1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for cast operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/DebugInfo.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Support/KnownBits.h" 20 #include "llvm/Transforms/InstCombine/InstCombiner.h" 21 #include <optional> 22 23 using namespace llvm; 24 using namespace PatternMatch; 25 26 #define DEBUG_TYPE "instcombine" 27 28 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 29 /// true for, actually insert the code to evaluate the expression. 30 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, 31 bool isSigned) { 32 if (Constant *C = dyn_cast<Constant>(V)) 33 return ConstantFoldIntegerCast(C, Ty, isSigned, DL); 34 35 // Otherwise, it must be an instruction. 36 Instruction *I = cast<Instruction>(V); 37 Instruction *Res = nullptr; 38 unsigned Opc = I->getOpcode(); 39 switch (Opc) { 40 case Instruction::Add: 41 case Instruction::Sub: 42 case Instruction::Mul: 43 case Instruction::And: 44 case Instruction::Or: 45 case Instruction::Xor: 46 case Instruction::AShr: 47 case Instruction::LShr: 48 case Instruction::Shl: 49 case Instruction::UDiv: 50 case Instruction::URem: { 51 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 52 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 53 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 54 break; 55 } 56 case Instruction::Trunc: 57 case Instruction::ZExt: 58 case Instruction::SExt: 59 // If the source type of the cast is the type we're trying for then we can 60 // just return the source. There's no need to insert it because it is not 61 // new. 62 if (I->getOperand(0)->getType() == Ty) 63 return I->getOperand(0); 64 65 // Otherwise, must be the same type of cast, so just reinsert a new one. 66 // This also handles the case of zext(trunc(x)) -> zext(x). 67 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 68 Opc == Instruction::SExt); 69 break; 70 case Instruction::Select: { 71 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 72 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 73 Res = SelectInst::Create(I->getOperand(0), True, False); 74 break; 75 } 76 case Instruction::PHI: { 77 PHINode *OPN = cast<PHINode>(I); 78 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 79 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 80 Value *V = 81 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 82 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 83 } 84 Res = NPN; 85 break; 86 } 87 case Instruction::FPToUI: 88 case Instruction::FPToSI: 89 Res = CastInst::Create( 90 static_cast<Instruction::CastOps>(Opc), I->getOperand(0), Ty); 91 break; 92 case Instruction::Call: 93 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 94 switch (II->getIntrinsicID()) { 95 default: 96 llvm_unreachable("Unsupported call!"); 97 case Intrinsic::vscale: { 98 Function *Fn = 99 Intrinsic::getDeclaration(I->getModule(), Intrinsic::vscale, {Ty}); 100 Res = CallInst::Create(Fn->getFunctionType(), Fn); 101 break; 102 } 103 } 104 } 105 break; 106 case Instruction::ShuffleVector: { 107 auto *ScalarTy = cast<VectorType>(Ty)->getElementType(); 108 auto *VTy = cast<VectorType>(I->getOperand(0)->getType()); 109 auto *FixedTy = VectorType::get(ScalarTy, VTy->getElementCount()); 110 Value *Op0 = EvaluateInDifferentType(I->getOperand(0), FixedTy, isSigned); 111 Value *Op1 = EvaluateInDifferentType(I->getOperand(1), FixedTy, isSigned); 112 Res = new ShuffleVectorInst(Op0, Op1, 113 cast<ShuffleVectorInst>(I)->getShuffleMask()); 114 break; 115 } 116 default: 117 // TODO: Can handle more cases here. 118 llvm_unreachable("Unreachable!"); 119 } 120 121 Res->takeName(I); 122 return InsertNewInstWith(Res, I->getIterator()); 123 } 124 125 Instruction::CastOps 126 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, 127 const CastInst *CI2) { 128 Type *SrcTy = CI1->getSrcTy(); 129 Type *MidTy = CI1->getDestTy(); 130 Type *DstTy = CI2->getDestTy(); 131 132 Instruction::CastOps firstOp = CI1->getOpcode(); 133 Instruction::CastOps secondOp = CI2->getOpcode(); 134 Type *SrcIntPtrTy = 135 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 136 Type *MidIntPtrTy = 137 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 138 Type *DstIntPtrTy = 139 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 140 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 141 DstTy, SrcIntPtrTy, MidIntPtrTy, 142 DstIntPtrTy); 143 144 // We don't want to form an inttoptr or ptrtoint that converts to an integer 145 // type that differs from the pointer size. 146 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 147 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 148 Res = 0; 149 150 return Instruction::CastOps(Res); 151 } 152 153 /// Implement the transforms common to all CastInst visitors. 154 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { 155 Value *Src = CI.getOperand(0); 156 Type *Ty = CI.getType(); 157 158 if (auto *SrcC = dyn_cast<Constant>(Src)) 159 if (Constant *Res = ConstantFoldCastOperand(CI.getOpcode(), SrcC, Ty, DL)) 160 return replaceInstUsesWith(CI, Res); 161 162 // Try to eliminate a cast of a cast. 163 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 164 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 165 // The first cast (CSrc) is eliminable so we need to fix up or replace 166 // the second cast (CI). CSrc will then have a good chance of being dead. 167 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 168 // Point debug users of the dying cast to the new one. 169 if (CSrc->hasOneUse()) 170 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 171 return Res; 172 } 173 } 174 175 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 176 // We are casting a select. Try to fold the cast into the select if the 177 // select does not have a compare instruction with matching operand types 178 // or the select is likely better done in a narrow type. 179 // Creating a select with operands that are different sizes than its 180 // condition may inhibit other folds and lead to worse codegen. 181 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 182 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() || 183 (CI.getOpcode() == Instruction::Trunc && 184 shouldChangeType(CI.getSrcTy(), CI.getType()))) { 185 186 // If it's a bitcast involving vectors, make sure it has the same number 187 // of elements on both sides. 188 if (CI.getOpcode() != Instruction::BitCast || 189 match(&CI, m_ElementWiseBitCast(m_Value()))) { 190 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 191 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 192 return NV; 193 } 194 } 195 } 196 } 197 198 // If we are casting a PHI, then fold the cast into the PHI. 199 if (auto *PN = dyn_cast<PHINode>(Src)) { 200 // Don't do this if it would create a PHI node with an illegal type from a 201 // legal type. 202 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 203 shouldChangeType(CI.getSrcTy(), CI.getType())) 204 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 205 return NV; 206 } 207 208 // Canonicalize a unary shuffle after the cast if neither operation changes 209 // the size or element size of the input vector. 210 // TODO: We could allow size-changing ops if that doesn't harm codegen. 211 // cast (shuffle X, Mask) --> shuffle (cast X), Mask 212 Value *X; 213 ArrayRef<int> Mask; 214 if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) { 215 // TODO: Allow scalable vectors? 216 auto *SrcTy = dyn_cast<FixedVectorType>(X->getType()); 217 auto *DestTy = dyn_cast<FixedVectorType>(Ty); 218 if (SrcTy && DestTy && 219 SrcTy->getNumElements() == DestTy->getNumElements() && 220 SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) { 221 Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy); 222 return new ShuffleVectorInst(CastX, Mask); 223 } 224 } 225 226 return nullptr; 227 } 228 229 /// Constants and extensions/truncates from the destination type are always 230 /// free to be evaluated in that type. This is a helper for canEvaluate*. 231 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 232 if (isa<Constant>(V)) 233 return match(V, m_ImmConstant()); 234 235 Value *X; 236 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 237 X->getType() == Ty) 238 return true; 239 240 return false; 241 } 242 243 /// Filter out values that we can not evaluate in the destination type for free. 244 /// This is a helper for canEvaluate*. 245 static bool canNotEvaluateInType(Value *V, Type *Ty) { 246 if (!isa<Instruction>(V)) 247 return true; 248 // We don't extend or shrink something that has multiple uses -- doing so 249 // would require duplicating the instruction which isn't profitable. 250 if (!V->hasOneUse()) 251 return true; 252 253 return false; 254 } 255 256 /// Return true if we can evaluate the specified expression tree as type Ty 257 /// instead of its larger type, and arrive with the same value. 258 /// This is used by code that tries to eliminate truncates. 259 /// 260 /// Ty will always be a type smaller than V. We should return true if trunc(V) 261 /// can be computed by computing V in the smaller type. If V is an instruction, 262 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 263 /// makes sense if x and y can be efficiently truncated. 264 /// 265 /// This function works on both vectors and scalars. 266 /// 267 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, 268 Instruction *CxtI) { 269 if (canAlwaysEvaluateInType(V, Ty)) 270 return true; 271 if (canNotEvaluateInType(V, Ty)) 272 return false; 273 274 auto *I = cast<Instruction>(V); 275 Type *OrigTy = V->getType(); 276 switch (I->getOpcode()) { 277 case Instruction::Add: 278 case Instruction::Sub: 279 case Instruction::Mul: 280 case Instruction::And: 281 case Instruction::Or: 282 case Instruction::Xor: 283 // These operators can all arbitrarily be extended or truncated. 284 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 285 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 286 287 case Instruction::UDiv: 288 case Instruction::URem: { 289 // UDiv and URem can be truncated if all the truncated bits are zero. 290 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 291 uint32_t BitWidth = Ty->getScalarSizeInBits(); 292 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 293 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 294 // Do not preserve the original context instruction. Simplifying div/rem 295 // based on later context may introduce a trap. 296 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, I) && 297 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, I)) { 298 return canEvaluateTruncated(I->getOperand(0), Ty, IC, I) && 299 canEvaluateTruncated(I->getOperand(1), Ty, IC, I); 300 } 301 break; 302 } 303 case Instruction::Shl: { 304 // If we are truncating the result of this SHL, and if it's a shift of an 305 // inrange amount, we can always perform a SHL in a smaller type. 306 uint32_t BitWidth = Ty->getScalarSizeInBits(); 307 KnownBits AmtKnownBits = 308 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 309 if (AmtKnownBits.getMaxValue().ult(BitWidth)) 310 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 311 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 312 break; 313 } 314 case Instruction::LShr: { 315 // If this is a truncate of a logical shr, we can truncate it to a smaller 316 // lshr iff we know that the bits we would otherwise be shifting in are 317 // already zeros. 318 // TODO: It is enough to check that the bits we would be shifting in are 319 // zero - use AmtKnownBits.getMaxValue(). 320 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 321 uint32_t BitWidth = Ty->getScalarSizeInBits(); 322 KnownBits AmtKnownBits = 323 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 324 APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 325 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 326 IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) { 327 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 328 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 329 } 330 break; 331 } 332 case Instruction::AShr: { 333 // If this is a truncate of an arithmetic shr, we can truncate it to a 334 // smaller ashr iff we know that all the bits from the sign bit of the 335 // original type and the sign bit of the truncate type are similar. 336 // TODO: It is enough to check that the bits we would be shifting in are 337 // similar to sign bit of the truncate type. 338 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 339 uint32_t BitWidth = Ty->getScalarSizeInBits(); 340 KnownBits AmtKnownBits = 341 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 342 unsigned ShiftedBits = OrigBitWidth - BitWidth; 343 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 344 ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 345 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 346 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 347 break; 348 } 349 case Instruction::Trunc: 350 // trunc(trunc(x)) -> trunc(x) 351 return true; 352 case Instruction::ZExt: 353 case Instruction::SExt: 354 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 355 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 356 return true; 357 case Instruction::Select: { 358 SelectInst *SI = cast<SelectInst>(I); 359 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 360 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 361 } 362 case Instruction::PHI: { 363 // We can change a phi if we can change all operands. Note that we never 364 // get into trouble with cyclic PHIs here because we only consider 365 // instructions with a single use. 366 PHINode *PN = cast<PHINode>(I); 367 for (Value *IncValue : PN->incoming_values()) 368 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 369 return false; 370 return true; 371 } 372 case Instruction::FPToUI: 373 case Instruction::FPToSI: { 374 // If the integer type can hold the max FP value, it is safe to cast 375 // directly to that type. Otherwise, we may create poison via overflow 376 // that did not exist in the original code. 377 Type *InputTy = I->getOperand(0)->getType()->getScalarType(); 378 const fltSemantics &Semantics = InputTy->getFltSemantics(); 379 uint32_t MinBitWidth = 380 APFloatBase::semanticsIntSizeInBits(Semantics, 381 I->getOpcode() == Instruction::FPToSI); 382 return Ty->getScalarSizeInBits() >= MinBitWidth; 383 } 384 case Instruction::ShuffleVector: 385 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 386 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 387 default: 388 // TODO: Can handle more cases here. 389 break; 390 } 391 392 return false; 393 } 394 395 /// Given a vector that is bitcast to an integer, optionally logically 396 /// right-shifted, and truncated, convert it to an extractelement. 397 /// Example (big endian): 398 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 399 /// ---> 400 /// extractelement <4 x i32> %X, 1 401 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, 402 InstCombinerImpl &IC) { 403 Value *TruncOp = Trunc.getOperand(0); 404 Type *DestType = Trunc.getType(); 405 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 406 return nullptr; 407 408 Value *VecInput = nullptr; 409 ConstantInt *ShiftVal = nullptr; 410 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 411 m_LShr(m_BitCast(m_Value(VecInput)), 412 m_ConstantInt(ShiftVal)))) || 413 !isa<VectorType>(VecInput->getType())) 414 return nullptr; 415 416 VectorType *VecType = cast<VectorType>(VecInput->getType()); 417 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 418 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 419 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 420 421 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 422 return nullptr; 423 424 // If the element type of the vector doesn't match the result type, 425 // bitcast it to a vector type that we can extract from. 426 unsigned NumVecElts = VecWidth / DestWidth; 427 if (VecType->getElementType() != DestType) { 428 VecType = FixedVectorType::get(DestType, NumVecElts); 429 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 430 } 431 432 unsigned Elt = ShiftAmount / DestWidth; 433 if (IC.getDataLayout().isBigEndian()) 434 Elt = NumVecElts - 1 - Elt; 435 436 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 437 } 438 439 /// Funnel/Rotate left/right may occur in a wider type than necessary because of 440 /// type promotion rules. Try to narrow the inputs and convert to funnel shift. 441 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { 442 assert((isa<VectorType>(Trunc.getSrcTy()) || 443 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 444 "Don't narrow to an illegal scalar type"); 445 446 // Bail out on strange types. It is possible to handle some of these patterns 447 // even with non-power-of-2 sizes, but it is not a likely scenario. 448 Type *DestTy = Trunc.getType(); 449 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 450 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 451 if (!isPowerOf2_32(NarrowWidth)) 452 return nullptr; 453 454 // First, find an or'd pair of opposite shifts: 455 // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) 456 BinaryOperator *Or0, *Or1; 457 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 458 return nullptr; 459 460 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 461 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 462 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 463 Or0->getOpcode() == Or1->getOpcode()) 464 return nullptr; 465 466 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 467 if (Or0->getOpcode() == BinaryOperator::LShr) { 468 std::swap(Or0, Or1); 469 std::swap(ShVal0, ShVal1); 470 std::swap(ShAmt0, ShAmt1); 471 } 472 assert(Or0->getOpcode() == BinaryOperator::Shl && 473 Or1->getOpcode() == BinaryOperator::LShr && 474 "Illegal or(shift,shift) pair"); 475 476 // Match the shift amount operands for a funnel/rotate pattern. This always 477 // matches a subtraction on the R operand. 478 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 479 // The shift amounts may add up to the narrow bit width: 480 // (shl ShVal0, L) | (lshr ShVal1, Width - L) 481 // If this is a funnel shift (different operands are shifted), then the 482 // shift amount can not over-shift (create poison) in the narrow type. 483 unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth); 484 APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth); 485 if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask)) 486 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 487 return L; 488 489 // The following patterns currently only work for rotation patterns. 490 // TODO: Add more general funnel-shift compatible patterns. 491 if (ShVal0 != ShVal1) 492 return nullptr; 493 494 // The shift amount may be masked with negation: 495 // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) 496 Value *X; 497 unsigned Mask = Width - 1; 498 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 499 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 500 return X; 501 502 // Same as above, but the shift amount may be extended after masking: 503 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 504 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 505 return X; 506 507 return nullptr; 508 }; 509 510 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 511 bool IsFshl = true; // Sub on LSHR. 512 if (!ShAmt) { 513 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 514 IsFshl = false; // Sub on SHL. 515 } 516 if (!ShAmt) 517 return nullptr; 518 519 // The right-shifted value must have high zeros in the wide type (for example 520 // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are 521 // truncated, so those do not matter. 522 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 523 if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc)) 524 return nullptr; 525 526 // Adjust the width of ShAmt for narrowed funnel shift operation: 527 // - Zero-extend if ShAmt is narrower than the destination type. 528 // - Truncate if ShAmt is wider, discarding non-significant high-order bits. 529 // This prepares ShAmt for llvm.fshl.i8(trunc(ShVal), trunc(ShVal), 530 // zext/trunc(ShAmt)). 531 Value *NarrowShAmt = Builder.CreateZExtOrTrunc(ShAmt, DestTy); 532 533 Value *X, *Y; 534 X = Y = Builder.CreateTrunc(ShVal0, DestTy); 535 if (ShVal0 != ShVal1) 536 Y = Builder.CreateTrunc(ShVal1, DestTy); 537 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 538 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 539 return CallInst::Create(F, {X, Y, NarrowShAmt}); 540 } 541 542 /// Try to narrow the width of math or bitwise logic instructions by pulling a 543 /// truncate ahead of binary operators. 544 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { 545 Type *SrcTy = Trunc.getSrcTy(); 546 Type *DestTy = Trunc.getType(); 547 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 548 unsigned DestWidth = DestTy->getScalarSizeInBits(); 549 550 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 551 return nullptr; 552 553 BinaryOperator *BinOp; 554 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 555 return nullptr; 556 557 Value *BinOp0 = BinOp->getOperand(0); 558 Value *BinOp1 = BinOp->getOperand(1); 559 switch (BinOp->getOpcode()) { 560 case Instruction::And: 561 case Instruction::Or: 562 case Instruction::Xor: 563 case Instruction::Add: 564 case Instruction::Sub: 565 case Instruction::Mul: { 566 Constant *C; 567 if (match(BinOp0, m_Constant(C))) { 568 // trunc (binop C, X) --> binop (trunc C', X) 569 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 570 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 571 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 572 } 573 if (match(BinOp1, m_Constant(C))) { 574 // trunc (binop X, C) --> binop (trunc X, C') 575 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 576 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 577 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 578 } 579 Value *X; 580 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 581 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 582 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 583 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 584 } 585 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 586 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 587 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 588 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 589 } 590 break; 591 } 592 case Instruction::LShr: 593 case Instruction::AShr: { 594 // trunc (*shr (trunc A), C) --> trunc(*shr A, C) 595 Value *A; 596 Constant *C; 597 if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) { 598 unsigned MaxShiftAmt = SrcWidth - DestWidth; 599 // If the shift is small enough, all zero/sign bits created by the shift 600 // are removed by the trunc. 601 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 602 APInt(SrcWidth, MaxShiftAmt)))) { 603 auto *OldShift = cast<Instruction>(Trunc.getOperand(0)); 604 bool IsExact = OldShift->isExact(); 605 if (Constant *ShAmt = ConstantFoldIntegerCast(C, A->getType(), 606 /*IsSigned*/ true, DL)) { 607 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 608 Value *Shift = 609 OldShift->getOpcode() == Instruction::AShr 610 ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact) 611 : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact); 612 return CastInst::CreateTruncOrBitCast(Shift, DestTy); 613 } 614 } 615 } 616 break; 617 } 618 default: break; 619 } 620 621 if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) 622 return NarrowOr; 623 624 return nullptr; 625 } 626 627 /// Try to narrow the width of a splat shuffle. This could be generalized to any 628 /// shuffle with a constant operand, but we limit the transform to avoid 629 /// creating a shuffle type that targets may not be able to lower effectively. 630 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 631 InstCombiner::BuilderTy &Builder) { 632 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 633 if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) && 634 all_equal(Shuf->getShuffleMask()) && 635 Shuf->getType() == Shuf->getOperand(0)->getType()) { 636 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask 637 // trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask 638 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 639 return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask()); 640 } 641 642 return nullptr; 643 } 644 645 /// Try to narrow the width of an insert element. This could be generalized for 646 /// any vector constant, but we limit the transform to insertion into undef to 647 /// avoid potential backend problems from unsupported insertion widths. This 648 /// could also be extended to handle the case of inserting a scalar constant 649 /// into a vector variable. 650 static Instruction *shrinkInsertElt(CastInst &Trunc, 651 InstCombiner::BuilderTy &Builder) { 652 Instruction::CastOps Opcode = Trunc.getOpcode(); 653 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 654 "Unexpected instruction for shrinking"); 655 656 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 657 if (!InsElt || !InsElt->hasOneUse()) 658 return nullptr; 659 660 Type *DestTy = Trunc.getType(); 661 Type *DestScalarTy = DestTy->getScalarType(); 662 Value *VecOp = InsElt->getOperand(0); 663 Value *ScalarOp = InsElt->getOperand(1); 664 Value *Index = InsElt->getOperand(2); 665 666 if (match(VecOp, m_Undef())) { 667 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 668 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 669 UndefValue *NarrowUndef = UndefValue::get(DestTy); 670 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 671 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 672 } 673 674 return nullptr; 675 } 676 677 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { 678 if (Instruction *Result = commonCastTransforms(Trunc)) 679 return Result; 680 681 Value *Src = Trunc.getOperand(0); 682 Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); 683 unsigned DestWidth = DestTy->getScalarSizeInBits(); 684 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 685 686 // Attempt to truncate the entire input expression tree to the destination 687 // type. Only do this if the dest type is a simple type, don't convert the 688 // expression tree to something weird like i93 unless the source is also 689 // strange. 690 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 691 canEvaluateTruncated(Src, DestTy, *this, &Trunc)) { 692 693 // If this cast is a truncate, evaluting in a different type always 694 // eliminates the cast, so it is always a win. 695 LLVM_DEBUG( 696 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 697 " to avoid cast: " 698 << Trunc << '\n'); 699 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 700 assert(Res->getType() == DestTy); 701 return replaceInstUsesWith(Trunc, Res); 702 } 703 704 // For integer types, check if we can shorten the entire input expression to 705 // DestWidth * 2, which won't allow removing the truncate, but reducing the 706 // width may enable further optimizations, e.g. allowing for larger 707 // vectorization factors. 708 if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) { 709 if (DestWidth * 2 < SrcWidth) { 710 auto *NewDestTy = DestITy->getExtendedType(); 711 if (shouldChangeType(SrcTy, NewDestTy) && 712 canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) { 713 LLVM_DEBUG( 714 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 715 " to reduce the width of operand of" 716 << Trunc << '\n'); 717 Value *Res = EvaluateInDifferentType(Src, NewDestTy, false); 718 return new TruncInst(Res, DestTy); 719 } 720 } 721 } 722 723 // Test if the trunc is the user of a select which is part of a 724 // minimum or maximum operation. If so, don't do any more simplification. 725 // Even simplifying demanded bits can break the canonical form of a 726 // min/max. 727 Value *LHS, *RHS; 728 if (SelectInst *Sel = dyn_cast<SelectInst>(Src)) 729 if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN) 730 return nullptr; 731 732 // See if we can simplify any instructions used by the input whose sole 733 // purpose is to compute bits we don't care about. 734 if (SimplifyDemandedInstructionBits(Trunc)) 735 return &Trunc; 736 737 if (DestWidth == 1) { 738 Value *Zero = Constant::getNullValue(SrcTy); 739 740 Value *X; 741 const APInt *C1; 742 Constant *C2; 743 if (match(Src, m_OneUse(m_Shr(m_Shl(m_Power2(C1), m_Value(X)), 744 m_ImmConstant(C2))))) { 745 // trunc ((C1 << X) >> C2) to i1 --> X == (C2-cttz(C1)), where C1 is pow2 746 Constant *Log2C1 = ConstantInt::get(SrcTy, C1->exactLogBase2()); 747 Constant *CmpC = ConstantExpr::getSub(C2, Log2C1); 748 return new ICmpInst(ICmpInst::ICMP_EQ, X, CmpC); 749 } 750 751 Constant *C; 752 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_ImmConstant(C))))) { 753 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 754 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 755 Value *MaskC = Builder.CreateShl(One, C); 756 Value *And = Builder.CreateAnd(X, MaskC); 757 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 758 } 759 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_ImmConstant(C)), 760 m_Deferred(X))))) { 761 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 762 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 763 Value *MaskC = Builder.CreateShl(One, C); 764 Value *And = Builder.CreateAnd(X, Builder.CreateOr(MaskC, One)); 765 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 766 } 767 768 { 769 const APInt *C; 770 if (match(Src, m_Shl(m_APInt(C), m_Value(X))) && (*C)[0] == 1) { 771 // trunc (C << X) to i1 --> X == 0, where C is odd 772 return new ICmpInst(ICmpInst::Predicate::ICMP_EQ, X, Zero); 773 } 774 } 775 776 if (Trunc.hasNoUnsignedWrap() || Trunc.hasNoSignedWrap()) { 777 Value *X, *Y; 778 if (match(Src, m_Xor(m_Value(X), m_Value(Y)))) 779 return new ICmpInst(ICmpInst::ICMP_NE, X, Y); 780 } 781 } 782 783 Value *A, *B; 784 Constant *C; 785 if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) { 786 unsigned AWidth = A->getType()->getScalarSizeInBits(); 787 unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth); 788 auto *OldSh = cast<Instruction>(Src); 789 bool IsExact = OldSh->isExact(); 790 791 // If the shift is small enough, all zero bits created by the shift are 792 // removed by the trunc. 793 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 794 APInt(SrcWidth, MaxShiftAmt)))) { 795 auto GetNewShAmt = [&](unsigned Width) { 796 Constant *MaxAmt = ConstantInt::get(SrcTy, Width - 1, false); 797 Constant *Cmp = 798 ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, C, MaxAmt, DL); 799 Constant *ShAmt = ConstantFoldSelectInstruction(Cmp, C, MaxAmt); 800 return ConstantFoldCastOperand(Instruction::Trunc, ShAmt, A->getType(), 801 DL); 802 }; 803 804 // trunc (lshr (sext A), C) --> ashr A, C 805 if (A->getType() == DestTy) { 806 Constant *ShAmt = GetNewShAmt(DestWidth); 807 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 808 return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt) 809 : BinaryOperator::CreateAShr(A, ShAmt); 810 } 811 // The types are mismatched, so create a cast after shifting: 812 // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) 813 if (Src->hasOneUse()) { 814 Constant *ShAmt = GetNewShAmt(AWidth); 815 Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact); 816 return CastInst::CreateIntegerCast(Shift, DestTy, true); 817 } 818 } 819 // TODO: Mask high bits with 'and'. 820 } 821 822 if (Instruction *I = narrowBinOp(Trunc)) 823 return I; 824 825 if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) 826 return I; 827 828 if (Instruction *I = shrinkInsertElt(Trunc, Builder)) 829 return I; 830 831 if (Src->hasOneUse() && 832 (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) { 833 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 834 // dest type is native and cst < dest size. 835 if (match(Src, m_Shl(m_Value(A), m_Constant(C))) && 836 !match(A, m_Shr(m_Value(), m_Constant()))) { 837 // Skip shifts of shift by constants. It undoes a combine in 838 // FoldShiftByConstant and is the extend in reg pattern. 839 APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); 840 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) { 841 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 842 return BinaryOperator::Create(Instruction::Shl, NewTrunc, 843 ConstantExpr::getTrunc(C, DestTy)); 844 } 845 } 846 } 847 848 if (Instruction *I = foldVecTruncToExtElt(Trunc, *this)) 849 return I; 850 851 // Whenever an element is extracted from a vector, and then truncated, 852 // canonicalize by converting it to a bitcast followed by an 853 // extractelement. 854 // 855 // Example (little endian): 856 // trunc (extractelement <4 x i64> %X, 0) to i32 857 // ---> 858 // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 859 Value *VecOp; 860 ConstantInt *Cst; 861 if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) { 862 auto *VecOpTy = cast<VectorType>(VecOp->getType()); 863 auto VecElts = VecOpTy->getElementCount(); 864 865 // A badly fit destination size would result in an invalid cast. 866 if (SrcWidth % DestWidth == 0) { 867 uint64_t TruncRatio = SrcWidth / DestWidth; 868 uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; 869 uint64_t VecOpIdx = Cst->getZExtValue(); 870 uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1 871 : VecOpIdx * TruncRatio; 872 assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && 873 "overflow 32-bits"); 874 875 auto *BitCastTo = 876 VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable()); 877 Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo); 878 return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx)); 879 } 880 } 881 882 // trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C) 883 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)), 884 m_Value(B))))) { 885 unsigned AWidth = A->getType()->getScalarSizeInBits(); 886 if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) { 887 Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth); 888 Value *NarrowCtlz = 889 Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B}); 890 return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff); 891 } 892 } 893 894 if (match(Src, m_VScale())) { 895 if (Trunc.getFunction() && 896 Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 897 Attribute Attr = 898 Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange); 899 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 900 if (Log2_32(*MaxVScale) < DestWidth) { 901 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 902 return replaceInstUsesWith(Trunc, VScale); 903 } 904 } 905 } 906 } 907 908 bool Changed = false; 909 if (!Trunc.hasNoSignedWrap() && 910 ComputeMaxSignificantBits(Src, /*Depth=*/0, &Trunc) <= DestWidth) { 911 Trunc.setHasNoSignedWrap(true); 912 Changed = true; 913 } 914 if (!Trunc.hasNoUnsignedWrap() && 915 MaskedValueIsZero(Src, APInt::getBitsSetFrom(SrcWidth, DestWidth), 916 /*Depth=*/0, &Trunc)) { 917 Trunc.setHasNoUnsignedWrap(true); 918 Changed = true; 919 } 920 921 return Changed ? &Trunc : nullptr; 922 } 923 924 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, 925 ZExtInst &Zext) { 926 // If we are just checking for a icmp eq of a single bit and zext'ing it 927 // to an integer, then shift the bit to the appropriate place and then 928 // cast to integer to avoid the comparison. 929 930 // FIXME: This set of transforms does not check for extra uses and/or creates 931 // an extra instruction (an optional final cast is not included 932 // in the transform comments). We may also want to favor icmp over 933 // shifts in cases of equal instructions because icmp has better 934 // analysis in general (invert the transform). 935 936 const APInt *Op1CV; 937 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { 938 939 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 940 if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) { 941 Value *In = Cmp->getOperand(0); 942 Value *Sh = ConstantInt::get(In->getType(), 943 In->getType()->getScalarSizeInBits() - 1); 944 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 945 if (In->getType() != Zext.getType()) 946 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); 947 948 return replaceInstUsesWith(Zext, In); 949 } 950 951 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 952 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 953 // zext (X != 0) to i32 --> X iff X has only the low bit set. 954 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 955 956 if (Op1CV->isZero() && Cmp->isEquality()) { 957 // Exactly 1 possible 1? But not the high-bit because that is 958 // canonicalized to this form. 959 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); 960 APInt KnownZeroMask(~Known.Zero); 961 uint32_t ShAmt = KnownZeroMask.logBase2(); 962 bool IsExpectShAmt = KnownZeroMask.isPowerOf2() && 963 (Zext.getType()->getScalarSizeInBits() != ShAmt + 1); 964 if (IsExpectShAmt && 965 (Cmp->getOperand(0)->getType() == Zext.getType() || 966 Cmp->getPredicate() == ICmpInst::ICMP_NE || ShAmt == 0)) { 967 Value *In = Cmp->getOperand(0); 968 if (ShAmt) { 969 // Perform a logical shr by shiftamt. 970 // Insert the shift to put the result in the low bit. 971 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 972 In->getName() + ".lobit"); 973 } 974 975 // Toggle the low bit for "X == 0". 976 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 977 In = Builder.CreateXor(In, ConstantInt::get(In->getType(), 1)); 978 979 if (Zext.getType() == In->getType()) 980 return replaceInstUsesWith(Zext, In); 981 982 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); 983 return replaceInstUsesWith(Zext, IntCast); 984 } 985 } 986 } 987 988 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { 989 // Test if a bit is clear/set using a shifted-one mask: 990 // zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1 991 // zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1 992 Value *X, *ShAmt; 993 if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) && 994 match(Cmp->getOperand(0), 995 m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) { 996 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 997 X = Builder.CreateNot(X); 998 Value *Lshr = Builder.CreateLShr(X, ShAmt); 999 Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1)); 1000 return replaceInstUsesWith(Zext, And1); 1001 } 1002 } 1003 1004 return nullptr; 1005 } 1006 1007 /// Determine if the specified value can be computed in the specified wider type 1008 /// and produce the same low bits. If not, return false. 1009 /// 1010 /// If this function returns true, it can also return a non-zero number of bits 1011 /// (in BitsToClear) which indicates that the value it computes is correct for 1012 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 1013 /// out. For example, to promote something like: 1014 /// 1015 /// %B = trunc i64 %A to i32 1016 /// %C = lshr i32 %B, 8 1017 /// %E = zext i32 %C to i64 1018 /// 1019 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 1020 /// set to 8 to indicate that the promoted value needs to have bits 24-31 1021 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 1022 /// clear the top bits anyway, doing this has no extra cost. 1023 /// 1024 /// This function works on both vectors and scalars. 1025 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 1026 InstCombinerImpl &IC, Instruction *CxtI) { 1027 BitsToClear = 0; 1028 if (canAlwaysEvaluateInType(V, Ty)) 1029 return true; 1030 if (canNotEvaluateInType(V, Ty)) 1031 return false; 1032 1033 auto *I = cast<Instruction>(V); 1034 unsigned Tmp; 1035 switch (I->getOpcode()) { 1036 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 1037 case Instruction::SExt: // zext(sext(x)) -> sext(x). 1038 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 1039 return true; 1040 case Instruction::And: 1041 case Instruction::Or: 1042 case Instruction::Xor: 1043 case Instruction::Add: 1044 case Instruction::Sub: 1045 case Instruction::Mul: 1046 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1047 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1048 return false; 1049 // These can all be promoted if neither operand has 'bits to clear'. 1050 if (BitsToClear == 0 && Tmp == 0) 1051 return true; 1052 1053 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1054 // other side, BitsToClear is ok. 1055 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1056 // We use MaskedValueIsZero here for generality, but the case we care 1057 // about the most is constant RHS. 1058 unsigned VSize = V->getType()->getScalarSizeInBits(); 1059 if (IC.MaskedValueIsZero(I->getOperand(1), 1060 APInt::getHighBitsSet(VSize, BitsToClear), 1061 0, CxtI)) { 1062 // If this is an And instruction and all of the BitsToClear are 1063 // known to be zero we can reset BitsToClear. 1064 if (I->getOpcode() == Instruction::And) 1065 BitsToClear = 0; 1066 return true; 1067 } 1068 } 1069 1070 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1071 return false; 1072 1073 case Instruction::Shl: { 1074 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1075 // upper bits we can reduce BitsToClear by the shift amount. 1076 const APInt *Amt; 1077 if (match(I->getOperand(1), m_APInt(Amt))) { 1078 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1079 return false; 1080 uint64_t ShiftAmt = Amt->getZExtValue(); 1081 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1082 return true; 1083 } 1084 return false; 1085 } 1086 case Instruction::LShr: { 1087 // We can promote lshr(x, cst) if we can promote x. This requires the 1088 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1089 const APInt *Amt; 1090 if (match(I->getOperand(1), m_APInt(Amt))) { 1091 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1092 return false; 1093 BitsToClear += Amt->getZExtValue(); 1094 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1095 BitsToClear = V->getType()->getScalarSizeInBits(); 1096 return true; 1097 } 1098 // Cannot promote variable LSHR. 1099 return false; 1100 } 1101 case Instruction::Select: 1102 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1103 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1104 // TODO: If important, we could handle the case when the BitsToClear are 1105 // known zero in the disagreeing side. 1106 Tmp != BitsToClear) 1107 return false; 1108 return true; 1109 1110 case Instruction::PHI: { 1111 // We can change a phi if we can change all operands. Note that we never 1112 // get into trouble with cyclic PHIs here because we only consider 1113 // instructions with a single use. 1114 PHINode *PN = cast<PHINode>(I); 1115 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1116 return false; 1117 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1118 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1119 // TODO: If important, we could handle the case when the BitsToClear 1120 // are known zero in the disagreeing input. 1121 Tmp != BitsToClear) 1122 return false; 1123 return true; 1124 } 1125 case Instruction::Call: 1126 // llvm.vscale() can always be executed in larger type, because the 1127 // value is automatically zero-extended. 1128 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1129 if (II->getIntrinsicID() == Intrinsic::vscale) 1130 return true; 1131 return false; 1132 default: 1133 // TODO: Can handle more cases here. 1134 return false; 1135 } 1136 } 1137 1138 Instruction *InstCombinerImpl::visitZExt(ZExtInst &Zext) { 1139 // If this zero extend is only used by a truncate, let the truncate be 1140 // eliminated before we try to optimize this zext. 1141 if (Zext.hasOneUse() && isa<TruncInst>(Zext.user_back()) && 1142 !isa<Constant>(Zext.getOperand(0))) 1143 return nullptr; 1144 1145 // If one of the common conversion will work, do it. 1146 if (Instruction *Result = commonCastTransforms(Zext)) 1147 return Result; 1148 1149 Value *Src = Zext.getOperand(0); 1150 Type *SrcTy = Src->getType(), *DestTy = Zext.getType(); 1151 1152 // zext nneg bool x -> 0 1153 if (SrcTy->isIntOrIntVectorTy(1) && Zext.hasNonNeg()) 1154 return replaceInstUsesWith(Zext, Constant::getNullValue(Zext.getType())); 1155 1156 // Try to extend the entire expression tree to the wide destination type. 1157 unsigned BitsToClear; 1158 if (shouldChangeType(SrcTy, DestTy) && 1159 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &Zext)) { 1160 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1161 "Can't clear more bits than in SrcTy"); 1162 1163 // Okay, we can transform this! Insert the new expression now. 1164 LLVM_DEBUG( 1165 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1166 " to avoid zero extend: " 1167 << Zext << '\n'); 1168 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1169 assert(Res->getType() == DestTy); 1170 1171 // Preserve debug values referring to Src if the zext is its last use. 1172 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1173 if (SrcOp->hasOneUse()) 1174 replaceAllDbgUsesWith(*SrcOp, *Res, Zext, DT); 1175 1176 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear; 1177 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1178 1179 // If the high bits are already filled with zeros, just replace this 1180 // cast with the result. 1181 if (MaskedValueIsZero(Res, 1182 APInt::getHighBitsSet(DestBitSize, 1183 DestBitSize - SrcBitsKept), 1184 0, &Zext)) 1185 return replaceInstUsesWith(Zext, Res); 1186 1187 // We need to emit an AND to clear the high bits. 1188 Constant *C = ConstantInt::get(Res->getType(), 1189 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1190 return BinaryOperator::CreateAnd(Res, C); 1191 } 1192 1193 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1194 // types and if the sizes are just right we can convert this into a logical 1195 // 'and' which will be much cheaper than the pair of casts. 1196 if (auto *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1197 // TODO: Subsume this into EvaluateInDifferentType. 1198 1199 // Get the sizes of the types involved. We know that the intermediate type 1200 // will be smaller than A or C, but don't know the relation between A and C. 1201 Value *A = CSrc->getOperand(0); 1202 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1203 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1204 unsigned DstSize = DestTy->getScalarSizeInBits(); 1205 // If we're actually extending zero bits, then if 1206 // SrcSize < DstSize: zext(a & mask) 1207 // SrcSize == DstSize: a & mask 1208 // SrcSize > DstSize: trunc(a) & mask 1209 if (SrcSize < DstSize) { 1210 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1211 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1212 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1213 return new ZExtInst(And, DestTy); 1214 } 1215 1216 if (SrcSize == DstSize) { 1217 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1218 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1219 AndValue)); 1220 } 1221 if (SrcSize > DstSize) { 1222 Value *Trunc = Builder.CreateTrunc(A, DestTy); 1223 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1224 return BinaryOperator::CreateAnd(Trunc, 1225 ConstantInt::get(Trunc->getType(), 1226 AndValue)); 1227 } 1228 } 1229 1230 if (auto *Cmp = dyn_cast<ICmpInst>(Src)) 1231 return transformZExtICmp(Cmp, Zext); 1232 1233 // zext(trunc(X) & C) -> (X & zext(C)). 1234 Constant *C; 1235 Value *X; 1236 if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1237 X->getType() == DestTy) 1238 return BinaryOperator::CreateAnd(X, Builder.CreateZExt(C, DestTy)); 1239 1240 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1241 Value *And; 1242 if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1243 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1244 X->getType() == DestTy) { 1245 Value *ZC = Builder.CreateZExt(C, DestTy); 1246 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1247 } 1248 1249 // If we are truncating, masking, and then zexting back to the original type, 1250 // that's just a mask. This is not handled by canEvaluateZextd if the 1251 // intermediate values have extra uses. This could be generalized further for 1252 // a non-constant mask operand. 1253 // zext (and (trunc X), C) --> and X, (zext C) 1254 if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) && 1255 X->getType() == DestTy) { 1256 Value *ZextC = Builder.CreateZExt(C, DestTy); 1257 return BinaryOperator::CreateAnd(X, ZextC); 1258 } 1259 1260 if (match(Src, m_VScale())) { 1261 if (Zext.getFunction() && 1262 Zext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1263 Attribute Attr = 1264 Zext.getFunction()->getFnAttribute(Attribute::VScaleRange); 1265 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1266 unsigned TypeWidth = Src->getType()->getScalarSizeInBits(); 1267 if (Log2_32(*MaxVScale) < TypeWidth) { 1268 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1269 return replaceInstUsesWith(Zext, VScale); 1270 } 1271 } 1272 } 1273 } 1274 1275 if (!Zext.hasNonNeg()) { 1276 // If this zero extend is only used by a shift, add nneg flag. 1277 if (Zext.hasOneUse() && 1278 SrcTy->getScalarSizeInBits() > 1279 Log2_64_Ceil(DestTy->getScalarSizeInBits()) && 1280 match(Zext.user_back(), m_Shift(m_Value(), m_Specific(&Zext)))) { 1281 Zext.setNonNeg(); 1282 return &Zext; 1283 } 1284 1285 if (isKnownNonNegative(Src, SQ.getWithInstruction(&Zext))) { 1286 Zext.setNonNeg(); 1287 return &Zext; 1288 } 1289 } 1290 1291 return nullptr; 1292 } 1293 1294 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1295 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp, 1296 SExtInst &Sext) { 1297 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 1298 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1299 1300 // Don't bother if Op1 isn't of vector or integer type. 1301 if (!Op1->getType()->isIntOrIntVectorTy()) 1302 return nullptr; 1303 1304 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) { 1305 // sext (x <s 0) --> ashr x, 31 (all ones if negative) 1306 Value *Sh = ConstantInt::get(Op0->getType(), 1307 Op0->getType()->getScalarSizeInBits() - 1); 1308 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1309 if (In->getType() != Sext.getType()) 1310 In = Builder.CreateIntCast(In, Sext.getType(), true /*SExt*/); 1311 1312 return replaceInstUsesWith(Sext, In); 1313 } 1314 1315 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1316 // If we know that only one bit of the LHS of the icmp can be set and we 1317 // have an equality comparison with zero or a power of 2, we can transform 1318 // the icmp and sext into bitwise/integer operations. 1319 if (Cmp->hasOneUse() && 1320 Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1321 KnownBits Known = computeKnownBits(Op0, 0, &Sext); 1322 1323 APInt KnownZeroMask(~Known.Zero); 1324 if (KnownZeroMask.isPowerOf2()) { 1325 Value *In = Cmp->getOperand(0); 1326 1327 // If the icmp tests for a known zero bit we can constant fold it. 1328 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1329 Value *V = Pred == ICmpInst::ICMP_NE ? 1330 ConstantInt::getAllOnesValue(Sext.getType()) : 1331 ConstantInt::getNullValue(Sext.getType()); 1332 return replaceInstUsesWith(Sext, V); 1333 } 1334 1335 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1336 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1337 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1338 unsigned ShiftAmt = KnownZeroMask.countr_zero(); 1339 // Perform a right shift to place the desired bit in the LSB. 1340 if (ShiftAmt) 1341 In = Builder.CreateLShr(In, 1342 ConstantInt::get(In->getType(), ShiftAmt)); 1343 1344 // At this point "In" is either 1 or 0. Subtract 1 to turn 1345 // {1, 0} -> {0, -1}. 1346 In = Builder.CreateAdd(In, 1347 ConstantInt::getAllOnesValue(In->getType()), 1348 "sext"); 1349 } else { 1350 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1351 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1352 unsigned ShiftAmt = KnownZeroMask.countl_zero(); 1353 // Perform a left shift to place the desired bit in the MSB. 1354 if (ShiftAmt) 1355 In = Builder.CreateShl(In, 1356 ConstantInt::get(In->getType(), ShiftAmt)); 1357 1358 // Distribute the bit over the whole bit width. 1359 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1360 KnownZeroMask.getBitWidth() - 1), "sext"); 1361 } 1362 1363 if (Sext.getType() == In->getType()) 1364 return replaceInstUsesWith(Sext, In); 1365 return CastInst::CreateIntegerCast(In, Sext.getType(), true/*SExt*/); 1366 } 1367 } 1368 } 1369 1370 return nullptr; 1371 } 1372 1373 /// Return true if we can take the specified value and return it as type Ty 1374 /// without inserting any new casts and without changing the value of the common 1375 /// low bits. This is used by code that tries to promote integer operations to 1376 /// a wider types will allow us to eliminate the extension. 1377 /// 1378 /// This function works on both vectors and scalars. 1379 /// 1380 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1381 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1382 "Can't sign extend type to a smaller type"); 1383 if (canAlwaysEvaluateInType(V, Ty)) 1384 return true; 1385 if (canNotEvaluateInType(V, Ty)) 1386 return false; 1387 1388 auto *I = cast<Instruction>(V); 1389 switch (I->getOpcode()) { 1390 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1391 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1392 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1393 return true; 1394 case Instruction::And: 1395 case Instruction::Or: 1396 case Instruction::Xor: 1397 case Instruction::Add: 1398 case Instruction::Sub: 1399 case Instruction::Mul: 1400 // These operators can all arbitrarily be extended if their inputs can. 1401 return canEvaluateSExtd(I->getOperand(0), Ty) && 1402 canEvaluateSExtd(I->getOperand(1), Ty); 1403 1404 //case Instruction::Shl: TODO 1405 //case Instruction::LShr: TODO 1406 1407 case Instruction::Select: 1408 return canEvaluateSExtd(I->getOperand(1), Ty) && 1409 canEvaluateSExtd(I->getOperand(2), Ty); 1410 1411 case Instruction::PHI: { 1412 // We can change a phi if we can change all operands. Note that we never 1413 // get into trouble with cyclic PHIs here because we only consider 1414 // instructions with a single use. 1415 PHINode *PN = cast<PHINode>(I); 1416 for (Value *IncValue : PN->incoming_values()) 1417 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1418 return true; 1419 } 1420 default: 1421 // TODO: Can handle more cases here. 1422 break; 1423 } 1424 1425 return false; 1426 } 1427 1428 Instruction *InstCombinerImpl::visitSExt(SExtInst &Sext) { 1429 // If this sign extend is only used by a truncate, let the truncate be 1430 // eliminated before we try to optimize this sext. 1431 if (Sext.hasOneUse() && isa<TruncInst>(Sext.user_back())) 1432 return nullptr; 1433 1434 if (Instruction *I = commonCastTransforms(Sext)) 1435 return I; 1436 1437 Value *Src = Sext.getOperand(0); 1438 Type *SrcTy = Src->getType(), *DestTy = Sext.getType(); 1439 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1440 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1441 1442 // If the value being extended is zero or positive, use a zext instead. 1443 if (isKnownNonNegative(Src, SQ.getWithInstruction(&Sext))) { 1444 auto CI = CastInst::Create(Instruction::ZExt, Src, DestTy); 1445 CI->setNonNeg(true); 1446 return CI; 1447 } 1448 1449 // Try to extend the entire expression tree to the wide destination type. 1450 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1451 // Okay, we can transform this! Insert the new expression now. 1452 LLVM_DEBUG( 1453 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1454 " to avoid sign extend: " 1455 << Sext << '\n'); 1456 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1457 assert(Res->getType() == DestTy); 1458 1459 // If the high bits are already filled with sign bit, just replace this 1460 // cast with the result. 1461 if (ComputeNumSignBits(Res, 0, &Sext) > DestBitSize - SrcBitSize) 1462 return replaceInstUsesWith(Sext, Res); 1463 1464 // We need to emit a shl + ashr to do the sign extend. 1465 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1466 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1467 ShAmt); 1468 } 1469 1470 Value *X; 1471 if (match(Src, m_Trunc(m_Value(X)))) { 1472 // If the input has more sign bits than bits truncated, then convert 1473 // directly to final type. 1474 unsigned XBitSize = X->getType()->getScalarSizeInBits(); 1475 if (ComputeNumSignBits(X, 0, &Sext) > XBitSize - SrcBitSize) 1476 return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true); 1477 1478 // If input is a trunc from the destination type, then convert into shifts. 1479 if (Src->hasOneUse() && X->getType() == DestTy) { 1480 // sext (trunc X) --> ashr (shl X, C), C 1481 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1482 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1483 } 1484 1485 // If we are replacing shifted-in high zero bits with sign bits, convert 1486 // the logic shift to arithmetic shift and eliminate the cast to 1487 // intermediate type: 1488 // sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C) 1489 Value *Y; 1490 if (Src->hasOneUse() && 1491 match(X, m_LShr(m_Value(Y), 1492 m_SpecificIntAllowPoison(XBitSize - SrcBitSize)))) { 1493 Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize); 1494 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1495 } 1496 } 1497 1498 if (auto *Cmp = dyn_cast<ICmpInst>(Src)) 1499 return transformSExtICmp(Cmp, Sext); 1500 1501 // If the input is a shl/ashr pair of a same constant, then this is a sign 1502 // extension from a smaller value. If we could trust arbitrary bitwidth 1503 // integers, we could turn this into a truncate to the smaller bit and then 1504 // use a sext for the whole extension. Since we don't, look deeper and check 1505 // for a truncate. If the source and dest are the same type, eliminate the 1506 // trunc and extend and just do shifts. For example, turn: 1507 // %a = trunc i32 %i to i8 1508 // %b = shl i8 %a, C 1509 // %c = ashr i8 %b, C 1510 // %d = sext i8 %c to i32 1511 // into: 1512 // %a = shl i32 %i, 32-(8-C) 1513 // %d = ashr i32 %a, 32-(8-C) 1514 Value *A = nullptr; 1515 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1516 Constant *BA = nullptr, *CA = nullptr; 1517 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)), 1518 m_ImmConstant(CA))) && 1519 BA->isElementWiseEqual(CA) && A->getType() == DestTy) { 1520 Constant *WideCurrShAmt = 1521 ConstantFoldCastOperand(Instruction::SExt, CA, DestTy, DL); 1522 assert(WideCurrShAmt && "Constant folding of ImmConstant cannot fail"); 1523 Constant *NumLowbitsLeft = ConstantExpr::getSub( 1524 ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt); 1525 Constant *NewShAmt = ConstantExpr::getSub( 1526 ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()), 1527 NumLowbitsLeft); 1528 NewShAmt = 1529 Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA); 1530 A = Builder.CreateShl(A, NewShAmt, Sext.getName()); 1531 return BinaryOperator::CreateAShr(A, NewShAmt); 1532 } 1533 1534 // Splatting a bit of constant-index across a value: 1535 // sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1 1536 // If the dest type is different, use a cast (adjust use check). 1537 if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)), 1538 m_SpecificInt(SrcBitSize - 1))))) { 1539 Type *XTy = X->getType(); 1540 unsigned XBitSize = XTy->getScalarSizeInBits(); 1541 Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize); 1542 Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1); 1543 if (XTy == DestTy) 1544 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC), 1545 AshrAmtC); 1546 if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) { 1547 Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC); 1548 return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true); 1549 } 1550 } 1551 1552 if (match(Src, m_VScale())) { 1553 if (Sext.getFunction() && 1554 Sext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) { 1555 Attribute Attr = 1556 Sext.getFunction()->getFnAttribute(Attribute::VScaleRange); 1557 if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) { 1558 if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) { 1559 Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1)); 1560 return replaceInstUsesWith(Sext, VScale); 1561 } 1562 } 1563 } 1564 } 1565 1566 return nullptr; 1567 } 1568 1569 /// Return a Constant* for the specified floating-point constant if it fits 1570 /// in the specified FP type without changing its value. 1571 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1572 bool losesInfo; 1573 APFloat F = CFP->getValueAPF(); 1574 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1575 return !losesInfo; 1576 } 1577 1578 static Type *shrinkFPConstant(ConstantFP *CFP, bool PreferBFloat) { 1579 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1580 return nullptr; // No constant folding of this. 1581 // See if the value can be truncated to bfloat and then reextended. 1582 if (PreferBFloat && fitsInFPType(CFP, APFloat::BFloat())) 1583 return Type::getBFloatTy(CFP->getContext()); 1584 // See if the value can be truncated to half and then reextended. 1585 if (!PreferBFloat && fitsInFPType(CFP, APFloat::IEEEhalf())) 1586 return Type::getHalfTy(CFP->getContext()); 1587 // See if the value can be truncated to float and then reextended. 1588 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1589 return Type::getFloatTy(CFP->getContext()); 1590 if (CFP->getType()->isDoubleTy()) 1591 return nullptr; // Won't shrink. 1592 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1593 return Type::getDoubleTy(CFP->getContext()); 1594 // Don't try to shrink to various long double types. 1595 return nullptr; 1596 } 1597 1598 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1599 // type we can safely truncate all elements to. 1600 static Type *shrinkFPConstantVector(Value *V, bool PreferBFloat) { 1601 auto *CV = dyn_cast<Constant>(V); 1602 auto *CVVTy = dyn_cast<FixedVectorType>(V->getType()); 1603 if (!CV || !CVVTy) 1604 return nullptr; 1605 1606 Type *MinType = nullptr; 1607 1608 unsigned NumElts = CVVTy->getNumElements(); 1609 1610 // For fixed-width vectors we find the minimal type by looking 1611 // through the constant values of the vector. 1612 for (unsigned i = 0; i != NumElts; ++i) { 1613 if (isa<UndefValue>(CV->getAggregateElement(i))) 1614 continue; 1615 1616 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1617 if (!CFP) 1618 return nullptr; 1619 1620 Type *T = shrinkFPConstant(CFP, PreferBFloat); 1621 if (!T) 1622 return nullptr; 1623 1624 // If we haven't found a type yet or this type has a larger mantissa than 1625 // our previous type, this is our new minimal type. 1626 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1627 MinType = T; 1628 } 1629 1630 // Make a vector type from the minimal type. 1631 return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr; 1632 } 1633 1634 /// Find the minimum FP type we can safely truncate to. 1635 static Type *getMinimumFPType(Value *V, bool PreferBFloat) { 1636 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1637 return FPExt->getOperand(0)->getType(); 1638 1639 // If this value is a constant, return the constant in the smallest FP type 1640 // that can accurately represent it. This allows us to turn 1641 // (float)((double)X+2.0) into x+2.0f. 1642 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1643 if (Type *T = shrinkFPConstant(CFP, PreferBFloat)) 1644 return T; 1645 1646 // We can only correctly find a minimum type for a scalable vector when it is 1647 // a splat. For splats of constant values the fpext is wrapped up as a 1648 // ConstantExpr. 1649 if (auto *FPCExt = dyn_cast<ConstantExpr>(V)) 1650 if (FPCExt->getOpcode() == Instruction::FPExt) 1651 return FPCExt->getOperand(0)->getType(); 1652 1653 // Try to shrink a vector of FP constants. This returns nullptr on scalable 1654 // vectors 1655 if (Type *T = shrinkFPConstantVector(V, PreferBFloat)) 1656 return T; 1657 1658 return V->getType(); 1659 } 1660 1661 /// Return true if the cast from integer to FP can be proven to be exact for all 1662 /// possible inputs (the conversion does not lose any precision). 1663 static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) { 1664 CastInst::CastOps Opcode = I.getOpcode(); 1665 assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && 1666 "Unexpected cast"); 1667 Value *Src = I.getOperand(0); 1668 Type *SrcTy = Src->getType(); 1669 Type *FPTy = I.getType(); 1670 bool IsSigned = Opcode == Instruction::SIToFP; 1671 int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; 1672 1673 // Easy case - if the source integer type has less bits than the FP mantissa, 1674 // then the cast must be exact. 1675 int DestNumSigBits = FPTy->getFPMantissaWidth(); 1676 if (SrcSize <= DestNumSigBits) 1677 return true; 1678 1679 // Cast from FP to integer and back to FP is independent of the intermediate 1680 // integer width because of poison on overflow. 1681 Value *F; 1682 if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) { 1683 // If this is uitofp (fptosi F), the source needs an extra bit to avoid 1684 // potential rounding of negative FP input values. 1685 int SrcNumSigBits = F->getType()->getFPMantissaWidth(); 1686 if (!IsSigned && match(Src, m_FPToSI(m_Value()))) 1687 SrcNumSigBits++; 1688 1689 // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal 1690 // significant bits than the destination (and make sure neither type is 1691 // weird -- ppc_fp128). 1692 if (SrcNumSigBits > 0 && DestNumSigBits > 0 && 1693 SrcNumSigBits <= DestNumSigBits) 1694 return true; 1695 } 1696 1697 // TODO: 1698 // Try harder to find if the source integer type has less significant bits. 1699 // For example, compute number of sign bits. 1700 KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I); 1701 int SigBits = (int)SrcTy->getScalarSizeInBits() - 1702 SrcKnown.countMinLeadingZeros() - 1703 SrcKnown.countMinTrailingZeros(); 1704 if (SigBits <= DestNumSigBits) 1705 return true; 1706 1707 return false; 1708 } 1709 1710 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { 1711 if (Instruction *I = commonCastTransforms(FPT)) 1712 return I; 1713 1714 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1715 // simplify this expression to avoid one or more of the trunc/extend 1716 // operations if we can do so without changing the numerical results. 1717 // 1718 // The exact manner in which the widths of the operands interact to limit 1719 // what we can and cannot do safely varies from operation to operation, and 1720 // is explained below in the various case statements. 1721 Type *Ty = FPT.getType(); 1722 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1723 if (BO && BO->hasOneUse()) { 1724 Type *LHSMinType = 1725 getMinimumFPType(BO->getOperand(0), /*PreferBFloat=*/Ty->isBFloatTy()); 1726 Type *RHSMinType = 1727 getMinimumFPType(BO->getOperand(1), /*PreferBFloat=*/Ty->isBFloatTy()); 1728 unsigned OpWidth = BO->getType()->getFPMantissaWidth(); 1729 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1730 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1731 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1732 unsigned DstWidth = Ty->getFPMantissaWidth(); 1733 switch (BO->getOpcode()) { 1734 default: break; 1735 case Instruction::FAdd: 1736 case Instruction::FSub: 1737 // For addition and subtraction, the infinitely precise result can 1738 // essentially be arbitrarily wide; proving that double rounding 1739 // will not occur because the result of OpI is exact (as we will for 1740 // FMul, for example) is hopeless. However, we *can* nonetheless 1741 // frequently know that double rounding cannot occur (or that it is 1742 // innocuous) by taking advantage of the specific structure of 1743 // infinitely-precise results that admit double rounding. 1744 // 1745 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1746 // to represent both sources, we can guarantee that the double 1747 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1748 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1749 // for proof of this fact). 1750 // 1751 // Note: Figueroa does not consider the case where DstFormat != 1752 // SrcFormat. It's possible (likely even!) that this analysis 1753 // could be tightened for those cases, but they are rare (the main 1754 // case of interest here is (float)((double)float + float)). 1755 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1756 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1757 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1758 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); 1759 RI->copyFastMathFlags(BO); 1760 return RI; 1761 } 1762 break; 1763 case Instruction::FMul: 1764 // For multiplication, the infinitely precise result has at most 1765 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1766 // that such a value can be exactly represented, then no double 1767 // rounding can possibly occur; we can safely perform the operation 1768 // in the destination format if it can represent both sources. 1769 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1770 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1771 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1772 return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); 1773 } 1774 break; 1775 case Instruction::FDiv: 1776 // For division, we use again use the bound from Figueroa's 1777 // dissertation. I am entirely certain that this bound can be 1778 // tightened in the unbalanced operand case by an analysis based on 1779 // the diophantine rational approximation bound, but the well-known 1780 // condition used here is a good conservative first pass. 1781 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1782 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1783 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1784 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1785 return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); 1786 } 1787 break; 1788 case Instruction::FRem: { 1789 // Remainder is straightforward. Remainder is always exact, so the 1790 // type of OpI doesn't enter into things at all. We simply evaluate 1791 // in whichever source type is larger, then convert to the 1792 // destination type. 1793 if (SrcWidth == OpWidth) 1794 break; 1795 Value *LHS, *RHS; 1796 if (LHSWidth == SrcWidth) { 1797 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); 1798 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); 1799 } else { 1800 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); 1801 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); 1802 } 1803 1804 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); 1805 return CastInst::CreateFPCast(ExactResult, Ty); 1806 } 1807 } 1808 } 1809 1810 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1811 Value *X; 1812 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); 1813 if (Op && Op->hasOneUse()) { 1814 // FIXME: The FMF should propagate from the fptrunc, not the source op. 1815 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1816 if (isa<FPMathOperator>(Op)) 1817 Builder.setFastMathFlags(Op->getFastMathFlags()); 1818 1819 if (match(Op, m_FNeg(m_Value(X)))) { 1820 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1821 1822 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); 1823 } 1824 1825 // If we are truncating a select that has an extended operand, we can 1826 // narrow the other operand and do the select as a narrow op. 1827 Value *Cond, *X, *Y; 1828 if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && 1829 X->getType() == Ty) { 1830 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) 1831 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1832 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); 1833 return replaceInstUsesWith(FPT, Sel); 1834 } 1835 if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && 1836 X->getType() == Ty) { 1837 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X 1838 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1839 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); 1840 return replaceInstUsesWith(FPT, Sel); 1841 } 1842 } 1843 1844 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1845 switch (II->getIntrinsicID()) { 1846 default: break; 1847 case Intrinsic::ceil: 1848 case Intrinsic::fabs: 1849 case Intrinsic::floor: 1850 case Intrinsic::nearbyint: 1851 case Intrinsic::rint: 1852 case Intrinsic::round: 1853 case Intrinsic::roundeven: 1854 case Intrinsic::trunc: { 1855 Value *Src = II->getArgOperand(0); 1856 if (!Src->hasOneUse()) 1857 break; 1858 1859 // Except for fabs, this transformation requires the input of the unary FP 1860 // operation to be itself an fpext from the type to which we're 1861 // truncating. 1862 if (II->getIntrinsicID() != Intrinsic::fabs) { 1863 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1864 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1865 break; 1866 } 1867 1868 // Do unary FP operation on smaller type. 1869 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1870 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1871 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1872 II->getIntrinsicID(), Ty); 1873 SmallVector<OperandBundleDef, 1> OpBundles; 1874 II->getOperandBundlesAsDefs(OpBundles); 1875 CallInst *NewCI = 1876 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); 1877 NewCI->copyFastMathFlags(II); 1878 return NewCI; 1879 } 1880 } 1881 } 1882 1883 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1884 return I; 1885 1886 Value *Src = FPT.getOperand(0); 1887 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1888 auto *FPCast = cast<CastInst>(Src); 1889 if (isKnownExactCastIntToFP(*FPCast, *this)) 1890 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1891 } 1892 1893 return nullptr; 1894 } 1895 1896 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { 1897 // If the source operand is a cast from integer to FP and known exact, then 1898 // cast the integer operand directly to the destination type. 1899 Type *Ty = FPExt.getType(); 1900 Value *Src = FPExt.getOperand(0); 1901 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1902 auto *FPCast = cast<CastInst>(Src); 1903 if (isKnownExactCastIntToFP(*FPCast, *this)) 1904 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1905 } 1906 1907 return commonCastTransforms(FPExt); 1908 } 1909 1910 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1911 /// This is safe if the intermediate type has enough bits in its mantissa to 1912 /// accurately represent all values of X. For example, this won't work with 1913 /// i64 -> float -> i64. 1914 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { 1915 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1916 return nullptr; 1917 1918 auto *OpI = cast<CastInst>(FI.getOperand(0)); 1919 Value *X = OpI->getOperand(0); 1920 Type *XType = X->getType(); 1921 Type *DestType = FI.getType(); 1922 bool IsOutputSigned = isa<FPToSIInst>(FI); 1923 1924 // Since we can assume the conversion won't overflow, our decision as to 1925 // whether the input will fit in the float should depend on the minimum 1926 // of the input range and output range. 1927 1928 // This means this is also safe for a signed input and unsigned output, since 1929 // a negative input would lead to undefined behavior. 1930 if (!isKnownExactCastIntToFP(*OpI, *this)) { 1931 // The first cast may not round exactly based on the source integer width 1932 // and FP width, but the overflow UB rules can still allow this to fold. 1933 // If the destination type is narrow, that means the intermediate FP value 1934 // must be large enough to hold the source value exactly. 1935 // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. 1936 int OutputSize = (int)DestType->getScalarSizeInBits(); 1937 if (OutputSize > OpI->getType()->getFPMantissaWidth()) 1938 return nullptr; 1939 } 1940 1941 if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { 1942 bool IsInputSigned = isa<SIToFPInst>(OpI); 1943 if (IsInputSigned && IsOutputSigned) 1944 return new SExtInst(X, DestType); 1945 return new ZExtInst(X, DestType); 1946 } 1947 if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) 1948 return new TruncInst(X, DestType); 1949 1950 assert(XType == DestType && "Unexpected types for int to FP to int casts"); 1951 return replaceInstUsesWith(FI, X); 1952 } 1953 1954 static Instruction *foldFPtoI(Instruction &FI, InstCombiner &IC) { 1955 // fpto{u/s}i non-norm --> 0 1956 FPClassTest Mask = 1957 FI.getOpcode() == Instruction::FPToUI ? fcPosNormal : fcNormal; 1958 KnownFPClass FPClass = 1959 computeKnownFPClass(FI.getOperand(0), Mask, /*Depth=*/0, 1960 IC.getSimplifyQuery().getWithInstruction(&FI)); 1961 if (FPClass.isKnownNever(Mask)) 1962 return IC.replaceInstUsesWith(FI, ConstantInt::getNullValue(FI.getType())); 1963 1964 return nullptr; 1965 } 1966 1967 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { 1968 if (Instruction *I = foldItoFPtoI(FI)) 1969 return I; 1970 1971 if (Instruction *I = foldFPtoI(FI, *this)) 1972 return I; 1973 1974 return commonCastTransforms(FI); 1975 } 1976 1977 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { 1978 if (Instruction *I = foldItoFPtoI(FI)) 1979 return I; 1980 1981 if (Instruction *I = foldFPtoI(FI, *this)) 1982 return I; 1983 1984 return commonCastTransforms(FI); 1985 } 1986 1987 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { 1988 if (Instruction *R = commonCastTransforms(CI)) 1989 return R; 1990 if (!CI.hasNonNeg() && isKnownNonNegative(CI.getOperand(0), SQ)) { 1991 CI.setNonNeg(); 1992 return &CI; 1993 } 1994 return nullptr; 1995 } 1996 1997 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { 1998 if (Instruction *R = commonCastTransforms(CI)) 1999 return R; 2000 if (isKnownNonNegative(CI.getOperand(0), SQ)) { 2001 auto *UI = 2002 CastInst::Create(Instruction::UIToFP, CI.getOperand(0), CI.getType()); 2003 UI->setNonNeg(true); 2004 return UI; 2005 } 2006 return nullptr; 2007 } 2008 2009 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { 2010 // If the source integer type is not the intptr_t type for this target, do a 2011 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 2012 // cast to be exposed to other transforms. 2013 unsigned AS = CI.getAddressSpace(); 2014 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 2015 DL.getPointerSizeInBits(AS)) { 2016 Type *Ty = CI.getOperand(0)->getType()->getWithNewType( 2017 DL.getIntPtrType(CI.getContext(), AS)); 2018 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 2019 return new IntToPtrInst(P, CI.getType()); 2020 } 2021 2022 if (Instruction *I = commonCastTransforms(CI)) 2023 return I; 2024 2025 return nullptr; 2026 } 2027 2028 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { 2029 // If the destination integer type is not the intptr_t type for this target, 2030 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 2031 // to be exposed to other transforms. 2032 Value *SrcOp = CI.getPointerOperand(); 2033 Type *SrcTy = SrcOp->getType(); 2034 Type *Ty = CI.getType(); 2035 unsigned AS = CI.getPointerAddressSpace(); 2036 unsigned TySize = Ty->getScalarSizeInBits(); 2037 unsigned PtrSize = DL.getPointerSizeInBits(AS); 2038 if (TySize != PtrSize) { 2039 Type *IntPtrTy = 2040 SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS)); 2041 Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy); 2042 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 2043 } 2044 2045 // (ptrtoint (ptrmask P, M)) 2046 // -> (and (ptrtoint P), M) 2047 // This is generally beneficial as `and` is better supported than `ptrmask`. 2048 Value *Ptr, *Mask; 2049 if (match(SrcOp, m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(Ptr), 2050 m_Value(Mask)))) && 2051 Mask->getType() == Ty) 2052 return BinaryOperator::CreateAnd(Builder.CreatePtrToInt(Ptr, Ty), Mask); 2053 2054 if (auto *GEP = dyn_cast<GEPOperator>(SrcOp)) { 2055 // Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use. 2056 // While this can increase the number of instructions it doesn't actually 2057 // increase the overall complexity since the arithmetic is just part of 2058 // the GEP otherwise. 2059 if (GEP->hasOneUse() && 2060 isa<ConstantPointerNull>(GEP->getPointerOperand())) { 2061 return replaceInstUsesWith(CI, 2062 Builder.CreateIntCast(EmitGEPOffset(GEP), Ty, 2063 /*isSigned=*/false)); 2064 } 2065 2066 // (ptrtoint (gep (inttoptr Base), ...)) -> Base + Offset 2067 Value *Base; 2068 if (GEP->hasOneUse() && 2069 match(GEP->getPointerOperand(), m_OneUse(m_IntToPtr(m_Value(Base)))) && 2070 Base->getType() == Ty) { 2071 Value *Offset = EmitGEPOffset(GEP); 2072 auto *NewOp = BinaryOperator::CreateAdd(Base, Offset); 2073 if (GEP->hasNoUnsignedWrap() || 2074 (GEP->hasNoUnsignedSignedWrap() && 2075 isKnownNonNegative(Offset, SQ.getWithInstruction(&CI)))) 2076 NewOp->setHasNoUnsignedWrap(true); 2077 return NewOp; 2078 } 2079 } 2080 2081 Value *Vec, *Scalar, *Index; 2082 if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)), 2083 m_Value(Scalar), m_Value(Index)))) && 2084 Vec->getType() == Ty) { 2085 assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type"); 2086 // Convert the scalar to int followed by insert to eliminate one cast: 2087 // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index 2088 Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType()); 2089 return InsertElementInst::Create(Vec, NewCast, Index); 2090 } 2091 2092 return commonCastTransforms(CI); 2093 } 2094 2095 /// This input value (which is known to have vector type) is being zero extended 2096 /// or truncated to the specified vector type. Since the zext/trunc is done 2097 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, 2098 /// endianness will impact which end of the vector that is extended or 2099 /// truncated. 2100 /// 2101 /// A vector is always stored with index 0 at the lowest address, which 2102 /// corresponds to the most significant bits for a big endian stored integer and 2103 /// the least significant bits for little endian. A trunc/zext of an integer 2104 /// impacts the big end of the integer. Thus, we need to add/remove elements at 2105 /// the front of the vector for big endian targets, and the back of the vector 2106 /// for little endian targets. 2107 /// 2108 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 2109 /// 2110 /// The source and destination vector types may have different element types. 2111 static Instruction * 2112 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, 2113 InstCombinerImpl &IC) { 2114 // We can only do this optimization if the output is a multiple of the input 2115 // element size, or the input is a multiple of the output element size. 2116 // Convert the input type to have the same element type as the output. 2117 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 2118 2119 if (SrcTy->getElementType() != DestTy->getElementType()) { 2120 // The input types don't need to be identical, but for now they must be the 2121 // same size. There is no specific reason we couldn't handle things like 2122 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 2123 // there yet. 2124 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 2125 DestTy->getElementType()->getPrimitiveSizeInBits()) 2126 return nullptr; 2127 2128 SrcTy = 2129 FixedVectorType::get(DestTy->getElementType(), 2130 cast<FixedVectorType>(SrcTy)->getNumElements()); 2131 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 2132 } 2133 2134 bool IsBigEndian = IC.getDataLayout().isBigEndian(); 2135 unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements(); 2136 unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements(); 2137 2138 assert(SrcElts != DestElts && "Element counts should be different."); 2139 2140 // Now that the element types match, get the shuffle mask and RHS of the 2141 // shuffle to use, which depends on whether we're increasing or decreasing the 2142 // size of the input. 2143 auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts)); 2144 ArrayRef<int> ShuffleMask; 2145 Value *V2; 2146 2147 if (SrcElts > DestElts) { 2148 // If we're shrinking the number of elements (rewriting an integer 2149 // truncate), just shuffle in the elements corresponding to the least 2150 // significant bits from the input and use poison as the second shuffle 2151 // input. 2152 V2 = PoisonValue::get(SrcTy); 2153 // Make sure the shuffle mask selects the "least significant bits" by 2154 // keeping elements from back of the src vector for big endian, and from the 2155 // front for little endian. 2156 ShuffleMask = ShuffleMaskStorage; 2157 if (IsBigEndian) 2158 ShuffleMask = ShuffleMask.take_back(DestElts); 2159 else 2160 ShuffleMask = ShuffleMask.take_front(DestElts); 2161 } else { 2162 // If we're increasing the number of elements (rewriting an integer zext), 2163 // shuffle in all of the elements from InVal. Fill the rest of the result 2164 // elements with zeros from a constant zero. 2165 V2 = Constant::getNullValue(SrcTy); 2166 // Use first elt from V2 when indicating zero in the shuffle mask. 2167 uint32_t NullElt = SrcElts; 2168 // Extend with null values in the "most significant bits" by adding elements 2169 // in front of the src vector for big endian, and at the back for little 2170 // endian. 2171 unsigned DeltaElts = DestElts - SrcElts; 2172 if (IsBigEndian) 2173 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); 2174 else 2175 ShuffleMaskStorage.append(DeltaElts, NullElt); 2176 ShuffleMask = ShuffleMaskStorage; 2177 } 2178 2179 return new ShuffleVectorInst(InVal, V2, ShuffleMask); 2180 } 2181 2182 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 2183 return Value % Ty->getPrimitiveSizeInBits() == 0; 2184 } 2185 2186 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 2187 return Value / Ty->getPrimitiveSizeInBits(); 2188 } 2189 2190 /// V is a value which is inserted into a vector of VecEltTy. 2191 /// Look through the value to see if we can decompose it into 2192 /// insertions into the vector. See the example in the comment for 2193 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 2194 /// The type of V is always a non-zero multiple of VecEltTy's size. 2195 /// Shift is the number of bits between the lsb of V and the lsb of 2196 /// the vector. 2197 /// 2198 /// This returns false if the pattern can't be matched or true if it can, 2199 /// filling in Elements with the elements found here. 2200 static bool collectInsertionElements(Value *V, unsigned Shift, 2201 SmallVectorImpl<Value *> &Elements, 2202 Type *VecEltTy, bool isBigEndian) { 2203 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 2204 "Shift should be a multiple of the element type size"); 2205 2206 // Undef values never contribute useful bits to the result. 2207 if (isa<UndefValue>(V)) return true; 2208 2209 // If we got down to a value of the right type, we win, try inserting into the 2210 // right element. 2211 if (V->getType() == VecEltTy) { 2212 // Inserting null doesn't actually insert any elements. 2213 if (Constant *C = dyn_cast<Constant>(V)) 2214 if (C->isNullValue()) 2215 return true; 2216 2217 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 2218 if (isBigEndian) 2219 ElementIndex = Elements.size() - ElementIndex - 1; 2220 2221 // Fail if multiple elements are inserted into this slot. 2222 if (Elements[ElementIndex]) 2223 return false; 2224 2225 Elements[ElementIndex] = V; 2226 return true; 2227 } 2228 2229 if (Constant *C = dyn_cast<Constant>(V)) { 2230 // Figure out the # elements this provides, and bitcast it or slice it up 2231 // as required. 2232 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 2233 VecEltTy); 2234 // If the constant is the size of a vector element, we just need to bitcast 2235 // it to the right type so it gets properly inserted. 2236 if (NumElts == 1) 2237 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 2238 Shift, Elements, VecEltTy, isBigEndian); 2239 2240 // Okay, this is a constant that covers multiple elements. Slice it up into 2241 // pieces and insert each element-sized piece into the vector. 2242 if (!isa<IntegerType>(C->getType())) 2243 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 2244 C->getType()->getPrimitiveSizeInBits())); 2245 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 2246 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 2247 2248 for (unsigned i = 0; i != NumElts; ++i) { 2249 unsigned ShiftI = i * ElementSize; 2250 Constant *Piece = ConstantFoldBinaryInstruction( 2251 Instruction::LShr, C, ConstantInt::get(C->getType(), ShiftI)); 2252 if (!Piece) 2253 return false; 2254 2255 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 2256 if (!collectInsertionElements(Piece, ShiftI + Shift, Elements, VecEltTy, 2257 isBigEndian)) 2258 return false; 2259 } 2260 return true; 2261 } 2262 2263 if (!V->hasOneUse()) return false; 2264 2265 Instruction *I = dyn_cast<Instruction>(V); 2266 if (!I) return false; 2267 switch (I->getOpcode()) { 2268 default: return false; // Unhandled case. 2269 case Instruction::BitCast: 2270 if (I->getOperand(0)->getType()->isVectorTy()) 2271 return false; 2272 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2273 isBigEndian); 2274 case Instruction::ZExt: 2275 if (!isMultipleOfTypeSize( 2276 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 2277 VecEltTy)) 2278 return false; 2279 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2280 isBigEndian); 2281 case Instruction::Or: 2282 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2283 isBigEndian) && 2284 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 2285 isBigEndian); 2286 case Instruction::Shl: { 2287 // Must be shifting by a constant that is a multiple of the element size. 2288 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 2289 if (!CI) return false; 2290 Shift += CI->getZExtValue(); 2291 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 2292 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2293 isBigEndian); 2294 } 2295 2296 } 2297 } 2298 2299 2300 /// If the input is an 'or' instruction, we may be doing shifts and ors to 2301 /// assemble the elements of the vector manually. 2302 /// Try to rip the code out and replace it with insertelements. This is to 2303 /// optimize code like this: 2304 /// 2305 /// %tmp37 = bitcast float %inc to i32 2306 /// %tmp38 = zext i32 %tmp37 to i64 2307 /// %tmp31 = bitcast float %inc5 to i32 2308 /// %tmp32 = zext i32 %tmp31 to i64 2309 /// %tmp33 = shl i64 %tmp32, 32 2310 /// %ins35 = or i64 %tmp33, %tmp38 2311 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2312 /// 2313 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2314 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2315 InstCombinerImpl &IC) { 2316 auto *DestVecTy = cast<FixedVectorType>(CI.getType()); 2317 Value *IntInput = CI.getOperand(0); 2318 2319 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2320 if (!collectInsertionElements(IntInput, 0, Elements, 2321 DestVecTy->getElementType(), 2322 IC.getDataLayout().isBigEndian())) 2323 return nullptr; 2324 2325 // If we succeeded, we know that all of the element are specified by Elements 2326 // or are zero if Elements has a null entry. Recast this as a set of 2327 // insertions. 2328 Value *Result = Constant::getNullValue(CI.getType()); 2329 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2330 if (!Elements[i]) continue; // Unset element. 2331 2332 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2333 IC.Builder.getInt32(i)); 2334 } 2335 2336 return Result; 2337 } 2338 2339 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2340 /// vector followed by extract element. The backend tends to handle bitcasts of 2341 /// vectors better than bitcasts of scalars because vector registers are 2342 /// usually not type-specific like scalar integer or scalar floating-point. 2343 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2344 InstCombinerImpl &IC) { 2345 Value *VecOp, *Index; 2346 if (!match(BitCast.getOperand(0), 2347 m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index))))) 2348 return nullptr; 2349 2350 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2351 // type to extract from. 2352 Type *DestType = BitCast.getType(); 2353 VectorType *VecType = cast<VectorType>(VecOp->getType()); 2354 if (VectorType::isValidElementType(DestType)) { 2355 auto *NewVecType = VectorType::get(DestType, VecType); 2356 auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc"); 2357 return ExtractElementInst::Create(NewBC, Index); 2358 } 2359 2360 // Only solve DestType is vector to avoid inverse transform in visitBitCast. 2361 // bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest) 2362 auto *FixedVType = dyn_cast<FixedVectorType>(VecType); 2363 if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1) 2364 return CastInst::Create(Instruction::BitCast, VecOp, DestType); 2365 2366 return nullptr; 2367 } 2368 2369 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2370 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2371 InstCombiner::BuilderTy &Builder) { 2372 Type *DestTy = BitCast.getType(); 2373 BinaryOperator *BO; 2374 2375 if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2376 !BO->isBitwiseLogicOp()) 2377 return nullptr; 2378 2379 // FIXME: This transform is restricted to vector types to avoid backend 2380 // problems caused by creating potentially illegal operations. If a fix-up is 2381 // added to handle that situation, we can remove this check. 2382 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2383 return nullptr; 2384 2385 if (DestTy->isFPOrFPVectorTy()) { 2386 Value *X, *Y; 2387 // bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y)) 2388 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2389 match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) { 2390 if (X->getType()->isFPOrFPVectorTy() && 2391 Y->getType()->isIntOrIntVectorTy()) { 2392 Value *CastedOp = 2393 Builder.CreateBitCast(BO->getOperand(0), Y->getType()); 2394 Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y); 2395 return CastInst::CreateBitOrPointerCast(NewBO, DestTy); 2396 } 2397 if (X->getType()->isIntOrIntVectorTy() && 2398 Y->getType()->isFPOrFPVectorTy()) { 2399 Value *CastedOp = 2400 Builder.CreateBitCast(BO->getOperand(1), X->getType()); 2401 Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X); 2402 return CastInst::CreateBitOrPointerCast(NewBO, DestTy); 2403 } 2404 } 2405 return nullptr; 2406 } 2407 2408 if (!DestTy->isIntOrIntVectorTy()) 2409 return nullptr; 2410 2411 Value *X; 2412 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2413 X->getType() == DestTy && !isa<Constant>(X)) { 2414 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2415 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2416 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2417 } 2418 2419 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2420 X->getType() == DestTy && !isa<Constant>(X)) { 2421 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2422 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2423 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2424 } 2425 2426 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2427 // constant. This eases recognition of special constants for later ops. 2428 // Example: 2429 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2430 Constant *C; 2431 if (match(BO->getOperand(1), m_Constant(C))) { 2432 // bitcast (logic X, C) --> logic (bitcast X, C') 2433 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2434 Value *CastedC = Builder.CreateBitCast(C, DestTy); 2435 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2436 } 2437 2438 return nullptr; 2439 } 2440 2441 /// Change the type of a select if we can eliminate a bitcast. 2442 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2443 InstCombiner::BuilderTy &Builder) { 2444 Value *Cond, *TVal, *FVal; 2445 if (!match(BitCast.getOperand(0), 2446 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2447 return nullptr; 2448 2449 // A vector select must maintain the same number of elements in its operands. 2450 Type *CondTy = Cond->getType(); 2451 Type *DestTy = BitCast.getType(); 2452 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) 2453 if (!DestTy->isVectorTy() || 2454 CondVTy->getElementCount() != 2455 cast<VectorType>(DestTy)->getElementCount()) 2456 return nullptr; 2457 2458 // FIXME: This transform is restricted from changing the select between 2459 // scalars and vectors to avoid backend problems caused by creating 2460 // potentially illegal operations. If a fix-up is added to handle that 2461 // situation, we can remove this check. 2462 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2463 return nullptr; 2464 2465 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2466 Value *X; 2467 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2468 !isa<Constant>(X)) { 2469 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2470 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2471 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2472 } 2473 2474 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2475 !isa<Constant>(X)) { 2476 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2477 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2478 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2479 } 2480 2481 return nullptr; 2482 } 2483 2484 /// Check if all users of CI are StoreInsts. 2485 static bool hasStoreUsersOnly(CastInst &CI) { 2486 for (User *U : CI.users()) { 2487 if (!isa<StoreInst>(U)) 2488 return false; 2489 } 2490 return true; 2491 } 2492 2493 /// This function handles following case 2494 /// 2495 /// A -> B cast 2496 /// PHI 2497 /// B -> A cast 2498 /// 2499 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2500 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2501 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, 2502 PHINode *PN) { 2503 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2504 if (hasStoreUsersOnly(CI)) 2505 return nullptr; 2506 2507 Value *Src = CI.getOperand(0); 2508 Type *SrcTy = Src->getType(); // Type B 2509 Type *DestTy = CI.getType(); // Type A 2510 2511 SmallVector<PHINode *, 4> PhiWorklist; 2512 SmallSetVector<PHINode *, 4> OldPhiNodes; 2513 2514 // Find all of the A->B casts and PHI nodes. 2515 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so 2516 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2517 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2518 PhiWorklist.push_back(PN); 2519 OldPhiNodes.insert(PN); 2520 while (!PhiWorklist.empty()) { 2521 auto *OldPN = PhiWorklist.pop_back_val(); 2522 for (Value *IncValue : OldPN->incoming_values()) { 2523 if (isa<Constant>(IncValue)) 2524 continue; 2525 2526 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2527 // If there is a sequence of one or more load instructions, each loaded 2528 // value is used as address of later load instruction, bitcast is 2529 // necessary to change the value type, don't optimize it. For 2530 // simplicity we give up if the load address comes from another load. 2531 Value *Addr = LI->getOperand(0); 2532 if (Addr == &CI || isa<LoadInst>(Addr)) 2533 return nullptr; 2534 // Don't tranform "load <256 x i32>, <256 x i32>*" to 2535 // "load x86_amx, x86_amx*", because x86_amx* is invalid. 2536 // TODO: Remove this check when bitcast between vector and x86_amx 2537 // is replaced with a specific intrinsic. 2538 if (DestTy->isX86_AMXTy()) 2539 return nullptr; 2540 if (LI->hasOneUse() && LI->isSimple()) 2541 continue; 2542 // If a LoadInst has more than one use, changing the type of loaded 2543 // value may create another bitcast. 2544 return nullptr; 2545 } 2546 2547 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2548 if (OldPhiNodes.insert(PNode)) 2549 PhiWorklist.push_back(PNode); 2550 continue; 2551 } 2552 2553 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2554 // We can't handle other instructions. 2555 if (!BCI) 2556 return nullptr; 2557 2558 // Verify it's a A->B cast. 2559 Type *TyA = BCI->getOperand(0)->getType(); 2560 Type *TyB = BCI->getType(); 2561 if (TyA != DestTy || TyB != SrcTy) 2562 return nullptr; 2563 } 2564 } 2565 2566 // Check that each user of each old PHI node is something that we can 2567 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. 2568 for (auto *OldPN : OldPhiNodes) { 2569 for (User *V : OldPN->users()) { 2570 if (auto *SI = dyn_cast<StoreInst>(V)) { 2571 if (!SI->isSimple() || SI->getOperand(0) != OldPN) 2572 return nullptr; 2573 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2574 // Verify it's a B->A cast. 2575 Type *TyB = BCI->getOperand(0)->getType(); 2576 Type *TyA = BCI->getType(); 2577 if (TyA != DestTy || TyB != SrcTy) 2578 return nullptr; 2579 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2580 // As long as the user is another old PHI node, then even if we don't 2581 // rewrite it, the PHI web we're considering won't have any users 2582 // outside itself, so it'll be dead. 2583 if (!OldPhiNodes.contains(PHI)) 2584 return nullptr; 2585 } else { 2586 return nullptr; 2587 } 2588 } 2589 } 2590 2591 // For each old PHI node, create a corresponding new PHI node with a type A. 2592 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2593 for (auto *OldPN : OldPhiNodes) { 2594 Builder.SetInsertPoint(OldPN); 2595 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2596 NewPNodes[OldPN] = NewPN; 2597 } 2598 2599 // Fill in the operands of new PHI nodes. 2600 for (auto *OldPN : OldPhiNodes) { 2601 PHINode *NewPN = NewPNodes[OldPN]; 2602 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2603 Value *V = OldPN->getOperand(j); 2604 Value *NewV = nullptr; 2605 if (auto *C = dyn_cast<Constant>(V)) { 2606 NewV = ConstantExpr::getBitCast(C, DestTy); 2607 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2608 // Explicitly perform load combine to make sure no opposing transform 2609 // can remove the bitcast in the meantime and trigger an infinite loop. 2610 Builder.SetInsertPoint(LI); 2611 NewV = combineLoadToNewType(*LI, DestTy); 2612 // Remove the old load and its use in the old phi, which itself becomes 2613 // dead once the whole transform finishes. 2614 replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 2615 eraseInstFromFunction(*LI); 2616 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2617 NewV = BCI->getOperand(0); 2618 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2619 NewV = NewPNodes[PrevPN]; 2620 } 2621 assert(NewV); 2622 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2623 } 2624 } 2625 2626 // Traverse all accumulated PHI nodes and process its users, 2627 // which are Stores and BitcCasts. Without this processing 2628 // NewPHI nodes could be replicated and could lead to extra 2629 // moves generated after DeSSA. 2630 // If there is a store with type B, change it to type A. 2631 2632 2633 // Replace users of BitCast B->A with NewPHI. These will help 2634 // later to get rid off a closure formed by OldPHI nodes. 2635 Instruction *RetVal = nullptr; 2636 for (auto *OldPN : OldPhiNodes) { 2637 PHINode *NewPN = NewPNodes[OldPN]; 2638 for (User *V : make_early_inc_range(OldPN->users())) { 2639 if (auto *SI = dyn_cast<StoreInst>(V)) { 2640 assert(SI->isSimple() && SI->getOperand(0) == OldPN); 2641 Builder.SetInsertPoint(SI); 2642 auto *NewBC = 2643 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); 2644 SI->setOperand(0, NewBC); 2645 Worklist.push(SI); 2646 assert(hasStoreUsersOnly(*NewBC)); 2647 } 2648 else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2649 Type *TyB = BCI->getOperand(0)->getType(); 2650 Type *TyA = BCI->getType(); 2651 assert(TyA == DestTy && TyB == SrcTy); 2652 (void) TyA; 2653 (void) TyB; 2654 Instruction *I = replaceInstUsesWith(*BCI, NewPN); 2655 if (BCI == &CI) 2656 RetVal = I; 2657 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2658 assert(OldPhiNodes.contains(PHI)); 2659 (void) PHI; 2660 } else { 2661 llvm_unreachable("all uses should be handled"); 2662 } 2663 } 2664 } 2665 2666 return RetVal; 2667 } 2668 2669 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { 2670 // If the operands are integer typed then apply the integer transforms, 2671 // otherwise just apply the common ones. 2672 Value *Src = CI.getOperand(0); 2673 Type *SrcTy = Src->getType(); 2674 Type *DestTy = CI.getType(); 2675 2676 // Get rid of casts from one type to the same type. These are useless and can 2677 // be replaced by the operand. 2678 if (DestTy == Src->getType()) 2679 return replaceInstUsesWith(CI, Src); 2680 2681 if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) { 2682 // Beware: messing with this target-specific oddity may cause trouble. 2683 if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) { 2684 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2685 return InsertElementInst::Create(PoisonValue::get(DestTy), Elem, 2686 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2687 } 2688 2689 if (isa<IntegerType>(SrcTy)) { 2690 // If this is a cast from an integer to vector, check to see if the input 2691 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2692 // the casts with a shuffle and (potentially) a bitcast. 2693 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2694 CastInst *SrcCast = cast<CastInst>(Src); 2695 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2696 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2697 if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( 2698 BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) 2699 return I; 2700 } 2701 2702 // If the input is an 'or' instruction, we may be doing shifts and ors to 2703 // assemble the elements of the vector manually. Try to rip the code out 2704 // and replace it with insertelements. 2705 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2706 return replaceInstUsesWith(CI, V); 2707 } 2708 } 2709 2710 if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) { 2711 if (SrcVTy->getNumElements() == 1) { 2712 // If our destination is not a vector, then make this a straight 2713 // scalar-scalar cast. 2714 if (!DestTy->isVectorTy()) { 2715 Value *Elem = 2716 Builder.CreateExtractElement(Src, 2717 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2718 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2719 } 2720 2721 // Otherwise, see if our source is an insert. If so, then use the scalar 2722 // component directly: 2723 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> 2724 if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) 2725 return new BitCastInst(InsElt->getOperand(1), DestTy); 2726 } 2727 2728 // Convert an artificial vector insert into more analyzable bitwise logic. 2729 unsigned BitWidth = DestTy->getScalarSizeInBits(); 2730 Value *X, *Y; 2731 uint64_t IndexC; 2732 if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))), 2733 m_Value(Y), m_ConstantInt(IndexC)))) && 2734 DestTy->isIntegerTy() && X->getType() == DestTy && 2735 Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) { 2736 // Adjust for big endian - the LSBs are at the high index. 2737 if (DL.isBigEndian()) 2738 IndexC = SrcVTy->getNumElements() - 1 - IndexC; 2739 2740 // We only handle (endian-normalized) insert to index 0. Any other insert 2741 // would require a left-shift, so that is an extra instruction. 2742 if (IndexC == 0) { 2743 // bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y) 2744 unsigned EltWidth = Y->getType()->getScalarSizeInBits(); 2745 APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth); 2746 Value *AndX = Builder.CreateAnd(X, MaskC); 2747 Value *ZextY = Builder.CreateZExt(Y, DestTy); 2748 return BinaryOperator::CreateOr(AndX, ZextY); 2749 } 2750 } 2751 } 2752 2753 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { 2754 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2755 // a bitcast to a vector with the same # elts. 2756 Value *ShufOp0 = Shuf->getOperand(0); 2757 Value *ShufOp1 = Shuf->getOperand(1); 2758 auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount(); 2759 auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount(); 2760 if (Shuf->hasOneUse() && DestTy->isVectorTy() && 2761 cast<VectorType>(DestTy)->getElementCount() == ShufElts && 2762 ShufElts == SrcVecElts) { 2763 BitCastInst *Tmp; 2764 // If either of the operands is a cast from CI.getType(), then 2765 // evaluating the shuffle in the casted destination's type will allow 2766 // us to eliminate at least one cast. 2767 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && 2768 Tmp->getOperand(0)->getType() == DestTy) || 2769 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && 2770 Tmp->getOperand(0)->getType() == DestTy)) { 2771 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); 2772 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); 2773 // Return a new shuffle vector. Use the same element ID's, as we 2774 // know the vector types match #elts. 2775 return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); 2776 } 2777 } 2778 2779 // A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized 2780 // as a byte/bit swap: 2781 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X) 2782 // bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X) 2783 if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 && 2784 Shuf->hasOneUse() && Shuf->isReverse()) { 2785 unsigned IntrinsicNum = 0; 2786 if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) && 2787 SrcTy->getScalarSizeInBits() == 8) { 2788 IntrinsicNum = Intrinsic::bswap; 2789 } else if (SrcTy->getScalarSizeInBits() == 1) { 2790 IntrinsicNum = Intrinsic::bitreverse; 2791 } 2792 if (IntrinsicNum != 0) { 2793 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); 2794 assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op"); 2795 Function *BswapOrBitreverse = 2796 Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy); 2797 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); 2798 return CallInst::Create(BswapOrBitreverse, {ScalarX}); 2799 } 2800 } 2801 } 2802 2803 // Handle the A->B->A cast, and there is an intervening PHI node. 2804 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2805 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2806 return I; 2807 2808 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2809 return I; 2810 2811 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2812 return I; 2813 2814 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2815 return I; 2816 2817 return commonCastTransforms(CI); 2818 } 2819 2820 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2821 return commonCastTransforms(CI); 2822 } 2823