1 //===- InstCombineCalls.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitCall, visitInvoke, and visitCallBr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumeBundleQueries.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/IR/AttributeMask.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/IntrinsicsAArch64.h" 47 #include "llvm/IR/IntrinsicsAMDGPU.h" 48 #include "llvm/IR/IntrinsicsARM.h" 49 #include "llvm/IR/IntrinsicsHexagon.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/PatternMatch.h" 53 #include "llvm/IR/Statepoint.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueHandle.h" 58 #include "llvm/Support/AtomicOrdering.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/InstCombine/InstCombiner.h" 68 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <optional> 75 #include <utility> 76 #include <vector> 77 78 #define DEBUG_TYPE "instcombine" 79 #include "llvm/Transforms/Utils/InstructionWorklist.h" 80 81 using namespace llvm; 82 using namespace PatternMatch; 83 84 STATISTIC(NumSimplified, "Number of library calls simplified"); 85 86 static cl::opt<unsigned> GuardWideningWindow( 87 "instcombine-guard-widening-window", 88 cl::init(3), 89 cl::desc("How wide an instruction window to bypass looking for " 90 "another guard")); 91 92 /// Return the specified type promoted as it would be to pass though a va_arg 93 /// area. 94 static Type *getPromotedType(Type *Ty) { 95 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { 96 if (ITy->getBitWidth() < 32) 97 return Type::getInt32Ty(Ty->getContext()); 98 } 99 return Ty; 100 } 101 102 /// Recognize a memcpy/memmove from a trivially otherwise unused alloca. 103 /// TODO: This should probably be integrated with visitAllocSites, but that 104 /// requires a deeper change to allow either unread or unwritten objects. 105 static bool hasUndefSource(AnyMemTransferInst *MI) { 106 auto *Src = MI->getRawSource(); 107 while (isa<GetElementPtrInst>(Src) || isa<BitCastInst>(Src)) { 108 if (!Src->hasOneUse()) 109 return false; 110 Src = cast<Instruction>(Src)->getOperand(0); 111 } 112 return isa<AllocaInst>(Src) && Src->hasOneUse(); 113 } 114 115 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) { 116 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT); 117 MaybeAlign CopyDstAlign = MI->getDestAlign(); 118 if (!CopyDstAlign || *CopyDstAlign < DstAlign) { 119 MI->setDestAlignment(DstAlign); 120 return MI; 121 } 122 123 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT); 124 MaybeAlign CopySrcAlign = MI->getSourceAlign(); 125 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) { 126 MI->setSourceAlignment(SrcAlign); 127 return MI; 128 } 129 130 // If we have a store to a location which is known constant, we can conclude 131 // that the store must be storing the constant value (else the memory 132 // wouldn't be constant), and this must be a noop. 133 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) { 134 // Set the size of the copy to 0, it will be deleted on the next iteration. 135 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 136 return MI; 137 } 138 139 // If the source is provably undef, the memcpy/memmove doesn't do anything 140 // (unless the transfer is volatile). 141 if (hasUndefSource(MI) && !MI->isVolatile()) { 142 // Set the size of the copy to 0, it will be deleted on the next iteration. 143 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 144 return MI; 145 } 146 147 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with 148 // load/store. 149 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength()); 150 if (!MemOpLength) return nullptr; 151 152 // Source and destination pointer types are always "i8*" for intrinsic. See 153 // if the size is something we can handle with a single primitive load/store. 154 // A single load+store correctly handles overlapping memory in the memmove 155 // case. 156 uint64_t Size = MemOpLength->getLimitedValue(); 157 assert(Size && "0-sized memory transferring should be removed already."); 158 159 if (Size > 8 || (Size&(Size-1))) 160 return nullptr; // If not 1/2/4/8 bytes, exit. 161 162 // If it is an atomic and alignment is less than the size then we will 163 // introduce the unaligned memory access which will be later transformed 164 // into libcall in CodeGen. This is not evident performance gain so disable 165 // it now. 166 if (isa<AtomicMemTransferInst>(MI)) 167 if (*CopyDstAlign < Size || *CopySrcAlign < Size) 168 return nullptr; 169 170 // Use an integer load+store unless we can find something better. 171 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); 172 173 // If the memcpy has metadata describing the members, see if we can get the 174 // TBAA tag describing our copy. 175 AAMDNodes AACopyMD = MI->getAAMetadata(); 176 177 if (MDNode *M = AACopyMD.TBAAStruct) { 178 AACopyMD.TBAAStruct = nullptr; 179 if (M->getNumOperands() == 3 && M->getOperand(0) && 180 mdconst::hasa<ConstantInt>(M->getOperand(0)) && 181 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() && 182 M->getOperand(1) && 183 mdconst::hasa<ConstantInt>(M->getOperand(1)) && 184 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() == 185 Size && 186 M->getOperand(2) && isa<MDNode>(M->getOperand(2))) 187 AACopyMD.TBAA = cast<MDNode>(M->getOperand(2)); 188 } 189 190 Value *Src = MI->getArgOperand(1); 191 Value *Dest = MI->getArgOperand(0); 192 LoadInst *L = Builder.CreateLoad(IntType, Src); 193 // Alignment from the mem intrinsic will be better, so use it. 194 L->setAlignment(*CopySrcAlign); 195 L->setAAMetadata(AACopyMD); 196 MDNode *LoopMemParallelMD = 197 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 198 if (LoopMemParallelMD) 199 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 200 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group); 201 if (AccessGroupMD) 202 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 203 204 StoreInst *S = Builder.CreateStore(L, Dest); 205 // Alignment from the mem intrinsic will be better, so use it. 206 S->setAlignment(*CopyDstAlign); 207 S->setAAMetadata(AACopyMD); 208 if (LoopMemParallelMD) 209 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 210 if (AccessGroupMD) 211 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 212 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID); 213 214 if (auto *MT = dyn_cast<MemTransferInst>(MI)) { 215 // non-atomics can be volatile 216 L->setVolatile(MT->isVolatile()); 217 S->setVolatile(MT->isVolatile()); 218 } 219 if (isa<AtomicMemTransferInst>(MI)) { 220 // atomics have to be unordered 221 L->setOrdering(AtomicOrdering::Unordered); 222 S->setOrdering(AtomicOrdering::Unordered); 223 } 224 225 // Set the size of the copy to 0, it will be deleted on the next iteration. 226 MI->setLength(Constant::getNullValue(MemOpLength->getType())); 227 return MI; 228 } 229 230 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) { 231 const Align KnownAlignment = 232 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); 233 MaybeAlign MemSetAlign = MI->getDestAlign(); 234 if (!MemSetAlign || *MemSetAlign < KnownAlignment) { 235 MI->setDestAlignment(KnownAlignment); 236 return MI; 237 } 238 239 // If we have a store to a location which is known constant, we can conclude 240 // that the store must be storing the constant value (else the memory 241 // wouldn't be constant), and this must be a noop. 242 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) { 243 // Set the size of the copy to 0, it will be deleted on the next iteration. 244 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 245 return MI; 246 } 247 248 // Remove memset with an undef value. 249 // FIXME: This is technically incorrect because it might overwrite a poison 250 // value. Change to PoisonValue once #52930 is resolved. 251 if (isa<UndefValue>(MI->getValue())) { 252 // Set the size of the copy to 0, it will be deleted on the next iteration. 253 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 254 return MI; 255 } 256 257 // Extract the length and alignment and fill if they are constant. 258 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); 259 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); 260 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) 261 return nullptr; 262 const uint64_t Len = LenC->getLimitedValue(); 263 assert(Len && "0-sized memory setting should be removed already."); 264 const Align Alignment = MI->getDestAlign().valueOrOne(); 265 266 // If it is an atomic and alignment is less than the size then we will 267 // introduce the unaligned memory access which will be later transformed 268 // into libcall in CodeGen. This is not evident performance gain so disable 269 // it now. 270 if (isa<AtomicMemSetInst>(MI)) 271 if (Alignment < Len) 272 return nullptr; 273 274 // memset(s,c,n) -> store s, c (for n=1,2,4,8) 275 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { 276 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. 277 278 Value *Dest = MI->getDest(); 279 280 // Extract the fill value and store. 281 const uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; 282 Constant *FillVal = ConstantInt::get(ITy, Fill); 283 StoreInst *S = Builder.CreateStore(FillVal, Dest, MI->isVolatile()); 284 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID); 285 auto replaceOpForAssignmentMarkers = [FillC, FillVal](auto *DbgAssign) { 286 if (llvm::is_contained(DbgAssign->location_ops(), FillC)) 287 DbgAssign->replaceVariableLocationOp(FillC, FillVal); 288 }; 289 for_each(at::getAssignmentMarkers(S), replaceOpForAssignmentMarkers); 290 for_each(at::getDPVAssignmentMarkers(S), replaceOpForAssignmentMarkers); 291 292 S->setAlignment(Alignment); 293 if (isa<AtomicMemSetInst>(MI)) 294 S->setOrdering(AtomicOrdering::Unordered); 295 296 // Set the size of the copy to 0, it will be deleted on the next iteration. 297 MI->setLength(Constant::getNullValue(LenC->getType())); 298 return MI; 299 } 300 301 return nullptr; 302 } 303 304 // TODO, Obvious Missing Transforms: 305 // * Narrow width by halfs excluding zero/undef lanes 306 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) { 307 Value *LoadPtr = II.getArgOperand(0); 308 const Align Alignment = 309 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue(); 310 311 // If the mask is all ones or undefs, this is a plain vector load of the 1st 312 // argument. 313 if (maskIsAllOneOrUndef(II.getArgOperand(2))) { 314 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 315 "unmaskedload"); 316 L->copyMetadata(II); 317 return L; 318 } 319 320 // If we can unconditionally load from this address, replace with a 321 // load/select idiom. TODO: use DT for context sensitive query 322 if (isDereferenceablePointer(LoadPtr, II.getType(), 323 II.getModule()->getDataLayout(), &II, &AC)) { 324 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 325 "unmaskedload"); 326 LI->copyMetadata(II); 327 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3)); 328 } 329 330 return nullptr; 331 } 332 333 // TODO, Obvious Missing Transforms: 334 // * Single constant active lane -> store 335 // * Narrow width by halfs excluding zero/undef lanes 336 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) { 337 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 338 if (!ConstMask) 339 return nullptr; 340 341 // If the mask is all zeros, this instruction does nothing. 342 if (ConstMask->isNullValue()) 343 return eraseInstFromFunction(II); 344 345 // If the mask is all ones, this is a plain vector store of the 1st argument. 346 if (ConstMask->isAllOnesValue()) { 347 Value *StorePtr = II.getArgOperand(1); 348 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 349 StoreInst *S = 350 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); 351 S->copyMetadata(II); 352 return S; 353 } 354 355 if (isa<ScalableVectorType>(ConstMask->getType())) 356 return nullptr; 357 358 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 359 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 360 APInt PoisonElts(DemandedElts.getBitWidth(), 0); 361 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, 362 PoisonElts)) 363 return replaceOperand(II, 0, V); 364 365 return nullptr; 366 } 367 368 // TODO, Obvious Missing Transforms: 369 // * Single constant active lane load -> load 370 // * Dereferenceable address & few lanes -> scalarize speculative load/selects 371 // * Adjacent vector addresses -> masked.load 372 // * Narrow width by halfs excluding zero/undef lanes 373 // * Vector incrementing address -> vector masked load 374 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) { 375 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2)); 376 if (!ConstMask) 377 return nullptr; 378 379 // Vector splat address w/known mask -> scalar load 380 // Fold the gather to load the source vector first lane 381 // because it is reloading the same value each time 382 if (ConstMask->isAllOnesValue()) 383 if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) { 384 auto *VecTy = cast<VectorType>(II.getType()); 385 const Align Alignment = 386 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue(); 387 LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr, 388 Alignment, "load.scalar"); 389 Value *Shuf = 390 Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast"); 391 return replaceInstUsesWith(II, cast<Instruction>(Shuf)); 392 } 393 394 return nullptr; 395 } 396 397 // TODO, Obvious Missing Transforms: 398 // * Single constant active lane -> store 399 // * Adjacent vector addresses -> masked.store 400 // * Narrow store width by halfs excluding zero/undef lanes 401 // * Vector incrementing address -> vector masked store 402 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) { 403 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 404 if (!ConstMask) 405 return nullptr; 406 407 // If the mask is all zeros, a scatter does nothing. 408 if (ConstMask->isNullValue()) 409 return eraseInstFromFunction(II); 410 411 // Vector splat address -> scalar store 412 if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) { 413 // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr 414 if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) { 415 if (maskContainsAllOneOrUndef(ConstMask)) { 416 Align Alignment = 417 cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 418 StoreInst *S = new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false, 419 Alignment); 420 S->copyMetadata(II); 421 return S; 422 } 423 } 424 // scatter(vector, splat(ptr), splat(true)) -> store extract(vector, 425 // lastlane), ptr 426 if (ConstMask->isAllOnesValue()) { 427 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 428 VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType()); 429 ElementCount VF = WideLoadTy->getElementCount(); 430 Value *RunTimeVF = Builder.CreateElementCount(Builder.getInt32Ty(), VF); 431 Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1)); 432 Value *Extract = 433 Builder.CreateExtractElement(II.getArgOperand(0), LastLane); 434 StoreInst *S = 435 new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment); 436 S->copyMetadata(II); 437 return S; 438 } 439 } 440 if (isa<ScalableVectorType>(ConstMask->getType())) 441 return nullptr; 442 443 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 444 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 445 APInt PoisonElts(DemandedElts.getBitWidth(), 0); 446 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, 447 PoisonElts)) 448 return replaceOperand(II, 0, V); 449 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, 450 PoisonElts)) 451 return replaceOperand(II, 1, V); 452 453 return nullptr; 454 } 455 456 /// This function transforms launder.invariant.group and strip.invariant.group 457 /// like: 458 /// launder(launder(%x)) -> launder(%x) (the result is not the argument) 459 /// launder(strip(%x)) -> launder(%x) 460 /// strip(strip(%x)) -> strip(%x) (the result is not the argument) 461 /// strip(launder(%x)) -> strip(%x) 462 /// This is legal because it preserves the most recent information about 463 /// the presence or absence of invariant.group. 464 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II, 465 InstCombinerImpl &IC) { 466 auto *Arg = II.getArgOperand(0); 467 auto *StrippedArg = Arg->stripPointerCasts(); 468 auto *StrippedInvariantGroupsArg = StrippedArg; 469 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) { 470 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group && 471 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group) 472 break; 473 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts(); 474 } 475 if (StrippedArg == StrippedInvariantGroupsArg) 476 return nullptr; // No launders/strips to remove. 477 478 Value *Result = nullptr; 479 480 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group) 481 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg); 482 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group) 483 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg); 484 else 485 llvm_unreachable( 486 "simplifyInvariantGroupIntrinsic only handles launder and strip"); 487 if (Result->getType()->getPointerAddressSpace() != 488 II.getType()->getPointerAddressSpace()) 489 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType()); 490 491 return cast<Instruction>(Result); 492 } 493 494 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) { 495 assert((II.getIntrinsicID() == Intrinsic::cttz || 496 II.getIntrinsicID() == Intrinsic::ctlz) && 497 "Expected cttz or ctlz intrinsic"); 498 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; 499 Value *Op0 = II.getArgOperand(0); 500 Value *Op1 = II.getArgOperand(1); 501 Value *X; 502 // ctlz(bitreverse(x)) -> cttz(x) 503 // cttz(bitreverse(x)) -> ctlz(x) 504 if (match(Op0, m_BitReverse(m_Value(X)))) { 505 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz; 506 Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType()); 507 return CallInst::Create(F, {X, II.getArgOperand(1)}); 508 } 509 510 if (II.getType()->isIntOrIntVectorTy(1)) { 511 // ctlz/cttz i1 Op0 --> not Op0 512 if (match(Op1, m_Zero())) 513 return BinaryOperator::CreateNot(Op0); 514 // If zero is poison, then the input can be assumed to be "true", so the 515 // instruction simplifies to "false". 516 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1"); 517 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType())); 518 } 519 520 Constant *C; 521 522 if (IsTZ) { 523 // cttz(-x) -> cttz(x) 524 if (match(Op0, m_Neg(m_Value(X)))) 525 return IC.replaceOperand(II, 0, X); 526 527 // cttz(-x & x) -> cttz(x) 528 if (match(Op0, m_c_And(m_Neg(m_Value(X)), m_Deferred(X)))) 529 return IC.replaceOperand(II, 0, X); 530 531 // cttz(sext(x)) -> cttz(zext(x)) 532 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) { 533 auto *Zext = IC.Builder.CreateZExt(X, II.getType()); 534 auto *CttzZext = 535 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1); 536 return IC.replaceInstUsesWith(II, CttzZext); 537 } 538 539 // Zext doesn't change the number of trailing zeros, so narrow: 540 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'. 541 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) { 542 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X, 543 IC.Builder.getTrue()); 544 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType()); 545 return IC.replaceInstUsesWith(II, ZextCttz); 546 } 547 548 // cttz(abs(x)) -> cttz(x) 549 // cttz(nabs(x)) -> cttz(x) 550 Value *Y; 551 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; 552 if (SPF == SPF_ABS || SPF == SPF_NABS) 553 return IC.replaceOperand(II, 0, X); 554 555 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) 556 return IC.replaceOperand(II, 0, X); 557 558 // cttz(shl(%const, %val), 1) --> add(cttz(%const, 1), %val) 559 if (match(Op0, m_Shl(m_ImmConstant(C), m_Value(X))) && 560 match(Op1, m_One())) { 561 Value *ConstCttz = 562 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1); 563 return BinaryOperator::CreateAdd(ConstCttz, X); 564 } 565 566 // cttz(lshr exact (%const, %val), 1) --> sub(cttz(%const, 1), %val) 567 if (match(Op0, m_Exact(m_LShr(m_ImmConstant(C), m_Value(X)))) && 568 match(Op1, m_One())) { 569 Value *ConstCttz = 570 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1); 571 return BinaryOperator::CreateSub(ConstCttz, X); 572 } 573 } else { 574 // ctlz(lshr(%const, %val), 1) --> add(ctlz(%const, 1), %val) 575 if (match(Op0, m_LShr(m_ImmConstant(C), m_Value(X))) && 576 match(Op1, m_One())) { 577 Value *ConstCtlz = 578 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1); 579 return BinaryOperator::CreateAdd(ConstCtlz, X); 580 } 581 582 // ctlz(shl nuw (%const, %val), 1) --> sub(ctlz(%const, 1), %val) 583 if (match(Op0, m_NUWShl(m_ImmConstant(C), m_Value(X))) && 584 match(Op1, m_One())) { 585 Value *ConstCtlz = 586 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1); 587 return BinaryOperator::CreateSub(ConstCtlz, X); 588 } 589 } 590 591 KnownBits Known = IC.computeKnownBits(Op0, 0, &II); 592 593 // Create a mask for bits above (ctlz) or below (cttz) the first known one. 594 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros() 595 : Known.countMaxLeadingZeros(); 596 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros() 597 : Known.countMinLeadingZeros(); 598 599 // If all bits above (ctlz) or below (cttz) the first known one are known 600 // zero, this value is constant. 601 // FIXME: This should be in InstSimplify because we're replacing an 602 // instruction with a constant. 603 if (PossibleZeros == DefiniteZeros) { 604 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros); 605 return IC.replaceInstUsesWith(II, C); 606 } 607 608 // If the input to cttz/ctlz is known to be non-zero, 609 // then change the 'ZeroIsPoison' parameter to 'true' 610 // because we know the zero behavior can't affect the result. 611 if (!Known.One.isZero() || 612 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II, 613 &IC.getDominatorTree())) { 614 if (!match(II.getArgOperand(1), m_One())) 615 return IC.replaceOperand(II, 1, IC.Builder.getTrue()); 616 } 617 618 // Add range metadata since known bits can't completely reflect what we know. 619 auto *IT = cast<IntegerType>(Op0->getType()->getScalarType()); 620 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { 621 Metadata *LowAndHigh[] = { 622 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)), 623 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))}; 624 II.setMetadata(LLVMContext::MD_range, 625 MDNode::get(II.getContext(), LowAndHigh)); 626 return &II; 627 } 628 629 return nullptr; 630 } 631 632 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) { 633 assert(II.getIntrinsicID() == Intrinsic::ctpop && 634 "Expected ctpop intrinsic"); 635 Type *Ty = II.getType(); 636 unsigned BitWidth = Ty->getScalarSizeInBits(); 637 Value *Op0 = II.getArgOperand(0); 638 Value *X, *Y; 639 640 // ctpop(bitreverse(x)) -> ctpop(x) 641 // ctpop(bswap(x)) -> ctpop(x) 642 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) 643 return IC.replaceOperand(II, 0, X); 644 645 // ctpop(rot(x)) -> ctpop(x) 646 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) || 647 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) && 648 X == Y) 649 return IC.replaceOperand(II, 0, X); 650 651 // ctpop(x | -x) -> bitwidth - cttz(x, false) 652 if (Op0->hasOneUse() && 653 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) { 654 Function *F = 655 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); 656 auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()}); 657 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth)); 658 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz)); 659 } 660 661 // ctpop(~x & (x - 1)) -> cttz(x, false) 662 if (match(Op0, 663 m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) { 664 Function *F = 665 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); 666 return CallInst::Create(F, {X, IC.Builder.getFalse()}); 667 } 668 669 // Zext doesn't change the number of set bits, so narrow: 670 // ctpop (zext X) --> zext (ctpop X) 671 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 672 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X); 673 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty); 674 } 675 676 KnownBits Known(BitWidth); 677 IC.computeKnownBits(Op0, Known, 0, &II); 678 679 // If all bits are zero except for exactly one fixed bit, then the result 680 // must be 0 or 1, and we can get that answer by shifting to LSB: 681 // ctpop (X & 32) --> (X & 32) >> 5 682 // TODO: Investigate removing this as its likely unnecessary given the below 683 // `isKnownToBeAPowerOfTwo` check. 684 if ((~Known.Zero).isPowerOf2()) 685 return BinaryOperator::CreateLShr( 686 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2())); 687 688 // More generally we can also handle non-constant power of 2 patterns such as 689 // shl/shr(Pow2, X), (X & -X), etc... by transforming: 690 // ctpop(Pow2OrZero) --> icmp ne X, 0 691 if (IC.isKnownToBeAPowerOfTwo(Op0, /* OrZero */ true)) 692 return CastInst::Create(Instruction::ZExt, 693 IC.Builder.CreateICmp(ICmpInst::ICMP_NE, Op0, 694 Constant::getNullValue(Ty)), 695 Ty); 696 697 // Add range metadata since known bits can't completely reflect what we know. 698 auto *IT = cast<IntegerType>(Ty->getScalarType()); 699 unsigned MinCount = Known.countMinPopulation(); 700 unsigned MaxCount = Known.countMaxPopulation(); 701 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { 702 Metadata *LowAndHigh[] = { 703 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)), 704 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))}; 705 II.setMetadata(LLVMContext::MD_range, 706 MDNode::get(II.getContext(), LowAndHigh)); 707 return &II; 708 } 709 710 return nullptr; 711 } 712 713 /// Convert a table lookup to shufflevector if the mask is constant. 714 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in 715 /// which case we could lower the shufflevector with rev64 instructions 716 /// as it's actually a byte reverse. 717 static Value *simplifyNeonTbl1(const IntrinsicInst &II, 718 InstCombiner::BuilderTy &Builder) { 719 // Bail out if the mask is not a constant. 720 auto *C = dyn_cast<Constant>(II.getArgOperand(1)); 721 if (!C) 722 return nullptr; 723 724 auto *VecTy = cast<FixedVectorType>(II.getType()); 725 unsigned NumElts = VecTy->getNumElements(); 726 727 // Only perform this transformation for <8 x i8> vector types. 728 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8) 729 return nullptr; 730 731 int Indexes[8]; 732 733 for (unsigned I = 0; I < NumElts; ++I) { 734 Constant *COp = C->getAggregateElement(I); 735 736 if (!COp || !isa<ConstantInt>(COp)) 737 return nullptr; 738 739 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue(); 740 741 // Make sure the mask indices are in range. 742 if ((unsigned)Indexes[I] >= NumElts) 743 return nullptr; 744 } 745 746 auto *V1 = II.getArgOperand(0); 747 auto *V2 = Constant::getNullValue(V1->getType()); 748 return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes)); 749 } 750 751 // Returns true iff the 2 intrinsics have the same operands, limiting the 752 // comparison to the first NumOperands. 753 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, 754 unsigned NumOperands) { 755 assert(I.arg_size() >= NumOperands && "Not enough operands"); 756 assert(E.arg_size() >= NumOperands && "Not enough operands"); 757 for (unsigned i = 0; i < NumOperands; i++) 758 if (I.getArgOperand(i) != E.getArgOperand(i)) 759 return false; 760 return true; 761 } 762 763 // Remove trivially empty start/end intrinsic ranges, i.e. a start 764 // immediately followed by an end (ignoring debuginfo or other 765 // start/end intrinsics in between). As this handles only the most trivial 766 // cases, tracking the nesting level is not needed: 767 // 768 // call @llvm.foo.start(i1 0) 769 // call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed 770 // call @llvm.foo.end(i1 0) 771 // call @llvm.foo.end(i1 0) ; &I 772 static bool 773 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, 774 std::function<bool(const IntrinsicInst &)> IsStart) { 775 // We start from the end intrinsic and scan backwards, so that InstCombine 776 // has already processed (and potentially removed) all the instructions 777 // before the end intrinsic. 778 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend()); 779 for (; BI != BE; ++BI) { 780 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) { 781 if (I->isDebugOrPseudoInst() || 782 I->getIntrinsicID() == EndI.getIntrinsicID()) 783 continue; 784 if (IsStart(*I)) { 785 if (haveSameOperands(EndI, *I, EndI.arg_size())) { 786 IC.eraseInstFromFunction(*I); 787 IC.eraseInstFromFunction(EndI); 788 return true; 789 } 790 // Skip start intrinsics that don't pair with this end intrinsic. 791 continue; 792 } 793 } 794 break; 795 } 796 797 return false; 798 } 799 800 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) { 801 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) { 802 return I.getIntrinsicID() == Intrinsic::vastart || 803 I.getIntrinsicID() == Intrinsic::vacopy; 804 }); 805 return nullptr; 806 } 807 808 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) { 809 assert(Call.arg_size() > 1 && "Need at least 2 args to swap"); 810 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1); 811 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) { 812 Call.setArgOperand(0, Arg1); 813 Call.setArgOperand(1, Arg0); 814 return &Call; 815 } 816 return nullptr; 817 } 818 819 /// Creates a result tuple for an overflow intrinsic \p II with a given 820 /// \p Result and a constant \p Overflow value. 821 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result, 822 Constant *Overflow) { 823 Constant *V[] = {PoisonValue::get(Result->getType()), Overflow}; 824 StructType *ST = cast<StructType>(II->getType()); 825 Constant *Struct = ConstantStruct::get(ST, V); 826 return InsertValueInst::Create(Struct, Result, 0); 827 } 828 829 Instruction * 830 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) { 831 WithOverflowInst *WO = cast<WithOverflowInst>(II); 832 Value *OperationResult = nullptr; 833 Constant *OverflowResult = nullptr; 834 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(), 835 WO->getRHS(), *WO, OperationResult, OverflowResult)) 836 return createOverflowTuple(WO, OperationResult, OverflowResult); 837 return nullptr; 838 } 839 840 static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) { 841 Ty = Ty->getScalarType(); 842 return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE; 843 } 844 845 static bool inputDenormalIsDAZ(const Function &F, const Type *Ty) { 846 Ty = Ty->getScalarType(); 847 return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero(); 848 } 849 850 /// \returns the compare predicate type if the test performed by 851 /// llvm.is.fpclass(x, \p Mask) is equivalent to fcmp o__ x, 0.0 with the 852 /// floating-point environment assumed for \p F for type \p Ty 853 static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask, 854 const Function &F, Type *Ty) { 855 switch (static_cast<unsigned>(Mask)) { 856 case fcZero: 857 if (inputDenormalIsIEEE(F, Ty)) 858 return FCmpInst::FCMP_OEQ; 859 break; 860 case fcZero | fcSubnormal: 861 if (inputDenormalIsDAZ(F, Ty)) 862 return FCmpInst::FCMP_OEQ; 863 break; 864 case fcPositive | fcNegZero: 865 if (inputDenormalIsIEEE(F, Ty)) 866 return FCmpInst::FCMP_OGE; 867 break; 868 case fcPositive | fcNegZero | fcNegSubnormal: 869 if (inputDenormalIsDAZ(F, Ty)) 870 return FCmpInst::FCMP_OGE; 871 break; 872 case fcPosSubnormal | fcPosNormal | fcPosInf: 873 if (inputDenormalIsIEEE(F, Ty)) 874 return FCmpInst::FCMP_OGT; 875 break; 876 case fcNegative | fcPosZero: 877 if (inputDenormalIsIEEE(F, Ty)) 878 return FCmpInst::FCMP_OLE; 879 break; 880 case fcNegative | fcPosZero | fcPosSubnormal: 881 if (inputDenormalIsDAZ(F, Ty)) 882 return FCmpInst::FCMP_OLE; 883 break; 884 case fcNegSubnormal | fcNegNormal | fcNegInf: 885 if (inputDenormalIsIEEE(F, Ty)) 886 return FCmpInst::FCMP_OLT; 887 break; 888 case fcPosNormal | fcPosInf: 889 if (inputDenormalIsDAZ(F, Ty)) 890 return FCmpInst::FCMP_OGT; 891 break; 892 case fcNegNormal | fcNegInf: 893 if (inputDenormalIsDAZ(F, Ty)) 894 return FCmpInst::FCMP_OLT; 895 break; 896 case ~fcZero & ~fcNan: 897 if (inputDenormalIsIEEE(F, Ty)) 898 return FCmpInst::FCMP_ONE; 899 break; 900 case ~(fcZero | fcSubnormal) & ~fcNan: 901 if (inputDenormalIsDAZ(F, Ty)) 902 return FCmpInst::FCMP_ONE; 903 break; 904 default: 905 break; 906 } 907 908 return FCmpInst::BAD_FCMP_PREDICATE; 909 } 910 911 Instruction *InstCombinerImpl::foldIntrinsicIsFPClass(IntrinsicInst &II) { 912 Value *Src0 = II.getArgOperand(0); 913 Value *Src1 = II.getArgOperand(1); 914 const ConstantInt *CMask = cast<ConstantInt>(Src1); 915 FPClassTest Mask = static_cast<FPClassTest>(CMask->getZExtValue()); 916 const bool IsUnordered = (Mask & fcNan) == fcNan; 917 const bool IsOrdered = (Mask & fcNan) == fcNone; 918 const FPClassTest OrderedMask = Mask & ~fcNan; 919 const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan; 920 921 const bool IsStrict = II.isStrictFP(); 922 923 Value *FNegSrc; 924 if (match(Src0, m_FNeg(m_Value(FNegSrc)))) { 925 // is.fpclass (fneg x), mask -> is.fpclass x, (fneg mask) 926 927 II.setArgOperand(1, ConstantInt::get(Src1->getType(), fneg(Mask))); 928 return replaceOperand(II, 0, FNegSrc); 929 } 930 931 Value *FAbsSrc; 932 if (match(Src0, m_FAbs(m_Value(FAbsSrc)))) { 933 II.setArgOperand(1, ConstantInt::get(Src1->getType(), inverse_fabs(Mask))); 934 return replaceOperand(II, 0, FAbsSrc); 935 } 936 937 if ((OrderedMask == fcInf || OrderedInvertedMask == fcInf) && 938 (IsOrdered || IsUnordered) && !IsStrict) { 939 // is.fpclass(x, fcInf) -> fcmp oeq fabs(x), +inf 940 // is.fpclass(x, ~fcInf) -> fcmp one fabs(x), +inf 941 // is.fpclass(x, fcInf|fcNan) -> fcmp ueq fabs(x), +inf 942 // is.fpclass(x, ~(fcInf|fcNan)) -> fcmp une fabs(x), +inf 943 Constant *Inf = ConstantFP::getInfinity(Src0->getType()); 944 FCmpInst::Predicate Pred = 945 IsUnordered ? FCmpInst::FCMP_UEQ : FCmpInst::FCMP_OEQ; 946 if (OrderedInvertedMask == fcInf) 947 Pred = IsUnordered ? FCmpInst::FCMP_UNE : FCmpInst::FCMP_ONE; 948 949 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0); 950 Value *CmpInf = Builder.CreateFCmp(Pred, Fabs, Inf); 951 CmpInf->takeName(&II); 952 return replaceInstUsesWith(II, CmpInf); 953 } 954 955 if ((OrderedMask == fcPosInf || OrderedMask == fcNegInf) && 956 (IsOrdered || IsUnordered) && !IsStrict) { 957 // is.fpclass(x, fcPosInf) -> fcmp oeq x, +inf 958 // is.fpclass(x, fcNegInf) -> fcmp oeq x, -inf 959 // is.fpclass(x, fcPosInf|fcNan) -> fcmp ueq x, +inf 960 // is.fpclass(x, fcNegInf|fcNan) -> fcmp ueq x, -inf 961 Constant *Inf = 962 ConstantFP::getInfinity(Src0->getType(), OrderedMask == fcNegInf); 963 Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(Src0, Inf) 964 : Builder.CreateFCmpOEQ(Src0, Inf); 965 966 EqInf->takeName(&II); 967 return replaceInstUsesWith(II, EqInf); 968 } 969 970 if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) && 971 (IsOrdered || IsUnordered) && !IsStrict) { 972 // is.fpclass(x, ~fcPosInf) -> fcmp one x, +inf 973 // is.fpclass(x, ~fcNegInf) -> fcmp one x, -inf 974 // is.fpclass(x, ~fcPosInf|fcNan) -> fcmp une x, +inf 975 // is.fpclass(x, ~fcNegInf|fcNan) -> fcmp une x, -inf 976 Constant *Inf = ConstantFP::getInfinity(Src0->getType(), 977 OrderedInvertedMask == fcNegInf); 978 Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(Src0, Inf) 979 : Builder.CreateFCmpONE(Src0, Inf); 980 NeInf->takeName(&II); 981 return replaceInstUsesWith(II, NeInf); 982 } 983 984 if (Mask == fcNan && !IsStrict) { 985 // Equivalent of isnan. Replace with standard fcmp if we don't care about FP 986 // exceptions. 987 Value *IsNan = 988 Builder.CreateFCmpUNO(Src0, ConstantFP::getZero(Src0->getType())); 989 IsNan->takeName(&II); 990 return replaceInstUsesWith(II, IsNan); 991 } 992 993 if (Mask == (~fcNan & fcAllFlags) && !IsStrict) { 994 // Equivalent of !isnan. Replace with standard fcmp. 995 Value *FCmp = 996 Builder.CreateFCmpORD(Src0, ConstantFP::getZero(Src0->getType())); 997 FCmp->takeName(&II); 998 return replaceInstUsesWith(II, FCmp); 999 } 1000 1001 FCmpInst::Predicate PredType = FCmpInst::BAD_FCMP_PREDICATE; 1002 1003 // Try to replace with an fcmp with 0 1004 // 1005 // is.fpclass(x, fcZero) -> fcmp oeq x, 0.0 1006 // is.fpclass(x, fcZero | fcNan) -> fcmp ueq x, 0.0 1007 // is.fpclass(x, ~fcZero & ~fcNan) -> fcmp one x, 0.0 1008 // is.fpclass(x, ~fcZero) -> fcmp une x, 0.0 1009 // 1010 // is.fpclass(x, fcPosSubnormal | fcPosNormal | fcPosInf) -> fcmp ogt x, 0.0 1011 // is.fpclass(x, fcPositive | fcNegZero) -> fcmp oge x, 0.0 1012 // 1013 // is.fpclass(x, fcNegSubnormal | fcNegNormal | fcNegInf) -> fcmp olt x, 0.0 1014 // is.fpclass(x, fcNegative | fcPosZero) -> fcmp ole x, 0.0 1015 // 1016 if (!IsStrict && (IsOrdered || IsUnordered) && 1017 (PredType = fpclassTestIsFCmp0(OrderedMask, *II.getFunction(), 1018 Src0->getType())) != 1019 FCmpInst::BAD_FCMP_PREDICATE) { 1020 Constant *Zero = ConstantFP::getZero(Src0->getType()); 1021 // Equivalent of == 0. 1022 Value *FCmp = Builder.CreateFCmp( 1023 IsUnordered ? FCmpInst::getUnorderedPredicate(PredType) : PredType, 1024 Src0, Zero); 1025 1026 FCmp->takeName(&II); 1027 return replaceInstUsesWith(II, FCmp); 1028 } 1029 1030 KnownFPClass Known = computeKnownFPClass(Src0, Mask, &II); 1031 1032 // Clear test bits we know must be false from the source value. 1033 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other 1034 // fp_class (ninf x), ninf|pinf|other -> fp_class (ninf x), other 1035 if ((Mask & Known.KnownFPClasses) != Mask) { 1036 II.setArgOperand( 1037 1, ConstantInt::get(Src1->getType(), Mask & Known.KnownFPClasses)); 1038 return &II; 1039 } 1040 1041 // If none of the tests which can return false are possible, fold to true. 1042 // fp_class (nnan x), ~(qnan|snan) -> true 1043 // fp_class (ninf x), ~(ninf|pinf) -> true 1044 if (Mask == Known.KnownFPClasses) 1045 return replaceInstUsesWith(II, ConstantInt::get(II.getType(), true)); 1046 1047 return nullptr; 1048 } 1049 1050 static std::optional<bool> getKnownSign(Value *Op, Instruction *CxtI, 1051 const DataLayout &DL, AssumptionCache *AC, 1052 DominatorTree *DT) { 1053 KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT); 1054 if (Known.isNonNegative()) 1055 return false; 1056 if (Known.isNegative()) 1057 return true; 1058 1059 Value *X, *Y; 1060 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y)))) 1061 return isImpliedByDomCondition(ICmpInst::ICMP_SLT, X, Y, CxtI, DL); 1062 1063 return isImpliedByDomCondition( 1064 ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL); 1065 } 1066 1067 static std::optional<bool> getKnownSignOrZero(Value *Op, Instruction *CxtI, 1068 const DataLayout &DL, 1069 AssumptionCache *AC, 1070 DominatorTree *DT) { 1071 if (std::optional<bool> Sign = getKnownSign(Op, CxtI, DL, AC, DT)) 1072 return Sign; 1073 1074 Value *X, *Y; 1075 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y)))) 1076 return isImpliedByDomCondition(ICmpInst::ICMP_SLE, X, Y, CxtI, DL); 1077 1078 return std::nullopt; 1079 } 1080 1081 /// Return true if two values \p Op0 and \p Op1 are known to have the same sign. 1082 static bool signBitMustBeTheSame(Value *Op0, Value *Op1, Instruction *CxtI, 1083 const DataLayout &DL, AssumptionCache *AC, 1084 DominatorTree *DT) { 1085 std::optional<bool> Known1 = getKnownSign(Op1, CxtI, DL, AC, DT); 1086 if (!Known1) 1087 return false; 1088 std::optional<bool> Known0 = getKnownSign(Op0, CxtI, DL, AC, DT); 1089 if (!Known0) 1090 return false; 1091 return *Known0 == *Known1; 1092 } 1093 1094 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This 1095 /// can trigger other combines. 1096 static Instruction *moveAddAfterMinMax(IntrinsicInst *II, 1097 InstCombiner::BuilderTy &Builder) { 1098 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 1099 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin || 1100 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) && 1101 "Expected a min or max intrinsic"); 1102 1103 // TODO: Match vectors with undef elements, but undef may not propagate. 1104 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); 1105 Value *X; 1106 const APInt *C0, *C1; 1107 if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) || 1108 !match(Op1, m_APInt(C1))) 1109 return nullptr; 1110 1111 // Check for necessary no-wrap and overflow constraints. 1112 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin; 1113 auto *Add = cast<BinaryOperator>(Op0); 1114 if ((IsSigned && !Add->hasNoSignedWrap()) || 1115 (!IsSigned && !Add->hasNoUnsignedWrap())) 1116 return nullptr; 1117 1118 // If the constant difference overflows, then instsimplify should reduce the 1119 // min/max to the add or C1. 1120 bool Overflow; 1121 APInt CDiff = 1122 IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow); 1123 assert(!Overflow && "Expected simplify of min/max"); 1124 1125 // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0 1126 // Note: the "mismatched" no-overflow setting does not propagate. 1127 Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff); 1128 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC); 1129 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1)) 1130 : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1)); 1131 } 1132 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 1133 Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) { 1134 Type *Ty = MinMax1.getType(); 1135 1136 // We are looking for a tree of: 1137 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 1138 // Where the min and max could be reversed 1139 Instruction *MinMax2; 1140 BinaryOperator *AddSub; 1141 const APInt *MinValue, *MaxValue; 1142 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 1143 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 1144 return nullptr; 1145 } else if (match(&MinMax1, 1146 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 1147 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 1148 return nullptr; 1149 } else 1150 return nullptr; 1151 1152 // Check that the constants clamp a saturate, and that the new type would be 1153 // sensible to convert to. 1154 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 1155 return nullptr; 1156 // In what bitwidth can this be treated as saturating arithmetics? 1157 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 1158 // FIXME: This isn't quite right for vectors, but using the scalar type is a 1159 // good first approximation for what should be done there. 1160 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 1161 return nullptr; 1162 1163 // Also make sure that the inner min/max and the add/sub have one use. 1164 if (!MinMax2->hasOneUse() || !AddSub->hasOneUse()) 1165 return nullptr; 1166 1167 // Create the new type (which can be a vector type) 1168 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 1169 1170 Intrinsic::ID IntrinsicID; 1171 if (AddSub->getOpcode() == Instruction::Add) 1172 IntrinsicID = Intrinsic::sadd_sat; 1173 else if (AddSub->getOpcode() == Instruction::Sub) 1174 IntrinsicID = Intrinsic::ssub_sat; 1175 else 1176 return nullptr; 1177 1178 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This 1179 // is usually achieved via a sext from a smaller type. 1180 if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) > 1181 NewBitWidth || 1182 ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth) 1183 return nullptr; 1184 1185 // Finally create and return the sat intrinsic, truncated to the new type 1186 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 1187 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy); 1188 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy); 1189 Value *Sat = Builder.CreateCall(F, {AT, BT}); 1190 return CastInst::Create(Instruction::SExt, Sat, Ty); 1191 } 1192 1193 1194 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output 1195 /// can only be one of two possible constant values -- turn that into a select 1196 /// of constants. 1197 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II, 1198 InstCombiner::BuilderTy &Builder) { 1199 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1200 Value *X; 1201 const APInt *C0, *C1; 1202 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse()) 1203 return nullptr; 1204 1205 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 1206 switch (II->getIntrinsicID()) { 1207 case Intrinsic::smax: 1208 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 1209 Pred = ICmpInst::ICMP_SGT; 1210 break; 1211 case Intrinsic::smin: 1212 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 1213 Pred = ICmpInst::ICMP_SLT; 1214 break; 1215 case Intrinsic::umax: 1216 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 1217 Pred = ICmpInst::ICMP_UGT; 1218 break; 1219 case Intrinsic::umin: 1220 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 1221 Pred = ICmpInst::ICMP_ULT; 1222 break; 1223 default: 1224 llvm_unreachable("Expected min/max intrinsic"); 1225 } 1226 if (Pred == CmpInst::BAD_ICMP_PREDICATE) 1227 return nullptr; 1228 1229 // max (min X, 42), 41 --> X > 41 ? 42 : 41 1230 // min (max X, 42), 43 --> X < 43 ? 42 : 43 1231 Value *Cmp = Builder.CreateICmp(Pred, X, I1); 1232 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1); 1233 } 1234 1235 /// If this min/max has a constant operand and an operand that is a matching 1236 /// min/max with a constant operand, constant-fold the 2 constant operands. 1237 static Value *reassociateMinMaxWithConstants(IntrinsicInst *II, 1238 IRBuilderBase &Builder) { 1239 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 1240 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 1241 if (!LHS || LHS->getIntrinsicID() != MinMaxID) 1242 return nullptr; 1243 1244 Constant *C0, *C1; 1245 if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) || 1246 !match(II->getArgOperand(1), m_ImmConstant(C1))) 1247 return nullptr; 1248 1249 // max (max X, C0), C1 --> max X, (max C0, C1) --> max X, NewC 1250 ICmpInst::Predicate Pred = MinMaxIntrinsic::getPredicate(MinMaxID); 1251 Value *CondC = Builder.CreateICmp(Pred, C0, C1); 1252 Value *NewC = Builder.CreateSelect(CondC, C0, C1); 1253 return Builder.CreateIntrinsic(MinMaxID, II->getType(), 1254 {LHS->getArgOperand(0), NewC}); 1255 } 1256 1257 /// If this min/max has a matching min/max operand with a constant, try to push 1258 /// the constant operand into this instruction. This can enable more folds. 1259 static Instruction * 1260 reassociateMinMaxWithConstantInOperand(IntrinsicInst *II, 1261 InstCombiner::BuilderTy &Builder) { 1262 // Match and capture a min/max operand candidate. 1263 Value *X, *Y; 1264 Constant *C; 1265 Instruction *Inner; 1266 if (!match(II, m_c_MaxOrMin(m_OneUse(m_CombineAnd( 1267 m_Instruction(Inner), 1268 m_MaxOrMin(m_Value(X), m_ImmConstant(C)))), 1269 m_Value(Y)))) 1270 return nullptr; 1271 1272 // The inner op must match. Check for constants to avoid infinite loops. 1273 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 1274 auto *InnerMM = dyn_cast<IntrinsicInst>(Inner); 1275 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID || 1276 match(X, m_ImmConstant()) || match(Y, m_ImmConstant())) 1277 return nullptr; 1278 1279 // max (max X, C), Y --> max (max X, Y), C 1280 Function *MinMax = 1281 Intrinsic::getDeclaration(II->getModule(), MinMaxID, II->getType()); 1282 Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y); 1283 NewInner->takeName(Inner); 1284 return CallInst::Create(MinMax, {NewInner, C}); 1285 } 1286 1287 /// Reduce a sequence of min/max intrinsics with a common operand. 1288 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) { 1289 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 1290 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 1291 auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1)); 1292 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 1293 if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID || 1294 RHS->getIntrinsicID() != MinMaxID || 1295 (!LHS->hasOneUse() && !RHS->hasOneUse())) 1296 return nullptr; 1297 1298 Value *A = LHS->getArgOperand(0); 1299 Value *B = LHS->getArgOperand(1); 1300 Value *C = RHS->getArgOperand(0); 1301 Value *D = RHS->getArgOperand(1); 1302 1303 // Look for a common operand. 1304 Value *MinMaxOp = nullptr; 1305 Value *ThirdOp = nullptr; 1306 if (LHS->hasOneUse()) { 1307 // If the LHS is only used in this chain and the RHS is used outside of it, 1308 // reuse the RHS min/max because that will eliminate the LHS. 1309 if (D == A || C == A) { 1310 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 1311 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 1312 MinMaxOp = RHS; 1313 ThirdOp = B; 1314 } else if (D == B || C == B) { 1315 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 1316 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 1317 MinMaxOp = RHS; 1318 ThirdOp = A; 1319 } 1320 } else { 1321 assert(RHS->hasOneUse() && "Expected one-use operand"); 1322 // Reuse the LHS. This will eliminate the RHS. 1323 if (D == A || D == B) { 1324 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 1325 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 1326 MinMaxOp = LHS; 1327 ThirdOp = C; 1328 } else if (C == A || C == B) { 1329 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 1330 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 1331 MinMaxOp = LHS; 1332 ThirdOp = D; 1333 } 1334 } 1335 1336 if (!MinMaxOp || !ThirdOp) 1337 return nullptr; 1338 1339 Module *Mod = II->getModule(); 1340 Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType()); 1341 return CallInst::Create(MinMax, { MinMaxOp, ThirdOp }); 1342 } 1343 1344 /// If all arguments of the intrinsic are unary shuffles with the same mask, 1345 /// try to shuffle after the intrinsic. 1346 static Instruction * 1347 foldShuffledIntrinsicOperands(IntrinsicInst *II, 1348 InstCombiner::BuilderTy &Builder) { 1349 // TODO: This should be extended to handle other intrinsics like fshl, ctpop, 1350 // etc. Use llvm::isTriviallyVectorizable() and related to determine 1351 // which intrinsics are safe to shuffle? 1352 switch (II->getIntrinsicID()) { 1353 case Intrinsic::smax: 1354 case Intrinsic::smin: 1355 case Intrinsic::umax: 1356 case Intrinsic::umin: 1357 case Intrinsic::fma: 1358 case Intrinsic::fshl: 1359 case Intrinsic::fshr: 1360 break; 1361 default: 1362 return nullptr; 1363 } 1364 1365 Value *X; 1366 ArrayRef<int> Mask; 1367 if (!match(II->getArgOperand(0), 1368 m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask)))) 1369 return nullptr; 1370 1371 // At least 1 operand must have 1 use because we are creating 2 instructions. 1372 if (none_of(II->args(), [](Value *V) { return V->hasOneUse(); })) 1373 return nullptr; 1374 1375 // See if all arguments are shuffled with the same mask. 1376 SmallVector<Value *, 4> NewArgs(II->arg_size()); 1377 NewArgs[0] = X; 1378 Type *SrcTy = X->getType(); 1379 for (unsigned i = 1, e = II->arg_size(); i != e; ++i) { 1380 if (!match(II->getArgOperand(i), 1381 m_Shuffle(m_Value(X), m_Undef(), m_SpecificMask(Mask))) || 1382 X->getType() != SrcTy) 1383 return nullptr; 1384 NewArgs[i] = X; 1385 } 1386 1387 // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M 1388 Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr; 1389 Value *NewIntrinsic = 1390 Builder.CreateIntrinsic(II->getIntrinsicID(), SrcTy, NewArgs, FPI); 1391 return new ShuffleVectorInst(NewIntrinsic, Mask); 1392 } 1393 1394 /// Fold the following cases and accepts bswap and bitreverse intrinsics: 1395 /// bswap(logic_op(bswap(x), y)) --> logic_op(x, bswap(y)) 1396 /// bswap(logic_op(bswap(x), bswap(y))) --> logic_op(x, y) (ignores multiuse) 1397 template <Intrinsic::ID IntrID> 1398 static Instruction *foldBitOrderCrossLogicOp(Value *V, 1399 InstCombiner::BuilderTy &Builder) { 1400 static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse, 1401 "This helper only supports BSWAP and BITREVERSE intrinsics"); 1402 1403 Value *X, *Y; 1404 // Find bitwise logic op. Check that it is a BinaryOperator explicitly so we 1405 // don't match ConstantExpr that aren't meaningful for this transform. 1406 if (match(V, m_OneUse(m_BitwiseLogic(m_Value(X), m_Value(Y)))) && 1407 isa<BinaryOperator>(V)) { 1408 Value *OldReorderX, *OldReorderY; 1409 BinaryOperator::BinaryOps Op = cast<BinaryOperator>(V)->getOpcode(); 1410 1411 // If both X and Y are bswap/bitreverse, the transform reduces the number 1412 // of instructions even if there's multiuse. 1413 // If only one operand is bswap/bitreverse, we need to ensure the operand 1414 // have only one use. 1415 if (match(X, m_Intrinsic<IntrID>(m_Value(OldReorderX))) && 1416 match(Y, m_Intrinsic<IntrID>(m_Value(OldReorderY)))) { 1417 return BinaryOperator::Create(Op, OldReorderX, OldReorderY); 1418 } 1419 1420 if (match(X, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderX))))) { 1421 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, Y); 1422 return BinaryOperator::Create(Op, OldReorderX, NewReorder); 1423 } 1424 1425 if (match(Y, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderY))))) { 1426 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, X); 1427 return BinaryOperator::Create(Op, NewReorder, OldReorderY); 1428 } 1429 } 1430 return nullptr; 1431 } 1432 1433 /// CallInst simplification. This mostly only handles folding of intrinsic 1434 /// instructions. For normal calls, it allows visitCallBase to do the heavy 1435 /// lifting. 1436 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) { 1437 // Don't try to simplify calls without uses. It will not do anything useful, 1438 // but will result in the following folds being skipped. 1439 if (!CI.use_empty()) { 1440 SmallVector<Value *, 4> Args; 1441 Args.reserve(CI.arg_size()); 1442 for (Value *Op : CI.args()) 1443 Args.push_back(Op); 1444 if (Value *V = simplifyCall(&CI, CI.getCalledOperand(), Args, 1445 SQ.getWithInstruction(&CI))) 1446 return replaceInstUsesWith(CI, V); 1447 } 1448 1449 if (Value *FreedOp = getFreedOperand(&CI, &TLI)) 1450 return visitFree(CI, FreedOp); 1451 1452 // If the caller function (i.e. us, the function that contains this CallInst) 1453 // is nounwind, mark the call as nounwind, even if the callee isn't. 1454 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { 1455 CI.setDoesNotThrow(); 1456 return &CI; 1457 } 1458 1459 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); 1460 if (!II) return visitCallBase(CI); 1461 1462 // For atomic unordered mem intrinsics if len is not a positive or 1463 // not a multiple of element size then behavior is undefined. 1464 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II)) 1465 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength())) 1466 if (NumBytes->isNegative() || 1467 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) { 1468 CreateNonTerminatorUnreachable(AMI); 1469 assert(AMI->getType()->isVoidTy() && 1470 "non void atomic unordered mem intrinsic"); 1471 return eraseInstFromFunction(*AMI); 1472 } 1473 1474 // Intrinsics cannot occur in an invoke or a callbr, so handle them here 1475 // instead of in visitCallBase. 1476 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) { 1477 bool Changed = false; 1478 1479 // memmove/cpy/set of zero bytes is a noop. 1480 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { 1481 if (NumBytes->isNullValue()) 1482 return eraseInstFromFunction(CI); 1483 } 1484 1485 // No other transformations apply to volatile transfers. 1486 if (auto *M = dyn_cast<MemIntrinsic>(MI)) 1487 if (M->isVolatile()) 1488 return nullptr; 1489 1490 // If we have a memmove and the source operation is a constant global, 1491 // then the source and dest pointers can't alias, so we can change this 1492 // into a call to memcpy. 1493 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) { 1494 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) 1495 if (GVSrc->isConstant()) { 1496 Module *M = CI.getModule(); 1497 Intrinsic::ID MemCpyID = 1498 isa<AtomicMemMoveInst>(MMI) 1499 ? Intrinsic::memcpy_element_unordered_atomic 1500 : Intrinsic::memcpy; 1501 Type *Tys[3] = { CI.getArgOperand(0)->getType(), 1502 CI.getArgOperand(1)->getType(), 1503 CI.getArgOperand(2)->getType() }; 1504 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); 1505 Changed = true; 1506 } 1507 } 1508 1509 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 1510 // memmove(x,x,size) -> noop. 1511 if (MTI->getSource() == MTI->getDest()) 1512 return eraseInstFromFunction(CI); 1513 } 1514 1515 // If we can determine a pointer alignment that is bigger than currently 1516 // set, update the alignment. 1517 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 1518 if (Instruction *I = SimplifyAnyMemTransfer(MTI)) 1519 return I; 1520 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) { 1521 if (Instruction *I = SimplifyAnyMemSet(MSI)) 1522 return I; 1523 } 1524 1525 if (Changed) return II; 1526 } 1527 1528 // For fixed width vector result intrinsics, use the generic demanded vector 1529 // support. 1530 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) { 1531 auto VWidth = IIFVTy->getNumElements(); 1532 APInt PoisonElts(VWidth, 0); 1533 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1534 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, PoisonElts)) { 1535 if (V != II) 1536 return replaceInstUsesWith(*II, V); 1537 return II; 1538 } 1539 } 1540 1541 if (II->isCommutative()) { 1542 if (auto Pair = matchSymmetricPair(II->getOperand(0), II->getOperand(1))) { 1543 replaceOperand(*II, 0, Pair->first); 1544 replaceOperand(*II, 1, Pair->second); 1545 return II; 1546 } 1547 1548 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI)) 1549 return NewCall; 1550 } 1551 1552 // Unused constrained FP intrinsic calls may have declared side effect, which 1553 // prevents it from being removed. In some cases however the side effect is 1554 // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it 1555 // returns a replacement, the call may be removed. 1556 if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) { 1557 if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI))) 1558 return eraseInstFromFunction(CI); 1559 } 1560 1561 Intrinsic::ID IID = II->getIntrinsicID(); 1562 switch (IID) { 1563 case Intrinsic::objectsize: { 1564 SmallVector<Instruction *> InsertedInstructions; 1565 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false, 1566 &InsertedInstructions)) { 1567 for (Instruction *Inserted : InsertedInstructions) 1568 Worklist.add(Inserted); 1569 return replaceInstUsesWith(CI, V); 1570 } 1571 return nullptr; 1572 } 1573 case Intrinsic::abs: { 1574 Value *IIOperand = II->getArgOperand(0); 1575 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue(); 1576 1577 // abs(-x) -> abs(x) 1578 // TODO: Copy nsw if it was present on the neg? 1579 Value *X; 1580 if (match(IIOperand, m_Neg(m_Value(X)))) 1581 return replaceOperand(*II, 0, X); 1582 if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X))))) 1583 return replaceOperand(*II, 0, X); 1584 if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X)))) 1585 return replaceOperand(*II, 0, X); 1586 1587 if (std::optional<bool> Known = 1588 getKnownSignOrZero(IIOperand, II, DL, &AC, &DT)) { 1589 // abs(x) -> x if x >= 0 (include abs(x-y) --> x - y where x >= y) 1590 // abs(x) -> x if x > 0 (include abs(x-y) --> x - y where x > y) 1591 if (!*Known) 1592 return replaceInstUsesWith(*II, IIOperand); 1593 1594 // abs(x) -> -x if x < 0 1595 // abs(x) -> -x if x < = 0 (include abs(x-y) --> y - x where x <= y) 1596 if (IntMinIsPoison) 1597 return BinaryOperator::CreateNSWNeg(IIOperand); 1598 return BinaryOperator::CreateNeg(IIOperand); 1599 } 1600 1601 // abs (sext X) --> zext (abs X*) 1602 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing. 1603 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) { 1604 Value *NarrowAbs = 1605 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse()); 1606 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType()); 1607 } 1608 1609 // Match a complicated way to check if a number is odd/even: 1610 // abs (srem X, 2) --> and X, 1 1611 const APInt *C; 1612 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2) 1613 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1)); 1614 1615 break; 1616 } 1617 case Intrinsic::umin: { 1618 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1619 // umin(x, 1) == zext(x != 0) 1620 if (match(I1, m_One())) { 1621 assert(II->getType()->getScalarSizeInBits() != 1 && 1622 "Expected simplify of umin with max constant"); 1623 Value *Zero = Constant::getNullValue(I0->getType()); 1624 Value *Cmp = Builder.CreateICmpNE(I0, Zero); 1625 return CastInst::Create(Instruction::ZExt, Cmp, II->getType()); 1626 } 1627 [[fallthrough]]; 1628 } 1629 case Intrinsic::umax: { 1630 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1631 Value *X, *Y; 1632 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) && 1633 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 1634 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 1635 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 1636 } 1637 Constant *C; 1638 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) && 1639 I0->hasOneUse()) { 1640 if (Constant *NarrowC = getLosslessUnsignedTrunc(C, X->getType())) { 1641 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 1642 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 1643 } 1644 } 1645 // If both operands of unsigned min/max are sign-extended, it is still ok 1646 // to narrow the operation. 1647 [[fallthrough]]; 1648 } 1649 case Intrinsic::smax: 1650 case Intrinsic::smin: { 1651 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1652 Value *X, *Y; 1653 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) && 1654 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 1655 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 1656 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 1657 } 1658 1659 Constant *C; 1660 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) && 1661 I0->hasOneUse()) { 1662 if (Constant *NarrowC = getLosslessSignedTrunc(C, X->getType())) { 1663 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 1664 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 1665 } 1666 } 1667 1668 // umin(i1 X, i1 Y) -> and i1 X, Y 1669 // smax(i1 X, i1 Y) -> and i1 X, Y 1670 if ((IID == Intrinsic::umin || IID == Intrinsic::smax) && 1671 II->getType()->isIntOrIntVectorTy(1)) { 1672 return BinaryOperator::CreateAnd(I0, I1); 1673 } 1674 1675 // umax(i1 X, i1 Y) -> or i1 X, Y 1676 // smin(i1 X, i1 Y) -> or i1 X, Y 1677 if ((IID == Intrinsic::umax || IID == Intrinsic::smin) && 1678 II->getType()->isIntOrIntVectorTy(1)) { 1679 return BinaryOperator::CreateOr(I0, I1); 1680 } 1681 1682 if (IID == Intrinsic::smax || IID == Intrinsic::smin) { 1683 // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y) 1684 // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y) 1685 // TODO: Canonicalize neg after min/max if I1 is constant. 1686 if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) && 1687 (I0->hasOneUse() || I1->hasOneUse())) { 1688 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); 1689 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y); 1690 return BinaryOperator::CreateNSWNeg(InvMaxMin); 1691 } 1692 } 1693 1694 // (umax X, (xor X, Pow2)) 1695 // -> (or X, Pow2) 1696 // (umin X, (xor X, Pow2)) 1697 // -> (and X, ~Pow2) 1698 // (smax X, (xor X, Pos_Pow2)) 1699 // -> (or X, Pos_Pow2) 1700 // (smin X, (xor X, Pos_Pow2)) 1701 // -> (and X, ~Pos_Pow2) 1702 // (smax X, (xor X, Neg_Pow2)) 1703 // -> (and X, ~Neg_Pow2) 1704 // (smin X, (xor X, Neg_Pow2)) 1705 // -> (or X, Neg_Pow2) 1706 if ((match(I0, m_c_Xor(m_Specific(I1), m_Value(X))) || 1707 match(I1, m_c_Xor(m_Specific(I0), m_Value(X)))) && 1708 isKnownToBeAPowerOfTwo(X, /* OrZero */ true)) { 1709 bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax; 1710 bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin; 1711 1712 if (IID == Intrinsic::smax || IID == Intrinsic::smin) { 1713 auto KnownSign = getKnownSign(X, II, DL, &AC, &DT); 1714 if (KnownSign == std::nullopt) { 1715 UseOr = false; 1716 UseAndN = false; 1717 } else if (*KnownSign /* true is Signed. */) { 1718 UseOr ^= true; 1719 UseAndN ^= true; 1720 Type *Ty = I0->getType(); 1721 // Negative power of 2 must be IntMin. It's possible to be able to 1722 // prove negative / power of 2 without actually having known bits, so 1723 // just get the value by hand. 1724 X = Constant::getIntegerValue( 1725 Ty, APInt::getSignedMinValue(Ty->getScalarSizeInBits())); 1726 } 1727 } 1728 if (UseOr) 1729 return BinaryOperator::CreateOr(I0, X); 1730 else if (UseAndN) 1731 return BinaryOperator::CreateAnd(I0, Builder.CreateNot(X)); 1732 } 1733 1734 // If we can eliminate ~A and Y is free to invert: 1735 // max ~A, Y --> ~(min A, ~Y) 1736 // 1737 // Examples: 1738 // max ~A, ~Y --> ~(min A, Y) 1739 // max ~A, C --> ~(min A, ~C) 1740 // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z)) 1741 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 1742 Value *A; 1743 if (match(X, m_OneUse(m_Not(m_Value(A)))) && 1744 !isFreeToInvert(A, A->hasOneUse())) { 1745 if (Value *NotY = getFreelyInverted(Y, Y->hasOneUse(), &Builder)) { 1746 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); 1747 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY); 1748 return BinaryOperator::CreateNot(InvMaxMin); 1749 } 1750 } 1751 return nullptr; 1752 }; 1753 1754 if (Instruction *I = moveNotAfterMinMax(I0, I1)) 1755 return I; 1756 if (Instruction *I = moveNotAfterMinMax(I1, I0)) 1757 return I; 1758 1759 if (Instruction *I = moveAddAfterMinMax(II, Builder)) 1760 return I; 1761 1762 // smax(X, -X) --> abs(X) 1763 // smin(X, -X) --> -abs(X) 1764 // umax(X, -X) --> -abs(X) 1765 // umin(X, -X) --> abs(X) 1766 if (isKnownNegation(I0, I1)) { 1767 // We can choose either operand as the input to abs(), but if we can 1768 // eliminate the only use of a value, that's better for subsequent 1769 // transforms/analysis. 1770 if (I0->hasOneUse() && !I1->hasOneUse()) 1771 std::swap(I0, I1); 1772 1773 // This is some variant of abs(). See if we can propagate 'nsw' to the abs 1774 // operation and potentially its negation. 1775 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true); 1776 Value *Abs = Builder.CreateBinaryIntrinsic( 1777 Intrinsic::abs, I0, 1778 ConstantInt::getBool(II->getContext(), IntMinIsPoison)); 1779 1780 // We don't have a "nabs" intrinsic, so negate if needed based on the 1781 // max/min operation. 1782 if (IID == Intrinsic::smin || IID == Intrinsic::umax) 1783 Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison); 1784 return replaceInstUsesWith(CI, Abs); 1785 } 1786 1787 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder)) 1788 return Sel; 1789 1790 if (Instruction *SAdd = matchSAddSubSat(*II)) 1791 return SAdd; 1792 1793 if (Value *NewMinMax = reassociateMinMaxWithConstants(II, Builder)) 1794 return replaceInstUsesWith(*II, NewMinMax); 1795 1796 if (Instruction *R = reassociateMinMaxWithConstantInOperand(II, Builder)) 1797 return R; 1798 1799 if (Instruction *NewMinMax = factorizeMinMaxTree(II)) 1800 return NewMinMax; 1801 1802 // Try to fold minmax with constant RHS based on range information 1803 const APInt *RHSC; 1804 if (match(I1, m_APIntAllowUndef(RHSC))) { 1805 ICmpInst::Predicate Pred = 1806 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 1807 bool IsSigned = MinMaxIntrinsic::isSigned(IID); 1808 ConstantRange LHS_CR = computeConstantRangeIncludingKnownBits( 1809 I0, IsSigned, SQ.getWithInstruction(II)); 1810 if (!LHS_CR.isFullSet()) { 1811 if (LHS_CR.icmp(Pred, *RHSC)) 1812 return replaceInstUsesWith(*II, I0); 1813 if (LHS_CR.icmp(ICmpInst::getSwappedPredicate(Pred), *RHSC)) 1814 return replaceInstUsesWith(*II, 1815 ConstantInt::get(II->getType(), *RHSC)); 1816 } 1817 } 1818 1819 break; 1820 } 1821 case Intrinsic::bitreverse: { 1822 Value *IIOperand = II->getArgOperand(0); 1823 // bitrev (zext i1 X to ?) --> X ? SignBitC : 0 1824 Value *X; 1825 if (match(IIOperand, m_ZExt(m_Value(X))) && 1826 X->getType()->isIntOrIntVectorTy(1)) { 1827 Type *Ty = II->getType(); 1828 APInt SignBit = APInt::getSignMask(Ty->getScalarSizeInBits()); 1829 return SelectInst::Create(X, ConstantInt::get(Ty, SignBit), 1830 ConstantInt::getNullValue(Ty)); 1831 } 1832 1833 if (Instruction *crossLogicOpFold = 1834 foldBitOrderCrossLogicOp<Intrinsic::bitreverse>(IIOperand, Builder)) 1835 return crossLogicOpFold; 1836 1837 break; 1838 } 1839 case Intrinsic::bswap: { 1840 Value *IIOperand = II->getArgOperand(0); 1841 1842 // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as 1843 // inverse-shift-of-bswap: 1844 // bswap (shl X, Y) --> lshr (bswap X), Y 1845 // bswap (lshr X, Y) --> shl (bswap X), Y 1846 Value *X, *Y; 1847 if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) { 1848 // The transform allows undef vector elements, so try a constant match 1849 // first. If knownbits can handle that case, that clause could be removed. 1850 unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits(); 1851 const APInt *C; 1852 if ((match(Y, m_APIntAllowUndef(C)) && (*C & 7) == 0) || 1853 MaskedValueIsZero(Y, APInt::getLowBitsSet(BitWidth, 3))) { 1854 Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X); 1855 BinaryOperator::BinaryOps InverseShift = 1856 cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl 1857 ? Instruction::LShr 1858 : Instruction::Shl; 1859 return BinaryOperator::Create(InverseShift, NewSwap, Y); 1860 } 1861 } 1862 1863 KnownBits Known = computeKnownBits(IIOperand, 0, II); 1864 uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8); 1865 uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8); 1866 unsigned BW = Known.getBitWidth(); 1867 1868 // bswap(x) -> shift(x) if x has exactly one "active byte" 1869 if (BW - LZ - TZ == 8) { 1870 assert(LZ != TZ && "active byte cannot be in the middle"); 1871 if (LZ > TZ) // -> shl(x) if the "active byte" is in the low part of x 1872 return BinaryOperator::CreateNUWShl( 1873 IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ)); 1874 // -> lshr(x) if the "active byte" is in the high part of x 1875 return BinaryOperator::CreateExactLShr( 1876 IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ)); 1877 } 1878 1879 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) 1880 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { 1881 unsigned C = X->getType()->getScalarSizeInBits() - BW; 1882 Value *CV = ConstantInt::get(X->getType(), C); 1883 Value *V = Builder.CreateLShr(X, CV); 1884 return new TruncInst(V, IIOperand->getType()); 1885 } 1886 1887 if (Instruction *crossLogicOpFold = 1888 foldBitOrderCrossLogicOp<Intrinsic::bswap>(IIOperand, Builder)) { 1889 return crossLogicOpFold; 1890 } 1891 1892 // Try to fold into bitreverse if bswap is the root of the expression tree. 1893 if (Instruction *BitOp = matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ false, 1894 /*MatchBitReversals*/ true)) 1895 return BitOp; 1896 break; 1897 } 1898 case Intrinsic::masked_load: 1899 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II)) 1900 return replaceInstUsesWith(CI, SimplifiedMaskedOp); 1901 break; 1902 case Intrinsic::masked_store: 1903 return simplifyMaskedStore(*II); 1904 case Intrinsic::masked_gather: 1905 return simplifyMaskedGather(*II); 1906 case Intrinsic::masked_scatter: 1907 return simplifyMaskedScatter(*II); 1908 case Intrinsic::launder_invariant_group: 1909 case Intrinsic::strip_invariant_group: 1910 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this)) 1911 return replaceInstUsesWith(*II, SkippedBarrier); 1912 break; 1913 case Intrinsic::powi: 1914 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { 1915 // 0 and 1 are handled in instsimplify 1916 // powi(x, -1) -> 1/x 1917 if (Power->isMinusOne()) 1918 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0), 1919 II->getArgOperand(0), II); 1920 // powi(x, 2) -> x*x 1921 if (Power->equalsInt(2)) 1922 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0), 1923 II->getArgOperand(0), II); 1924 1925 if (!Power->getValue()[0]) { 1926 Value *X; 1927 // If power is even: 1928 // powi(-x, p) -> powi(x, p) 1929 // powi(fabs(x), p) -> powi(x, p) 1930 // powi(copysign(x, y), p) -> powi(x, p) 1931 if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) || 1932 match(II->getArgOperand(0), m_FAbs(m_Value(X))) || 1933 match(II->getArgOperand(0), 1934 m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value()))) 1935 return replaceOperand(*II, 0, X); 1936 } 1937 } 1938 break; 1939 1940 case Intrinsic::cttz: 1941 case Intrinsic::ctlz: 1942 if (auto *I = foldCttzCtlz(*II, *this)) 1943 return I; 1944 break; 1945 1946 case Intrinsic::ctpop: 1947 if (auto *I = foldCtpop(*II, *this)) 1948 return I; 1949 break; 1950 1951 case Intrinsic::fshl: 1952 case Intrinsic::fshr: { 1953 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); 1954 Type *Ty = II->getType(); 1955 unsigned BitWidth = Ty->getScalarSizeInBits(); 1956 Constant *ShAmtC; 1957 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) { 1958 // Canonicalize a shift amount constant operand to modulo the bit-width. 1959 Constant *WidthC = ConstantInt::get(Ty, BitWidth); 1960 Constant *ModuloC = 1961 ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL); 1962 if (!ModuloC) 1963 return nullptr; 1964 if (ModuloC != ShAmtC) 1965 return replaceOperand(*II, 2, ModuloC); 1966 1967 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) == 1968 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) && 1969 "Shift amount expected to be modulo bitwidth"); 1970 1971 // Canonicalize funnel shift right by constant to funnel shift left. This 1972 // is not entirely arbitrary. For historical reasons, the backend may 1973 // recognize rotate left patterns but miss rotate right patterns. 1974 if (IID == Intrinsic::fshr) { 1975 // fshr X, Y, C --> fshl X, Y, (BitWidth - C) 1976 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC); 1977 Module *Mod = II->getModule(); 1978 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty); 1979 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC }); 1980 } 1981 assert(IID == Intrinsic::fshl && 1982 "All funnel shifts by simple constants should go left"); 1983 1984 // fshl(X, 0, C) --> shl X, C 1985 // fshl(X, undef, C) --> shl X, C 1986 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef())) 1987 return BinaryOperator::CreateShl(Op0, ShAmtC); 1988 1989 // fshl(0, X, C) --> lshr X, (BW-C) 1990 // fshl(undef, X, C) --> lshr X, (BW-C) 1991 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef())) 1992 return BinaryOperator::CreateLShr(Op1, 1993 ConstantExpr::getSub(WidthC, ShAmtC)); 1994 1995 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form) 1996 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) { 1997 Module *Mod = II->getModule(); 1998 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty); 1999 return CallInst::Create(Bswap, { Op0 }); 2000 } 2001 if (Instruction *BitOp = 2002 matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ true, 2003 /*MatchBitReversals*/ true)) 2004 return BitOp; 2005 } 2006 2007 // Left or right might be masked. 2008 if (SimplifyDemandedInstructionBits(*II)) 2009 return &CI; 2010 2011 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth, 2012 // so only the low bits of the shift amount are demanded if the bitwidth is 2013 // a power-of-2. 2014 if (!isPowerOf2_32(BitWidth)) 2015 break; 2016 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth)); 2017 KnownBits Op2Known(BitWidth); 2018 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known)) 2019 return &CI; 2020 break; 2021 } 2022 case Intrinsic::ptrmask: { 2023 unsigned BitWidth = DL.getPointerTypeSizeInBits(II->getType()); 2024 KnownBits Known(BitWidth); 2025 if (SimplifyDemandedInstructionBits(*II, Known)) 2026 return II; 2027 2028 Value *InnerPtr, *InnerMask; 2029 bool Changed = false; 2030 // Combine: 2031 // (ptrmask (ptrmask p, A), B) 2032 // -> (ptrmask p, (and A, B)) 2033 if (match(II->getArgOperand(0), 2034 m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(InnerPtr), 2035 m_Value(InnerMask))))) { 2036 assert(II->getArgOperand(1)->getType() == InnerMask->getType() && 2037 "Mask types must match"); 2038 // TODO: If InnerMask == Op1, we could copy attributes from inner 2039 // callsite -> outer callsite. 2040 Value *NewMask = Builder.CreateAnd(II->getArgOperand(1), InnerMask); 2041 replaceOperand(CI, 0, InnerPtr); 2042 replaceOperand(CI, 1, NewMask); 2043 Changed = true; 2044 } 2045 2046 // See if we can deduce non-null. 2047 if (!CI.hasRetAttr(Attribute::NonNull) && 2048 (Known.isNonZero() || 2049 isKnownNonZero(II, DL, /*Depth*/ 0, &AC, II, &DT))) { 2050 CI.addRetAttr(Attribute::NonNull); 2051 Changed = true; 2052 } 2053 2054 unsigned NewAlignmentLog = 2055 std::min(Value::MaxAlignmentExponent, 2056 std::min(BitWidth - 1, Known.countMinTrailingZeros())); 2057 // Known bits will capture if we had alignment information associated with 2058 // the pointer argument. 2059 if (NewAlignmentLog > Log2(CI.getRetAlign().valueOrOne())) { 2060 CI.addRetAttr(Attribute::getWithAlignment( 2061 CI.getContext(), Align(uint64_t(1) << NewAlignmentLog))); 2062 Changed = true; 2063 } 2064 if (Changed) 2065 return &CI; 2066 break; 2067 } 2068 case Intrinsic::uadd_with_overflow: 2069 case Intrinsic::sadd_with_overflow: { 2070 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 2071 return I; 2072 2073 // Given 2 constant operands whose sum does not overflow: 2074 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1 2075 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1 2076 Value *X; 2077 const APInt *C0, *C1; 2078 Value *Arg0 = II->getArgOperand(0); 2079 Value *Arg1 = II->getArgOperand(1); 2080 bool IsSigned = IID == Intrinsic::sadd_with_overflow; 2081 bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0))) 2082 : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0))); 2083 if (HasNWAdd && match(Arg1, m_APInt(C1))) { 2084 bool Overflow; 2085 APInt NewC = 2086 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow); 2087 if (!Overflow) 2088 return replaceInstUsesWith( 2089 *II, Builder.CreateBinaryIntrinsic( 2090 IID, X, ConstantInt::get(Arg1->getType(), NewC))); 2091 } 2092 break; 2093 } 2094 2095 case Intrinsic::umul_with_overflow: 2096 case Intrinsic::smul_with_overflow: 2097 case Intrinsic::usub_with_overflow: 2098 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 2099 return I; 2100 break; 2101 2102 case Intrinsic::ssub_with_overflow: { 2103 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 2104 return I; 2105 2106 Constant *C; 2107 Value *Arg0 = II->getArgOperand(0); 2108 Value *Arg1 = II->getArgOperand(1); 2109 // Given a constant C that is not the minimum signed value 2110 // for an integer of a given bit width: 2111 // 2112 // ssubo X, C -> saddo X, -C 2113 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) { 2114 Value *NegVal = ConstantExpr::getNeg(C); 2115 // Build a saddo call that is equivalent to the discovered 2116 // ssubo call. 2117 return replaceInstUsesWith( 2118 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, 2119 Arg0, NegVal)); 2120 } 2121 2122 break; 2123 } 2124 2125 case Intrinsic::uadd_sat: 2126 case Intrinsic::sadd_sat: 2127 case Intrinsic::usub_sat: 2128 case Intrinsic::ssub_sat: { 2129 SaturatingInst *SI = cast<SaturatingInst>(II); 2130 Type *Ty = SI->getType(); 2131 Value *Arg0 = SI->getLHS(); 2132 Value *Arg1 = SI->getRHS(); 2133 2134 // Make use of known overflow information. 2135 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(), 2136 Arg0, Arg1, SI); 2137 switch (OR) { 2138 case OverflowResult::MayOverflow: 2139 break; 2140 case OverflowResult::NeverOverflows: 2141 if (SI->isSigned()) 2142 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1); 2143 else 2144 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1); 2145 case OverflowResult::AlwaysOverflowsLow: { 2146 unsigned BitWidth = Ty->getScalarSizeInBits(); 2147 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned()); 2148 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min)); 2149 } 2150 case OverflowResult::AlwaysOverflowsHigh: { 2151 unsigned BitWidth = Ty->getScalarSizeInBits(); 2152 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned()); 2153 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max)); 2154 } 2155 } 2156 2157 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN 2158 Constant *C; 2159 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) && 2160 C->isNotMinSignedValue()) { 2161 Value *NegVal = ConstantExpr::getNeg(C); 2162 return replaceInstUsesWith( 2163 *II, Builder.CreateBinaryIntrinsic( 2164 Intrinsic::sadd_sat, Arg0, NegVal)); 2165 } 2166 2167 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2)) 2168 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2)) 2169 // if Val and Val2 have the same sign 2170 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) { 2171 Value *X; 2172 const APInt *Val, *Val2; 2173 APInt NewVal; 2174 bool IsUnsigned = 2175 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat; 2176 if (Other->getIntrinsicID() == IID && 2177 match(Arg1, m_APInt(Val)) && 2178 match(Other->getArgOperand(0), m_Value(X)) && 2179 match(Other->getArgOperand(1), m_APInt(Val2))) { 2180 if (IsUnsigned) 2181 NewVal = Val->uadd_sat(*Val2); 2182 else if (Val->isNonNegative() == Val2->isNonNegative()) { 2183 bool Overflow; 2184 NewVal = Val->sadd_ov(*Val2, Overflow); 2185 if (Overflow) { 2186 // Both adds together may add more than SignedMaxValue 2187 // without saturating the final result. 2188 break; 2189 } 2190 } else { 2191 // Cannot fold saturated addition with different signs. 2192 break; 2193 } 2194 2195 return replaceInstUsesWith( 2196 *II, Builder.CreateBinaryIntrinsic( 2197 IID, X, ConstantInt::get(II->getType(), NewVal))); 2198 } 2199 } 2200 break; 2201 } 2202 2203 case Intrinsic::minnum: 2204 case Intrinsic::maxnum: 2205 case Intrinsic::minimum: 2206 case Intrinsic::maximum: { 2207 Value *Arg0 = II->getArgOperand(0); 2208 Value *Arg1 = II->getArgOperand(1); 2209 Value *X, *Y; 2210 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) && 2211 (Arg0->hasOneUse() || Arg1->hasOneUse())) { 2212 // If both operands are negated, invert the call and negate the result: 2213 // min(-X, -Y) --> -(max(X, Y)) 2214 // max(-X, -Y) --> -(min(X, Y)) 2215 Intrinsic::ID NewIID; 2216 switch (IID) { 2217 case Intrinsic::maxnum: 2218 NewIID = Intrinsic::minnum; 2219 break; 2220 case Intrinsic::minnum: 2221 NewIID = Intrinsic::maxnum; 2222 break; 2223 case Intrinsic::maximum: 2224 NewIID = Intrinsic::minimum; 2225 break; 2226 case Intrinsic::minimum: 2227 NewIID = Intrinsic::maximum; 2228 break; 2229 default: 2230 llvm_unreachable("unexpected intrinsic ID"); 2231 } 2232 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II); 2233 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall); 2234 FNeg->copyIRFlags(II); 2235 return FNeg; 2236 } 2237 2238 // m(m(X, C2), C1) -> m(X, C) 2239 const APFloat *C1, *C2; 2240 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) { 2241 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) && 2242 ((match(M->getArgOperand(0), m_Value(X)) && 2243 match(M->getArgOperand(1), m_APFloat(C2))) || 2244 (match(M->getArgOperand(1), m_Value(X)) && 2245 match(M->getArgOperand(0), m_APFloat(C2))))) { 2246 APFloat Res(0.0); 2247 switch (IID) { 2248 case Intrinsic::maxnum: 2249 Res = maxnum(*C1, *C2); 2250 break; 2251 case Intrinsic::minnum: 2252 Res = minnum(*C1, *C2); 2253 break; 2254 case Intrinsic::maximum: 2255 Res = maximum(*C1, *C2); 2256 break; 2257 case Intrinsic::minimum: 2258 Res = minimum(*C1, *C2); 2259 break; 2260 default: 2261 llvm_unreachable("unexpected intrinsic ID"); 2262 } 2263 Instruction *NewCall = Builder.CreateBinaryIntrinsic( 2264 IID, X, ConstantFP::get(Arg0->getType(), Res), II); 2265 // TODO: Conservatively intersecting FMF. If Res == C2, the transform 2266 // was a simplification (so Arg0 and its original flags could 2267 // propagate?) 2268 NewCall->andIRFlags(M); 2269 return replaceInstUsesWith(*II, NewCall); 2270 } 2271 } 2272 2273 // m((fpext X), (fpext Y)) -> fpext (m(X, Y)) 2274 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) && 2275 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) && 2276 X->getType() == Y->getType()) { 2277 Value *NewCall = 2278 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName()); 2279 return new FPExtInst(NewCall, II->getType()); 2280 } 2281 2282 // max X, -X --> fabs X 2283 // min X, -X --> -(fabs X) 2284 // TODO: Remove one-use limitation? That is obviously better for max. 2285 // It would be an extra instruction for min (fnabs), but that is 2286 // still likely better for analysis and codegen. 2287 if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) || 2288 (match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) { 2289 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II); 2290 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum) 2291 R = Builder.CreateFNegFMF(R, II); 2292 return replaceInstUsesWith(*II, R); 2293 } 2294 2295 break; 2296 } 2297 case Intrinsic::matrix_multiply: { 2298 // Optimize negation in matrix multiplication. 2299 2300 // -A * -B -> A * B 2301 Value *A, *B; 2302 if (match(II->getArgOperand(0), m_FNeg(m_Value(A))) && 2303 match(II->getArgOperand(1), m_FNeg(m_Value(B)))) { 2304 replaceOperand(*II, 0, A); 2305 replaceOperand(*II, 1, B); 2306 return II; 2307 } 2308 2309 Value *Op0 = II->getOperand(0); 2310 Value *Op1 = II->getOperand(1); 2311 Value *OpNotNeg, *NegatedOp; 2312 unsigned NegatedOpArg, OtherOpArg; 2313 if (match(Op0, m_FNeg(m_Value(OpNotNeg)))) { 2314 NegatedOp = Op0; 2315 NegatedOpArg = 0; 2316 OtherOpArg = 1; 2317 } else if (match(Op1, m_FNeg(m_Value(OpNotNeg)))) { 2318 NegatedOp = Op1; 2319 NegatedOpArg = 1; 2320 OtherOpArg = 0; 2321 } else 2322 // Multiplication doesn't have a negated operand. 2323 break; 2324 2325 // Only optimize if the negated operand has only one use. 2326 if (!NegatedOp->hasOneUse()) 2327 break; 2328 2329 Value *OtherOp = II->getOperand(OtherOpArg); 2330 VectorType *RetTy = cast<VectorType>(II->getType()); 2331 VectorType *NegatedOpTy = cast<VectorType>(NegatedOp->getType()); 2332 VectorType *OtherOpTy = cast<VectorType>(OtherOp->getType()); 2333 ElementCount NegatedCount = NegatedOpTy->getElementCount(); 2334 ElementCount OtherCount = OtherOpTy->getElementCount(); 2335 ElementCount RetCount = RetTy->getElementCount(); 2336 // (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa. 2337 if (ElementCount::isKnownGT(NegatedCount, OtherCount) && 2338 ElementCount::isKnownLT(OtherCount, RetCount)) { 2339 Value *InverseOtherOp = Builder.CreateFNeg(OtherOp); 2340 replaceOperand(*II, NegatedOpArg, OpNotNeg); 2341 replaceOperand(*II, OtherOpArg, InverseOtherOp); 2342 return II; 2343 } 2344 // (-A) * B -> -(A * B), if it is cheaper to negate the result 2345 if (ElementCount::isKnownGT(NegatedCount, RetCount)) { 2346 SmallVector<Value *, 5> NewArgs(II->args()); 2347 NewArgs[NegatedOpArg] = OpNotNeg; 2348 Instruction *NewMul = 2349 Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II); 2350 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(NewMul, II)); 2351 } 2352 break; 2353 } 2354 case Intrinsic::fmuladd: { 2355 // Canonicalize fast fmuladd to the separate fmul + fadd. 2356 if (II->isFast()) { 2357 BuilderTy::FastMathFlagGuard Guard(Builder); 2358 Builder.setFastMathFlags(II->getFastMathFlags()); 2359 Value *Mul = Builder.CreateFMul(II->getArgOperand(0), 2360 II->getArgOperand(1)); 2361 Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2)); 2362 Add->takeName(II); 2363 return replaceInstUsesWith(*II, Add); 2364 } 2365 2366 // Try to simplify the underlying FMul. 2367 if (Value *V = simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1), 2368 II->getFastMathFlags(), 2369 SQ.getWithInstruction(II))) { 2370 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); 2371 FAdd->copyFastMathFlags(II); 2372 return FAdd; 2373 } 2374 2375 [[fallthrough]]; 2376 } 2377 case Intrinsic::fma: { 2378 // fma fneg(x), fneg(y), z -> fma x, y, z 2379 Value *Src0 = II->getArgOperand(0); 2380 Value *Src1 = II->getArgOperand(1); 2381 Value *X, *Y; 2382 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) { 2383 replaceOperand(*II, 0, X); 2384 replaceOperand(*II, 1, Y); 2385 return II; 2386 } 2387 2388 // fma fabs(x), fabs(x), z -> fma x, x, z 2389 if (match(Src0, m_FAbs(m_Value(X))) && 2390 match(Src1, m_FAbs(m_Specific(X)))) { 2391 replaceOperand(*II, 0, X); 2392 replaceOperand(*II, 1, X); 2393 return II; 2394 } 2395 2396 // Try to simplify the underlying FMul. We can only apply simplifications 2397 // that do not require rounding. 2398 if (Value *V = simplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1), 2399 II->getFastMathFlags(), 2400 SQ.getWithInstruction(II))) { 2401 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); 2402 FAdd->copyFastMathFlags(II); 2403 return FAdd; 2404 } 2405 2406 // fma x, y, 0 -> fmul x, y 2407 // This is always valid for -0.0, but requires nsz for +0.0 as 2408 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own. 2409 if (match(II->getArgOperand(2), m_NegZeroFP()) || 2410 (match(II->getArgOperand(2), m_PosZeroFP()) && 2411 II->getFastMathFlags().noSignedZeros())) 2412 return BinaryOperator::CreateFMulFMF(Src0, Src1, II); 2413 2414 break; 2415 } 2416 case Intrinsic::copysign: { 2417 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1); 2418 if (SignBitMustBeZero(Sign, DL, &TLI)) { 2419 // If we know that the sign argument is positive, reduce to FABS: 2420 // copysign Mag, +Sign --> fabs Mag 2421 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 2422 return replaceInstUsesWith(*II, Fabs); 2423 } 2424 // TODO: There should be a ValueTracking sibling like SignBitMustBeOne. 2425 const APFloat *C; 2426 if (match(Sign, m_APFloat(C)) && C->isNegative()) { 2427 // If we know that the sign argument is negative, reduce to FNABS: 2428 // copysign Mag, -Sign --> fneg (fabs Mag) 2429 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 2430 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II)); 2431 } 2432 2433 // Propagate sign argument through nested calls: 2434 // copysign Mag, (copysign ?, X) --> copysign Mag, X 2435 Value *X; 2436 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X)))) 2437 return replaceOperand(*II, 1, X); 2438 2439 // Peek through changes of magnitude's sign-bit. This call rewrites those: 2440 // copysign (fabs X), Sign --> copysign X, Sign 2441 // copysign (fneg X), Sign --> copysign X, Sign 2442 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X)))) 2443 return replaceOperand(*II, 0, X); 2444 2445 break; 2446 } 2447 case Intrinsic::fabs: { 2448 Value *Cond, *TVal, *FVal; 2449 if (match(II->getArgOperand(0), 2450 m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) { 2451 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF 2452 if (isa<Constant>(TVal) && isa<Constant>(FVal)) { 2453 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal}); 2454 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal}); 2455 return SelectInst::Create(Cond, AbsT, AbsF); 2456 } 2457 // fabs (select Cond, -FVal, FVal) --> fabs FVal 2458 if (match(TVal, m_FNeg(m_Specific(FVal)))) 2459 return replaceOperand(*II, 0, FVal); 2460 // fabs (select Cond, TVal, -TVal) --> fabs TVal 2461 if (match(FVal, m_FNeg(m_Specific(TVal)))) 2462 return replaceOperand(*II, 0, TVal); 2463 } 2464 2465 Value *Magnitude, *Sign; 2466 if (match(II->getArgOperand(0), 2467 m_CopySign(m_Value(Magnitude), m_Value(Sign)))) { 2468 // fabs (copysign x, y) -> (fabs x) 2469 CallInst *AbsSign = 2470 Builder.CreateCall(II->getCalledFunction(), {Magnitude}); 2471 AbsSign->copyFastMathFlags(II); 2472 return replaceInstUsesWith(*II, AbsSign); 2473 } 2474 2475 [[fallthrough]]; 2476 } 2477 case Intrinsic::ceil: 2478 case Intrinsic::floor: 2479 case Intrinsic::round: 2480 case Intrinsic::roundeven: 2481 case Intrinsic::nearbyint: 2482 case Intrinsic::rint: 2483 case Intrinsic::trunc: { 2484 Value *ExtSrc; 2485 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) { 2486 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x) 2487 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II); 2488 return new FPExtInst(NarrowII, II->getType()); 2489 } 2490 break; 2491 } 2492 case Intrinsic::cos: 2493 case Intrinsic::amdgcn_cos: { 2494 Value *X; 2495 Value *Src = II->getArgOperand(0); 2496 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) { 2497 // cos(-x) -> cos(x) 2498 // cos(fabs(x)) -> cos(x) 2499 return replaceOperand(*II, 0, X); 2500 } 2501 break; 2502 } 2503 case Intrinsic::sin: { 2504 Value *X; 2505 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) { 2506 // sin(-x) --> -sin(x) 2507 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II); 2508 Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin); 2509 FNeg->copyFastMathFlags(II); 2510 return FNeg; 2511 } 2512 break; 2513 } 2514 case Intrinsic::ldexp: { 2515 // ldexp(ldexp(x, a), b) -> ldexp(x, a + b) 2516 // 2517 // The danger is if the first ldexp would overflow to infinity or underflow 2518 // to zero, but the combined exponent avoids it. We ignore this with 2519 // reassoc. 2520 // 2521 // It's also safe to fold if we know both exponents are >= 0 or <= 0 since 2522 // it would just double down on the overflow/underflow which would occur 2523 // anyway. 2524 // 2525 // TODO: Could do better if we had range tracking for the input value 2526 // exponent. Also could broaden sign check to cover == 0 case. 2527 Value *Src = II->getArgOperand(0); 2528 Value *Exp = II->getArgOperand(1); 2529 Value *InnerSrc; 2530 Value *InnerExp; 2531 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ldexp>( 2532 m_Value(InnerSrc), m_Value(InnerExp)))) && 2533 Exp->getType() == InnerExp->getType()) { 2534 FastMathFlags FMF = II->getFastMathFlags(); 2535 FastMathFlags InnerFlags = cast<FPMathOperator>(Src)->getFastMathFlags(); 2536 2537 if ((FMF.allowReassoc() && InnerFlags.allowReassoc()) || 2538 signBitMustBeTheSame(Exp, InnerExp, II, DL, &AC, &DT)) { 2539 // TODO: Add nsw/nuw probably safe if integer type exceeds exponent 2540 // width. 2541 Value *NewExp = Builder.CreateAdd(InnerExp, Exp); 2542 II->setArgOperand(1, NewExp); 2543 II->setFastMathFlags(InnerFlags); // Or the inner flags. 2544 return replaceOperand(*II, 0, InnerSrc); 2545 } 2546 } 2547 2548 break; 2549 } 2550 case Intrinsic::ptrauth_auth: 2551 case Intrinsic::ptrauth_resign: { 2552 // (sign|resign) + (auth|resign) can be folded by omitting the middle 2553 // sign+auth component if the key and discriminator match. 2554 bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign; 2555 Value *Key = II->getArgOperand(1); 2556 Value *Disc = II->getArgOperand(2); 2557 2558 // AuthKey will be the key we need to end up authenticating against in 2559 // whatever we replace this sequence with. 2560 Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr; 2561 if (auto CI = dyn_cast<CallBase>(II->getArgOperand(0))) { 2562 BasePtr = CI->getArgOperand(0); 2563 if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) { 2564 if (CI->getArgOperand(1) != Key || CI->getArgOperand(2) != Disc) 2565 break; 2566 } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) { 2567 if (CI->getArgOperand(3) != Key || CI->getArgOperand(4) != Disc) 2568 break; 2569 AuthKey = CI->getArgOperand(1); 2570 AuthDisc = CI->getArgOperand(2); 2571 } else 2572 break; 2573 } else 2574 break; 2575 2576 unsigned NewIntrin; 2577 if (AuthKey && NeedSign) { 2578 // resign(0,1) + resign(1,2) = resign(0, 2) 2579 NewIntrin = Intrinsic::ptrauth_resign; 2580 } else if (AuthKey) { 2581 // resign(0,1) + auth(1) = auth(0) 2582 NewIntrin = Intrinsic::ptrauth_auth; 2583 } else if (NeedSign) { 2584 // sign(0) + resign(0, 1) = sign(1) 2585 NewIntrin = Intrinsic::ptrauth_sign; 2586 } else { 2587 // sign(0) + auth(0) = nop 2588 replaceInstUsesWith(*II, BasePtr); 2589 eraseInstFromFunction(*II); 2590 return nullptr; 2591 } 2592 2593 SmallVector<Value *, 4> CallArgs; 2594 CallArgs.push_back(BasePtr); 2595 if (AuthKey) { 2596 CallArgs.push_back(AuthKey); 2597 CallArgs.push_back(AuthDisc); 2598 } 2599 2600 if (NeedSign) { 2601 CallArgs.push_back(II->getArgOperand(3)); 2602 CallArgs.push_back(II->getArgOperand(4)); 2603 } 2604 2605 Function *NewFn = Intrinsic::getDeclaration(II->getModule(), NewIntrin); 2606 return CallInst::Create(NewFn, CallArgs); 2607 } 2608 case Intrinsic::arm_neon_vtbl1: 2609 case Intrinsic::aarch64_neon_tbl1: 2610 if (Value *V = simplifyNeonTbl1(*II, Builder)) 2611 return replaceInstUsesWith(*II, V); 2612 break; 2613 2614 case Intrinsic::arm_neon_vmulls: 2615 case Intrinsic::arm_neon_vmullu: 2616 case Intrinsic::aarch64_neon_smull: 2617 case Intrinsic::aarch64_neon_umull: { 2618 Value *Arg0 = II->getArgOperand(0); 2619 Value *Arg1 = II->getArgOperand(1); 2620 2621 // Handle mul by zero first: 2622 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { 2623 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); 2624 } 2625 2626 // Check for constant LHS & RHS - in this case we just simplify. 2627 bool Zext = (IID == Intrinsic::arm_neon_vmullu || 2628 IID == Intrinsic::aarch64_neon_umull); 2629 VectorType *NewVT = cast<VectorType>(II->getType()); 2630 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { 2631 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { 2632 Value *V0 = Builder.CreateIntCast(CV0, NewVT, /*isSigned=*/!Zext); 2633 Value *V1 = Builder.CreateIntCast(CV1, NewVT, /*isSigned=*/!Zext); 2634 return replaceInstUsesWith(CI, Builder.CreateMul(V0, V1)); 2635 } 2636 2637 // Couldn't simplify - canonicalize constant to the RHS. 2638 std::swap(Arg0, Arg1); 2639 } 2640 2641 // Handle mul by one: 2642 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) 2643 if (ConstantInt *Splat = 2644 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) 2645 if (Splat->isOne()) 2646 return CastInst::CreateIntegerCast(Arg0, II->getType(), 2647 /*isSigned=*/!Zext); 2648 2649 break; 2650 } 2651 case Intrinsic::arm_neon_aesd: 2652 case Intrinsic::arm_neon_aese: 2653 case Intrinsic::aarch64_crypto_aesd: 2654 case Intrinsic::aarch64_crypto_aese: { 2655 Value *DataArg = II->getArgOperand(0); 2656 Value *KeyArg = II->getArgOperand(1); 2657 2658 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR 2659 Value *Data, *Key; 2660 if (match(KeyArg, m_ZeroInt()) && 2661 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) { 2662 replaceOperand(*II, 0, Data); 2663 replaceOperand(*II, 1, Key); 2664 return II; 2665 } 2666 break; 2667 } 2668 case Intrinsic::hexagon_V6_vandvrt: 2669 case Intrinsic::hexagon_V6_vandvrt_128B: { 2670 // Simplify Q -> V -> Q conversion. 2671 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 2672 Intrinsic::ID ID0 = Op0->getIntrinsicID(); 2673 if (ID0 != Intrinsic::hexagon_V6_vandqrt && 2674 ID0 != Intrinsic::hexagon_V6_vandqrt_128B) 2675 break; 2676 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1); 2677 uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue(); 2678 uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue(); 2679 // Check if every byte has common bits in Bytes and Mask. 2680 uint64_t C = Bytes1 & Mask1; 2681 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000)) 2682 return replaceInstUsesWith(*II, Op0->getArgOperand(0)); 2683 } 2684 break; 2685 } 2686 case Intrinsic::stackrestore: { 2687 enum class ClassifyResult { 2688 None, 2689 Alloca, 2690 StackRestore, 2691 CallWithSideEffects, 2692 }; 2693 auto Classify = [](const Instruction *I) { 2694 if (isa<AllocaInst>(I)) 2695 return ClassifyResult::Alloca; 2696 2697 if (auto *CI = dyn_cast<CallInst>(I)) { 2698 if (auto *II = dyn_cast<IntrinsicInst>(CI)) { 2699 if (II->getIntrinsicID() == Intrinsic::stackrestore) 2700 return ClassifyResult::StackRestore; 2701 2702 if (II->mayHaveSideEffects()) 2703 return ClassifyResult::CallWithSideEffects; 2704 } else { 2705 // Consider all non-intrinsic calls to be side effects 2706 return ClassifyResult::CallWithSideEffects; 2707 } 2708 } 2709 2710 return ClassifyResult::None; 2711 }; 2712 2713 // If the stacksave and the stackrestore are in the same BB, and there is 2714 // no intervening call, alloca, or stackrestore of a different stacksave, 2715 // remove the restore. This can happen when variable allocas are DCE'd. 2716 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 2717 if (SS->getIntrinsicID() == Intrinsic::stacksave && 2718 SS->getParent() == II->getParent()) { 2719 BasicBlock::iterator BI(SS); 2720 bool CannotRemove = false; 2721 for (++BI; &*BI != II; ++BI) { 2722 switch (Classify(&*BI)) { 2723 case ClassifyResult::None: 2724 // So far so good, look at next instructions. 2725 break; 2726 2727 case ClassifyResult::StackRestore: 2728 // If we found an intervening stackrestore for a different 2729 // stacksave, we can't remove the stackrestore. Otherwise, continue. 2730 if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS) 2731 CannotRemove = true; 2732 break; 2733 2734 case ClassifyResult::Alloca: 2735 case ClassifyResult::CallWithSideEffects: 2736 // If we found an alloca, a non-intrinsic call, or an intrinsic 2737 // call with side effects, we can't remove the stackrestore. 2738 CannotRemove = true; 2739 break; 2740 } 2741 if (CannotRemove) 2742 break; 2743 } 2744 2745 if (!CannotRemove) 2746 return eraseInstFromFunction(CI); 2747 } 2748 } 2749 2750 // Scan down this block to see if there is another stack restore in the 2751 // same block without an intervening call/alloca. 2752 BasicBlock::iterator BI(II); 2753 Instruction *TI = II->getParent()->getTerminator(); 2754 bool CannotRemove = false; 2755 for (++BI; &*BI != TI; ++BI) { 2756 switch (Classify(&*BI)) { 2757 case ClassifyResult::None: 2758 // So far so good, look at next instructions. 2759 break; 2760 2761 case ClassifyResult::StackRestore: 2762 // If there is a stackrestore below this one, remove this one. 2763 return eraseInstFromFunction(CI); 2764 2765 case ClassifyResult::Alloca: 2766 case ClassifyResult::CallWithSideEffects: 2767 // If we found an alloca, a non-intrinsic call, or an intrinsic call 2768 // with side effects (such as llvm.stacksave and llvm.read_register), 2769 // we can't remove the stack restore. 2770 CannotRemove = true; 2771 break; 2772 } 2773 if (CannotRemove) 2774 break; 2775 } 2776 2777 // If the stack restore is in a return, resume, or unwind block and if there 2778 // are no allocas or calls between the restore and the return, nuke the 2779 // restore. 2780 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) 2781 return eraseInstFromFunction(CI); 2782 break; 2783 } 2784 case Intrinsic::lifetime_end: 2785 // Asan needs to poison memory to detect invalid access which is possible 2786 // even for empty lifetime range. 2787 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 2788 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) || 2789 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 2790 break; 2791 2792 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) { 2793 return I.getIntrinsicID() == Intrinsic::lifetime_start; 2794 })) 2795 return nullptr; 2796 break; 2797 case Intrinsic::assume: { 2798 Value *IIOperand = II->getArgOperand(0); 2799 SmallVector<OperandBundleDef, 4> OpBundles; 2800 II->getOperandBundlesAsDefs(OpBundles); 2801 2802 /// This will remove the boolean Condition from the assume given as 2803 /// argument and remove the assume if it becomes useless. 2804 /// always returns nullptr for use as a return values. 2805 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * { 2806 assert(isa<AssumeInst>(Assume)); 2807 if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II))) 2808 return eraseInstFromFunction(CI); 2809 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext())); 2810 return nullptr; 2811 }; 2812 // Remove an assume if it is followed by an identical assume. 2813 // TODO: Do we need this? Unless there are conflicting assumptions, the 2814 // computeKnownBits(IIOperand) below here eliminates redundant assumes. 2815 Instruction *Next = II->getNextNonDebugInstruction(); 2816 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand)))) 2817 return RemoveConditionFromAssume(Next); 2818 2819 // Canonicalize assume(a && b) -> assume(a); assume(b); 2820 // Note: New assumption intrinsics created here are registered by 2821 // the InstCombineIRInserter object. 2822 FunctionType *AssumeIntrinsicTy = II->getFunctionType(); 2823 Value *AssumeIntrinsic = II->getCalledOperand(); 2824 Value *A, *B; 2825 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) { 2826 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles, 2827 II->getName()); 2828 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName()); 2829 return eraseInstFromFunction(*II); 2830 } 2831 // assume(!(a || b)) -> assume(!a); assume(!b); 2832 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) { 2833 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 2834 Builder.CreateNot(A), OpBundles, II->getName()); 2835 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 2836 Builder.CreateNot(B), II->getName()); 2837 return eraseInstFromFunction(*II); 2838 } 2839 2840 // assume( (load addr) != null ) -> add 'nonnull' metadata to load 2841 // (if assume is valid at the load) 2842 CmpInst::Predicate Pred; 2843 Instruction *LHS; 2844 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) && 2845 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load && 2846 LHS->getType()->isPointerTy() && 2847 isValidAssumeForContext(II, LHS, &DT)) { 2848 MDNode *MD = MDNode::get(II->getContext(), std::nullopt); 2849 LHS->setMetadata(LLVMContext::MD_nonnull, MD); 2850 LHS->setMetadata(LLVMContext::MD_noundef, MD); 2851 return RemoveConditionFromAssume(II); 2852 2853 // TODO: apply nonnull return attributes to calls and invokes 2854 // TODO: apply range metadata for range check patterns? 2855 } 2856 2857 // Separate storage assumptions apply to the underlying allocations, not any 2858 // particular pointer within them. When evaluating the hints for AA purposes 2859 // we getUnderlyingObject them; by precomputing the answers here we can 2860 // avoid having to do so repeatedly there. 2861 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) { 2862 OperandBundleUse OBU = II->getOperandBundleAt(Idx); 2863 if (OBU.getTagName() == "separate_storage") { 2864 assert(OBU.Inputs.size() == 2); 2865 auto MaybeSimplifyHint = [&](const Use &U) { 2866 Value *Hint = U.get(); 2867 // Not having a limit is safe because InstCombine removes unreachable 2868 // code. 2869 Value *UnderlyingObject = getUnderlyingObject(Hint, /*MaxLookup*/ 0); 2870 if (Hint != UnderlyingObject) 2871 replaceUse(const_cast<Use &>(U), UnderlyingObject); 2872 }; 2873 MaybeSimplifyHint(OBU.Inputs[0]); 2874 MaybeSimplifyHint(OBU.Inputs[1]); 2875 } 2876 } 2877 2878 // Convert nonnull assume like: 2879 // %A = icmp ne i32* %PTR, null 2880 // call void @llvm.assume(i1 %A) 2881 // into 2882 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ] 2883 if (EnableKnowledgeRetention && 2884 match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) && 2885 Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) { 2886 if (auto *Replacement = buildAssumeFromKnowledge( 2887 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) { 2888 2889 Replacement->insertBefore(Next); 2890 AC.registerAssumption(Replacement); 2891 return RemoveConditionFromAssume(II); 2892 } 2893 } 2894 2895 // Convert alignment assume like: 2896 // %B = ptrtoint i32* %A to i64 2897 // %C = and i64 %B, Constant 2898 // %D = icmp eq i64 %C, 0 2899 // call void @llvm.assume(i1 %D) 2900 // into 2901 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)] 2902 uint64_t AlignMask; 2903 if (EnableKnowledgeRetention && 2904 match(IIOperand, 2905 m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)), 2906 m_Zero())) && 2907 Pred == CmpInst::ICMP_EQ) { 2908 if (isPowerOf2_64(AlignMask + 1)) { 2909 uint64_t Offset = 0; 2910 match(A, m_Add(m_Value(A), m_ConstantInt(Offset))); 2911 if (match(A, m_PtrToInt(m_Value(A)))) { 2912 /// Note: this doesn't preserve the offset information but merges 2913 /// offset and alignment. 2914 /// TODO: we can generate a GEP instead of merging the alignment with 2915 /// the offset. 2916 RetainedKnowledge RK{Attribute::Alignment, 2917 (unsigned)MinAlign(Offset, AlignMask + 1), A}; 2918 if (auto *Replacement = 2919 buildAssumeFromKnowledge(RK, Next, &AC, &DT)) { 2920 2921 Replacement->insertAfter(II); 2922 AC.registerAssumption(Replacement); 2923 } 2924 return RemoveConditionFromAssume(II); 2925 } 2926 } 2927 } 2928 2929 /// Canonicalize Knowledge in operand bundles. 2930 if (EnableKnowledgeRetention && II->hasOperandBundles()) { 2931 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) { 2932 auto &BOI = II->bundle_op_info_begin()[Idx]; 2933 RetainedKnowledge RK = 2934 llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI); 2935 if (BOI.End - BOI.Begin > 2) 2936 continue; // Prevent reducing knowledge in an align with offset since 2937 // extracting a RetainedKnowledge from them looses offset 2938 // information 2939 RetainedKnowledge CanonRK = 2940 llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK, 2941 &getAssumptionCache(), 2942 &getDominatorTree()); 2943 if (CanonRK == RK) 2944 continue; 2945 if (!CanonRK) { 2946 if (BOI.End - BOI.Begin > 0) { 2947 Worklist.pushValue(II->op_begin()[BOI.Begin]); 2948 Value::dropDroppableUse(II->op_begin()[BOI.Begin]); 2949 } 2950 continue; 2951 } 2952 assert(RK.AttrKind == CanonRK.AttrKind); 2953 if (BOI.End - BOI.Begin > 0) 2954 II->op_begin()[BOI.Begin].set(CanonRK.WasOn); 2955 if (BOI.End - BOI.Begin > 1) 2956 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get( 2957 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue)); 2958 if (RK.WasOn) 2959 Worklist.pushValue(RK.WasOn); 2960 return II; 2961 } 2962 } 2963 2964 // If there is a dominating assume with the same condition as this one, 2965 // then this one is redundant, and should be removed. 2966 KnownBits Known(1); 2967 computeKnownBits(IIOperand, Known, 0, II); 2968 if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) 2969 return eraseInstFromFunction(*II); 2970 2971 // assume(false) is unreachable. 2972 if (match(IIOperand, m_CombineOr(m_Zero(), m_Undef()))) { 2973 CreateNonTerminatorUnreachable(II); 2974 return eraseInstFromFunction(*II); 2975 } 2976 2977 // Update the cache of affected values for this assumption (we might be 2978 // here because we just simplified the condition). 2979 AC.updateAffectedValues(cast<AssumeInst>(II)); 2980 break; 2981 } 2982 case Intrinsic::experimental_guard: { 2983 // Is this guard followed by another guard? We scan forward over a small 2984 // fixed window of instructions to handle common cases with conditions 2985 // computed between guards. 2986 Instruction *NextInst = II->getNextNonDebugInstruction(); 2987 for (unsigned i = 0; i < GuardWideningWindow; i++) { 2988 // Note: Using context-free form to avoid compile time blow up 2989 if (!isSafeToSpeculativelyExecute(NextInst)) 2990 break; 2991 NextInst = NextInst->getNextNonDebugInstruction(); 2992 } 2993 Value *NextCond = nullptr; 2994 if (match(NextInst, 2995 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) { 2996 Value *CurrCond = II->getArgOperand(0); 2997 2998 // Remove a guard that it is immediately preceded by an identical guard. 2999 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b). 3000 if (CurrCond != NextCond) { 3001 Instruction *MoveI = II->getNextNonDebugInstruction(); 3002 while (MoveI != NextInst) { 3003 auto *Temp = MoveI; 3004 MoveI = MoveI->getNextNonDebugInstruction(); 3005 Temp->moveBefore(II); 3006 } 3007 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond)); 3008 } 3009 eraseInstFromFunction(*NextInst); 3010 return II; 3011 } 3012 break; 3013 } 3014 case Intrinsic::vector_insert: { 3015 Value *Vec = II->getArgOperand(0); 3016 Value *SubVec = II->getArgOperand(1); 3017 Value *Idx = II->getArgOperand(2); 3018 auto *DstTy = dyn_cast<FixedVectorType>(II->getType()); 3019 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType()); 3020 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType()); 3021 3022 // Only canonicalize if the destination vector, Vec, and SubVec are all 3023 // fixed vectors. 3024 if (DstTy && VecTy && SubVecTy) { 3025 unsigned DstNumElts = DstTy->getNumElements(); 3026 unsigned VecNumElts = VecTy->getNumElements(); 3027 unsigned SubVecNumElts = SubVecTy->getNumElements(); 3028 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 3029 3030 // An insert that entirely overwrites Vec with SubVec is a nop. 3031 if (VecNumElts == SubVecNumElts) 3032 return replaceInstUsesWith(CI, SubVec); 3033 3034 // Widen SubVec into a vector of the same width as Vec, since 3035 // shufflevector requires the two input vectors to be the same width. 3036 // Elements beyond the bounds of SubVec within the widened vector are 3037 // undefined. 3038 SmallVector<int, 8> WidenMask; 3039 unsigned i; 3040 for (i = 0; i != SubVecNumElts; ++i) 3041 WidenMask.push_back(i); 3042 for (; i != VecNumElts; ++i) 3043 WidenMask.push_back(PoisonMaskElem); 3044 3045 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask); 3046 3047 SmallVector<int, 8> Mask; 3048 for (unsigned i = 0; i != IdxN; ++i) 3049 Mask.push_back(i); 3050 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i) 3051 Mask.push_back(i); 3052 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i) 3053 Mask.push_back(i); 3054 3055 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask); 3056 return replaceInstUsesWith(CI, Shuffle); 3057 } 3058 break; 3059 } 3060 case Intrinsic::vector_extract: { 3061 Value *Vec = II->getArgOperand(0); 3062 Value *Idx = II->getArgOperand(1); 3063 3064 Type *ReturnType = II->getType(); 3065 // (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx), 3066 // ExtractIdx) 3067 unsigned ExtractIdx = cast<ConstantInt>(Idx)->getZExtValue(); 3068 Value *InsertTuple, *InsertIdx, *InsertValue; 3069 if (match(Vec, m_Intrinsic<Intrinsic::vector_insert>(m_Value(InsertTuple), 3070 m_Value(InsertValue), 3071 m_Value(InsertIdx))) && 3072 InsertValue->getType() == ReturnType) { 3073 unsigned Index = cast<ConstantInt>(InsertIdx)->getZExtValue(); 3074 // Case where we get the same index right after setting it. 3075 // extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) --> 3076 // InsertValue 3077 if (ExtractIdx == Index) 3078 return replaceInstUsesWith(CI, InsertValue); 3079 // If we are getting a different index than what was set in the 3080 // insert.vector intrinsic. We can just set the input tuple to the one up 3081 // in the chain. extract.vector(insert.vector(InsertTuple, InsertValue, 3082 // InsertIndex), ExtractIndex) 3083 // --> extract.vector(InsertTuple, ExtractIndex) 3084 else 3085 return replaceOperand(CI, 0, InsertTuple); 3086 } 3087 3088 auto *DstTy = dyn_cast<VectorType>(ReturnType); 3089 auto *VecTy = dyn_cast<VectorType>(Vec->getType()); 3090 3091 if (DstTy && VecTy) { 3092 auto DstEltCnt = DstTy->getElementCount(); 3093 auto VecEltCnt = VecTy->getElementCount(); 3094 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 3095 3096 // Extracting the entirety of Vec is a nop. 3097 if (DstEltCnt == VecTy->getElementCount()) { 3098 replaceInstUsesWith(CI, Vec); 3099 return eraseInstFromFunction(CI); 3100 } 3101 3102 // Only canonicalize to shufflevector if the destination vector and 3103 // Vec are fixed vectors. 3104 if (VecEltCnt.isScalable() || DstEltCnt.isScalable()) 3105 break; 3106 3107 SmallVector<int, 8> Mask; 3108 for (unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i) 3109 Mask.push_back(IdxN + i); 3110 3111 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask); 3112 return replaceInstUsesWith(CI, Shuffle); 3113 } 3114 break; 3115 } 3116 case Intrinsic::experimental_vector_reverse: { 3117 Value *BO0, *BO1, *X, *Y; 3118 Value *Vec = II->getArgOperand(0); 3119 if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) { 3120 auto *OldBinOp = cast<BinaryOperator>(Vec); 3121 if (match(BO0, m_VecReverse(m_Value(X)))) { 3122 // rev(binop rev(X), rev(Y)) --> binop X, Y 3123 if (match(BO1, m_VecReverse(m_Value(Y)))) 3124 return replaceInstUsesWith(CI, 3125 BinaryOperator::CreateWithCopiedFlags( 3126 OldBinOp->getOpcode(), X, Y, OldBinOp, 3127 OldBinOp->getName(), II)); 3128 // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat 3129 if (isSplatValue(BO1)) 3130 return replaceInstUsesWith(CI, 3131 BinaryOperator::CreateWithCopiedFlags( 3132 OldBinOp->getOpcode(), X, BO1, 3133 OldBinOp, OldBinOp->getName(), II)); 3134 } 3135 // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y 3136 if (match(BO1, m_VecReverse(m_Value(Y))) && isSplatValue(BO0)) 3137 return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags( 3138 OldBinOp->getOpcode(), BO0, Y, 3139 OldBinOp, OldBinOp->getName(), II)); 3140 } 3141 // rev(unop rev(X)) --> unop X 3142 if (match(Vec, m_OneUse(m_UnOp(m_VecReverse(m_Value(X)))))) { 3143 auto *OldUnOp = cast<UnaryOperator>(Vec); 3144 auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags( 3145 OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), II); 3146 return replaceInstUsesWith(CI, NewUnOp); 3147 } 3148 break; 3149 } 3150 case Intrinsic::vector_reduce_or: 3151 case Intrinsic::vector_reduce_and: { 3152 // Canonicalize logical or/and reductions: 3153 // Or reduction for i1 is represented as: 3154 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 3155 // %res = cmp ne iReduxWidth %val, 0 3156 // And reduction for i1 is represented as: 3157 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 3158 // %res = cmp eq iReduxWidth %val, 11111 3159 Value *Arg = II->getArgOperand(0); 3160 Value *Vect; 3161 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3162 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 3163 if (FTy->getElementType() == Builder.getInt1Ty()) { 3164 Value *Res = Builder.CreateBitCast( 3165 Vect, Builder.getIntNTy(FTy->getNumElements())); 3166 if (IID == Intrinsic::vector_reduce_and) { 3167 Res = Builder.CreateICmpEQ( 3168 Res, ConstantInt::getAllOnesValue(Res->getType())); 3169 } else { 3170 assert(IID == Intrinsic::vector_reduce_or && 3171 "Expected or reduction."); 3172 Res = Builder.CreateIsNotNull(Res); 3173 } 3174 if (Arg != Vect) 3175 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 3176 II->getType()); 3177 return replaceInstUsesWith(CI, Res); 3178 } 3179 } 3180 [[fallthrough]]; 3181 } 3182 case Intrinsic::vector_reduce_add: { 3183 if (IID == Intrinsic::vector_reduce_add) { 3184 // Convert vector_reduce_add(ZExt(<n x i1>)) to 3185 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). 3186 // Convert vector_reduce_add(SExt(<n x i1>)) to 3187 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). 3188 // Convert vector_reduce_add(<n x i1>) to 3189 // Trunc(ctpop(bitcast <n x i1> to in)). 3190 Value *Arg = II->getArgOperand(0); 3191 Value *Vect; 3192 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3193 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 3194 if (FTy->getElementType() == Builder.getInt1Ty()) { 3195 Value *V = Builder.CreateBitCast( 3196 Vect, Builder.getIntNTy(FTy->getNumElements())); 3197 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V); 3198 if (Res->getType() != II->getType()) 3199 Res = Builder.CreateZExtOrTrunc(Res, II->getType()); 3200 if (Arg != Vect && 3201 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt) 3202 Res = Builder.CreateNeg(Res); 3203 return replaceInstUsesWith(CI, Res); 3204 } 3205 } 3206 } 3207 [[fallthrough]]; 3208 } 3209 case Intrinsic::vector_reduce_xor: { 3210 if (IID == Intrinsic::vector_reduce_xor) { 3211 // Exclusive disjunction reduction over the vector with 3212 // (potentially-extended) i1 element type is actually a 3213 // (potentially-extended) arithmetic `add` reduction over the original 3214 // non-extended value: 3215 // vector_reduce_xor(?ext(<n x i1>)) 3216 // --> 3217 // ?ext(vector_reduce_add(<n x i1>)) 3218 Value *Arg = II->getArgOperand(0); 3219 Value *Vect; 3220 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3221 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 3222 if (FTy->getElementType() == Builder.getInt1Ty()) { 3223 Value *Res = Builder.CreateAddReduce(Vect); 3224 if (Arg != Vect) 3225 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 3226 II->getType()); 3227 return replaceInstUsesWith(CI, Res); 3228 } 3229 } 3230 } 3231 [[fallthrough]]; 3232 } 3233 case Intrinsic::vector_reduce_mul: { 3234 if (IID == Intrinsic::vector_reduce_mul) { 3235 // Multiplicative reduction over the vector with (potentially-extended) 3236 // i1 element type is actually a (potentially zero-extended) 3237 // logical `and` reduction over the original non-extended value: 3238 // vector_reduce_mul(?ext(<n x i1>)) 3239 // --> 3240 // zext(vector_reduce_and(<n x i1>)) 3241 Value *Arg = II->getArgOperand(0); 3242 Value *Vect; 3243 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3244 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 3245 if (FTy->getElementType() == Builder.getInt1Ty()) { 3246 Value *Res = Builder.CreateAndReduce(Vect); 3247 if (Res->getType() != II->getType()) 3248 Res = Builder.CreateZExt(Res, II->getType()); 3249 return replaceInstUsesWith(CI, Res); 3250 } 3251 } 3252 } 3253 [[fallthrough]]; 3254 } 3255 case Intrinsic::vector_reduce_umin: 3256 case Intrinsic::vector_reduce_umax: { 3257 if (IID == Intrinsic::vector_reduce_umin || 3258 IID == Intrinsic::vector_reduce_umax) { 3259 // UMin/UMax reduction over the vector with (potentially-extended) 3260 // i1 element type is actually a (potentially-extended) 3261 // logical `and`/`or` reduction over the original non-extended value: 3262 // vector_reduce_u{min,max}(?ext(<n x i1>)) 3263 // --> 3264 // ?ext(vector_reduce_{and,or}(<n x i1>)) 3265 Value *Arg = II->getArgOperand(0); 3266 Value *Vect; 3267 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3268 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 3269 if (FTy->getElementType() == Builder.getInt1Ty()) { 3270 Value *Res = IID == Intrinsic::vector_reduce_umin 3271 ? Builder.CreateAndReduce(Vect) 3272 : Builder.CreateOrReduce(Vect); 3273 if (Arg != Vect) 3274 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 3275 II->getType()); 3276 return replaceInstUsesWith(CI, Res); 3277 } 3278 } 3279 } 3280 [[fallthrough]]; 3281 } 3282 case Intrinsic::vector_reduce_smin: 3283 case Intrinsic::vector_reduce_smax: { 3284 if (IID == Intrinsic::vector_reduce_smin || 3285 IID == Intrinsic::vector_reduce_smax) { 3286 // SMin/SMax reduction over the vector with (potentially-extended) 3287 // i1 element type is actually a (potentially-extended) 3288 // logical `and`/`or` reduction over the original non-extended value: 3289 // vector_reduce_s{min,max}(<n x i1>) 3290 // --> 3291 // vector_reduce_{or,and}(<n x i1>) 3292 // and 3293 // vector_reduce_s{min,max}(sext(<n x i1>)) 3294 // --> 3295 // sext(vector_reduce_{or,and}(<n x i1>)) 3296 // and 3297 // vector_reduce_s{min,max}(zext(<n x i1>)) 3298 // --> 3299 // zext(vector_reduce_{and,or}(<n x i1>)) 3300 Value *Arg = II->getArgOperand(0); 3301 Value *Vect; 3302 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3303 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 3304 if (FTy->getElementType() == Builder.getInt1Ty()) { 3305 Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd; 3306 if (Arg != Vect) 3307 ExtOpc = cast<CastInst>(Arg)->getOpcode(); 3308 Value *Res = ((IID == Intrinsic::vector_reduce_smin) == 3309 (ExtOpc == Instruction::CastOps::ZExt)) 3310 ? Builder.CreateAndReduce(Vect) 3311 : Builder.CreateOrReduce(Vect); 3312 if (Arg != Vect) 3313 Res = Builder.CreateCast(ExtOpc, Res, II->getType()); 3314 return replaceInstUsesWith(CI, Res); 3315 } 3316 } 3317 } 3318 [[fallthrough]]; 3319 } 3320 case Intrinsic::vector_reduce_fmax: 3321 case Intrinsic::vector_reduce_fmin: 3322 case Intrinsic::vector_reduce_fadd: 3323 case Intrinsic::vector_reduce_fmul: { 3324 bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd && 3325 IID != Intrinsic::vector_reduce_fmul) || 3326 II->hasAllowReassoc(); 3327 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd || 3328 IID == Intrinsic::vector_reduce_fmul) 3329 ? 1 3330 : 0; 3331 Value *Arg = II->getArgOperand(ArgIdx); 3332 Value *V; 3333 ArrayRef<int> Mask; 3334 if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated || 3335 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) || 3336 !cast<ShuffleVectorInst>(Arg)->isSingleSource()) 3337 break; 3338 int Sz = Mask.size(); 3339 SmallBitVector UsedIndices(Sz); 3340 for (int Idx : Mask) { 3341 if (Idx == PoisonMaskElem || UsedIndices.test(Idx)) 3342 break; 3343 UsedIndices.set(Idx); 3344 } 3345 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or 3346 // other changes. 3347 if (UsedIndices.all()) { 3348 replaceUse(II->getOperandUse(ArgIdx), V); 3349 return nullptr; 3350 } 3351 break; 3352 } 3353 case Intrinsic::is_fpclass: { 3354 if (Instruction *I = foldIntrinsicIsFPClass(*II)) 3355 return I; 3356 break; 3357 } 3358 default: { 3359 // Handle target specific intrinsics 3360 std::optional<Instruction *> V = targetInstCombineIntrinsic(*II); 3361 if (V) 3362 return *V; 3363 break; 3364 } 3365 } 3366 3367 // Try to fold intrinsic into select operands. This is legal if: 3368 // * The intrinsic is speculatable. 3369 // * The select condition is not a vector, or the intrinsic does not 3370 // perform cross-lane operations. 3371 switch (IID) { 3372 case Intrinsic::ctlz: 3373 case Intrinsic::cttz: 3374 case Intrinsic::ctpop: 3375 case Intrinsic::umin: 3376 case Intrinsic::umax: 3377 case Intrinsic::smin: 3378 case Intrinsic::smax: 3379 case Intrinsic::usub_sat: 3380 case Intrinsic::uadd_sat: 3381 case Intrinsic::ssub_sat: 3382 case Intrinsic::sadd_sat: 3383 for (Value *Op : II->args()) 3384 if (auto *Sel = dyn_cast<SelectInst>(Op)) 3385 if (Instruction *R = FoldOpIntoSelect(*II, Sel)) 3386 return R; 3387 [[fallthrough]]; 3388 default: 3389 break; 3390 } 3391 3392 if (Instruction *Shuf = foldShuffledIntrinsicOperands(II, Builder)) 3393 return Shuf; 3394 3395 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke 3396 // context, so it is handled in visitCallBase and we should trigger it. 3397 return visitCallBase(*II); 3398 } 3399 3400 // Fence instruction simplification 3401 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) { 3402 auto *NFI = dyn_cast<FenceInst>(FI.getNextNonDebugInstruction()); 3403 // This check is solely here to handle arbitrary target-dependent syncscopes. 3404 // TODO: Can remove if does not matter in practice. 3405 if (NFI && FI.isIdenticalTo(NFI)) 3406 return eraseInstFromFunction(FI); 3407 3408 // Returns true if FI1 is identical or stronger fence than FI2. 3409 auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) { 3410 auto FI1SyncScope = FI1->getSyncScopeID(); 3411 // Consider same scope, where scope is global or single-thread. 3412 if (FI1SyncScope != FI2->getSyncScopeID() || 3413 (FI1SyncScope != SyncScope::System && 3414 FI1SyncScope != SyncScope::SingleThread)) 3415 return false; 3416 3417 return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering()); 3418 }; 3419 if (NFI && isIdenticalOrStrongerFence(NFI, &FI)) 3420 return eraseInstFromFunction(FI); 3421 3422 if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNonDebugInstruction())) 3423 if (isIdenticalOrStrongerFence(PFI, &FI)) 3424 return eraseInstFromFunction(FI); 3425 return nullptr; 3426 } 3427 3428 // InvokeInst simplification 3429 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) { 3430 return visitCallBase(II); 3431 } 3432 3433 // CallBrInst simplification 3434 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) { 3435 return visitCallBase(CBI); 3436 } 3437 3438 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) { 3439 if (!CI->getCalledFunction()) return nullptr; 3440 3441 // Skip optimizing notail and musttail calls so 3442 // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants. 3443 // LibCallSimplifier::optimizeCall should try to preseve tail calls though. 3444 if (CI->isMustTailCall() || CI->isNoTailCall()) 3445 return nullptr; 3446 3447 auto InstCombineRAUW = [this](Instruction *From, Value *With) { 3448 replaceInstUsesWith(*From, With); 3449 }; 3450 auto InstCombineErase = [this](Instruction *I) { 3451 eraseInstFromFunction(*I); 3452 }; 3453 LibCallSimplifier Simplifier(DL, &TLI, &AC, ORE, BFI, PSI, InstCombineRAUW, 3454 InstCombineErase); 3455 if (Value *With = Simplifier.optimizeCall(CI, Builder)) { 3456 ++NumSimplified; 3457 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); 3458 } 3459 3460 return nullptr; 3461 } 3462 3463 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { 3464 // Strip off at most one level of pointer casts, looking for an alloca. This 3465 // is good enough in practice and simpler than handling any number of casts. 3466 Value *Underlying = TrampMem->stripPointerCasts(); 3467 if (Underlying != TrampMem && 3468 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) 3469 return nullptr; 3470 if (!isa<AllocaInst>(Underlying)) 3471 return nullptr; 3472 3473 IntrinsicInst *InitTrampoline = nullptr; 3474 for (User *U : TrampMem->users()) { 3475 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3476 if (!II) 3477 return nullptr; 3478 if (II->getIntrinsicID() == Intrinsic::init_trampoline) { 3479 if (InitTrampoline) 3480 // More than one init_trampoline writes to this value. Give up. 3481 return nullptr; 3482 InitTrampoline = II; 3483 continue; 3484 } 3485 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) 3486 // Allow any number of calls to adjust.trampoline. 3487 continue; 3488 return nullptr; 3489 } 3490 3491 // No call to init.trampoline found. 3492 if (!InitTrampoline) 3493 return nullptr; 3494 3495 // Check that the alloca is being used in the expected way. 3496 if (InitTrampoline->getOperand(0) != TrampMem) 3497 return nullptr; 3498 3499 return InitTrampoline; 3500 } 3501 3502 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, 3503 Value *TrampMem) { 3504 // Visit all the previous instructions in the basic block, and try to find a 3505 // init.trampoline which has a direct path to the adjust.trampoline. 3506 for (BasicBlock::iterator I = AdjustTramp->getIterator(), 3507 E = AdjustTramp->getParent()->begin(); 3508 I != E;) { 3509 Instruction *Inst = &*--I; 3510 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 3511 if (II->getIntrinsicID() == Intrinsic::init_trampoline && 3512 II->getOperand(0) == TrampMem) 3513 return II; 3514 if (Inst->mayWriteToMemory()) 3515 return nullptr; 3516 } 3517 return nullptr; 3518 } 3519 3520 // Given a call to llvm.adjust.trampoline, find and return the corresponding 3521 // call to llvm.init.trampoline if the call to the trampoline can be optimized 3522 // to a direct call to a function. Otherwise return NULL. 3523 static IntrinsicInst *findInitTrampoline(Value *Callee) { 3524 Callee = Callee->stripPointerCasts(); 3525 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee); 3526 if (!AdjustTramp || 3527 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) 3528 return nullptr; 3529 3530 Value *TrampMem = AdjustTramp->getOperand(0); 3531 3532 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) 3533 return IT; 3534 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) 3535 return IT; 3536 return nullptr; 3537 } 3538 3539 bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call, 3540 const TargetLibraryInfo *TLI) { 3541 // Note: We only handle cases which can't be driven from generic attributes 3542 // here. So, for example, nonnull and noalias (which are common properties 3543 // of some allocation functions) are expected to be handled via annotation 3544 // of the respective allocator declaration with generic attributes. 3545 bool Changed = false; 3546 3547 if (!Call.getType()->isPointerTy()) 3548 return Changed; 3549 3550 std::optional<APInt> Size = getAllocSize(&Call, TLI); 3551 if (Size && *Size != 0) { 3552 // TODO: We really should just emit deref_or_null here and then 3553 // let the generic inference code combine that with nonnull. 3554 if (Call.hasRetAttr(Attribute::NonNull)) { 3555 Changed = !Call.hasRetAttr(Attribute::Dereferenceable); 3556 Call.addRetAttr(Attribute::getWithDereferenceableBytes( 3557 Call.getContext(), Size->getLimitedValue())); 3558 } else { 3559 Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull); 3560 Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes( 3561 Call.getContext(), Size->getLimitedValue())); 3562 } 3563 } 3564 3565 // Add alignment attribute if alignment is a power of two constant. 3566 Value *Alignment = getAllocAlignment(&Call, TLI); 3567 if (!Alignment) 3568 return Changed; 3569 3570 ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment); 3571 if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) { 3572 uint64_t AlignmentVal = AlignOpC->getZExtValue(); 3573 if (llvm::isPowerOf2_64(AlignmentVal)) { 3574 Align ExistingAlign = Call.getRetAlign().valueOrOne(); 3575 Align NewAlign = Align(AlignmentVal); 3576 if (NewAlign > ExistingAlign) { 3577 Call.addRetAttr( 3578 Attribute::getWithAlignment(Call.getContext(), NewAlign)); 3579 Changed = true; 3580 } 3581 } 3582 } 3583 return Changed; 3584 } 3585 3586 /// Improvements for call, callbr and invoke instructions. 3587 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) { 3588 bool Changed = annotateAnyAllocSite(Call, &TLI); 3589 3590 // Mark any parameters that are known to be non-null with the nonnull 3591 // attribute. This is helpful for inlining calls to functions with null 3592 // checks on their arguments. 3593 SmallVector<unsigned, 4> ArgNos; 3594 unsigned ArgNo = 0; 3595 3596 for (Value *V : Call.args()) { 3597 if (V->getType()->isPointerTy() && 3598 !Call.paramHasAttr(ArgNo, Attribute::NonNull) && 3599 isKnownNonZero(V, DL, 0, &AC, &Call, &DT)) 3600 ArgNos.push_back(ArgNo); 3601 ArgNo++; 3602 } 3603 3604 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly."); 3605 3606 if (!ArgNos.empty()) { 3607 AttributeList AS = Call.getAttributes(); 3608 LLVMContext &Ctx = Call.getContext(); 3609 AS = AS.addParamAttribute(Ctx, ArgNos, 3610 Attribute::get(Ctx, Attribute::NonNull)); 3611 Call.setAttributes(AS); 3612 Changed = true; 3613 } 3614 3615 // If the callee is a pointer to a function, attempt to move any casts to the 3616 // arguments of the call/callbr/invoke. 3617 Value *Callee = Call.getCalledOperand(); 3618 Function *CalleeF = dyn_cast<Function>(Callee); 3619 if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) && 3620 transformConstExprCastCall(Call)) 3621 return nullptr; 3622 3623 if (CalleeF) { 3624 // Remove the convergent attr on calls when the callee is not convergent. 3625 if (Call.isConvergent() && !CalleeF->isConvergent() && 3626 !CalleeF->isIntrinsic()) { 3627 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call 3628 << "\n"); 3629 Call.setNotConvergent(); 3630 return &Call; 3631 } 3632 3633 // If the call and callee calling conventions don't match, and neither one 3634 // of the calling conventions is compatible with C calling convention 3635 // this call must be unreachable, as the call is undefined. 3636 if ((CalleeF->getCallingConv() != Call.getCallingConv() && 3637 !(CalleeF->getCallingConv() == llvm::CallingConv::C && 3638 TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) && 3639 !(Call.getCallingConv() == llvm::CallingConv::C && 3640 TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) && 3641 // Only do this for calls to a function with a body. A prototype may 3642 // not actually end up matching the implementation's calling conv for a 3643 // variety of reasons (e.g. it may be written in assembly). 3644 !CalleeF->isDeclaration()) { 3645 Instruction *OldCall = &Call; 3646 CreateNonTerminatorUnreachable(OldCall); 3647 // If OldCall does not return void then replaceInstUsesWith poison. 3648 // This allows ValueHandlers and custom metadata to adjust itself. 3649 if (!OldCall->getType()->isVoidTy()) 3650 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType())); 3651 if (isa<CallInst>(OldCall)) 3652 return eraseInstFromFunction(*OldCall); 3653 3654 // We cannot remove an invoke or a callbr, because it would change thexi 3655 // CFG, just change the callee to a null pointer. 3656 cast<CallBase>(OldCall)->setCalledFunction( 3657 CalleeF->getFunctionType(), 3658 Constant::getNullValue(CalleeF->getType())); 3659 return nullptr; 3660 } 3661 } 3662 3663 // Calling a null function pointer is undefined if a null address isn't 3664 // dereferenceable. 3665 if ((isa<ConstantPointerNull>(Callee) && 3666 !NullPointerIsDefined(Call.getFunction())) || 3667 isa<UndefValue>(Callee)) { 3668 // If Call does not return void then replaceInstUsesWith poison. 3669 // This allows ValueHandlers and custom metadata to adjust itself. 3670 if (!Call.getType()->isVoidTy()) 3671 replaceInstUsesWith(Call, PoisonValue::get(Call.getType())); 3672 3673 if (Call.isTerminator()) { 3674 // Can't remove an invoke or callbr because we cannot change the CFG. 3675 return nullptr; 3676 } 3677 3678 // This instruction is not reachable, just remove it. 3679 CreateNonTerminatorUnreachable(&Call); 3680 return eraseInstFromFunction(Call); 3681 } 3682 3683 if (IntrinsicInst *II = findInitTrampoline(Callee)) 3684 return transformCallThroughTrampoline(Call, *II); 3685 3686 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) { 3687 InlineAsm *IA = cast<InlineAsm>(Callee); 3688 if (!IA->canThrow()) { 3689 // Normal inline asm calls cannot throw - mark them 3690 // 'nounwind'. 3691 Call.setDoesNotThrow(); 3692 Changed = true; 3693 } 3694 } 3695 3696 // Try to optimize the call if possible, we require DataLayout for most of 3697 // this. None of these calls are seen as possibly dead so go ahead and 3698 // delete the instruction now. 3699 if (CallInst *CI = dyn_cast<CallInst>(&Call)) { 3700 Instruction *I = tryOptimizeCall(CI); 3701 // If we changed something return the result, etc. Otherwise let 3702 // the fallthrough check. 3703 if (I) return eraseInstFromFunction(*I); 3704 } 3705 3706 if (!Call.use_empty() && !Call.isMustTailCall()) 3707 if (Value *ReturnedArg = Call.getReturnedArgOperand()) { 3708 Type *CallTy = Call.getType(); 3709 Type *RetArgTy = ReturnedArg->getType(); 3710 if (RetArgTy->canLosslesslyBitCastTo(CallTy)) 3711 return replaceInstUsesWith( 3712 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy)); 3713 } 3714 3715 // Drop unnecessary kcfi operand bundles from calls that were converted 3716 // into direct calls. 3717 auto Bundle = Call.getOperandBundle(LLVMContext::OB_kcfi); 3718 if (Bundle && !Call.isIndirectCall()) { 3719 DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", { 3720 if (CalleeF) { 3721 ConstantInt *FunctionType = nullptr; 3722 ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]); 3723 3724 if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type)) 3725 FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3726 3727 if (FunctionType && 3728 FunctionType->getZExtValue() != ExpectedType->getZExtValue()) 3729 dbgs() << Call.getModule()->getName() 3730 << ": warning: kcfi: " << Call.getCaller()->getName() 3731 << ": call to " << CalleeF->getName() 3732 << " using a mismatching function pointer type\n"; 3733 } 3734 }); 3735 3736 return CallBase::removeOperandBundle(&Call, LLVMContext::OB_kcfi); 3737 } 3738 3739 if (isRemovableAlloc(&Call, &TLI)) 3740 return visitAllocSite(Call); 3741 3742 // Handle intrinsics which can be used in both call and invoke context. 3743 switch (Call.getIntrinsicID()) { 3744 case Intrinsic::experimental_gc_statepoint: { 3745 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call); 3746 SmallPtrSet<Value *, 32> LiveGcValues; 3747 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 3748 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 3749 3750 // Remove the relocation if unused. 3751 if (GCR.use_empty()) { 3752 eraseInstFromFunction(GCR); 3753 continue; 3754 } 3755 3756 Value *DerivedPtr = GCR.getDerivedPtr(); 3757 Value *BasePtr = GCR.getBasePtr(); 3758 3759 // Undef is undef, even after relocation. 3760 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) { 3761 replaceInstUsesWith(GCR, UndefValue::get(GCR.getType())); 3762 eraseInstFromFunction(GCR); 3763 continue; 3764 } 3765 3766 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) { 3767 // The relocation of null will be null for most any collector. 3768 // TODO: provide a hook for this in GCStrategy. There might be some 3769 // weird collector this property does not hold for. 3770 if (isa<ConstantPointerNull>(DerivedPtr)) { 3771 // Use null-pointer of gc_relocate's type to replace it. 3772 replaceInstUsesWith(GCR, ConstantPointerNull::get(PT)); 3773 eraseInstFromFunction(GCR); 3774 continue; 3775 } 3776 3777 // isKnownNonNull -> nonnull attribute 3778 if (!GCR.hasRetAttr(Attribute::NonNull) && 3779 isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) { 3780 GCR.addRetAttr(Attribute::NonNull); 3781 // We discovered new fact, re-check users. 3782 Worklist.pushUsersToWorkList(GCR); 3783 } 3784 } 3785 3786 // If we have two copies of the same pointer in the statepoint argument 3787 // list, canonicalize to one. This may let us common gc.relocates. 3788 if (GCR.getBasePtr() == GCR.getDerivedPtr() && 3789 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) { 3790 auto *OpIntTy = GCR.getOperand(2)->getType(); 3791 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex())); 3792 } 3793 3794 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) 3795 // Canonicalize on the type from the uses to the defs 3796 3797 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) 3798 LiveGcValues.insert(BasePtr); 3799 LiveGcValues.insert(DerivedPtr); 3800 } 3801 std::optional<OperandBundleUse> Bundle = 3802 GCSP.getOperandBundle(LLVMContext::OB_gc_live); 3803 unsigned NumOfGCLives = LiveGcValues.size(); 3804 if (!Bundle || NumOfGCLives == Bundle->Inputs.size()) 3805 break; 3806 // We can reduce the size of gc live bundle. 3807 DenseMap<Value *, unsigned> Val2Idx; 3808 std::vector<Value *> NewLiveGc; 3809 for (Value *V : Bundle->Inputs) { 3810 if (Val2Idx.count(V)) 3811 continue; 3812 if (LiveGcValues.count(V)) { 3813 Val2Idx[V] = NewLiveGc.size(); 3814 NewLiveGc.push_back(V); 3815 } else 3816 Val2Idx[V] = NumOfGCLives; 3817 } 3818 // Update all gc.relocates 3819 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 3820 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 3821 Value *BasePtr = GCR.getBasePtr(); 3822 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives && 3823 "Missed live gc for base pointer"); 3824 auto *OpIntTy1 = GCR.getOperand(1)->getType(); 3825 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr])); 3826 Value *DerivedPtr = GCR.getDerivedPtr(); 3827 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives && 3828 "Missed live gc for derived pointer"); 3829 auto *OpIntTy2 = GCR.getOperand(2)->getType(); 3830 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr])); 3831 } 3832 // Create new statepoint instruction. 3833 OperandBundleDef NewBundle("gc-live", NewLiveGc); 3834 return CallBase::Create(&Call, NewBundle); 3835 } 3836 default: { break; } 3837 } 3838 3839 return Changed ? &Call : nullptr; 3840 } 3841 3842 /// If the callee is a constexpr cast of a function, attempt to move the cast to 3843 /// the arguments of the call/invoke. 3844 /// CallBrInst is not supported. 3845 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) { 3846 auto *Callee = 3847 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3848 if (!Callee) 3849 return false; 3850 3851 assert(!isa<CallBrInst>(Call) && 3852 "CallBr's don't have a single point after a def to insert at"); 3853 3854 // If this is a call to a thunk function, don't remove the cast. Thunks are 3855 // used to transparently forward all incoming parameters and outgoing return 3856 // values, so it's important to leave the cast in place. 3857 if (Callee->hasFnAttribute("thunk")) 3858 return false; 3859 3860 // If this is a call to a naked function, the assembly might be 3861 // using an argument, or otherwise rely on the frame layout, 3862 // the function prototype will mismatch. 3863 if (Callee->hasFnAttribute(Attribute::Naked)) 3864 return false; 3865 3866 // If this is a musttail call, the callee's prototype must match the caller's 3867 // prototype with the exception of pointee types. The code below doesn't 3868 // implement that, so we can't do this transform. 3869 // TODO: Do the transform if it only requires adding pointer casts. 3870 if (Call.isMustTailCall()) 3871 return false; 3872 3873 Instruction *Caller = &Call; 3874 const AttributeList &CallerPAL = Call.getAttributes(); 3875 3876 // Okay, this is a cast from a function to a different type. Unless doing so 3877 // would cause a type conversion of one of our arguments, change this call to 3878 // be a direct call with arguments casted to the appropriate types. 3879 FunctionType *FT = Callee->getFunctionType(); 3880 Type *OldRetTy = Caller->getType(); 3881 Type *NewRetTy = FT->getReturnType(); 3882 3883 // Check to see if we are changing the return type... 3884 if (OldRetTy != NewRetTy) { 3885 3886 if (NewRetTy->isStructTy()) 3887 return false; // TODO: Handle multiple return values. 3888 3889 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { 3890 if (Callee->isDeclaration()) 3891 return false; // Cannot transform this return value. 3892 3893 if (!Caller->use_empty() && 3894 // void -> non-void is handled specially 3895 !NewRetTy->isVoidTy()) 3896 return false; // Cannot transform this return value. 3897 } 3898 3899 if (!CallerPAL.isEmpty() && !Caller->use_empty()) { 3900 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs()); 3901 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) 3902 return false; // Attribute not compatible with transformed value. 3903 } 3904 3905 // If the callbase is an invoke instruction, and the return value is 3906 // used by a PHI node in a successor, we cannot change the return type of 3907 // the call because there is no place to put the cast instruction (without 3908 // breaking the critical edge). Bail out in this case. 3909 if (!Caller->use_empty()) { 3910 BasicBlock *PhisNotSupportedBlock = nullptr; 3911 if (auto *II = dyn_cast<InvokeInst>(Caller)) 3912 PhisNotSupportedBlock = II->getNormalDest(); 3913 if (PhisNotSupportedBlock) 3914 for (User *U : Caller->users()) 3915 if (PHINode *PN = dyn_cast<PHINode>(U)) 3916 if (PN->getParent() == PhisNotSupportedBlock) 3917 return false; 3918 } 3919 } 3920 3921 unsigned NumActualArgs = Call.arg_size(); 3922 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); 3923 3924 // Prevent us turning: 3925 // declare void @takes_i32_inalloca(i32* inalloca) 3926 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) 3927 // 3928 // into: 3929 // call void @takes_i32_inalloca(i32* null) 3930 // 3931 // Similarly, avoid folding away bitcasts of byval calls. 3932 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || 3933 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) 3934 return false; 3935 3936 auto AI = Call.arg_begin(); 3937 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { 3938 Type *ParamTy = FT->getParamType(i); 3939 Type *ActTy = (*AI)->getType(); 3940 3941 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) 3942 return false; // Cannot transform this parameter value. 3943 3944 // Check if there are any incompatible attributes we cannot drop safely. 3945 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i)) 3946 .overlaps(AttributeFuncs::typeIncompatible( 3947 ParamTy, AttributeFuncs::ASK_UNSAFE_TO_DROP))) 3948 return false; // Attribute not compatible with transformed value. 3949 3950 if (Call.isInAllocaArgument(i) || 3951 CallerPAL.hasParamAttr(i, Attribute::Preallocated)) 3952 return false; // Cannot transform to and from inalloca/preallocated. 3953 3954 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError)) 3955 return false; 3956 3957 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) != 3958 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal)) 3959 return false; // Cannot transform to or from byval. 3960 } 3961 3962 if (Callee->isDeclaration()) { 3963 // Do not delete arguments unless we have a function body. 3964 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) 3965 return false; 3966 3967 // If the callee is just a declaration, don't change the varargsness of the 3968 // call. We don't want to introduce a varargs call where one doesn't 3969 // already exist. 3970 if (FT->isVarArg() != Call.getFunctionType()->isVarArg()) 3971 return false; 3972 3973 // If both the callee and the cast type are varargs, we still have to make 3974 // sure the number of fixed parameters are the same or we have the same 3975 // ABI issues as if we introduce a varargs call. 3976 if (FT->isVarArg() && Call.getFunctionType()->isVarArg() && 3977 FT->getNumParams() != Call.getFunctionType()->getNumParams()) 3978 return false; 3979 } 3980 3981 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && 3982 !CallerPAL.isEmpty()) { 3983 // In this case we have more arguments than the new function type, but we 3984 // won't be dropping them. Check that these extra arguments have attributes 3985 // that are compatible with being a vararg call argument. 3986 unsigned SRetIdx; 3987 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) && 3988 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams()) 3989 return false; 3990 } 3991 3992 // Okay, we decided that this is a safe thing to do: go ahead and start 3993 // inserting cast instructions as necessary. 3994 SmallVector<Value *, 8> Args; 3995 SmallVector<AttributeSet, 8> ArgAttrs; 3996 Args.reserve(NumActualArgs); 3997 ArgAttrs.reserve(NumActualArgs); 3998 3999 // Get any return attributes. 4000 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs()); 4001 4002 // If the return value is not being used, the type may not be compatible 4003 // with the existing attributes. Wipe out any problematic attributes. 4004 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); 4005 4006 LLVMContext &Ctx = Call.getContext(); 4007 AI = Call.arg_begin(); 4008 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { 4009 Type *ParamTy = FT->getParamType(i); 4010 4011 Value *NewArg = *AI; 4012 if ((*AI)->getType() != ParamTy) 4013 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy); 4014 Args.push_back(NewArg); 4015 4016 // Add any parameter attributes except the ones incompatible with the new 4017 // type. Note that we made sure all incompatible ones are safe to drop. 4018 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible( 4019 ParamTy, AttributeFuncs::ASK_SAFE_TO_DROP); 4020 ArgAttrs.push_back( 4021 CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs)); 4022 } 4023 4024 // If the function takes more arguments than the call was taking, add them 4025 // now. 4026 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) { 4027 Args.push_back(Constant::getNullValue(FT->getParamType(i))); 4028 ArgAttrs.push_back(AttributeSet()); 4029 } 4030 4031 // If we are removing arguments to the function, emit an obnoxious warning. 4032 if (FT->getNumParams() < NumActualArgs) { 4033 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 4034 if (FT->isVarArg()) { 4035 // Add all of the arguments in their promoted form to the arg list. 4036 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { 4037 Type *PTy = getPromotedType((*AI)->getType()); 4038 Value *NewArg = *AI; 4039 if (PTy != (*AI)->getType()) { 4040 // Must promote to pass through va_arg area! 4041 Instruction::CastOps opcode = 4042 CastInst::getCastOpcode(*AI, false, PTy, false); 4043 NewArg = Builder.CreateCast(opcode, *AI, PTy); 4044 } 4045 Args.push_back(NewArg); 4046 4047 // Add any parameter attributes. 4048 ArgAttrs.push_back(CallerPAL.getParamAttrs(i)); 4049 } 4050 } 4051 } 4052 4053 AttributeSet FnAttrs = CallerPAL.getFnAttrs(); 4054 4055 if (NewRetTy->isVoidTy()) 4056 Caller->setName(""); // Void type should not have a name. 4057 4058 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) && 4059 "missing argument attributes"); 4060 AttributeList NewCallerPAL = AttributeList::get( 4061 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs); 4062 4063 SmallVector<OperandBundleDef, 1> OpBundles; 4064 Call.getOperandBundlesAsDefs(OpBundles); 4065 4066 CallBase *NewCall; 4067 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { 4068 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(), 4069 II->getUnwindDest(), Args, OpBundles); 4070 } else { 4071 NewCall = Builder.CreateCall(Callee, Args, OpBundles); 4072 cast<CallInst>(NewCall)->setTailCallKind( 4073 cast<CallInst>(Caller)->getTailCallKind()); 4074 } 4075 NewCall->takeName(Caller); 4076 NewCall->setCallingConv(Call.getCallingConv()); 4077 NewCall->setAttributes(NewCallerPAL); 4078 4079 // Preserve prof metadata if any. 4080 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof}); 4081 4082 // Insert a cast of the return type as necessary. 4083 Instruction *NC = NewCall; 4084 Value *NV = NC; 4085 if (OldRetTy != NV->getType() && !Caller->use_empty()) { 4086 if (!NV->getType()->isVoidTy()) { 4087 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); 4088 NC->setDebugLoc(Caller->getDebugLoc()); 4089 4090 auto OptInsertPt = NewCall->getInsertionPointAfterDef(); 4091 assert(OptInsertPt && "No place to insert cast"); 4092 InsertNewInstBefore(NC, *OptInsertPt); 4093 Worklist.pushUsersToWorkList(*Caller); 4094 } else { 4095 NV = PoisonValue::get(Caller->getType()); 4096 } 4097 } 4098 4099 if (!Caller->use_empty()) 4100 replaceInstUsesWith(*Caller, NV); 4101 else if (Caller->hasValueHandle()) { 4102 if (OldRetTy == NV->getType()) 4103 ValueHandleBase::ValueIsRAUWd(Caller, NV); 4104 else 4105 // We cannot call ValueIsRAUWd with a different type, and the 4106 // actual tracked value will disappear. 4107 ValueHandleBase::ValueIsDeleted(Caller); 4108 } 4109 4110 eraseInstFromFunction(*Caller); 4111 return true; 4112 } 4113 4114 /// Turn a call to a function created by init_trampoline / adjust_trampoline 4115 /// intrinsic pair into a direct call to the underlying function. 4116 Instruction * 4117 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call, 4118 IntrinsicInst &Tramp) { 4119 FunctionType *FTy = Call.getFunctionType(); 4120 AttributeList Attrs = Call.getAttributes(); 4121 4122 // If the call already has the 'nest' attribute somewhere then give up - 4123 // otherwise 'nest' would occur twice after splicing in the chain. 4124 if (Attrs.hasAttrSomewhere(Attribute::Nest)) 4125 return nullptr; 4126 4127 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts()); 4128 FunctionType *NestFTy = NestF->getFunctionType(); 4129 4130 AttributeList NestAttrs = NestF->getAttributes(); 4131 if (!NestAttrs.isEmpty()) { 4132 unsigned NestArgNo = 0; 4133 Type *NestTy = nullptr; 4134 AttributeSet NestAttr; 4135 4136 // Look for a parameter marked with the 'nest' attribute. 4137 for (FunctionType::param_iterator I = NestFTy->param_begin(), 4138 E = NestFTy->param_end(); 4139 I != E; ++NestArgNo, ++I) { 4140 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo); 4141 if (AS.hasAttribute(Attribute::Nest)) { 4142 // Record the parameter type and any other attributes. 4143 NestTy = *I; 4144 NestAttr = AS; 4145 break; 4146 } 4147 } 4148 4149 if (NestTy) { 4150 std::vector<Value*> NewArgs; 4151 std::vector<AttributeSet> NewArgAttrs; 4152 NewArgs.reserve(Call.arg_size() + 1); 4153 NewArgAttrs.reserve(Call.arg_size()); 4154 4155 // Insert the nest argument into the call argument list, which may 4156 // mean appending it. Likewise for attributes. 4157 4158 { 4159 unsigned ArgNo = 0; 4160 auto I = Call.arg_begin(), E = Call.arg_end(); 4161 do { 4162 if (ArgNo == NestArgNo) { 4163 // Add the chain argument and attributes. 4164 Value *NestVal = Tramp.getArgOperand(2); 4165 if (NestVal->getType() != NestTy) 4166 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest"); 4167 NewArgs.push_back(NestVal); 4168 NewArgAttrs.push_back(NestAttr); 4169 } 4170 4171 if (I == E) 4172 break; 4173 4174 // Add the original argument and attributes. 4175 NewArgs.push_back(*I); 4176 NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo)); 4177 4178 ++ArgNo; 4179 ++I; 4180 } while (true); 4181 } 4182 4183 // The trampoline may have been bitcast to a bogus type (FTy). 4184 // Handle this by synthesizing a new function type, equal to FTy 4185 // with the chain parameter inserted. 4186 4187 std::vector<Type*> NewTypes; 4188 NewTypes.reserve(FTy->getNumParams()+1); 4189 4190 // Insert the chain's type into the list of parameter types, which may 4191 // mean appending it. 4192 { 4193 unsigned ArgNo = 0; 4194 FunctionType::param_iterator I = FTy->param_begin(), 4195 E = FTy->param_end(); 4196 4197 do { 4198 if (ArgNo == NestArgNo) 4199 // Add the chain's type. 4200 NewTypes.push_back(NestTy); 4201 4202 if (I == E) 4203 break; 4204 4205 // Add the original type. 4206 NewTypes.push_back(*I); 4207 4208 ++ArgNo; 4209 ++I; 4210 } while (true); 4211 } 4212 4213 // Replace the trampoline call with a direct call. Let the generic 4214 // code sort out any function type mismatches. 4215 FunctionType *NewFTy = 4216 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg()); 4217 AttributeList NewPAL = 4218 AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(), 4219 Attrs.getRetAttrs(), NewArgAttrs); 4220 4221 SmallVector<OperandBundleDef, 1> OpBundles; 4222 Call.getOperandBundlesAsDefs(OpBundles); 4223 4224 Instruction *NewCaller; 4225 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 4226 NewCaller = InvokeInst::Create(NewFTy, NestF, II->getNormalDest(), 4227 II->getUnwindDest(), NewArgs, OpBundles); 4228 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); 4229 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); 4230 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) { 4231 NewCaller = 4232 CallBrInst::Create(NewFTy, NestF, CBI->getDefaultDest(), 4233 CBI->getIndirectDests(), NewArgs, OpBundles); 4234 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv()); 4235 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL); 4236 } else { 4237 NewCaller = CallInst::Create(NewFTy, NestF, NewArgs, OpBundles); 4238 cast<CallInst>(NewCaller)->setTailCallKind( 4239 cast<CallInst>(Call).getTailCallKind()); 4240 cast<CallInst>(NewCaller)->setCallingConv( 4241 cast<CallInst>(Call).getCallingConv()); 4242 cast<CallInst>(NewCaller)->setAttributes(NewPAL); 4243 } 4244 NewCaller->setDebugLoc(Call.getDebugLoc()); 4245 4246 return NewCaller; 4247 } 4248 } 4249 4250 // Replace the trampoline call with a direct call. Since there is no 'nest' 4251 // parameter, there is no need to adjust the argument list. Let the generic 4252 // code sort out any function type mismatches. 4253 Call.setCalledFunction(FTy, NestF); 4254 return &Call; 4255 } 4256