && A->getType() == DestTy) { 1588 Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy); 1589 Constant *NumLowbitsLeft = ConstantExpr::getSub( 1590 ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt); 1591 Constant *NewShAmt = ConstantExpr::getSub( 1592 ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()), 1593 NumLowbitsLeft); 1594 NewShAmt = 1595 Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA); 1596 A = Builder.CreateShl(A, NewShAmt, CI.getName()); 1597 return BinaryOperator::CreateAShr(A, NewShAmt); 1598 } 1599 1600 // Splatting a bit of constant-index across a value: 1601 // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1 1602 // If the dest type is different, use a cast (adjust use check). 1603 if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)), 1604 m_SpecificInt(SrcBitSize - 1))))) { 1605 Type *XTy = X->getType(); 1606 unsigned XBitSize = XTy->getScalarSizeInBits(); 1607 Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize); 1608 Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1); 1609 if (XTy == DestTy) 1610 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC), 1611 AshrAmtC); 1612 if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) { 1613 Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC); 1614 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1615 } 1616 } 1617 1618 if (match(Src, m_VScale(DL))) { 1619 if (CI.getFunction() && 1620 CI.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1621 Attribute Attr = CI.getFunction()->getFnAttribute(Attribute::VScaleRange); 1622 if (Optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1623 if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) { 1624 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1625 return replaceInstUsesWith(CI, VScale); 1626 } 1627 } 1628 } 1629 } 1630 1631 return nullptr; 1632 } 1633 1634 /// Return a Constant* for the specified floating-point constant if it fits 1635 /// in the specified FP type without changing its value. 1636 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1637 bool losesInfo; 1638 APFloat F = CFP->getValueAPF(); 1639 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1640 return !losesInfo; 1641 } 1642 1643 static Type *shrinkFPConstant(ConstantFP *CFP) { 1644 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1645 return nullptr; // No constant folding of this. 1646 // See if the value can be truncated to half and then reextended. 1647 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1648 return Type::getHalfTy(CFP->getContext()); 1649 // See if the value can be truncated to float and then reextended. 1650 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1651 return Type::getFloatTy(CFP->getContext()); 1652 if (CFP->getType()->isDoubleTy()) 1653 return nullptr; // Won't shrink. 1654 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1655 return Type::getDoubleTy(CFP->getContext()); 1656 // Don't try to shrink to various long double types. 1657 return nullptr; 1658 } 1659 1660 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1661 // type we can safely truncate all elements to. 1662 // TODO: Make these support undef elements. 1663 static Type *shrinkFPConstantVector(Value *V) { 1664 auto *CV = dyn_cast<Constant>(V); 1665 auto *CVVTy = dyn_cast<FixedVectorType>(V->getType()); 1666 if (!CV || !CVVTy) 1667 return nullptr; 1668 1669 Type *MinType = nullptr; 1670 1671 unsigned NumElts = CVVTy->getNumElements(); 1672 1673 // For fixed-width vectors we find the minimal type by looking 1674 // through the constant values of the vector. 1675 for (unsigned i = 0; i != NumElts; ++i) { 1676 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1677 if (!CFP) 1678 return nullptr; 1679 1680 Type *T = shrinkFPConstant(CFP); 1681 if (!T) 1682 return nullptr; 1683 1684 // If we haven't found a type yet or this type has a larger mantissa than 1685 // our previous type, this is our new minimal type. 1686 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1687 MinType = T; 1688 } 1689 1690 // Make a vector type from the minimal type. 1691 return FixedVectorType::get(MinType, NumElts); 1692 } 1693 1694 /// Find the minimum FP type we can safely truncate to. 1695 static Type *getMinimumFPType(Value *V) { 1696 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1697 return FPExt->getOperand(0)->getType(); 1698 1699 // If this value is a constant, return the constant in the smallest FP type 1700 // that can accurately represent it. This allows us to turn 1701 // (float)((double)X+2.0) into x+2.0f. 1702 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1703 if (Type *T = shrinkFPConstant(CFP)) 1704 return T; 1705 1706 // We can only correctly find a minimum type for a scalable vector when it is 1707 // a splat. For splats of constant values the fpext is wrapped up as a 1708 // ConstantExpr. 1709 if (auto *FPCExt = dyn_cast<ConstantExpr>(V)) 1710 if (FPCExt->getOpcode() == Instruction::FPExt) 1711 return FPCExt->getOperand(0)->getType(); 1712 1713 // Try to shrink a vector of FP constants. This returns nullptr on scalable 1714 // vectors 1715 if (Type *T = shrinkFPConstantVector(V)) 1716 return T; 1717 1718 return V->getType(); 1719 } 1720 1721 /// Return true if the cast from integer to FP can be proven to be exact for all 1722 /// possible inputs (the conversion does not lose any precision). 1723 static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) { 1724 CastInst::CastOps Opcode = I.getOpcode(); 1725 assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && 1726 "Unexpected cast"); 1727 Value *Src = I.getOperand(0); 1728 Type *SrcTy = Src->getType(); 1729 Type *FPTy = I.getType(); 1730 bool IsSigned = Opcode == Instruction::SIToFP; 1731 int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; 1732 1733 // Easy case - if the source integer type has less bits than the FP mantissa, 1734 // then the cast must be exact. 1735 int DestNumSigBits = FPTy->getFPMantissaWidth(); 1736 if (SrcSize <= DestNumSigBits) 1737 return true; 1738 1739 // Cast from FP to integer and back to FP is independent of the intermediate 1740 // integer width because of poison on overflow. 1741 Value *F; 1742 if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) { 1743 // If this is uitofp (fptosi F), the source needs an extra bit to avoid 1744 // potential rounding of negative FP input values. 1745 int SrcNumSigBits = F->getType()->getFPMantissaWidth(); 1746 if (!IsSigned && match(Src, m_FPToSI(m_Value()))) 1747 SrcNumSigBits++; 1748 1749 // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal 1750 // significant bits than the destination (and make sure neither type is 1751 // weird -- ppc_fp128). 1752 if (SrcNumSigBits > 0 && DestNumSigBits > 0 && 1753 SrcNumSigBits <= DestNumSigBits) 1754 return true; 1755 } 1756 1757 // TODO: 1758 // Try harder to find if the source integer type has less significant bits. 1759 // For example, compute number of sign bits. 1760 KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I); 1761 int SigBits = (int)SrcTy->getScalarSizeInBits() - 1762 SrcKnown.countMinLeadingZeros() - 1763 SrcKnown.countMinTrailingZeros(); 1764 if (SigBits <= DestNumSigBits) 1765 return true; 1766 1767 return false; 1768 } 1769 1770 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { 1771 if (Instruction *I = commonCastTransforms(FPT)) 1772 return I; 1773 1774 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1775 // simplify this expression to avoid one or more of the trunc/extend 1776 // operations if we can do so without changing the numerical results. 1777 // 1778 // The exact manner in which the widths of the operands interact to limit 1779 // what we can and cannot do safely varies from operation to operation, and 1780 // is explained below in the various case statements. 1781 Type *Ty = FPT.getType(); 1782 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1783 if (BO && BO->hasOneUse()) { 1784 Type *LHSMinType = getMinimumFPType(BO->getOperand(0)); 1785 Type *RHSMinType = getMinimumFPType(BO->getOperand(1)); 1786 unsigned OpWidth = BO->getType()->getFPMantissaWidth(); 1787 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1788 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1789 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1790 unsigned DstWidth = Ty->getFPMantissaWidth(); 1791 switch (BO->getOpcode()) { 1792 default: break; 1793 case Instruction::FAdd: 1794 case Instruction::FSub: 1795 // For addition and subtraction, the infinitely precise result can 1796 // essentially be arbitrarily wide; proving that double rounding 1797 // will not occur because the result of OpI is exact (as we will for 1798 // FMul, for example) is hopeless. However, we *can* nonetheless 1799 // frequently know that double rounding cannot occur (or that it is 1800 // innocuous) by taking advantage of the specific structure of 1801 // infinitely-precise results that admit double rounding. 1802 // 1803 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1804 // to represent both sources, we can guarantee that the double 1805 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1806 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1807 // for proof of this fact). 1808 // 1809 // Note: Figueroa does not consider the case where DstFormat != 1810 // SrcFormat. It's possible (likely even!) that this analysis 1811 // could be tightened for those cases, but they are rare (the main 1812 // case of interest here is (float)((double)float + float)). 1813 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1814 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1815 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1816 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); 1817 RI->copyFastMathFlags(BO); 1818 return RI; 1819 } 1820 break; 1821 case Instruction::FMul: 1822 // For multiplication, the infinitely precise result has at most 1823 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1824 // that such a value can be exactly represented, then no double 1825 // rounding can possibly occur; we can safely perform the operation 1826 // in the destination format if it can represent both sources. 1827 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1828 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1829 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1830 return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); 1831 } 1832 break; 1833 case Instruction::FDiv: 1834 // For division, we use again use the bound from Figueroa's 1835 // dissertation. I am entirely certain that this bound can be 1836 // tightened in the unbalanced operand case by an analysis based on 1837 // the diophantine rational approximation bound, but the well-known 1838 // condition used here is a good conservative first pass. 1839 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1840 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1841 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1842 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1843 return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); 1844 } 1845 break; 1846 case Instruction::FRem: { 1847 // Remainder is straightforward. Remainder is always exact, so the 1848 // type of OpI doesn't enter into things at all. We simply evaluate 1849 // in whichever source type is larger, then convert to the 1850 // destination type. 1851 if (SrcWidth == OpWidth) 1852 break; 1853 Value *LHS, *RHS; 1854 if (LHSWidth == SrcWidth) { 1855 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); 1856 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); 1857 } else { 1858 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); 1859 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); 1860 } 1861 1862 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); 1863 return CastInst::CreateFPCast(ExactResult, Ty); 1864 } 1865 } 1866 } 1867 1868 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1869 Value *X; 1870 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); 1871 if (Op && Op->hasOneUse()) { 1872 // FIXME: The FMF should propagate from the fptrunc, not the source op. 1873 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1874 if (isa<FPMathOperator>(Op)) 1875 Builder.setFastMathFlags(Op->getFastMathFlags()); 1876 1877 if (match(Op, m_FNeg(m_Value(X)))) { 1878 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1879 1880 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); 1881 } 1882 1883 // If we are truncating a select that has an extended operand, we can 1884 // narrow the other operand and do the select as a narrow op. 1885 Value *Cond, *X, *Y; 1886 if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && 1887 X->getType() == Ty) { 1888 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) 1889 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1890 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); 1891 return replaceInstUsesWith(FPT, Sel); 1892 } 1893 if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && 1894 X->getType() == Ty) { 1895 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X 1896 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1897 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); 1898 return replaceInstUsesWith(FPT, Sel); 1899 } 1900 } 1901 1902 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1903 switch (II->getIntrinsicID()) { 1904 default: break; 1905 case Intrinsic::ceil: 1906 case Intrinsic::fabs: 1907 case Intrinsic::floor: 1908 case Intrinsic::nearbyint: 1909 case Intrinsic::rint: 1910 case Intrinsic::round: 1911 case Intrinsic::roundeven: 1912 case Intrinsic::trunc: { 1913 Value *Src = II->getArgOperand(0); 1914 if (!Src->hasOneUse()) 1915 break; 1916 1917 // Except for fabs, this transformation requires the input of the unary FP 1918 // operation to be itself an fpext from the type to which we're 1919 // truncating. 1920 if (II->getIntrinsicID() != Intrinsic::fabs) { 1921 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1922 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1923 break; 1924 } 1925 1926 // Do unary FP operation on smaller type. 1927 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1928 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1929 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1930 II->getIntrinsicID(), Ty); 1931 SmallVector<OperandBundleDef, 1> OpBundles; 1932 II->getOperandBundlesAsDefs(OpBundles); 1933 CallInst *NewCI = 1934 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); 1935 NewCI->copyFastMathFlags(II); 1936 return NewCI; 1937 } 1938 } 1939 } 1940 1941 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1942 return I; 1943 1944 Value *Src = FPT.getOperand(0); 1945 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1946 auto *FPCast = cast<CastInst>(Src); 1947 if (isKnownExactCastIntToFP(*FPCast, *this)) 1948 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1949 } 1950 1951 return nullptr; 1952 } 1953 1954 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { 1955 // If the source operand is a cast from integer to FP and known exact, then 1956 // cast the integer operand directly to the destination type. 1957 Type *Ty = FPExt.getType(); 1958 Value *Src = FPExt.getOperand(0); 1959 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1960 auto *FPCast = cast<CastInst>(Src); 1961 if (isKnownExactCastIntToFP(*FPCast, *this)) 1962 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1963 } 1964 1965 return commonCastTransforms(FPExt); 1966 } 1967 1968 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1969 /// This is safe if the intermediate type has enough bits in its mantissa to 1970 /// accurately represent all values of X. For example, this won't work with 1971 /// i64 -> float -> i64. 1972 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { 1973 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1974 return nullptr; 1975 1976 auto *OpI = cast<CastInst>(FI.getOperand(0)); 1977 Value *X = OpI->getOperand(0); 1978 Type *XType = X->getType(); 1979 Type *DestType = FI.getType(); 1980 bool IsOutputSigned = isa<FPToSIInst>(FI); 1981 1982 // Since we can assume the conversion won't overflow, our decision as to 1983 // whether the input will fit in the float should depend on the minimum 1984 // of the input range and output range. 1985 1986 // This means this is also safe for a signed input and unsigned output, since 1987 // a negative input would lead to undefined behavior. 1988 if (!isKnownExactCastIntToFP(*OpI, *this)) { 1989 // The first cast may not round exactly based on the source integer width 1990 // and FP width, but the overflow UB rules can still allow this to fold. 1991 // If the destination type is narrow, that means the intermediate FP value 1992 // must be large enough to hold the source value exactly. 1993 // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. 1994 int OutputSize = (int)DestType->getScalarSizeInBits(); 1995 if (OutputSize > OpI->getType()->getFPMantissaWidth()) 1996 return nullptr; 1997 } 1998 1999 if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { 2000 bool IsInputSigned = isa<SIToFPInst>(OpI); 2001 if (IsInputSigned && IsOutputSigned) 2002 return new SExtInst(X, DestType); 2003 return new ZExtInst(X, DestType); 2004 } 2005 if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) 2006 return new TruncInst(X, DestType); 2007 2008 assert(XType == DestType && "Unexpected types for int to FP to int casts"); 2009 return replaceInstUsesWith(FI, X); 2010 } 2011 2012 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { 2013 if (Instruction *I = foldItoFPtoI(FI)) 2014 return I; 2015 2016 return commonCastTransforms(FI); 2017 } 2018 2019 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { 2020 if (Instruction *I = foldItoFPtoI(FI)) 2021 return I; 2022 2023 return commonCastTransforms(FI); 2024 } 2025 2026 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { 2027 return commonCastTransforms(CI); 2028 } 2029 2030 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { 2031 return commonCastTransforms(CI); 2032 } 2033 2034 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { 2035 // If the source integer type is not the intptr_t type for this target, do a 2036 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 2037 // cast to be exposed to other transforms. 2038 unsigned AS = CI.getAddressSpace(); 2039 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 2040 DL.getPointerSizeInBits(AS)) { 2041 Type *Ty = CI.getOperand(0)->getType()->getWithNewType( 2042 DL.getIntPtrType(CI.getContext(), AS)); 2043 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 2044 return new IntToPtrInst(P, CI.getType()); 2045 } 2046 2047 if (Instruction *I = commonCastTransforms(CI)) 2048 return I; 2049 2050 return nullptr; 2051 } 2052 2053 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 2054 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) { 2055 Value *Src = CI.getOperand(0); 2056 2057 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 2058 // If casting the result of a getelementptr instruction with no offset, turn 2059 // this into a cast of the original pointer! 2060 if (GEP->hasAllZeroIndices() && 2061 // If CI is an addrspacecast and GEP changes the poiner type, merging 2062 // GEP into CI would undo canonicalizing addrspacecast with different 2063 // pointer types, causing infinite loops. 2064 (!isa<AddrSpaceCastInst>(CI) || 2065 GEP->getType() == GEP->getPointerOperandType())) { 2066 // Changing the cast operand is usually not a good idea but it is safe 2067 // here because the pointer operand is being replaced with another 2068 // pointer operand so the opcode doesn't need to change. 2069 return replaceOperand(CI, 0, GEP->getOperand(0)); 2070 } 2071 } 2072 2073 return commonCastTransforms(CI); 2074 } 2075 2076 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { 2077 // If the destination integer type is not the intptr_t type for this target, 2078 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 2079 // to be exposed to other transforms. 2080 Value *SrcOp = CI.getPointerOperand(); 2081 Type *SrcTy = SrcOp->getType(); 2082 Type *Ty = CI.getType(); 2083 unsigned AS = CI.getPointerAddressSpace(); 2084 unsigned TySize = Ty->getScalarSizeInBits(); 2085 unsigned PtrSize = DL.getPointerSizeInBits(AS); 2086 if (TySize != PtrSize) { 2087 Type *IntPtrTy = 2088 SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS)); 2089 Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy); 2090 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 2091 } 2092 2093 if (auto *GEP = dyn_cast<GetElementPtrInst>(SrcOp)) { 2094 // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use. 2095 // While this can increase the number of instructions it doesn't actually 2096 // increase the overall complexity since the arithmetic is just part of 2097 // the GEP otherwise. 2098 if (GEP->hasOneUse() && 2099 isa<ConstantPointerNull>(GEP->getPointerOperand())) { 2100 return replaceInstUsesWith(CI, 2101 Builder.CreateIntCast(EmitGEPOffset(GEP), Ty, 2102 /*isSigned=*/false)); 2103 } 2104 } 2105 2106 Value *Vec, *Scalar, *Index; 2107 if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)), 2108 m_Value(Scalar), m_Value(Index)))) && 2109 Vec->getType() == Ty) { 2110 assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type"); 2111 // Convert the scalar to int followed by insert to eliminate one cast: 2112 // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index 2113 Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType()); 2114 return InsertElementInst::Create(Vec, NewCast, Index); 2115 } 2116 2117 return commonPointerCastTransforms(CI); 2118 } 2119 2120 /// This input value (which is known to have vector type) is being zero extended 2121 /// or truncated to the specified vector type. Since the zext/trunc is done 2122 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, 2123 /// endianness will impact which end of the vector that is extended or 2124 /// truncated. 2125 /// 2126 /// A vector is always stored with index 0 at the lowest address, which 2127 /// corresponds to the most significant bits for a big endian stored integer and 2128 /// the least significant bits for little endian. A trunc/zext of an integer 2129 /// impacts the big end of the integer. Thus, we need to add/remove elements at 2130 /// the front of the vector for big endian targets, and the back of the vector 2131 /// for little endian targets. 2132 /// 2133 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 2134 /// 2135 /// The source and destination vector types may have different element types. 2136 static Instruction * 2137 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, 2138 InstCombinerImpl &IC) { 2139 // We can only do this optimization if the output is a multiple of the input 2140 // element size, or the input is a multiple of the output element size. 2141 // Convert the input type to have the same element type as the output. 2142 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 2143 2144 if (SrcTy->getElementType() != DestTy->getElementType()) { 2145 // The input types don't need to be identical, but for now they must be the 2146 // same size. There is no specific reason we couldn't handle things like 2147 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 2148 // there yet. 2149 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 2150 DestTy->getElementType()->getPrimitiveSizeInBits()) 2151 return nullptr; 2152 2153 SrcTy = 2154 FixedVectorType::get(DestTy->getElementType(), 2155 cast<FixedVectorType>(SrcTy)->getNumElements()); 2156 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 2157 } 2158 2159 bool IsBigEndian = IC.getDataLayout().isBigEndian(); 2160 unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements(); 2161 unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements(); 2162 2163 assert(SrcElts != DestElts && "Element counts should be different."); 2164 2165 // Now that the element types match, get the shuffle mask and RHS of the 2166 // shuffle to use, which depends on whether we're increasing or decreasing the 2167 // size of the input. 2168 auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts)); 2169 ArrayRef<int> ShuffleMask; 2170 Value *V2; 2171 2172 if (SrcElts > DestElts) { 2173 // If we're shrinking the number of elements (rewriting an integer 2174 // truncate), just shuffle in the elements corresponding to the least 2175 // significant bits from the input and use poison as the second shuffle 2176 // input. 2177 V2 = PoisonValue::get(SrcTy); 2178 // Make sure the shuffle mask selects the "least significant bits" by 2179 // keeping elements from back of the src vector for big endian, and from the 2180 // front for little endian. 2181 ShuffleMask = ShuffleMaskStorage; 2182 if (IsBigEndian) 2183 ShuffleMask = ShuffleMask.take_back(DestElts); 2184 else 2185 ShuffleMask = ShuffleMask.take_front(DestElts); 2186 } else { 2187 // If we're increasing the number of elements (rewriting an integer zext), 2188 // shuffle in all of the elements from InVal. Fill the rest of the result 2189 // elements with zeros from a constant zero. 2190 V2 = Constant::getNullValue(SrcTy); 2191 // Use first elt from V2 when indicating zero in the shuffle mask. 2192 uint32_t NullElt = SrcElts; 2193 // Extend with null values in the "most significant bits" by adding elements 2194 // in front of the src vector for big endian, and at the back for little 2195 // endian. 2196 unsigned DeltaElts = DestElts - SrcElts; 2197 if (IsBigEndian) 2198 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); 2199 else 2200 ShuffleMaskStorage.append(DeltaElts, NullElt); 2201 ShuffleMask = ShuffleMaskStorage; 2202 } 2203 2204 return new ShuffleVectorInst(InVal, V2, ShuffleMask); 2205 } 2206 2207 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 2208 return Value % Ty->getPrimitiveSizeInBits() == 0; 2209 } 2210 2211 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 2212 return Value / Ty->getPrimitiveSizeInBits(); 2213 } 2214 2215 /// V is a value which is inserted into a vector of VecEltTy. 2216 /// Look through the value to see if we can decompose it into 2217 /// insertions into the vector. See the example in the comment for 2218 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 2219 /// The type of V is always a non-zero multiple of VecEltTy's size. 2220 /// Shift is the number of bits between the lsb of V and the lsb of 2221 /// the vector. 2222 /// 2223 /// This returns false if the pattern can't be matched or true if it can, 2224 /// filling in Elements with the elements found here. 2225 static bool collectInsertionElements(Value *V, unsigned Shift, 2226 SmallVectorImpl<Value *> &Elements, 2227 Type *VecEltTy, bool isBigEndian) { 2228 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 2229 "Shift should be a multiple of the element type size"); 2230 2231 // Undef values never contribute useful bits to the result. 2232 if (isa<UndefValue>(V)) return true; 2233 2234 // If we got down to a value of the right type, we win, try inserting into the 2235 // right element. 2236 if (V->getType() == VecEltTy) { 2237 // Inserting null doesn't actually insert any elements. 2238 if (Constant *C = dyn_cast<Constant>(V)) 2239 if (C->isNullValue()) 2240 return true; 2241 2242 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 2243 if (isBigEndian) 2244 ElementIndex = Elements.size() - ElementIndex - 1; 2245 2246 // Fail if multiple elements are inserted into this slot. 2247 if (Elements[ElementIndex]) 2248 return false; 2249 2250 Elements[ElementIndex] = V; 2251 return true; 2252 } 2253 2254 if (Constant *C = dyn_cast<Constant>(V)) { 2255 // Figure out the # elements this provides, and bitcast it or slice it up 2256 // as required. 2257 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 2258 VecEltTy); 2259 // If the constant is the size of a vector element, we just need to bitcast 2260 // it to the right type so it gets properly inserted. 2261 if (NumElts == 1) 2262 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 2263 Shift, Elements, VecEltTy, isBigEndian); 2264 2265 // Okay, this is a constant that covers multiple elements. Slice it up into 2266 // pieces and insert each element-sized piece into the vector. 2267 if (!isa<IntegerType>(C->getType())) 2268 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 2269 C->getType()->getPrimitiveSizeInBits())); 2270 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 2271 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 2272 2273 for (unsigned i = 0; i != NumElts; ++i) { 2274 unsigned ShiftI = Shift+i*ElementSize; 2275 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 2276 ShiftI)); 2277 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 2278 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 2279 isBigEndian)) 2280 return false; 2281 } 2282 return true; 2283 } 2284 2285 if (!V->hasOneUse()) return false; 2286 2287 Instruction *I = dyn_cast<Instruction>(V); 2288 if (!I) return false; 2289 switch (I->getOpcode()) { 2290 default: return false; // Unhandled case. 2291 case Instruction::BitCast: 2292 if (I->getOperand(0)->getType()->isVectorTy()) 2293 return false; 2294 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2295 isBigEndian); 2296 case Instruction::ZExt: 2297 if (!isMultipleOfTypeSize( 2298 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 2299 VecEltTy)) 2300 return false; 2301 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2302 isBigEndian); 2303 case Instruction::Or: 2304 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2305 isBigEndian) && 2306 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 2307 isBigEndian); 2308 case Instruction::Shl: { 2309 // Must be shifting by a constant that is a multiple of the element size. 2310 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 2311 if (!CI) return false; 2312 Shift += CI->getZExtValue(); 2313 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 2314 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2315 isBigEndian); 2316 } 2317 2318 } 2319 } 2320 2321 2322 /// If the input is an 'or' instruction, we may be doing shifts and ors to 2323 /// assemble the elements of the vector manually. 2324 /// Try to rip the code out and replace it with insertelements. This is to 2325 /// optimize code like this: 2326 /// 2327 /// %tmp37 = bitcast float %inc to i32 2328 /// %tmp38 = zext i32 %tmp37 to i64 2329 /// %tmp31 = bitcast float %inc5 to i32 2330 /// %tmp32 = zext i32 %tmp31 to i64 2331 /// %tmp33 = shl i64 %tmp32, 32 2332 /// %ins35 = or i64 %tmp33, %tmp38 2333 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2334 /// 2335 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2336 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2337 InstCombinerImpl &IC) { 2338 auto *DestVecTy = cast<FixedVectorType>(CI.getType()); 2339 Value *IntInput = CI.getOperand(0); 2340 2341 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2342 if (!collectInsertionElements(IntInput, 0, Elements, 2343 DestVecTy->getElementType(), 2344 IC.getDataLayout().isBigEndian())) 2345 return nullptr; 2346 2347 // If we succeeded, we know that all of the element are specified by Elements 2348 // or are zero if Elements has a null entry. Recast this as a set of 2349 // insertions. 2350 Value *Result = Constant::getNullValue(CI.getType()); 2351 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2352 if (!Elements[i]) continue; // Unset element. 2353 2354 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2355 IC.Builder.getInt32(i)); 2356 } 2357 2358 return Result; 2359 } 2360 2361 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2362 /// vector followed by extract element. The backend tends to handle bitcasts of 2363 /// vectors better than bitcasts of scalars because vector registers are 2364 /// usually not type-specific like scalar integer or scalar floating-point. 2365 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2366 InstCombinerImpl &IC) { 2367 Value *VecOp, *Index; 2368 if (!match(BitCast.getOperand(0), 2369 m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index))))) 2370 return nullptr; 2371 2372 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2373 // type to extract from. 2374 Type *DestType = BitCast.getType(); 2375 VectorType *VecType = cast<VectorType>(VecOp->getType()); 2376 if (VectorType::isValidElementType(DestType)) { 2377 auto *NewVecType = VectorType::get(DestType, VecType); 2378 auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc"); 2379 return ExtractElementInst::Create(NewBC, Index); 2380 } 2381 2382 // Only solve DestType is vector to avoid inverse transform in visitBitCast. 2383 // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest) 2384 auto *FixedVType = dyn_cast<FixedVectorType>(VecType); 2385 if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1) 2386 return CastInst::Create(Instruction::BitCast, VecOp, DestType); 2387 2388 return nullptr; 2389 } 2390 2391 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2392 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2393 InstCombiner::BuilderTy &Builder) { 2394 Type *DestTy = BitCast.getType(); 2395 BinaryOperator *BO; 2396 2397 if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2398 !BO->isBitwiseLogicOp()) 2399 return nullptr; 2400 2401 // FIXME: This transform is restricted to vector types to avoid backend 2402 // problems caused by creating potentially illegal operations. If a fix-up is 2403 // added to handle that situation, we can remove this check. 2404 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2405 return nullptr; 2406 2407 if (DestTy->isFPOrFPVectorTy()) { 2408 Value *X, *Y; 2409 // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y)) 2410 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2411 match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) { 2412 if (X->getType()->isFPOrFPVectorTy() && 2413 Y->getType()->isIntOrIntVectorTy()) { 2414 Value *CastedOp = 2415 Builder.CreateBitCast(BO->getOperand(0), Y->getType()); 2416 Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y); 2417 return CastInst::CreateBitOrPointerCast(NewBO, DestTy); 2418 } 2419 if (X->getType()->isIntOrIntVectorTy() && 2420 Y->getType()->isFPOrFPVectorTy()) { 2421 Value *CastedOp = 2422 Builder.CreateBitCast(BO->getOperand(1), X->getType()); 2423 Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X); 2424 return CastInst::CreateBitOrPointerCast(NewBO, DestTy); 2425 } 2426 } 2427 return nullptr; 2428 } 2429 2430 if (!DestTy->isIntOrIntVectorTy()) 2431 return nullptr; 2432 2433 Value *X; 2434 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2435 X->getType() == DestTy && !isa<Constant>(X)) { 2436 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2437 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2438 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2439 } 2440 2441 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2442 X->getType() == DestTy && !isa<Constant>(X)) { 2443 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2444 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2445 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2446 } 2447 2448 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2449 // constant. This eases recognition of special constants for later ops. 2450 // Example: 2451 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2452 Constant *C; 2453 if (match(BO->getOperand(1), m_Constant(C))) { 2454 // bitcast (logic X, C) --> logic (bitcast X, C') 2455 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2456 Value *CastedC = Builder.CreateBitCast(C, DestTy); 2457 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2458 } 2459 2460 return nullptr; 2461 } 2462 2463 /// Change the type of a select if we can eliminate a bitcast. 2464 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2465 InstCombiner::BuilderTy &Builder) { 2466 Value *Cond, *TVal, *FVal; 2467 if (!match(BitCast.getOperand(0), 2468 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2469 return nullptr; 2470 2471 // A vector select must maintain the same number of elements in its operands. 2472 Type *CondTy = Cond->getType(); 2473 Type *DestTy = BitCast.getType(); 2474 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) 2475 if (!DestTy->isVectorTy() || 2476 CondVTy->getElementCount() != 2477 cast<VectorType>(DestTy)->getElementCount()) 2478 return nullptr; 2479 2480 // FIXME: This transform is restricted from changing the select between 2481 // scalars and vectors to avoid backend problems caused by creating 2482 // potentially illegal operations. If a fix-up is added to handle that 2483 // situation, we can remove this check. 2484 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2485 return nullptr; 2486 2487 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2488 Value *X; 2489 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2490 !isa<Constant>(X)) { 2491 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2492 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2493 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2494 } 2495 2496 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2497 !isa<Constant>(X)) { 2498 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2499 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2500 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2501 } 2502 2503 return nullptr; 2504 } 2505 2506 /// Check if all users of CI are StoreInsts. 2507 static bool hasStoreUsersOnly(CastInst &CI) { 2508 for (User *U : CI.users()) { 2509 if (!isa<StoreInst>(U)) 2510 return false; 2511 } 2512 return true; 2513 } 2514 2515 /// This function handles following case 2516 /// 2517 /// A -> B cast 2518 /// PHI 2519 /// B -> A cast 2520 /// 2521 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2522 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2523 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, 2524 PHINode *PN) { 2525 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2526 if (hasStoreUsersOnly(CI)) 2527 return nullptr; 2528 2529 Value *Src = CI.getOperand(0); 2530 Type *SrcTy = Src->getType(); // Type B 2531 Type *DestTy = CI.getType(); // Type A 2532 2533 SmallVector<PHINode *, 4> PhiWorklist; 2534 SmallSetVector<PHINode *, 4> OldPhiNodes; 2535 2536 // Find all of the A->B casts and PHI nodes. 2537 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so 2538 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2539 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2540 PhiWorklist.push_back(PN); 2541 OldPhiNodes.insert(PN); 2542 while (!PhiWorklist.empty()) { 2543 auto *OldPN = PhiWorklist.pop_back_val(); 2544 for (Value *IncValue : OldPN->incoming_values()) { 2545 if (isa<Constant>(IncValue)) 2546 continue; 2547 2548 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2549 // If there is a sequence of one or more load instructions, each loaded 2550 // value is used as address of later load instruction, bitcast is 2551 // necessary to change the value type, don't optimize it. For 2552 // simplicity we give up if the load address comes from another load. 2553 Value *Addr = LI->getOperand(0); 2554 if (Addr == &CI || isa<LoadInst>(Addr)) 2555 return nullptr; 2556 // Don't tranform "load <256 x i32>, <256 x i32>*" to 2557 // "load x86_amx, x86_amx*", because x86_amx* is invalid. 2558 // TODO: Remove this check when bitcast between vector and x86_amx 2559 // is replaced with a specific intrinsic. 2560 if (DestTy->isX86_AMXTy()) 2561 return nullptr; 2562 if (LI->hasOneUse() && LI->isSimple()) 2563 continue; 2564 // If a LoadInst has more than one use, changing the type of loaded 2565 // value may create another bitcast. 2566 return nullptr; 2567 } 2568 2569 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2570 if (OldPhiNodes.insert(PNode)) 2571 PhiWorklist.push_back(PNode); 2572 continue; 2573 } 2574 2575 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2576 // We can't handle other instructions. 2577 if (!BCI) 2578 return nullptr; 2579 2580 // Verify it's a A->B cast. 2581 Type *TyA = BCI->getOperand(0)->getType(); 2582 Type *TyB = BCI->getType(); 2583 if (TyA != DestTy || TyB != SrcTy) 2584 return nullptr; 2585 } 2586 } 2587 2588 // Check that each user of each old PHI node is something that we can 2589 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. 2590 for (auto *OldPN : OldPhiNodes) { 2591 for (User *V : OldPN->users()) { 2592 if (auto *SI = dyn_cast<StoreInst>(V)) { 2593 if (!SI->isSimple() || SI->getOperand(0) != OldPN) 2594 return nullptr; 2595 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2596 // Verify it's a B->A cast. 2597 Type *TyB = BCI->getOperand(0)->getType(); 2598 Type *TyA = BCI->getType(); 2599 if (TyA != DestTy || TyB != SrcTy) 2600 return nullptr; 2601 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2602 // As long as the user is another old PHI node, then even if we don't 2603 // rewrite it, the PHI web we're considering won't have any users 2604 // outside itself, so it'll be dead. 2605 if (!OldPhiNodes.contains(PHI)) 2606 return nullptr; 2607 } else { 2608 return nullptr; 2609 } 2610 } 2611 } 2612 2613 // For each old PHI node, create a corresponding new PHI node with a type A. 2614 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2615 for (auto *OldPN : OldPhiNodes) { 2616 Builder.SetInsertPoint(OldPN); 2617 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2618 NewPNodes[OldPN] = NewPN; 2619 } 2620 2621 // Fill in the operands of new PHI nodes. 2622 for (auto *OldPN : OldPhiNodes) { 2623 PHINode *NewPN = NewPNodes[OldPN]; 2624 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2625 Value *V = OldPN->getOperand(j); 2626 Value *NewV = nullptr; 2627 if (auto *C = dyn_cast<Constant>(V)) { 2628 NewV = ConstantExpr::getBitCast(C, DestTy); 2629 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2630 // Explicitly perform load combine to make sure no opposing transform 2631 // can remove the bitcast in the meantime and trigger an infinite loop. 2632 Builder.SetInsertPoint(LI); 2633 NewV = combineLoadToNewType(*LI, DestTy); 2634 // Remove the old load and its use in the old phi, which itself becomes 2635 // dead once the whole transform finishes. 2636 replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 2637 eraseInstFromFunction(*LI); 2638 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2639 NewV = BCI->getOperand(0); 2640 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2641 NewV = NewPNodes[PrevPN]; 2642 } 2643 assert(NewV); 2644 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2645 } 2646 } 2647 2648 // Traverse all accumulated PHI nodes and process its users, 2649 // which are Stores and BitcCasts. Without this processing 2650 // NewPHI nodes could be replicated and could lead to extra 2651 // moves generated after DeSSA. 2652 // If there is a store with type B, change it to type A. 2653 2654 2655 // Replace users of BitCast B->A with NewPHI. These will help 2656 // later to get rid off a closure formed by OldPHI nodes. 2657 Instruction *RetVal = nullptr; 2658 for (auto *OldPN : OldPhiNodes) { 2659 PHINode *NewPN = NewPNodes[OldPN]; 2660 for (User *V : make_early_inc_range(OldPN->users())) { 2661 if (auto *SI = dyn_cast<StoreInst>(V)) { 2662 assert(SI->isSimple() && SI->getOperand(0) == OldPN); 2663 Builder.SetInsertPoint(SI); 2664 auto *NewBC = 2665 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); 2666 SI->setOperand(0, NewBC); 2667 Worklist.push(SI); 2668 assert(hasStoreUsersOnly(*NewBC)); 2669 } 2670 else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2671 Type *TyB = BCI->getOperand(0)->getType(); 2672 Type *TyA = BCI->getType(); 2673 assert(TyA == DestTy && TyB == SrcTy); 2674 (void) TyA; 2675 (void) TyB; 2676 Instruction *I = replaceInstUsesWith(*BCI, NewPN); 2677 if (BCI == &CI) 2678 RetVal = I; 2679 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2680 assert(OldPhiNodes.contains(PHI)); 2681 (void) PHI; 2682 } else { 2683 llvm_unreachable("all uses should be handled"); 2684 } 2685 } 2686 } 2687 2688 return RetVal; 2689 } 2690 2691 static Instruction *convertBitCastToGEP(BitCastInst &CI, IRBuilderBase &Builder, 2692 const DataLayout &DL) { 2693 Value *Src = CI.getOperand(0); 2694 PointerType *SrcPTy = cast<PointerType>(Src->getType()); 2695 PointerType *DstPTy = cast<PointerType>(CI.getType()); 2696 2697 // Bitcasts involving opaque pointers cannot be converted into a GEP. 2698 if (SrcPTy->isOpaque() || DstPTy->isOpaque()) 2699 return nullptr; 2700 2701 Type *DstElTy = DstPTy->getNonOpaquePointerElementType(); 2702 Type *SrcElTy = SrcPTy->getNonOpaquePointerElementType(); 2703 2704 // When the type pointed to is not sized the cast cannot be 2705 // turned into a gep. 2706 if (!SrcElTy->isSized()) 2707 return nullptr; 2708 2709 // If the source and destination are pointers, and this cast is equivalent 2710 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2711 // This can enhance SROA and other transforms that want type-safe pointers. 2712 unsigned NumZeros = 0; 2713 while (SrcElTy && SrcElTy != DstElTy) { 2714 SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0); 2715 ++NumZeros; 2716 } 2717 2718 // If we found a path from the src to dest, create the getelementptr now. 2719 if (SrcElTy == DstElTy) { 2720 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2721 GetElementPtrInst *GEP = GetElementPtrInst::Create( 2722 SrcPTy->getNonOpaquePointerElementType(), Src, Idxs); 2723 2724 // If the source pointer is dereferenceable, then assume it points to an 2725 // allocated object and apply "inbounds" to the GEP. 2726 bool CanBeNull, CanBeFreed; 2727 if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) { 2728 // In a non-default address space (not 0), a null pointer can not be 2729 // assumed inbounds, so ignore that case (dereferenceable_or_null). 2730 // The reason is that 'null' is not treated differently in these address 2731 // spaces, and we consequently ignore the 'gep inbounds' special case 2732 // for 'null' which allows 'inbounds' on 'null' if the indices are 2733 // zeros. 2734 if (SrcPTy->getAddressSpace() == 0 || !CanBeNull) 2735 GEP->setIsInBounds(); 2736 } 2737 return GEP; 2738 } 2739 return nullptr; 2740 } 2741 2742 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { 2743 // If the operands are integer typed then apply the integer transforms, 2744 // otherwise just apply the common ones. 2745 Value *Src = CI.getOperand(0); 2746 Type *SrcTy = Src->getType(); 2747 Type *DestTy = CI.getType(); 2748 2749 // Get rid of casts from one type to the same type. These are useless and can 2750 // be replaced by the operand. 2751 if (DestTy == Src->getType()) 2752 return replaceInstUsesWith(CI, Src); 2753 2754 if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) { 2755 // If we are casting a alloca to a pointer to a type of the same 2756 // size, rewrite the allocation instruction to allocate the "right" type. 2757 // There is no need to modify malloc calls because it is their bitcast that 2758 // needs to be cleaned up. 2759 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2760 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2761 return V; 2762 2763 if (Instruction *I = convertBitCastToGEP(CI, Builder, DL)) 2764 return I; 2765 } 2766 2767 if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) { 2768 // Beware: messing with this target-specific oddity may cause trouble. 2769 if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) { 2770 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2771 return InsertElementInst::Create(PoisonValue::get(DestTy), Elem, 2772 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2773 } 2774 2775 if (isa<IntegerType>(SrcTy)) { 2776 // If this is a cast from an integer to vector, check to see if the input 2777 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2778 // the casts with a shuffle and (potentially) a bitcast. 2779 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2780 CastInst *SrcCast = cast<CastInst>(Src); 2781 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2782 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2783 if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( 2784 BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) 2785 return I; 2786 } 2787 2788 // If the input is an 'or' instruction, we may be doing shifts and ors to 2789 // assemble the elements of the vector manually. Try to rip the code out 2790 // and replace it with insertelements. 2791 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2792 return replaceInstUsesWith(CI, V); 2793 } 2794 } 2795 2796 if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) { 2797 if (SrcVTy->getNumElements() == 1) { 2798 // If our destination is not a vector, then make this a straight 2799 // scalar-scalar cast. 2800 if (!DestTy->isVectorTy()) { 2801 Value *Elem = 2802 Builder.CreateExtractElement(Src, 2803 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2804 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2805 } 2806 2807 // Otherwise, see if our source is an insert. If so, then use the scalar 2808 // component directly: 2809 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> 2810 if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) 2811 return new BitCastInst(InsElt->getOperand(1), DestTy); 2812 } 2813 2814 // Convert an artificial vector insert into more analyzable bitwise logic. 2815 unsigned BitWidth = DestTy->getScalarSizeInBits(); 2816 Value *X, *Y; 2817 uint64_t IndexC; 2818 if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))), 2819 m_Value(Y), m_ConstantInt(IndexC)))) && 2820 DestTy->isIntegerTy() && X->getType() == DestTy && 2821 Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) { 2822 // Adjust for big endian - the LSBs are at the high index. 2823 if (DL.isBigEndian()) 2824 IndexC = SrcVTy->getNumElements() - 1 - IndexC; 2825 2826 // We only handle (endian-normalized) insert to index 0. Any other insert 2827 // would require a left-shift, so that is an extra instruction. 2828 if (IndexC == 0) { 2829 // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y) 2830 unsigned EltWidth = Y->getType()->getScalarSizeInBits(); 2831 APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth); 2832 Value *AndX = Builder.CreateAnd(X, MaskC); 2833 Value *ZextY = Builder.CreateZExt(Y, DestTy); 2834 return BinaryOperator::CreateOr(AndX, ZextY); 2835 } 2836 } 2837 } 2838 2839 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { 2840 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2841 // a bitcast to a vector with the same # elts. 2842 Value *ShufOp0 = Shuf->getOperand(0); 2843 Value *ShufOp1 = Shuf->getOperand(1); 2844 auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount(); 2845 auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount(); 2846 if (Shuf->hasOneUse() && DestTy->isVectorTy() && 2847 cast<VectorType>(DestTy)->getElementCount() == ShufElts && 2848 ShufElts == SrcVecElts) { 2849 BitCastInst *Tmp; 2850 // If either of the operands is a cast from CI.getType(), then 2851 // evaluating the shuffle in the casted destination's type will allow 2852 // us to eliminate at least one cast. 2853 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && 2854 Tmp->getOperand(0)->getType() == DestTy) || 2855 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && 2856 Tmp->getOperand(0)->getType() == DestTy)) { 2857 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); 2858 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); 2859 // Return a new shuffle vector. Use the same element ID's, as we 2860 // know the vector types match #elts. 2861 return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); 2862 } 2863 } 2864 2865 // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as 2866 // a byte-swap: 2867 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X) 2868 // TODO: We should match the related pattern for bitreverse. 2869 if (DestTy->isIntegerTy() && 2870 DL.isLegalInteger(DestTy->getScalarSizeInBits()) && 2871 SrcTy->getScalarSizeInBits() == 8 && 2872 ShufElts.getKnownMinValue() % 2 == 0 && Shuf->hasOneUse() && 2873 Shuf->isReverse()) { 2874 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); 2875 assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op"); 2876 Function *Bswap = 2877 Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy); 2878 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); 2879 return CallInst::Create(Bswap, { ScalarX }); 2880 } 2881 } 2882 2883 // Handle the A->B->A cast, and there is an intervening PHI node. 2884 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2885 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2886 return I; 2887 2888 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2889 return I; 2890 2891 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2892 return I; 2893 2894 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2895 return I; 2896 2897 if (SrcTy->isPointerTy()) 2898 return commonPointerCastTransforms(CI); 2899 return commonCastTransforms(CI); 2900 } 2901 2902 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2903 // If the destination pointer element type is not the same as the source's 2904 // first do a bitcast to the destination type, and then the addrspacecast. 2905 // This allows the cast to be exposed to other transforms. 2906 Value *Src = CI.getOperand(0); 2907 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2908 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2909 2910 if (!SrcTy->hasSameElementTypeAs(DestTy)) { 2911 Type *MidTy = 2912 PointerType::getWithSamePointeeType(DestTy, SrcTy->getAddressSpace()); 2913 // Handle vectors of pointers. 2914 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) 2915 MidTy = VectorType::get(MidTy, VT->getElementCount()); 2916 2917 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2918 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2919 } 2920 2921 return commonPointerCastTransforms(CI); 2922 } 2923