1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for cast operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/TargetLibraryInfo.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/DIBuilder.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 #include <numeric> 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Analyze 'Val', seeing if it is a simple linear expression. 28 /// If so, decompose it, returning some value X, such that Val is 29 /// X*Scale+Offset. 30 /// 31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 32 uint64_t &Offset) { 33 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 34 Offset = CI->getZExtValue(); 35 Scale = 0; 36 return ConstantInt::get(Val->getType(), 0); 37 } 38 39 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 40 // Cannot look past anything that might overflow. 41 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 42 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 43 Scale = 1; 44 Offset = 0; 45 return Val; 46 } 47 48 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 49 if (I->getOpcode() == Instruction::Shl) { 50 // This is a value scaled by '1 << the shift amt'. 51 Scale = UINT64_C(1) << RHS->getZExtValue(); 52 Offset = 0; 53 return I->getOperand(0); 54 } 55 56 if (I->getOpcode() == Instruction::Mul) { 57 // This value is scaled by 'RHS'. 58 Scale = RHS->getZExtValue(); 59 Offset = 0; 60 return I->getOperand(0); 61 } 62 63 if (I->getOpcode() == Instruction::Add) { 64 // We have X+C. Check to see if we really have (X*C2)+C1, 65 // where C1 is divisible by C2. 66 unsigned SubScale; 67 Value *SubVal = 68 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 69 Offset += RHS->getZExtValue(); 70 Scale = SubScale; 71 return SubVal; 72 } 73 } 74 } 75 76 // Otherwise, we can't look past this. 77 Scale = 1; 78 Offset = 0; 79 return Val; 80 } 81 82 /// If we find a cast of an allocation instruction, try to eliminate the cast by 83 /// moving the type information into the alloc. 84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 85 AllocaInst &AI) { 86 PointerType *PTy = cast<PointerType>(CI.getType()); 87 88 BuilderTy AllocaBuilder(Builder); 89 AllocaBuilder.SetInsertPoint(&AI); 90 91 // Get the type really allocated and the type casted to. 92 Type *AllocElTy = AI.getAllocatedType(); 93 Type *CastElTy = PTy->getElementType(); 94 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 95 96 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 97 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 98 if (CastElTyAlign < AllocElTyAlign) return nullptr; 99 100 // If the allocation has multiple uses, only promote it if we are strictly 101 // increasing the alignment of the resultant allocation. If we keep it the 102 // same, we open the door to infinite loops of various kinds. 103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 104 105 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 106 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 108 109 // If the allocation has multiple uses, only promote it if we're not 110 // shrinking the amount of memory being allocated. 111 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 112 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 114 115 // See if we can satisfy the modulus by pulling a scale out of the array 116 // size argument. 117 unsigned ArraySizeScale; 118 uint64_t ArrayOffset; 119 Value *NumElements = // See if the array size is a decomposable linear expr. 120 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 121 122 // If we can now satisfy the modulus, by using a non-1 scale, we really can 123 // do the xform. 124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 126 127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 128 Value *Amt = nullptr; 129 if (Scale == 1) { 130 Amt = NumElements; 131 } else { 132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 133 // Insert before the alloca, not before the cast. 134 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 135 } 136 137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 139 Offset, true); 140 Amt = AllocaBuilder.CreateAdd(Amt, Off); 141 } 142 143 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 144 New->setAlignment(MaybeAlign(AI.getAlignment())); 145 New->takeName(&AI); 146 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 147 148 // If the allocation has multiple real uses, insert a cast and change all 149 // things that used it to use the new cast. This will also hack on CI, but it 150 // will die soon. 151 if (!AI.hasOneUse()) { 152 // New is the allocation instruction, pointer typed. AI is the original 153 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 154 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 155 replaceInstUsesWith(AI, NewCast); 156 } 157 return replaceInstUsesWith(CI, New); 158 } 159 160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 161 /// true for, actually insert the code to evaluate the expression. 162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 163 bool isSigned) { 164 if (Constant *C = dyn_cast<Constant>(V)) { 165 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 166 // If we got a constantexpr back, try to simplify it with DL info. 167 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 168 C = FoldedC; 169 return C; 170 } 171 172 // Otherwise, it must be an instruction. 173 Instruction *I = cast<Instruction>(V); 174 Instruction *Res = nullptr; 175 unsigned Opc = I->getOpcode(); 176 switch (Opc) { 177 case Instruction::Add: 178 case Instruction::Sub: 179 case Instruction::Mul: 180 case Instruction::And: 181 case Instruction::Or: 182 case Instruction::Xor: 183 case Instruction::AShr: 184 case Instruction::LShr: 185 case Instruction::Shl: 186 case Instruction::UDiv: 187 case Instruction::URem: { 188 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 189 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 190 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 191 break; 192 } 193 case Instruction::Trunc: 194 case Instruction::ZExt: 195 case Instruction::SExt: 196 // If the source type of the cast is the type we're trying for then we can 197 // just return the source. There's no need to insert it because it is not 198 // new. 199 if (I->getOperand(0)->getType() == Ty) 200 return I->getOperand(0); 201 202 // Otherwise, must be the same type of cast, so just reinsert a new one. 203 // This also handles the case of zext(trunc(x)) -> zext(x). 204 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 205 Opc == Instruction::SExt); 206 break; 207 case Instruction::Select: { 208 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 209 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 210 Res = SelectInst::Create(I->getOperand(0), True, False); 211 break; 212 } 213 case Instruction::PHI: { 214 PHINode *OPN = cast<PHINode>(I); 215 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 216 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 217 Value *V = 218 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 219 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 220 } 221 Res = NPN; 222 break; 223 } 224 default: 225 // TODO: Can handle more cases here. 226 llvm_unreachable("Unreachable!"); 227 } 228 229 Res->takeName(I); 230 return InsertNewInstWith(Res, *I); 231 } 232 233 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 234 const CastInst *CI2) { 235 Type *SrcTy = CI1->getSrcTy(); 236 Type *MidTy = CI1->getDestTy(); 237 Type *DstTy = CI2->getDestTy(); 238 239 Instruction::CastOps firstOp = CI1->getOpcode(); 240 Instruction::CastOps secondOp = CI2->getOpcode(); 241 Type *SrcIntPtrTy = 242 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 243 Type *MidIntPtrTy = 244 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 245 Type *DstIntPtrTy = 246 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 247 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 248 DstTy, SrcIntPtrTy, MidIntPtrTy, 249 DstIntPtrTy); 250 251 // We don't want to form an inttoptr or ptrtoint that converts to an integer 252 // type that differs from the pointer size. 253 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 254 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 255 Res = 0; 256 257 return Instruction::CastOps(Res); 258 } 259 260 /// Implement the transforms common to all CastInst visitors. 261 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 262 Value *Src = CI.getOperand(0); 263 264 // Try to eliminate a cast of a cast. 265 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 266 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 267 // The first cast (CSrc) is eliminable so we need to fix up or replace 268 // the second cast (CI). CSrc will then have a good chance of being dead. 269 auto *Ty = CI.getType(); 270 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 271 // Point debug users of the dying cast to the new one. 272 if (CSrc->hasOneUse()) 273 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 274 return Res; 275 } 276 } 277 278 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 279 // We are casting a select. Try to fold the cast into the select, but only 280 // if the select does not have a compare instruction with matching operand 281 // types. Creating a select with operands that are different sizes than its 282 // condition may inhibit other folds and lead to worse codegen. 283 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 284 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType()) 285 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 286 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 287 return NV; 288 } 289 } 290 291 // If we are casting a PHI, then fold the cast into the PHI. 292 if (auto *PN = dyn_cast<PHINode>(Src)) { 293 // Don't do this if it would create a PHI node with an illegal type from a 294 // legal type. 295 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 296 shouldChangeType(CI.getType(), Src->getType())) 297 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 298 return NV; 299 } 300 301 return nullptr; 302 } 303 304 /// Constants and extensions/truncates from the destination type are always 305 /// free to be evaluated in that type. This is a helper for canEvaluate*. 306 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 307 if (isa<Constant>(V)) 308 return true; 309 Value *X; 310 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 311 X->getType() == Ty) 312 return true; 313 314 return false; 315 } 316 317 /// Filter out values that we can not evaluate in the destination type for free. 318 /// This is a helper for canEvaluate*. 319 static bool canNotEvaluateInType(Value *V, Type *Ty) { 320 assert(!isa<Constant>(V) && "Constant should already be handled."); 321 if (!isa<Instruction>(V)) 322 return true; 323 // We don't extend or shrink something that has multiple uses -- doing so 324 // would require duplicating the instruction which isn't profitable. 325 if (!V->hasOneUse()) 326 return true; 327 328 return false; 329 } 330 331 /// Return true if we can evaluate the specified expression tree as type Ty 332 /// instead of its larger type, and arrive with the same value. 333 /// This is used by code that tries to eliminate truncates. 334 /// 335 /// Ty will always be a type smaller than V. We should return true if trunc(V) 336 /// can be computed by computing V in the smaller type. If V is an instruction, 337 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 338 /// makes sense if x and y can be efficiently truncated. 339 /// 340 /// This function works on both vectors and scalars. 341 /// 342 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 343 Instruction *CxtI) { 344 if (canAlwaysEvaluateInType(V, Ty)) 345 return true; 346 if (canNotEvaluateInType(V, Ty)) 347 return false; 348 349 auto *I = cast<Instruction>(V); 350 Type *OrigTy = V->getType(); 351 switch (I->getOpcode()) { 352 case Instruction::Add: 353 case Instruction::Sub: 354 case Instruction::Mul: 355 case Instruction::And: 356 case Instruction::Or: 357 case Instruction::Xor: 358 // These operators can all arbitrarily be extended or truncated. 359 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 360 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 361 362 case Instruction::UDiv: 363 case Instruction::URem: { 364 // UDiv and URem can be truncated if all the truncated bits are zero. 365 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 366 uint32_t BitWidth = Ty->getScalarSizeInBits(); 367 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 368 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 369 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 370 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 371 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 372 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 373 } 374 break; 375 } 376 case Instruction::Shl: { 377 // If we are truncating the result of this SHL, and if it's a shift of a 378 // constant amount, we can always perform a SHL in a smaller type. 379 const APInt *Amt; 380 if (match(I->getOperand(1), m_APInt(Amt))) { 381 uint32_t BitWidth = Ty->getScalarSizeInBits(); 382 if (Amt->getLimitedValue(BitWidth) < BitWidth) 383 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 384 } 385 break; 386 } 387 case Instruction::LShr: { 388 // If this is a truncate of a logical shr, we can truncate it to a smaller 389 // lshr iff we know that the bits we would otherwise be shifting in are 390 // already zeros. 391 const APInt *Amt; 392 if (match(I->getOperand(1), m_APInt(Amt))) { 393 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 394 uint32_t BitWidth = Ty->getScalarSizeInBits(); 395 if (Amt->getLimitedValue(BitWidth) < BitWidth && 396 IC.MaskedValueIsZero(I->getOperand(0), 397 APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) { 398 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 399 } 400 } 401 break; 402 } 403 case Instruction::AShr: { 404 // If this is a truncate of an arithmetic shr, we can truncate it to a 405 // smaller ashr iff we know that all the bits from the sign bit of the 406 // original type and the sign bit of the truncate type are similar. 407 // TODO: It is enough to check that the bits we would be shifting in are 408 // similar to sign bit of the truncate type. 409 const APInt *Amt; 410 if (match(I->getOperand(1), m_APInt(Amt))) { 411 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 412 uint32_t BitWidth = Ty->getScalarSizeInBits(); 413 if (Amt->getLimitedValue(BitWidth) < BitWidth && 414 OrigBitWidth - BitWidth < 415 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 416 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 417 } 418 break; 419 } 420 case Instruction::Trunc: 421 // trunc(trunc(x)) -> trunc(x) 422 return true; 423 case Instruction::ZExt: 424 case Instruction::SExt: 425 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 426 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 427 return true; 428 case Instruction::Select: { 429 SelectInst *SI = cast<SelectInst>(I); 430 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 431 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 432 } 433 case Instruction::PHI: { 434 // We can change a phi if we can change all operands. Note that we never 435 // get into trouble with cyclic PHIs here because we only consider 436 // instructions with a single use. 437 PHINode *PN = cast<PHINode>(I); 438 for (Value *IncValue : PN->incoming_values()) 439 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 440 return false; 441 return true; 442 } 443 default: 444 // TODO: Can handle more cases here. 445 break; 446 } 447 448 return false; 449 } 450 451 /// Given a vector that is bitcast to an integer, optionally logically 452 /// right-shifted, and truncated, convert it to an extractelement. 453 /// Example (big endian): 454 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 455 /// ---> 456 /// extractelement <4 x i32> %X, 1 457 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { 458 Value *TruncOp = Trunc.getOperand(0); 459 Type *DestType = Trunc.getType(); 460 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 461 return nullptr; 462 463 Value *VecInput = nullptr; 464 ConstantInt *ShiftVal = nullptr; 465 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 466 m_LShr(m_BitCast(m_Value(VecInput)), 467 m_ConstantInt(ShiftVal)))) || 468 !isa<VectorType>(VecInput->getType())) 469 return nullptr; 470 471 VectorType *VecType = cast<VectorType>(VecInput->getType()); 472 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 473 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 474 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 475 476 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 477 return nullptr; 478 479 // If the element type of the vector doesn't match the result type, 480 // bitcast it to a vector type that we can extract from. 481 unsigned NumVecElts = VecWidth / DestWidth; 482 if (VecType->getElementType() != DestType) { 483 VecType = VectorType::get(DestType, NumVecElts); 484 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 485 } 486 487 unsigned Elt = ShiftAmount / DestWidth; 488 if (IC.getDataLayout().isBigEndian()) 489 Elt = NumVecElts - 1 - Elt; 490 491 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 492 } 493 494 /// Rotate left/right may occur in a wider type than necessary because of type 495 /// promotion rules. Try to narrow the inputs and convert to funnel shift. 496 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { 497 assert((isa<VectorType>(Trunc.getSrcTy()) || 498 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 499 "Don't narrow to an illegal scalar type"); 500 501 // Bail out on strange types. It is possible to handle some of these patterns 502 // even with non-power-of-2 sizes, but it is not a likely scenario. 503 Type *DestTy = Trunc.getType(); 504 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 505 if (!isPowerOf2_32(NarrowWidth)) 506 return nullptr; 507 508 // First, find an or'd pair of opposite shifts with the same shifted operand: 509 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) 510 Value *Or0, *Or1; 511 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 512 return nullptr; 513 514 Value *ShVal, *ShAmt0, *ShAmt1; 515 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 516 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 517 return nullptr; 518 519 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 520 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 521 if (ShiftOpcode0 == ShiftOpcode1) 522 return nullptr; 523 524 // Match the shift amount operands for a rotate pattern. This always matches 525 // a subtraction on the R operand. 526 auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * { 527 // The shift amounts may add up to the narrow bit width: 528 // (shl ShVal, L) | (lshr ShVal, Width - L) 529 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 530 return L; 531 532 // The shift amount may be masked with negation: 533 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) 534 Value *X; 535 unsigned Mask = Width - 1; 536 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 537 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 538 return X; 539 540 // Same as above, but the shift amount may be extended after masking: 541 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 542 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 543 return X; 544 545 return nullptr; 546 }; 547 548 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 549 bool SubIsOnLHS = false; 550 if (!ShAmt) { 551 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 552 SubIsOnLHS = true; 553 } 554 if (!ShAmt) 555 return nullptr; 556 557 // The shifted value must have high zeros in the wide type. Typically, this 558 // will be a zext, but it could also be the result of an 'and' or 'shift'. 559 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 560 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 561 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) 562 return nullptr; 563 564 // We have an unnecessarily wide rotate! 565 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) 566 // Narrow the inputs and convert to funnel shift intrinsic: 567 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) 568 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 569 Value *X = Builder.CreateTrunc(ShVal, DestTy); 570 bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) || 571 (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl); 572 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 573 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 574 return IntrinsicInst::Create(F, { X, X, NarrowShAmt }); 575 } 576 577 /// Try to narrow the width of math or bitwise logic instructions by pulling a 578 /// truncate ahead of binary operators. 579 /// TODO: Transforms for truncated shifts should be moved into here. 580 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { 581 Type *SrcTy = Trunc.getSrcTy(); 582 Type *DestTy = Trunc.getType(); 583 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 584 return nullptr; 585 586 BinaryOperator *BinOp; 587 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 588 return nullptr; 589 590 Value *BinOp0 = BinOp->getOperand(0); 591 Value *BinOp1 = BinOp->getOperand(1); 592 switch (BinOp->getOpcode()) { 593 case Instruction::And: 594 case Instruction::Or: 595 case Instruction::Xor: 596 case Instruction::Add: 597 case Instruction::Sub: 598 case Instruction::Mul: { 599 Constant *C; 600 if (match(BinOp0, m_Constant(C))) { 601 // trunc (binop C, X) --> binop (trunc C', X) 602 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 603 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 604 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 605 } 606 if (match(BinOp1, m_Constant(C))) { 607 // trunc (binop X, C) --> binop (trunc X, C') 608 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 609 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 610 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 611 } 612 Value *X; 613 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 614 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 615 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 616 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 617 } 618 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 619 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 620 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 621 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 622 } 623 break; 624 } 625 626 default: break; 627 } 628 629 if (Instruction *NarrowOr = narrowRotate(Trunc)) 630 return NarrowOr; 631 632 return nullptr; 633 } 634 635 /// Try to narrow the width of a splat shuffle. This could be generalized to any 636 /// shuffle with a constant operand, but we limit the transform to avoid 637 /// creating a shuffle type that targets may not be able to lower effectively. 638 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 639 InstCombiner::BuilderTy &Builder) { 640 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 641 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 642 Shuf->getMask()->getSplatValue() && 643 Shuf->getType() == Shuf->getOperand(0)->getType()) { 644 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 645 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 646 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 647 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); 648 } 649 650 return nullptr; 651 } 652 653 /// Try to narrow the width of an insert element. This could be generalized for 654 /// any vector constant, but we limit the transform to insertion into undef to 655 /// avoid potential backend problems from unsupported insertion widths. This 656 /// could also be extended to handle the case of inserting a scalar constant 657 /// into a vector variable. 658 static Instruction *shrinkInsertElt(CastInst &Trunc, 659 InstCombiner::BuilderTy &Builder) { 660 Instruction::CastOps Opcode = Trunc.getOpcode(); 661 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 662 "Unexpected instruction for shrinking"); 663 664 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 665 if (!InsElt || !InsElt->hasOneUse()) 666 return nullptr; 667 668 Type *DestTy = Trunc.getType(); 669 Type *DestScalarTy = DestTy->getScalarType(); 670 Value *VecOp = InsElt->getOperand(0); 671 Value *ScalarOp = InsElt->getOperand(1); 672 Value *Index = InsElt->getOperand(2); 673 674 if (isa<UndefValue>(VecOp)) { 675 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 676 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 677 UndefValue *NarrowUndef = UndefValue::get(DestTy); 678 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 679 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 680 } 681 682 return nullptr; 683 } 684 685 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 686 if (Instruction *Result = commonCastTransforms(CI)) 687 return Result; 688 689 Value *Src = CI.getOperand(0); 690 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 691 692 // Attempt to truncate the entire input expression tree to the destination 693 // type. Only do this if the dest type is a simple type, don't convert the 694 // expression tree to something weird like i93 unless the source is also 695 // strange. 696 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 697 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 698 699 // If this cast is a truncate, evaluting in a different type always 700 // eliminates the cast, so it is always a win. 701 LLVM_DEBUG( 702 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 703 " to avoid cast: " 704 << CI << '\n'); 705 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 706 assert(Res->getType() == DestTy); 707 return replaceInstUsesWith(CI, Res); 708 } 709 710 // Test if the trunc is the user of a select which is part of a 711 // minimum or maximum operation. If so, don't do any more simplification. 712 // Even simplifying demanded bits can break the canonical form of a 713 // min/max. 714 Value *LHS, *RHS; 715 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 716 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 717 return nullptr; 718 719 // See if we can simplify any instructions used by the input whose sole 720 // purpose is to compute bits we don't care about. 721 if (SimplifyDemandedInstructionBits(CI)) 722 return &CI; 723 724 if (DestTy->getScalarSizeInBits() == 1) { 725 Value *Zero = Constant::getNullValue(Src->getType()); 726 if (DestTy->isIntegerTy()) { 727 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 728 // TODO: We canonicalize to more instructions here because we are probably 729 // lacking equivalent analysis for trunc relative to icmp. There may also 730 // be codegen concerns. If those trunc limitations were removed, we could 731 // remove this transform. 732 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 733 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 734 } 735 736 // For vectors, we do not canonicalize all truncs to icmp, so optimize 737 // patterns that would be covered within visitICmpInst. 738 Value *X; 739 const APInt *C; 740 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 741 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 742 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C); 743 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC)); 744 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 745 } 746 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)), 747 m_Deferred(X))))) { 748 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 749 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1; 750 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC)); 751 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 752 } 753 } 754 755 // FIXME: Maybe combine the next two transforms to handle the no cast case 756 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 757 758 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 759 Value *A = nullptr; ConstantInt *Cst = nullptr; 760 if (Src->hasOneUse() && 761 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 762 // We have three types to worry about here, the type of A, the source of 763 // the truncate (MidSize), and the destination of the truncate. We know that 764 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 765 // between ASize and ResultSize. 766 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 767 768 // If the shift amount is larger than the size of A, then the result is 769 // known to be zero because all the input bits got shifted out. 770 if (Cst->getZExtValue() >= ASize) 771 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 772 773 // Since we're doing an lshr and a zero extend, and know that the shift 774 // amount is smaller than ASize, it is always safe to do the shift in A's 775 // type, then zero extend or truncate to the result. 776 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); 777 Shift->takeName(Src); 778 return CastInst::CreateIntegerCast(Shift, DestTy, false); 779 } 780 781 // FIXME: We should canonicalize to zext/trunc and remove this transform. 782 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 783 // conversion. 784 // It works because bits coming from sign extension have the same value as 785 // the sign bit of the original value; performing ashr instead of lshr 786 // generates bits of the same value as the sign bit. 787 if (Src->hasOneUse() && 788 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 789 Value *SExt = cast<Instruction>(Src)->getOperand(0); 790 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 791 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 792 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 793 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 794 unsigned ShiftAmt = Cst->getZExtValue(); 795 796 // This optimization can be only performed when zero bits generated by 797 // the original lshr aren't pulled into the value after truncation, so we 798 // can only shift by values no larger than the number of extension bits. 799 // FIXME: Instead of bailing when the shift is too large, use and to clear 800 // the extra bits. 801 if (ShiftAmt <= MaxAmt) { 802 if (CISize == ASize) 803 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 804 std::min(ShiftAmt, ASize - 1))); 805 if (SExt->hasOneUse()) { 806 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); 807 Shift->takeName(Src); 808 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 809 } 810 } 811 } 812 813 if (Instruction *I = narrowBinOp(CI)) 814 return I; 815 816 if (Instruction *I = shrinkSplatShuffle(CI, Builder)) 817 return I; 818 819 if (Instruction *I = shrinkInsertElt(CI, Builder)) 820 return I; 821 822 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 823 shouldChangeType(SrcTy, DestTy)) { 824 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 825 // dest type is native and cst < dest size. 826 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 827 !match(A, m_Shr(m_Value(), m_Constant()))) { 828 // Skip shifts of shift by constants. It undoes a combine in 829 // FoldShiftByConstant and is the extend in reg pattern. 830 const unsigned DestSize = DestTy->getScalarSizeInBits(); 831 if (Cst->getValue().ult(DestSize)) { 832 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 833 834 return BinaryOperator::Create( 835 Instruction::Shl, NewTrunc, 836 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 837 } 838 } 839 } 840 841 if (Instruction *I = foldVecTruncToExtElt(CI, *this)) 842 return I; 843 844 return nullptr; 845 } 846 847 Instruction *InstCombiner::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext, 848 bool DoTransform) { 849 // If we are just checking for a icmp eq of a single bit and zext'ing it 850 // to an integer, then shift the bit to the appropriate place and then 851 // cast to integer to avoid the comparison. 852 const APInt *Op1CV; 853 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { 854 855 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 856 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 857 if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || 858 (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { 859 if (!DoTransform) return Cmp; 860 861 Value *In = Cmp->getOperand(0); 862 Value *Sh = ConstantInt::get(In->getType(), 863 In->getType()->getScalarSizeInBits() - 1); 864 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 865 if (In->getType() != Zext.getType()) 866 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); 867 868 if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) { 869 Constant *One = ConstantInt::get(In->getType(), 1); 870 In = Builder.CreateXor(In, One, In->getName() + ".not"); 871 } 872 873 return replaceInstUsesWith(Zext, In); 874 } 875 876 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 877 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 878 // zext (X == 1) to i32 --> X iff X has only the low bit set. 879 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 880 // zext (X != 0) to i32 --> X iff X has only the low bit set. 881 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 882 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 883 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 884 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && 885 // This only works for EQ and NE 886 Cmp->isEquality()) { 887 // If Op1C some other power of two, convert: 888 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); 889 890 APInt KnownZeroMask(~Known.Zero); 891 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 892 if (!DoTransform) return Cmp; 893 894 bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE; 895 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { 896 // (X&4) == 2 --> false 897 // (X&4) != 2 --> true 898 Constant *Res = ConstantInt::get(Zext.getType(), isNE); 899 return replaceInstUsesWith(Zext, Res); 900 } 901 902 uint32_t ShAmt = KnownZeroMask.logBase2(); 903 Value *In = Cmp->getOperand(0); 904 if (ShAmt) { 905 // Perform a logical shr by shiftamt. 906 // Insert the shift to put the result in the low bit. 907 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 908 In->getName() + ".lobit"); 909 } 910 911 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. 912 Constant *One = ConstantInt::get(In->getType(), 1); 913 In = Builder.CreateXor(In, One); 914 } 915 916 if (Zext.getType() == In->getType()) 917 return replaceInstUsesWith(Zext, In); 918 919 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); 920 return replaceInstUsesWith(Zext, IntCast); 921 } 922 } 923 } 924 925 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 926 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 927 // may lead to additional simplifications. 928 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { 929 if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) { 930 Value *LHS = Cmp->getOperand(0); 931 Value *RHS = Cmp->getOperand(1); 932 933 KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext); 934 KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext); 935 936 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 937 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 938 APInt UnknownBit = ~KnownBits; 939 if (UnknownBit.countPopulation() == 1) { 940 if (!DoTransform) return Cmp; 941 942 Value *Result = Builder.CreateXor(LHS, RHS); 943 944 // Mask off any bits that are set and won't be shifted away. 945 if (KnownLHS.One.uge(UnknownBit)) 946 Result = Builder.CreateAnd(Result, 947 ConstantInt::get(ITy, UnknownBit)); 948 949 // Shift the bit we're testing down to the lsb. 950 Result = Builder.CreateLShr( 951 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 952 953 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) 954 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 955 Result->takeName(Cmp); 956 return replaceInstUsesWith(Zext, Result); 957 } 958 } 959 } 960 } 961 962 return nullptr; 963 } 964 965 /// Determine if the specified value can be computed in the specified wider type 966 /// and produce the same low bits. If not, return false. 967 /// 968 /// If this function returns true, it can also return a non-zero number of bits 969 /// (in BitsToClear) which indicates that the value it computes is correct for 970 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 971 /// out. For example, to promote something like: 972 /// 973 /// %B = trunc i64 %A to i32 974 /// %C = lshr i32 %B, 8 975 /// %E = zext i32 %C to i64 976 /// 977 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 978 /// set to 8 to indicate that the promoted value needs to have bits 24-31 979 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 980 /// clear the top bits anyway, doing this has no extra cost. 981 /// 982 /// This function works on both vectors and scalars. 983 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 984 InstCombiner &IC, Instruction *CxtI) { 985 BitsToClear = 0; 986 if (canAlwaysEvaluateInType(V, Ty)) 987 return true; 988 if (canNotEvaluateInType(V, Ty)) 989 return false; 990 991 auto *I = cast<Instruction>(V); 992 unsigned Tmp; 993 switch (I->getOpcode()) { 994 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 995 case Instruction::SExt: // zext(sext(x)) -> sext(x). 996 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 997 return true; 998 case Instruction::And: 999 case Instruction::Or: 1000 case Instruction::Xor: 1001 case Instruction::Add: 1002 case Instruction::Sub: 1003 case Instruction::Mul: 1004 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1005 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1006 return false; 1007 // These can all be promoted if neither operand has 'bits to clear'. 1008 if (BitsToClear == 0 && Tmp == 0) 1009 return true; 1010 1011 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1012 // other side, BitsToClear is ok. 1013 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1014 // We use MaskedValueIsZero here for generality, but the case we care 1015 // about the most is constant RHS. 1016 unsigned VSize = V->getType()->getScalarSizeInBits(); 1017 if (IC.MaskedValueIsZero(I->getOperand(1), 1018 APInt::getHighBitsSet(VSize, BitsToClear), 1019 0, CxtI)) { 1020 // If this is an And instruction and all of the BitsToClear are 1021 // known to be zero we can reset BitsToClear. 1022 if (I->getOpcode() == Instruction::And) 1023 BitsToClear = 0; 1024 return true; 1025 } 1026 } 1027 1028 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1029 return false; 1030 1031 case Instruction::Shl: { 1032 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1033 // upper bits we can reduce BitsToClear by the shift amount. 1034 const APInt *Amt; 1035 if (match(I->getOperand(1), m_APInt(Amt))) { 1036 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1037 return false; 1038 uint64_t ShiftAmt = Amt->getZExtValue(); 1039 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1040 return true; 1041 } 1042 return false; 1043 } 1044 case Instruction::LShr: { 1045 // We can promote lshr(x, cst) if we can promote x. This requires the 1046 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1047 const APInt *Amt; 1048 if (match(I->getOperand(1), m_APInt(Amt))) { 1049 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1050 return false; 1051 BitsToClear += Amt->getZExtValue(); 1052 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1053 BitsToClear = V->getType()->getScalarSizeInBits(); 1054 return true; 1055 } 1056 // Cannot promote variable LSHR. 1057 return false; 1058 } 1059 case Instruction::Select: 1060 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1061 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1062 // TODO: If important, we could handle the case when the BitsToClear are 1063 // known zero in the disagreeing side. 1064 Tmp != BitsToClear) 1065 return false; 1066 return true; 1067 1068 case Instruction::PHI: { 1069 // We can change a phi if we can change all operands. Note that we never 1070 // get into trouble with cyclic PHIs here because we only consider 1071 // instructions with a single use. 1072 PHINode *PN = cast<PHINode>(I); 1073 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1074 return false; 1075 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1076 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1077 // TODO: If important, we could handle the case when the BitsToClear 1078 // are known zero in the disagreeing input. 1079 Tmp != BitsToClear) 1080 return false; 1081 return true; 1082 } 1083 default: 1084 // TODO: Can handle more cases here. 1085 return false; 1086 } 1087 } 1088 1089 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 1090 // If this zero extend is only used by a truncate, let the truncate be 1091 // eliminated before we try to optimize this zext. 1092 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1093 return nullptr; 1094 1095 // If one of the common conversion will work, do it. 1096 if (Instruction *Result = commonCastTransforms(CI)) 1097 return Result; 1098 1099 Value *Src = CI.getOperand(0); 1100 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1101 1102 // Try to extend the entire expression tree to the wide destination type. 1103 unsigned BitsToClear; 1104 if (shouldChangeType(SrcTy, DestTy) && 1105 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1106 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1107 "Can't clear more bits than in SrcTy"); 1108 1109 // Okay, we can transform this! Insert the new expression now. 1110 LLVM_DEBUG( 1111 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1112 " to avoid zero extend: " 1113 << CI << '\n'); 1114 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1115 assert(Res->getType() == DestTy); 1116 1117 // Preserve debug values referring to Src if the zext is its last use. 1118 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1119 if (SrcOp->hasOneUse()) 1120 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1121 1122 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1123 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1124 1125 // If the high bits are already filled with zeros, just replace this 1126 // cast with the result. 1127 if (MaskedValueIsZero(Res, 1128 APInt::getHighBitsSet(DestBitSize, 1129 DestBitSize-SrcBitsKept), 1130 0, &CI)) 1131 return replaceInstUsesWith(CI, Res); 1132 1133 // We need to emit an AND to clear the high bits. 1134 Constant *C = ConstantInt::get(Res->getType(), 1135 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1136 return BinaryOperator::CreateAnd(Res, C); 1137 } 1138 1139 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1140 // types and if the sizes are just right we can convert this into a logical 1141 // 'and' which will be much cheaper than the pair of casts. 1142 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1143 // TODO: Subsume this into EvaluateInDifferentType. 1144 1145 // Get the sizes of the types involved. We know that the intermediate type 1146 // will be smaller than A or C, but don't know the relation between A and C. 1147 Value *A = CSrc->getOperand(0); 1148 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1149 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1150 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1151 // If we're actually extending zero bits, then if 1152 // SrcSize < DstSize: zext(a & mask) 1153 // SrcSize == DstSize: a & mask 1154 // SrcSize > DstSize: trunc(a) & mask 1155 if (SrcSize < DstSize) { 1156 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1157 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1158 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1159 return new ZExtInst(And, CI.getType()); 1160 } 1161 1162 if (SrcSize == DstSize) { 1163 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1164 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1165 AndValue)); 1166 } 1167 if (SrcSize > DstSize) { 1168 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1169 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1170 return BinaryOperator::CreateAnd(Trunc, 1171 ConstantInt::get(Trunc->getType(), 1172 AndValue)); 1173 } 1174 } 1175 1176 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src)) 1177 return transformZExtICmp(Cmp, CI); 1178 1179 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1180 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1181 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1182 // of the (zext icmp) can be eliminated. If so, immediately perform the 1183 // according elimination. 1184 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1185 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1186 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1187 (transformZExtICmp(LHS, CI, false) || 1188 transformZExtICmp(RHS, CI, false))) { 1189 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1190 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1191 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1192 Value *Or = Builder.CreateOr(LCast, RCast, CI.getName()); 1193 if (auto *OrInst = dyn_cast<Instruction>(Or)) 1194 Builder.SetInsertPoint(OrInst); 1195 1196 // Perform the elimination. 1197 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1198 transformZExtICmp(LHS, *LZExt); 1199 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1200 transformZExtICmp(RHS, *RZExt); 1201 1202 return replaceInstUsesWith(CI, Or); 1203 } 1204 } 1205 1206 // zext(trunc(X) & C) -> (X & zext(C)). 1207 Constant *C; 1208 Value *X; 1209 if (SrcI && 1210 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1211 X->getType() == CI.getType()) 1212 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1213 1214 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1215 Value *And; 1216 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1217 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1218 X->getType() == CI.getType()) { 1219 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1220 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1221 } 1222 1223 return nullptr; 1224 } 1225 1226 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1227 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1228 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1229 ICmpInst::Predicate Pred = ICI->getPredicate(); 1230 1231 // Don't bother if Op1 isn't of vector or integer type. 1232 if (!Op1->getType()->isIntOrIntVectorTy()) 1233 return nullptr; 1234 1235 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1236 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1237 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1238 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1239 Value *Sh = ConstantInt::get(Op0->getType(), 1240 Op0->getType()->getScalarSizeInBits() - 1); 1241 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1242 if (In->getType() != CI.getType()) 1243 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1244 1245 if (Pred == ICmpInst::ICMP_SGT) 1246 In = Builder.CreateNot(In, In->getName() + ".not"); 1247 return replaceInstUsesWith(CI, In); 1248 } 1249 1250 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1251 // If we know that only one bit of the LHS of the icmp can be set and we 1252 // have an equality comparison with zero or a power of 2, we can transform 1253 // the icmp and sext into bitwise/integer operations. 1254 if (ICI->hasOneUse() && 1255 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1256 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1257 1258 APInt KnownZeroMask(~Known.Zero); 1259 if (KnownZeroMask.isPowerOf2()) { 1260 Value *In = ICI->getOperand(0); 1261 1262 // If the icmp tests for a known zero bit we can constant fold it. 1263 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1264 Value *V = Pred == ICmpInst::ICMP_NE ? 1265 ConstantInt::getAllOnesValue(CI.getType()) : 1266 ConstantInt::getNullValue(CI.getType()); 1267 return replaceInstUsesWith(CI, V); 1268 } 1269 1270 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1271 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1272 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1273 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1274 // Perform a right shift to place the desired bit in the LSB. 1275 if (ShiftAmt) 1276 In = Builder.CreateLShr(In, 1277 ConstantInt::get(In->getType(), ShiftAmt)); 1278 1279 // At this point "In" is either 1 or 0. Subtract 1 to turn 1280 // {1, 0} -> {0, -1}. 1281 In = Builder.CreateAdd(In, 1282 ConstantInt::getAllOnesValue(In->getType()), 1283 "sext"); 1284 } else { 1285 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1286 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1287 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1288 // Perform a left shift to place the desired bit in the MSB. 1289 if (ShiftAmt) 1290 In = Builder.CreateShl(In, 1291 ConstantInt::get(In->getType(), ShiftAmt)); 1292 1293 // Distribute the bit over the whole bit width. 1294 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1295 KnownZeroMask.getBitWidth() - 1), "sext"); 1296 } 1297 1298 if (CI.getType() == In->getType()) 1299 return replaceInstUsesWith(CI, In); 1300 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1301 } 1302 } 1303 } 1304 1305 return nullptr; 1306 } 1307 1308 /// Return true if we can take the specified value and return it as type Ty 1309 /// without inserting any new casts and without changing the value of the common 1310 /// low bits. This is used by code that tries to promote integer operations to 1311 /// a wider types will allow us to eliminate the extension. 1312 /// 1313 /// This function works on both vectors and scalars. 1314 /// 1315 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1316 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1317 "Can't sign extend type to a smaller type"); 1318 if (canAlwaysEvaluateInType(V, Ty)) 1319 return true; 1320 if (canNotEvaluateInType(V, Ty)) 1321 return false; 1322 1323 auto *I = cast<Instruction>(V); 1324 switch (I->getOpcode()) { 1325 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1326 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1327 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1328 return true; 1329 case Instruction::And: 1330 case Instruction::Or: 1331 case Instruction::Xor: 1332 case Instruction::Add: 1333 case Instruction::Sub: 1334 case Instruction::Mul: 1335 // These operators can all arbitrarily be extended if their inputs can. 1336 return canEvaluateSExtd(I->getOperand(0), Ty) && 1337 canEvaluateSExtd(I->getOperand(1), Ty); 1338 1339 //case Instruction::Shl: TODO 1340 //case Instruction::LShr: TODO 1341 1342 case Instruction::Select: 1343 return canEvaluateSExtd(I->getOperand(1), Ty) && 1344 canEvaluateSExtd(I->getOperand(2), Ty); 1345 1346 case Instruction::PHI: { 1347 // We can change a phi if we can change all operands. Note that we never 1348 // get into trouble with cyclic PHIs here because we only consider 1349 // instructions with a single use. 1350 PHINode *PN = cast<PHINode>(I); 1351 for (Value *IncValue : PN->incoming_values()) 1352 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1353 return true; 1354 } 1355 default: 1356 // TODO: Can handle more cases here. 1357 break; 1358 } 1359 1360 return false; 1361 } 1362 1363 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1364 // If this sign extend is only used by a truncate, let the truncate be 1365 // eliminated before we try to optimize this sext. 1366 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1367 return nullptr; 1368 1369 if (Instruction *I = commonCastTransforms(CI)) 1370 return I; 1371 1372 Value *Src = CI.getOperand(0); 1373 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1374 1375 // If we know that the value being extended is positive, we can use a zext 1376 // instead. 1377 KnownBits Known = computeKnownBits(Src, 0, &CI); 1378 if (Known.isNonNegative()) 1379 return CastInst::Create(Instruction::ZExt, Src, DestTy); 1380 1381 // Try to extend the entire expression tree to the wide destination type. 1382 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1383 // Okay, we can transform this! Insert the new expression now. 1384 LLVM_DEBUG( 1385 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1386 " to avoid sign extend: " 1387 << CI << '\n'); 1388 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1389 assert(Res->getType() == DestTy); 1390 1391 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1392 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1393 1394 // If the high bits are already filled with sign bit, just replace this 1395 // cast with the result. 1396 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1397 return replaceInstUsesWith(CI, Res); 1398 1399 // We need to emit a shl + ashr to do the sign extend. 1400 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1401 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1402 ShAmt); 1403 } 1404 1405 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1406 // into shifts. 1407 Value *X; 1408 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1409 // sext(trunc(X)) --> ashr(shl(X, C), C) 1410 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1411 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1412 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1413 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1414 } 1415 1416 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1417 return transformSExtICmp(ICI, CI); 1418 1419 // If the input is a shl/ashr pair of a same constant, then this is a sign 1420 // extension from a smaller value. If we could trust arbitrary bitwidth 1421 // integers, we could turn this into a truncate to the smaller bit and then 1422 // use a sext for the whole extension. Since we don't, look deeper and check 1423 // for a truncate. If the source and dest are the same type, eliminate the 1424 // trunc and extend and just do shifts. For example, turn: 1425 // %a = trunc i32 %i to i8 1426 // %b = shl i8 %a, 6 1427 // %c = ashr i8 %b, 6 1428 // %d = sext i8 %c to i32 1429 // into: 1430 // %a = shl i32 %i, 30 1431 // %d = ashr i32 %a, 30 1432 Value *A = nullptr; 1433 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1434 ConstantInt *BA = nullptr, *CA = nullptr; 1435 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1436 m_ConstantInt(CA))) && 1437 BA == CA && A->getType() == CI.getType()) { 1438 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1439 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1440 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1441 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1442 A = Builder.CreateShl(A, ShAmtV, CI.getName()); 1443 return BinaryOperator::CreateAShr(A, ShAmtV); 1444 } 1445 1446 return nullptr; 1447 } 1448 1449 1450 /// Return a Constant* for the specified floating-point constant if it fits 1451 /// in the specified FP type without changing its value. 1452 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1453 bool losesInfo; 1454 APFloat F = CFP->getValueAPF(); 1455 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1456 return !losesInfo; 1457 } 1458 1459 static Type *shrinkFPConstant(ConstantFP *CFP) { 1460 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1461 return nullptr; // No constant folding of this. 1462 // See if the value can be truncated to half and then reextended. 1463 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1464 return Type::getHalfTy(CFP->getContext()); 1465 // See if the value can be truncated to float and then reextended. 1466 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1467 return Type::getFloatTy(CFP->getContext()); 1468 if (CFP->getType()->isDoubleTy()) 1469 return nullptr; // Won't shrink. 1470 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1471 return Type::getDoubleTy(CFP->getContext()); 1472 // Don't try to shrink to various long double types. 1473 return nullptr; 1474 } 1475 1476 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1477 // type we can safely truncate all elements to. 1478 // TODO: Make these support undef elements. 1479 static Type *shrinkFPConstantVector(Value *V) { 1480 auto *CV = dyn_cast<Constant>(V); 1481 if (!CV || !CV->getType()->isVectorTy()) 1482 return nullptr; 1483 1484 Type *MinType = nullptr; 1485 1486 unsigned NumElts = CV->getType()->getVectorNumElements(); 1487 for (unsigned i = 0; i != NumElts; ++i) { 1488 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1489 if (!CFP) 1490 return nullptr; 1491 1492 Type *T = shrinkFPConstant(CFP); 1493 if (!T) 1494 return nullptr; 1495 1496 // If we haven't found a type yet or this type has a larger mantissa than 1497 // our previous type, this is our new minimal type. 1498 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1499 MinType = T; 1500 } 1501 1502 // Make a vector type from the minimal type. 1503 return VectorType::get(MinType, NumElts); 1504 } 1505 1506 /// Find the minimum FP type we can safely truncate to. 1507 static Type *getMinimumFPType(Value *V) { 1508 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1509 return FPExt->getOperand(0)->getType(); 1510 1511 // If this value is a constant, return the constant in the smallest FP type 1512 // that can accurately represent it. This allows us to turn 1513 // (float)((double)X+2.0) into x+2.0f. 1514 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1515 if (Type *T = shrinkFPConstant(CFP)) 1516 return T; 1517 1518 // Try to shrink a vector of FP constants. 1519 if (Type *T = shrinkFPConstantVector(V)) 1520 return T; 1521 1522 return V->getType(); 1523 } 1524 1525 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) { 1526 if (Instruction *I = commonCastTransforms(FPT)) 1527 return I; 1528 1529 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1530 // simplify this expression to avoid one or more of the trunc/extend 1531 // operations if we can do so without changing the numerical results. 1532 // 1533 // The exact manner in which the widths of the operands interact to limit 1534 // what we can and cannot do safely varies from operation to operation, and 1535 // is explained below in the various case statements. 1536 Type *Ty = FPT.getType(); 1537 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1538 if (BO && BO->hasOneUse()) { 1539 Type *LHSMinType = getMinimumFPType(BO->getOperand(0)); 1540 Type *RHSMinType = getMinimumFPType(BO->getOperand(1)); 1541 unsigned OpWidth = BO->getType()->getFPMantissaWidth(); 1542 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1543 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1544 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1545 unsigned DstWidth = Ty->getFPMantissaWidth(); 1546 switch (BO->getOpcode()) { 1547 default: break; 1548 case Instruction::FAdd: 1549 case Instruction::FSub: 1550 // For addition and subtraction, the infinitely precise result can 1551 // essentially be arbitrarily wide; proving that double rounding 1552 // will not occur because the result of OpI is exact (as we will for 1553 // FMul, for example) is hopeless. However, we *can* nonetheless 1554 // frequently know that double rounding cannot occur (or that it is 1555 // innocuous) by taking advantage of the specific structure of 1556 // infinitely-precise results that admit double rounding. 1557 // 1558 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1559 // to represent both sources, we can guarantee that the double 1560 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1561 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1562 // for proof of this fact). 1563 // 1564 // Note: Figueroa does not consider the case where DstFormat != 1565 // SrcFormat. It's possible (likely even!) that this analysis 1566 // could be tightened for those cases, but they are rare (the main 1567 // case of interest here is (float)((double)float + float)). 1568 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1569 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1570 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1571 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); 1572 RI->copyFastMathFlags(BO); 1573 return RI; 1574 } 1575 break; 1576 case Instruction::FMul: 1577 // For multiplication, the infinitely precise result has at most 1578 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1579 // that such a value can be exactly represented, then no double 1580 // rounding can possibly occur; we can safely perform the operation 1581 // in the destination format if it can represent both sources. 1582 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1583 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1584 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1585 return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); 1586 } 1587 break; 1588 case Instruction::FDiv: 1589 // For division, we use again use the bound from Figueroa's 1590 // dissertation. I am entirely certain that this bound can be 1591 // tightened in the unbalanced operand case by an analysis based on 1592 // the diophantine rational approximation bound, but the well-known 1593 // condition used here is a good conservative first pass. 1594 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1595 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1596 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); 1597 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); 1598 return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); 1599 } 1600 break; 1601 case Instruction::FRem: { 1602 // Remainder is straightforward. Remainder is always exact, so the 1603 // type of OpI doesn't enter into things at all. We simply evaluate 1604 // in whichever source type is larger, then convert to the 1605 // destination type. 1606 if (SrcWidth == OpWidth) 1607 break; 1608 Value *LHS, *RHS; 1609 if (LHSWidth == SrcWidth) { 1610 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); 1611 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); 1612 } else { 1613 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); 1614 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); 1615 } 1616 1617 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); 1618 return CastInst::CreateFPCast(ExactResult, Ty); 1619 } 1620 } 1621 } 1622 1623 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1624 Value *X; 1625 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); 1626 if (Op && Op->hasOneUse()) { 1627 // FIXME: The FMF should propagate from the fptrunc, not the source op. 1628 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1629 if (isa<FPMathOperator>(Op)) 1630 Builder.setFastMathFlags(Op->getFastMathFlags()); 1631 1632 if (match(Op, m_FNeg(m_Value(X)))) { 1633 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1634 1635 // FIXME: Once we're sure that unary FNeg optimizations are on par with 1636 // binary FNeg, this should always return a unary operator. 1637 if (isa<BinaryOperator>(Op)) 1638 return BinaryOperator::CreateFNegFMF(InnerTrunc, Op); 1639 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); 1640 } 1641 1642 // If we are truncating a select that has an extended operand, we can 1643 // narrow the other operand and do the select as a narrow op. 1644 Value *Cond, *X, *Y; 1645 if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && 1646 X->getType() == Ty) { 1647 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) 1648 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1649 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); 1650 return replaceInstUsesWith(FPT, Sel); 1651 } 1652 if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && 1653 X->getType() == Ty) { 1654 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X 1655 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); 1656 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); 1657 return replaceInstUsesWith(FPT, Sel); 1658 } 1659 } 1660 1661 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1662 switch (II->getIntrinsicID()) { 1663 default: break; 1664 case Intrinsic::ceil: 1665 case Intrinsic::fabs: 1666 case Intrinsic::floor: 1667 case Intrinsic::nearbyint: 1668 case Intrinsic::rint: 1669 case Intrinsic::round: 1670 case Intrinsic::trunc: { 1671 Value *Src = II->getArgOperand(0); 1672 if (!Src->hasOneUse()) 1673 break; 1674 1675 // Except for fabs, this transformation requires the input of the unary FP 1676 // operation to be itself an fpext from the type to which we're 1677 // truncating. 1678 if (II->getIntrinsicID() != Intrinsic::fabs) { 1679 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1680 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1681 break; 1682 } 1683 1684 // Do unary FP operation on smaller type. 1685 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1686 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1687 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1688 II->getIntrinsicID(), Ty); 1689 SmallVector<OperandBundleDef, 1> OpBundles; 1690 II->getOperandBundlesAsDefs(OpBundles); 1691 CallInst *NewCI = 1692 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); 1693 NewCI->copyFastMathFlags(II); 1694 return NewCI; 1695 } 1696 } 1697 } 1698 1699 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1700 return I; 1701 1702 return nullptr; 1703 } 1704 1705 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1706 return commonCastTransforms(CI); 1707 } 1708 1709 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1710 // This is safe if the intermediate type has enough bits in its mantissa to 1711 // accurately represent all values of X. For example, this won't work with 1712 // i64 -> float -> i64. 1713 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1714 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1715 return nullptr; 1716 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1717 1718 Value *SrcI = OpI->getOperand(0); 1719 Type *FITy = FI.getType(); 1720 Type *OpITy = OpI->getType(); 1721 Type *SrcTy = SrcI->getType(); 1722 bool IsInputSigned = isa<SIToFPInst>(OpI); 1723 bool IsOutputSigned = isa<FPToSIInst>(FI); 1724 1725 // We can safely assume the conversion won't overflow the output range, 1726 // because (for example) (uint8_t)18293.f is undefined behavior. 1727 1728 // Since we can assume the conversion won't overflow, our decision as to 1729 // whether the input will fit in the float should depend on the minimum 1730 // of the input range and output range. 1731 1732 // This means this is also safe for a signed input and unsigned output, since 1733 // a negative input would lead to undefined behavior. 1734 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1735 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1736 int ActualSize = std::min(InputSize, OutputSize); 1737 1738 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1739 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1740 if (IsInputSigned && IsOutputSigned) 1741 return new SExtInst(SrcI, FITy); 1742 return new ZExtInst(SrcI, FITy); 1743 } 1744 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1745 return new TruncInst(SrcI, FITy); 1746 if (SrcTy == FITy) 1747 return replaceInstUsesWith(FI, SrcI); 1748 return new BitCastInst(SrcI, FITy); 1749 } 1750 return nullptr; 1751 } 1752 1753 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1754 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1755 if (!OpI) 1756 return commonCastTransforms(FI); 1757 1758 if (Instruction *I = FoldItoFPtoI(FI)) 1759 return I; 1760 1761 return commonCastTransforms(FI); 1762 } 1763 1764 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1765 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1766 if (!OpI) 1767 return commonCastTransforms(FI); 1768 1769 if (Instruction *I = FoldItoFPtoI(FI)) 1770 return I; 1771 1772 return commonCastTransforms(FI); 1773 } 1774 1775 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1776 return commonCastTransforms(CI); 1777 } 1778 1779 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1780 return commonCastTransforms(CI); 1781 } 1782 1783 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1784 // If the source integer type is not the intptr_t type for this target, do a 1785 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1786 // cast to be exposed to other transforms. 1787 unsigned AS = CI.getAddressSpace(); 1788 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1789 DL.getPointerSizeInBits(AS)) { 1790 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1791 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1792 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1793 1794 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1795 return new IntToPtrInst(P, CI.getType()); 1796 } 1797 1798 if (Instruction *I = commonCastTransforms(CI)) 1799 return I; 1800 1801 return nullptr; 1802 } 1803 1804 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 1805 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1806 Value *Src = CI.getOperand(0); 1807 1808 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1809 // If casting the result of a getelementptr instruction with no offset, turn 1810 // this into a cast of the original pointer! 1811 if (GEP->hasAllZeroIndices() && 1812 // If CI is an addrspacecast and GEP changes the poiner type, merging 1813 // GEP into CI would undo canonicalizing addrspacecast with different 1814 // pointer types, causing infinite loops. 1815 (!isa<AddrSpaceCastInst>(CI) || 1816 GEP->getType() == GEP->getPointerOperandType())) { 1817 // Changing the cast operand is usually not a good idea but it is safe 1818 // here because the pointer operand is being replaced with another 1819 // pointer operand so the opcode doesn't need to change. 1820 Worklist.Add(GEP); 1821 CI.setOperand(0, GEP->getOperand(0)); 1822 return &CI; 1823 } 1824 } 1825 1826 return commonCastTransforms(CI); 1827 } 1828 1829 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1830 // If the destination integer type is not the intptr_t type for this target, 1831 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1832 // to be exposed to other transforms. 1833 1834 Type *Ty = CI.getType(); 1835 unsigned AS = CI.getPointerAddressSpace(); 1836 1837 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) 1838 return commonPointerCastTransforms(CI); 1839 1840 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1841 if (Ty->isVectorTy()) // Handle vectors of pointers. 1842 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1843 1844 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); 1845 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1846 } 1847 1848 /// This input value (which is known to have vector type) is being zero extended 1849 /// or truncated to the specified vector type. Since the zext/trunc is done 1850 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern, 1851 /// endianness will impact which end of the vector that is extended or 1852 /// truncated. 1853 /// 1854 /// A vector is always stored with index 0 at the lowest address, which 1855 /// corresponds to the most significant bits for a big endian stored integer and 1856 /// the least significant bits for little endian. A trunc/zext of an integer 1857 /// impacts the big end of the integer. Thus, we need to add/remove elements at 1858 /// the front of the vector for big endian targets, and the back of the vector 1859 /// for little endian targets. 1860 /// 1861 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1862 /// 1863 /// The source and destination vector types may have different element types. 1864 static Instruction *optimizeVectorResizeWithIntegerBitCasts(Value *InVal, 1865 VectorType *DestTy, 1866 InstCombiner &IC) { 1867 // We can only do this optimization if the output is a multiple of the input 1868 // element size, or the input is a multiple of the output element size. 1869 // Convert the input type to have the same element type as the output. 1870 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1871 1872 if (SrcTy->getElementType() != DestTy->getElementType()) { 1873 // The input types don't need to be identical, but for now they must be the 1874 // same size. There is no specific reason we couldn't handle things like 1875 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1876 // there yet. 1877 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1878 DestTy->getElementType()->getPrimitiveSizeInBits()) 1879 return nullptr; 1880 1881 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1882 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 1883 } 1884 1885 bool IsBigEndian = IC.getDataLayout().isBigEndian(); 1886 unsigned SrcElts = SrcTy->getNumElements(); 1887 unsigned DestElts = DestTy->getNumElements(); 1888 1889 assert(SrcElts != DestElts && "Element counts should be different."); 1890 1891 // Now that the element types match, get the shuffle mask and RHS of the 1892 // shuffle to use, which depends on whether we're increasing or decreasing the 1893 // size of the input. 1894 SmallVector<uint32_t, 16> ShuffleMaskStorage; 1895 ArrayRef<uint32_t> ShuffleMask; 1896 Value *V2; 1897 1898 // Produce an identify shuffle mask for the src vector. 1899 ShuffleMaskStorage.resize(SrcElts); 1900 std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0); 1901 1902 if (SrcElts > DestElts) { 1903 // If we're shrinking the number of elements (rewriting an integer 1904 // truncate), just shuffle in the elements corresponding to the least 1905 // significant bits from the input and use undef as the second shuffle 1906 // input. 1907 V2 = UndefValue::get(SrcTy); 1908 // Make sure the shuffle mask selects the "least significant bits" by 1909 // keeping elements from back of the src vector for big endian, and from the 1910 // front for little endian. 1911 ShuffleMask = ShuffleMaskStorage; 1912 if (IsBigEndian) 1913 ShuffleMask = ShuffleMask.take_back(DestElts); 1914 else 1915 ShuffleMask = ShuffleMask.take_front(DestElts); 1916 } else { 1917 // If we're increasing the number of elements (rewriting an integer zext), 1918 // shuffle in all of the elements from InVal. Fill the rest of the result 1919 // elements with zeros from a constant zero. 1920 V2 = Constant::getNullValue(SrcTy); 1921 // Use first elt from V2 when indicating zero in the shuffle mask. 1922 uint32_t NullElt = SrcElts; 1923 // Extend with null values in the "most significant bits" by adding elements 1924 // in front of the src vector for big endian, and at the back for little 1925 // endian. 1926 unsigned DeltaElts = DestElts - SrcElts; 1927 if (IsBigEndian) 1928 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); 1929 else 1930 ShuffleMaskStorage.append(DeltaElts, NullElt); 1931 ShuffleMask = ShuffleMaskStorage; 1932 } 1933 1934 return new ShuffleVectorInst(InVal, V2, 1935 ConstantDataVector::get(V2->getContext(), 1936 ShuffleMask)); 1937 } 1938 1939 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1940 return Value % Ty->getPrimitiveSizeInBits() == 0; 1941 } 1942 1943 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1944 return Value / Ty->getPrimitiveSizeInBits(); 1945 } 1946 1947 /// V is a value which is inserted into a vector of VecEltTy. 1948 /// Look through the value to see if we can decompose it into 1949 /// insertions into the vector. See the example in the comment for 1950 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1951 /// The type of V is always a non-zero multiple of VecEltTy's size. 1952 /// Shift is the number of bits between the lsb of V and the lsb of 1953 /// the vector. 1954 /// 1955 /// This returns false if the pattern can't be matched or true if it can, 1956 /// filling in Elements with the elements found here. 1957 static bool collectInsertionElements(Value *V, unsigned Shift, 1958 SmallVectorImpl<Value *> &Elements, 1959 Type *VecEltTy, bool isBigEndian) { 1960 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1961 "Shift should be a multiple of the element type size"); 1962 1963 // Undef values never contribute useful bits to the result. 1964 if (isa<UndefValue>(V)) return true; 1965 1966 // If we got down to a value of the right type, we win, try inserting into the 1967 // right element. 1968 if (V->getType() == VecEltTy) { 1969 // Inserting null doesn't actually insert any elements. 1970 if (Constant *C = dyn_cast<Constant>(V)) 1971 if (C->isNullValue()) 1972 return true; 1973 1974 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1975 if (isBigEndian) 1976 ElementIndex = Elements.size() - ElementIndex - 1; 1977 1978 // Fail if multiple elements are inserted into this slot. 1979 if (Elements[ElementIndex]) 1980 return false; 1981 1982 Elements[ElementIndex] = V; 1983 return true; 1984 } 1985 1986 if (Constant *C = dyn_cast<Constant>(V)) { 1987 // Figure out the # elements this provides, and bitcast it or slice it up 1988 // as required. 1989 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1990 VecEltTy); 1991 // If the constant is the size of a vector element, we just need to bitcast 1992 // it to the right type so it gets properly inserted. 1993 if (NumElts == 1) 1994 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1995 Shift, Elements, VecEltTy, isBigEndian); 1996 1997 // Okay, this is a constant that covers multiple elements. Slice it up into 1998 // pieces and insert each element-sized piece into the vector. 1999 if (!isa<IntegerType>(C->getType())) 2000 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 2001 C->getType()->getPrimitiveSizeInBits())); 2002 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 2003 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 2004 2005 for (unsigned i = 0; i != NumElts; ++i) { 2006 unsigned ShiftI = Shift+i*ElementSize; 2007 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 2008 ShiftI)); 2009 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 2010 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 2011 isBigEndian)) 2012 return false; 2013 } 2014 return true; 2015 } 2016 2017 if (!V->hasOneUse()) return false; 2018 2019 Instruction *I = dyn_cast<Instruction>(V); 2020 if (!I) return false; 2021 switch (I->getOpcode()) { 2022 default: return false; // Unhandled case. 2023 case Instruction::BitCast: 2024 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2025 isBigEndian); 2026 case Instruction::ZExt: 2027 if (!isMultipleOfTypeSize( 2028 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 2029 VecEltTy)) 2030 return false; 2031 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2032 isBigEndian); 2033 case Instruction::Or: 2034 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2035 isBigEndian) && 2036 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 2037 isBigEndian); 2038 case Instruction::Shl: { 2039 // Must be shifting by a constant that is a multiple of the element size. 2040 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 2041 if (!CI) return false; 2042 Shift += CI->getZExtValue(); 2043 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 2044 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 2045 isBigEndian); 2046 } 2047 2048 } 2049 } 2050 2051 2052 /// If the input is an 'or' instruction, we may be doing shifts and ors to 2053 /// assemble the elements of the vector manually. 2054 /// Try to rip the code out and replace it with insertelements. This is to 2055 /// optimize code like this: 2056 /// 2057 /// %tmp37 = bitcast float %inc to i32 2058 /// %tmp38 = zext i32 %tmp37 to i64 2059 /// %tmp31 = bitcast float %inc5 to i32 2060 /// %tmp32 = zext i32 %tmp31 to i64 2061 /// %tmp33 = shl i64 %tmp32, 32 2062 /// %ins35 = or i64 %tmp33, %tmp38 2063 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2064 /// 2065 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2066 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2067 InstCombiner &IC) { 2068 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 2069 Value *IntInput = CI.getOperand(0); 2070 2071 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2072 if (!collectInsertionElements(IntInput, 0, Elements, 2073 DestVecTy->getElementType(), 2074 IC.getDataLayout().isBigEndian())) 2075 return nullptr; 2076 2077 // If we succeeded, we know that all of the element are specified by Elements 2078 // or are zero if Elements has a null entry. Recast this as a set of 2079 // insertions. 2080 Value *Result = Constant::getNullValue(CI.getType()); 2081 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2082 if (!Elements[i]) continue; // Unset element. 2083 2084 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2085 IC.Builder.getInt32(i)); 2086 } 2087 2088 return Result; 2089 } 2090 2091 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2092 /// vector followed by extract element. The backend tends to handle bitcasts of 2093 /// vectors better than bitcasts of scalars because vector registers are 2094 /// usually not type-specific like scalar integer or scalar floating-point. 2095 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2096 InstCombiner &IC) { 2097 // TODO: Create and use a pattern matcher for ExtractElementInst. 2098 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 2099 if (!ExtElt || !ExtElt->hasOneUse()) 2100 return nullptr; 2101 2102 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2103 // type to extract from. 2104 Type *DestType = BitCast.getType(); 2105 if (!VectorType::isValidElementType(DestType)) 2106 return nullptr; 2107 2108 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 2109 auto *NewVecType = VectorType::get(DestType, NumElts); 2110 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 2111 NewVecType, "bc"); 2112 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 2113 } 2114 2115 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2116 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2117 InstCombiner::BuilderTy &Builder) { 2118 Type *DestTy = BitCast.getType(); 2119 BinaryOperator *BO; 2120 if (!DestTy->isIntOrIntVectorTy() || 2121 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2122 !BO->isBitwiseLogicOp()) 2123 return nullptr; 2124 2125 // FIXME: This transform is restricted to vector types to avoid backend 2126 // problems caused by creating potentially illegal operations. If a fix-up is 2127 // added to handle that situation, we can remove this check. 2128 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2129 return nullptr; 2130 2131 Value *X; 2132 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2133 X->getType() == DestTy && !isa<Constant>(X)) { 2134 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2135 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2136 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2137 } 2138 2139 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2140 X->getType() == DestTy && !isa<Constant>(X)) { 2141 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2142 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2143 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2144 } 2145 2146 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2147 // constant. This eases recognition of special constants for later ops. 2148 // Example: 2149 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2150 Constant *C; 2151 if (match(BO->getOperand(1), m_Constant(C))) { 2152 // bitcast (logic X, C) --> logic (bitcast X, C') 2153 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2154 Value *CastedC = ConstantExpr::getBitCast(C, DestTy); 2155 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2156 } 2157 2158 return nullptr; 2159 } 2160 2161 /// Change the type of a select if we can eliminate a bitcast. 2162 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2163 InstCombiner::BuilderTy &Builder) { 2164 Value *Cond, *TVal, *FVal; 2165 if (!match(BitCast.getOperand(0), 2166 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2167 return nullptr; 2168 2169 // A vector select must maintain the same number of elements in its operands. 2170 Type *CondTy = Cond->getType(); 2171 Type *DestTy = BitCast.getType(); 2172 if (CondTy->isVectorTy()) { 2173 if (!DestTy->isVectorTy()) 2174 return nullptr; 2175 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 2176 return nullptr; 2177 } 2178 2179 // FIXME: This transform is restricted from changing the select between 2180 // scalars and vectors to avoid backend problems caused by creating 2181 // potentially illegal operations. If a fix-up is added to handle that 2182 // situation, we can remove this check. 2183 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2184 return nullptr; 2185 2186 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2187 Value *X; 2188 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2189 !isa<Constant>(X)) { 2190 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2191 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2192 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2193 } 2194 2195 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2196 !isa<Constant>(X)) { 2197 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2198 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2199 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2200 } 2201 2202 return nullptr; 2203 } 2204 2205 /// Check if all users of CI are StoreInsts. 2206 static bool hasStoreUsersOnly(CastInst &CI) { 2207 for (User *U : CI.users()) { 2208 if (!isa<StoreInst>(U)) 2209 return false; 2210 } 2211 return true; 2212 } 2213 2214 /// This function handles following case 2215 /// 2216 /// A -> B cast 2217 /// PHI 2218 /// B -> A cast 2219 /// 2220 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2221 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2222 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 2223 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2224 if (hasStoreUsersOnly(CI)) 2225 return nullptr; 2226 2227 Value *Src = CI.getOperand(0); 2228 Type *SrcTy = Src->getType(); // Type B 2229 Type *DestTy = CI.getType(); // Type A 2230 2231 SmallVector<PHINode *, 4> PhiWorklist; 2232 SmallSetVector<PHINode *, 4> OldPhiNodes; 2233 2234 // Find all of the A->B casts and PHI nodes. 2235 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so 2236 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2237 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2238 PhiWorklist.push_back(PN); 2239 OldPhiNodes.insert(PN); 2240 while (!PhiWorklist.empty()) { 2241 auto *OldPN = PhiWorklist.pop_back_val(); 2242 for (Value *IncValue : OldPN->incoming_values()) { 2243 if (isa<Constant>(IncValue)) 2244 continue; 2245 2246 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2247 // If there is a sequence of one or more load instructions, each loaded 2248 // value is used as address of later load instruction, bitcast is 2249 // necessary to change the value type, don't optimize it. For 2250 // simplicity we give up if the load address comes from another load. 2251 Value *Addr = LI->getOperand(0); 2252 if (Addr == &CI || isa<LoadInst>(Addr)) 2253 return nullptr; 2254 if (LI->hasOneUse() && LI->isSimple()) 2255 continue; 2256 // If a LoadInst has more than one use, changing the type of loaded 2257 // value may create another bitcast. 2258 return nullptr; 2259 } 2260 2261 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2262 if (OldPhiNodes.insert(PNode)) 2263 PhiWorklist.push_back(PNode); 2264 continue; 2265 } 2266 2267 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2268 // We can't handle other instructions. 2269 if (!BCI) 2270 return nullptr; 2271 2272 // Verify it's a A->B cast. 2273 Type *TyA = BCI->getOperand(0)->getType(); 2274 Type *TyB = BCI->getType(); 2275 if (TyA != DestTy || TyB != SrcTy) 2276 return nullptr; 2277 } 2278 } 2279 2280 // Check that each user of each old PHI node is something that we can 2281 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. 2282 for (auto *OldPN : OldPhiNodes) { 2283 for (User *V : OldPN->users()) { 2284 if (auto *SI = dyn_cast<StoreInst>(V)) { 2285 if (!SI->isSimple() || SI->getOperand(0) != OldPN) 2286 return nullptr; 2287 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2288 // Verify it's a B->A cast. 2289 Type *TyB = BCI->getOperand(0)->getType(); 2290 Type *TyA = BCI->getType(); 2291 if (TyA != DestTy || TyB != SrcTy) 2292 return nullptr; 2293 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2294 // As long as the user is another old PHI node, then even if we don't 2295 // rewrite it, the PHI web we're considering won't have any users 2296 // outside itself, so it'll be dead. 2297 if (OldPhiNodes.count(PHI) == 0) 2298 return nullptr; 2299 } else { 2300 return nullptr; 2301 } 2302 } 2303 } 2304 2305 // For each old PHI node, create a corresponding new PHI node with a type A. 2306 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2307 for (auto *OldPN : OldPhiNodes) { 2308 Builder.SetInsertPoint(OldPN); 2309 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2310 NewPNodes[OldPN] = NewPN; 2311 } 2312 2313 // Fill in the operands of new PHI nodes. 2314 for (auto *OldPN : OldPhiNodes) { 2315 PHINode *NewPN = NewPNodes[OldPN]; 2316 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2317 Value *V = OldPN->getOperand(j); 2318 Value *NewV = nullptr; 2319 if (auto *C = dyn_cast<Constant>(V)) { 2320 NewV = ConstantExpr::getBitCast(C, DestTy); 2321 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2322 // Explicitly perform load combine to make sure no opposing transform 2323 // can remove the bitcast in the meantime and trigger an infinite loop. 2324 Builder.SetInsertPoint(LI); 2325 NewV = combineLoadToNewType(*LI, DestTy); 2326 // Remove the old load and its use in the old phi, which itself becomes 2327 // dead once the whole transform finishes. 2328 replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 2329 eraseInstFromFunction(*LI); 2330 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2331 NewV = BCI->getOperand(0); 2332 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2333 NewV = NewPNodes[PrevPN]; 2334 } 2335 assert(NewV); 2336 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2337 } 2338 } 2339 2340 // Traverse all accumulated PHI nodes and process its users, 2341 // which are Stores and BitcCasts. Without this processing 2342 // NewPHI nodes could be replicated and could lead to extra 2343 // moves generated after DeSSA. 2344 // If there is a store with type B, change it to type A. 2345 2346 2347 // Replace users of BitCast B->A with NewPHI. These will help 2348 // later to get rid off a closure formed by OldPHI nodes. 2349 Instruction *RetVal = nullptr; 2350 for (auto *OldPN : OldPhiNodes) { 2351 PHINode *NewPN = NewPNodes[OldPN]; 2352 for (auto It = OldPN->user_begin(), End = OldPN->user_end(); It != End; ) { 2353 User *V = *It; 2354 // We may remove this user, advance to avoid iterator invalidation. 2355 ++It; 2356 if (auto *SI = dyn_cast<StoreInst>(V)) { 2357 assert(SI->isSimple() && SI->getOperand(0) == OldPN); 2358 Builder.SetInsertPoint(SI); 2359 auto *NewBC = 2360 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); 2361 SI->setOperand(0, NewBC); 2362 Worklist.Add(SI); 2363 assert(hasStoreUsersOnly(*NewBC)); 2364 } 2365 else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2366 Type *TyB = BCI->getOperand(0)->getType(); 2367 Type *TyA = BCI->getType(); 2368 assert(TyA == DestTy && TyB == SrcTy); 2369 (void) TyA; 2370 (void) TyB; 2371 Instruction *I = replaceInstUsesWith(*BCI, NewPN); 2372 if (BCI == &CI) 2373 RetVal = I; 2374 } else if (auto *PHI = dyn_cast<PHINode>(V)) { 2375 assert(OldPhiNodes.count(PHI) > 0); 2376 (void) PHI; 2377 } else { 2378 llvm_unreachable("all uses should be handled"); 2379 } 2380 } 2381 } 2382 2383 return RetVal; 2384 } 2385 2386 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2387 // If the operands are integer typed then apply the integer transforms, 2388 // otherwise just apply the common ones. 2389 Value *Src = CI.getOperand(0); 2390 Type *SrcTy = Src->getType(); 2391 Type *DestTy = CI.getType(); 2392 2393 // Get rid of casts from one type to the same type. These are useless and can 2394 // be replaced by the operand. 2395 if (DestTy == Src->getType()) 2396 return replaceInstUsesWith(CI, Src); 2397 2398 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2399 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2400 Type *DstElTy = DstPTy->getElementType(); 2401 Type *SrcElTy = SrcPTy->getElementType(); 2402 2403 // Casting pointers between the same type, but with different address spaces 2404 // is an addrspace cast rather than a bitcast. 2405 if ((DstElTy == SrcElTy) && 2406 (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace())) 2407 return new AddrSpaceCastInst(Src, DestTy); 2408 2409 // If we are casting a alloca to a pointer to a type of the same 2410 // size, rewrite the allocation instruction to allocate the "right" type. 2411 // There is no need to modify malloc calls because it is their bitcast that 2412 // needs to be cleaned up. 2413 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2414 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2415 return V; 2416 2417 // When the type pointed to is not sized the cast cannot be 2418 // turned into a gep. 2419 Type *PointeeType = 2420 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2421 if (!PointeeType->isSized()) 2422 return nullptr; 2423 2424 // If the source and destination are pointers, and this cast is equivalent 2425 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2426 // This can enhance SROA and other transforms that want type-safe pointers. 2427 unsigned NumZeros = 0; 2428 while (SrcElTy != DstElTy && 2429 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2430 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2431 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2432 ++NumZeros; 2433 } 2434 2435 // If we found a path from the src to dest, create the getelementptr now. 2436 if (SrcElTy == DstElTy) { 2437 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2438 GetElementPtrInst *GEP = 2439 GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs); 2440 2441 // If the source pointer is dereferenceable, then assume it points to an 2442 // allocated object and apply "inbounds" to the GEP. 2443 bool CanBeNull; 2444 if (Src->getPointerDereferenceableBytes(DL, CanBeNull)) { 2445 // In a non-default address space (not 0), a null pointer can not be 2446 // assumed inbounds, so ignore that case (dereferenceable_or_null). 2447 // The reason is that 'null' is not treated differently in these address 2448 // spaces, and we consequently ignore the 'gep inbounds' special case 2449 // for 'null' which allows 'inbounds' on 'null' if the indices are 2450 // zeros. 2451 if (SrcPTy->getAddressSpace() == 0 || !CanBeNull) 2452 GEP->setIsInBounds(); 2453 } 2454 return GEP; 2455 } 2456 } 2457 2458 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2459 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2460 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2461 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2462 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2463 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2464 } 2465 2466 if (isa<IntegerType>(SrcTy)) { 2467 // If this is a cast from an integer to vector, check to see if the input 2468 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2469 // the casts with a shuffle and (potentially) a bitcast. 2470 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2471 CastInst *SrcCast = cast<CastInst>(Src); 2472 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2473 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2474 if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( 2475 BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) 2476 return I; 2477 } 2478 2479 // If the input is an 'or' instruction, we may be doing shifts and ors to 2480 // assemble the elements of the vector manually. Try to rip the code out 2481 // and replace it with insertelements. 2482 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2483 return replaceInstUsesWith(CI, V); 2484 } 2485 } 2486 2487 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2488 if (SrcVTy->getNumElements() == 1) { 2489 // If our destination is not a vector, then make this a straight 2490 // scalar-scalar cast. 2491 if (!DestTy->isVectorTy()) { 2492 Value *Elem = 2493 Builder.CreateExtractElement(Src, 2494 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2495 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2496 } 2497 2498 // Otherwise, see if our source is an insert. If so, then use the scalar 2499 // component directly: 2500 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> 2501 if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) 2502 return new BitCastInst(InsElt->getOperand(1), DestTy); 2503 } 2504 } 2505 2506 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { 2507 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2508 // a bitcast to a vector with the same # elts. 2509 Value *ShufOp0 = Shuf->getOperand(0); 2510 Value *ShufOp1 = Shuf->getOperand(1); 2511 unsigned NumShufElts = Shuf->getType()->getVectorNumElements(); 2512 unsigned NumSrcVecElts = ShufOp0->getType()->getVectorNumElements(); 2513 if (Shuf->hasOneUse() && DestTy->isVectorTy() && 2514 DestTy->getVectorNumElements() == NumShufElts && 2515 NumShufElts == NumSrcVecElts) { 2516 BitCastInst *Tmp; 2517 // If either of the operands is a cast from CI.getType(), then 2518 // evaluating the shuffle in the casted destination's type will allow 2519 // us to eliminate at least one cast. 2520 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && 2521 Tmp->getOperand(0)->getType() == DestTy) || 2522 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && 2523 Tmp->getOperand(0)->getType() == DestTy)) { 2524 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); 2525 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); 2526 // Return a new shuffle vector. Use the same element ID's, as we 2527 // know the vector types match #elts. 2528 return new ShuffleVectorInst(LHS, RHS, Shuf->getOperand(2)); 2529 } 2530 } 2531 2532 // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as 2533 // a byte-swap: 2534 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X) 2535 // TODO: We should match the related pattern for bitreverse. 2536 if (DestTy->isIntegerTy() && 2537 DL.isLegalInteger(DestTy->getScalarSizeInBits()) && 2538 SrcTy->getScalarSizeInBits() == 8 && NumShufElts % 2 == 0 && 2539 Shuf->hasOneUse() && Shuf->isReverse()) { 2540 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); 2541 assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op"); 2542 Function *Bswap = 2543 Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy); 2544 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); 2545 return IntrinsicInst::Create(Bswap, { ScalarX }); 2546 } 2547 } 2548 2549 // Handle the A->B->A cast, and there is an intervening PHI node. 2550 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2551 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2552 return I; 2553 2554 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2555 return I; 2556 2557 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2558 return I; 2559 2560 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2561 return I; 2562 2563 if (SrcTy->isPointerTy()) 2564 return commonPointerCastTransforms(CI); 2565 return commonCastTransforms(CI); 2566 } 2567 2568 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2569 // If the destination pointer element type is not the same as the source's 2570 // first do a bitcast to the destination type, and then the addrspacecast. 2571 // This allows the cast to be exposed to other transforms. 2572 Value *Src = CI.getOperand(0); 2573 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2574 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2575 2576 Type *DestElemTy = DestTy->getElementType(); 2577 if (SrcTy->getElementType() != DestElemTy) { 2578 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2579 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2580 // Handle vectors of pointers. 2581 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2582 } 2583 2584 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2585 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2586 } 2587 2588 return commonPointerCastTransforms(CI); 2589 } 2590