1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for cast operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/TargetLibraryInfo.h" 17 #include "llvm/IR/DIBuilder.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 #include "llvm/Transforms/InstCombine/InstCombiner.h" 22 #include <numeric> 23 using namespace llvm; 24 using namespace PatternMatch; 25 26 #define DEBUG_TYPE "instcombine" 27 28 /// Analyze 'Val', seeing if it is a simple linear expression. 29 /// If so, decompose it, returning some value X, such that Val is 30 /// X*Scale+Offset. 31 /// 32 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 33 uint64_t &Offset) { 34 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 35 Offset = CI->getZExtValue(); 36 Scale = 0; 37 return ConstantInt::get(Val->getType(), 0); 38 } 39 40 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 41 // Cannot look past anything that might overflow. 42 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 43 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 44 Scale = 1; 45 Offset = 0; 46 return Val; 47 } 48 49 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 50 if (I->getOpcode() == Instruction::Shl) { 51 // This is a value scaled by '1 << the shift amt'. 52 Scale = UINT64_C(1) << RHS->getZExtValue(); 53 Offset = 0; 54 return I->getOperand(0); 55 } 56 57 if (I->getOpcode() == Instruction::Mul) { 58 // This value is scaled by 'RHS'. 59 Scale = RHS->getZExtValue(); 60 Offset = 0; 61 return I->getOperand(0); 62 } 63 64 if (I->getOpcode() == Instruction::Add) { 65 // We have X+C. Check to see if we really have (X*C2)+C1, 66 // where C1 is divisible by C2. 67 unsigned SubScale; 68 Value *SubVal = 69 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 70 Offset += RHS->getZExtValue(); 71 Scale = SubScale; 72 return SubVal; 73 } 74 } 75 } 76 77 // Otherwise, we can't look past this. 78 Scale = 1; 79 Offset = 0; 80 return Val; 81 } 82 83 /// If we find a cast of an allocation instruction, try to eliminate the cast by 84 /// moving the type information into the alloc. 85 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI, 86 AllocaInst &AI) { 87 PointerType *PTy = cast<PointerType>(CI.getType()); 88 89 IRBuilderBase::InsertPointGuard Guard(Builder); 90 Builder.SetInsertPoint(&AI); 91 92 // Get the type really allocated and the type casted to. 93 Type *AllocElTy = AI.getAllocatedType(); 94 Type *CastElTy = PTy->getElementType(); 95 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 96 97 // This optimisation does not work for cases where the cast type 98 // is scalable and the allocated type is not. This because we need to 99 // know how many times the casted type fits into the allocated type. 100 // For the opposite case where the allocated type is scalable and the 101 // cast type is not this leads to poor code quality due to the 102 // introduction of 'vscale' into the calculations. It seems better to 103 // bail out for this case too until we've done a proper cost-benefit 104 // analysis. 105 bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy); 106 bool CastIsScalable = isa<ScalableVectorType>(CastElTy); 107 if (AllocIsScalable != CastIsScalable) return nullptr; 108 109 Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy); 110 Align CastElTyAlign = DL.getABITypeAlign(CastElTy); 111 if (CastElTyAlign < AllocElTyAlign) return nullptr; 112 113 // If the allocation has multiple uses, only promote it if we are strictly 114 // increasing the alignment of the resultant allocation. If we keep it the 115 // same, we open the door to infinite loops of various kinds. 116 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 117 118 // The alloc and cast types should be either both fixed or both scalable. 119 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize(); 120 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize(); 121 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 122 123 // If the allocation has multiple uses, only promote it if we're not 124 // shrinking the amount of memory being allocated. 125 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize(); 126 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize(); 127 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 128 129 // See if we can satisfy the modulus by pulling a scale out of the array 130 // size argument. 131 unsigned ArraySizeScale; 132 uint64_t ArrayOffset; 133 Value *NumElements = // See if the array size is a decomposable linear expr. 134 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 135 136 // If we can now satisfy the modulus, by using a non-1 scale, we really can 137 // do the xform. 138 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 139 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 140 141 // We don't currently support arrays of scalable types. 142 assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0)); 143 144 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 145 Value *Amt = nullptr; 146 if (Scale == 1) { 147 Amt = NumElements; 148 } else { 149 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 150 // Insert before the alloca, not before the cast. 151 Amt = Builder.CreateMul(Amt, NumElements); 152 } 153 154 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 155 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 156 Offset, true); 157 Amt = Builder.CreateAdd(Amt, Off); 158 } 159 160 AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt); 161 New->setAlignment(AI.getAlign()); 162 New->takeName(&AI); 163 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 164 165 // If the allocation has multiple real uses, insert a cast and change all 166 // things that used it to use the new cast. This will also hack on CI, but it 167 // will die soon. 168 if (!AI.hasOneUse()) { 169 // New is the allocation instruction, pointer typed. AI is the original 170 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 171 Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast"); 172 replaceInstUsesWith(AI, NewCast); 173 eraseInstFromFunction(AI); 174 } 175 return replaceInstUsesWith(CI, New); 176 } 177 178 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 179 /// true for, actually insert the code to evaluate the expression. 180 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty, 181 bool isSigned) { 182 if (Constant *C = dyn_cast<Constant>(V)) { 183 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 184 // If we got a constantexpr back, try to simplify it with DL info. 185 return ConstantFoldConstant(C, DL, &TLI); 186 } 187 188 // Otherwise, it must be an instruction. 189 Instruction *I = cast<Instruction>(V); 190 Instruction *Res = nullptr; 191 unsigned Opc = I->getOpcode(); 192 switch (Opc) { 193 case Instruction::Add: 194 case Instruction::Sub: 195 case Instruction::Mul: 196 case Instruction::And: 197 case Instruction::Or: 198 case Instruction::Xor: 199 case Instruction::AShr: 200 case Instruction::LShr: 201 case Instruction::Shl: 202 case Instruction::UDiv: 203 case Instruction::URem: { 204 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 205 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 206 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 207 break; 208 } 209 case Instruction::Trunc: 210 case Instruction::ZExt: 211 case Instruction::SExt: 212 // If the source type of the cast is the type we're trying for then we can 213 // just return the source. There's no need to insert it because it is not 214 // new. 215 if (I->getOperand(0)->getType() == Ty) 216 return I->getOperand(0); 217 218 // Otherwise, must be the same type of cast, so just reinsert a new one. 219 // This also handles the case of zext(trunc(x)) -> zext(x). 220 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 221 Opc == Instruction::SExt); 222 break; 223 case Instruction::Select: { 224 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 225 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 226 Res = SelectInst::Create(I->getOperand(0), True, False); 227 break; 228 } 229 case Instruction::PHI: { 230 PHINode *OPN = cast<PHINode>(I); 231 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 232 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 233 Value *V = 234 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 235 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 236 } 237 Res = NPN; 238 break; 239 } 240 default: 241 // TODO: Can handle more cases here. 242 llvm_unreachable("Unreachable!"); 243 } 244 245 Res->takeName(I); 246 return InsertNewInstWith(Res, *I); 247 } 248 249 Instruction::CastOps 250 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1, 251 const CastInst *CI2) { 252 Type *SrcTy = CI1->getSrcTy(); 253 Type *MidTy = CI1->getDestTy(); 254 Type *DstTy = CI2->getDestTy(); 255 256 Instruction::CastOps firstOp = CI1->getOpcode(); 257 Instruction::CastOps secondOp = CI2->getOpcode(); 258 Type *SrcIntPtrTy = 259 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 260 Type *MidIntPtrTy = 261 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 262 Type *DstIntPtrTy = 263 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 264 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 265 DstTy, SrcIntPtrTy, MidIntPtrTy, 266 DstIntPtrTy); 267 268 // We don't want to form an inttoptr or ptrtoint that converts to an integer 269 // type that differs from the pointer size. 270 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 271 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 272 Res = 0; 273 274 return Instruction::CastOps(Res); 275 } 276 277 /// Implement the transforms common to all CastInst visitors. 278 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) { 279 Value *Src = CI.getOperand(0); 280 281 // Try to eliminate a cast of a cast. 282 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 283 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 284 // The first cast (CSrc) is eliminable so we need to fix up or replace 285 // the second cast (CI). CSrc will then have a good chance of being dead. 286 auto *Ty = CI.getType(); 287 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 288 // Point debug users of the dying cast to the new one. 289 if (CSrc->hasOneUse()) 290 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 291 return Res; 292 } 293 } 294 295 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 296 // We are casting a select. Try to fold the cast into the select if the 297 // select does not have a compare instruction with matching operand types 298 // or the select is likely better done in a narrow type. 299 // Creating a select with operands that are different sizes than its 300 // condition may inhibit other folds and lead to worse codegen. 301 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 302 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() || 303 (CI.getOpcode() == Instruction::Trunc && 304 shouldChangeType(CI.getSrcTy(), CI.getType()))) { 305 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 306 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 307 return NV; 308 } 309 } 310 } 311 312 // If we are casting a PHI, then fold the cast into the PHI. 313 if (auto *PN = dyn_cast<PHINode>(Src)) { 314 // Don't do this if it would create a PHI node with an illegal type from a 315 // legal type. 316 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 317 shouldChangeType(CI.getSrcTy(), CI.getType())) 318 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 319 return NV; 320 } 321 322 return nullptr; 323 } 324 325 /// Constants and extensions/truncates from the destination type are always 326 /// free to be evaluated in that type. This is a helper for canEvaluate*. 327 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 328 if (isa<Constant>(V)) 329 return true; 330 Value *X; 331 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 332 X->getType() == Ty) 333 return true; 334 335 return false; 336 } 337 338 /// Filter out values that we can not evaluate in the destination type for free. 339 /// This is a helper for canEvaluate*. 340 static bool canNotEvaluateInType(Value *V, Type *Ty) { 341 assert(!isa<Constant>(V) && "Constant should already be handled."); 342 if (!isa<Instruction>(V)) 343 return true; 344 // We don't extend or shrink something that has multiple uses -- doing so 345 // would require duplicating the instruction which isn't profitable. 346 if (!V->hasOneUse()) 347 return true; 348 349 return false; 350 } 351 352 /// Return true if we can evaluate the specified expression tree as type Ty 353 /// instead of its larger type, and arrive with the same value. 354 /// This is used by code that tries to eliminate truncates. 355 /// 356 /// Ty will always be a type smaller than V. We should return true if trunc(V) 357 /// can be computed by computing V in the smaller type. If V is an instruction, 358 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 359 /// makes sense if x and y can be efficiently truncated. 360 /// 361 /// This function works on both vectors and scalars. 362 /// 363 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC, 364 Instruction *CxtI) { 365 if (canAlwaysEvaluateInType(V, Ty)) 366 return true; 367 if (canNotEvaluateInType(V, Ty)) 368 return false; 369 370 auto *I = cast<Instruction>(V); 371 Type *OrigTy = V->getType(); 372 switch (I->getOpcode()) { 373 case Instruction::Add: 374 case Instruction::Sub: 375 case Instruction::Mul: 376 case Instruction::And: 377 case Instruction::Or: 378 case Instruction::Xor: 379 // These operators can all arbitrarily be extended or truncated. 380 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 381 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 382 383 case Instruction::UDiv: 384 case Instruction::URem: { 385 // UDiv and URem can be truncated if all the truncated bits are zero. 386 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 387 uint32_t BitWidth = Ty->getScalarSizeInBits(); 388 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 389 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 390 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 391 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 392 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 393 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 394 } 395 break; 396 } 397 case Instruction::Shl: { 398 // If we are truncating the result of this SHL, and if it's a shift of an 399 // inrange amount, we can always perform a SHL in a smaller type. 400 uint32_t BitWidth = Ty->getScalarSizeInBits(); 401 KnownBits AmtKnownBits = 402 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 403 if (AmtKnownBits.getMaxValue().ult(BitWidth)) 404 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 405 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 406 break; 407 } 408 case Instruction::LShr: { 409 // If this is a truncate of a logical shr, we can truncate it to a smaller 410 // lshr iff we know that the bits we would otherwise be shifting in are 411 // already zeros. 412 // TODO: It is enough to check that the bits we would be shifting in are 413 // zero - use AmtKnownBits.getMaxValue(). 414 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 415 uint32_t BitWidth = Ty->getScalarSizeInBits(); 416 KnownBits AmtKnownBits = 417 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 418 APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 419 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 420 IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) { 421 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 422 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 423 } 424 break; 425 } 426 case Instruction::AShr: { 427 // If this is a truncate of an arithmetic shr, we can truncate it to a 428 // smaller ashr iff we know that all the bits from the sign bit of the 429 // original type and the sign bit of the truncate type are similar. 430 // TODO: It is enough to check that the bits we would be shifting in are 431 // similar to sign bit of the truncate type. 432 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 433 uint32_t BitWidth = Ty->getScalarSizeInBits(); 434 KnownBits AmtKnownBits = 435 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); 436 unsigned ShiftedBits = OrigBitWidth - BitWidth; 437 if (AmtKnownBits.getMaxValue().ult(BitWidth) && 438 ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 439 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 440 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 441 break; 442 } 443 case Instruction::Trunc: 444 // trunc(trunc(x)) -> trunc(x) 445 return true; 446 case Instruction::ZExt: 447 case Instruction::SExt: 448 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 449 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 450 return true; 451 case Instruction::Select: { 452 SelectInst *SI = cast<SelectInst>(I); 453 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 454 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 455 } 456 case Instruction::PHI: { 457 // We can change a phi if we can change all operands. Note that we never 458 // get into trouble with cyclic PHIs here because we only consider 459 // instructions with a single use. 460 PHINode *PN = cast<PHINode>(I); 461 for (Value *IncValue : PN->incoming_values()) 462 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 463 return false; 464 return true; 465 } 466 default: 467 // TODO: Can handle more cases here. 468 break; 469 } 470 471 return false; 472 } 473 474 /// Given a vector that is bitcast to an integer, optionally logically 475 /// right-shifted, and truncated, convert it to an extractelement. 476 /// Example (big endian): 477 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 478 /// ---> 479 /// extractelement <4 x i32> %X, 1 480 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, 481 InstCombinerImpl &IC) { 482 Value *TruncOp = Trunc.getOperand(0); 483 Type *DestType = Trunc.getType(); 484 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 485 return nullptr; 486 487 Value *VecInput = nullptr; 488 ConstantInt *ShiftVal = nullptr; 489 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 490 m_LShr(m_BitCast(m_Value(VecInput)), 491 m_ConstantInt(ShiftVal)))) || 492 !isa<VectorType>(VecInput->getType())) 493 return nullptr; 494 495 VectorType *VecType = cast<VectorType>(VecInput->getType()); 496 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 497 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 498 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 499 500 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 501 return nullptr; 502 503 // If the element type of the vector doesn't match the result type, 504 // bitcast it to a vector type that we can extract from. 505 unsigned NumVecElts = VecWidth / DestWidth; 506 if (VecType->getElementType() != DestType) { 507 VecType = FixedVectorType::get(DestType, NumVecElts); 508 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 509 } 510 511 unsigned Elt = ShiftAmount / DestWidth; 512 if (IC.getDataLayout().isBigEndian()) 513 Elt = NumVecElts - 1 - Elt; 514 515 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 516 } 517 518 /// Funnel/Rotate left/right may occur in a wider type than necessary because of 519 /// type promotion rules. Try to narrow the inputs and convert to funnel shift. 520 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) { 521 assert((isa<VectorType>(Trunc.getSrcTy()) || 522 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 523 "Don't narrow to an illegal scalar type"); 524 525 // Bail out on strange types. It is possible to handle some of these patterns 526 // even with non-power-of-2 sizes, but it is not a likely scenario. 527 Type *DestTy = Trunc.getType(); 528 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 529 if (!isPowerOf2_32(NarrowWidth)) 530 return nullptr; 531 532 // First, find an or'd pair of opposite shifts: 533 // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)) 534 BinaryOperator *Or0, *Or1; 535 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 536 return nullptr; 537 538 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 539 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 540 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 541 Or0->getOpcode() == Or1->getOpcode()) 542 return nullptr; 543 544 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 545 if (Or0->getOpcode() == BinaryOperator::LShr) { 546 std::swap(Or0, Or1); 547 std::swap(ShVal0, ShVal1); 548 std::swap(ShAmt0, ShAmt1); 549 } 550 assert(Or0->getOpcode() == BinaryOperator::Shl && 551 Or1->getOpcode() == BinaryOperator::LShr && 552 "Illegal or(shift,shift) pair"); 553 554 // Match the shift amount operands for a funnel/rotate pattern. This always 555 // matches a subtraction on the R operand. 556 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 557 // The shift amounts may add up to the narrow bit width: 558 // (shl ShVal0, L) | (lshr ShVal1, Width - L) 559 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 560 return L; 561 562 // The following patterns currently only work for rotation patterns. 563 // TODO: Add more general funnel-shift compatible patterns. 564 if (ShVal0 != ShVal1) 565 return nullptr; 566 567 // The shift amount may be masked with negation: 568 // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1))) 569 Value *X; 570 unsigned Mask = Width - 1; 571 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 572 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 573 return X; 574 575 // Same as above, but the shift amount may be extended after masking: 576 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 577 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 578 return X; 579 580 return nullptr; 581 }; 582 583 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 584 bool IsFshl = true; // Sub on LSHR. 585 if (!ShAmt) { 586 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 587 IsFshl = false; // Sub on SHL. 588 } 589 if (!ShAmt) 590 return nullptr; 591 592 // The shifted value must have high zeros in the wide type. Typically, this 593 // will be a zext, but it could also be the result of an 'and' or 'shift'. 594 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 595 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 596 if (!MaskedValueIsZero(ShVal0, HiBitMask, 0, &Trunc) || 597 !MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc)) 598 return nullptr; 599 600 // We have an unnecessarily wide rotate! 601 // trunc (or (lshr ShVal0, ShAmt), (shl ShVal1, BitWidth - ShAmt)) 602 // Narrow the inputs and convert to funnel shift intrinsic: 603 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) 604 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 605 Value *X, *Y; 606 X = Y = Builder.CreateTrunc(ShVal0, DestTy); 607 if (ShVal0 != ShVal1) 608 Y = Builder.CreateTrunc(ShVal1, DestTy); 609 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 610 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 611 return IntrinsicInst::Create(F, {X, Y, NarrowShAmt}); 612 } 613 614 /// Try to narrow the width of math or bitwise logic instructions by pulling a 615 /// truncate ahead of binary operators. 616 /// TODO: Transforms for truncated shifts should be moved into here. 617 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) { 618 Type *SrcTy = Trunc.getSrcTy(); 619 Type *DestTy = Trunc.getType(); 620 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 621 return nullptr; 622 623 BinaryOperator *BinOp; 624 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 625 return nullptr; 626 627 Value *BinOp0 = BinOp->getOperand(0); 628 Value *BinOp1 = BinOp->getOperand(1); 629 switch (BinOp->getOpcode()) { 630 case Instruction::And: 631 case Instruction::Or: 632 case Instruction::Xor: 633 case Instruction::Add: 634 case Instruction::Sub: 635 case Instruction::Mul: { 636 Constant *C; 637 if (match(BinOp0, m_Constant(C))) { 638 // trunc (binop C, X) --> binop (trunc C', X) 639 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 640 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 641 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 642 } 643 if (match(BinOp1, m_Constant(C))) { 644 // trunc (binop X, C) --> binop (trunc X, C') 645 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 646 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 647 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 648 } 649 Value *X; 650 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 651 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 652 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 653 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 654 } 655 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 656 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 657 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 658 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 659 } 660 break; 661 } 662 663 default: break; 664 } 665 666 if (Instruction *NarrowOr = narrowFunnelShift(Trunc)) 667 return NarrowOr; 668 669 return nullptr; 670 } 671 672 /// Try to narrow the width of a splat shuffle. This could be generalized to any 673 /// shuffle with a constant operand, but we limit the transform to avoid 674 /// creating a shuffle type that targets may not be able to lower effectively. 675 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 676 InstCombiner::BuilderTy &Builder) { 677 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 678 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 679 is_splat(Shuf->getShuffleMask()) && 680 Shuf->getType() == Shuf->getOperand(0)->getType()) { 681 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 682 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 683 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 684 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask()); 685 } 686 687 return nullptr; 688 } 689 690 /// Try to narrow the width of an insert element. This could be generalized for 691 /// any vector constant, but we limit the transform to insertion into undef to 692 /// avoid potential backend problems from unsupported insertion widths. This 693 /// could also be extended to handle the case of inserting a scalar constant 694 /// into a vector variable. 695 static Instruction *shrinkInsertElt(CastInst &Trunc, 696 InstCombiner::BuilderTy &Builder) { 697 Instruction::CastOps Opcode = Trunc.getOpcode(); 698 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 699 "Unexpected instruction for shrinking"); 700 701 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 702 if (!InsElt || !InsElt->hasOneUse()) 703 return nullptr; 704 705 Type *DestTy = Trunc.getType(); 706 Type *DestScalarTy = DestTy->getScalarType(); 707 Value *VecOp = InsElt->getOperand(0); 708 Value *ScalarOp = InsElt->getOperand(1); 709 Value *Index = InsElt->getOperand(2); 710 711 if (isa<UndefValue>(VecOp)) { 712 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 713 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 714 UndefValue *NarrowUndef = UndefValue::get(DestTy); 715 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 716 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 717 } 718 719 return nullptr; 720 } 721 722 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) { 723 if (Instruction *Result = commonCastTransforms(Trunc)) 724 return Result; 725 726 Value *Src = Trunc.getOperand(0); 727 Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); 728 unsigned DestWidth = DestTy->getScalarSizeInBits(); 729 unsigned SrcWidth = SrcTy->getScalarSizeInBits(); 730 731 // Attempt to truncate the entire input expression tree to the destination 732 // type. Only do this if the dest type is a simple type, don't convert the 733 // expression tree to something weird like i93 unless the source is also 734 // strange. 735 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 736 canEvaluateTruncated(Src, DestTy, *this, &Trunc)) { 737 738 // If this cast is a truncate, evaluting in a different type always 739 // eliminates the cast, so it is always a win. 740 LLVM_DEBUG( 741 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 742 " to avoid cast: " 743 << Trunc << '\n'); 744 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 745 assert(Res->getType() == DestTy); 746 return replaceInstUsesWith(Trunc, Res); 747 } 748 749 // For integer types, check if we can shorten the entire input expression to 750 // DestWidth * 2, which won't allow removing the truncate, but reducing the 751 // width may enable further optimizations, e.g. allowing for larger 752 // vectorization factors. 753 if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) { 754 if (DestWidth * 2 < SrcWidth) { 755 auto *NewDestTy = DestITy->getExtendedType(); 756 if (shouldChangeType(SrcTy, NewDestTy) && 757 canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) { 758 LLVM_DEBUG( 759 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 760 " to reduce the width of operand of" 761 << Trunc << '\n'); 762 Value *Res = EvaluateInDifferentType(Src, NewDestTy, false); 763 return new TruncInst(Res, DestTy); 764 } 765 } 766 } 767 768 // Test if the trunc is the user of a select which is part of a 769 // minimum or maximum operation. If so, don't do any more simplification. 770 // Even simplifying demanded bits can break the canonical form of a 771 // min/max. 772 Value *LHS, *RHS; 773 if (SelectInst *Sel = dyn_cast<SelectInst>(Src)) 774 if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN) 775 return nullptr; 776 777 // See if we can simplify any instructions used by the input whose sole 778 // purpose is to compute bits we don't care about. 779 if (SimplifyDemandedInstructionBits(Trunc)) 780 return &Trunc; 781 782 if (DestWidth == 1) { 783 Value *Zero = Constant::getNullValue(SrcTy); 784 if (DestTy->isIntegerTy()) { 785 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 786 // TODO: We canonicalize to more instructions here because we are probably 787 // lacking equivalent analysis for trunc relative to icmp. There may also 788 // be codegen concerns. If those trunc limitations were removed, we could 789 // remove this transform. 790 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 791 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 792 } 793 794 // For vectors, we do not canonicalize all truncs to icmp, so optimize 795 // patterns that would be covered within visitICmpInst. 796 Value *X; 797 Constant *C; 798 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) { 799 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 800 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 801 Constant *MaskC = ConstantExpr::getShl(One, C); 802 Value *And = Builder.CreateAnd(X, MaskC); 803 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 804 } 805 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)), 806 m_Deferred(X))))) { 807 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 808 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); 809 Constant *MaskC = ConstantExpr::getShl(One, C); 810 MaskC = ConstantExpr::getOr(MaskC, One); 811 Value *And = Builder.CreateAnd(X, MaskC); 812 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 813 } 814 } 815 816 Value *A; 817 Constant *C; 818 if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) { 819 unsigned AWidth = A->getType()->getScalarSizeInBits(); 820 unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth); 821 auto *OldSh = cast<Instruction>(Src); 822 bool IsExact = OldSh->isExact(); 823 824 // If the shift is small enough, all zero bits created by the shift are 825 // removed by the trunc. 826 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 827 APInt(SrcWidth, MaxShiftAmt)))) { 828 // trunc (lshr (sext A), C) --> ashr A, C 829 if (A->getType() == DestTy) { 830 Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false); 831 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 832 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 833 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 834 return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt) 835 : BinaryOperator::CreateAShr(A, ShAmt); 836 } 837 // The types are mismatched, so create a cast after shifting: 838 // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) 839 if (Src->hasOneUse()) { 840 Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false); 841 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt); 842 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType()); 843 Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact); 844 return CastInst::CreateIntegerCast(Shift, DestTy, true); 845 } 846 } 847 // TODO: Mask high bits with 'and'. 848 } 849 850 // trunc (*shr (trunc A), C) --> trunc(*shr A, C) 851 if (match(Src, m_OneUse(m_Shr(m_Trunc(m_Value(A)), m_Constant(C))))) { 852 unsigned MaxShiftAmt = SrcWidth - DestWidth; 853 854 // If the shift is small enough, all zero/sign bits created by the shift are 855 // removed by the trunc. 856 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE, 857 APInt(SrcWidth, MaxShiftAmt)))) { 858 auto *OldShift = cast<Instruction>(Src); 859 bool IsExact = OldShift->isExact(); 860 auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true); 861 ShAmt = Constant::mergeUndefsWith(ShAmt, C); 862 Value *Shift = 863 OldShift->getOpcode() == Instruction::AShr 864 ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact) 865 : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact); 866 return CastInst::CreateTruncOrBitCast(Shift, DestTy); 867 } 868 } 869 870 if (Instruction *I = narrowBinOp(Trunc)) 871 return I; 872 873 if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) 874 return I; 875 876 if (Instruction *I = shrinkInsertElt(Trunc, Builder)) 877 return I; 878 879 if (Src->hasOneUse() && 880 (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) { 881 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 882 // dest type is native and cst < dest size. 883 if (match(Src, m_Shl(m_Value(A), m_Constant(C))) && 884 !match(A, m_Shr(m_Value(), m_Constant()))) { 885 // Skip shifts of shift by constants. It undoes a combine in 886 // FoldShiftByConstant and is the extend in reg pattern. 887 APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth); 888 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) { 889 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 890 return BinaryOperator::Create(Instruction::Shl, NewTrunc, 891 ConstantExpr::getTrunc(C, DestTy)); 892 } 893 } 894 } 895 896 if (Instruction *I = foldVecTruncToExtElt(Trunc, *this)) 897 return I; 898 899 // Whenever an element is extracted from a vector, and then truncated, 900 // canonicalize by converting it to a bitcast followed by an 901 // extractelement. 902 // 903 // Example (little endian): 904 // trunc (extractelement <4 x i64> %X, 0) to i32 905 // ---> 906 // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 907 Value *VecOp; 908 ConstantInt *Cst; 909 if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) { 910 auto *VecOpTy = cast<VectorType>(VecOp->getType()); 911 auto VecElts = VecOpTy->getElementCount(); 912 913 // A badly fit destination size would result in an invalid cast. 914 if (SrcWidth % DestWidth == 0) { 915 uint64_t TruncRatio = SrcWidth / DestWidth; 916 uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio; 917 uint64_t VecOpIdx = Cst->getZExtValue(); 918 uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1 919 : VecOpIdx * TruncRatio; 920 assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && 921 "overflow 32-bits"); 922 923 auto *BitCastTo = 924 VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable()); 925 Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo); 926 return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx)); 927 } 928 } 929 930 return nullptr; 931 } 932 933 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext, 934 bool DoTransform) { 935 // If we are just checking for a icmp eq of a single bit and zext'ing it 936 // to an integer, then shift the bit to the appropriate place and then 937 // cast to integer to avoid the comparison. 938 const APInt *Op1CV; 939 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { 940 941 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 942 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 943 if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || 944 (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { 945 if (!DoTransform) return Cmp; 946 947 Value *In = Cmp->getOperand(0); 948 Value *Sh = ConstantInt::get(In->getType(), 949 In->getType()->getScalarSizeInBits() - 1); 950 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 951 if (In->getType() != Zext.getType()) 952 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); 953 954 if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) { 955 Constant *One = ConstantInt::get(In->getType(), 1); 956 In = Builder.CreateXor(In, One, In->getName() + ".not"); 957 } 958 959 return replaceInstUsesWith(Zext, In); 960 } 961 962 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 963 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 964 // zext (X == 1) to i32 --> X iff X has only the low bit set. 965 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 966 // zext (X != 0) to i32 --> X iff X has only the low bit set. 967 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 968 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 969 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 970 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && 971 // This only works for EQ and NE 972 Cmp->isEquality()) { 973 // If Op1C some other power of two, convert: 974 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); 975 976 APInt KnownZeroMask(~Known.Zero); 977 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 978 if (!DoTransform) return Cmp; 979 980 bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE; 981 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { 982 // (X&4) == 2 --> false 983 // (X&4) != 2 --> true 984 Constant *Res = ConstantInt::get(Zext.getType(), isNE); 985 return replaceInstUsesWith(Zext, Res); 986 } 987 988 uint32_t ShAmt = KnownZeroMask.logBase2(); 989 Value *In = Cmp->getOperand(0); 990 if (ShAmt) { 991 // Perform a logical shr by shiftamt. 992 // Insert the shift to put the result in the low bit. 993 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 994 In->getName() + ".lobit"); 995 } 996 997 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. 998 Constant *One = ConstantInt::get(In->getType(), 1); 999 In = Builder.CreateXor(In, One); 1000 } 1001 1002 if (Zext.getType() == In->getType()) 1003 return replaceInstUsesWith(Zext, In); 1004 1005 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); 1006 return replaceInstUsesWith(Zext, IntCast); 1007 } 1008 } 1009 } 1010 1011 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 1012 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 1013 // may lead to additional simplifications. 1014 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { 1015 if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) { 1016 Value *LHS = Cmp->getOperand(0); 1017 Value *RHS = Cmp->getOperand(1); 1018 1019 KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext); 1020 KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext); 1021 1022 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 1023 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 1024 APInt UnknownBit = ~KnownBits; 1025 if (UnknownBit.countPopulation() == 1) { 1026 if (!DoTransform) return Cmp; 1027 1028 Value *Result = Builder.CreateXor(LHS, RHS); 1029 1030 // Mask off any bits that are set and won't be shifted away. 1031 if (KnownLHS.One.uge(UnknownBit)) 1032 Result = Builder.CreateAnd(Result, 1033 ConstantInt::get(ITy, UnknownBit)); 1034 1035 // Shift the bit we're testing down to the lsb. 1036 Result = Builder.CreateLShr( 1037 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 1038 1039 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 1040 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 1041 Result->takeName(Cmp); 1042 return replaceInstUsesWith(Zext, Result); 1043 } 1044 } 1045 } 1046 } 1047 1048 return nullptr; 1049 } 1050 1051 /// Determine if the specified value can be computed in the specified wider type 1052 /// and produce the same low bits. If not, return false. 1053 /// 1054 /// If this function returns true, it can also return a non-zero number of bits 1055 /// (in BitsToClear) which indicates that the value it computes is correct for 1056 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 1057 /// out. For example, to promote something like: 1058 /// 1059 /// %B = trunc i64 %A to i32 1060 /// %C = lshr i32 %B, 8 1061 /// %E = zext i32 %C to i64 1062 /// 1063 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 1064 /// set to 8 to indicate that the promoted value needs to have bits 24-31 1065 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 1066 /// clear the top bits anyway, doing this has no extra cost. 1067 /// 1068 /// This function works on both vectors and scalars. 1069 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 1070 InstCombinerImpl &IC, Instruction *CxtI) { 1071 BitsToClear = 0; 1072 if (canAlwaysEvaluateInType(V, Ty)) 1073 return true; 1074 if (canNotEvaluateInType(V, Ty)) 1075 return false; 1076 1077 auto *I = cast<Instruction>(V); 1078 unsigned Tmp; 1079 switch (I->getOpcode()) { 1080 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 1081 case Instruction::SExt: // zext(sext(x)) -> sext(x). 1082 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 1083 return true; 1084 case Instruction::And: 1085 case Instruction::Or: 1086 case Instruction::Xor: 1087 case Instruction::Add: 1088 case Instruction::Sub: 1089 case Instruction::Mul: 1090 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1091 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1092 return false; 1093 // These can all be promoted if neither operand has 'bits to clear'. 1094 if (BitsToClear == 0 && Tmp == 0) 1095 return true; 1096 1097 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1098 // other side, BitsToClear is ok. 1099 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1100 // We use MaskedValueIsZero here for generality, but the case we care 1101 // about the most is constant RHS. 1102 unsigned VSize = V->getType()->getScalarSizeInBits(); 1103 if (IC.MaskedValueIsZero(I->getOperand(1), 1104 APInt::getHighBitsSet(VSize, BitsToClear), 1105 0, CxtI)) { 1106 // If this is an And instruction and all of the BitsToClear are 1107 // known to be zero we can reset BitsToClear. 1108 if (I->getOpcode() == Instruction::And) 1109 BitsToClear = 0; 1110 return true; 1111 } 1112 } 1113 1114 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1115 return false; 1116 1117 case Instruction::Shl: { 1118 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1119 // upper bits we can reduce BitsToClear by the shift amount. 1120 const APInt *Amt; 1121 if (match(I->getOperand(1), m_APInt(Amt))) { 1122 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1123 return false; 1124 uint64_t ShiftAmt = Amt->getZExtValue(); 1125 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1126 return true; 1127 } 1128 return false; 1129 } 1130 case Instruction::LShr: { 1131 // We can promote lshr(x, cst) if we can promote x. This requires the 1132 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1133 const APInt *Amt; 1134 if (match(I->getOperand(1), m_APInt(Amt))) { 1135 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1136 return false; 1137 BitsToClear += Amt->getZExtValue(); 1138 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1139 BitsToClear = V->getType()->getScalarSizeInBits(); 1140 return true; 1141 } 1142 // Cannot promote variable LSHR. 1143 return false; 1144 } 1145 case Instruction::Select: 1146 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1147 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1148 // TODO: If important, we could handle the case when the BitsToClear are 1149 // known zero in the disagreeing side. 1150 Tmp != BitsToClear) 1151 return false; 1152 return true; 1153 1154 case Instruction::PHI: { 1155 // We can change a phi if we can change all operands. Note that we never 1156 // get into trouble with cyclic PHIs here because we only consider 1157 // instructions with a single use. 1158 PHINode *PN = cast<PHINode>(I); 1159 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1160 return false; 1161 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1162 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1163 // TODO: If important, we could handle the case when the BitsToClear 1164 // are known zero in the disagreeing input. 1165 Tmp != BitsToClear) 1166 return false; 1167 return true; 1168 } 1169 default: 1170 // TODO: Can handle more cases here. 1171 return false; 1172 } 1173 } 1174 1175 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) { 1176 // If this zero extend is only used by a truncate, let the truncate be 1177 // eliminated before we try to optimize this zext. 1178 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1179 return nullptr; 1180 1181 // If one of the common conversion will work, do it. 1182 if (Instruction *Result = commonCastTransforms(CI)) 1183 return Result; 1184 1185 Value *Src = CI.getOperand(0); 1186 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1187 1188 // Try to extend the entire expression tree to the wide destination type. 1189 unsigned BitsToClear; 1190 if (shouldChangeType(SrcTy, DestTy) && 1191 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1192 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1193 "Can't clear more bits than in SrcTy"); 1194 1195 // Okay, we can transform this! Insert the new expression now. 1196 LLVM_DEBUG( 1197 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1198 " to avoid zero extend: " 1199 << CI << '\n'); 1200 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1201 assert(Res->getType() == DestTy); 1202 1203 // Preserve debug values referring to Src if the zext is its last use. 1204 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1205 if (SrcOp->hasOneUse()) 1206 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1207 1208 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1209 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1210 1211 // If the high bits are already filled with zeros, just replace this 1212 // cast with the result. 1213 if (MaskedValueIsZero(Res, 1214 APInt::getHighBitsSet(DestBitSize, 1215 DestBitSize-SrcBitsKept), 1216 0, &CI)) 1217 return replaceInstUsesWith(CI, Res); 1218 1219 // We need to emit an AND to clear the high bits. 1220 Constant *C = ConstantInt::get(Res->getType(), 1221 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1222 return BinaryOperator::CreateAnd(Res, C); 1223 } 1224 1225 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1226 // types and if the sizes are just right we can convert this into a logical 1227 // 'and' which will be much cheaper than the pair of casts. 1228 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1229 // TODO: Subsume this into EvaluateInDifferentType. 1230 1231 // Get the sizes of the types involved. We know that the intermediate type 1232 // will be smaller than A or C, but don't know the relation between A and C. 1233 Value *A = CSrc->getOperand(0); 1234 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1235 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1236 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1237 // If we're actually extending zero bits, then if 1238 // SrcSize < DstSize: zext(a & mask) 1239 // SrcSize == DstSize: a & mask 1240 // SrcSize > DstSize: trunc(a) & mask 1241 if (SrcSize < DstSize) { 1242 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1243 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1244 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1245 return new ZExtInst(And, CI.getType()); 1246 } 1247 1248 if (SrcSize == DstSize) { 1249 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1250 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1251 AndValue)); 1252 } 1253 if (SrcSize > DstSize) { 1254 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1255 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1256 return BinaryOperator::CreateAnd(Trunc, 1257 ConstantInt::get(Trunc->getType(), 1258 AndValue)); 1259 } 1260 } 1261 1262 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src)) 1263 return transformZExtICmp(Cmp, CI); 1264 1265 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1266 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1267 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1268 // of the (zext icmp) can be eliminated. If so, immediately perform the 1269 // according elimination. 1270 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1271 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1272 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1273 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType() && 1274 (transformZExtICmp(LHS, CI, false) || 1275 transformZExtICmp(RHS, CI, false))) { 1276 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1277 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1278 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1279 Value *Or = Builder.CreateOr(LCast, RCast, CI.getName()); 1280 if (auto *OrInst = dyn_cast<Instruction>(Or)) 1281 Builder.SetInsertPoint(OrInst); 1282 1283 // Perform the elimination. 1284 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1285 transformZExtICmp(LHS, *LZExt); 1286 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1287 transformZExtICmp(RHS, *RZExt); 1288 1289 return replaceInstUsesWith(CI, Or); 1290 } 1291 } 1292 1293 // zext(trunc(X) & C) -> (X & zext(C)). 1294 Constant *C; 1295 Value *X; 1296 if (SrcI && 1297 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1298 X->getType() == CI.getType()) 1299 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1300 1301 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1302 Value *And; 1303 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1304 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1305 X->getType() == CI.getType()) { 1306 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1307 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1308 } 1309 1310 return nullptr; 1311 } 1312 1313 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1314 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI, 1315 Instruction &CI) { 1316 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1317 ICmpInst::Predicate Pred = ICI->getPredicate(); 1318 1319 // Don't bother if Op1 isn't of vector or integer type. 1320 if (!Op1->getType()->isIntOrIntVectorTy()) 1321 return nullptr; 1322 1323 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1324 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1325 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1326 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1327 Value *Sh = ConstantInt::get(Op0->getType(), 1328 Op0->getType()->getScalarSizeInBits() - 1); 1329 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1330 if (In->getType() != CI.getType()) 1331 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1332 1333 if (Pred == ICmpInst::ICMP_SGT) 1334 In = Builder.CreateNot(In, In->getName() + ".not"); 1335 return replaceInstUsesWith(CI, In); 1336 } 1337 1338 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1339 // If we know that only one bit of the LHS of the icmp can be set and we 1340 // have an equality comparison with zero or a power of 2, we can transform 1341 // the icmp and sext into bitwise/integer operations. 1342 if (ICI->hasOneUse() && 1343 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1344 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1345 1346 APInt KnownZeroMask(~Known.Zero); 1347 if (KnownZeroMask.isPowerOf2()) { 1348 Value *In = ICI->getOperand(0); 1349 1350 // If the icmp tests for a known zero bit we can constant fold it. 1351 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1352 Value *V = Pred == ICmpInst::ICMP_NE ? 1353 ConstantInt::getAllOnesValue(CI.getType()) : 1354 ConstantInt::getNullValue(CI.getType()); 1355 return replaceInstUsesWith(CI, V); 1356 } 1357 1358 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1359 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1360 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1361 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1362 // Perform a right shift to place the desired bit in the LSB. 1363 if (ShiftAmt) 1364 In = Builder.CreateLShr(In, 1365 ConstantInt::get(In->getType(), ShiftAmt)); 1366 1367 // At this point "In" is either 1 or 0. Subtract 1 to turn 1368 // {1, 0} -> {0, -1}. 1369 In = Builder.CreateAdd(In, 1370 ConstantInt::getAllOnesValue(In->getType()), 1371 "sext"); 1372 } else { 1373 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1374 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1375 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1376 // Perform a left shift to place the desired bit in the MSB. 1377 if (ShiftAmt) 1378 In = Builder.CreateShl(In, 1379 ConstantInt::get(In->getType(), ShiftAmt)); 1380 1381 // Distribute the bit over the whole bit width. 1382 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1383 KnownZeroMask.getBitWidth() - 1), "sext"); 1384 } 1385 1386 if (CI.getType() == In->getType()) 1387 return replaceInstUsesWith(CI, In); 1388 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1389 } 1390 } 1391 } 1392 1393 return nullptr; 1394 } 1395 1396 /// Return true if we can take the specified value and return it as type Ty 1397 /// without inserting any new casts and without changing the value of the common 1398 /// low bits. This is used by code that tries to promote integer operations to 1399 /// a wider types will allow us to eliminate the extension. 1400 /// 1401 /// This function works on both vectors and scalars. 1402 /// 1403 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1404 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1405 "Can't sign extend type to a smaller type"); 1406 if (canAlwaysEvaluateInType(V, Ty)) 1407 return true; 1408 if (canNotEvaluateInType(V, Ty)) 1409 return false; 1410 1411 auto *I = cast<Instruction>(V); 1412 switch (I->getOpcode()) { 1413 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1414 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1415 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1416 return true; 1417 case Instruction::And: 1418 case Instruction::Or: 1419 case Instruction::Xor: 1420 case Instruction::Add: 1421 case Instruction::Sub: 1422 case Instruction::Mul: 1423 // These operators can all arbitrarily be extended if their inputs can. 1424 return canEvaluateSExtd(I->getOperand(0), Ty) && 1425 canEvaluateSExtd(I->getOperand(1), Ty); 1426 1427 //case Instruction::Shl: TODO 1428 //case Instruction::LShr: TODO 1429 1430 case Instruction::Select: 1431 return canEvaluateSExtd(I->getOperand(1), Ty) && 1432 canEvaluateSExtd(I->getOperand(2), Ty); 1433 1434 case Instruction::PHI: { 1435 // We can change a phi if we can change all operands. Note that we never 1436 // get into trouble with cyclic PHIs here because we only consider 1437 // instructions with a single use. 1438 PHINode *PN = cast<PHINode>(I); 1439 for (Value *IncValue : PN->incoming_values()) 1440 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1441 return true; 1442 } 1443 default: 1444 // TODO: Can handle more cases here. 1445 break; 1446 } 1447 1448 return false; 1449 } 1450 1451 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) { 1452 // If this sign extend is only used by a truncate, let the truncate be 1453 // eliminated before we try to optimize this sext. 1454 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1455 return nullptr; 1456 1457 if (Instruction *I = commonCastTransforms(CI)) 1458 return I; 1459 1460 Value *Src = CI.getOperand(0); 1461 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1462 1463 // If we know that the value being extended is positive, we can use a zext 1464 // instead. 1465 KnownBits Known = computeKnownBits(Src, 0, &CI); 1466 if (Known.isNonNegative()) 1467 return CastInst::Create(Instruction::ZExt, Src, DestTy); 1468 1469 // Try to extend the entire expression tree to the wide destination type. 1470 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1471 // Okay, we can transform this! Insert the new expression now. 1472 LLVM_DEBUG( 1473 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1474 " to avoid sign extend: " 1475 << CI << '\n'); 1476 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1477 assert(Res->getType() == DestTy); 1478 1479 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1480 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1481 1482 // If the high bits are already filled with sign bit, just replace this 1483 // cast with the result. 1484 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1485 return replaceInstUsesWith(CI, Res); 1486 1487 // We need to emit a shl + ashr to do the sign extend. 1488 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1489 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1490 ShAmt); 1491 } 1492 1493 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1494 // into shifts. 1495 Value *X; 1496 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1497 // sext(trunc(X)) --> ashr(shl(X, C), C) 1498 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1499 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1500 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1501 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1502 } 1503 1504 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1505 return transformSExtICmp(ICI, CI); 1506 1507 // If the input is a shl/ashr pair of a same constant, then this is a sign 1508 // extension from a smaller value. If we could trust arbitrary bitwidth 1509 // integers, we could turn this into a truncate to the smaller bit and then 1510 // use a sext for the whole extension. Since we don't, look deeper and check 1511 // for a truncate. If the source and dest are the same type, eliminate the 1512 // trunc and extend and just do shifts. For example, turn: 1513 // %a = trunc i32 %i to i8 1514 // %b = shl i8 %a, C 1515 // %c = ashr i8 %b, C 1516 // %d = sext i8 %c to i32 1517 // into: 1518 // %a = shl i32 %i, 32-(8-C) 1519 // %d = ashr i32 %a, 32-(8-C) 1520 Value *A = nullptr; 1521 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1522 Constant *BA = nullptr, *CA = nullptr; 1523 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)), 1524 m_Constant(CA))) && 1525 BA->isElementWiseEqual(CA) && A->getType() == DestTy) { 1526 Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy); 1527 Constant *NumLowbitsLeft = ConstantExpr::getSub( 1528 ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt); 1529 Constant *NewShAmt = ConstantExpr::getSub( 1530 ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()), 1531 NumLowbitsLeft); 1532 NewShAmt = 1533 Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA); 1534 A = Builder.CreateShl(A, NewShAmt, CI.getName()); 1535 return BinaryOperator::CreateAShr(A, NewShAmt); 1536 } 1537 1538 return nullptr; 1539 } 1540 1541 /// Return a Constant* for the specified floating-point constant if it fits 1542 /// in the specified FP type without changing its value. 1543 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1544 bool losesInfo; 1545 APFloat F = CFP->getValueAPF(); 1546 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1547 return !losesInfo; 1548 } 1549 1550 static Type *shrinkFPConstant(ConstantFP *CFP) { 1551 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1552 return nullptr; // No constant folding of this. 1553 // See if the value can be truncated to half and then reextended. 1554 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1555 return Type::getHalfTy(CFP->getContext()); 1556 // See if the value can be truncated to float and then reextended. 1557 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1558 return Type::getFloatTy(CFP->getContext()); 1559 if (CFP->getType()->isDoubleTy()) 1560 return nullptr; // Won't shrink. 1561 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1562 return Type::getDoubleTy(CFP->getContext()); 1563 // Don't try to shrink to various long double types. 1564 return nullptr; 1565 } 1566 1567 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1568 // type we can safely truncate all elements to. 1569 // TODO: Make these support undef elements. 1570 static Type *shrinkFPConstantVector(Value *V) { 1571 auto *CV = dyn_cast<Constant>(V); 1572 auto *CVVTy = dyn_cast<VectorType>(V->getType()); 1573 if (!CV || !CVVTy) 1574 return nullptr; 1575 1576 Type *MinType = nullptr; 1577 1578 unsigned NumElts = cast<FixedVectorType>(CVVTy)->getNumElements(); 1579 for (unsigned i = 0; i != NumElts; ++i) { 1580 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1581 if (!CFP) 1582 return nullptr; 1583 1584 Type *T = shrinkFPConstant(CFP); 1585 if (!T) 1586 return nullptr; 1587 1588 // If we haven't found a type yet or this type has a larger mantissa than 1589 // our previous type, this is our new minimal type. 1590 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1591 MinType = T; 1592 } 1593 1594 // Make a vector type from the minimal type. 1595 return FixedVectorType::get(MinType, NumElts); 1596 } 1597 1598 /// Find the minimum FP type we can safely truncate to. 1599 static Type *getMinimumFPType(Value *V) { 1600 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1601 return FPExt->getOperand(0)->getType(); 1602 1603 // If this value is a constant, return the constant in the smallest FP type 1604 // that can accurately represent it. This allows us to turn 1605 // (float)((double)X+2.0) into x+2.0f. 1606 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1607 if (Type *T = shrinkFPConstant(CFP)) 1608 return T; 1609 1610 // Try to shrink a vector of FP constants. 1611 if (Type *T = shrinkFPConstantVector(V)) 1612 return T; 1613 1614 return V->getType(); 1615 } 1616 1617 /// Return true if the cast from integer to FP can be proven to be exact for all 1618 /// possible inputs (the conversion does not lose any precision). 1619 static bool isKnownExactCastIntToFP(CastInst &I) { 1620 CastInst::CastOps Opcode = I.getOpcode(); 1621 assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && 1622 "Unexpected cast"); 1623 Value *Src = I.getOperand(0); 1624 Type *SrcTy = Src->getType(); 1625 Type *FPTy = I.getType(); 1626 bool IsSigned = Opcode == Instruction::SIToFP; 1627 int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; 1628 1629 // Easy case - if the source integer type has less bits than the FP mantissa, 1630 // then the cast must be exact. 1631 int DestNumSigBits = FPTy->getFPMantissaWidth(); 1632 if (SrcSize <= DestNumSigBits) 1633 return true; 1634 1635 // Cast from FP to integer and back to FP is independent of the intermediate 1636 // integer width because of poison on overflow. 1637 Value *F; 1638 if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) { 1639 // If this is uitofp (fptosi F), the source needs an extra bit to avoid 1640 // potential rounding of negative FP input values. 1641 int SrcNumSigBits = F->getType()->getFPMantissaWidth(); 1642 if (!IsSigned && match(Src, m_FPToSI(m_Value()))) 1643 SrcNumSigBits++; 1644 1645 // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal 1646 // significant bits than the destination (and make sure neither type is 1647 // weird -- ppc_fp128). 1648 if (SrcNumSigBits > 0 && DestNumSigBits > 0 && 1649 SrcNumSigBits <= DestNumSigBits) 1650 return true; 1651 } 1652 1653 // TODO: 1654 // Try harder to find if the source integer type has less significant bits. 1655 // For example, compute number of sign bits or compute low bit mask. 1656 return false; 1657 } 1658 1659 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) { 1660 if (Instruction *I = commonCastTransforms(FPT)) 1661 return I; 1662 1663 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1664 // simplify this expression to avoid one or more of the trunc/extend 1665 // operations if we can do so without changing the numerical results. 1666 // 1667 // The exact manner in which the widths of the operands interact to limit 1668 // what we can and cannot do safely varies from operation to operation, and 1669 // is explained below in the various case statements. 1670 Type *Ty = FPT.getType(); 1671 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1672 if (BO && BO->hasOneUse()) { 1673 Type *LHSMinType = getMinimumFPType(BO->getOperand(0)); 1674 Type *RHSMinType = getMinimumFPType(BO->getOperand(1)); 1675 unsigned OpWidth = BO->getType()->getFPMantissaWidth(); 1676 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1677 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1678 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1679 unsigned DstWidth = Ty->getFPMantissaWidth(); 1680 switch (BO->getOpcode()) { 1681 default: break; 1682 case Instruction::FAdd: 1683 case Instruction::FSub: 1684 // For addition and subtraction, the infinitely precise result can 1685 // essentially be arbitrarily wide; proving that double rounding 1686 // will not occur because the result of OpI is exact (as we will for 1687 // FMul, for example) is hopeless. However, we *can* nonetheless 1688 // frequently know that double rounding cannot occur (or that it is 1689 // innocuous) by taking advantage of the specific structure of 1690 // infinitely-precise results that admit double rounding. 1691 // 1692 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1693 // to represent both sources, we can guarantee that the double 1694 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1695 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1696 // for proof of this fact). 1697 // 1698 // Note: Figueroa does not consider the case where DstFormat != 1699 // SrcFormat. It's possible (likely even!) that this analysis 1700 // could be tightened for those cases, but they are rare (the main 1701 // case of interest here is (float)((double)float + float)). 1702 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1703 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1704 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1705 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); 1706 RI->copyFastMathFlags(BO); 1707 return RI; 1708 } 1709 break; 1710 case Instruction::FMul: 1711 // For multiplication, the infinitely precise result has at most 1712 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1713 // that such a value can be exactly represented, then no double 1714 // rounding can possibly occur; we can safely perform the operation 1715 // in the destination format if it can represent both sources. 1716 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1717 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1718 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1719 return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); 1720 } 1721 break; 1722 case Instruction::FDiv: 1723 // For division, we use again use the bound from Figueroa's 1724 // dissertation. I am entirely certain that this bound can be 1725 // tightened in the unbalanced operand case by an analysis based on 1726 // the diophantine rational approximation bound, but the well-known 1727 // condition used here is a good conservative first pass. 1728 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1729 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1730 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1731 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1732 return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); 1733 } 1734 break; 1735 case Instruction::FRem: { 1736 // Remainder is straightforward. Remainder is always exact, so the 1737 // type of OpI doesn't enter into things at all. We simply evaluate 1738 // in whichever source type is larger, then convert to the 1739 // destination type. 1740 if (SrcWidth == OpWidth) 1741 break; 1742 Value *LHS, *RHS; 1743 if (LHSWidth == SrcWidth) { 1744 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); 1745 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); 1746 } else { 1747 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); 1748 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); 1749 } 1750 1751 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); 1752 return CastInst::CreateFPCast(ExactResult, Ty); 1753 } 1754 } 1755 } 1756 1757 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1758 Value *X; 1759 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); 1760 if (Op && Op->hasOneUse()) { 1761 // FIXME: The FMF should propagate from the fptrunc, not the source op. 1762 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1763 if (isa<FPMathOperator>(Op)) 1764 Builder.setFastMathFlags(Op->getFastMathFlags()); 1765 1766 if (match(Op, m_FNeg(m_Value(X)))) { 1767 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1768 1769 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); 1770 } 1771 1772 // If we are truncating a select that has an extended operand, we can 1773 // narrow the other operand and do the select as a narrow op. 1774 Value *Cond, *X, *Y; 1775 if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && 1776 X->getType() == Ty) { 1777 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) 1778 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1779 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); 1780 return replaceInstUsesWith(FPT, Sel); 1781 } 1782 if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && 1783 X->getType() == Ty) { 1784 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X 1785 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1786 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); 1787 return replaceInstUsesWith(FPT, Sel); 1788 } 1789 } 1790 1791 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1792 switch (II->getIntrinsicID()) { 1793 default: break; 1794 case Intrinsic::ceil: 1795 case Intrinsic::fabs: 1796 case Intrinsic::floor: 1797 case Intrinsic::nearbyint: 1798 case Intrinsic::rint: 1799 case Intrinsic::round: 1800 case Intrinsic::roundeven: 1801 case Intrinsic::trunc: { 1802 Value *Src = II->getArgOperand(0); 1803 if (!Src->hasOneUse()) 1804 break; 1805 1806 // Except for fabs, this transformation requires the input of the unary FP 1807 // operation to be itself an fpext from the type to which we're 1808 // truncating. 1809 if (II->getIntrinsicID() != Intrinsic::fabs) { 1810 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1811 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1812 break; 1813 } 1814 1815 // Do unary FP operation on smaller type. 1816 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1817 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1818 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1819 II->getIntrinsicID(), Ty); 1820 SmallVector<OperandBundleDef, 1> OpBundles; 1821 II->getOperandBundlesAsDefs(OpBundles); 1822 CallInst *NewCI = 1823 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); 1824 NewCI->copyFastMathFlags(II); 1825 return NewCI; 1826 } 1827 } 1828 } 1829 1830 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1831 return I; 1832 1833 Value *Src = FPT.getOperand(0); 1834 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1835 auto *FPCast = cast<CastInst>(Src); 1836 if (isKnownExactCastIntToFP(*FPCast)) 1837 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1838 } 1839 1840 return nullptr; 1841 } 1842 1843 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) { 1844 // If the source operand is a cast from integer to FP and known exact, then 1845 // cast the integer operand directly to the destination type. 1846 Type *Ty = FPExt.getType(); 1847 Value *Src = FPExt.getOperand(0); 1848 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { 1849 auto *FPCast = cast<CastInst>(Src); 1850 if (isKnownExactCastIntToFP(*FPCast)) 1851 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); 1852 } 1853 1854 return commonCastTransforms(FPExt); 1855 } 1856 1857 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1858 /// This is safe if the intermediate type has enough bits in its mantissa to 1859 /// accurately represent all values of X. For example, this won't work with 1860 /// i64 -> float -> i64. 1861 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) { 1862 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1863 return nullptr; 1864 1865 auto *OpI = cast<CastInst>(FI.getOperand(0)); 1866 Value *X = OpI->getOperand(0); 1867 Type *XType = X->getType(); 1868 Type *DestType = FI.getType(); 1869 bool IsOutputSigned = isa<FPToSIInst>(FI); 1870 1871 // Since we can assume the conversion won't overflow, our decision as to 1872 // whether the input will fit in the float should depend on the minimum 1873 // of the input range and output range. 1874 1875 // This means this is also safe for a signed input and unsigned output, since 1876 // a negative input would lead to undefined behavior. 1877 if (!isKnownExactCastIntToFP(*OpI)) { 1878 // The first cast may not round exactly based on the source integer width 1879 // and FP width, but the overflow UB rules can still allow this to fold. 1880 // If the destination type is narrow, that means the intermediate FP value 1881 // must be large enough to hold the source value exactly. 1882 // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. 1883 int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned; 1884 if (OutputSize > OpI->getType()->getFPMantissaWidth()) 1885 return nullptr; 1886 } 1887 1888 if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { 1889 bool IsInputSigned = isa<SIToFPInst>(OpI); 1890 if (IsInputSigned && IsOutputSigned) 1891 return new SExtInst(X, DestType); 1892 return new ZExtInst(X, DestType); 1893 } 1894 if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) 1895 return new TruncInst(X, DestType); 1896 1897 assert(XType == DestType && "Unexpected types for int to FP to int casts"); 1898 return replaceInstUsesWith(FI, X); 1899 } 1900 1901 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) { 1902 if (Instruction *I = foldItoFPtoI(FI)) 1903 return I; 1904 1905 return commonCastTransforms(FI); 1906 } 1907 1908 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) { 1909 if (Instruction *I = foldItoFPtoI(FI)) 1910 return I; 1911 1912 return commonCastTransforms(FI); 1913 } 1914 1915 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) { 1916 return commonCastTransforms(CI); 1917 } 1918 1919 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) { 1920 return commonCastTransforms(CI); 1921 } 1922 1923 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) { 1924 // If the source integer type is not the intptr_t type for this target, do a 1925 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1926 // cast to be exposed to other transforms. 1927 unsigned AS = CI.getAddressSpace(); 1928 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1929 DL.getPointerSizeInBits(AS)) { 1930 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1931 // Handle vectors of pointers. 1932 if (auto *CIVTy = dyn_cast<VectorType>(CI.getType())) 1933 Ty = VectorType::get(Ty, CIVTy->getElementCount()); 1934 1935 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1936 return new IntToPtrInst(P, CI.getType()); 1937 } 1938 1939 if (Instruction *I = commonCastTransforms(CI)) 1940 return I; 1941 1942 return nullptr; 1943 } 1944 1945 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 1946 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) { 1947 Value *Src = CI.getOperand(0); 1948 1949 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1950 // If casting the result of a getelementptr instruction with no offset, turn 1951 // this into a cast of the original pointer! 1952 if (GEP->hasAllZeroIndices() && 1953 // If CI is an addrspacecast and GEP changes the poiner type, merging 1954 // GEP into CI would undo canonicalizing addrspacecast with different 1955 // pointer types, causing infinite loops. 1956 (!isa<AddrSpaceCastInst>(CI) || 1957 GEP->getType() == GEP->getPointerOperandType())) { 1958 // Changing the cast operand is usually not a good idea but it is safe 1959 // here because the pointer operand is being replaced with another 1960 // pointer operand so the opcode doesn't need to change. 1961 return replaceOperand(CI, 0, GEP->getOperand(0)); 1962 } 1963 } 1964 1965 return commonCastTransforms(CI); 1966 } 1967 1968 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) { 1969 // If the destination integer type is not the intptr_t type for this target, 1970 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1971 // to be exposed to other transforms. 1972 Value *SrcOp = CI.getPointerOperand(); 1973 Type *Ty = CI.getType(); 1974 unsigned AS = CI.getPointerAddressSpace(); 1975 unsigned TySize = Ty->getScalarSizeInBits(); 1976 unsigned PtrSize = DL.getPointerSizeInBits(AS); 1977 if (TySize != PtrSize) { 1978 Type *IntPtrTy = DL.getIntPtrType(CI.getContext(), AS); 1979 // Handle vectors of pointers. 1980 if (auto *VecTy = dyn_cast<VectorType>(Ty)) 1981 IntPtrTy = VectorType::get(IntPtrTy, VecTy->getElementCount()); 1982 1983 Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy); 1984 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1985 } 1986 1987 Value *Vec, *Scalar, *Index; 1988 if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)), 1989 m_Value(Scalar), m_Value(Index)))) && 1990 Vec->getType() == Ty) { 1991 assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type"); 1992 // Convert the scalar to int followed by insert to eliminate one cast: 1993 // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index 1994 Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType()); 1995 return InsertElementInst::Create(Vec, NewCast, Index); 1996 } 1997 1998 return commonPointerCastTransforms(CI); 1999 } 2000 2001 /// This input value (which is known to have vector type) is being zero extended 2002 /// or truncated to the specified vector type. Since the zext/trunc is done 2003 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, 2004 /// endianness will impact which end of the vector that is extended or 2005 /// truncated. 2006 /// 2007 /// A vector is always stored with index 0 at the lowest address, which 2008 /// corresponds to the most significant bits for a big endian stored integer and 2009 /// the least significant bits for little endian. A trunc/zext of an integer 2010 /// impacts the big end of the integer. Thus, we need to add/remove elements at 2011 /// the front of the vector for big endian targets, and the back of the vector 2012 /// for little endian targets. 2013 /// 2014 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 2015 /// 2016 /// The source and destination vector types may have different element types. 2017 static Instruction * 2018 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy, 2019 InstCombinerImpl &IC) { 2020 // We can only do this optimization if the output is a multiple of the input 2021 // element size, or the input is a multiple of the output element size. 2022 // Convert the input type to have the same element type as the output. 2023 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 2024 2025 if (SrcTy->getElementType() != DestTy->getElementType()) { 2026 // The input types don't need to be identical, but for now they must be the 2027 // same size. There is no specific reason we couldn't handle things like 2028 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 2029 // there yet. 2030 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 2031 DestTy->getElementType()->getPrimitiveSizeInBits()) 2032 return nullptr; 2033 2034 SrcTy = 2035 FixedVectorType::get(DestTy->getElementType(), 2036 cast<FixedVectorType>(SrcTy)->getNumElements()); 2037 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 2038 } 2039 2040 bool IsBigEndian = IC.getDataLayout().isBigEndian(); 2041 unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements(); 2042 unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements(); 2043 2044 assert(SrcElts != DestElts && "Element counts should be different."); 2045 2046 // Now that the element types match, get the shuffle mask and RHS of the 2047 // shuffle to use, which depends on whether we're increasing or decreasing the 2048 // size of the input. 2049 SmallVector<int, 16> ShuffleMaskStorage; 2050 ArrayRef<int> ShuffleMask; 2051 Value *V2; 2052 2053 // Produce an identify shuffle mask for the src vector. 2054 ShuffleMaskStorage.resize(SrcElts); 2055 std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0); 2056 2057 if (SrcElts > DestElts) { 2058 // If we're shrinking the number of elements (rewriting an integer 2059 // truncate), just shuffle in the elements corresponding to the least 2060 // significant bits from the input and use undef as the second shuffle 2061 // input. 2062 V2 = UndefValue::get(SrcTy); 2063 // Make sure the shuffle mask selects the "least significant bits" by 2064 // keeping elements from back of the src vector for big endian, and from the 2065 // front for little endian. 2066 ShuffleMask = ShuffleMaskStorage; 2067 if (IsBigEndian) 2068 ShuffleMask = ShuffleMask.take_back(DestElts); 2069 else 2070 ShuffleMask = ShuffleMask.take_front(DestElts); 2071 } else { 2072 // If we're increasing the number of elements (rewriting an integer zext), 2073 // shuffle in all of the elements from InVal. Fill the rest of the result 2074 // elements with zeros from a constant zero. 2075 V2 = Constant::getNullValue(SrcTy); 2076 // Use first elt from V2 when indicating zero in the shuffle mask. 2077 uint32_t NullElt = SrcElts; 2078 // Extend with null values in the "most significant bits" by adding elements 2079 // in front of the src vector for big endian, and at the back for little 2080 // endian. 2081 unsigned DeltaElts = DestElts - SrcElts; 2082 if (IsBigEndian) 2083 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); 2084 else 2085 ShuffleMaskStorage.append(DeltaElts, NullElt); 2086 ShuffleMask = ShuffleMaskStorage; 2087 } 2088 2089 return new ShuffleVectorInst(InVal, V2, ShuffleMask); 2090 } 2091 2092 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 2093 return Value % Ty->getPrimitiveSizeInBits() == 0; 2094 } 2095 2096 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 2097 return Value / Ty->getPrimitiveSizeInBits(); 2098 } 2099 2100 /// V is a value which is inserted into a vector of VecEltTy. 2101 /// Look through the value to see if we can decompose it into 2102 /// insertions into the vector. See the example in the comment for 2103 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 2104 /// The type of V is always a non-zero multiple of VecEltTy's size. 2105 /// Shift is the number of bits between the lsb of V and the lsb of 2106 /// the vector. 2107 /// 2108 /// This returns false if the pattern can't be matched or true if it can, 2109 /// filling in Elements with the elements found here. 2110 static bool collectInsertionElements(Value *V, unsigned Shift, 2111 SmallVectorImpl<Value *> &Elements, 2112 Type *VecEltTy, bool isBigEndian) { 2113 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 2114 "Shift should be a multiple of the element type size"); 2115 2116 // Undef values never contribute useful bits to the result. 2117 if (isa<UndefValue>(V)) return true; 2118 2119 // If we got down to a value of the right type, we win, try inserting into the 2120 // right element. 2121 if (V->getType() == VecEltTy) { 2122 // Inserting null doesn't actually insert any elements. 2123 if (Constant *C = dyn_cast<Constant>(V)) 2124 if (C->isNullValue()) 2125 return true; 2126 2127 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 2128 if (isBigEndian) 2129 ElementIndex = Elements.size() - ElementIndex - 1; 2130 2131 // Fail if multiple elements are inserted into this slot. 2132 if (Elements[ElementIndex]) 2133 return false; 2134 2135 Elements[ElementIndex] = V; 2136 return true; 2137 } 2138 2139 if (Constant *C = dyn_cast<Constant>(V)) { 2140 // Figure out the # elements this provides, and bitcast it or slice it up 2141 // as required. 2142 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 2143 VecEltTy); 2144 // If the constant is the size of a vector element, we just need to bitcast 2145 // it to the right type so it gets properly inserted. 2146 if (NumElts == 1) 2147 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 2148 Shift, Elements, VecEltTy, isBigEndian); 2149 2150 // Okay, this is a constant that covers multiple elements. Slice it up into 2151 // pieces and insert each element-sized piece into the vector. 2152 if (!isa<IntegerType>(C->getType())) 2153 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 2154 C->getType()->getPrimitiveSizeInBits())); 2155 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 2156 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 2157 2158 for (unsigned i = 0; i != NumElts; ++i) { 2159 unsigned ShiftI = Shift+i*ElementSize; 2160 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 2161 ShiftI)); 2162 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 2163 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 2164 isBigEndian)) 2165 return false; 2166 } 2167 return true; 2168 } 2169 2170 if (!V->hasOneUse()) return false; 2171 2172 Instruction *I = dyn_cast<Instruction>(V); 2173 if (!I) return false; 2174 switch (I->getOpcode()) { 2175 default: return false; // Unhandled case. 2176 case Instruction::BitCast: 2177 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2178 isBigEndian); 2179 case Instruction::ZExt: 2180 if (!isMultipleOfTypeSize( 2181 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 2182 VecEltTy)) 2183 return false; 2184 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2185 isBigEndian); 2186 case Instruction::Or: 2187 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2188 isBigEndian) && 2189 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 2190 isBigEndian); 2191 case Instruction::Shl: { 2192 // Must be shifting by a constant that is a multiple of the element size. 2193 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 2194 if (!CI) return false; 2195 Shift += CI->getZExtValue(); 2196 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 2197 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2198 isBigEndian); 2199 } 2200 2201 } 2202 } 2203 2204 2205 /// If the input is an 'or' instruction, we may be doing shifts and ors to 2206 /// assemble the elements of the vector manually. 2207 /// Try to rip the code out and replace it with insertelements. This is to 2208 /// optimize code like this: 2209 /// 2210 /// %tmp37 = bitcast float %inc to i32 2211 /// %tmp38 = zext i32 %tmp37 to i64 2212 /// %tmp31 = bitcast float %inc5 to i32 2213 /// %tmp32 = zext i32 %tmp31 to i64 2214 /// %tmp33 = shl i64 %tmp32, 32 2215 /// %ins35 = or i64 %tmp33, %tmp38 2216 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2217 /// 2218 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2219 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2220 InstCombinerImpl &IC) { 2221 auto *DestVecTy = cast<FixedVectorType>(CI.getType()); 2222 Value *IntInput = CI.getOperand(0); 2223 2224 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2225 if (!collectInsertionElements(IntInput, 0, Elements, 2226 DestVecTy->getElementType(), 2227 IC.getDataLayout().isBigEndian())) 2228 return nullptr; 2229 2230 // If we succeeded, we know that all of the element are specified by Elements 2231 // or are zero if Elements has a null entry. Recast this as a set of 2232 // insertions. 2233 Value *Result = Constant::getNullValue(CI.getType()); 2234 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2235 if (!Elements[i]) continue; // Unset element. 2236 2237 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2238 IC.Builder.getInt32(i)); 2239 } 2240 2241 return Result; 2242 } 2243 2244 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2245 /// vector followed by extract element. The backend tends to handle bitcasts of 2246 /// vectors better than bitcasts of scalars because vector registers are 2247 /// usually not type-specific like scalar integer or scalar floating-point. 2248 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2249 InstCombinerImpl &IC) { 2250 // TODO: Create and use a pattern matcher for ExtractElementInst. 2251 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 2252 if (!ExtElt || !ExtElt->hasOneUse()) 2253 return nullptr; 2254 2255 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2256 // type to extract from. 2257 Type *DestType = BitCast.getType(); 2258 if (!VectorType::isValidElementType(DestType)) 2259 return nullptr; 2260 2261 auto *NewVecType = VectorType::get(DestType, ExtElt->getVectorOperandType()); 2262 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 2263 NewVecType, "bc"); 2264 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 2265 } 2266 2267 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2268 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2269 InstCombiner::BuilderTy &Builder) { 2270 Type *DestTy = BitCast.getType(); 2271 BinaryOperator *BO; 2272 if (!DestTy->isIntOrIntVectorTy() || 2273 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2274 !BO->isBitwiseLogicOp()) 2275 return nullptr; 2276 2277 // FIXME: This transform is restricted to vector types to avoid backend 2278 // problems caused by creating potentially illegal operations. If a fix-up is 2279 // added to handle that situation, we can remove this check. 2280 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2281 return nullptr; 2282 2283 Value *X; 2284 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2285 X->getType() == DestTy && !isa<Constant>(X)) { 2286 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2287 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2288 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2289 } 2290 2291 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2292 X->getType() == DestTy && !isa<Constant>(X)) { 2293 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2294 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2295 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2296 } 2297 2298 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2299 // constant. This eases recognition of special constants for later ops. 2300 // Example: 2301 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2302 Constant *C; 2303 if (match(BO->getOperand(1), m_Constant(C))) { 2304 // bitcast (logic X, C) --> logic (bitcast X, C') 2305 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2306 Value *CastedC = Builder.CreateBitCast(C, DestTy); 2307 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2308 } 2309 2310 return nullptr; 2311 } 2312 2313 /// Change the type of a select if we can eliminate a bitcast. 2314 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2315 InstCombiner::BuilderTy &Builder) { 2316 Value *Cond, *TVal, *FVal; 2317 if (!match(BitCast.getOperand(0), 2318 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2319 return nullptr; 2320 2321 // A vector select must maintain the same number of elements in its operands. 2322 Type *CondTy = Cond->getType(); 2323 Type *DestTy = BitCast.getType(); 2324 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) 2325 if (!DestTy->isVectorTy() || 2326 CondVTy->getElementCount() != 2327 cast<VectorType>(DestTy)->getElementCount()) 2328 return nullptr; 2329 2330 // FIXME: This transform is restricted from changing the select between 2331 // scalars and vectors to avoid backend problems caused by creating 2332 // potentially illegal operations. If a fix-up is added to handle that 2333 // situation, we can remove this check. 2334 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2335 return nullptr; 2336 2337 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2338 Value *X; 2339 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2340 !isa<Constant>(X)) { 2341 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2342 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2343 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2344 } 2345 2346 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2347 !isa<Constant>(X)) { 2348 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2349 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2350 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2351 } 2352 2353 return nullptr; 2354 } 2355 2356 /// Check if all users of CI are StoreInsts. 2357 static bool hasStoreUsersOnly(CastInst &CI) { 2358 for (User *U : CI.users()) { 2359 if (!isa<StoreInst>(U)) 2360 return false; 2361 } 2362 return true; 2363 } 2364 2365 /// This function handles following case 2366 /// 2367 /// A -> B cast 2368 /// PHI 2369 /// B -> A cast 2370 /// 2371 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2372 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2373 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI, 2374 PHINode *PN) { 2375 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2376 if (hasStoreUsersOnly(CI)) 2377 return nullptr; 2378 2379 Value *Src = CI.getOperand(0); 2380 Type *SrcTy = Src->getType(); // Type B 2381 Type *DestTy = CI.getType(); // Type A 2382 2383 SmallVector<PHINode *, 4> PhiWorklist; 2384 SmallSetVector<PHINode *, 4> OldPhiNodes; 2385 2386 // Find all of the A->B casts and PHI nodes. 2387 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so 2388 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2389 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2390 PhiWorklist.push_back(PN); 2391 OldPhiNodes.insert(PN); 2392 while (!PhiWorklist.empty()) { 2393 auto *OldPN = PhiWorklist.pop_back_val(); 2394 for (Value *IncValue : OldPN->incoming_values()) { 2395 if (isa<Constant>(IncValue)) 2396 continue; 2397 2398 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2399 // If there is a sequence of one or more load instructions, each loaded 2400 // value is used as address of later load instruction, bitcast is 2401 // necessary to change the value type, don't optimize it. For 2402 // simplicity we give up if the load address comes from another load. 2403 Value *Addr = LI->getOperand(0); 2404 if (Addr == &CI || isa<LoadInst>(Addr)) 2405 return nullptr; 2406 if (LI->hasOneUse() && LI->isSimple()) 2407 continue; 2408 // If a LoadInst has more than one use, changing the type of loaded 2409 // value may create another bitcast. 2410 return nullptr; 2411 } 2412 2413 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2414 if (OldPhiNodes.insert(PNode)) 2415 PhiWorklist.push_back(PNode); 2416 continue; 2417 } 2418 2419 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2420 // We can't handle other instructions. 2421 if (!BCI) 2422 return nullptr; 2423 2424 // Verify it's a A->B cast. 2425 Type *TyA = BCI->getOperand(0)->getType(); 2426 Type *TyB = BCI->getType(); 2427 if (TyA != DestTy || TyB != SrcTy) 2428 return nullptr; 2429 } 2430 } 2431 2432 // Check that each user of each old PHI node is something that we can 2433 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. 2434 for (auto *OldPN : OldPhiNodes) { 2435 for (User *V : OldPN->users()) { 2436 if (auto *SI = dyn_cast<StoreInst>(V)) { 2437 if (!SI->isSimple() || SI->getOperand(0) != OldPN) 2438 return nullptr; 2439 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2440 // Verify it's a B->A cast. 2441 Type *TyB = BCI->getOperand(0)->getType(); 2442 Type *TyA = BCI->getType(); 2443 if (TyA != DestTy || TyB != SrcTy) 2444 return nullptr; 2445 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2446 // As long as the user is another old PHI node, then even if we don't 2447 // rewrite it, the PHI web we're considering won't have any users 2448 // outside itself, so it'll be dead. 2449 if (OldPhiNodes.count(PHI) == 0) 2450 return nullptr; 2451 } else { 2452 return nullptr; 2453 } 2454 } 2455 } 2456 2457 // For each old PHI node, create a corresponding new PHI node with a type A. 2458 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2459 for (auto *OldPN : OldPhiNodes) { 2460 Builder.SetInsertPoint(OldPN); 2461 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2462 NewPNodes[OldPN] = NewPN; 2463 } 2464 2465 // Fill in the operands of new PHI nodes. 2466 for (auto *OldPN : OldPhiNodes) { 2467 PHINode *NewPN = NewPNodes[OldPN]; 2468 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2469 Value *V = OldPN->getOperand(j); 2470 Value *NewV = nullptr; 2471 if (auto *C = dyn_cast<Constant>(V)) { 2472 NewV = ConstantExpr::getBitCast(C, DestTy); 2473 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2474 // Explicitly perform load combine to make sure no opposing transform 2475 // can remove the bitcast in the meantime and trigger an infinite loop. 2476 Builder.SetInsertPoint(LI); 2477 NewV = combineLoadToNewType(*LI, DestTy); 2478 // Remove the old load and its use in the old phi, which itself becomes 2479 // dead once the whole transform finishes. 2480 replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 2481 eraseInstFromFunction(*LI); 2482 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2483 NewV = BCI->getOperand(0); 2484 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2485 NewV = NewPNodes[PrevPN]; 2486 } 2487 assert(NewV); 2488 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2489 } 2490 } 2491 2492 // Traverse all accumulated PHI nodes and process its users, 2493 // which are Stores and BitcCasts. Without this processing 2494 // NewPHI nodes could be replicated and could lead to extra 2495 // moves generated after DeSSA. 2496 // If there is a store with type B, change it to type A. 2497 2498 2499 // Replace users of BitCast B->A with NewPHI. These will help 2500 // later to get rid off a closure formed by OldPHI nodes. 2501 Instruction *RetVal = nullptr; 2502 for (auto *OldPN : OldPhiNodes) { 2503 PHINode *NewPN = NewPNodes[OldPN]; 2504 for (User *V : make_early_inc_range(OldPN->users())) { 2505 if (auto *SI = dyn_cast<StoreInst>(V)) { 2506 assert(SI->isSimple() && SI->getOperand(0) == OldPN); 2507 Builder.SetInsertPoint(SI); 2508 auto *NewBC = 2509 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); 2510 SI->setOperand(0, NewBC); 2511 Worklist.push(SI); 2512 assert(hasStoreUsersOnly(*NewBC)); 2513 } 2514 else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2515 Type *TyB = BCI->getOperand(0)->getType(); 2516 Type *TyA = BCI->getType(); 2517 assert(TyA == DestTy && TyB == SrcTy); 2518 (void) TyA; 2519 (void) TyB; 2520 Instruction *I = replaceInstUsesWith(*BCI, NewPN); 2521 if (BCI == &CI) 2522 RetVal = I; 2523 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2524 assert(OldPhiNodes.contains(PHI)); 2525 (void) PHI; 2526 } else { 2527 llvm_unreachable("all uses should be handled"); 2528 } 2529 } 2530 } 2531 2532 return RetVal; 2533 } 2534 2535 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) { 2536 // If the operands are integer typed then apply the integer transforms, 2537 // otherwise just apply the common ones. 2538 Value *Src = CI.getOperand(0); 2539 Type *SrcTy = Src->getType(); 2540 Type *DestTy = CI.getType(); 2541 2542 // Get rid of casts from one type to the same type. These are useless and can 2543 // be replaced by the operand. 2544 if (DestTy == Src->getType()) 2545 return replaceInstUsesWith(CI, Src); 2546 2547 if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) { 2548 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2549 PointerType *DstPTy = cast<PointerType>(DestTy); 2550 Type *DstElTy = DstPTy->getElementType(); 2551 Type *SrcElTy = SrcPTy->getElementType(); 2552 2553 // Casting pointers between the same type, but with different address spaces 2554 // is an addrspace cast rather than a bitcast. 2555 if ((DstElTy == SrcElTy) && 2556 (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace())) 2557 return new AddrSpaceCastInst(Src, DestTy); 2558 2559 // If we are casting a alloca to a pointer to a type of the same 2560 // size, rewrite the allocation instruction to allocate the "right" type. 2561 // There is no need to modify malloc calls because it is their bitcast that 2562 // needs to be cleaned up. 2563 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2564 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2565 return V; 2566 2567 // When the type pointed to is not sized the cast cannot be 2568 // turned into a gep. 2569 Type *PointeeType = 2570 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2571 if (!PointeeType->isSized()) 2572 return nullptr; 2573 2574 // If the source and destination are pointers, and this cast is equivalent 2575 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2576 // This can enhance SROA and other transforms that want type-safe pointers. 2577 unsigned NumZeros = 0; 2578 while (SrcElTy && SrcElTy != DstElTy) { 2579 SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0); 2580 ++NumZeros; 2581 } 2582 2583 // If we found a path from the src to dest, create the getelementptr now. 2584 if (SrcElTy == DstElTy) { 2585 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2586 GetElementPtrInst *GEP = 2587 GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs); 2588 2589 // If the source pointer is dereferenceable, then assume it points to an 2590 // allocated object and apply "inbounds" to the GEP. 2591 bool CanBeNull; 2592 if (Src->getPointerDereferenceableBytes(DL, CanBeNull)) { 2593 // In a non-default address space (not 0), a null pointer can not be 2594 // assumed inbounds, so ignore that case (dereferenceable_or_null). 2595 // The reason is that 'null' is not treated differently in these address 2596 // spaces, and we consequently ignore the 'gep inbounds' special case 2597 // for 'null' which allows 'inbounds' on 'null' if the indices are 2598 // zeros. 2599 if (SrcPTy->getAddressSpace() == 0 || !CanBeNull) 2600 GEP->setIsInBounds(); 2601 } 2602 return GEP; 2603 } 2604 } 2605 2606 if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) { 2607 // Beware: messing with this target-specific oddity may cause trouble. 2608 if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) { 2609 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2610 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2611 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2612 } 2613 2614 if (isa<IntegerType>(SrcTy)) { 2615 // If this is a cast from an integer to vector, check to see if the input 2616 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2617 // the casts with a shuffle and (potentially) a bitcast. 2618 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2619 CastInst *SrcCast = cast<CastInst>(Src); 2620 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2621 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2622 if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( 2623 BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) 2624 return I; 2625 } 2626 2627 // If the input is an 'or' instruction, we may be doing shifts and ors to 2628 // assemble the elements of the vector manually. Try to rip the code out 2629 // and replace it with insertelements. 2630 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2631 return replaceInstUsesWith(CI, V); 2632 } 2633 } 2634 2635 if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) { 2636 if (SrcVTy->getNumElements() == 1) { 2637 // If our destination is not a vector, then make this a straight 2638 // scalar-scalar cast. 2639 if (!DestTy->isVectorTy()) { 2640 Value *Elem = 2641 Builder.CreateExtractElement(Src, 2642 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2643 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2644 } 2645 2646 // Otherwise, see if our source is an insert. If so, then use the scalar 2647 // component directly: 2648 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> 2649 if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) 2650 return new BitCastInst(InsElt->getOperand(1), DestTy); 2651 } 2652 } 2653 2654 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { 2655 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2656 // a bitcast to a vector with the same # elts. 2657 Value *ShufOp0 = Shuf->getOperand(0); 2658 Value *ShufOp1 = Shuf->getOperand(1); 2659 auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount(); 2660 auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount(); 2661 if (Shuf->hasOneUse() && DestTy->isVectorTy() && 2662 cast<VectorType>(DestTy)->getElementCount() == ShufElts && 2663 ShufElts == SrcVecElts) { 2664 BitCastInst *Tmp; 2665 // If either of the operands is a cast from CI.getType(), then 2666 // evaluating the shuffle in the casted destination's type will allow 2667 // us to eliminate at least one cast. 2668 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && 2669 Tmp->getOperand(0)->getType() == DestTy) || 2670 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && 2671 Tmp->getOperand(0)->getType() == DestTy)) { 2672 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); 2673 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); 2674 // Return a new shuffle vector. Use the same element ID's, as we 2675 // know the vector types match #elts. 2676 return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); 2677 } 2678 } 2679 2680 // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as 2681 // a byte-swap: 2682 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X) 2683 // TODO: We should match the related pattern for bitreverse. 2684 if (DestTy->isIntegerTy() && 2685 DL.isLegalInteger(DestTy->getScalarSizeInBits()) && 2686 SrcTy->getScalarSizeInBits() == 8 && 2687 ShufElts.getKnownMinValue() % 2 == 0 && Shuf->hasOneUse() && 2688 Shuf->isReverse()) { 2689 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); 2690 assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op"); 2691 Function *Bswap = 2692 Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy); 2693 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); 2694 return IntrinsicInst::Create(Bswap, { ScalarX }); 2695 } 2696 } 2697 2698 // Handle the A->B->A cast, and there is an intervening PHI node. 2699 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2700 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2701 return I; 2702 2703 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2704 return I; 2705 2706 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2707 return I; 2708 2709 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2710 return I; 2711 2712 if (SrcTy->isPointerTy()) 2713 return commonPointerCastTransforms(CI); 2714 return commonCastTransforms(CI); 2715 } 2716 2717 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2718 // If the destination pointer element type is not the same as the source's 2719 // first do a bitcast to the destination type, and then the addrspacecast. 2720 // This allows the cast to be exposed to other transforms. 2721 Value *Src = CI.getOperand(0); 2722 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2723 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2724 2725 Type *DestElemTy = DestTy->getElementType(); 2726 if (SrcTy->getElementType() != DestElemTy) { 2727 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2728 // Handle vectors of pointers. 2729 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) 2730 MidTy = VectorType::get(MidTy, VT->getElementCount()); 2731 2732 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2733 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2734 } 2735 2736 return commonPointerCastTransforms(CI); 2737 } 2738