1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for cast operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/TargetLibraryInfo.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/DIBuilder.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 using namespace llvm; 22 using namespace PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 /// Analyze 'Val', seeing if it is a simple linear expression. 27 /// If so, decompose it, returning some value X, such that Val is 28 /// X*Scale+Offset. 29 /// 30 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 31 uint64_t &Offset) { 32 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 33 Offset = CI->getZExtValue(); 34 Scale = 0; 35 return ConstantInt::get(Val->getType(), 0); 36 } 37 38 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 39 // Cannot look past anything that might overflow. 40 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 41 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 42 Scale = 1; 43 Offset = 0; 44 return Val; 45 } 46 47 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 48 if (I->getOpcode() == Instruction::Shl) { 49 // This is a value scaled by '1 << the shift amt'. 50 Scale = UINT64_C(1) << RHS->getZExtValue(); 51 Offset = 0; 52 return I->getOperand(0); 53 } 54 55 if (I->getOpcode() == Instruction::Mul) { 56 // This value is scaled by 'RHS'. 57 Scale = RHS->getZExtValue(); 58 Offset = 0; 59 return I->getOperand(0); 60 } 61 62 if (I->getOpcode() == Instruction::Add) { 63 // We have X+C. Check to see if we really have (X*C2)+C1, 64 // where C1 is divisible by C2. 65 unsigned SubScale; 66 Value *SubVal = 67 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 68 Offset += RHS->getZExtValue(); 69 Scale = SubScale; 70 return SubVal; 71 } 72 } 73 } 74 75 // Otherwise, we can't look past this. 76 Scale = 1; 77 Offset = 0; 78 return Val; 79 } 80 81 /// If we find a cast of an allocation instruction, try to eliminate the cast by 82 /// moving the type information into the alloc. 83 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 84 AllocaInst &AI) { 85 PointerType *PTy = cast<PointerType>(CI.getType()); 86 87 BuilderTy AllocaBuilder(Builder); 88 AllocaBuilder.SetInsertPoint(&AI); 89 90 // Get the type really allocated and the type casted to. 91 Type *AllocElTy = AI.getAllocatedType(); 92 Type *CastElTy = PTy->getElementType(); 93 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 94 95 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy); 96 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy); 97 if (CastElTyAlign < AllocElTyAlign) return nullptr; 98 99 // If the allocation has multiple uses, only promote it if we are strictly 100 // increasing the alignment of the resultant allocation. If we keep it the 101 // same, we open the door to infinite loops of various kinds. 102 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 103 104 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); 105 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); 106 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 107 108 // If the allocation has multiple uses, only promote it if we're not 109 // shrinking the amount of memory being allocated. 110 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); 111 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); 112 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 113 114 // See if we can satisfy the modulus by pulling a scale out of the array 115 // size argument. 116 unsigned ArraySizeScale; 117 uint64_t ArrayOffset; 118 Value *NumElements = // See if the array size is a decomposable linear expr. 119 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 120 121 // If we can now satisfy the modulus, by using a non-1 scale, we really can 122 // do the xform. 123 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 124 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 125 126 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 127 Value *Amt = nullptr; 128 if (Scale == 1) { 129 Amt = NumElements; 130 } else { 131 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 132 // Insert before the alloca, not before the cast. 133 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 134 } 135 136 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 137 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 138 Offset, true); 139 Amt = AllocaBuilder.CreateAdd(Amt, Off); 140 } 141 142 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 143 New->setAlignment(AI.getAlignment()); 144 New->takeName(&AI); 145 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 146 147 // If the allocation has multiple real uses, insert a cast and change all 148 // things that used it to use the new cast. This will also hack on CI, but it 149 // will die soon. 150 if (!AI.hasOneUse()) { 151 // New is the allocation instruction, pointer typed. AI is the original 152 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 153 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 154 replaceInstUsesWith(AI, NewCast); 155 } 156 return replaceInstUsesWith(CI, New); 157 } 158 159 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns 160 /// true for, actually insert the code to evaluate the expression. 161 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 162 bool isSigned) { 163 if (Constant *C = dyn_cast<Constant>(V)) { 164 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 165 // If we got a constantexpr back, try to simplify it with DL info. 166 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI)) 167 C = FoldedC; 168 return C; 169 } 170 171 // Otherwise, it must be an instruction. 172 Instruction *I = cast<Instruction>(V); 173 Instruction *Res = nullptr; 174 unsigned Opc = I->getOpcode(); 175 switch (Opc) { 176 case Instruction::Add: 177 case Instruction::Sub: 178 case Instruction::Mul: 179 case Instruction::And: 180 case Instruction::Or: 181 case Instruction::Xor: 182 case Instruction::AShr: 183 case Instruction::LShr: 184 case Instruction::Shl: 185 case Instruction::UDiv: 186 case Instruction::URem: { 187 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 188 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 189 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 190 break; 191 } 192 case Instruction::Trunc: 193 case Instruction::ZExt: 194 case Instruction::SExt: 195 // If the source type of the cast is the type we're trying for then we can 196 // just return the source. There's no need to insert it because it is not 197 // new. 198 if (I->getOperand(0)->getType() == Ty) 199 return I->getOperand(0); 200 201 // Otherwise, must be the same type of cast, so just reinsert a new one. 202 // This also handles the case of zext(trunc(x)) -> zext(x). 203 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 204 Opc == Instruction::SExt); 205 break; 206 case Instruction::Select: { 207 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 208 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 209 Res = SelectInst::Create(I->getOperand(0), True, False); 210 break; 211 } 212 case Instruction::PHI: { 213 PHINode *OPN = cast<PHINode>(I); 214 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 215 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 216 Value *V = 217 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 218 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 219 } 220 Res = NPN; 221 break; 222 } 223 default: 224 // TODO: Can handle more cases here. 225 llvm_unreachable("Unreachable!"); 226 } 227 228 Res->takeName(I); 229 return InsertNewInstWith(Res, *I); 230 } 231 232 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, 233 const CastInst *CI2) { 234 Type *SrcTy = CI1->getSrcTy(); 235 Type *MidTy = CI1->getDestTy(); 236 Type *DstTy = CI2->getDestTy(); 237 238 Instruction::CastOps firstOp = CI1->getOpcode(); 239 Instruction::CastOps secondOp = CI2->getOpcode(); 240 Type *SrcIntPtrTy = 241 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; 242 Type *MidIntPtrTy = 243 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; 244 Type *DstIntPtrTy = 245 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; 246 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 247 DstTy, SrcIntPtrTy, MidIntPtrTy, 248 DstIntPtrTy); 249 250 // We don't want to form an inttoptr or ptrtoint that converts to an integer 251 // type that differs from the pointer size. 252 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 253 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 254 Res = 0; 255 256 return Instruction::CastOps(Res); 257 } 258 259 /// Implement the transforms common to all CastInst visitors. 260 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 261 Value *Src = CI.getOperand(0); 262 263 // Try to eliminate a cast of a cast. 264 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 265 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { 266 // The first cast (CSrc) is eliminable so we need to fix up or replace 267 // the second cast (CI). CSrc will then have a good chance of being dead. 268 auto *Ty = CI.getType(); 269 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); 270 // Point debug users of the dying cast to the new one. 271 if (CSrc->hasOneUse()) 272 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); 273 return Res; 274 } 275 } 276 277 if (auto *Sel = dyn_cast<SelectInst>(Src)) { 278 // We are casting a select. Try to fold the cast into the select, but only 279 // if the select does not have a compare instruction with matching operand 280 // types. Creating a select with operands that are different sizes than its 281 // condition may inhibit other folds and lead to worse codegen. 282 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); 283 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType()) 284 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { 285 replaceAllDbgUsesWith(*Sel, *NV, CI, DT); 286 return NV; 287 } 288 } 289 290 // If we are casting a PHI, then fold the cast into the PHI. 291 if (auto *PN = dyn_cast<PHINode>(Src)) { 292 // Don't do this if it would create a PHI node with an illegal type from a 293 // legal type. 294 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || 295 shouldChangeType(CI.getType(), Src->getType())) 296 if (Instruction *NV = foldOpIntoPhi(CI, PN)) 297 return NV; 298 } 299 300 return nullptr; 301 } 302 303 /// Constants and extensions/truncates from the destination type are always 304 /// free to be evaluated in that type. This is a helper for canEvaluate*. 305 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { 306 if (isa<Constant>(V)) 307 return true; 308 Value *X; 309 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && 310 X->getType() == Ty) 311 return true; 312 313 return false; 314 } 315 316 /// Filter out values that we can not evaluate in the destination type for free. 317 /// This is a helper for canEvaluate*. 318 static bool canNotEvaluateInType(Value *V, Type *Ty) { 319 assert(!isa<Constant>(V) && "Constant should already be handled."); 320 if (!isa<Instruction>(V)) 321 return true; 322 // We don't extend or shrink something that has multiple uses -- doing so 323 // would require duplicating the instruction which isn't profitable. 324 if (!V->hasOneUse()) 325 return true; 326 327 return false; 328 } 329 330 /// Return true if we can evaluate the specified expression tree as type Ty 331 /// instead of its larger type, and arrive with the same value. 332 /// This is used by code that tries to eliminate truncates. 333 /// 334 /// Ty will always be a type smaller than V. We should return true if trunc(V) 335 /// can be computed by computing V in the smaller type. If V is an instruction, 336 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 337 /// makes sense if x and y can be efficiently truncated. 338 /// 339 /// This function works on both vectors and scalars. 340 /// 341 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, 342 Instruction *CxtI) { 343 if (canAlwaysEvaluateInType(V, Ty)) 344 return true; 345 if (canNotEvaluateInType(V, Ty)) 346 return false; 347 348 auto *I = cast<Instruction>(V); 349 Type *OrigTy = V->getType(); 350 switch (I->getOpcode()) { 351 case Instruction::Add: 352 case Instruction::Sub: 353 case Instruction::Mul: 354 case Instruction::And: 355 case Instruction::Or: 356 case Instruction::Xor: 357 // These operators can all arbitrarily be extended or truncated. 358 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 359 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 360 361 case Instruction::UDiv: 362 case Instruction::URem: { 363 // UDiv and URem can be truncated if all the truncated bits are zero. 364 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 365 uint32_t BitWidth = Ty->getScalarSizeInBits(); 366 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); 367 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); 368 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && 369 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { 370 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && 371 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); 372 } 373 break; 374 } 375 case Instruction::Shl: { 376 // If we are truncating the result of this SHL, and if it's a shift of a 377 // constant amount, we can always perform a SHL in a smaller type. 378 const APInt *Amt; 379 if (match(I->getOperand(1), m_APInt(Amt))) { 380 uint32_t BitWidth = Ty->getScalarSizeInBits(); 381 if (Amt->getLimitedValue(BitWidth) < BitWidth) 382 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 383 } 384 break; 385 } 386 case Instruction::LShr: { 387 // If this is a truncate of a logical shr, we can truncate it to a smaller 388 // lshr iff we know that the bits we would otherwise be shifting in are 389 // already zeros. 390 const APInt *Amt; 391 if (match(I->getOperand(1), m_APInt(Amt))) { 392 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 393 uint32_t BitWidth = Ty->getScalarSizeInBits(); 394 if (Amt->getLimitedValue(BitWidth) < BitWidth && 395 IC.MaskedValueIsZero(I->getOperand(0), 396 APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) { 397 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 398 } 399 } 400 break; 401 } 402 case Instruction::AShr: { 403 // If this is a truncate of an arithmetic shr, we can truncate it to a 404 // smaller ashr iff we know that all the bits from the sign bit of the 405 // original type and the sign bit of the truncate type are similar. 406 // TODO: It is enough to check that the bits we would be shifting in are 407 // similar to sign bit of the truncate type. 408 const APInt *Amt; 409 if (match(I->getOperand(1), m_APInt(Amt))) { 410 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 411 uint32_t BitWidth = Ty->getScalarSizeInBits(); 412 if (Amt->getLimitedValue(BitWidth) < BitWidth && 413 OrigBitWidth - BitWidth < 414 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) 415 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); 416 } 417 break; 418 } 419 case Instruction::Trunc: 420 // trunc(trunc(x)) -> trunc(x) 421 return true; 422 case Instruction::ZExt: 423 case Instruction::SExt: 424 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 425 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 426 return true; 427 case Instruction::Select: { 428 SelectInst *SI = cast<SelectInst>(I); 429 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && 430 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); 431 } 432 case Instruction::PHI: { 433 // We can change a phi if we can change all operands. Note that we never 434 // get into trouble with cyclic PHIs here because we only consider 435 // instructions with a single use. 436 PHINode *PN = cast<PHINode>(I); 437 for (Value *IncValue : PN->incoming_values()) 438 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) 439 return false; 440 return true; 441 } 442 default: 443 // TODO: Can handle more cases here. 444 break; 445 } 446 447 return false; 448 } 449 450 /// Given a vector that is bitcast to an integer, optionally logically 451 /// right-shifted, and truncated, convert it to an extractelement. 452 /// Example (big endian): 453 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 454 /// ---> 455 /// extractelement <4 x i32> %X, 1 456 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { 457 Value *TruncOp = Trunc.getOperand(0); 458 Type *DestType = Trunc.getType(); 459 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) 460 return nullptr; 461 462 Value *VecInput = nullptr; 463 ConstantInt *ShiftVal = nullptr; 464 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), 465 m_LShr(m_BitCast(m_Value(VecInput)), 466 m_ConstantInt(ShiftVal)))) || 467 !isa<VectorType>(VecInput->getType())) 468 return nullptr; 469 470 VectorType *VecType = cast<VectorType>(VecInput->getType()); 471 unsigned VecWidth = VecType->getPrimitiveSizeInBits(); 472 unsigned DestWidth = DestType->getPrimitiveSizeInBits(); 473 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; 474 475 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) 476 return nullptr; 477 478 // If the element type of the vector doesn't match the result type, 479 // bitcast it to a vector type that we can extract from. 480 unsigned NumVecElts = VecWidth / DestWidth; 481 if (VecType->getElementType() != DestType) { 482 VecType = VectorType::get(DestType, NumVecElts); 483 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); 484 } 485 486 unsigned Elt = ShiftAmount / DestWidth; 487 if (IC.getDataLayout().isBigEndian()) 488 Elt = NumVecElts - 1 - Elt; 489 490 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); 491 } 492 493 /// Rotate left/right may occur in a wider type than necessary because of type 494 /// promotion rules. Try to narrow the inputs and convert to funnel shift. 495 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { 496 assert((isa<VectorType>(Trunc.getSrcTy()) || 497 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && 498 "Don't narrow to an illegal scalar type"); 499 500 // Bail out on strange types. It is possible to handle some of these patterns 501 // even with non-power-of-2 sizes, but it is not a likely scenario. 502 Type *DestTy = Trunc.getType(); 503 unsigned NarrowWidth = DestTy->getScalarSizeInBits(); 504 if (!isPowerOf2_32(NarrowWidth)) 505 return nullptr; 506 507 // First, find an or'd pair of opposite shifts with the same shifted operand: 508 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) 509 Value *Or0, *Or1; 510 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 511 return nullptr; 512 513 Value *ShVal, *ShAmt0, *ShAmt1; 514 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 515 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 516 return nullptr; 517 518 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 519 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 520 if (ShiftOpcode0 == ShiftOpcode1) 521 return nullptr; 522 523 // Match the shift amount operands for a rotate pattern. This always matches 524 // a subtraction on the R operand. 525 auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * { 526 // The shift amounts may add up to the narrow bit width: 527 // (shl ShVal, L) | (lshr ShVal, Width - L) 528 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) 529 return L; 530 531 // The shift amount may be masked with negation: 532 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) 533 Value *X; 534 unsigned Mask = Width - 1; 535 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 536 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 537 return X; 538 539 // Same as above, but the shift amount may be extended after masking: 540 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 541 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 542 return X; 543 544 return nullptr; 545 }; 546 547 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); 548 bool SubIsOnLHS = false; 549 if (!ShAmt) { 550 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); 551 SubIsOnLHS = true; 552 } 553 if (!ShAmt) 554 return nullptr; 555 556 // The shifted value must have high zeros in the wide type. Typically, this 557 // will be a zext, but it could also be the result of an 'and' or 'shift'. 558 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); 559 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); 560 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) 561 return nullptr; 562 563 // We have an unnecessarily wide rotate! 564 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) 565 // Narrow the inputs and convert to funnel shift intrinsic: 566 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) 567 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); 568 Value *X = Builder.CreateTrunc(ShVal, DestTy); 569 bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) || 570 (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl); 571 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 572 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); 573 return IntrinsicInst::Create(F, { X, X, NarrowShAmt }); 574 } 575 576 /// Try to narrow the width of math or bitwise logic instructions by pulling a 577 /// truncate ahead of binary operators. 578 /// TODO: Transforms for truncated shifts should be moved into here. 579 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { 580 Type *SrcTy = Trunc.getSrcTy(); 581 Type *DestTy = Trunc.getType(); 582 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) 583 return nullptr; 584 585 BinaryOperator *BinOp; 586 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) 587 return nullptr; 588 589 Value *BinOp0 = BinOp->getOperand(0); 590 Value *BinOp1 = BinOp->getOperand(1); 591 switch (BinOp->getOpcode()) { 592 case Instruction::And: 593 case Instruction::Or: 594 case Instruction::Xor: 595 case Instruction::Add: 596 case Instruction::Sub: 597 case Instruction::Mul: { 598 Constant *C; 599 if (match(BinOp0, m_Constant(C))) { 600 // trunc (binop C, X) --> binop (trunc C', X) 601 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 602 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); 603 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); 604 } 605 if (match(BinOp1, m_Constant(C))) { 606 // trunc (binop X, C) --> binop (trunc X, C') 607 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); 608 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); 609 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); 610 } 611 Value *X; 612 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 613 // trunc (binop (ext X), Y) --> binop X, (trunc Y) 614 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); 615 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); 616 } 617 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { 618 // trunc (binop Y, (ext X)) --> binop (trunc Y), X 619 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); 620 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); 621 } 622 break; 623 } 624 625 default: break; 626 } 627 628 if (Instruction *NarrowOr = narrowRotate(Trunc)) 629 return NarrowOr; 630 631 return nullptr; 632 } 633 634 /// Try to narrow the width of a splat shuffle. This could be generalized to any 635 /// shuffle with a constant operand, but we limit the transform to avoid 636 /// creating a shuffle type that targets may not be able to lower effectively. 637 static Instruction *shrinkSplatShuffle(TruncInst &Trunc, 638 InstCombiner::BuilderTy &Builder) { 639 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); 640 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && 641 Shuf->getMask()->getSplatValue() && 642 Shuf->getType() == Shuf->getOperand(0)->getType()) { 643 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask 644 Constant *NarrowUndef = UndefValue::get(Trunc.getType()); 645 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); 646 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask()); 647 } 648 649 return nullptr; 650 } 651 652 /// Try to narrow the width of an insert element. This could be generalized for 653 /// any vector constant, but we limit the transform to insertion into undef to 654 /// avoid potential backend problems from unsupported insertion widths. This 655 /// could also be extended to handle the case of inserting a scalar constant 656 /// into a vector variable. 657 static Instruction *shrinkInsertElt(CastInst &Trunc, 658 InstCombiner::BuilderTy &Builder) { 659 Instruction::CastOps Opcode = Trunc.getOpcode(); 660 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && 661 "Unexpected instruction for shrinking"); 662 663 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); 664 if (!InsElt || !InsElt->hasOneUse()) 665 return nullptr; 666 667 Type *DestTy = Trunc.getType(); 668 Type *DestScalarTy = DestTy->getScalarType(); 669 Value *VecOp = InsElt->getOperand(0); 670 Value *ScalarOp = InsElt->getOperand(1); 671 Value *Index = InsElt->getOperand(2); 672 673 if (isa<UndefValue>(VecOp)) { 674 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index 675 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index 676 UndefValue *NarrowUndef = UndefValue::get(DestTy); 677 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); 678 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); 679 } 680 681 return nullptr; 682 } 683 684 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 685 if (Instruction *Result = commonCastTransforms(CI)) 686 return Result; 687 688 Value *Src = CI.getOperand(0); 689 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 690 691 // Attempt to truncate the entire input expression tree to the destination 692 // type. Only do this if the dest type is a simple type, don't convert the 693 // expression tree to something weird like i93 unless the source is also 694 // strange. 695 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && 696 canEvaluateTruncated(Src, DestTy, *this, &CI)) { 697 698 // If this cast is a truncate, evaluting in a different type always 699 // eliminates the cast, so it is always a win. 700 LLVM_DEBUG( 701 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 702 " to avoid cast: " 703 << CI << '\n'); 704 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 705 assert(Res->getType() == DestTy); 706 return replaceInstUsesWith(CI, Res); 707 } 708 709 // Test if the trunc is the user of a select which is part of a 710 // minimum or maximum operation. If so, don't do any more simplification. 711 // Even simplifying demanded bits can break the canonical form of a 712 // min/max. 713 Value *LHS, *RHS; 714 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0))) 715 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN) 716 return nullptr; 717 718 // See if we can simplify any instructions used by the input whose sole 719 // purpose is to compute bits we don't care about. 720 if (SimplifyDemandedInstructionBits(CI)) 721 return &CI; 722 723 if (DestTy->getScalarSizeInBits() == 1) { 724 Value *Zero = Constant::getNullValue(Src->getType()); 725 if (DestTy->isIntegerTy()) { 726 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). 727 // TODO: We canonicalize to more instructions here because we are probably 728 // lacking equivalent analysis for trunc relative to icmp. There may also 729 // be codegen concerns. If those trunc limitations were removed, we could 730 // remove this transform. 731 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); 732 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 733 } 734 735 // For vectors, we do not canonicalize all truncs to icmp, so optimize 736 // patterns that would be covered within visitICmpInst. 737 Value *X; 738 const APInt *C; 739 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { 740 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 741 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C); 742 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC)); 743 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 744 } 745 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_APInt(C)), 746 m_Deferred(X))))) { 747 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 748 APInt MaskC = APInt(SrcTy->getScalarSizeInBits(), 1).shl(*C) | 1; 749 Value *And = Builder.CreateAnd(X, ConstantInt::get(SrcTy, MaskC)); 750 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); 751 } 752 } 753 754 // FIXME: Maybe combine the next two transforms to handle the no cast case 755 // more efficiently. Support vector types. Cleanup code by using m_OneUse. 756 757 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 758 Value *A = nullptr; ConstantInt *Cst = nullptr; 759 if (Src->hasOneUse() && 760 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 761 // We have three types to worry about here, the type of A, the source of 762 // the truncate (MidSize), and the destination of the truncate. We know that 763 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 764 // between ASize and ResultSize. 765 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 766 767 // If the shift amount is larger than the size of A, then the result is 768 // known to be zero because all the input bits got shifted out. 769 if (Cst->getZExtValue() >= ASize) 770 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy)); 771 772 // Since we're doing an lshr and a zero extend, and know that the shift 773 // amount is smaller than ASize, it is always safe to do the shift in A's 774 // type, then zero extend or truncate to the result. 775 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); 776 Shift->takeName(Src); 777 return CastInst::CreateIntegerCast(Shift, DestTy, false); 778 } 779 780 // FIXME: We should canonicalize to zext/trunc and remove this transform. 781 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type 782 // conversion. 783 // It works because bits coming from sign extension have the same value as 784 // the sign bit of the original value; performing ashr instead of lshr 785 // generates bits of the same value as the sign bit. 786 if (Src->hasOneUse() && 787 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) { 788 Value *SExt = cast<Instruction>(Src)->getOperand(0); 789 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits(); 790 const unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 791 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits(); 792 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize); 793 unsigned ShiftAmt = Cst->getZExtValue(); 794 795 // This optimization can be only performed when zero bits generated by 796 // the original lshr aren't pulled into the value after truncation, so we 797 // can only shift by values no larger than the number of extension bits. 798 // FIXME: Instead of bailing when the shift is too large, use and to clear 799 // the extra bits. 800 if (ShiftAmt <= MaxAmt) { 801 if (CISize == ASize) 802 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(), 803 std::min(ShiftAmt, ASize - 1))); 804 if (SExt->hasOneUse()) { 805 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1)); 806 Shift->takeName(Src); 807 return CastInst::CreateIntegerCast(Shift, CI.getType(), true); 808 } 809 } 810 } 811 812 if (Instruction *I = narrowBinOp(CI)) 813 return I; 814 815 if (Instruction *I = shrinkSplatShuffle(CI, Builder)) 816 return I; 817 818 if (Instruction *I = shrinkInsertElt(CI, Builder)) 819 return I; 820 821 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && 822 shouldChangeType(SrcTy, DestTy)) { 823 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the 824 // dest type is native and cst < dest size. 825 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && 826 !match(A, m_Shr(m_Value(), m_Constant()))) { 827 // Skip shifts of shift by constants. It undoes a combine in 828 // FoldShiftByConstant and is the extend in reg pattern. 829 const unsigned DestSize = DestTy->getScalarSizeInBits(); 830 if (Cst->getValue().ult(DestSize)) { 831 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); 832 833 return BinaryOperator::Create( 834 Instruction::Shl, NewTrunc, 835 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize))); 836 } 837 } 838 } 839 840 if (Instruction *I = foldVecTruncToExtElt(CI, *this)) 841 return I; 842 843 return nullptr; 844 } 845 846 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, 847 bool DoTransform) { 848 // If we are just checking for a icmp eq of a single bit and zext'ing it 849 // to an integer, then shift the bit to the appropriate place and then 850 // cast to integer to avoid the comparison. 851 const APInt *Op1CV; 852 if (match(ICI->getOperand(1), m_APInt(Op1CV))) { 853 854 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 855 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 856 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || 857 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { 858 if (!DoTransform) return ICI; 859 860 Value *In = ICI->getOperand(0); 861 Value *Sh = ConstantInt::get(In->getType(), 862 In->getType()->getScalarSizeInBits() - 1); 863 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); 864 if (In->getType() != CI.getType()) 865 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/); 866 867 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 868 Constant *One = ConstantInt::get(In->getType(), 1); 869 In = Builder.CreateXor(In, One, In->getName() + ".not"); 870 } 871 872 return replaceInstUsesWith(CI, In); 873 } 874 875 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 876 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 877 // zext (X == 1) to i32 --> X iff X has only the low bit set. 878 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 879 // zext (X != 0) to i32 --> X iff X has only the low bit set. 880 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 881 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 882 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 883 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && 884 // This only works for EQ and NE 885 ICI->isEquality()) { 886 // If Op1C some other power of two, convert: 887 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI); 888 889 APInt KnownZeroMask(~Known.Zero); 890 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 891 if (!DoTransform) return ICI; 892 893 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 894 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { 895 // (X&4) == 2 --> false 896 // (X&4) != 2 --> true 897 Constant *Res = ConstantInt::get(CI.getType(), isNE); 898 return replaceInstUsesWith(CI, Res); 899 } 900 901 uint32_t ShAmt = KnownZeroMask.logBase2(); 902 Value *In = ICI->getOperand(0); 903 if (ShAmt) { 904 // Perform a logical shr by shiftamt. 905 // Insert the shift to put the result in the low bit. 906 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), 907 In->getName() + ".lobit"); 908 } 909 910 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. 911 Constant *One = ConstantInt::get(In->getType(), 1); 912 In = Builder.CreateXor(In, One); 913 } 914 915 if (CI.getType() == In->getType()) 916 return replaceInstUsesWith(CI, In); 917 918 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false); 919 return replaceInstUsesWith(CI, IntCast); 920 } 921 } 922 } 923 924 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 925 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 926 // may lead to additional simplifications. 927 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 928 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 929 Value *LHS = ICI->getOperand(0); 930 Value *RHS = ICI->getOperand(1); 931 932 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI); 933 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI); 934 935 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { 936 APInt KnownBits = KnownLHS.Zero | KnownLHS.One; 937 APInt UnknownBit = ~KnownBits; 938 if (UnknownBit.countPopulation() == 1) { 939 if (!DoTransform) return ICI; 940 941 Value *Result = Builder.CreateXor(LHS, RHS); 942 943 // Mask off any bits that are set and won't be shifted away. 944 if (KnownLHS.One.uge(UnknownBit)) 945 Result = Builder.CreateAnd(Result, 946 ConstantInt::get(ITy, UnknownBit)); 947 948 // Shift the bit we're testing down to the lsb. 949 Result = Builder.CreateLShr( 950 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 951 952 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 953 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); 954 Result->takeName(ICI); 955 return replaceInstUsesWith(CI, Result); 956 } 957 } 958 } 959 } 960 961 return nullptr; 962 } 963 964 /// Determine if the specified value can be computed in the specified wider type 965 /// and produce the same low bits. If not, return false. 966 /// 967 /// If this function returns true, it can also return a non-zero number of bits 968 /// (in BitsToClear) which indicates that the value it computes is correct for 969 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 970 /// out. For example, to promote something like: 971 /// 972 /// %B = trunc i64 %A to i32 973 /// %C = lshr i32 %B, 8 974 /// %E = zext i32 %C to i64 975 /// 976 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 977 /// set to 8 to indicate that the promoted value needs to have bits 24-31 978 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 979 /// clear the top bits anyway, doing this has no extra cost. 980 /// 981 /// This function works on both vectors and scalars. 982 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, 983 InstCombiner &IC, Instruction *CxtI) { 984 BitsToClear = 0; 985 if (canAlwaysEvaluateInType(V, Ty)) 986 return true; 987 if (canNotEvaluateInType(V, Ty)) 988 return false; 989 990 auto *I = cast<Instruction>(V); 991 unsigned Tmp; 992 switch (I->getOpcode()) { 993 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 994 case Instruction::SExt: // zext(sext(x)) -> sext(x). 995 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 996 return true; 997 case Instruction::And: 998 case Instruction::Or: 999 case Instruction::Xor: 1000 case Instruction::Add: 1001 case Instruction::Sub: 1002 case Instruction::Mul: 1003 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || 1004 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) 1005 return false; 1006 // These can all be promoted if neither operand has 'bits to clear'. 1007 if (BitsToClear == 0 && Tmp == 0) 1008 return true; 1009 1010 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 1011 // other side, BitsToClear is ok. 1012 if (Tmp == 0 && I->isBitwiseLogicOp()) { 1013 // We use MaskedValueIsZero here for generality, but the case we care 1014 // about the most is constant RHS. 1015 unsigned VSize = V->getType()->getScalarSizeInBits(); 1016 if (IC.MaskedValueIsZero(I->getOperand(1), 1017 APInt::getHighBitsSet(VSize, BitsToClear), 1018 0, CxtI)) { 1019 // If this is an And instruction and all of the BitsToClear are 1020 // known to be zero we can reset BitsToClear. 1021 if (I->getOpcode() == Instruction::And) 1022 BitsToClear = 0; 1023 return true; 1024 } 1025 } 1026 1027 // Otherwise, we don't know how to analyze this BitsToClear case yet. 1028 return false; 1029 1030 case Instruction::Shl: { 1031 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 1032 // upper bits we can reduce BitsToClear by the shift amount. 1033 const APInt *Amt; 1034 if (match(I->getOperand(1), m_APInt(Amt))) { 1035 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1036 return false; 1037 uint64_t ShiftAmt = Amt->getZExtValue(); 1038 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 1039 return true; 1040 } 1041 return false; 1042 } 1043 case Instruction::LShr: { 1044 // We can promote lshr(x, cst) if we can promote x. This requires the 1045 // ultimate 'and' to clear out the high zero bits we're clearing out though. 1046 const APInt *Amt; 1047 if (match(I->getOperand(1), m_APInt(Amt))) { 1048 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) 1049 return false; 1050 BitsToClear += Amt->getZExtValue(); 1051 if (BitsToClear > V->getType()->getScalarSizeInBits()) 1052 BitsToClear = V->getType()->getScalarSizeInBits(); 1053 return true; 1054 } 1055 // Cannot promote variable LSHR. 1056 return false; 1057 } 1058 case Instruction::Select: 1059 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || 1060 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || 1061 // TODO: If important, we could handle the case when the BitsToClear are 1062 // known zero in the disagreeing side. 1063 Tmp != BitsToClear) 1064 return false; 1065 return true; 1066 1067 case Instruction::PHI: { 1068 // We can change a phi if we can change all operands. Note that we never 1069 // get into trouble with cyclic PHIs here because we only consider 1070 // instructions with a single use. 1071 PHINode *PN = cast<PHINode>(I); 1072 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) 1073 return false; 1074 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 1075 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || 1076 // TODO: If important, we could handle the case when the BitsToClear 1077 // are known zero in the disagreeing input. 1078 Tmp != BitsToClear) 1079 return false; 1080 return true; 1081 } 1082 default: 1083 // TODO: Can handle more cases here. 1084 return false; 1085 } 1086 } 1087 1088 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 1089 // If this zero extend is only used by a truncate, let the truncate be 1090 // eliminated before we try to optimize this zext. 1091 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1092 return nullptr; 1093 1094 // If one of the common conversion will work, do it. 1095 if (Instruction *Result = commonCastTransforms(CI)) 1096 return Result; 1097 1098 Value *Src = CI.getOperand(0); 1099 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1100 1101 // Try to extend the entire expression tree to the wide destination type. 1102 unsigned BitsToClear; 1103 if (shouldChangeType(SrcTy, DestTy) && 1104 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { 1105 assert(BitsToClear <= SrcTy->getScalarSizeInBits() && 1106 "Can't clear more bits than in SrcTy"); 1107 1108 // Okay, we can transform this! Insert the new expression now. 1109 LLVM_DEBUG( 1110 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1111 " to avoid zero extend: " 1112 << CI << '\n'); 1113 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 1114 assert(Res->getType() == DestTy); 1115 1116 // Preserve debug values referring to Src if the zext is its last use. 1117 if (auto *SrcOp = dyn_cast<Instruction>(Src)) 1118 if (SrcOp->hasOneUse()) 1119 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); 1120 1121 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 1122 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1123 1124 // If the high bits are already filled with zeros, just replace this 1125 // cast with the result. 1126 if (MaskedValueIsZero(Res, 1127 APInt::getHighBitsSet(DestBitSize, 1128 DestBitSize-SrcBitsKept), 1129 0, &CI)) 1130 return replaceInstUsesWith(CI, Res); 1131 1132 // We need to emit an AND to clear the high bits. 1133 Constant *C = ConstantInt::get(Res->getType(), 1134 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 1135 return BinaryOperator::CreateAnd(Res, C); 1136 } 1137 1138 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 1139 // types and if the sizes are just right we can convert this into a logical 1140 // 'and' which will be much cheaper than the pair of casts. 1141 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 1142 // TODO: Subsume this into EvaluateInDifferentType. 1143 1144 // Get the sizes of the types involved. We know that the intermediate type 1145 // will be smaller than A or C, but don't know the relation between A and C. 1146 Value *A = CSrc->getOperand(0); 1147 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 1148 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 1149 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1150 // If we're actually extending zero bits, then if 1151 // SrcSize < DstSize: zext(a & mask) 1152 // SrcSize == DstSize: a & mask 1153 // SrcSize > DstSize: trunc(a) & mask 1154 if (SrcSize < DstSize) { 1155 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1156 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 1157 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); 1158 return new ZExtInst(And, CI.getType()); 1159 } 1160 1161 if (SrcSize == DstSize) { 1162 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 1163 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 1164 AndValue)); 1165 } 1166 if (SrcSize > DstSize) { 1167 Value *Trunc = Builder.CreateTrunc(A, CI.getType()); 1168 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 1169 return BinaryOperator::CreateAnd(Trunc, 1170 ConstantInt::get(Trunc->getType(), 1171 AndValue)); 1172 } 1173 } 1174 1175 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1176 return transformZExtICmp(ICI, CI); 1177 1178 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 1179 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 1180 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one 1181 // of the (zext icmp) can be eliminated. If so, immediately perform the 1182 // according elimination. 1183 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 1184 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 1185 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 1186 (transformZExtICmp(LHS, CI, false) || 1187 transformZExtICmp(RHS, CI, false))) { 1188 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) 1189 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); 1190 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); 1191 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast); 1192 1193 // Perform the elimination. 1194 if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) 1195 transformZExtICmp(LHS, *LZExt); 1196 if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) 1197 transformZExtICmp(RHS, *RZExt); 1198 1199 return Or; 1200 } 1201 } 1202 1203 // zext(trunc(X) & C) -> (X & zext(C)). 1204 Constant *C; 1205 Value *X; 1206 if (SrcI && 1207 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 1208 X->getType() == CI.getType()) 1209 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 1210 1211 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 1212 Value *And; 1213 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 1214 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 1215 X->getType() == CI.getType()) { 1216 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 1217 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); 1218 } 1219 1220 return nullptr; 1221 } 1222 1223 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. 1224 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 1225 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 1226 ICmpInst::Predicate Pred = ICI->getPredicate(); 1227 1228 // Don't bother if Op1 isn't of vector or integer type. 1229 if (!Op1->getType()->isIntOrIntVectorTy()) 1230 return nullptr; 1231 1232 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || 1233 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { 1234 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 1235 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 1236 Value *Sh = ConstantInt::get(Op0->getType(), 1237 Op0->getType()->getScalarSizeInBits() - 1); 1238 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); 1239 if (In->getType() != CI.getType()) 1240 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); 1241 1242 if (Pred == ICmpInst::ICMP_SGT) 1243 In = Builder.CreateNot(In, In->getName() + ".not"); 1244 return replaceInstUsesWith(CI, In); 1245 } 1246 1247 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1248 // If we know that only one bit of the LHS of the icmp can be set and we 1249 // have an equality comparison with zero or a power of 2, we can transform 1250 // the icmp and sext into bitwise/integer operations. 1251 if (ICI->hasOneUse() && 1252 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 1253 KnownBits Known = computeKnownBits(Op0, 0, &CI); 1254 1255 APInt KnownZeroMask(~Known.Zero); 1256 if (KnownZeroMask.isPowerOf2()) { 1257 Value *In = ICI->getOperand(0); 1258 1259 // If the icmp tests for a known zero bit we can constant fold it. 1260 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 1261 Value *V = Pred == ICmpInst::ICMP_NE ? 1262 ConstantInt::getAllOnesValue(CI.getType()) : 1263 ConstantInt::getNullValue(CI.getType()); 1264 return replaceInstUsesWith(CI, V); 1265 } 1266 1267 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 1268 // sext ((x & 2^n) == 0) -> (x >> n) - 1 1269 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 1270 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 1271 // Perform a right shift to place the desired bit in the LSB. 1272 if (ShiftAmt) 1273 In = Builder.CreateLShr(In, 1274 ConstantInt::get(In->getType(), ShiftAmt)); 1275 1276 // At this point "In" is either 1 or 0. Subtract 1 to turn 1277 // {1, 0} -> {0, -1}. 1278 In = Builder.CreateAdd(In, 1279 ConstantInt::getAllOnesValue(In->getType()), 1280 "sext"); 1281 } else { 1282 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 1283 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 1284 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 1285 // Perform a left shift to place the desired bit in the MSB. 1286 if (ShiftAmt) 1287 In = Builder.CreateShl(In, 1288 ConstantInt::get(In->getType(), ShiftAmt)); 1289 1290 // Distribute the bit over the whole bit width. 1291 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), 1292 KnownZeroMask.getBitWidth() - 1), "sext"); 1293 } 1294 1295 if (CI.getType() == In->getType()) 1296 return replaceInstUsesWith(CI, In); 1297 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 1298 } 1299 } 1300 } 1301 1302 return nullptr; 1303 } 1304 1305 /// Return true if we can take the specified value and return it as type Ty 1306 /// without inserting any new casts and without changing the value of the common 1307 /// low bits. This is used by code that tries to promote integer operations to 1308 /// a wider types will allow us to eliminate the extension. 1309 /// 1310 /// This function works on both vectors and scalars. 1311 /// 1312 static bool canEvaluateSExtd(Value *V, Type *Ty) { 1313 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1314 "Can't sign extend type to a smaller type"); 1315 if (canAlwaysEvaluateInType(V, Ty)) 1316 return true; 1317 if (canNotEvaluateInType(V, Ty)) 1318 return false; 1319 1320 auto *I = cast<Instruction>(V); 1321 switch (I->getOpcode()) { 1322 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1323 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1324 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1325 return true; 1326 case Instruction::And: 1327 case Instruction::Or: 1328 case Instruction::Xor: 1329 case Instruction::Add: 1330 case Instruction::Sub: 1331 case Instruction::Mul: 1332 // These operators can all arbitrarily be extended if their inputs can. 1333 return canEvaluateSExtd(I->getOperand(0), Ty) && 1334 canEvaluateSExtd(I->getOperand(1), Ty); 1335 1336 //case Instruction::Shl: TODO 1337 //case Instruction::LShr: TODO 1338 1339 case Instruction::Select: 1340 return canEvaluateSExtd(I->getOperand(1), Ty) && 1341 canEvaluateSExtd(I->getOperand(2), Ty); 1342 1343 case Instruction::PHI: { 1344 // We can change a phi if we can change all operands. Note that we never 1345 // get into trouble with cyclic PHIs here because we only consider 1346 // instructions with a single use. 1347 PHINode *PN = cast<PHINode>(I); 1348 for (Value *IncValue : PN->incoming_values()) 1349 if (!canEvaluateSExtd(IncValue, Ty)) return false; 1350 return true; 1351 } 1352 default: 1353 // TODO: Can handle more cases here. 1354 break; 1355 } 1356 1357 return false; 1358 } 1359 1360 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1361 // If this sign extend is only used by a truncate, let the truncate be 1362 // eliminated before we try to optimize this sext. 1363 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1364 return nullptr; 1365 1366 if (Instruction *I = commonCastTransforms(CI)) 1367 return I; 1368 1369 Value *Src = CI.getOperand(0); 1370 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1371 1372 // If we know that the value being extended is positive, we can use a zext 1373 // instead. 1374 KnownBits Known = computeKnownBits(Src, 0, &CI); 1375 if (Known.isNonNegative()) 1376 return CastInst::Create(Instruction::ZExt, Src, DestTy); 1377 1378 // Try to extend the entire expression tree to the wide destination type. 1379 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { 1380 // Okay, we can transform this! Insert the new expression now. 1381 LLVM_DEBUG( 1382 dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1383 " to avoid sign extend: " 1384 << CI << '\n'); 1385 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1386 assert(Res->getType() == DestTy); 1387 1388 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1389 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1390 1391 // If the high bits are already filled with sign bit, just replace this 1392 // cast with the result. 1393 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) 1394 return replaceInstUsesWith(CI, Res); 1395 1396 // We need to emit a shl + ashr to do the sign extend. 1397 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1398 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), 1399 ShAmt); 1400 } 1401 1402 // If the input is a trunc from the destination type, then turn sext(trunc(x)) 1403 // into shifts. 1404 Value *X; 1405 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { 1406 // sext(trunc(X)) --> ashr(shl(X, C), C) 1407 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 1408 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 1409 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); 1410 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); 1411 } 1412 1413 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1414 return transformSExtICmp(ICI, CI); 1415 1416 // If the input is a shl/ashr pair of a same constant, then this is a sign 1417 // extension from a smaller value. If we could trust arbitrary bitwidth 1418 // integers, we could turn this into a truncate to the smaller bit and then 1419 // use a sext for the whole extension. Since we don't, look deeper and check 1420 // for a truncate. If the source and dest are the same type, eliminate the 1421 // trunc and extend and just do shifts. For example, turn: 1422 // %a = trunc i32 %i to i8 1423 // %b = shl i8 %a, 6 1424 // %c = ashr i8 %b, 6 1425 // %d = sext i8 %c to i32 1426 // into: 1427 // %a = shl i32 %i, 30 1428 // %d = ashr i32 %a, 30 1429 Value *A = nullptr; 1430 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1431 ConstantInt *BA = nullptr, *CA = nullptr; 1432 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1433 m_ConstantInt(CA))) && 1434 BA == CA && A->getType() == CI.getType()) { 1435 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1436 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1437 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1438 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1439 A = Builder.CreateShl(A, ShAmtV, CI.getName()); 1440 return BinaryOperator::CreateAShr(A, ShAmtV); 1441 } 1442 1443 return nullptr; 1444 } 1445 1446 1447 /// Return a Constant* for the specified floating-point constant if it fits 1448 /// in the specified FP type without changing its value. 1449 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1450 bool losesInfo; 1451 APFloat F = CFP->getValueAPF(); 1452 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1453 return !losesInfo; 1454 } 1455 1456 static Type *shrinkFPConstant(ConstantFP *CFP) { 1457 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) 1458 return nullptr; // No constant folding of this. 1459 // See if the value can be truncated to half and then reextended. 1460 if (fitsInFPType(CFP, APFloat::IEEEhalf())) 1461 return Type::getHalfTy(CFP->getContext()); 1462 // See if the value can be truncated to float and then reextended. 1463 if (fitsInFPType(CFP, APFloat::IEEEsingle())) 1464 return Type::getFloatTy(CFP->getContext()); 1465 if (CFP->getType()->isDoubleTy()) 1466 return nullptr; // Won't shrink. 1467 if (fitsInFPType(CFP, APFloat::IEEEdouble())) 1468 return Type::getDoubleTy(CFP->getContext()); 1469 // Don't try to shrink to various long double types. 1470 return nullptr; 1471 } 1472 1473 // Determine if this is a vector of ConstantFPs and if so, return the minimal 1474 // type we can safely truncate all elements to. 1475 // TODO: Make these support undef elements. 1476 static Type *shrinkFPConstantVector(Value *V) { 1477 auto *CV = dyn_cast<Constant>(V); 1478 if (!CV || !CV->getType()->isVectorTy()) 1479 return nullptr; 1480 1481 Type *MinType = nullptr; 1482 1483 unsigned NumElts = CV->getType()->getVectorNumElements(); 1484 for (unsigned i = 0; i != NumElts; ++i) { 1485 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 1486 if (!CFP) 1487 return nullptr; 1488 1489 Type *T = shrinkFPConstant(CFP); 1490 if (!T) 1491 return nullptr; 1492 1493 // If we haven't found a type yet or this type has a larger mantissa than 1494 // our previous type, this is our new minimal type. 1495 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) 1496 MinType = T; 1497 } 1498 1499 // Make a vector type from the minimal type. 1500 return VectorType::get(MinType, NumElts); 1501 } 1502 1503 /// Find the minimum FP type we can safely truncate to. 1504 static Type *getMinimumFPType(Value *V) { 1505 if (auto *FPExt = dyn_cast<FPExtInst>(V)) 1506 return FPExt->getOperand(0)->getType(); 1507 1508 // If this value is a constant, return the constant in the smallest FP type 1509 // that can accurately represent it. This allows us to turn 1510 // (float)((double)X+2.0) into x+2.0f. 1511 if (auto *CFP = dyn_cast<ConstantFP>(V)) 1512 if (Type *T = shrinkFPConstant(CFP)) 1513 return T; 1514 1515 // Try to shrink a vector of FP constants. 1516 if (Type *T = shrinkFPConstantVector(V)) 1517 return T; 1518 1519 return V->getType(); 1520 } 1521 1522 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) { 1523 if (Instruction *I = commonCastTransforms(FPT)) 1524 return I; 1525 1526 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1527 // simplify this expression to avoid one or more of the trunc/extend 1528 // operations if we can do so without changing the numerical results. 1529 // 1530 // The exact manner in which the widths of the operands interact to limit 1531 // what we can and cannot do safely varies from operation to operation, and 1532 // is explained below in the various case statements. 1533 Type *Ty = FPT.getType(); 1534 BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0)); 1535 if (OpI && OpI->hasOneUse()) { 1536 Type *LHSMinType = getMinimumFPType(OpI->getOperand(0)); 1537 Type *RHSMinType = getMinimumFPType(OpI->getOperand(1)); 1538 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1539 unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); 1540 unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); 1541 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1542 unsigned DstWidth = Ty->getFPMantissaWidth(); 1543 switch (OpI->getOpcode()) { 1544 default: break; 1545 case Instruction::FAdd: 1546 case Instruction::FSub: 1547 // For addition and subtraction, the infinitely precise result can 1548 // essentially be arbitrarily wide; proving that double rounding 1549 // will not occur because the result of OpI is exact (as we will for 1550 // FMul, for example) is hopeless. However, we *can* nonetheless 1551 // frequently know that double rounding cannot occur (or that it is 1552 // innocuous) by taking advantage of the specific structure of 1553 // infinitely-precise results that admit double rounding. 1554 // 1555 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1556 // to represent both sources, we can guarantee that the double 1557 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1558 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1559 // for proof of this fact). 1560 // 1561 // Note: Figueroa does not consider the case where DstFormat != 1562 // SrcFormat. It's possible (likely even!) that this analysis 1563 // could be tightened for those cases, but they are rare (the main 1564 // case of interest here is (float)((double)float + float)). 1565 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1566 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1567 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1568 Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS); 1569 RI->copyFastMathFlags(OpI); 1570 return RI; 1571 } 1572 break; 1573 case Instruction::FMul: 1574 // For multiplication, the infinitely precise result has at most 1575 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1576 // that such a value can be exactly represented, then no double 1577 // rounding can possibly occur; we can safely perform the operation 1578 // in the destination format if it can represent both sources. 1579 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1580 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1581 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1582 return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI); 1583 } 1584 break; 1585 case Instruction::FDiv: 1586 // For division, we use again use the bound from Figueroa's 1587 // dissertation. I am entirely certain that this bound can be 1588 // tightened in the unbalanced operand case by an analysis based on 1589 // the diophantine rational approximation bound, but the well-known 1590 // condition used here is a good conservative first pass. 1591 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1592 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1593 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty); 1594 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty); 1595 return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI); 1596 } 1597 break; 1598 case Instruction::FRem: { 1599 // Remainder is straightforward. Remainder is always exact, so the 1600 // type of OpI doesn't enter into things at all. We simply evaluate 1601 // in whichever source type is larger, then convert to the 1602 // destination type. 1603 if (SrcWidth == OpWidth) 1604 break; 1605 Value *LHS, *RHS; 1606 if (LHSWidth == SrcWidth) { 1607 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType); 1608 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType); 1609 } else { 1610 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType); 1611 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType); 1612 } 1613 1614 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI); 1615 return CastInst::CreateFPCast(ExactResult, Ty); 1616 } 1617 } 1618 } 1619 1620 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1621 Value *X; 1622 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); 1623 if (Op && Op->hasOneUse()) { 1624 if (match(Op, m_FNeg(m_Value(X)))) { 1625 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); 1626 1627 // FIXME: Once we're sure that unary FNeg optimizations are on par with 1628 // binary FNeg, this should always return a unary operator. 1629 if (isa<BinaryOperator>(Op)) 1630 return BinaryOperator::CreateFNegFMF(InnerTrunc, Op); 1631 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); 1632 } 1633 } 1634 1635 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { 1636 switch (II->getIntrinsicID()) { 1637 default: break; 1638 case Intrinsic::ceil: 1639 case Intrinsic::fabs: 1640 case Intrinsic::floor: 1641 case Intrinsic::nearbyint: 1642 case Intrinsic::rint: 1643 case Intrinsic::round: 1644 case Intrinsic::trunc: { 1645 Value *Src = II->getArgOperand(0); 1646 if (!Src->hasOneUse()) 1647 break; 1648 1649 // Except for fabs, this transformation requires the input of the unary FP 1650 // operation to be itself an fpext from the type to which we're 1651 // truncating. 1652 if (II->getIntrinsicID() != Intrinsic::fabs) { 1653 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); 1654 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) 1655 break; 1656 } 1657 1658 // Do unary FP operation on smaller type. 1659 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1660 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); 1661 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), 1662 II->getIntrinsicID(), Ty); 1663 SmallVector<OperandBundleDef, 1> OpBundles; 1664 II->getOperandBundlesAsDefs(OpBundles); 1665 CallInst *NewCI = 1666 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); 1667 NewCI->copyFastMathFlags(II); 1668 return NewCI; 1669 } 1670 } 1671 } 1672 1673 if (Instruction *I = shrinkInsertElt(FPT, Builder)) 1674 return I; 1675 1676 return nullptr; 1677 } 1678 1679 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1680 return commonCastTransforms(CI); 1681 } 1682 1683 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) 1684 // This is safe if the intermediate type has enough bits in its mantissa to 1685 // accurately represent all values of X. For example, this won't work with 1686 // i64 -> float -> i64. 1687 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) { 1688 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) 1689 return nullptr; 1690 Instruction *OpI = cast<Instruction>(FI.getOperand(0)); 1691 1692 Value *SrcI = OpI->getOperand(0); 1693 Type *FITy = FI.getType(); 1694 Type *OpITy = OpI->getType(); 1695 Type *SrcTy = SrcI->getType(); 1696 bool IsInputSigned = isa<SIToFPInst>(OpI); 1697 bool IsOutputSigned = isa<FPToSIInst>(FI); 1698 1699 // We can safely assume the conversion won't overflow the output range, 1700 // because (for example) (uint8_t)18293.f is undefined behavior. 1701 1702 // Since we can assume the conversion won't overflow, our decision as to 1703 // whether the input will fit in the float should depend on the minimum 1704 // of the input range and output range. 1705 1706 // This means this is also safe for a signed input and unsigned output, since 1707 // a negative input would lead to undefined behavior. 1708 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned; 1709 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned; 1710 int ActualSize = std::min(InputSize, OutputSize); 1711 1712 if (ActualSize <= OpITy->getFPMantissaWidth()) { 1713 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) { 1714 if (IsInputSigned && IsOutputSigned) 1715 return new SExtInst(SrcI, FITy); 1716 return new ZExtInst(SrcI, FITy); 1717 } 1718 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits()) 1719 return new TruncInst(SrcI, FITy); 1720 if (SrcTy == FITy) 1721 return replaceInstUsesWith(FI, SrcI); 1722 return new BitCastInst(SrcI, FITy); 1723 } 1724 return nullptr; 1725 } 1726 1727 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1728 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1729 if (!OpI) 1730 return commonCastTransforms(FI); 1731 1732 if (Instruction *I = FoldItoFPtoI(FI)) 1733 return I; 1734 1735 return commonCastTransforms(FI); 1736 } 1737 1738 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1739 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1740 if (!OpI) 1741 return commonCastTransforms(FI); 1742 1743 if (Instruction *I = FoldItoFPtoI(FI)) 1744 return I; 1745 1746 return commonCastTransforms(FI); 1747 } 1748 1749 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1750 return commonCastTransforms(CI); 1751 } 1752 1753 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1754 return commonCastTransforms(CI); 1755 } 1756 1757 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1758 // If the source integer type is not the intptr_t type for this target, do a 1759 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1760 // cast to be exposed to other transforms. 1761 unsigned AS = CI.getAddressSpace(); 1762 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1763 DL.getPointerSizeInBits(AS)) { 1764 Type *Ty = DL.getIntPtrType(CI.getContext(), AS); 1765 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1766 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1767 1768 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); 1769 return new IntToPtrInst(P, CI.getType()); 1770 } 1771 1772 if (Instruction *I = commonCastTransforms(CI)) 1773 return I; 1774 1775 return nullptr; 1776 } 1777 1778 /// Implement the transforms for cast of pointer (bitcast/ptrtoint) 1779 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1780 Value *Src = CI.getOperand(0); 1781 1782 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1783 // If casting the result of a getelementptr instruction with no offset, turn 1784 // this into a cast of the original pointer! 1785 if (GEP->hasAllZeroIndices() && 1786 // If CI is an addrspacecast and GEP changes the poiner type, merging 1787 // GEP into CI would undo canonicalizing addrspacecast with different 1788 // pointer types, causing infinite loops. 1789 (!isa<AddrSpaceCastInst>(CI) || 1790 GEP->getType() == GEP->getPointerOperandType())) { 1791 // Changing the cast operand is usually not a good idea but it is safe 1792 // here because the pointer operand is being replaced with another 1793 // pointer operand so the opcode doesn't need to change. 1794 Worklist.Add(GEP); 1795 CI.setOperand(0, GEP->getOperand(0)); 1796 return &CI; 1797 } 1798 } 1799 1800 return commonCastTransforms(CI); 1801 } 1802 1803 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1804 // If the destination integer type is not the intptr_t type for this target, 1805 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1806 // to be exposed to other transforms. 1807 1808 Type *Ty = CI.getType(); 1809 unsigned AS = CI.getPointerAddressSpace(); 1810 1811 if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS)) 1812 return commonPointerCastTransforms(CI); 1813 1814 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); 1815 if (Ty->isVectorTy()) // Handle vectors of pointers. 1816 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1817 1818 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); 1819 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1820 } 1821 1822 /// This input value (which is known to have vector type) is being zero extended 1823 /// or truncated to the specified vector type. 1824 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible. 1825 /// 1826 /// The source and destination vector types may have different element types. 1827 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy, 1828 InstCombiner &IC) { 1829 // We can only do this optimization if the output is a multiple of the input 1830 // element size, or the input is a multiple of the output element size. 1831 // Convert the input type to have the same element type as the output. 1832 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1833 1834 if (SrcTy->getElementType() != DestTy->getElementType()) { 1835 // The input types don't need to be identical, but for now they must be the 1836 // same size. There is no specific reason we couldn't handle things like 1837 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1838 // there yet. 1839 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1840 DestTy->getElementType()->getPrimitiveSizeInBits()) 1841 return nullptr; 1842 1843 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1844 InVal = IC.Builder.CreateBitCast(InVal, SrcTy); 1845 } 1846 1847 // Now that the element types match, get the shuffle mask and RHS of the 1848 // shuffle to use, which depends on whether we're increasing or decreasing the 1849 // size of the input. 1850 SmallVector<uint32_t, 16> ShuffleMask; 1851 Value *V2; 1852 1853 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1854 // If we're shrinking the number of elements, just shuffle in the low 1855 // elements from the input and use undef as the second shuffle input. 1856 V2 = UndefValue::get(SrcTy); 1857 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1858 ShuffleMask.push_back(i); 1859 1860 } else { 1861 // If we're increasing the number of elements, shuffle in all of the 1862 // elements from InVal and fill the rest of the result elements with zeros 1863 // from a constant zero. 1864 V2 = Constant::getNullValue(SrcTy); 1865 unsigned SrcElts = SrcTy->getNumElements(); 1866 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1867 ShuffleMask.push_back(i); 1868 1869 // The excess elements reference the first element of the zero input. 1870 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1871 ShuffleMask.push_back(SrcElts); 1872 } 1873 1874 return new ShuffleVectorInst(InVal, V2, 1875 ConstantDataVector::get(V2->getContext(), 1876 ShuffleMask)); 1877 } 1878 1879 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1880 return Value % Ty->getPrimitiveSizeInBits() == 0; 1881 } 1882 1883 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1884 return Value / Ty->getPrimitiveSizeInBits(); 1885 } 1886 1887 /// V is a value which is inserted into a vector of VecEltTy. 1888 /// Look through the value to see if we can decompose it into 1889 /// insertions into the vector. See the example in the comment for 1890 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1891 /// The type of V is always a non-zero multiple of VecEltTy's size. 1892 /// Shift is the number of bits between the lsb of V and the lsb of 1893 /// the vector. 1894 /// 1895 /// This returns false if the pattern can't be matched or true if it can, 1896 /// filling in Elements with the elements found here. 1897 static bool collectInsertionElements(Value *V, unsigned Shift, 1898 SmallVectorImpl<Value *> &Elements, 1899 Type *VecEltTy, bool isBigEndian) { 1900 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1901 "Shift should be a multiple of the element type size"); 1902 1903 // Undef values never contribute useful bits to the result. 1904 if (isa<UndefValue>(V)) return true; 1905 1906 // If we got down to a value of the right type, we win, try inserting into the 1907 // right element. 1908 if (V->getType() == VecEltTy) { 1909 // Inserting null doesn't actually insert any elements. 1910 if (Constant *C = dyn_cast<Constant>(V)) 1911 if (C->isNullValue()) 1912 return true; 1913 1914 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1915 if (isBigEndian) 1916 ElementIndex = Elements.size() - ElementIndex - 1; 1917 1918 // Fail if multiple elements are inserted into this slot. 1919 if (Elements[ElementIndex]) 1920 return false; 1921 1922 Elements[ElementIndex] = V; 1923 return true; 1924 } 1925 1926 if (Constant *C = dyn_cast<Constant>(V)) { 1927 // Figure out the # elements this provides, and bitcast it or slice it up 1928 // as required. 1929 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1930 VecEltTy); 1931 // If the constant is the size of a vector element, we just need to bitcast 1932 // it to the right type so it gets properly inserted. 1933 if (NumElts == 1) 1934 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1935 Shift, Elements, VecEltTy, isBigEndian); 1936 1937 // Okay, this is a constant that covers multiple elements. Slice it up into 1938 // pieces and insert each element-sized piece into the vector. 1939 if (!isa<IntegerType>(C->getType())) 1940 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1941 C->getType()->getPrimitiveSizeInBits())); 1942 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1943 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1944 1945 for (unsigned i = 0; i != NumElts; ++i) { 1946 unsigned ShiftI = Shift+i*ElementSize; 1947 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1948 ShiftI)); 1949 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1950 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, 1951 isBigEndian)) 1952 return false; 1953 } 1954 return true; 1955 } 1956 1957 if (!V->hasOneUse()) return false; 1958 1959 Instruction *I = dyn_cast<Instruction>(V); 1960 if (!I) return false; 1961 switch (I->getOpcode()) { 1962 default: return false; // Unhandled case. 1963 case Instruction::BitCast: 1964 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1965 isBigEndian); 1966 case Instruction::ZExt: 1967 if (!isMultipleOfTypeSize( 1968 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1969 VecEltTy)) 1970 return false; 1971 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1972 isBigEndian); 1973 case Instruction::Or: 1974 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1975 isBigEndian) && 1976 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, 1977 isBigEndian); 1978 case Instruction::Shl: { 1979 // Must be shifting by a constant that is a multiple of the element size. 1980 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1981 if (!CI) return false; 1982 Shift += CI->getZExtValue(); 1983 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1984 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, 1985 isBigEndian); 1986 } 1987 1988 } 1989 } 1990 1991 1992 /// If the input is an 'or' instruction, we may be doing shifts and ors to 1993 /// assemble the elements of the vector manually. 1994 /// Try to rip the code out and replace it with insertelements. This is to 1995 /// optimize code like this: 1996 /// 1997 /// %tmp37 = bitcast float %inc to i32 1998 /// %tmp38 = zext i32 %tmp37 to i64 1999 /// %tmp31 = bitcast float %inc5 to i32 2000 /// %tmp32 = zext i32 %tmp31 to i64 2001 /// %tmp33 = shl i64 %tmp32, 32 2002 /// %ins35 = or i64 %tmp33, %tmp38 2003 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 2004 /// 2005 /// Into two insertelements that do "buildvector{%inc, %inc5}". 2006 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, 2007 InstCombiner &IC) { 2008 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 2009 Value *IntInput = CI.getOperand(0); 2010 2011 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 2012 if (!collectInsertionElements(IntInput, 0, Elements, 2013 DestVecTy->getElementType(), 2014 IC.getDataLayout().isBigEndian())) 2015 return nullptr; 2016 2017 // If we succeeded, we know that all of the element are specified by Elements 2018 // or are zero if Elements has a null entry. Recast this as a set of 2019 // insertions. 2020 Value *Result = Constant::getNullValue(CI.getType()); 2021 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 2022 if (!Elements[i]) continue; // Unset element. 2023 2024 Result = IC.Builder.CreateInsertElement(Result, Elements[i], 2025 IC.Builder.getInt32(i)); 2026 } 2027 2028 return Result; 2029 } 2030 2031 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the 2032 /// vector followed by extract element. The backend tends to handle bitcasts of 2033 /// vectors better than bitcasts of scalars because vector registers are 2034 /// usually not type-specific like scalar integer or scalar floating-point. 2035 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, 2036 InstCombiner &IC) { 2037 // TODO: Create and use a pattern matcher for ExtractElementInst. 2038 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); 2039 if (!ExtElt || !ExtElt->hasOneUse()) 2040 return nullptr; 2041 2042 // The bitcast must be to a vectorizable type, otherwise we can't make a new 2043 // type to extract from. 2044 Type *DestType = BitCast.getType(); 2045 if (!VectorType::isValidElementType(DestType)) 2046 return nullptr; 2047 2048 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); 2049 auto *NewVecType = VectorType::get(DestType, NumElts); 2050 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), 2051 NewVecType, "bc"); 2052 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); 2053 } 2054 2055 /// Change the type of a bitwise logic operation if we can eliminate a bitcast. 2056 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, 2057 InstCombiner::BuilderTy &Builder) { 2058 Type *DestTy = BitCast.getType(); 2059 BinaryOperator *BO; 2060 if (!DestTy->isIntOrIntVectorTy() || 2061 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || 2062 !BO->isBitwiseLogicOp()) 2063 return nullptr; 2064 2065 // FIXME: This transform is restricted to vector types to avoid backend 2066 // problems caused by creating potentially illegal operations. If a fix-up is 2067 // added to handle that situation, we can remove this check. 2068 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) 2069 return nullptr; 2070 2071 Value *X; 2072 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && 2073 X->getType() == DestTy && !isa<Constant>(X)) { 2074 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) 2075 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); 2076 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); 2077 } 2078 2079 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && 2080 X->getType() == DestTy && !isa<Constant>(X)) { 2081 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) 2082 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2083 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); 2084 } 2085 2086 // Canonicalize vector bitcasts to come before vector bitwise logic with a 2087 // constant. This eases recognition of special constants for later ops. 2088 // Example: 2089 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b 2090 Constant *C; 2091 if (match(BO->getOperand(1), m_Constant(C))) { 2092 // bitcast (logic X, C) --> logic (bitcast X, C') 2093 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); 2094 Value *CastedC = ConstantExpr::getBitCast(C, DestTy); 2095 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); 2096 } 2097 2098 return nullptr; 2099 } 2100 2101 /// Change the type of a select if we can eliminate a bitcast. 2102 static Instruction *foldBitCastSelect(BitCastInst &BitCast, 2103 InstCombiner::BuilderTy &Builder) { 2104 Value *Cond, *TVal, *FVal; 2105 if (!match(BitCast.getOperand(0), 2106 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 2107 return nullptr; 2108 2109 // A vector select must maintain the same number of elements in its operands. 2110 Type *CondTy = Cond->getType(); 2111 Type *DestTy = BitCast.getType(); 2112 if (CondTy->isVectorTy()) { 2113 if (!DestTy->isVectorTy()) 2114 return nullptr; 2115 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements()) 2116 return nullptr; 2117 } 2118 2119 // FIXME: This transform is restricted from changing the select between 2120 // scalars and vectors to avoid backend problems caused by creating 2121 // potentially illegal operations. If a fix-up is added to handle that 2122 // situation, we can remove this check. 2123 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) 2124 return nullptr; 2125 2126 auto *Sel = cast<Instruction>(BitCast.getOperand(0)); 2127 Value *X; 2128 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2129 !isa<Constant>(X)) { 2130 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) 2131 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); 2132 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); 2133 } 2134 2135 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && 2136 !isa<Constant>(X)) { 2137 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) 2138 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); 2139 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); 2140 } 2141 2142 return nullptr; 2143 } 2144 2145 /// Check if all users of CI are StoreInsts. 2146 static bool hasStoreUsersOnly(CastInst &CI) { 2147 for (User *U : CI.users()) { 2148 if (!isa<StoreInst>(U)) 2149 return false; 2150 } 2151 return true; 2152 } 2153 2154 /// This function handles following case 2155 /// 2156 /// A -> B cast 2157 /// PHI 2158 /// B -> A cast 2159 /// 2160 /// All the related PHI nodes can be replaced by new PHI nodes with type A. 2161 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. 2162 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { 2163 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. 2164 if (hasStoreUsersOnly(CI)) 2165 return nullptr; 2166 2167 Value *Src = CI.getOperand(0); 2168 Type *SrcTy = Src->getType(); // Type B 2169 Type *DestTy = CI.getType(); // Type A 2170 2171 SmallVector<PHINode *, 4> PhiWorklist; 2172 SmallSetVector<PHINode *, 4> OldPhiNodes; 2173 2174 // Find all of the A->B casts and PHI nodes. 2175 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so 2176 // OldPhiNodes is used to track all known PHI nodes, before adding a new 2177 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. 2178 PhiWorklist.push_back(PN); 2179 OldPhiNodes.insert(PN); 2180 while (!PhiWorklist.empty()) { 2181 auto *OldPN = PhiWorklist.pop_back_val(); 2182 for (Value *IncValue : OldPN->incoming_values()) { 2183 if (isa<Constant>(IncValue)) 2184 continue; 2185 2186 if (auto *LI = dyn_cast<LoadInst>(IncValue)) { 2187 // If there is a sequence of one or more load instructions, each loaded 2188 // value is used as address of later load instruction, bitcast is 2189 // necessary to change the value type, don't optimize it. For 2190 // simplicity we give up if the load address comes from another load. 2191 Value *Addr = LI->getOperand(0); 2192 if (Addr == &CI || isa<LoadInst>(Addr)) 2193 return nullptr; 2194 if (LI->hasOneUse() && LI->isSimple()) 2195 continue; 2196 // If a LoadInst has more than one use, changing the type of loaded 2197 // value may create another bitcast. 2198 return nullptr; 2199 } 2200 2201 if (auto *PNode = dyn_cast<PHINode>(IncValue)) { 2202 if (OldPhiNodes.insert(PNode)) 2203 PhiWorklist.push_back(PNode); 2204 continue; 2205 } 2206 2207 auto *BCI = dyn_cast<BitCastInst>(IncValue); 2208 // We can't handle other instructions. 2209 if (!BCI) 2210 return nullptr; 2211 2212 // Verify it's a A->B cast. 2213 Type *TyA = BCI->getOperand(0)->getType(); 2214 Type *TyB = BCI->getType(); 2215 if (TyA != DestTy || TyB != SrcTy) 2216 return nullptr; 2217 } 2218 } 2219 2220 // For each old PHI node, create a corresponding new PHI node with a type A. 2221 SmallDenseMap<PHINode *, PHINode *> NewPNodes; 2222 for (auto *OldPN : OldPhiNodes) { 2223 Builder.SetInsertPoint(OldPN); 2224 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); 2225 NewPNodes[OldPN] = NewPN; 2226 } 2227 2228 // Fill in the operands of new PHI nodes. 2229 for (auto *OldPN : OldPhiNodes) { 2230 PHINode *NewPN = NewPNodes[OldPN]; 2231 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { 2232 Value *V = OldPN->getOperand(j); 2233 Value *NewV = nullptr; 2234 if (auto *C = dyn_cast<Constant>(V)) { 2235 NewV = ConstantExpr::getBitCast(C, DestTy); 2236 } else if (auto *LI = dyn_cast<LoadInst>(V)) { 2237 Builder.SetInsertPoint(LI->getNextNode()); 2238 NewV = Builder.CreateBitCast(LI, DestTy); 2239 Worklist.Add(LI); 2240 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2241 NewV = BCI->getOperand(0); 2242 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { 2243 NewV = NewPNodes[PrevPN]; 2244 } 2245 assert(NewV); 2246 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); 2247 } 2248 } 2249 2250 // Traverse all accumulated PHI nodes and process its users, 2251 // which are Stores and BitcCasts. Without this processing 2252 // NewPHI nodes could be replicated and could lead to extra 2253 // moves generated after DeSSA. 2254 // If there is a store with type B, change it to type A. 2255 2256 2257 // Replace users of BitCast B->A with NewPHI. These will help 2258 // later to get rid off a closure formed by OldPHI nodes. 2259 Instruction *RetVal = nullptr; 2260 for (auto *OldPN : OldPhiNodes) { 2261 PHINode *NewPN = NewPNodes[OldPN]; 2262 for (User *V : OldPN->users()) { 2263 if (auto *SI = dyn_cast<StoreInst>(V)) { 2264 if (SI->isSimple() && SI->getOperand(0) == OldPN) { 2265 Builder.SetInsertPoint(SI); 2266 auto *NewBC = 2267 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); 2268 SI->setOperand(0, NewBC); 2269 Worklist.Add(SI); 2270 assert(hasStoreUsersOnly(*NewBC)); 2271 } 2272 } 2273 else if (auto *BCI = dyn_cast<BitCastInst>(V)) { 2274 // Verify it's a B->A cast. 2275 Type *TyB = BCI->getOperand(0)->getType(); 2276 Type *TyA = BCI->getType(); 2277 if (TyA == DestTy && TyB == SrcTy) { 2278 Instruction *I = replaceInstUsesWith(*BCI, NewPN); 2279 if (BCI == &CI) 2280 RetVal = I; 2281 } 2282 } 2283 } 2284 } 2285 2286 return RetVal; 2287 } 2288 2289 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 2290 // If the operands are integer typed then apply the integer transforms, 2291 // otherwise just apply the common ones. 2292 Value *Src = CI.getOperand(0); 2293 Type *SrcTy = Src->getType(); 2294 Type *DestTy = CI.getType(); 2295 2296 // Get rid of casts from one type to the same type. These are useless and can 2297 // be replaced by the operand. 2298 if (DestTy == Src->getType()) 2299 return replaceInstUsesWith(CI, Src); 2300 2301 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 2302 PointerType *SrcPTy = cast<PointerType>(SrcTy); 2303 Type *DstElTy = DstPTy->getElementType(); 2304 Type *SrcElTy = SrcPTy->getElementType(); 2305 2306 // Casting pointers between the same type, but with different address spaces 2307 // is an addrspace cast rather than a bitcast. 2308 if ((DstElTy == SrcElTy) && 2309 (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace())) 2310 return new AddrSpaceCastInst(Src, DestTy); 2311 2312 // If we are casting a alloca to a pointer to a type of the same 2313 // size, rewrite the allocation instruction to allocate the "right" type. 2314 // There is no need to modify malloc calls because it is their bitcast that 2315 // needs to be cleaned up. 2316 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 2317 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 2318 return V; 2319 2320 // When the type pointed to is not sized the cast cannot be 2321 // turned into a gep. 2322 Type *PointeeType = 2323 cast<PointerType>(Src->getType()->getScalarType())->getElementType(); 2324 if (!PointeeType->isSized()) 2325 return nullptr; 2326 2327 // If the source and destination are pointers, and this cast is equivalent 2328 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 2329 // This can enhance SROA and other transforms that want type-safe pointers. 2330 unsigned NumZeros = 0; 2331 while (SrcElTy != DstElTy && 2332 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 2333 SrcElTy->getNumContainedTypes() /* not "{}" */) { 2334 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U); 2335 ++NumZeros; 2336 } 2337 2338 // If we found a path from the src to dest, create the getelementptr now. 2339 if (SrcElTy == DstElTy) { 2340 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); 2341 return GetElementPtrInst::CreateInBounds(SrcPTy->getElementType(), Src, 2342 Idxs); 2343 } 2344 } 2345 2346 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 2347 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 2348 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); 2349 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 2350 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2351 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 2352 } 2353 2354 if (isa<IntegerType>(SrcTy)) { 2355 // If this is a cast from an integer to vector, check to see if the input 2356 // is a trunc or zext of a bitcast from vector. If so, we can replace all 2357 // the casts with a shuffle and (potentially) a bitcast. 2358 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 2359 CastInst *SrcCast = cast<CastInst>(Src); 2360 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 2361 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 2362 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0), 2363 cast<VectorType>(DestTy), *this)) 2364 return I; 2365 } 2366 2367 // If the input is an 'or' instruction, we may be doing shifts and ors to 2368 // assemble the elements of the vector manually. Try to rip the code out 2369 // and replace it with insertelements. 2370 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) 2371 return replaceInstUsesWith(CI, V); 2372 } 2373 } 2374 2375 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 2376 if (SrcVTy->getNumElements() == 1) { 2377 // If our destination is not a vector, then make this a straight 2378 // scalar-scalar cast. 2379 if (!DestTy->isVectorTy()) { 2380 Value *Elem = 2381 Builder.CreateExtractElement(Src, 2382 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 2383 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 2384 } 2385 2386 // Otherwise, see if our source is an insert. If so, then use the scalar 2387 // component directly: 2388 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> 2389 if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) 2390 return new BitCastInst(InsElt->getOperand(1), DestTy); 2391 } 2392 } 2393 2394 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 2395 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 2396 // a bitcast to a vector with the same # elts. 2397 if (SVI->hasOneUse() && DestTy->isVectorTy() && 2398 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 2399 SVI->getType()->getNumElements() == 2400 SVI->getOperand(0)->getType()->getVectorNumElements()) { 2401 BitCastInst *Tmp; 2402 // If either of the operands is a cast from CI.getType(), then 2403 // evaluating the shuffle in the casted destination's type will allow 2404 // us to eliminate at least one cast. 2405 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 2406 Tmp->getOperand(0)->getType() == DestTy) || 2407 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 2408 Tmp->getOperand(0)->getType() == DestTy)) { 2409 Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy); 2410 Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy); 2411 // Return a new shuffle vector. Use the same element ID's, as we 2412 // know the vector types match #elts. 2413 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 2414 } 2415 } 2416 } 2417 2418 // Handle the A->B->A cast, and there is an intervening PHI node. 2419 if (PHINode *PN = dyn_cast<PHINode>(Src)) 2420 if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) 2421 return I; 2422 2423 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) 2424 return I; 2425 2426 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) 2427 return I; 2428 2429 if (Instruction *I = foldBitCastSelect(CI, Builder)) 2430 return I; 2431 2432 if (SrcTy->isPointerTy()) 2433 return commonPointerCastTransforms(CI); 2434 return commonCastTransforms(CI); 2435 } 2436 2437 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 2438 // If the destination pointer element type is not the same as the source's 2439 // first do a bitcast to the destination type, and then the addrspacecast. 2440 // This allows the cast to be exposed to other transforms. 2441 Value *Src = CI.getOperand(0); 2442 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 2443 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 2444 2445 Type *DestElemTy = DestTy->getElementType(); 2446 if (SrcTy->getElementType() != DestElemTy) { 2447 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 2448 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 2449 // Handle vectors of pointers. 2450 MidTy = VectorType::get(MidTy, VT->getNumElements()); 2451 } 2452 2453 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); 2454 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 2455 } 2456 2457 return commonPointerCastTransforms(CI); 2458 } 2459