xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLFunctionalExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumeBundleQueries.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/AttributeMask.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/IntrinsicsAArch64.h"
47 #include "llvm/IR/IntrinsicsAMDGPU.h"
48 #include "llvm/IR/IntrinsicsARM.h"
49 #include "llvm/IR/IntrinsicsHexagon.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/PatternMatch.h"
53 #include "llvm/IR/Statepoint.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueHandle.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/InstCombine/InstCombiner.h"
68 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstdint>
74 #include <optional>
75 #include <utility>
76 #include <vector>
77 
78 #define DEBUG_TYPE "instcombine"
79 #include "llvm/Transforms/Utils/InstructionWorklist.h"
80 
81 using namespace llvm;
82 using namespace PatternMatch;
83 
84 STATISTIC(NumSimplified, "Number of library calls simplified");
85 
86 static cl::opt<unsigned> GuardWideningWindow(
87     "instcombine-guard-widening-window",
88     cl::init(3),
89     cl::desc("How wide an instruction window to bypass looking for "
90              "another guard"));
91 
92 /// Return the specified type promoted as it would be to pass though a va_arg
93 /// area.
94 static Type *getPromotedType(Type *Ty) {
95   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
96     if (ITy->getBitWidth() < 32)
97       return Type::getInt32Ty(Ty->getContext());
98   }
99   return Ty;
100 }
101 
102 /// Recognize a memcpy/memmove from a trivially otherwise unused alloca.
103 /// TODO: This should probably be integrated with visitAllocSites, but that
104 /// requires a deeper change to allow either unread or unwritten objects.
105 static bool hasUndefSource(AnyMemTransferInst *MI) {
106   auto *Src = MI->getRawSource();
107   while (isa<GetElementPtrInst>(Src) || isa<BitCastInst>(Src)) {
108     if (!Src->hasOneUse())
109       return false;
110     Src = cast<Instruction>(Src)->getOperand(0);
111   }
112   return isa<AllocaInst>(Src) && Src->hasOneUse();
113 }
114 
115 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
116   Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
117   MaybeAlign CopyDstAlign = MI->getDestAlign();
118   if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
119     MI->setDestAlignment(DstAlign);
120     return MI;
121   }
122 
123   Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
124   MaybeAlign CopySrcAlign = MI->getSourceAlign();
125   if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
126     MI->setSourceAlignment(SrcAlign);
127     return MI;
128   }
129 
130   // If we have a store to a location which is known constant, we can conclude
131   // that the store must be storing the constant value (else the memory
132   // wouldn't be constant), and this must be a noop.
133   if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
134     // Set the size of the copy to 0, it will be deleted on the next iteration.
135     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
136     return MI;
137   }
138 
139   // If the source is provably undef, the memcpy/memmove doesn't do anything
140   // (unless the transfer is volatile).
141   if (hasUndefSource(MI) && !MI->isVolatile()) {
142     // Set the size of the copy to 0, it will be deleted on the next iteration.
143     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
144     return MI;
145   }
146 
147   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
148   // load/store.
149   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
150   if (!MemOpLength) return nullptr;
151 
152   // Source and destination pointer types are always "i8*" for intrinsic.  See
153   // if the size is something we can handle with a single primitive load/store.
154   // A single load+store correctly handles overlapping memory in the memmove
155   // case.
156   uint64_t Size = MemOpLength->getLimitedValue();
157   assert(Size && "0-sized memory transferring should be removed already.");
158 
159   if (Size > 8 || (Size&(Size-1)))
160     return nullptr;  // If not 1/2/4/8 bytes, exit.
161 
162   // If it is an atomic and alignment is less than the size then we will
163   // introduce the unaligned memory access which will be later transformed
164   // into libcall in CodeGen. This is not evident performance gain so disable
165   // it now.
166   if (isa<AtomicMemTransferInst>(MI))
167     if (*CopyDstAlign < Size || *CopySrcAlign < Size)
168       return nullptr;
169 
170   // Use an integer load+store unless we can find something better.
171   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
172 
173   // If the memcpy has metadata describing the members, see if we can get the
174   // TBAA, scope and noalias tags describing our copy.
175   AAMDNodes AACopyMD = MI->getAAMetadata().adjustForAccess(Size);
176 
177   Value *Src = MI->getArgOperand(1);
178   Value *Dest = MI->getArgOperand(0);
179   LoadInst *L = Builder.CreateLoad(IntType, Src);
180   // Alignment from the mem intrinsic will be better, so use it.
181   L->setAlignment(*CopySrcAlign);
182   L->setAAMetadata(AACopyMD);
183   MDNode *LoopMemParallelMD =
184     MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
185   if (LoopMemParallelMD)
186     L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
187   MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
188   if (AccessGroupMD)
189     L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
190 
191   StoreInst *S = Builder.CreateStore(L, Dest);
192   // Alignment from the mem intrinsic will be better, so use it.
193   S->setAlignment(*CopyDstAlign);
194   S->setAAMetadata(AACopyMD);
195   if (LoopMemParallelMD)
196     S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
197   if (AccessGroupMD)
198     S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
199   S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
200 
201   if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
202     // non-atomics can be volatile
203     L->setVolatile(MT->isVolatile());
204     S->setVolatile(MT->isVolatile());
205   }
206   if (isa<AtomicMemTransferInst>(MI)) {
207     // atomics have to be unordered
208     L->setOrdering(AtomicOrdering::Unordered);
209     S->setOrdering(AtomicOrdering::Unordered);
210   }
211 
212   // Set the size of the copy to 0, it will be deleted on the next iteration.
213   MI->setLength(Constant::getNullValue(MemOpLength->getType()));
214   return MI;
215 }
216 
217 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) {
218   const Align KnownAlignment =
219       getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
220   MaybeAlign MemSetAlign = MI->getDestAlign();
221   if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
222     MI->setDestAlignment(KnownAlignment);
223     return MI;
224   }
225 
226   // If we have a store to a location which is known constant, we can conclude
227   // that the store must be storing the constant value (else the memory
228   // wouldn't be constant), and this must be a noop.
229   if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
230     // Set the size of the copy to 0, it will be deleted on the next iteration.
231     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
232     return MI;
233   }
234 
235   // Remove memset with an undef value.
236   // FIXME: This is technically incorrect because it might overwrite a poison
237   // value. Change to PoisonValue once #52930 is resolved.
238   if (isa<UndefValue>(MI->getValue())) {
239     // Set the size of the copy to 0, it will be deleted on the next iteration.
240     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
241     return MI;
242   }
243 
244   // Extract the length and alignment and fill if they are constant.
245   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
246   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
247   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
248     return nullptr;
249   const uint64_t Len = LenC->getLimitedValue();
250   assert(Len && "0-sized memory setting should be removed already.");
251   const Align Alignment = MI->getDestAlign().valueOrOne();
252 
253   // If it is an atomic and alignment is less than the size then we will
254   // introduce the unaligned memory access which will be later transformed
255   // into libcall in CodeGen. This is not evident performance gain so disable
256   // it now.
257   if (isa<AtomicMemSetInst>(MI))
258     if (Alignment < Len)
259       return nullptr;
260 
261   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
262   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
263     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
264 
265     Value *Dest = MI->getDest();
266 
267     // Extract the fill value and store.
268     const uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
269     Constant *FillVal = ConstantInt::get(ITy, Fill);
270     StoreInst *S = Builder.CreateStore(FillVal, Dest, MI->isVolatile());
271     S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
272     auto replaceOpForAssignmentMarkers = [FillC, FillVal](auto *DbgAssign) {
273       if (llvm::is_contained(DbgAssign->location_ops(), FillC))
274         DbgAssign->replaceVariableLocationOp(FillC, FillVal);
275     };
276     for_each(at::getAssignmentMarkers(S), replaceOpForAssignmentMarkers);
277     for_each(at::getDVRAssignmentMarkers(S), replaceOpForAssignmentMarkers);
278 
279     S->setAlignment(Alignment);
280     if (isa<AtomicMemSetInst>(MI))
281       S->setOrdering(AtomicOrdering::Unordered);
282 
283     // Set the size of the copy to 0, it will be deleted on the next iteration.
284     MI->setLength(Constant::getNullValue(LenC->getType()));
285     return MI;
286   }
287 
288   return nullptr;
289 }
290 
291 // TODO, Obvious Missing Transforms:
292 // * Narrow width by halfs excluding zero/undef lanes
293 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
294   Value *LoadPtr = II.getArgOperand(0);
295   const Align Alignment =
296       cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
297 
298   // If the mask is all ones or undefs, this is a plain vector load of the 1st
299   // argument.
300   if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
301     LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
302                                             "unmaskedload");
303     L->copyMetadata(II);
304     return L;
305   }
306 
307   // If we can unconditionally load from this address, replace with a
308   // load/select idiom. TODO: use DT for context sensitive query
309   if (isDereferenceablePointer(LoadPtr, II.getType(),
310                                II.getDataLayout(), &II, &AC)) {
311     LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
312                                              "unmaskedload");
313     LI->copyMetadata(II);
314     return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
315   }
316 
317   return nullptr;
318 }
319 
320 // TODO, Obvious Missing Transforms:
321 // * Single constant active lane -> store
322 // * Narrow width by halfs excluding zero/undef lanes
323 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
324   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
325   if (!ConstMask)
326     return nullptr;
327 
328   // If the mask is all zeros, this instruction does nothing.
329   if (ConstMask->isNullValue())
330     return eraseInstFromFunction(II);
331 
332   // If the mask is all ones, this is a plain vector store of the 1st argument.
333   if (ConstMask->isAllOnesValue()) {
334     Value *StorePtr = II.getArgOperand(1);
335     Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
336     StoreInst *S =
337         new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
338     S->copyMetadata(II);
339     return S;
340   }
341 
342   if (isa<ScalableVectorType>(ConstMask->getType()))
343     return nullptr;
344 
345   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
346   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
347   APInt PoisonElts(DemandedElts.getBitWidth(), 0);
348   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
349                                             PoisonElts))
350     return replaceOperand(II, 0, V);
351 
352   return nullptr;
353 }
354 
355 // TODO, Obvious Missing Transforms:
356 // * Single constant active lane load -> load
357 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
358 // * Adjacent vector addresses -> masked.load
359 // * Narrow width by halfs excluding zero/undef lanes
360 // * Vector incrementing address -> vector masked load
361 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
362   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
363   if (!ConstMask)
364     return nullptr;
365 
366   // Vector splat address w/known mask -> scalar load
367   // Fold the gather to load the source vector first lane
368   // because it is reloading the same value each time
369   if (ConstMask->isAllOnesValue())
370     if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
371       auto *VecTy = cast<VectorType>(II.getType());
372       const Align Alignment =
373           cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
374       LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
375                                               Alignment, "load.scalar");
376       Value *Shuf =
377           Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
378       return replaceInstUsesWith(II, cast<Instruction>(Shuf));
379     }
380 
381   return nullptr;
382 }
383 
384 // TODO, Obvious Missing Transforms:
385 // * Single constant active lane -> store
386 // * Adjacent vector addresses -> masked.store
387 // * Narrow store width by halfs excluding zero/undef lanes
388 // * Vector incrementing address -> vector masked store
389 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
390   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
391   if (!ConstMask)
392     return nullptr;
393 
394   // If the mask is all zeros, a scatter does nothing.
395   if (ConstMask->isNullValue())
396     return eraseInstFromFunction(II);
397 
398   // Vector splat address -> scalar store
399   if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
400     // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
401     if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
402       if (maskContainsAllOneOrUndef(ConstMask)) {
403         Align Alignment =
404             cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
405         StoreInst *S = new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false,
406                                      Alignment);
407         S->copyMetadata(II);
408         return S;
409       }
410     }
411     // scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
412     // lastlane), ptr
413     if (ConstMask->isAllOnesValue()) {
414       Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
415       VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType());
416       ElementCount VF = WideLoadTy->getElementCount();
417       Value *RunTimeVF = Builder.CreateElementCount(Builder.getInt32Ty(), VF);
418       Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1));
419       Value *Extract =
420           Builder.CreateExtractElement(II.getArgOperand(0), LastLane);
421       StoreInst *S =
422           new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
423       S->copyMetadata(II);
424       return S;
425     }
426   }
427   if (isa<ScalableVectorType>(ConstMask->getType()))
428     return nullptr;
429 
430   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
431   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
432   APInt PoisonElts(DemandedElts.getBitWidth(), 0);
433   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts,
434                                             PoisonElts))
435     return replaceOperand(II, 0, V);
436   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts,
437                                             PoisonElts))
438     return replaceOperand(II, 1, V);
439 
440   return nullptr;
441 }
442 
443 /// This function transforms launder.invariant.group and strip.invariant.group
444 /// like:
445 /// launder(launder(%x)) -> launder(%x)       (the result is not the argument)
446 /// launder(strip(%x)) -> launder(%x)
447 /// strip(strip(%x)) -> strip(%x)             (the result is not the argument)
448 /// strip(launder(%x)) -> strip(%x)
449 /// This is legal because it preserves the most recent information about
450 /// the presence or absence of invariant.group.
451 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
452                                                     InstCombinerImpl &IC) {
453   auto *Arg = II.getArgOperand(0);
454   auto *StrippedArg = Arg->stripPointerCasts();
455   auto *StrippedInvariantGroupsArg = StrippedArg;
456   while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
457     if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
458         Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
459       break;
460     StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
461   }
462   if (StrippedArg == StrippedInvariantGroupsArg)
463     return nullptr; // No launders/strips to remove.
464 
465   Value *Result = nullptr;
466 
467   if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
468     Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
469   else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
470     Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
471   else
472     llvm_unreachable(
473         "simplifyInvariantGroupIntrinsic only handles launder and strip");
474   if (Result->getType()->getPointerAddressSpace() !=
475       II.getType()->getPointerAddressSpace())
476     Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
477 
478   return cast<Instruction>(Result);
479 }
480 
481 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) {
482   assert((II.getIntrinsicID() == Intrinsic::cttz ||
483           II.getIntrinsicID() == Intrinsic::ctlz) &&
484          "Expected cttz or ctlz intrinsic");
485   bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
486   Value *Op0 = II.getArgOperand(0);
487   Value *Op1 = II.getArgOperand(1);
488   Value *X;
489   // ctlz(bitreverse(x)) -> cttz(x)
490   // cttz(bitreverse(x)) -> ctlz(x)
491   if (match(Op0, m_BitReverse(m_Value(X)))) {
492     Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
493     Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
494     return CallInst::Create(F, {X, II.getArgOperand(1)});
495   }
496 
497   if (II.getType()->isIntOrIntVectorTy(1)) {
498     // ctlz/cttz i1 Op0 --> not Op0
499     if (match(Op1, m_Zero()))
500       return BinaryOperator::CreateNot(Op0);
501     // If zero is poison, then the input can be assumed to be "true", so the
502     // instruction simplifies to "false".
503     assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
504     return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
505   }
506 
507   // If ctlz/cttz is only used as a shift amount, set is_zero_poison to true.
508   if (II.hasOneUse() && match(Op1, m_Zero()) &&
509       match(II.user_back(), m_Shift(m_Value(), m_Specific(&II)))) {
510     II.dropUBImplyingAttrsAndMetadata();
511     return IC.replaceOperand(II, 1, IC.Builder.getTrue());
512   }
513 
514   Constant *C;
515 
516   if (IsTZ) {
517     // cttz(-x) -> cttz(x)
518     if (match(Op0, m_Neg(m_Value(X))))
519       return IC.replaceOperand(II, 0, X);
520 
521     // cttz(-x & x) -> cttz(x)
522     if (match(Op0, m_c_And(m_Neg(m_Value(X)), m_Deferred(X))))
523       return IC.replaceOperand(II, 0, X);
524 
525     // cttz(sext(x)) -> cttz(zext(x))
526     if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
527       auto *Zext = IC.Builder.CreateZExt(X, II.getType());
528       auto *CttzZext =
529           IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
530       return IC.replaceInstUsesWith(II, CttzZext);
531     }
532 
533     // Zext doesn't change the number of trailing zeros, so narrow:
534     // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
535     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
536       auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
537                                                     IC.Builder.getTrue());
538       auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
539       return IC.replaceInstUsesWith(II, ZextCttz);
540     }
541 
542     // cttz(abs(x)) -> cttz(x)
543     // cttz(nabs(x)) -> cttz(x)
544     Value *Y;
545     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
546     if (SPF == SPF_ABS || SPF == SPF_NABS)
547       return IC.replaceOperand(II, 0, X);
548 
549     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
550       return IC.replaceOperand(II, 0, X);
551 
552     // cttz(shl(%const, %val), 1) --> add(cttz(%const, 1), %val)
553     if (match(Op0, m_Shl(m_ImmConstant(C), m_Value(X))) &&
554         match(Op1, m_One())) {
555       Value *ConstCttz =
556           IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
557       return BinaryOperator::CreateAdd(ConstCttz, X);
558     }
559 
560     // cttz(lshr exact (%const, %val), 1) --> sub(cttz(%const, 1), %val)
561     if (match(Op0, m_Exact(m_LShr(m_ImmConstant(C), m_Value(X)))) &&
562         match(Op1, m_One())) {
563       Value *ConstCttz =
564           IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1);
565       return BinaryOperator::CreateSub(ConstCttz, X);
566     }
567 
568     // cttz(add(lshr(UINT_MAX, %val), 1)) --> sub(width, %val)
569     if (match(Op0, m_Add(m_LShr(m_AllOnes(), m_Value(X)), m_One()))) {
570       Value *Width =
571           ConstantInt::get(II.getType(), II.getType()->getScalarSizeInBits());
572       return BinaryOperator::CreateSub(Width, X);
573     }
574   } else {
575     // ctlz(lshr(%const, %val), 1) --> add(ctlz(%const, 1), %val)
576     if (match(Op0, m_LShr(m_ImmConstant(C), m_Value(X))) &&
577         match(Op1, m_One())) {
578       Value *ConstCtlz =
579           IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
580       return BinaryOperator::CreateAdd(ConstCtlz, X);
581     }
582 
583     // ctlz(shl nuw (%const, %val), 1) --> sub(ctlz(%const, 1), %val)
584     if (match(Op0, m_NUWShl(m_ImmConstant(C), m_Value(X))) &&
585         match(Op1, m_One())) {
586       Value *ConstCtlz =
587           IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1);
588       return BinaryOperator::CreateSub(ConstCtlz, X);
589     }
590   }
591 
592   KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
593 
594   // Create a mask for bits above (ctlz) or below (cttz) the first known one.
595   unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
596                                 : Known.countMaxLeadingZeros();
597   unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
598                                 : Known.countMinLeadingZeros();
599 
600   // If all bits above (ctlz) or below (cttz) the first known one are known
601   // zero, this value is constant.
602   // FIXME: This should be in InstSimplify because we're replacing an
603   // instruction with a constant.
604   if (PossibleZeros == DefiniteZeros) {
605     auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
606     return IC.replaceInstUsesWith(II, C);
607   }
608 
609   // If the input to cttz/ctlz is known to be non-zero,
610   // then change the 'ZeroIsPoison' parameter to 'true'
611   // because we know the zero behavior can't affect the result.
612   if (!Known.One.isZero() ||
613       isKnownNonZero(Op0, IC.getSimplifyQuery().getWithInstruction(&II))) {
614     if (!match(II.getArgOperand(1), m_One()))
615       return IC.replaceOperand(II, 1, IC.Builder.getTrue());
616   }
617 
618   // Add range attribute since known bits can't completely reflect what we know.
619   unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
620   if (BitWidth != 1 && !II.hasRetAttr(Attribute::Range) &&
621       !II.getMetadata(LLVMContext::MD_range)) {
622     ConstantRange Range(APInt(BitWidth, DefiniteZeros),
623                         APInt(BitWidth, PossibleZeros + 1));
624     II.addRangeRetAttr(Range);
625     return &II;
626   }
627 
628   return nullptr;
629 }
630 
631 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) {
632   assert(II.getIntrinsicID() == Intrinsic::ctpop &&
633          "Expected ctpop intrinsic");
634   Type *Ty = II.getType();
635   unsigned BitWidth = Ty->getScalarSizeInBits();
636   Value *Op0 = II.getArgOperand(0);
637   Value *X, *Y;
638 
639   // ctpop(bitreverse(x)) -> ctpop(x)
640   // ctpop(bswap(x)) -> ctpop(x)
641   if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
642     return IC.replaceOperand(II, 0, X);
643 
644   // ctpop(rot(x)) -> ctpop(x)
645   if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
646        match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
647       X == Y)
648     return IC.replaceOperand(II, 0, X);
649 
650   // ctpop(x | -x) -> bitwidth - cttz(x, false)
651   if (Op0->hasOneUse() &&
652       match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
653     Function *F =
654         Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
655     auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()});
656     auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
657     return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
658   }
659 
660   // ctpop(~x & (x - 1)) -> cttz(x, false)
661   if (match(Op0,
662             m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) {
663     Function *F =
664         Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
665     return CallInst::Create(F, {X, IC.Builder.getFalse()});
666   }
667 
668   // Zext doesn't change the number of set bits, so narrow:
669   // ctpop (zext X) --> zext (ctpop X)
670   if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
671     Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
672     return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
673   }
674 
675   KnownBits Known(BitWidth);
676   IC.computeKnownBits(Op0, Known, 0, &II);
677 
678   // If all bits are zero except for exactly one fixed bit, then the result
679   // must be 0 or 1, and we can get that answer by shifting to LSB:
680   // ctpop (X & 32) --> (X & 32) >> 5
681   // TODO: Investigate removing this as its likely unnecessary given the below
682   // `isKnownToBeAPowerOfTwo` check.
683   if ((~Known.Zero).isPowerOf2())
684     return BinaryOperator::CreateLShr(
685         Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
686 
687   // More generally we can also handle non-constant power of 2 patterns such as
688   // shl/shr(Pow2, X), (X & -X), etc... by transforming:
689   // ctpop(Pow2OrZero) --> icmp ne X, 0
690   if (IC.isKnownToBeAPowerOfTwo(Op0, /* OrZero */ true))
691     return CastInst::Create(Instruction::ZExt,
692                             IC.Builder.CreateICmp(ICmpInst::ICMP_NE, Op0,
693                                                   Constant::getNullValue(Ty)),
694                             Ty);
695 
696   // Add range attribute since known bits can't completely reflect what we know.
697   if (BitWidth != 1 && !II.hasRetAttr(Attribute::Range) &&
698       !II.getMetadata(LLVMContext::MD_range)) {
699     ConstantRange Range(APInt(BitWidth, Known.countMinPopulation()),
700                         APInt(BitWidth, Known.countMaxPopulation() + 1));
701     II.addRangeRetAttr(Range);
702     return &II;
703   }
704 
705   return nullptr;
706 }
707 
708 /// Convert a table lookup to shufflevector if the mask is constant.
709 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
710 /// which case we could lower the shufflevector with rev64 instructions
711 /// as it's actually a byte reverse.
712 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
713                                InstCombiner::BuilderTy &Builder) {
714   // Bail out if the mask is not a constant.
715   auto *C = dyn_cast<Constant>(II.getArgOperand(1));
716   if (!C)
717     return nullptr;
718 
719   auto *VecTy = cast<FixedVectorType>(II.getType());
720   unsigned NumElts = VecTy->getNumElements();
721 
722   // Only perform this transformation for <8 x i8> vector types.
723   if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
724     return nullptr;
725 
726   int Indexes[8];
727 
728   for (unsigned I = 0; I < NumElts; ++I) {
729     Constant *COp = C->getAggregateElement(I);
730 
731     if (!COp || !isa<ConstantInt>(COp))
732       return nullptr;
733 
734     Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
735 
736     // Make sure the mask indices are in range.
737     if ((unsigned)Indexes[I] >= NumElts)
738       return nullptr;
739   }
740 
741   auto *V1 = II.getArgOperand(0);
742   auto *V2 = Constant::getNullValue(V1->getType());
743   return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes));
744 }
745 
746 // Returns true iff the 2 intrinsics have the same operands, limiting the
747 // comparison to the first NumOperands.
748 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
749                              unsigned NumOperands) {
750   assert(I.arg_size() >= NumOperands && "Not enough operands");
751   assert(E.arg_size() >= NumOperands && "Not enough operands");
752   for (unsigned i = 0; i < NumOperands; i++)
753     if (I.getArgOperand(i) != E.getArgOperand(i))
754       return false;
755   return true;
756 }
757 
758 // Remove trivially empty start/end intrinsic ranges, i.e. a start
759 // immediately followed by an end (ignoring debuginfo or other
760 // start/end intrinsics in between). As this handles only the most trivial
761 // cases, tracking the nesting level is not needed:
762 //
763 //   call @llvm.foo.start(i1 0)
764 //   call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
765 //   call @llvm.foo.end(i1 0)
766 //   call @llvm.foo.end(i1 0) ; &I
767 static bool
768 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC,
769                           std::function<bool(const IntrinsicInst &)> IsStart) {
770   // We start from the end intrinsic and scan backwards, so that InstCombine
771   // has already processed (and potentially removed) all the instructions
772   // before the end intrinsic.
773   BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
774   for (; BI != BE; ++BI) {
775     if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
776       if (I->isDebugOrPseudoInst() ||
777           I->getIntrinsicID() == EndI.getIntrinsicID())
778         continue;
779       if (IsStart(*I)) {
780         if (haveSameOperands(EndI, *I, EndI.arg_size())) {
781           IC.eraseInstFromFunction(*I);
782           IC.eraseInstFromFunction(EndI);
783           return true;
784         }
785         // Skip start intrinsics that don't pair with this end intrinsic.
786         continue;
787       }
788     }
789     break;
790   }
791 
792   return false;
793 }
794 
795 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) {
796   removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
797     return I.getIntrinsicID() == Intrinsic::vastart ||
798            I.getIntrinsicID() == Intrinsic::vacopy;
799   });
800   return nullptr;
801 }
802 
803 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) {
804   assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
805   Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
806   if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
807     Call.setArgOperand(0, Arg1);
808     Call.setArgOperand(1, Arg0);
809     return &Call;
810   }
811   return nullptr;
812 }
813 
814 /// Creates a result tuple for an overflow intrinsic \p II with a given
815 /// \p Result and a constant \p Overflow value.
816 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result,
817                                         Constant *Overflow) {
818   Constant *V[] = {PoisonValue::get(Result->getType()), Overflow};
819   StructType *ST = cast<StructType>(II->getType());
820   Constant *Struct = ConstantStruct::get(ST, V);
821   return InsertValueInst::Create(Struct, Result, 0);
822 }
823 
824 Instruction *
825 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
826   WithOverflowInst *WO = cast<WithOverflowInst>(II);
827   Value *OperationResult = nullptr;
828   Constant *OverflowResult = nullptr;
829   if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
830                             WO->getRHS(), *WO, OperationResult, OverflowResult))
831     return createOverflowTuple(WO, OperationResult, OverflowResult);
832   return nullptr;
833 }
834 
835 static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) {
836   Ty = Ty->getScalarType();
837   return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE;
838 }
839 
840 static bool inputDenormalIsDAZ(const Function &F, const Type *Ty) {
841   Ty = Ty->getScalarType();
842   return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero();
843 }
844 
845 /// \returns the compare predicate type if the test performed by
846 /// llvm.is.fpclass(x, \p Mask) is equivalent to fcmp o__ x, 0.0 with the
847 /// floating-point environment assumed for \p F for type \p Ty
848 static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask,
849                                               const Function &F, Type *Ty) {
850   switch (static_cast<unsigned>(Mask)) {
851   case fcZero:
852     if (inputDenormalIsIEEE(F, Ty))
853       return FCmpInst::FCMP_OEQ;
854     break;
855   case fcZero | fcSubnormal:
856     if (inputDenormalIsDAZ(F, Ty))
857       return FCmpInst::FCMP_OEQ;
858     break;
859   case fcPositive | fcNegZero:
860     if (inputDenormalIsIEEE(F, Ty))
861       return FCmpInst::FCMP_OGE;
862     break;
863   case fcPositive | fcNegZero | fcNegSubnormal:
864     if (inputDenormalIsDAZ(F, Ty))
865       return FCmpInst::FCMP_OGE;
866     break;
867   case fcPosSubnormal | fcPosNormal | fcPosInf:
868     if (inputDenormalIsIEEE(F, Ty))
869       return FCmpInst::FCMP_OGT;
870     break;
871   case fcNegative | fcPosZero:
872     if (inputDenormalIsIEEE(F, Ty))
873       return FCmpInst::FCMP_OLE;
874     break;
875   case fcNegative | fcPosZero | fcPosSubnormal:
876     if (inputDenormalIsDAZ(F, Ty))
877       return FCmpInst::FCMP_OLE;
878     break;
879   case fcNegSubnormal | fcNegNormal | fcNegInf:
880     if (inputDenormalIsIEEE(F, Ty))
881       return FCmpInst::FCMP_OLT;
882     break;
883   case fcPosNormal | fcPosInf:
884     if (inputDenormalIsDAZ(F, Ty))
885       return FCmpInst::FCMP_OGT;
886     break;
887   case fcNegNormal | fcNegInf:
888     if (inputDenormalIsDAZ(F, Ty))
889       return FCmpInst::FCMP_OLT;
890     break;
891   case ~fcZero & ~fcNan:
892     if (inputDenormalIsIEEE(F, Ty))
893       return FCmpInst::FCMP_ONE;
894     break;
895   case ~(fcZero | fcSubnormal) & ~fcNan:
896     if (inputDenormalIsDAZ(F, Ty))
897       return FCmpInst::FCMP_ONE;
898     break;
899   default:
900     break;
901   }
902 
903   return FCmpInst::BAD_FCMP_PREDICATE;
904 }
905 
906 Instruction *InstCombinerImpl::foldIntrinsicIsFPClass(IntrinsicInst &II) {
907   Value *Src0 = II.getArgOperand(0);
908   Value *Src1 = II.getArgOperand(1);
909   const ConstantInt *CMask = cast<ConstantInt>(Src1);
910   FPClassTest Mask = static_cast<FPClassTest>(CMask->getZExtValue());
911   const bool IsUnordered = (Mask & fcNan) == fcNan;
912   const bool IsOrdered = (Mask & fcNan) == fcNone;
913   const FPClassTest OrderedMask = Mask & ~fcNan;
914   const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan;
915 
916   const bool IsStrict =
917       II.getFunction()->getAttributes().hasFnAttr(Attribute::StrictFP);
918 
919   Value *FNegSrc;
920   if (match(Src0, m_FNeg(m_Value(FNegSrc)))) {
921     // is.fpclass (fneg x), mask -> is.fpclass x, (fneg mask)
922 
923     II.setArgOperand(1, ConstantInt::get(Src1->getType(), fneg(Mask)));
924     return replaceOperand(II, 0, FNegSrc);
925   }
926 
927   Value *FAbsSrc;
928   if (match(Src0, m_FAbs(m_Value(FAbsSrc)))) {
929     II.setArgOperand(1, ConstantInt::get(Src1->getType(), inverse_fabs(Mask)));
930     return replaceOperand(II, 0, FAbsSrc);
931   }
932 
933   if ((OrderedMask == fcInf || OrderedInvertedMask == fcInf) &&
934       (IsOrdered || IsUnordered) && !IsStrict) {
935     // is.fpclass(x, fcInf) -> fcmp oeq fabs(x), +inf
936     // is.fpclass(x, ~fcInf) -> fcmp one fabs(x), +inf
937     // is.fpclass(x, fcInf|fcNan) -> fcmp ueq fabs(x), +inf
938     // is.fpclass(x, ~(fcInf|fcNan)) -> fcmp une fabs(x), +inf
939     Constant *Inf = ConstantFP::getInfinity(Src0->getType());
940     FCmpInst::Predicate Pred =
941         IsUnordered ? FCmpInst::FCMP_UEQ : FCmpInst::FCMP_OEQ;
942     if (OrderedInvertedMask == fcInf)
943       Pred = IsUnordered ? FCmpInst::FCMP_UNE : FCmpInst::FCMP_ONE;
944 
945     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0);
946     Value *CmpInf = Builder.CreateFCmp(Pred, Fabs, Inf);
947     CmpInf->takeName(&II);
948     return replaceInstUsesWith(II, CmpInf);
949   }
950 
951   if ((OrderedMask == fcPosInf || OrderedMask == fcNegInf) &&
952       (IsOrdered || IsUnordered) && !IsStrict) {
953     // is.fpclass(x, fcPosInf) -> fcmp oeq x, +inf
954     // is.fpclass(x, fcNegInf) -> fcmp oeq x, -inf
955     // is.fpclass(x, fcPosInf|fcNan) -> fcmp ueq x, +inf
956     // is.fpclass(x, fcNegInf|fcNan) -> fcmp ueq x, -inf
957     Constant *Inf =
958         ConstantFP::getInfinity(Src0->getType(), OrderedMask == fcNegInf);
959     Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(Src0, Inf)
960                                : Builder.CreateFCmpOEQ(Src0, Inf);
961 
962     EqInf->takeName(&II);
963     return replaceInstUsesWith(II, EqInf);
964   }
965 
966   if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) &&
967       (IsOrdered || IsUnordered) && !IsStrict) {
968     // is.fpclass(x, ~fcPosInf) -> fcmp one x, +inf
969     // is.fpclass(x, ~fcNegInf) -> fcmp one x, -inf
970     // is.fpclass(x, ~fcPosInf|fcNan) -> fcmp une x, +inf
971     // is.fpclass(x, ~fcNegInf|fcNan) -> fcmp une x, -inf
972     Constant *Inf = ConstantFP::getInfinity(Src0->getType(),
973                                             OrderedInvertedMask == fcNegInf);
974     Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(Src0, Inf)
975                                : Builder.CreateFCmpONE(Src0, Inf);
976     NeInf->takeName(&II);
977     return replaceInstUsesWith(II, NeInf);
978   }
979 
980   if (Mask == fcNan && !IsStrict) {
981     // Equivalent of isnan. Replace with standard fcmp if we don't care about FP
982     // exceptions.
983     Value *IsNan =
984         Builder.CreateFCmpUNO(Src0, ConstantFP::getZero(Src0->getType()));
985     IsNan->takeName(&II);
986     return replaceInstUsesWith(II, IsNan);
987   }
988 
989   if (Mask == (~fcNan & fcAllFlags) && !IsStrict) {
990     // Equivalent of !isnan. Replace with standard fcmp.
991     Value *FCmp =
992         Builder.CreateFCmpORD(Src0, ConstantFP::getZero(Src0->getType()));
993     FCmp->takeName(&II);
994     return replaceInstUsesWith(II, FCmp);
995   }
996 
997   FCmpInst::Predicate PredType = FCmpInst::BAD_FCMP_PREDICATE;
998 
999   // Try to replace with an fcmp with 0
1000   //
1001   // is.fpclass(x, fcZero) -> fcmp oeq x, 0.0
1002   // is.fpclass(x, fcZero | fcNan) -> fcmp ueq x, 0.0
1003   // is.fpclass(x, ~fcZero & ~fcNan) -> fcmp one x, 0.0
1004   // is.fpclass(x, ~fcZero) -> fcmp une x, 0.0
1005   //
1006   // is.fpclass(x, fcPosSubnormal | fcPosNormal | fcPosInf) -> fcmp ogt x, 0.0
1007   // is.fpclass(x, fcPositive | fcNegZero) -> fcmp oge x, 0.0
1008   //
1009   // is.fpclass(x, fcNegSubnormal | fcNegNormal | fcNegInf) -> fcmp olt x, 0.0
1010   // is.fpclass(x, fcNegative | fcPosZero) -> fcmp ole x, 0.0
1011   //
1012   if (!IsStrict && (IsOrdered || IsUnordered) &&
1013       (PredType = fpclassTestIsFCmp0(OrderedMask, *II.getFunction(),
1014                                      Src0->getType())) !=
1015           FCmpInst::BAD_FCMP_PREDICATE) {
1016     Constant *Zero = ConstantFP::getZero(Src0->getType());
1017     // Equivalent of == 0.
1018     Value *FCmp = Builder.CreateFCmp(
1019         IsUnordered ? FCmpInst::getUnorderedPredicate(PredType) : PredType,
1020         Src0, Zero);
1021 
1022     FCmp->takeName(&II);
1023     return replaceInstUsesWith(II, FCmp);
1024   }
1025 
1026   KnownFPClass Known = computeKnownFPClass(Src0, Mask, &II);
1027 
1028   // Clear test bits we know must be false from the source value.
1029   // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
1030   // fp_class (ninf x), ninf|pinf|other -> fp_class (ninf x), other
1031   if ((Mask & Known.KnownFPClasses) != Mask) {
1032     II.setArgOperand(
1033         1, ConstantInt::get(Src1->getType(), Mask & Known.KnownFPClasses));
1034     return &II;
1035   }
1036 
1037   // If none of the tests which can return false are possible, fold to true.
1038   // fp_class (nnan x), ~(qnan|snan) -> true
1039   // fp_class (ninf x), ~(ninf|pinf) -> true
1040   if (Mask == Known.KnownFPClasses)
1041     return replaceInstUsesWith(II, ConstantInt::get(II.getType(), true));
1042 
1043   return nullptr;
1044 }
1045 
1046 static std::optional<bool> getKnownSign(Value *Op, const SimplifyQuery &SQ) {
1047   KnownBits Known = computeKnownBits(Op, /*Depth=*/0, SQ);
1048   if (Known.isNonNegative())
1049     return false;
1050   if (Known.isNegative())
1051     return true;
1052 
1053   Value *X, *Y;
1054   if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1055     return isImpliedByDomCondition(ICmpInst::ICMP_SLT, X, Y, SQ.CxtI, SQ.DL);
1056 
1057   return std::nullopt;
1058 }
1059 
1060 static std::optional<bool> getKnownSignOrZero(Value *Op,
1061                                               const SimplifyQuery &SQ) {
1062   if (std::optional<bool> Sign = getKnownSign(Op, SQ))
1063     return Sign;
1064 
1065   Value *X, *Y;
1066   if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1067     return isImpliedByDomCondition(ICmpInst::ICMP_SLE, X, Y, SQ.CxtI, SQ.DL);
1068 
1069   return std::nullopt;
1070 }
1071 
1072 /// Return true if two values \p Op0 and \p Op1 are known to have the same sign.
1073 static bool signBitMustBeTheSame(Value *Op0, Value *Op1,
1074                                  const SimplifyQuery &SQ) {
1075   std::optional<bool> Known1 = getKnownSign(Op1, SQ);
1076   if (!Known1)
1077     return false;
1078   std::optional<bool> Known0 = getKnownSign(Op0, SQ);
1079   if (!Known0)
1080     return false;
1081   return *Known0 == *Known1;
1082 }
1083 
1084 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
1085 /// can trigger other combines.
1086 static Instruction *moveAddAfterMinMax(IntrinsicInst *II,
1087                                        InstCombiner::BuilderTy &Builder) {
1088   Intrinsic::ID MinMaxID = II->getIntrinsicID();
1089   assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
1090           MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
1091          "Expected a min or max intrinsic");
1092 
1093   // TODO: Match vectors with undef elements, but undef may not propagate.
1094   Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1095   Value *X;
1096   const APInt *C0, *C1;
1097   if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
1098       !match(Op1, m_APInt(C1)))
1099     return nullptr;
1100 
1101   // Check for necessary no-wrap and overflow constraints.
1102   bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
1103   auto *Add = cast<BinaryOperator>(Op0);
1104   if ((IsSigned && !Add->hasNoSignedWrap()) ||
1105       (!IsSigned && !Add->hasNoUnsignedWrap()))
1106     return nullptr;
1107 
1108   // If the constant difference overflows, then instsimplify should reduce the
1109   // min/max to the add or C1.
1110   bool Overflow;
1111   APInt CDiff =
1112       IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
1113   assert(!Overflow && "Expected simplify of min/max");
1114 
1115   // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
1116   // Note: the "mismatched" no-overflow setting does not propagate.
1117   Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
1118   Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
1119   return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
1120                   : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
1121 }
1122 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
1123 Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) {
1124   Type *Ty = MinMax1.getType();
1125 
1126   // We are looking for a tree of:
1127   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
1128   // Where the min and max could be reversed
1129   Instruction *MinMax2;
1130   BinaryOperator *AddSub;
1131   const APInt *MinValue, *MaxValue;
1132   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
1133     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
1134       return nullptr;
1135   } else if (match(&MinMax1,
1136                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
1137     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
1138       return nullptr;
1139   } else
1140     return nullptr;
1141 
1142   // Check that the constants clamp a saturate, and that the new type would be
1143   // sensible to convert to.
1144   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
1145     return nullptr;
1146   // In what bitwidth can this be treated as saturating arithmetics?
1147   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
1148   // FIXME: This isn't quite right for vectors, but using the scalar type is a
1149   // good first approximation for what should be done there.
1150   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
1151     return nullptr;
1152 
1153   // Also make sure that the inner min/max and the add/sub have one use.
1154   if (!MinMax2->hasOneUse() || !AddSub->hasOneUse())
1155     return nullptr;
1156 
1157   // Create the new type (which can be a vector type)
1158   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
1159 
1160   Intrinsic::ID IntrinsicID;
1161   if (AddSub->getOpcode() == Instruction::Add)
1162     IntrinsicID = Intrinsic::sadd_sat;
1163   else if (AddSub->getOpcode() == Instruction::Sub)
1164     IntrinsicID = Intrinsic::ssub_sat;
1165   else
1166     return nullptr;
1167 
1168   // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
1169   // is usually achieved via a sext from a smaller type.
1170   if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) >
1171           NewBitWidth ||
1172       ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
1173     return nullptr;
1174 
1175   // Finally create and return the sat intrinsic, truncated to the new type
1176   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
1177   Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
1178   Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
1179   Value *Sat = Builder.CreateCall(F, {AT, BT});
1180   return CastInst::Create(Instruction::SExt, Sat, Ty);
1181 }
1182 
1183 
1184 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output
1185 /// can only be one of two possible constant values -- turn that into a select
1186 /// of constants.
1187 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II,
1188                                         InstCombiner::BuilderTy &Builder) {
1189   Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1190   Value *X;
1191   const APInt *C0, *C1;
1192   if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
1193     return nullptr;
1194 
1195   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
1196   switch (II->getIntrinsicID()) {
1197   case Intrinsic::smax:
1198     if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1199       Pred = ICmpInst::ICMP_SGT;
1200     break;
1201   case Intrinsic::smin:
1202     if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1203       Pred = ICmpInst::ICMP_SLT;
1204     break;
1205   case Intrinsic::umax:
1206     if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1207       Pred = ICmpInst::ICMP_UGT;
1208     break;
1209   case Intrinsic::umin:
1210     if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1211       Pred = ICmpInst::ICMP_ULT;
1212     break;
1213   default:
1214     llvm_unreachable("Expected min/max intrinsic");
1215   }
1216   if (Pred == CmpInst::BAD_ICMP_PREDICATE)
1217     return nullptr;
1218 
1219   // max (min X, 42), 41 --> X > 41 ? 42 : 41
1220   // min (max X, 42), 43 --> X < 43 ? 42 : 43
1221   Value *Cmp = Builder.CreateICmp(Pred, X, I1);
1222   return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
1223 }
1224 
1225 /// If this min/max has a constant operand and an operand that is a matching
1226 /// min/max with a constant operand, constant-fold the 2 constant operands.
1227 static Value *reassociateMinMaxWithConstants(IntrinsicInst *II,
1228                                              IRBuilderBase &Builder,
1229                                              const SimplifyQuery &SQ) {
1230   Intrinsic::ID MinMaxID = II->getIntrinsicID();
1231   auto *LHS = dyn_cast<MinMaxIntrinsic>(II->getArgOperand(0));
1232   if (!LHS)
1233     return nullptr;
1234 
1235   Constant *C0, *C1;
1236   if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) ||
1237       !match(II->getArgOperand(1), m_ImmConstant(C1)))
1238     return nullptr;
1239 
1240   // max (max X, C0), C1 --> max X, (max C0, C1)
1241   // min (min X, C0), C1 --> min X, (min C0, C1)
1242   // umax (smax X, nneg C0), nneg C1 --> smax X, (umax C0, C1)
1243   // smin (umin X, nneg C0), nneg C1 --> umin X, (smin C0, C1)
1244   Intrinsic::ID InnerMinMaxID = LHS->getIntrinsicID();
1245   if (InnerMinMaxID != MinMaxID &&
1246       !(((MinMaxID == Intrinsic::umax && InnerMinMaxID == Intrinsic::smax) ||
1247          (MinMaxID == Intrinsic::smin && InnerMinMaxID == Intrinsic::umin)) &&
1248         isKnownNonNegative(C0, SQ) && isKnownNonNegative(C1, SQ)))
1249     return nullptr;
1250 
1251   ICmpInst::Predicate Pred = MinMaxIntrinsic::getPredicate(MinMaxID);
1252   Value *CondC = Builder.CreateICmp(Pred, C0, C1);
1253   Value *NewC = Builder.CreateSelect(CondC, C0, C1);
1254   return Builder.CreateIntrinsic(InnerMinMaxID, II->getType(),
1255                                  {LHS->getArgOperand(0), NewC});
1256 }
1257 
1258 /// If this min/max has a matching min/max operand with a constant, try to push
1259 /// the constant operand into this instruction. This can enable more folds.
1260 static Instruction *
1261 reassociateMinMaxWithConstantInOperand(IntrinsicInst *II,
1262                                        InstCombiner::BuilderTy &Builder) {
1263   // Match and capture a min/max operand candidate.
1264   Value *X, *Y;
1265   Constant *C;
1266   Instruction *Inner;
1267   if (!match(II, m_c_MaxOrMin(m_OneUse(m_CombineAnd(
1268                                   m_Instruction(Inner),
1269                                   m_MaxOrMin(m_Value(X), m_ImmConstant(C)))),
1270                               m_Value(Y))))
1271     return nullptr;
1272 
1273   // The inner op must match. Check for constants to avoid infinite loops.
1274   Intrinsic::ID MinMaxID = II->getIntrinsicID();
1275   auto *InnerMM = dyn_cast<IntrinsicInst>(Inner);
1276   if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1277       match(X, m_ImmConstant()) || match(Y, m_ImmConstant()))
1278     return nullptr;
1279 
1280   // max (max X, C), Y --> max (max X, Y), C
1281   Function *MinMax =
1282       Intrinsic::getDeclaration(II->getModule(), MinMaxID, II->getType());
1283   Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y);
1284   NewInner->takeName(Inner);
1285   return CallInst::Create(MinMax, {NewInner, C});
1286 }
1287 
1288 /// Reduce a sequence of min/max intrinsics with a common operand.
1289 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) {
1290   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1291   auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1292   auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
1293   Intrinsic::ID MinMaxID = II->getIntrinsicID();
1294   if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
1295       RHS->getIntrinsicID() != MinMaxID ||
1296       (!LHS->hasOneUse() && !RHS->hasOneUse()))
1297     return nullptr;
1298 
1299   Value *A = LHS->getArgOperand(0);
1300   Value *B = LHS->getArgOperand(1);
1301   Value *C = RHS->getArgOperand(0);
1302   Value *D = RHS->getArgOperand(1);
1303 
1304   // Look for a common operand.
1305   Value *MinMaxOp = nullptr;
1306   Value *ThirdOp = nullptr;
1307   if (LHS->hasOneUse()) {
1308     // If the LHS is only used in this chain and the RHS is used outside of it,
1309     // reuse the RHS min/max because that will eliminate the LHS.
1310     if (D == A || C == A) {
1311       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1312       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1313       MinMaxOp = RHS;
1314       ThirdOp = B;
1315     } else if (D == B || C == B) {
1316       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1317       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1318       MinMaxOp = RHS;
1319       ThirdOp = A;
1320     }
1321   } else {
1322     assert(RHS->hasOneUse() && "Expected one-use operand");
1323     // Reuse the LHS. This will eliminate the RHS.
1324     if (D == A || D == B) {
1325       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1326       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1327       MinMaxOp = LHS;
1328       ThirdOp = C;
1329     } else if (C == A || C == B) {
1330       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1331       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1332       MinMaxOp = LHS;
1333       ThirdOp = D;
1334     }
1335   }
1336 
1337   if (!MinMaxOp || !ThirdOp)
1338     return nullptr;
1339 
1340   Module *Mod = II->getModule();
1341   Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType());
1342   return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
1343 }
1344 
1345 /// If all arguments of the intrinsic are unary shuffles with the same mask,
1346 /// try to shuffle after the intrinsic.
1347 static Instruction *
1348 foldShuffledIntrinsicOperands(IntrinsicInst *II,
1349                               InstCombiner::BuilderTy &Builder) {
1350   // TODO: This should be extended to handle other intrinsics like fshl, ctpop,
1351   //       etc. Use llvm::isTriviallyVectorizable() and related to determine
1352   //       which intrinsics are safe to shuffle?
1353   switch (II->getIntrinsicID()) {
1354   case Intrinsic::smax:
1355   case Intrinsic::smin:
1356   case Intrinsic::umax:
1357   case Intrinsic::umin:
1358   case Intrinsic::fma:
1359   case Intrinsic::fshl:
1360   case Intrinsic::fshr:
1361     break;
1362   default:
1363     return nullptr;
1364   }
1365 
1366   Value *X;
1367   ArrayRef<int> Mask;
1368   if (!match(II->getArgOperand(0),
1369              m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))
1370     return nullptr;
1371 
1372   // At least 1 operand must have 1 use because we are creating 2 instructions.
1373   if (none_of(II->args(), [](Value *V) { return V->hasOneUse(); }))
1374     return nullptr;
1375 
1376   // See if all arguments are shuffled with the same mask.
1377   SmallVector<Value *, 4> NewArgs(II->arg_size());
1378   NewArgs[0] = X;
1379   Type *SrcTy = X->getType();
1380   for (unsigned i = 1, e = II->arg_size(); i != e; ++i) {
1381     if (!match(II->getArgOperand(i),
1382                m_Shuffle(m_Value(X), m_Undef(), m_SpecificMask(Mask))) ||
1383         X->getType() != SrcTy)
1384       return nullptr;
1385     NewArgs[i] = X;
1386   }
1387 
1388   // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M
1389   Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1390   Value *NewIntrinsic =
1391       Builder.CreateIntrinsic(II->getIntrinsicID(), SrcTy, NewArgs, FPI);
1392   return new ShuffleVectorInst(NewIntrinsic, Mask);
1393 }
1394 
1395 /// Fold the following cases and accepts bswap and bitreverse intrinsics:
1396 ///   bswap(logic_op(bswap(x), y)) --> logic_op(x, bswap(y))
1397 ///   bswap(logic_op(bswap(x), bswap(y))) --> logic_op(x, y) (ignores multiuse)
1398 template <Intrinsic::ID IntrID>
1399 static Instruction *foldBitOrderCrossLogicOp(Value *V,
1400                                              InstCombiner::BuilderTy &Builder) {
1401   static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse,
1402                 "This helper only supports BSWAP and BITREVERSE intrinsics");
1403 
1404   Value *X, *Y;
1405   // Find bitwise logic op. Check that it is a BinaryOperator explicitly so we
1406   // don't match ConstantExpr that aren't meaningful for this transform.
1407   if (match(V, m_OneUse(m_BitwiseLogic(m_Value(X), m_Value(Y)))) &&
1408       isa<BinaryOperator>(V)) {
1409     Value *OldReorderX, *OldReorderY;
1410     BinaryOperator::BinaryOps Op = cast<BinaryOperator>(V)->getOpcode();
1411 
1412     // If both X and Y are bswap/bitreverse, the transform reduces the number
1413     // of instructions even if there's multiuse.
1414     // If only one operand is bswap/bitreverse, we need to ensure the operand
1415     // have only one use.
1416     if (match(X, m_Intrinsic<IntrID>(m_Value(OldReorderX))) &&
1417         match(Y, m_Intrinsic<IntrID>(m_Value(OldReorderY)))) {
1418       return BinaryOperator::Create(Op, OldReorderX, OldReorderY);
1419     }
1420 
1421     if (match(X, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderX))))) {
1422       Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, Y);
1423       return BinaryOperator::Create(Op, OldReorderX, NewReorder);
1424     }
1425 
1426     if (match(Y, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderY))))) {
1427       Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, X);
1428       return BinaryOperator::Create(Op, NewReorder, OldReorderY);
1429     }
1430   }
1431   return nullptr;
1432 }
1433 
1434 static Value *simplifyReductionOperand(Value *Arg, bool CanReorderLanes) {
1435   if (!CanReorderLanes)
1436     return nullptr;
1437 
1438   Value *V;
1439   if (match(Arg, m_VecReverse(m_Value(V))))
1440     return V;
1441 
1442   ArrayRef<int> Mask;
1443   if (!isa<FixedVectorType>(Arg->getType()) ||
1444       !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
1445       !cast<ShuffleVectorInst>(Arg)->isSingleSource())
1446     return nullptr;
1447 
1448   int Sz = Mask.size();
1449   SmallBitVector UsedIndices(Sz);
1450   for (int Idx : Mask) {
1451     if (Idx == PoisonMaskElem || UsedIndices.test(Idx))
1452       return nullptr;
1453     UsedIndices.set(Idx);
1454   }
1455 
1456   // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
1457   // other changes.
1458   return UsedIndices.all() ? V : nullptr;
1459 }
1460 
1461 /// Fold an unsigned minimum of trailing or leading zero bits counts:
1462 ///   umin(cttz(CtOp, ZeroUndef), ConstOp) --> cttz(CtOp | (1 << ConstOp))
1463 ///   umin(ctlz(CtOp, ZeroUndef), ConstOp) --> ctlz(CtOp | (SignedMin
1464 ///                                              >> ConstOp))
1465 template <Intrinsic::ID IntrID>
1466 static Value *
1467 foldMinimumOverTrailingOrLeadingZeroCount(Value *I0, Value *I1,
1468                                           const DataLayout &DL,
1469                                           InstCombiner::BuilderTy &Builder) {
1470   static_assert(IntrID == Intrinsic::cttz || IntrID == Intrinsic::ctlz,
1471                 "This helper only supports cttz and ctlz intrinsics");
1472 
1473   Value *CtOp;
1474   Value *ZeroUndef;
1475   if (!match(I0,
1476              m_OneUse(m_Intrinsic<IntrID>(m_Value(CtOp), m_Value(ZeroUndef)))))
1477     return nullptr;
1478 
1479   unsigned BitWidth = I1->getType()->getScalarSizeInBits();
1480   auto LessBitWidth = [BitWidth](auto &C) { return C.ult(BitWidth); };
1481   if (!match(I1, m_CheckedInt(LessBitWidth)))
1482     // We have a constant >= BitWidth (which can be handled by CVP)
1483     // or a non-splat vector with elements < and >= BitWidth
1484     return nullptr;
1485 
1486   Type *Ty = I1->getType();
1487   Constant *NewConst = ConstantFoldBinaryOpOperands(
1488       IntrID == Intrinsic::cttz ? Instruction::Shl : Instruction::LShr,
1489       IntrID == Intrinsic::cttz
1490           ? ConstantInt::get(Ty, 1)
1491           : ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth)),
1492       cast<Constant>(I1), DL);
1493   return Builder.CreateBinaryIntrinsic(
1494       IntrID, Builder.CreateOr(CtOp, NewConst),
1495       ConstantInt::getTrue(ZeroUndef->getType()));
1496 }
1497 
1498 /// CallInst simplification. This mostly only handles folding of intrinsic
1499 /// instructions. For normal calls, it allows visitCallBase to do the heavy
1500 /// lifting.
1501 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) {
1502   // Don't try to simplify calls without uses. It will not do anything useful,
1503   // but will result in the following folds being skipped.
1504   if (!CI.use_empty()) {
1505     SmallVector<Value *, 4> Args;
1506     Args.reserve(CI.arg_size());
1507     for (Value *Op : CI.args())
1508       Args.push_back(Op);
1509     if (Value *V = simplifyCall(&CI, CI.getCalledOperand(), Args,
1510                                 SQ.getWithInstruction(&CI)))
1511       return replaceInstUsesWith(CI, V);
1512   }
1513 
1514   if (Value *FreedOp = getFreedOperand(&CI, &TLI))
1515     return visitFree(CI, FreedOp);
1516 
1517   // If the caller function (i.e. us, the function that contains this CallInst)
1518   // is nounwind, mark the call as nounwind, even if the callee isn't.
1519   if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1520     CI.setDoesNotThrow();
1521     return &CI;
1522   }
1523 
1524   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1525   if (!II) return visitCallBase(CI);
1526 
1527   // For atomic unordered mem intrinsics if len is not a positive or
1528   // not a multiple of element size then behavior is undefined.
1529   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
1530     if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
1531       if (NumBytes->isNegative() ||
1532           (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
1533         CreateNonTerminatorUnreachable(AMI);
1534         assert(AMI->getType()->isVoidTy() &&
1535                "non void atomic unordered mem intrinsic");
1536         return eraseInstFromFunction(*AMI);
1537       }
1538 
1539   // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1540   // instead of in visitCallBase.
1541   if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1542     bool Changed = false;
1543 
1544     // memmove/cpy/set of zero bytes is a noop.
1545     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1546       if (NumBytes->isNullValue())
1547         return eraseInstFromFunction(CI);
1548     }
1549 
1550     // No other transformations apply to volatile transfers.
1551     if (auto *M = dyn_cast<MemIntrinsic>(MI))
1552       if (M->isVolatile())
1553         return nullptr;
1554 
1555     // If we have a memmove and the source operation is a constant global,
1556     // then the source and dest pointers can't alias, so we can change this
1557     // into a call to memcpy.
1558     if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1559       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1560         if (GVSrc->isConstant()) {
1561           Module *M = CI.getModule();
1562           Intrinsic::ID MemCpyID =
1563               isa<AtomicMemMoveInst>(MMI)
1564                   ? Intrinsic::memcpy_element_unordered_atomic
1565                   : Intrinsic::memcpy;
1566           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1567                            CI.getArgOperand(1)->getType(),
1568                            CI.getArgOperand(2)->getType() };
1569           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1570           Changed = true;
1571         }
1572     }
1573 
1574     if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1575       // memmove(x,x,size) -> noop.
1576       if (MTI->getSource() == MTI->getDest())
1577         return eraseInstFromFunction(CI);
1578     }
1579 
1580     // If we can determine a pointer alignment that is bigger than currently
1581     // set, update the alignment.
1582     if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1583       if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1584         return I;
1585     } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1586       if (Instruction *I = SimplifyAnyMemSet(MSI))
1587         return I;
1588     }
1589 
1590     if (Changed) return II;
1591   }
1592 
1593   // For fixed width vector result intrinsics, use the generic demanded vector
1594   // support.
1595   if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
1596     auto VWidth = IIFVTy->getNumElements();
1597     APInt PoisonElts(VWidth, 0);
1598     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1599     if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, PoisonElts)) {
1600       if (V != II)
1601         return replaceInstUsesWith(*II, V);
1602       return II;
1603     }
1604   }
1605 
1606   if (II->isCommutative()) {
1607     if (auto Pair = matchSymmetricPair(II->getOperand(0), II->getOperand(1))) {
1608       replaceOperand(*II, 0, Pair->first);
1609       replaceOperand(*II, 1, Pair->second);
1610       return II;
1611     }
1612 
1613     if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
1614       return NewCall;
1615   }
1616 
1617   // Unused constrained FP intrinsic calls may have declared side effect, which
1618   // prevents it from being removed. In some cases however the side effect is
1619   // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it
1620   // returns a replacement, the call may be removed.
1621   if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) {
1622     if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI)))
1623       return eraseInstFromFunction(CI);
1624   }
1625 
1626   Intrinsic::ID IID = II->getIntrinsicID();
1627   switch (IID) {
1628   case Intrinsic::objectsize: {
1629     SmallVector<Instruction *> InsertedInstructions;
1630     if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false,
1631                                        &InsertedInstructions)) {
1632       for (Instruction *Inserted : InsertedInstructions)
1633         Worklist.add(Inserted);
1634       return replaceInstUsesWith(CI, V);
1635     }
1636     return nullptr;
1637   }
1638   case Intrinsic::abs: {
1639     Value *IIOperand = II->getArgOperand(0);
1640     bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
1641 
1642     // abs(-x) -> abs(x)
1643     // TODO: Copy nsw if it was present on the neg?
1644     Value *X;
1645     if (match(IIOperand, m_Neg(m_Value(X))))
1646       return replaceOperand(*II, 0, X);
1647     if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X)))))
1648       return replaceOperand(*II, 0, X);
1649     if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X))))
1650       return replaceOperand(*II, 0, X);
1651 
1652     Value *Y;
1653     // abs(a * abs(b)) -> abs(a * b)
1654     if (match(IIOperand,
1655               m_OneUse(m_c_Mul(m_Value(X),
1656                                m_Intrinsic<Intrinsic::abs>(m_Value(Y)))))) {
1657       bool NSW =
1658           cast<Instruction>(IIOperand)->hasNoSignedWrap() && IntMinIsPoison;
1659       auto *XY = NSW ? Builder.CreateNSWMul(X, Y) : Builder.CreateMul(X, Y);
1660       return replaceOperand(*II, 0, XY);
1661     }
1662 
1663     if (std::optional<bool> Known =
1664             getKnownSignOrZero(IIOperand, SQ.getWithInstruction(II))) {
1665       // abs(x) -> x if x >= 0 (include abs(x-y) --> x - y where x >= y)
1666       // abs(x) -> x if x > 0 (include abs(x-y) --> x - y where x > y)
1667       if (!*Known)
1668         return replaceInstUsesWith(*II, IIOperand);
1669 
1670       // abs(x) -> -x if x < 0
1671       // abs(x) -> -x if x < = 0 (include abs(x-y) --> y - x where x <= y)
1672       if (IntMinIsPoison)
1673         return BinaryOperator::CreateNSWNeg(IIOperand);
1674       return BinaryOperator::CreateNeg(IIOperand);
1675     }
1676 
1677     // abs (sext X) --> zext (abs X*)
1678     // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
1679     if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
1680       Value *NarrowAbs =
1681           Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
1682       return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
1683     }
1684 
1685     // Match a complicated way to check if a number is odd/even:
1686     // abs (srem X, 2) --> and X, 1
1687     const APInt *C;
1688     if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
1689       return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
1690 
1691     break;
1692   }
1693   case Intrinsic::umin: {
1694     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1695     // umin(x, 1) == zext(x != 0)
1696     if (match(I1, m_One())) {
1697       assert(II->getType()->getScalarSizeInBits() != 1 &&
1698              "Expected simplify of umin with max constant");
1699       Value *Zero = Constant::getNullValue(I0->getType());
1700       Value *Cmp = Builder.CreateICmpNE(I0, Zero);
1701       return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
1702     }
1703     // umin(cttz(x), const) --> cttz(x | (1 << const))
1704     if (Value *FoldedCttz =
1705             foldMinimumOverTrailingOrLeadingZeroCount<Intrinsic::cttz>(
1706                 I0, I1, DL, Builder))
1707       return replaceInstUsesWith(*II, FoldedCttz);
1708     // umin(ctlz(x), const) --> ctlz(x | (SignedMin >> const))
1709     if (Value *FoldedCtlz =
1710             foldMinimumOverTrailingOrLeadingZeroCount<Intrinsic::ctlz>(
1711                 I0, I1, DL, Builder))
1712       return replaceInstUsesWith(*II, FoldedCtlz);
1713     [[fallthrough]];
1714   }
1715   case Intrinsic::umax: {
1716     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1717     Value *X, *Y;
1718     if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
1719         (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1720       Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1721       return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1722     }
1723     Constant *C;
1724     if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1725         I0->hasOneUse()) {
1726       if (Constant *NarrowC = getLosslessUnsignedTrunc(C, X->getType())) {
1727         Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1728         return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1729       }
1730     }
1731     // If both operands of unsigned min/max are sign-extended, it is still ok
1732     // to narrow the operation.
1733     [[fallthrough]];
1734   }
1735   case Intrinsic::smax:
1736   case Intrinsic::smin: {
1737     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1738     Value *X, *Y;
1739     if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
1740         (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1741       Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1742       return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1743     }
1744 
1745     Constant *C;
1746     if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1747         I0->hasOneUse()) {
1748       if (Constant *NarrowC = getLosslessSignedTrunc(C, X->getType())) {
1749         Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1750         return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1751       }
1752     }
1753 
1754     // umin(i1 X, i1 Y) -> and i1 X, Y
1755     // smax(i1 X, i1 Y) -> and i1 X, Y
1756     if ((IID == Intrinsic::umin || IID == Intrinsic::smax) &&
1757         II->getType()->isIntOrIntVectorTy(1)) {
1758       return BinaryOperator::CreateAnd(I0, I1);
1759     }
1760 
1761     // umax(i1 X, i1 Y) -> or i1 X, Y
1762     // smin(i1 X, i1 Y) -> or i1 X, Y
1763     if ((IID == Intrinsic::umax || IID == Intrinsic::smin) &&
1764         II->getType()->isIntOrIntVectorTy(1)) {
1765       return BinaryOperator::CreateOr(I0, I1);
1766     }
1767 
1768     if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1769       // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
1770       // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
1771       // TODO: Canonicalize neg after min/max if I1 is constant.
1772       if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
1773           (I0->hasOneUse() || I1->hasOneUse())) {
1774         Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1775         Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
1776         return BinaryOperator::CreateNSWNeg(InvMaxMin);
1777       }
1778     }
1779 
1780     // (umax X, (xor X, Pow2))
1781     //      -> (or X, Pow2)
1782     // (umin X, (xor X, Pow2))
1783     //      -> (and X, ~Pow2)
1784     // (smax X, (xor X, Pos_Pow2))
1785     //      -> (or X, Pos_Pow2)
1786     // (smin X, (xor X, Pos_Pow2))
1787     //      -> (and X, ~Pos_Pow2)
1788     // (smax X, (xor X, Neg_Pow2))
1789     //      -> (and X, ~Neg_Pow2)
1790     // (smin X, (xor X, Neg_Pow2))
1791     //      -> (or X, Neg_Pow2)
1792     if ((match(I0, m_c_Xor(m_Specific(I1), m_Value(X))) ||
1793          match(I1, m_c_Xor(m_Specific(I0), m_Value(X)))) &&
1794         isKnownToBeAPowerOfTwo(X, /* OrZero */ true)) {
1795       bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax;
1796       bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin;
1797 
1798       if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1799         auto KnownSign = getKnownSign(X, SQ.getWithInstruction(II));
1800         if (KnownSign == std::nullopt) {
1801           UseOr = false;
1802           UseAndN = false;
1803         } else if (*KnownSign /* true is Signed. */) {
1804           UseOr ^= true;
1805           UseAndN ^= true;
1806           Type *Ty = I0->getType();
1807           // Negative power of 2 must be IntMin. It's possible to be able to
1808           // prove negative / power of 2 without actually having known bits, so
1809           // just get the value by hand.
1810           X = Constant::getIntegerValue(
1811               Ty, APInt::getSignedMinValue(Ty->getScalarSizeInBits()));
1812         }
1813       }
1814       if (UseOr)
1815         return BinaryOperator::CreateOr(I0, X);
1816       else if (UseAndN)
1817         return BinaryOperator::CreateAnd(I0, Builder.CreateNot(X));
1818     }
1819 
1820     // If we can eliminate ~A and Y is free to invert:
1821     // max ~A, Y --> ~(min A, ~Y)
1822     //
1823     // Examples:
1824     // max ~A, ~Y --> ~(min A, Y)
1825     // max ~A, C --> ~(min A, ~C)
1826     // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
1827     auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
1828       Value *A;
1829       if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
1830           !isFreeToInvert(A, A->hasOneUse())) {
1831         if (Value *NotY = getFreelyInverted(Y, Y->hasOneUse(), &Builder)) {
1832           Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1833           Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
1834           return BinaryOperator::CreateNot(InvMaxMin);
1835         }
1836       }
1837       return nullptr;
1838     };
1839 
1840     if (Instruction *I = moveNotAfterMinMax(I0, I1))
1841       return I;
1842     if (Instruction *I = moveNotAfterMinMax(I1, I0))
1843       return I;
1844 
1845     if (Instruction *I = moveAddAfterMinMax(II, Builder))
1846       return I;
1847 
1848     // minmax (X & NegPow2C, Y & NegPow2C) --> minmax(X, Y) & NegPow2C
1849     const APInt *RHSC;
1850     if (match(I0, m_OneUse(m_And(m_Value(X), m_NegatedPower2(RHSC)))) &&
1851         match(I1, m_OneUse(m_And(m_Value(Y), m_SpecificInt(*RHSC)))))
1852       return BinaryOperator::CreateAnd(Builder.CreateBinaryIntrinsic(IID, X, Y),
1853                                        ConstantInt::get(II->getType(), *RHSC));
1854 
1855     // smax(X, -X) --> abs(X)
1856     // smin(X, -X) --> -abs(X)
1857     // umax(X, -X) --> -abs(X)
1858     // umin(X, -X) --> abs(X)
1859     if (isKnownNegation(I0, I1)) {
1860       // We can choose either operand as the input to abs(), but if we can
1861       // eliminate the only use of a value, that's better for subsequent
1862       // transforms/analysis.
1863       if (I0->hasOneUse() && !I1->hasOneUse())
1864         std::swap(I0, I1);
1865 
1866       // This is some variant of abs(). See if we can propagate 'nsw' to the abs
1867       // operation and potentially its negation.
1868       bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
1869       Value *Abs = Builder.CreateBinaryIntrinsic(
1870           Intrinsic::abs, I0,
1871           ConstantInt::getBool(II->getContext(), IntMinIsPoison));
1872 
1873       // We don't have a "nabs" intrinsic, so negate if needed based on the
1874       // max/min operation.
1875       if (IID == Intrinsic::smin || IID == Intrinsic::umax)
1876         Abs = Builder.CreateNeg(Abs, "nabs", IntMinIsPoison);
1877       return replaceInstUsesWith(CI, Abs);
1878     }
1879 
1880     if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
1881       return Sel;
1882 
1883     if (Instruction *SAdd = matchSAddSubSat(*II))
1884       return SAdd;
1885 
1886     if (Value *NewMinMax = reassociateMinMaxWithConstants(II, Builder, SQ))
1887       return replaceInstUsesWith(*II, NewMinMax);
1888 
1889     if (Instruction *R = reassociateMinMaxWithConstantInOperand(II, Builder))
1890       return R;
1891 
1892     if (Instruction *NewMinMax = factorizeMinMaxTree(II))
1893        return NewMinMax;
1894 
1895     // Try to fold minmax with constant RHS based on range information
1896     if (match(I1, m_APIntAllowPoison(RHSC))) {
1897       ICmpInst::Predicate Pred =
1898           ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID));
1899       bool IsSigned = MinMaxIntrinsic::isSigned(IID);
1900       ConstantRange LHS_CR = computeConstantRangeIncludingKnownBits(
1901           I0, IsSigned, SQ.getWithInstruction(II));
1902       if (!LHS_CR.isFullSet()) {
1903         if (LHS_CR.icmp(Pred, *RHSC))
1904           return replaceInstUsesWith(*II, I0);
1905         if (LHS_CR.icmp(ICmpInst::getSwappedPredicate(Pred), *RHSC))
1906           return replaceInstUsesWith(*II,
1907                                      ConstantInt::get(II->getType(), *RHSC));
1908       }
1909     }
1910 
1911     break;
1912   }
1913   case Intrinsic::bitreverse: {
1914     Value *IIOperand = II->getArgOperand(0);
1915     // bitrev (zext i1 X to ?) --> X ? SignBitC : 0
1916     Value *X;
1917     if (match(IIOperand, m_ZExt(m_Value(X))) &&
1918         X->getType()->isIntOrIntVectorTy(1)) {
1919       Type *Ty = II->getType();
1920       APInt SignBit = APInt::getSignMask(Ty->getScalarSizeInBits());
1921       return SelectInst::Create(X, ConstantInt::get(Ty, SignBit),
1922                                 ConstantInt::getNullValue(Ty));
1923     }
1924 
1925     if (Instruction *crossLogicOpFold =
1926         foldBitOrderCrossLogicOp<Intrinsic::bitreverse>(IIOperand, Builder))
1927       return crossLogicOpFold;
1928 
1929     break;
1930   }
1931   case Intrinsic::bswap: {
1932     Value *IIOperand = II->getArgOperand(0);
1933 
1934     // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
1935     // inverse-shift-of-bswap:
1936     // bswap (shl X, Y) --> lshr (bswap X), Y
1937     // bswap (lshr X, Y) --> shl (bswap X), Y
1938     Value *X, *Y;
1939     if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) {
1940       unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits();
1941       if (MaskedValueIsZero(Y, APInt::getLowBitsSet(BitWidth, 3))) {
1942         Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1943         BinaryOperator::BinaryOps InverseShift =
1944             cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl
1945                 ? Instruction::LShr
1946                 : Instruction::Shl;
1947         return BinaryOperator::Create(InverseShift, NewSwap, Y);
1948       }
1949     }
1950 
1951     KnownBits Known = computeKnownBits(IIOperand, 0, II);
1952     uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8);
1953     uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8);
1954     unsigned BW = Known.getBitWidth();
1955 
1956     // bswap(x) -> shift(x) if x has exactly one "active byte"
1957     if (BW - LZ - TZ == 8) {
1958       assert(LZ != TZ && "active byte cannot be in the middle");
1959       if (LZ > TZ)  // -> shl(x) if the "active byte" is in the low part of x
1960         return BinaryOperator::CreateNUWShl(
1961             IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
1962       // -> lshr(x) if the "active byte" is in the high part of x
1963       return BinaryOperator::CreateExactLShr(
1964             IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
1965     }
1966 
1967     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1968     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1969       unsigned C = X->getType()->getScalarSizeInBits() - BW;
1970       Value *CV = ConstantInt::get(X->getType(), C);
1971       Value *V = Builder.CreateLShr(X, CV);
1972       return new TruncInst(V, IIOperand->getType());
1973     }
1974 
1975     if (Instruction *crossLogicOpFold =
1976             foldBitOrderCrossLogicOp<Intrinsic::bswap>(IIOperand, Builder)) {
1977       return crossLogicOpFold;
1978     }
1979 
1980     // Try to fold into bitreverse if bswap is the root of the expression tree.
1981     if (Instruction *BitOp = matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ false,
1982                                                     /*MatchBitReversals*/ true))
1983       return BitOp;
1984     break;
1985   }
1986   case Intrinsic::masked_load:
1987     if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1988       return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1989     break;
1990   case Intrinsic::masked_store:
1991     return simplifyMaskedStore(*II);
1992   case Intrinsic::masked_gather:
1993     return simplifyMaskedGather(*II);
1994   case Intrinsic::masked_scatter:
1995     return simplifyMaskedScatter(*II);
1996   case Intrinsic::launder_invariant_group:
1997   case Intrinsic::strip_invariant_group:
1998     if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1999       return replaceInstUsesWith(*II, SkippedBarrier);
2000     break;
2001   case Intrinsic::powi:
2002     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2003       // 0 and 1 are handled in instsimplify
2004       // powi(x, -1) -> 1/x
2005       if (Power->isMinusOne())
2006         return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
2007                                              II->getArgOperand(0), II);
2008       // powi(x, 2) -> x*x
2009       if (Power->equalsInt(2))
2010         return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
2011                                              II->getArgOperand(0), II);
2012 
2013       if (!Power->getValue()[0]) {
2014         Value *X;
2015         // If power is even:
2016         // powi(-x, p) -> powi(x, p)
2017         // powi(fabs(x), p) -> powi(x, p)
2018         // powi(copysign(x, y), p) -> powi(x, p)
2019         if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
2020             match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
2021             match(II->getArgOperand(0),
2022                   m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value())))
2023           return replaceOperand(*II, 0, X);
2024       }
2025     }
2026     break;
2027 
2028   case Intrinsic::cttz:
2029   case Intrinsic::ctlz:
2030     if (auto *I = foldCttzCtlz(*II, *this))
2031       return I;
2032     break;
2033 
2034   case Intrinsic::ctpop:
2035     if (auto *I = foldCtpop(*II, *this))
2036       return I;
2037     break;
2038 
2039   case Intrinsic::fshl:
2040   case Intrinsic::fshr: {
2041     Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
2042     Type *Ty = II->getType();
2043     unsigned BitWidth = Ty->getScalarSizeInBits();
2044     Constant *ShAmtC;
2045     if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) {
2046       // Canonicalize a shift amount constant operand to modulo the bit-width.
2047       Constant *WidthC = ConstantInt::get(Ty, BitWidth);
2048       Constant *ModuloC =
2049           ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL);
2050       if (!ModuloC)
2051         return nullptr;
2052       if (ModuloC != ShAmtC)
2053         return replaceOperand(*II, 2, ModuloC);
2054 
2055       assert(match(ConstantFoldCompareInstOperands(ICmpInst::ICMP_UGT, WidthC,
2056                                                    ShAmtC, DL),
2057                    m_One()) &&
2058              "Shift amount expected to be modulo bitwidth");
2059 
2060       // Canonicalize funnel shift right by constant to funnel shift left. This
2061       // is not entirely arbitrary. For historical reasons, the backend may
2062       // recognize rotate left patterns but miss rotate right patterns.
2063       if (IID == Intrinsic::fshr) {
2064         // fshr X, Y, C --> fshl X, Y, (BitWidth - C) if C is not zero.
2065         if (!isKnownNonZero(ShAmtC, SQ.getWithInstruction(II)))
2066           return nullptr;
2067 
2068         Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
2069         Module *Mod = II->getModule();
2070         Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
2071         return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
2072       }
2073       assert(IID == Intrinsic::fshl &&
2074              "All funnel shifts by simple constants should go left");
2075 
2076       // fshl(X, 0, C) --> shl X, C
2077       // fshl(X, undef, C) --> shl X, C
2078       if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
2079         return BinaryOperator::CreateShl(Op0, ShAmtC);
2080 
2081       // fshl(0, X, C) --> lshr X, (BW-C)
2082       // fshl(undef, X, C) --> lshr X, (BW-C)
2083       if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
2084         return BinaryOperator::CreateLShr(Op1,
2085                                           ConstantExpr::getSub(WidthC, ShAmtC));
2086 
2087       // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
2088       if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
2089         Module *Mod = II->getModule();
2090         Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
2091         return CallInst::Create(Bswap, { Op0 });
2092       }
2093       if (Instruction *BitOp =
2094               matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ true,
2095                                      /*MatchBitReversals*/ true))
2096         return BitOp;
2097     }
2098 
2099     // Left or right might be masked.
2100     if (SimplifyDemandedInstructionBits(*II))
2101       return &CI;
2102 
2103     // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
2104     // so only the low bits of the shift amount are demanded if the bitwidth is
2105     // a power-of-2.
2106     if (!isPowerOf2_32(BitWidth))
2107       break;
2108     APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
2109     KnownBits Op2Known(BitWidth);
2110     if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
2111       return &CI;
2112     break;
2113   }
2114   case Intrinsic::ptrmask: {
2115     unsigned BitWidth = DL.getPointerTypeSizeInBits(II->getType());
2116     KnownBits Known(BitWidth);
2117     if (SimplifyDemandedInstructionBits(*II, Known))
2118       return II;
2119 
2120     Value *InnerPtr, *InnerMask;
2121     bool Changed = false;
2122     // Combine:
2123     // (ptrmask (ptrmask p, A), B)
2124     //    -> (ptrmask p, (and A, B))
2125     if (match(II->getArgOperand(0),
2126               m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(InnerPtr),
2127                                                        m_Value(InnerMask))))) {
2128       assert(II->getArgOperand(1)->getType() == InnerMask->getType() &&
2129              "Mask types must match");
2130       // TODO: If InnerMask == Op1, we could copy attributes from inner
2131       // callsite -> outer callsite.
2132       Value *NewMask = Builder.CreateAnd(II->getArgOperand(1), InnerMask);
2133       replaceOperand(CI, 0, InnerPtr);
2134       replaceOperand(CI, 1, NewMask);
2135       Changed = true;
2136     }
2137 
2138     // See if we can deduce non-null.
2139     if (!CI.hasRetAttr(Attribute::NonNull) &&
2140         (Known.isNonZero() ||
2141          isKnownNonZero(II, getSimplifyQuery().getWithInstruction(II)))) {
2142       CI.addRetAttr(Attribute::NonNull);
2143       Changed = true;
2144     }
2145 
2146     unsigned NewAlignmentLog =
2147         std::min(Value::MaxAlignmentExponent,
2148                  std::min(BitWidth - 1, Known.countMinTrailingZeros()));
2149     // Known bits will capture if we had alignment information associated with
2150     // the pointer argument.
2151     if (NewAlignmentLog > Log2(CI.getRetAlign().valueOrOne())) {
2152       CI.addRetAttr(Attribute::getWithAlignment(
2153           CI.getContext(), Align(uint64_t(1) << NewAlignmentLog)));
2154       Changed = true;
2155     }
2156     if (Changed)
2157       return &CI;
2158     break;
2159   }
2160   case Intrinsic::uadd_with_overflow:
2161   case Intrinsic::sadd_with_overflow: {
2162     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2163       return I;
2164 
2165     // Given 2 constant operands whose sum does not overflow:
2166     // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2167     // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2168     Value *X;
2169     const APInt *C0, *C1;
2170     Value *Arg0 = II->getArgOperand(0);
2171     Value *Arg1 = II->getArgOperand(1);
2172     bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2173     bool HasNWAdd = IsSigned
2174                         ? match(Arg0, m_NSWAddLike(m_Value(X), m_APInt(C0)))
2175                         : match(Arg0, m_NUWAddLike(m_Value(X), m_APInt(C0)));
2176     if (HasNWAdd && match(Arg1, m_APInt(C1))) {
2177       bool Overflow;
2178       APInt NewC =
2179           IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
2180       if (!Overflow)
2181         return replaceInstUsesWith(
2182             *II, Builder.CreateBinaryIntrinsic(
2183                      IID, X, ConstantInt::get(Arg1->getType(), NewC)));
2184     }
2185     break;
2186   }
2187 
2188   case Intrinsic::umul_with_overflow:
2189   case Intrinsic::smul_with_overflow:
2190   case Intrinsic::usub_with_overflow:
2191     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2192       return I;
2193     break;
2194 
2195   case Intrinsic::ssub_with_overflow: {
2196     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2197       return I;
2198 
2199     Constant *C;
2200     Value *Arg0 = II->getArgOperand(0);
2201     Value *Arg1 = II->getArgOperand(1);
2202     // Given a constant C that is not the minimum signed value
2203     // for an integer of a given bit width:
2204     //
2205     // ssubo X, C -> saddo X, -C
2206     if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
2207       Value *NegVal = ConstantExpr::getNeg(C);
2208       // Build a saddo call that is equivalent to the discovered
2209       // ssubo call.
2210       return replaceInstUsesWith(
2211           *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2212                                              Arg0, NegVal));
2213     }
2214 
2215     break;
2216   }
2217 
2218   case Intrinsic::uadd_sat:
2219   case Intrinsic::sadd_sat:
2220   case Intrinsic::usub_sat:
2221   case Intrinsic::ssub_sat: {
2222     SaturatingInst *SI = cast<SaturatingInst>(II);
2223     Type *Ty = SI->getType();
2224     Value *Arg0 = SI->getLHS();
2225     Value *Arg1 = SI->getRHS();
2226 
2227     // Make use of known overflow information.
2228     OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
2229                                         Arg0, Arg1, SI);
2230     switch (OR) {
2231       case OverflowResult::MayOverflow:
2232         break;
2233       case OverflowResult::NeverOverflows:
2234         if (SI->isSigned())
2235           return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
2236         else
2237           return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
2238       case OverflowResult::AlwaysOverflowsLow: {
2239         unsigned BitWidth = Ty->getScalarSizeInBits();
2240         APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
2241         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
2242       }
2243       case OverflowResult::AlwaysOverflowsHigh: {
2244         unsigned BitWidth = Ty->getScalarSizeInBits();
2245         APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
2246         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
2247       }
2248     }
2249 
2250     // usub_sat((sub nuw C, A), C1) -> usub_sat(usub_sat(C, C1), A)
2251     // which after that:
2252     // usub_sat((sub nuw C, A), C1) -> usub_sat(C - C1, A) if C1 u< C
2253     // usub_sat((sub nuw C, A), C1) -> 0 otherwise
2254     Constant *C, *C1;
2255     Value *A;
2256     if (IID == Intrinsic::usub_sat &&
2257         match(Arg0, m_NUWSub(m_ImmConstant(C), m_Value(A))) &&
2258         match(Arg1, m_ImmConstant(C1))) {
2259       auto *NewC = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, C, C1);
2260       auto *NewSub =
2261           Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, NewC, A);
2262       return replaceInstUsesWith(*SI, NewSub);
2263     }
2264 
2265     // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2266     if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2267         C->isNotMinSignedValue()) {
2268       Value *NegVal = ConstantExpr::getNeg(C);
2269       return replaceInstUsesWith(
2270           *II, Builder.CreateBinaryIntrinsic(
2271               Intrinsic::sadd_sat, Arg0, NegVal));
2272     }
2273 
2274     // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2275     // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2276     // if Val and Val2 have the same sign
2277     if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
2278       Value *X;
2279       const APInt *Val, *Val2;
2280       APInt NewVal;
2281       bool IsUnsigned =
2282           IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2283       if (Other->getIntrinsicID() == IID &&
2284           match(Arg1, m_APInt(Val)) &&
2285           match(Other->getArgOperand(0), m_Value(X)) &&
2286           match(Other->getArgOperand(1), m_APInt(Val2))) {
2287         if (IsUnsigned)
2288           NewVal = Val->uadd_sat(*Val2);
2289         else if (Val->isNonNegative() == Val2->isNonNegative()) {
2290           bool Overflow;
2291           NewVal = Val->sadd_ov(*Val2, Overflow);
2292           if (Overflow) {
2293             // Both adds together may add more than SignedMaxValue
2294             // without saturating the final result.
2295             break;
2296           }
2297         } else {
2298           // Cannot fold saturated addition with different signs.
2299           break;
2300         }
2301 
2302         return replaceInstUsesWith(
2303             *II, Builder.CreateBinaryIntrinsic(
2304                      IID, X, ConstantInt::get(II->getType(), NewVal)));
2305       }
2306     }
2307     break;
2308   }
2309 
2310   case Intrinsic::minnum:
2311   case Intrinsic::maxnum:
2312   case Intrinsic::minimum:
2313   case Intrinsic::maximum: {
2314     Value *Arg0 = II->getArgOperand(0);
2315     Value *Arg1 = II->getArgOperand(1);
2316     Value *X, *Y;
2317     if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2318         (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2319       // If both operands are negated, invert the call and negate the result:
2320       // min(-X, -Y) --> -(max(X, Y))
2321       // max(-X, -Y) --> -(min(X, Y))
2322       Intrinsic::ID NewIID;
2323       switch (IID) {
2324       case Intrinsic::maxnum:
2325         NewIID = Intrinsic::minnum;
2326         break;
2327       case Intrinsic::minnum:
2328         NewIID = Intrinsic::maxnum;
2329         break;
2330       case Intrinsic::maximum:
2331         NewIID = Intrinsic::minimum;
2332         break;
2333       case Intrinsic::minimum:
2334         NewIID = Intrinsic::maximum;
2335         break;
2336       default:
2337         llvm_unreachable("unexpected intrinsic ID");
2338       }
2339       Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
2340       Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
2341       FNeg->copyIRFlags(II);
2342       return FNeg;
2343     }
2344 
2345     // m(m(X, C2), C1) -> m(X, C)
2346     const APFloat *C1, *C2;
2347     if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
2348       if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
2349           ((match(M->getArgOperand(0), m_Value(X)) &&
2350             match(M->getArgOperand(1), m_APFloat(C2))) ||
2351            (match(M->getArgOperand(1), m_Value(X)) &&
2352             match(M->getArgOperand(0), m_APFloat(C2))))) {
2353         APFloat Res(0.0);
2354         switch (IID) {
2355         case Intrinsic::maxnum:
2356           Res = maxnum(*C1, *C2);
2357           break;
2358         case Intrinsic::minnum:
2359           Res = minnum(*C1, *C2);
2360           break;
2361         case Intrinsic::maximum:
2362           Res = maximum(*C1, *C2);
2363           break;
2364         case Intrinsic::minimum:
2365           Res = minimum(*C1, *C2);
2366           break;
2367         default:
2368           llvm_unreachable("unexpected intrinsic ID");
2369         }
2370         Value *V = Builder.CreateBinaryIntrinsic(
2371             IID, X, ConstantFP::get(Arg0->getType(), Res), II);
2372         // TODO: Conservatively intersecting FMF. If Res == C2, the transform
2373         //       was a simplification (so Arg0 and its original flags could
2374         //       propagate?)
2375         if (auto *CI = dyn_cast<CallInst>(V))
2376           CI->andIRFlags(M);
2377         return replaceInstUsesWith(*II, V);
2378       }
2379     }
2380 
2381     // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
2382     if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
2383         match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
2384         X->getType() == Y->getType()) {
2385       Value *NewCall =
2386           Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
2387       return new FPExtInst(NewCall, II->getType());
2388     }
2389 
2390     // max X, -X --> fabs X
2391     // min X, -X --> -(fabs X)
2392     // TODO: Remove one-use limitation? That is obviously better for max,
2393     // hence why we don't check for one-use for that. However,
2394     // it would be an extra instruction for min (fnabs), but
2395     // that is still likely better for analysis and codegen.
2396     auto IsMinMaxOrXNegX = [IID, &X](Value *Op0, Value *Op1) {
2397       if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Specific(X)))
2398         return Op0->hasOneUse() ||
2399                (IID != Intrinsic::minimum && IID != Intrinsic::minnum);
2400       return false;
2401     };
2402 
2403     if (IsMinMaxOrXNegX(Arg0, Arg1) || IsMinMaxOrXNegX(Arg1, Arg0)) {
2404       Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
2405       if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
2406         R = Builder.CreateFNegFMF(R, II);
2407       return replaceInstUsesWith(*II, R);
2408     }
2409 
2410     break;
2411   }
2412   case Intrinsic::matrix_multiply: {
2413     // Optimize negation in matrix multiplication.
2414 
2415     // -A * -B -> A * B
2416     Value *A, *B;
2417     if (match(II->getArgOperand(0), m_FNeg(m_Value(A))) &&
2418         match(II->getArgOperand(1), m_FNeg(m_Value(B)))) {
2419       replaceOperand(*II, 0, A);
2420       replaceOperand(*II, 1, B);
2421       return II;
2422     }
2423 
2424     Value *Op0 = II->getOperand(0);
2425     Value *Op1 = II->getOperand(1);
2426     Value *OpNotNeg, *NegatedOp;
2427     unsigned NegatedOpArg, OtherOpArg;
2428     if (match(Op0, m_FNeg(m_Value(OpNotNeg)))) {
2429       NegatedOp = Op0;
2430       NegatedOpArg = 0;
2431       OtherOpArg = 1;
2432     } else if (match(Op1, m_FNeg(m_Value(OpNotNeg)))) {
2433       NegatedOp = Op1;
2434       NegatedOpArg = 1;
2435       OtherOpArg = 0;
2436     } else
2437       // Multiplication doesn't have a negated operand.
2438       break;
2439 
2440     // Only optimize if the negated operand has only one use.
2441     if (!NegatedOp->hasOneUse())
2442       break;
2443 
2444     Value *OtherOp = II->getOperand(OtherOpArg);
2445     VectorType *RetTy = cast<VectorType>(II->getType());
2446     VectorType *NegatedOpTy = cast<VectorType>(NegatedOp->getType());
2447     VectorType *OtherOpTy = cast<VectorType>(OtherOp->getType());
2448     ElementCount NegatedCount = NegatedOpTy->getElementCount();
2449     ElementCount OtherCount = OtherOpTy->getElementCount();
2450     ElementCount RetCount = RetTy->getElementCount();
2451     // (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa.
2452     if (ElementCount::isKnownGT(NegatedCount, OtherCount) &&
2453         ElementCount::isKnownLT(OtherCount, RetCount)) {
2454       Value *InverseOtherOp = Builder.CreateFNeg(OtherOp);
2455       replaceOperand(*II, NegatedOpArg, OpNotNeg);
2456       replaceOperand(*II, OtherOpArg, InverseOtherOp);
2457       return II;
2458     }
2459     // (-A) * B -> -(A * B), if it is cheaper to negate the result
2460     if (ElementCount::isKnownGT(NegatedCount, RetCount)) {
2461       SmallVector<Value *, 5> NewArgs(II->args());
2462       NewArgs[NegatedOpArg] = OpNotNeg;
2463       Instruction *NewMul =
2464           Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II);
2465       return replaceInstUsesWith(*II, Builder.CreateFNegFMF(NewMul, II));
2466     }
2467     break;
2468   }
2469   case Intrinsic::fmuladd: {
2470     // Try to simplify the underlying FMul.
2471     if (Value *V = simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
2472                                     II->getFastMathFlags(),
2473                                     SQ.getWithInstruction(II))) {
2474       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2475       FAdd->copyFastMathFlags(II);
2476       return FAdd;
2477     }
2478 
2479     [[fallthrough]];
2480   }
2481   case Intrinsic::fma: {
2482     // fma fneg(x), fneg(y), z -> fma x, y, z
2483     Value *Src0 = II->getArgOperand(0);
2484     Value *Src1 = II->getArgOperand(1);
2485     Value *X, *Y;
2486     if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2487       replaceOperand(*II, 0, X);
2488       replaceOperand(*II, 1, Y);
2489       return II;
2490     }
2491 
2492     // fma fabs(x), fabs(x), z -> fma x, x, z
2493     if (match(Src0, m_FAbs(m_Value(X))) &&
2494         match(Src1, m_FAbs(m_Specific(X)))) {
2495       replaceOperand(*II, 0, X);
2496       replaceOperand(*II, 1, X);
2497       return II;
2498     }
2499 
2500     // Try to simplify the underlying FMul. We can only apply simplifications
2501     // that do not require rounding.
2502     if (Value *V = simplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
2503                                    II->getFastMathFlags(),
2504                                    SQ.getWithInstruction(II))) {
2505       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2506       FAdd->copyFastMathFlags(II);
2507       return FAdd;
2508     }
2509 
2510     // fma x, y, 0 -> fmul x, y
2511     // This is always valid for -0.0, but requires nsz for +0.0 as
2512     // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
2513     if (match(II->getArgOperand(2), m_NegZeroFP()) ||
2514         (match(II->getArgOperand(2), m_PosZeroFP()) &&
2515          II->getFastMathFlags().noSignedZeros()))
2516       return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
2517 
2518     break;
2519   }
2520   case Intrinsic::copysign: {
2521     Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
2522     if (std::optional<bool> KnownSignBit = computeKnownFPSignBit(
2523             Sign, /*Depth=*/0, getSimplifyQuery().getWithInstruction(II))) {
2524       if (*KnownSignBit) {
2525         // If we know that the sign argument is negative, reduce to FNABS:
2526         // copysign Mag, -Sign --> fneg (fabs Mag)
2527         Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2528         return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
2529       }
2530 
2531       // If we know that the sign argument is positive, reduce to FABS:
2532       // copysign Mag, +Sign --> fabs Mag
2533       Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2534       return replaceInstUsesWith(*II, Fabs);
2535     }
2536 
2537     // Propagate sign argument through nested calls:
2538     // copysign Mag, (copysign ?, X) --> copysign Mag, X
2539     Value *X;
2540     if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X))))
2541       return replaceOperand(*II, 1, X);
2542 
2543     // Clear sign-bit of constant magnitude:
2544     // copysign -MagC, X --> copysign MagC, X
2545     // TODO: Support constant folding for fabs
2546     const APFloat *MagC;
2547     if (match(Mag, m_APFloat(MagC)) && MagC->isNegative()) {
2548       APFloat PosMagC = *MagC;
2549       PosMagC.clearSign();
2550       return replaceOperand(*II, 0, ConstantFP::get(Mag->getType(), PosMagC));
2551     }
2552 
2553     // Peek through changes of magnitude's sign-bit. This call rewrites those:
2554     // copysign (fabs X), Sign --> copysign X, Sign
2555     // copysign (fneg X), Sign --> copysign X, Sign
2556     if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
2557       return replaceOperand(*II, 0, X);
2558 
2559     break;
2560   }
2561   case Intrinsic::fabs: {
2562     Value *Cond, *TVal, *FVal;
2563     Value *Arg = II->getArgOperand(0);
2564     Value *X;
2565     // fabs (-X) --> fabs (X)
2566     if (match(Arg, m_FNeg(m_Value(X)))) {
2567         CallInst *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
2568         return replaceInstUsesWith(CI, Fabs);
2569     }
2570 
2571     if (match(Arg, m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
2572       // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
2573       if (isa<Constant>(TVal) || isa<Constant>(FVal)) {
2574         CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
2575         CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
2576         SelectInst *SI = SelectInst::Create(Cond, AbsT, AbsF);
2577         FastMathFlags FMF1 = II->getFastMathFlags();
2578         FastMathFlags FMF2 = cast<SelectInst>(Arg)->getFastMathFlags();
2579         FMF2.setNoSignedZeros(false);
2580         SI->setFastMathFlags(FMF1 | FMF2);
2581         return SI;
2582       }
2583       // fabs (select Cond, -FVal, FVal) --> fabs FVal
2584       if (match(TVal, m_FNeg(m_Specific(FVal))))
2585         return replaceOperand(*II, 0, FVal);
2586       // fabs (select Cond, TVal, -TVal) --> fabs TVal
2587       if (match(FVal, m_FNeg(m_Specific(TVal))))
2588         return replaceOperand(*II, 0, TVal);
2589     }
2590 
2591     Value *Magnitude, *Sign;
2592     if (match(II->getArgOperand(0),
2593               m_CopySign(m_Value(Magnitude), m_Value(Sign)))) {
2594       // fabs (copysign x, y) -> (fabs x)
2595       CallInst *AbsSign =
2596           Builder.CreateCall(II->getCalledFunction(), {Magnitude});
2597       AbsSign->copyFastMathFlags(II);
2598       return replaceInstUsesWith(*II, AbsSign);
2599     }
2600 
2601     [[fallthrough]];
2602   }
2603   case Intrinsic::ceil:
2604   case Intrinsic::floor:
2605   case Intrinsic::round:
2606   case Intrinsic::roundeven:
2607   case Intrinsic::nearbyint:
2608   case Intrinsic::rint:
2609   case Intrinsic::trunc: {
2610     Value *ExtSrc;
2611     if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
2612       // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2613       Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
2614       return new FPExtInst(NarrowII, II->getType());
2615     }
2616     break;
2617   }
2618   case Intrinsic::cos:
2619   case Intrinsic::amdgcn_cos: {
2620     Value *X, *Sign;
2621     Value *Src = II->getArgOperand(0);
2622     if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X))) ||
2623         match(Src, m_CopySign(m_Value(X), m_Value(Sign)))) {
2624       // cos(-x) --> cos(x)
2625       // cos(fabs(x)) --> cos(x)
2626       // cos(copysign(x, y)) --> cos(x)
2627       return replaceOperand(*II, 0, X);
2628     }
2629     break;
2630   }
2631   case Intrinsic::sin:
2632   case Intrinsic::amdgcn_sin: {
2633     Value *X;
2634     if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
2635       // sin(-x) --> -sin(x)
2636       Value *NewSin = Builder.CreateUnaryIntrinsic(IID, X, II);
2637       return UnaryOperator::CreateFNegFMF(NewSin, II);
2638     }
2639     break;
2640   }
2641   case Intrinsic::ldexp: {
2642     // ldexp(ldexp(x, a), b) -> ldexp(x, a + b)
2643     //
2644     // The danger is if the first ldexp would overflow to infinity or underflow
2645     // to zero, but the combined exponent avoids it. We ignore this with
2646     // reassoc.
2647     //
2648     // It's also safe to fold if we know both exponents are >= 0 or <= 0 since
2649     // it would just double down on the overflow/underflow which would occur
2650     // anyway.
2651     //
2652     // TODO: Could do better if we had range tracking for the input value
2653     // exponent. Also could broaden sign check to cover == 0 case.
2654     Value *Src = II->getArgOperand(0);
2655     Value *Exp = II->getArgOperand(1);
2656     Value *InnerSrc;
2657     Value *InnerExp;
2658     if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ldexp>(
2659                        m_Value(InnerSrc), m_Value(InnerExp)))) &&
2660         Exp->getType() == InnerExp->getType()) {
2661       FastMathFlags FMF = II->getFastMathFlags();
2662       FastMathFlags InnerFlags = cast<FPMathOperator>(Src)->getFastMathFlags();
2663 
2664       if ((FMF.allowReassoc() && InnerFlags.allowReassoc()) ||
2665           signBitMustBeTheSame(Exp, InnerExp, SQ.getWithInstruction(II))) {
2666         // TODO: Add nsw/nuw probably safe if integer type exceeds exponent
2667         // width.
2668         Value *NewExp = Builder.CreateAdd(InnerExp, Exp);
2669         II->setArgOperand(1, NewExp);
2670         II->setFastMathFlags(InnerFlags); // Or the inner flags.
2671         return replaceOperand(*II, 0, InnerSrc);
2672       }
2673     }
2674 
2675     // ldexp(x, zext(i1 y)) -> fmul x, (select y, 2.0, 1.0)
2676     // ldexp(x, sext(i1 y)) -> fmul x, (select y, 0.5, 1.0)
2677     Value *ExtSrc;
2678     if (match(Exp, m_ZExt(m_Value(ExtSrc))) &&
2679         ExtSrc->getType()->getScalarSizeInBits() == 1) {
2680       Value *Select =
2681           Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 2.0),
2682                                ConstantFP::get(II->getType(), 1.0));
2683       return BinaryOperator::CreateFMulFMF(Src, Select, II);
2684     }
2685     if (match(Exp, m_SExt(m_Value(ExtSrc))) &&
2686         ExtSrc->getType()->getScalarSizeInBits() == 1) {
2687       Value *Select =
2688           Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 0.5),
2689                                ConstantFP::get(II->getType(), 1.0));
2690       return BinaryOperator::CreateFMulFMF(Src, Select, II);
2691     }
2692 
2693     // ldexp(x, c ? exp : 0) -> c ? ldexp(x, exp) : x
2694     // ldexp(x, c ? 0 : exp) -> c ? x : ldexp(x, exp)
2695     ///
2696     // TODO: If we cared, should insert a canonicalize for x
2697     Value *SelectCond, *SelectLHS, *SelectRHS;
2698     if (match(II->getArgOperand(1),
2699               m_OneUse(m_Select(m_Value(SelectCond), m_Value(SelectLHS),
2700                                 m_Value(SelectRHS))))) {
2701       Value *NewLdexp = nullptr;
2702       Value *Select = nullptr;
2703       if (match(SelectRHS, m_ZeroInt())) {
2704         NewLdexp = Builder.CreateLdexp(Src, SelectLHS);
2705         Select = Builder.CreateSelect(SelectCond, NewLdexp, Src);
2706       } else if (match(SelectLHS, m_ZeroInt())) {
2707         NewLdexp = Builder.CreateLdexp(Src, SelectRHS);
2708         Select = Builder.CreateSelect(SelectCond, Src, NewLdexp);
2709       }
2710 
2711       if (NewLdexp) {
2712         Select->takeName(II);
2713         cast<Instruction>(NewLdexp)->copyFastMathFlags(II);
2714         return replaceInstUsesWith(*II, Select);
2715       }
2716     }
2717 
2718     break;
2719   }
2720   case Intrinsic::ptrauth_auth:
2721   case Intrinsic::ptrauth_resign: {
2722     // (sign|resign) + (auth|resign) can be folded by omitting the middle
2723     // sign+auth component if the key and discriminator match.
2724     bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign;
2725     Value *Ptr = II->getArgOperand(0);
2726     Value *Key = II->getArgOperand(1);
2727     Value *Disc = II->getArgOperand(2);
2728 
2729     // AuthKey will be the key we need to end up authenticating against in
2730     // whatever we replace this sequence with.
2731     Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr;
2732     if (const auto *CI = dyn_cast<CallBase>(Ptr)) {
2733       BasePtr = CI->getArgOperand(0);
2734       if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) {
2735         if (CI->getArgOperand(1) != Key || CI->getArgOperand(2) != Disc)
2736           break;
2737       } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) {
2738         if (CI->getArgOperand(3) != Key || CI->getArgOperand(4) != Disc)
2739           break;
2740         AuthKey = CI->getArgOperand(1);
2741         AuthDisc = CI->getArgOperand(2);
2742       } else
2743         break;
2744     } else if (const auto *PtrToInt = dyn_cast<PtrToIntOperator>(Ptr)) {
2745       // ptrauth constants are equivalent to a call to @llvm.ptrauth.sign for
2746       // our purposes, so check for that too.
2747       const auto *CPA = dyn_cast<ConstantPtrAuth>(PtrToInt->getOperand(0));
2748       if (!CPA || !CPA->isKnownCompatibleWith(Key, Disc, DL))
2749         break;
2750 
2751       // resign(ptrauth(p,ks,ds),ks,ds,kr,dr) -> ptrauth(p,kr,dr)
2752       if (NeedSign && isa<ConstantInt>(II->getArgOperand(4))) {
2753         auto *SignKey = cast<ConstantInt>(II->getArgOperand(3));
2754         auto *SignDisc = cast<ConstantInt>(II->getArgOperand(4));
2755         auto *SignAddrDisc = ConstantPointerNull::get(Builder.getPtrTy());
2756         auto *NewCPA = ConstantPtrAuth::get(CPA->getPointer(), SignKey,
2757                                             SignDisc, SignAddrDisc);
2758         replaceInstUsesWith(
2759             *II, ConstantExpr::getPointerCast(NewCPA, II->getType()));
2760         return eraseInstFromFunction(*II);
2761       }
2762 
2763       // auth(ptrauth(p,k,d),k,d) -> p
2764       BasePtr = Builder.CreatePtrToInt(CPA->getPointer(), II->getType());
2765     } else
2766       break;
2767 
2768     unsigned NewIntrin;
2769     if (AuthKey && NeedSign) {
2770       // resign(0,1) + resign(1,2) = resign(0, 2)
2771       NewIntrin = Intrinsic::ptrauth_resign;
2772     } else if (AuthKey) {
2773       // resign(0,1) + auth(1) = auth(0)
2774       NewIntrin = Intrinsic::ptrauth_auth;
2775     } else if (NeedSign) {
2776       // sign(0) + resign(0, 1) = sign(1)
2777       NewIntrin = Intrinsic::ptrauth_sign;
2778     } else {
2779       // sign(0) + auth(0) = nop
2780       replaceInstUsesWith(*II, BasePtr);
2781       return eraseInstFromFunction(*II);
2782     }
2783 
2784     SmallVector<Value *, 4> CallArgs;
2785     CallArgs.push_back(BasePtr);
2786     if (AuthKey) {
2787       CallArgs.push_back(AuthKey);
2788       CallArgs.push_back(AuthDisc);
2789     }
2790 
2791     if (NeedSign) {
2792       CallArgs.push_back(II->getArgOperand(3));
2793       CallArgs.push_back(II->getArgOperand(4));
2794     }
2795 
2796     Function *NewFn = Intrinsic::getDeclaration(II->getModule(), NewIntrin);
2797     return CallInst::Create(NewFn, CallArgs);
2798   }
2799   case Intrinsic::arm_neon_vtbl1:
2800   case Intrinsic::aarch64_neon_tbl1:
2801     if (Value *V = simplifyNeonTbl1(*II, Builder))
2802       return replaceInstUsesWith(*II, V);
2803     break;
2804 
2805   case Intrinsic::arm_neon_vmulls:
2806   case Intrinsic::arm_neon_vmullu:
2807   case Intrinsic::aarch64_neon_smull:
2808   case Intrinsic::aarch64_neon_umull: {
2809     Value *Arg0 = II->getArgOperand(0);
2810     Value *Arg1 = II->getArgOperand(1);
2811 
2812     // Handle mul by zero first:
2813     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
2814       return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
2815     }
2816 
2817     // Check for constant LHS & RHS - in this case we just simplify.
2818     bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
2819                  IID == Intrinsic::aarch64_neon_umull);
2820     VectorType *NewVT = cast<VectorType>(II->getType());
2821     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
2822       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
2823         Value *V0 = Builder.CreateIntCast(CV0, NewVT, /*isSigned=*/!Zext);
2824         Value *V1 = Builder.CreateIntCast(CV1, NewVT, /*isSigned=*/!Zext);
2825         return replaceInstUsesWith(CI, Builder.CreateMul(V0, V1));
2826       }
2827 
2828       // Couldn't simplify - canonicalize constant to the RHS.
2829       std::swap(Arg0, Arg1);
2830     }
2831 
2832     // Handle mul by one:
2833     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
2834       if (ConstantInt *Splat =
2835               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
2836         if (Splat->isOne())
2837           return CastInst::CreateIntegerCast(Arg0, II->getType(),
2838                                              /*isSigned=*/!Zext);
2839 
2840     break;
2841   }
2842   case Intrinsic::arm_neon_aesd:
2843   case Intrinsic::arm_neon_aese:
2844   case Intrinsic::aarch64_crypto_aesd:
2845   case Intrinsic::aarch64_crypto_aese: {
2846     Value *DataArg = II->getArgOperand(0);
2847     Value *KeyArg  = II->getArgOperand(1);
2848 
2849     // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
2850     Value *Data, *Key;
2851     if (match(KeyArg, m_ZeroInt()) &&
2852         match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
2853       replaceOperand(*II, 0, Data);
2854       replaceOperand(*II, 1, Key);
2855       return II;
2856     }
2857     break;
2858   }
2859   case Intrinsic::hexagon_V6_vandvrt:
2860   case Intrinsic::hexagon_V6_vandvrt_128B: {
2861     // Simplify Q -> V -> Q conversion.
2862     if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2863       Intrinsic::ID ID0 = Op0->getIntrinsicID();
2864       if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
2865           ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
2866         break;
2867       Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
2868       uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
2869       uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
2870       // Check if every byte has common bits in Bytes and Mask.
2871       uint64_t C = Bytes1 & Mask1;
2872       if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
2873         return replaceInstUsesWith(*II, Op0->getArgOperand(0));
2874     }
2875     break;
2876   }
2877   case Intrinsic::stackrestore: {
2878     enum class ClassifyResult {
2879       None,
2880       Alloca,
2881       StackRestore,
2882       CallWithSideEffects,
2883     };
2884     auto Classify = [](const Instruction *I) {
2885       if (isa<AllocaInst>(I))
2886         return ClassifyResult::Alloca;
2887 
2888       if (auto *CI = dyn_cast<CallInst>(I)) {
2889         if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
2890           if (II->getIntrinsicID() == Intrinsic::stackrestore)
2891             return ClassifyResult::StackRestore;
2892 
2893           if (II->mayHaveSideEffects())
2894             return ClassifyResult::CallWithSideEffects;
2895         } else {
2896           // Consider all non-intrinsic calls to be side effects
2897           return ClassifyResult::CallWithSideEffects;
2898         }
2899       }
2900 
2901       return ClassifyResult::None;
2902     };
2903 
2904     // If the stacksave and the stackrestore are in the same BB, and there is
2905     // no intervening call, alloca, or stackrestore of a different stacksave,
2906     // remove the restore. This can happen when variable allocas are DCE'd.
2907     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2908       if (SS->getIntrinsicID() == Intrinsic::stacksave &&
2909           SS->getParent() == II->getParent()) {
2910         BasicBlock::iterator BI(SS);
2911         bool CannotRemove = false;
2912         for (++BI; &*BI != II; ++BI) {
2913           switch (Classify(&*BI)) {
2914           case ClassifyResult::None:
2915             // So far so good, look at next instructions.
2916             break;
2917 
2918           case ClassifyResult::StackRestore:
2919             // If we found an intervening stackrestore for a different
2920             // stacksave, we can't remove the stackrestore. Otherwise, continue.
2921             if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
2922               CannotRemove = true;
2923             break;
2924 
2925           case ClassifyResult::Alloca:
2926           case ClassifyResult::CallWithSideEffects:
2927             // If we found an alloca, a non-intrinsic call, or an intrinsic
2928             // call with side effects, we can't remove the stackrestore.
2929             CannotRemove = true;
2930             break;
2931           }
2932           if (CannotRemove)
2933             break;
2934         }
2935 
2936         if (!CannotRemove)
2937           return eraseInstFromFunction(CI);
2938       }
2939     }
2940 
2941     // Scan down this block to see if there is another stack restore in the
2942     // same block without an intervening call/alloca.
2943     BasicBlock::iterator BI(II);
2944     Instruction *TI = II->getParent()->getTerminator();
2945     bool CannotRemove = false;
2946     for (++BI; &*BI != TI; ++BI) {
2947       switch (Classify(&*BI)) {
2948       case ClassifyResult::None:
2949         // So far so good, look at next instructions.
2950         break;
2951 
2952       case ClassifyResult::StackRestore:
2953         // If there is a stackrestore below this one, remove this one.
2954         return eraseInstFromFunction(CI);
2955 
2956       case ClassifyResult::Alloca:
2957       case ClassifyResult::CallWithSideEffects:
2958         // If we found an alloca, a non-intrinsic call, or an intrinsic call
2959         // with side effects (such as llvm.stacksave and llvm.read_register),
2960         // we can't remove the stack restore.
2961         CannotRemove = true;
2962         break;
2963       }
2964       if (CannotRemove)
2965         break;
2966     }
2967 
2968     // If the stack restore is in a return, resume, or unwind block and if there
2969     // are no allocas or calls between the restore and the return, nuke the
2970     // restore.
2971     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
2972       return eraseInstFromFunction(CI);
2973     break;
2974   }
2975   case Intrinsic::lifetime_end:
2976     // Asan needs to poison memory to detect invalid access which is possible
2977     // even for empty lifetime range.
2978     if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
2979         II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
2980         II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
2981       break;
2982 
2983     if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
2984           return I.getIntrinsicID() == Intrinsic::lifetime_start;
2985         }))
2986       return nullptr;
2987     break;
2988   case Intrinsic::assume: {
2989     Value *IIOperand = II->getArgOperand(0);
2990     SmallVector<OperandBundleDef, 4> OpBundles;
2991     II->getOperandBundlesAsDefs(OpBundles);
2992 
2993     /// This will remove the boolean Condition from the assume given as
2994     /// argument and remove the assume if it becomes useless.
2995     /// always returns nullptr for use as a return values.
2996     auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
2997       assert(isa<AssumeInst>(Assume));
2998       if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II)))
2999         return eraseInstFromFunction(CI);
3000       replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
3001       return nullptr;
3002     };
3003     // Remove an assume if it is followed by an identical assume.
3004     // TODO: Do we need this? Unless there are conflicting assumptions, the
3005     // computeKnownBits(IIOperand) below here eliminates redundant assumes.
3006     Instruction *Next = II->getNextNonDebugInstruction();
3007     if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
3008       return RemoveConditionFromAssume(Next);
3009 
3010     // Canonicalize assume(a && b) -> assume(a); assume(b);
3011     // Note: New assumption intrinsics created here are registered by
3012     // the InstCombineIRInserter object.
3013     FunctionType *AssumeIntrinsicTy = II->getFunctionType();
3014     Value *AssumeIntrinsic = II->getCalledOperand();
3015     Value *A, *B;
3016     if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
3017       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
3018                          II->getName());
3019       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
3020       return eraseInstFromFunction(*II);
3021     }
3022     // assume(!(a || b)) -> assume(!a); assume(!b);
3023     if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
3024       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3025                          Builder.CreateNot(A), OpBundles, II->getName());
3026       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3027                          Builder.CreateNot(B), II->getName());
3028       return eraseInstFromFunction(*II);
3029     }
3030 
3031     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3032     // (if assume is valid at the load)
3033     CmpInst::Predicate Pred;
3034     Instruction *LHS;
3035     if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
3036         Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
3037         LHS->getType()->isPointerTy() &&
3038         isValidAssumeForContext(II, LHS, &DT)) {
3039       MDNode *MD = MDNode::get(II->getContext(), std::nullopt);
3040       LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3041       LHS->setMetadata(LLVMContext::MD_noundef, MD);
3042       return RemoveConditionFromAssume(II);
3043 
3044       // TODO: apply nonnull return attributes to calls and invokes
3045       // TODO: apply range metadata for range check patterns?
3046     }
3047 
3048     // Separate storage assumptions apply to the underlying allocations, not any
3049     // particular pointer within them. When evaluating the hints for AA purposes
3050     // we getUnderlyingObject them; by precomputing the answers here we can
3051     // avoid having to do so repeatedly there.
3052     for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
3053       OperandBundleUse OBU = II->getOperandBundleAt(Idx);
3054       if (OBU.getTagName() == "separate_storage") {
3055         assert(OBU.Inputs.size() == 2);
3056         auto MaybeSimplifyHint = [&](const Use &U) {
3057           Value *Hint = U.get();
3058           // Not having a limit is safe because InstCombine removes unreachable
3059           // code.
3060           Value *UnderlyingObject = getUnderlyingObject(Hint, /*MaxLookup*/ 0);
3061           if (Hint != UnderlyingObject)
3062             replaceUse(const_cast<Use &>(U), UnderlyingObject);
3063         };
3064         MaybeSimplifyHint(OBU.Inputs[0]);
3065         MaybeSimplifyHint(OBU.Inputs[1]);
3066       }
3067     }
3068 
3069     // Convert nonnull assume like:
3070     // %A = icmp ne i32* %PTR, null
3071     // call void @llvm.assume(i1 %A)
3072     // into
3073     // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
3074     if (EnableKnowledgeRetention &&
3075         match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) &&
3076         Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) {
3077       if (auto *Replacement = buildAssumeFromKnowledge(
3078               {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
3079 
3080         Replacement->insertBefore(Next);
3081         AC.registerAssumption(Replacement);
3082         return RemoveConditionFromAssume(II);
3083       }
3084     }
3085 
3086     // Convert alignment assume like:
3087     // %B = ptrtoint i32* %A to i64
3088     // %C = and i64 %B, Constant
3089     // %D = icmp eq i64 %C, 0
3090     // call void @llvm.assume(i1 %D)
3091     // into
3092     // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64  Constant + 1)]
3093     uint64_t AlignMask;
3094     if (EnableKnowledgeRetention &&
3095         match(IIOperand,
3096               m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)),
3097                     m_Zero())) &&
3098         Pred == CmpInst::ICMP_EQ) {
3099       if (isPowerOf2_64(AlignMask + 1)) {
3100         uint64_t Offset = 0;
3101         match(A, m_Add(m_Value(A), m_ConstantInt(Offset)));
3102         if (match(A, m_PtrToInt(m_Value(A)))) {
3103           /// Note: this doesn't preserve the offset information but merges
3104           /// offset and alignment.
3105           /// TODO: we can generate a GEP instead of merging the alignment with
3106           /// the offset.
3107           RetainedKnowledge RK{Attribute::Alignment,
3108                                (unsigned)MinAlign(Offset, AlignMask + 1), A};
3109           if (auto *Replacement =
3110                   buildAssumeFromKnowledge(RK, Next, &AC, &DT)) {
3111 
3112             Replacement->insertAfter(II);
3113             AC.registerAssumption(Replacement);
3114           }
3115           return RemoveConditionFromAssume(II);
3116         }
3117       }
3118     }
3119 
3120     /// Canonicalize Knowledge in operand bundles.
3121     if (EnableKnowledgeRetention && II->hasOperandBundles()) {
3122       for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
3123         auto &BOI = II->bundle_op_info_begin()[Idx];
3124         RetainedKnowledge RK =
3125           llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI);
3126         if (BOI.End - BOI.Begin > 2)
3127           continue; // Prevent reducing knowledge in an align with offset since
3128                     // extracting a RetainedKnowledge from them looses offset
3129                     // information
3130         RetainedKnowledge CanonRK =
3131           llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK,
3132                                           &getAssumptionCache(),
3133                                           &getDominatorTree());
3134         if (CanonRK == RK)
3135           continue;
3136         if (!CanonRK) {
3137           if (BOI.End - BOI.Begin > 0) {
3138             Worklist.pushValue(II->op_begin()[BOI.Begin]);
3139             Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
3140           }
3141           continue;
3142         }
3143         assert(RK.AttrKind == CanonRK.AttrKind);
3144         if (BOI.End - BOI.Begin > 0)
3145           II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
3146         if (BOI.End - BOI.Begin > 1)
3147           II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
3148               Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
3149         if (RK.WasOn)
3150           Worklist.pushValue(RK.WasOn);
3151         return II;
3152       }
3153     }
3154 
3155     // If there is a dominating assume with the same condition as this one,
3156     // then this one is redundant, and should be removed.
3157     KnownBits Known(1);
3158     computeKnownBits(IIOperand, Known, 0, II);
3159     if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II)))
3160       return eraseInstFromFunction(*II);
3161 
3162     // assume(false) is unreachable.
3163     if (match(IIOperand, m_CombineOr(m_Zero(), m_Undef()))) {
3164       CreateNonTerminatorUnreachable(II);
3165       return eraseInstFromFunction(*II);
3166     }
3167 
3168     // Update the cache of affected values for this assumption (we might be
3169     // here because we just simplified the condition).
3170     AC.updateAffectedValues(cast<AssumeInst>(II));
3171     break;
3172   }
3173   case Intrinsic::experimental_guard: {
3174     // Is this guard followed by another guard?  We scan forward over a small
3175     // fixed window of instructions to handle common cases with conditions
3176     // computed between guards.
3177     Instruction *NextInst = II->getNextNonDebugInstruction();
3178     for (unsigned i = 0; i < GuardWideningWindow; i++) {
3179       // Note: Using context-free form to avoid compile time blow up
3180       if (!isSafeToSpeculativelyExecute(NextInst))
3181         break;
3182       NextInst = NextInst->getNextNonDebugInstruction();
3183     }
3184     Value *NextCond = nullptr;
3185     if (match(NextInst,
3186               m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
3187       Value *CurrCond = II->getArgOperand(0);
3188 
3189       // Remove a guard that it is immediately preceded by an identical guard.
3190       // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
3191       if (CurrCond != NextCond) {
3192         Instruction *MoveI = II->getNextNonDebugInstruction();
3193         while (MoveI != NextInst) {
3194           auto *Temp = MoveI;
3195           MoveI = MoveI->getNextNonDebugInstruction();
3196           Temp->moveBefore(II);
3197         }
3198         replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
3199       }
3200       eraseInstFromFunction(*NextInst);
3201       return II;
3202     }
3203     break;
3204   }
3205   case Intrinsic::vector_insert: {
3206     Value *Vec = II->getArgOperand(0);
3207     Value *SubVec = II->getArgOperand(1);
3208     Value *Idx = II->getArgOperand(2);
3209     auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
3210     auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
3211     auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
3212 
3213     // Only canonicalize if the destination vector, Vec, and SubVec are all
3214     // fixed vectors.
3215     if (DstTy && VecTy && SubVecTy) {
3216       unsigned DstNumElts = DstTy->getNumElements();
3217       unsigned VecNumElts = VecTy->getNumElements();
3218       unsigned SubVecNumElts = SubVecTy->getNumElements();
3219       unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3220 
3221       // An insert that entirely overwrites Vec with SubVec is a nop.
3222       if (VecNumElts == SubVecNumElts)
3223         return replaceInstUsesWith(CI, SubVec);
3224 
3225       // Widen SubVec into a vector of the same width as Vec, since
3226       // shufflevector requires the two input vectors to be the same width.
3227       // Elements beyond the bounds of SubVec within the widened vector are
3228       // undefined.
3229       SmallVector<int, 8> WidenMask;
3230       unsigned i;
3231       for (i = 0; i != SubVecNumElts; ++i)
3232         WidenMask.push_back(i);
3233       for (; i != VecNumElts; ++i)
3234         WidenMask.push_back(PoisonMaskElem);
3235 
3236       Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
3237 
3238       SmallVector<int, 8> Mask;
3239       for (unsigned i = 0; i != IdxN; ++i)
3240         Mask.push_back(i);
3241       for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
3242         Mask.push_back(i);
3243       for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
3244         Mask.push_back(i);
3245 
3246       Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
3247       return replaceInstUsesWith(CI, Shuffle);
3248     }
3249     break;
3250   }
3251   case Intrinsic::vector_extract: {
3252     Value *Vec = II->getArgOperand(0);
3253     Value *Idx = II->getArgOperand(1);
3254 
3255     Type *ReturnType = II->getType();
3256     // (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx),
3257     // ExtractIdx)
3258     unsigned ExtractIdx = cast<ConstantInt>(Idx)->getZExtValue();
3259     Value *InsertTuple, *InsertIdx, *InsertValue;
3260     if (match(Vec, m_Intrinsic<Intrinsic::vector_insert>(m_Value(InsertTuple),
3261                                                          m_Value(InsertValue),
3262                                                          m_Value(InsertIdx))) &&
3263         InsertValue->getType() == ReturnType) {
3264       unsigned Index = cast<ConstantInt>(InsertIdx)->getZExtValue();
3265       // Case where we get the same index right after setting it.
3266       // extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) -->
3267       // InsertValue
3268       if (ExtractIdx == Index)
3269         return replaceInstUsesWith(CI, InsertValue);
3270       // If we are getting a different index than what was set in the
3271       // insert.vector intrinsic. We can just set the input tuple to the one up
3272       // in the chain. extract.vector(insert.vector(InsertTuple, InsertValue,
3273       // InsertIndex), ExtractIndex)
3274       // --> extract.vector(InsertTuple, ExtractIndex)
3275       else
3276         return replaceOperand(CI, 0, InsertTuple);
3277     }
3278 
3279     auto *DstTy = dyn_cast<VectorType>(ReturnType);
3280     auto *VecTy = dyn_cast<VectorType>(Vec->getType());
3281 
3282     if (DstTy && VecTy) {
3283       auto DstEltCnt = DstTy->getElementCount();
3284       auto VecEltCnt = VecTy->getElementCount();
3285       unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3286 
3287       // Extracting the entirety of Vec is a nop.
3288       if (DstEltCnt == VecTy->getElementCount()) {
3289         replaceInstUsesWith(CI, Vec);
3290         return eraseInstFromFunction(CI);
3291       }
3292 
3293       // Only canonicalize to shufflevector if the destination vector and
3294       // Vec are fixed vectors.
3295       if (VecEltCnt.isScalable() || DstEltCnt.isScalable())
3296         break;
3297 
3298       SmallVector<int, 8> Mask;
3299       for (unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i)
3300         Mask.push_back(IdxN + i);
3301 
3302       Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
3303       return replaceInstUsesWith(CI, Shuffle);
3304     }
3305     break;
3306   }
3307   case Intrinsic::vector_reverse: {
3308     Value *BO0, *BO1, *X, *Y;
3309     Value *Vec = II->getArgOperand(0);
3310     if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) {
3311       auto *OldBinOp = cast<BinaryOperator>(Vec);
3312       if (match(BO0, m_VecReverse(m_Value(X)))) {
3313         // rev(binop rev(X), rev(Y)) --> binop X, Y
3314         if (match(BO1, m_VecReverse(m_Value(Y))))
3315           return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags(
3316                                              OldBinOp->getOpcode(), X, Y,
3317                                              OldBinOp, OldBinOp->getName(),
3318                                              II->getIterator()));
3319         // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat
3320         if (isSplatValue(BO1))
3321           return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags(
3322                                              OldBinOp->getOpcode(), X, BO1,
3323                                              OldBinOp, OldBinOp->getName(),
3324                                              II->getIterator()));
3325       }
3326       // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y
3327       if (match(BO1, m_VecReverse(m_Value(Y))) && isSplatValue(BO0))
3328         return replaceInstUsesWith(CI,
3329                                    BinaryOperator::CreateWithCopiedFlags(
3330                                        OldBinOp->getOpcode(), BO0, Y, OldBinOp,
3331                                        OldBinOp->getName(), II->getIterator()));
3332     }
3333     // rev(unop rev(X)) --> unop X
3334     if (match(Vec, m_OneUse(m_UnOp(m_VecReverse(m_Value(X)))))) {
3335       auto *OldUnOp = cast<UnaryOperator>(Vec);
3336       auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags(
3337           OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(),
3338           II->getIterator());
3339       return replaceInstUsesWith(CI, NewUnOp);
3340     }
3341     break;
3342   }
3343   case Intrinsic::vector_reduce_or:
3344   case Intrinsic::vector_reduce_and: {
3345     // Canonicalize logical or/and reductions:
3346     // Or reduction for i1 is represented as:
3347     // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3348     // %res = cmp ne iReduxWidth %val, 0
3349     // And reduction for i1 is represented as:
3350     // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3351     // %res = cmp eq iReduxWidth %val, 11111
3352     Value *Arg = II->getArgOperand(0);
3353     Value *Vect;
3354 
3355     if (Value *NewOp =
3356             simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3357       replaceUse(II->getOperandUse(0), NewOp);
3358       return II;
3359     }
3360 
3361     if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3362       if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3363         if (FTy->getElementType() == Builder.getInt1Ty()) {
3364           Value *Res = Builder.CreateBitCast(
3365               Vect, Builder.getIntNTy(FTy->getNumElements()));
3366           if (IID == Intrinsic::vector_reduce_and) {
3367             Res = Builder.CreateICmpEQ(
3368                 Res, ConstantInt::getAllOnesValue(Res->getType()));
3369           } else {
3370             assert(IID == Intrinsic::vector_reduce_or &&
3371                    "Expected or reduction.");
3372             Res = Builder.CreateIsNotNull(Res);
3373           }
3374           if (Arg != Vect)
3375             Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3376                                      II->getType());
3377           return replaceInstUsesWith(CI, Res);
3378         }
3379     }
3380     [[fallthrough]];
3381   }
3382   case Intrinsic::vector_reduce_add: {
3383     if (IID == Intrinsic::vector_reduce_add) {
3384       // Convert vector_reduce_add(ZExt(<n x i1>)) to
3385       // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3386       // Convert vector_reduce_add(SExt(<n x i1>)) to
3387       // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3388       // Convert vector_reduce_add(<n x i1>) to
3389       // Trunc(ctpop(bitcast <n x i1> to in)).
3390       Value *Arg = II->getArgOperand(0);
3391       Value *Vect;
3392 
3393       if (Value *NewOp =
3394               simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3395         replaceUse(II->getOperandUse(0), NewOp);
3396         return II;
3397       }
3398 
3399       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3400         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3401           if (FTy->getElementType() == Builder.getInt1Ty()) {
3402             Value *V = Builder.CreateBitCast(
3403                 Vect, Builder.getIntNTy(FTy->getNumElements()));
3404             Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
3405             if (Res->getType() != II->getType())
3406               Res = Builder.CreateZExtOrTrunc(Res, II->getType());
3407             if (Arg != Vect &&
3408                 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
3409               Res = Builder.CreateNeg(Res);
3410             return replaceInstUsesWith(CI, Res);
3411           }
3412       }
3413     }
3414     [[fallthrough]];
3415   }
3416   case Intrinsic::vector_reduce_xor: {
3417     if (IID == Intrinsic::vector_reduce_xor) {
3418       // Exclusive disjunction reduction over the vector with
3419       // (potentially-extended) i1 element type is actually a
3420       // (potentially-extended) arithmetic `add` reduction over the original
3421       // non-extended value:
3422       //   vector_reduce_xor(?ext(<n x i1>))
3423       //     -->
3424       //   ?ext(vector_reduce_add(<n x i1>))
3425       Value *Arg = II->getArgOperand(0);
3426       Value *Vect;
3427 
3428       if (Value *NewOp =
3429               simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3430         replaceUse(II->getOperandUse(0), NewOp);
3431         return II;
3432       }
3433 
3434       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3435         if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
3436           if (VTy->getElementType() == Builder.getInt1Ty()) {
3437             Value *Res = Builder.CreateAddReduce(Vect);
3438             if (Arg != Vect)
3439               Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3440                                        II->getType());
3441             return replaceInstUsesWith(CI, Res);
3442           }
3443       }
3444     }
3445     [[fallthrough]];
3446   }
3447   case Intrinsic::vector_reduce_mul: {
3448     if (IID == Intrinsic::vector_reduce_mul) {
3449       // Multiplicative reduction over the vector with (potentially-extended)
3450       // i1 element type is actually a (potentially zero-extended)
3451       // logical `and` reduction over the original non-extended value:
3452       //   vector_reduce_mul(?ext(<n x i1>))
3453       //     -->
3454       //   zext(vector_reduce_and(<n x i1>))
3455       Value *Arg = II->getArgOperand(0);
3456       Value *Vect;
3457 
3458       if (Value *NewOp =
3459               simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3460         replaceUse(II->getOperandUse(0), NewOp);
3461         return II;
3462       }
3463 
3464       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3465         if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
3466           if (VTy->getElementType() == Builder.getInt1Ty()) {
3467             Value *Res = Builder.CreateAndReduce(Vect);
3468             if (Res->getType() != II->getType())
3469               Res = Builder.CreateZExt(Res, II->getType());
3470             return replaceInstUsesWith(CI, Res);
3471           }
3472       }
3473     }
3474     [[fallthrough]];
3475   }
3476   case Intrinsic::vector_reduce_umin:
3477   case Intrinsic::vector_reduce_umax: {
3478     if (IID == Intrinsic::vector_reduce_umin ||
3479         IID == Intrinsic::vector_reduce_umax) {
3480       // UMin/UMax reduction over the vector with (potentially-extended)
3481       // i1 element type is actually a (potentially-extended)
3482       // logical `and`/`or` reduction over the original non-extended value:
3483       //   vector_reduce_u{min,max}(?ext(<n x i1>))
3484       //     -->
3485       //   ?ext(vector_reduce_{and,or}(<n x i1>))
3486       Value *Arg = II->getArgOperand(0);
3487       Value *Vect;
3488 
3489       if (Value *NewOp =
3490               simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3491         replaceUse(II->getOperandUse(0), NewOp);
3492         return II;
3493       }
3494 
3495       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3496         if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
3497           if (VTy->getElementType() == Builder.getInt1Ty()) {
3498             Value *Res = IID == Intrinsic::vector_reduce_umin
3499                              ? Builder.CreateAndReduce(Vect)
3500                              : Builder.CreateOrReduce(Vect);
3501             if (Arg != Vect)
3502               Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3503                                        II->getType());
3504             return replaceInstUsesWith(CI, Res);
3505           }
3506       }
3507     }
3508     [[fallthrough]];
3509   }
3510   case Intrinsic::vector_reduce_smin:
3511   case Intrinsic::vector_reduce_smax: {
3512     if (IID == Intrinsic::vector_reduce_smin ||
3513         IID == Intrinsic::vector_reduce_smax) {
3514       // SMin/SMax reduction over the vector with (potentially-extended)
3515       // i1 element type is actually a (potentially-extended)
3516       // logical `and`/`or` reduction over the original non-extended value:
3517       //   vector_reduce_s{min,max}(<n x i1>)
3518       //     -->
3519       //   vector_reduce_{or,and}(<n x i1>)
3520       // and
3521       //   vector_reduce_s{min,max}(sext(<n x i1>))
3522       //     -->
3523       //   sext(vector_reduce_{or,and}(<n x i1>))
3524       // and
3525       //   vector_reduce_s{min,max}(zext(<n x i1>))
3526       //     -->
3527       //   zext(vector_reduce_{and,or}(<n x i1>))
3528       Value *Arg = II->getArgOperand(0);
3529       Value *Vect;
3530 
3531       if (Value *NewOp =
3532               simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) {
3533         replaceUse(II->getOperandUse(0), NewOp);
3534         return II;
3535       }
3536 
3537       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3538         if (auto *VTy = dyn_cast<VectorType>(Vect->getType()))
3539           if (VTy->getElementType() == Builder.getInt1Ty()) {
3540             Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
3541             if (Arg != Vect)
3542               ExtOpc = cast<CastInst>(Arg)->getOpcode();
3543             Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
3544                           (ExtOpc == Instruction::CastOps::ZExt))
3545                              ? Builder.CreateAndReduce(Vect)
3546                              : Builder.CreateOrReduce(Vect);
3547             if (Arg != Vect)
3548               Res = Builder.CreateCast(ExtOpc, Res, II->getType());
3549             return replaceInstUsesWith(CI, Res);
3550           }
3551       }
3552     }
3553     [[fallthrough]];
3554   }
3555   case Intrinsic::vector_reduce_fmax:
3556   case Intrinsic::vector_reduce_fmin:
3557   case Intrinsic::vector_reduce_fadd:
3558   case Intrinsic::vector_reduce_fmul: {
3559     bool CanReorderLanes = (IID != Intrinsic::vector_reduce_fadd &&
3560                             IID != Intrinsic::vector_reduce_fmul) ||
3561                            II->hasAllowReassoc();
3562     const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
3563                              IID == Intrinsic::vector_reduce_fmul)
3564                                 ? 1
3565                                 : 0;
3566     Value *Arg = II->getArgOperand(ArgIdx);
3567     if (Value *NewOp = simplifyReductionOperand(Arg, CanReorderLanes)) {
3568       replaceUse(II->getOperandUse(ArgIdx), NewOp);
3569       return nullptr;
3570     }
3571     break;
3572   }
3573   case Intrinsic::is_fpclass: {
3574     if (Instruction *I = foldIntrinsicIsFPClass(*II))
3575       return I;
3576     break;
3577   }
3578   case Intrinsic::threadlocal_address: {
3579     Align MinAlign = getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
3580     MaybeAlign Align = II->getRetAlign();
3581     if (MinAlign > Align.valueOrOne()) {
3582       II->addRetAttr(Attribute::getWithAlignment(II->getContext(), MinAlign));
3583       return II;
3584     }
3585     break;
3586   }
3587   default: {
3588     // Handle target specific intrinsics
3589     std::optional<Instruction *> V = targetInstCombineIntrinsic(*II);
3590     if (V)
3591       return *V;
3592     break;
3593   }
3594   }
3595 
3596   // Try to fold intrinsic into select operands. This is legal if:
3597   //  * The intrinsic is speculatable.
3598   //  * The select condition is not a vector, or the intrinsic does not
3599   //    perform cross-lane operations.
3600   switch (IID) {
3601   case Intrinsic::ctlz:
3602   case Intrinsic::cttz:
3603   case Intrinsic::ctpop:
3604   case Intrinsic::umin:
3605   case Intrinsic::umax:
3606   case Intrinsic::smin:
3607   case Intrinsic::smax:
3608   case Intrinsic::usub_sat:
3609   case Intrinsic::uadd_sat:
3610   case Intrinsic::ssub_sat:
3611   case Intrinsic::sadd_sat:
3612     for (Value *Op : II->args())
3613       if (auto *Sel = dyn_cast<SelectInst>(Op))
3614         if (Instruction *R = FoldOpIntoSelect(*II, Sel))
3615           return R;
3616     [[fallthrough]];
3617   default:
3618     break;
3619   }
3620 
3621   if (Instruction *Shuf = foldShuffledIntrinsicOperands(II, Builder))
3622     return Shuf;
3623 
3624   // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
3625   // context, so it is handled in visitCallBase and we should trigger it.
3626   return visitCallBase(*II);
3627 }
3628 
3629 // Fence instruction simplification
3630 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) {
3631   auto *NFI = dyn_cast<FenceInst>(FI.getNextNonDebugInstruction());
3632   // This check is solely here to handle arbitrary target-dependent syncscopes.
3633   // TODO: Can remove if does not matter in practice.
3634   if (NFI && FI.isIdenticalTo(NFI))
3635     return eraseInstFromFunction(FI);
3636 
3637   // Returns true if FI1 is identical or stronger fence than FI2.
3638   auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
3639     auto FI1SyncScope = FI1->getSyncScopeID();
3640     // Consider same scope, where scope is global or single-thread.
3641     if (FI1SyncScope != FI2->getSyncScopeID() ||
3642         (FI1SyncScope != SyncScope::System &&
3643          FI1SyncScope != SyncScope::SingleThread))
3644       return false;
3645 
3646     return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering());
3647   };
3648   if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
3649     return eraseInstFromFunction(FI);
3650 
3651   if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNonDebugInstruction()))
3652     if (isIdenticalOrStrongerFence(PFI, &FI))
3653       return eraseInstFromFunction(FI);
3654   return nullptr;
3655 }
3656 
3657 // InvokeInst simplification
3658 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) {
3659   return visitCallBase(II);
3660 }
3661 
3662 // CallBrInst simplification
3663 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) {
3664   return visitCallBase(CBI);
3665 }
3666 
3667 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
3668   if (!CI->getCalledFunction()) return nullptr;
3669 
3670   // Skip optimizing notail and musttail calls so
3671   // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
3672   // LibCallSimplifier::optimizeCall should try to preseve tail calls though.
3673   if (CI->isMustTailCall() || CI->isNoTailCall())
3674     return nullptr;
3675 
3676   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
3677     replaceInstUsesWith(*From, With);
3678   };
3679   auto InstCombineErase = [this](Instruction *I) {
3680     eraseInstFromFunction(*I);
3681   };
3682   LibCallSimplifier Simplifier(DL, &TLI, &AC, ORE, BFI, PSI, InstCombineRAUW,
3683                                InstCombineErase);
3684   if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
3685     ++NumSimplified;
3686     return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
3687   }
3688 
3689   return nullptr;
3690 }
3691 
3692 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
3693   // Strip off at most one level of pointer casts, looking for an alloca.  This
3694   // is good enough in practice and simpler than handling any number of casts.
3695   Value *Underlying = TrampMem->stripPointerCasts();
3696   if (Underlying != TrampMem &&
3697       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
3698     return nullptr;
3699   if (!isa<AllocaInst>(Underlying))
3700     return nullptr;
3701 
3702   IntrinsicInst *InitTrampoline = nullptr;
3703   for (User *U : TrampMem->users()) {
3704     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3705     if (!II)
3706       return nullptr;
3707     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
3708       if (InitTrampoline)
3709         // More than one init_trampoline writes to this value.  Give up.
3710         return nullptr;
3711       InitTrampoline = II;
3712       continue;
3713     }
3714     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
3715       // Allow any number of calls to adjust.trampoline.
3716       continue;
3717     return nullptr;
3718   }
3719 
3720   // No call to init.trampoline found.
3721   if (!InitTrampoline)
3722     return nullptr;
3723 
3724   // Check that the alloca is being used in the expected way.
3725   if (InitTrampoline->getOperand(0) != TrampMem)
3726     return nullptr;
3727 
3728   return InitTrampoline;
3729 }
3730 
3731 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
3732                                                Value *TrampMem) {
3733   // Visit all the previous instructions in the basic block, and try to find a
3734   // init.trampoline which has a direct path to the adjust.trampoline.
3735   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
3736                             E = AdjustTramp->getParent()->begin();
3737        I != E;) {
3738     Instruction *Inst = &*--I;
3739     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
3740       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
3741           II->getOperand(0) == TrampMem)
3742         return II;
3743     if (Inst->mayWriteToMemory())
3744       return nullptr;
3745   }
3746   return nullptr;
3747 }
3748 
3749 // Given a call to llvm.adjust.trampoline, find and return the corresponding
3750 // call to llvm.init.trampoline if the call to the trampoline can be optimized
3751 // to a direct call to a function.  Otherwise return NULL.
3752 static IntrinsicInst *findInitTrampoline(Value *Callee) {
3753   Callee = Callee->stripPointerCasts();
3754   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
3755   if (!AdjustTramp ||
3756       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
3757     return nullptr;
3758 
3759   Value *TrampMem = AdjustTramp->getOperand(0);
3760 
3761   if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
3762     return IT;
3763   if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
3764     return IT;
3765   return nullptr;
3766 }
3767 
3768 bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
3769                                             const TargetLibraryInfo *TLI) {
3770   // Note: We only handle cases which can't be driven from generic attributes
3771   // here.  So, for example, nonnull and noalias (which are common properties
3772   // of some allocation functions) are expected to be handled via annotation
3773   // of the respective allocator declaration with generic attributes.
3774   bool Changed = false;
3775 
3776   if (!Call.getType()->isPointerTy())
3777     return Changed;
3778 
3779   std::optional<APInt> Size = getAllocSize(&Call, TLI);
3780   if (Size && *Size != 0) {
3781     // TODO: We really should just emit deref_or_null here and then
3782     // let the generic inference code combine that with nonnull.
3783     if (Call.hasRetAttr(Attribute::NonNull)) {
3784       Changed = !Call.hasRetAttr(Attribute::Dereferenceable);
3785       Call.addRetAttr(Attribute::getWithDereferenceableBytes(
3786           Call.getContext(), Size->getLimitedValue()));
3787     } else {
3788       Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull);
3789       Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
3790           Call.getContext(), Size->getLimitedValue()));
3791     }
3792   }
3793 
3794   // Add alignment attribute if alignment is a power of two constant.
3795   Value *Alignment = getAllocAlignment(&Call, TLI);
3796   if (!Alignment)
3797     return Changed;
3798 
3799   ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment);
3800   if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) {
3801     uint64_t AlignmentVal = AlignOpC->getZExtValue();
3802     if (llvm::isPowerOf2_64(AlignmentVal)) {
3803       Align ExistingAlign = Call.getRetAlign().valueOrOne();
3804       Align NewAlign = Align(AlignmentVal);
3805       if (NewAlign > ExistingAlign) {
3806         Call.addRetAttr(
3807             Attribute::getWithAlignment(Call.getContext(), NewAlign));
3808         Changed = true;
3809       }
3810     }
3811   }
3812   return Changed;
3813 }
3814 
3815 /// Improvements for call, callbr and invoke instructions.
3816 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
3817   bool Changed = annotateAnyAllocSite(Call, &TLI);
3818 
3819   // Mark any parameters that are known to be non-null with the nonnull
3820   // attribute.  This is helpful for inlining calls to functions with null
3821   // checks on their arguments.
3822   SmallVector<unsigned, 4> ArgNos;
3823   unsigned ArgNo = 0;
3824 
3825   for (Value *V : Call.args()) {
3826     if (V->getType()->isPointerTy() &&
3827         !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
3828         isKnownNonZero(V, getSimplifyQuery().getWithInstruction(&Call)))
3829       ArgNos.push_back(ArgNo);
3830     ArgNo++;
3831   }
3832 
3833   assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
3834 
3835   if (!ArgNos.empty()) {
3836     AttributeList AS = Call.getAttributes();
3837     LLVMContext &Ctx = Call.getContext();
3838     AS = AS.addParamAttribute(Ctx, ArgNos,
3839                               Attribute::get(Ctx, Attribute::NonNull));
3840     Call.setAttributes(AS);
3841     Changed = true;
3842   }
3843 
3844   // If the callee is a pointer to a function, attempt to move any casts to the
3845   // arguments of the call/callbr/invoke.
3846   Value *Callee = Call.getCalledOperand();
3847   Function *CalleeF = dyn_cast<Function>(Callee);
3848   if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) &&
3849       transformConstExprCastCall(Call))
3850     return nullptr;
3851 
3852   if (CalleeF) {
3853     // Remove the convergent attr on calls when the callee is not convergent.
3854     if (Call.isConvergent() && !CalleeF->isConvergent() &&
3855         !CalleeF->isIntrinsic()) {
3856       LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
3857                         << "\n");
3858       Call.setNotConvergent();
3859       return &Call;
3860     }
3861 
3862     // If the call and callee calling conventions don't match, and neither one
3863     // of the calling conventions is compatible with C calling convention
3864     // this call must be unreachable, as the call is undefined.
3865     if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
3866          !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
3867            TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) &&
3868          !(Call.getCallingConv() == llvm::CallingConv::C &&
3869            TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) &&
3870         // Only do this for calls to a function with a body.  A prototype may
3871         // not actually end up matching the implementation's calling conv for a
3872         // variety of reasons (e.g. it may be written in assembly).
3873         !CalleeF->isDeclaration()) {
3874       Instruction *OldCall = &Call;
3875       CreateNonTerminatorUnreachable(OldCall);
3876       // If OldCall does not return void then replaceInstUsesWith poison.
3877       // This allows ValueHandlers and custom metadata to adjust itself.
3878       if (!OldCall->getType()->isVoidTy())
3879         replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
3880       if (isa<CallInst>(OldCall))
3881         return eraseInstFromFunction(*OldCall);
3882 
3883       // We cannot remove an invoke or a callbr, because it would change thexi
3884       // CFG, just change the callee to a null pointer.
3885       cast<CallBase>(OldCall)->setCalledFunction(
3886           CalleeF->getFunctionType(),
3887           Constant::getNullValue(CalleeF->getType()));
3888       return nullptr;
3889     }
3890   }
3891 
3892   // Calling a null function pointer is undefined if a null address isn't
3893   // dereferenceable.
3894   if ((isa<ConstantPointerNull>(Callee) &&
3895        !NullPointerIsDefined(Call.getFunction())) ||
3896       isa<UndefValue>(Callee)) {
3897     // If Call does not return void then replaceInstUsesWith poison.
3898     // This allows ValueHandlers and custom metadata to adjust itself.
3899     if (!Call.getType()->isVoidTy())
3900       replaceInstUsesWith(Call, PoisonValue::get(Call.getType()));
3901 
3902     if (Call.isTerminator()) {
3903       // Can't remove an invoke or callbr because we cannot change the CFG.
3904       return nullptr;
3905     }
3906 
3907     // This instruction is not reachable, just remove it.
3908     CreateNonTerminatorUnreachable(&Call);
3909     return eraseInstFromFunction(Call);
3910   }
3911 
3912   if (IntrinsicInst *II = findInitTrampoline(Callee))
3913     return transformCallThroughTrampoline(Call, *II);
3914 
3915   if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
3916     InlineAsm *IA = cast<InlineAsm>(Callee);
3917     if (!IA->canThrow()) {
3918       // Normal inline asm calls cannot throw - mark them
3919       // 'nounwind'.
3920       Call.setDoesNotThrow();
3921       Changed = true;
3922     }
3923   }
3924 
3925   // Try to optimize the call if possible, we require DataLayout for most of
3926   // this.  None of these calls are seen as possibly dead so go ahead and
3927   // delete the instruction now.
3928   if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
3929     Instruction *I = tryOptimizeCall(CI);
3930     // If we changed something return the result, etc. Otherwise let
3931     // the fallthrough check.
3932     if (I) return eraseInstFromFunction(*I);
3933   }
3934 
3935   if (!Call.use_empty() && !Call.isMustTailCall())
3936     if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
3937       Type *CallTy = Call.getType();
3938       Type *RetArgTy = ReturnedArg->getType();
3939       if (RetArgTy->canLosslesslyBitCastTo(CallTy))
3940         return replaceInstUsesWith(
3941             Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
3942     }
3943 
3944   // Drop unnecessary kcfi operand bundles from calls that were converted
3945   // into direct calls.
3946   auto Bundle = Call.getOperandBundle(LLVMContext::OB_kcfi);
3947   if (Bundle && !Call.isIndirectCall()) {
3948     DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", {
3949       if (CalleeF) {
3950         ConstantInt *FunctionType = nullptr;
3951         ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]);
3952 
3953         if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type))
3954           FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0));
3955 
3956         if (FunctionType &&
3957             FunctionType->getZExtValue() != ExpectedType->getZExtValue())
3958           dbgs() << Call.getModule()->getName()
3959                  << ": warning: kcfi: " << Call.getCaller()->getName()
3960                  << ": call to " << CalleeF->getName()
3961                  << " using a mismatching function pointer type\n";
3962       }
3963     });
3964 
3965     return CallBase::removeOperandBundle(&Call, LLVMContext::OB_kcfi);
3966   }
3967 
3968   if (isRemovableAlloc(&Call, &TLI))
3969     return visitAllocSite(Call);
3970 
3971   // Handle intrinsics which can be used in both call and invoke context.
3972   switch (Call.getIntrinsicID()) {
3973   case Intrinsic::experimental_gc_statepoint: {
3974     GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
3975     SmallPtrSet<Value *, 32> LiveGcValues;
3976     for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3977       GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3978 
3979       // Remove the relocation if unused.
3980       if (GCR.use_empty()) {
3981         eraseInstFromFunction(GCR);
3982         continue;
3983       }
3984 
3985       Value *DerivedPtr = GCR.getDerivedPtr();
3986       Value *BasePtr = GCR.getBasePtr();
3987 
3988       // Undef is undef, even after relocation.
3989       if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
3990         replaceInstUsesWith(GCR, UndefValue::get(GCR.getType()));
3991         eraseInstFromFunction(GCR);
3992         continue;
3993       }
3994 
3995       if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
3996         // The relocation of null will be null for most any collector.
3997         // TODO: provide a hook for this in GCStrategy.  There might be some
3998         // weird collector this property does not hold for.
3999         if (isa<ConstantPointerNull>(DerivedPtr)) {
4000           // Use null-pointer of gc_relocate's type to replace it.
4001           replaceInstUsesWith(GCR, ConstantPointerNull::get(PT));
4002           eraseInstFromFunction(GCR);
4003           continue;
4004         }
4005 
4006         // isKnownNonNull -> nonnull attribute
4007         if (!GCR.hasRetAttr(Attribute::NonNull) &&
4008             isKnownNonZero(DerivedPtr,
4009                            getSimplifyQuery().getWithInstruction(&Call))) {
4010           GCR.addRetAttr(Attribute::NonNull);
4011           // We discovered new fact, re-check users.
4012           Worklist.pushUsersToWorkList(GCR);
4013         }
4014       }
4015 
4016       // If we have two copies of the same pointer in the statepoint argument
4017       // list, canonicalize to one.  This may let us common gc.relocates.
4018       if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
4019           GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
4020         auto *OpIntTy = GCR.getOperand(2)->getType();
4021         GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
4022       }
4023 
4024       // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
4025       // Canonicalize on the type from the uses to the defs
4026 
4027       // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
4028       LiveGcValues.insert(BasePtr);
4029       LiveGcValues.insert(DerivedPtr);
4030     }
4031     std::optional<OperandBundleUse> Bundle =
4032         GCSP.getOperandBundle(LLVMContext::OB_gc_live);
4033     unsigned NumOfGCLives = LiveGcValues.size();
4034     if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
4035       break;
4036     // We can reduce the size of gc live bundle.
4037     DenseMap<Value *, unsigned> Val2Idx;
4038     std::vector<Value *> NewLiveGc;
4039     for (Value *V : Bundle->Inputs) {
4040       if (Val2Idx.count(V))
4041         continue;
4042       if (LiveGcValues.count(V)) {
4043         Val2Idx[V] = NewLiveGc.size();
4044         NewLiveGc.push_back(V);
4045       } else
4046         Val2Idx[V] = NumOfGCLives;
4047     }
4048     // Update all gc.relocates
4049     for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
4050       GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
4051       Value *BasePtr = GCR.getBasePtr();
4052       assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
4053              "Missed live gc for base pointer");
4054       auto *OpIntTy1 = GCR.getOperand(1)->getType();
4055       GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
4056       Value *DerivedPtr = GCR.getDerivedPtr();
4057       assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
4058              "Missed live gc for derived pointer");
4059       auto *OpIntTy2 = GCR.getOperand(2)->getType();
4060       GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
4061     }
4062     // Create new statepoint instruction.
4063     OperandBundleDef NewBundle("gc-live", NewLiveGc);
4064     return CallBase::Create(&Call, NewBundle);
4065   }
4066   default: { break; }
4067   }
4068 
4069   return Changed ? &Call : nullptr;
4070 }
4071 
4072 /// If the callee is a constexpr cast of a function, attempt to move the cast to
4073 /// the arguments of the call/invoke.
4074 /// CallBrInst is not supported.
4075 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
4076   auto *Callee =
4077       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
4078   if (!Callee)
4079     return false;
4080 
4081   assert(!isa<CallBrInst>(Call) &&
4082          "CallBr's don't have a single point after a def to insert at");
4083 
4084   // If this is a call to a thunk function, don't remove the cast. Thunks are
4085   // used to transparently forward all incoming parameters and outgoing return
4086   // values, so it's important to leave the cast in place.
4087   if (Callee->hasFnAttribute("thunk"))
4088     return false;
4089 
4090   // If this is a call to a naked function, the assembly might be
4091   // using an argument, or otherwise rely on the frame layout,
4092   // the function prototype will mismatch.
4093   if (Callee->hasFnAttribute(Attribute::Naked))
4094     return false;
4095 
4096   // If this is a musttail call, the callee's prototype must match the caller's
4097   // prototype with the exception of pointee types. The code below doesn't
4098   // implement that, so we can't do this transform.
4099   // TODO: Do the transform if it only requires adding pointer casts.
4100   if (Call.isMustTailCall())
4101     return false;
4102 
4103   Instruction *Caller = &Call;
4104   const AttributeList &CallerPAL = Call.getAttributes();
4105 
4106   // Okay, this is a cast from a function to a different type.  Unless doing so
4107   // would cause a type conversion of one of our arguments, change this call to
4108   // be a direct call with arguments casted to the appropriate types.
4109   FunctionType *FT = Callee->getFunctionType();
4110   Type *OldRetTy = Caller->getType();
4111   Type *NewRetTy = FT->getReturnType();
4112 
4113   // Check to see if we are changing the return type...
4114   if (OldRetTy != NewRetTy) {
4115 
4116     if (NewRetTy->isStructTy())
4117       return false; // TODO: Handle multiple return values.
4118 
4119     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
4120       if (Callee->isDeclaration())
4121         return false;   // Cannot transform this return value.
4122 
4123       if (!Caller->use_empty() &&
4124           // void -> non-void is handled specially
4125           !NewRetTy->isVoidTy())
4126         return false;   // Cannot transform this return value.
4127     }
4128 
4129     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
4130       AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4131       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
4132         return false;   // Attribute not compatible with transformed value.
4133     }
4134 
4135     // If the callbase is an invoke instruction, and the return value is
4136     // used by a PHI node in a successor, we cannot change the return type of
4137     // the call because there is no place to put the cast instruction (without
4138     // breaking the critical edge).  Bail out in this case.
4139     if (!Caller->use_empty()) {
4140       BasicBlock *PhisNotSupportedBlock = nullptr;
4141       if (auto *II = dyn_cast<InvokeInst>(Caller))
4142         PhisNotSupportedBlock = II->getNormalDest();
4143       if (PhisNotSupportedBlock)
4144         for (User *U : Caller->users())
4145           if (PHINode *PN = dyn_cast<PHINode>(U))
4146             if (PN->getParent() == PhisNotSupportedBlock)
4147               return false;
4148     }
4149   }
4150 
4151   unsigned NumActualArgs = Call.arg_size();
4152   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4153 
4154   // Prevent us turning:
4155   // declare void @takes_i32_inalloca(i32* inalloca)
4156   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4157   //
4158   // into:
4159   //  call void @takes_i32_inalloca(i32* null)
4160   //
4161   //  Similarly, avoid folding away bitcasts of byval calls.
4162   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4163       Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
4164     return false;
4165 
4166   auto AI = Call.arg_begin();
4167   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
4168     Type *ParamTy = FT->getParamType(i);
4169     Type *ActTy = (*AI)->getType();
4170 
4171     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
4172       return false;   // Cannot transform this parameter value.
4173 
4174     // Check if there are any incompatible attributes we cannot drop safely.
4175     if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
4176             .overlaps(AttributeFuncs::typeIncompatible(
4177                 ParamTy, AttributeFuncs::ASK_UNSAFE_TO_DROP)))
4178       return false;   // Attribute not compatible with transformed value.
4179 
4180     if (Call.isInAllocaArgument(i) ||
4181         CallerPAL.hasParamAttr(i, Attribute::Preallocated))
4182       return false; // Cannot transform to and from inalloca/preallocated.
4183 
4184     if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
4185       return false;
4186 
4187     if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
4188         Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
4189       return false; // Cannot transform to or from byval.
4190   }
4191 
4192   if (Callee->isDeclaration()) {
4193     // Do not delete arguments unless we have a function body.
4194     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
4195       return false;
4196 
4197     // If the callee is just a declaration, don't change the varargsness of the
4198     // call.  We don't want to introduce a varargs call where one doesn't
4199     // already exist.
4200     if (FT->isVarArg() != Call.getFunctionType()->isVarArg())
4201       return false;
4202 
4203     // If both the callee and the cast type are varargs, we still have to make
4204     // sure the number of fixed parameters are the same or we have the same
4205     // ABI issues as if we introduce a varargs call.
4206     if (FT->isVarArg() && Call.getFunctionType()->isVarArg() &&
4207         FT->getNumParams() != Call.getFunctionType()->getNumParams())
4208       return false;
4209   }
4210 
4211   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4212       !CallerPAL.isEmpty()) {
4213     // In this case we have more arguments than the new function type, but we
4214     // won't be dropping them.  Check that these extra arguments have attributes
4215     // that are compatible with being a vararg call argument.
4216     unsigned SRetIdx;
4217     if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4218         SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
4219       return false;
4220   }
4221 
4222   // Okay, we decided that this is a safe thing to do: go ahead and start
4223   // inserting cast instructions as necessary.
4224   SmallVector<Value *, 8> Args;
4225   SmallVector<AttributeSet, 8> ArgAttrs;
4226   Args.reserve(NumActualArgs);
4227   ArgAttrs.reserve(NumActualArgs);
4228 
4229   // Get any return attributes.
4230   AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4231 
4232   // If the return value is not being used, the type may not be compatible
4233   // with the existing attributes.  Wipe out any problematic attributes.
4234   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
4235 
4236   LLVMContext &Ctx = Call.getContext();
4237   AI = Call.arg_begin();
4238   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4239     Type *ParamTy = FT->getParamType(i);
4240 
4241     Value *NewArg = *AI;
4242     if ((*AI)->getType() != ParamTy)
4243       NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
4244     Args.push_back(NewArg);
4245 
4246     // Add any parameter attributes except the ones incompatible with the new
4247     // type. Note that we made sure all incompatible ones are safe to drop.
4248     AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
4249         ParamTy, AttributeFuncs::ASK_SAFE_TO_DROP);
4250     ArgAttrs.push_back(
4251         CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
4252   }
4253 
4254   // If the function takes more arguments than the call was taking, add them
4255   // now.
4256   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4257     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
4258     ArgAttrs.push_back(AttributeSet());
4259   }
4260 
4261   // If we are removing arguments to the function, emit an obnoxious warning.
4262   if (FT->getNumParams() < NumActualArgs) {
4263     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4264     if (FT->isVarArg()) {
4265       // Add all of the arguments in their promoted form to the arg list.
4266       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4267         Type *PTy = getPromotedType((*AI)->getType());
4268         Value *NewArg = *AI;
4269         if (PTy != (*AI)->getType()) {
4270           // Must promote to pass through va_arg area!
4271           Instruction::CastOps opcode =
4272             CastInst::getCastOpcode(*AI, false, PTy, false);
4273           NewArg = Builder.CreateCast(opcode, *AI, PTy);
4274         }
4275         Args.push_back(NewArg);
4276 
4277         // Add any parameter attributes.
4278         ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
4279       }
4280     }
4281   }
4282 
4283   AttributeSet FnAttrs = CallerPAL.getFnAttrs();
4284 
4285   if (NewRetTy->isVoidTy())
4286     Caller->setName("");   // Void type should not have a name.
4287 
4288   assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4289          "missing argument attributes");
4290   AttributeList NewCallerPAL = AttributeList::get(
4291       Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
4292 
4293   SmallVector<OperandBundleDef, 1> OpBundles;
4294   Call.getOperandBundlesAsDefs(OpBundles);
4295 
4296   CallBase *NewCall;
4297   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4298     NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
4299                                    II->getUnwindDest(), Args, OpBundles);
4300   } else {
4301     NewCall = Builder.CreateCall(Callee, Args, OpBundles);
4302     cast<CallInst>(NewCall)->setTailCallKind(
4303         cast<CallInst>(Caller)->getTailCallKind());
4304   }
4305   NewCall->takeName(Caller);
4306   NewCall->setCallingConv(Call.getCallingConv());
4307   NewCall->setAttributes(NewCallerPAL);
4308 
4309   // Preserve prof metadata if any.
4310   NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
4311 
4312   // Insert a cast of the return type as necessary.
4313   Instruction *NC = NewCall;
4314   Value *NV = NC;
4315   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4316     if (!NV->getType()->isVoidTy()) {
4317       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
4318       NC->setDebugLoc(Caller->getDebugLoc());
4319 
4320       auto OptInsertPt = NewCall->getInsertionPointAfterDef();
4321       assert(OptInsertPt && "No place to insert cast");
4322       InsertNewInstBefore(NC, *OptInsertPt);
4323       Worklist.pushUsersToWorkList(*Caller);
4324     } else {
4325       NV = PoisonValue::get(Caller->getType());
4326     }
4327   }
4328 
4329   if (!Caller->use_empty())
4330     replaceInstUsesWith(*Caller, NV);
4331   else if (Caller->hasValueHandle()) {
4332     if (OldRetTy == NV->getType())
4333       ValueHandleBase::ValueIsRAUWd(Caller, NV);
4334     else
4335       // We cannot call ValueIsRAUWd with a different type, and the
4336       // actual tracked value will disappear.
4337       ValueHandleBase::ValueIsDeleted(Caller);
4338   }
4339 
4340   eraseInstFromFunction(*Caller);
4341   return true;
4342 }
4343 
4344 /// Turn a call to a function created by init_trampoline / adjust_trampoline
4345 /// intrinsic pair into a direct call to the underlying function.
4346 Instruction *
4347 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
4348                                                  IntrinsicInst &Tramp) {
4349   FunctionType *FTy = Call.getFunctionType();
4350   AttributeList Attrs = Call.getAttributes();
4351 
4352   // If the call already has the 'nest' attribute somewhere then give up -
4353   // otherwise 'nest' would occur twice after splicing in the chain.
4354   if (Attrs.hasAttrSomewhere(Attribute::Nest))
4355     return nullptr;
4356 
4357   Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
4358   FunctionType *NestFTy = NestF->getFunctionType();
4359 
4360   AttributeList NestAttrs = NestF->getAttributes();
4361   if (!NestAttrs.isEmpty()) {
4362     unsigned NestArgNo = 0;
4363     Type *NestTy = nullptr;
4364     AttributeSet NestAttr;
4365 
4366     // Look for a parameter marked with the 'nest' attribute.
4367     for (FunctionType::param_iterator I = NestFTy->param_begin(),
4368                                       E = NestFTy->param_end();
4369          I != E; ++NestArgNo, ++I) {
4370       AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
4371       if (AS.hasAttribute(Attribute::Nest)) {
4372         // Record the parameter type and any other attributes.
4373         NestTy = *I;
4374         NestAttr = AS;
4375         break;
4376       }
4377     }
4378 
4379     if (NestTy) {
4380       std::vector<Value*> NewArgs;
4381       std::vector<AttributeSet> NewArgAttrs;
4382       NewArgs.reserve(Call.arg_size() + 1);
4383       NewArgAttrs.reserve(Call.arg_size());
4384 
4385       // Insert the nest argument into the call argument list, which may
4386       // mean appending it.  Likewise for attributes.
4387 
4388       {
4389         unsigned ArgNo = 0;
4390         auto I = Call.arg_begin(), E = Call.arg_end();
4391         do {
4392           if (ArgNo == NestArgNo) {
4393             // Add the chain argument and attributes.
4394             Value *NestVal = Tramp.getArgOperand(2);
4395             if (NestVal->getType() != NestTy)
4396               NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
4397             NewArgs.push_back(NestVal);
4398             NewArgAttrs.push_back(NestAttr);
4399           }
4400 
4401           if (I == E)
4402             break;
4403 
4404           // Add the original argument and attributes.
4405           NewArgs.push_back(*I);
4406           NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
4407 
4408           ++ArgNo;
4409           ++I;
4410         } while (true);
4411       }
4412 
4413       // The trampoline may have been bitcast to a bogus type (FTy).
4414       // Handle this by synthesizing a new function type, equal to FTy
4415       // with the chain parameter inserted.
4416 
4417       std::vector<Type*> NewTypes;
4418       NewTypes.reserve(FTy->getNumParams()+1);
4419 
4420       // Insert the chain's type into the list of parameter types, which may
4421       // mean appending it.
4422       {
4423         unsigned ArgNo = 0;
4424         FunctionType::param_iterator I = FTy->param_begin(),
4425           E = FTy->param_end();
4426 
4427         do {
4428           if (ArgNo == NestArgNo)
4429             // Add the chain's type.
4430             NewTypes.push_back(NestTy);
4431 
4432           if (I == E)
4433             break;
4434 
4435           // Add the original type.
4436           NewTypes.push_back(*I);
4437 
4438           ++ArgNo;
4439           ++I;
4440         } while (true);
4441       }
4442 
4443       // Replace the trampoline call with a direct call.  Let the generic
4444       // code sort out any function type mismatches.
4445       FunctionType *NewFTy =
4446           FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
4447       AttributeList NewPAL =
4448           AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
4449                              Attrs.getRetAttrs(), NewArgAttrs);
4450 
4451       SmallVector<OperandBundleDef, 1> OpBundles;
4452       Call.getOperandBundlesAsDefs(OpBundles);
4453 
4454       Instruction *NewCaller;
4455       if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
4456         NewCaller = InvokeInst::Create(NewFTy, NestF, II->getNormalDest(),
4457                                        II->getUnwindDest(), NewArgs, OpBundles);
4458         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
4459         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
4460       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
4461         NewCaller =
4462             CallBrInst::Create(NewFTy, NestF, CBI->getDefaultDest(),
4463                                CBI->getIndirectDests(), NewArgs, OpBundles);
4464         cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
4465         cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
4466       } else {
4467         NewCaller = CallInst::Create(NewFTy, NestF, NewArgs, OpBundles);
4468         cast<CallInst>(NewCaller)->setTailCallKind(
4469             cast<CallInst>(Call).getTailCallKind());
4470         cast<CallInst>(NewCaller)->setCallingConv(
4471             cast<CallInst>(Call).getCallingConv());
4472         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
4473       }
4474       NewCaller->setDebugLoc(Call.getDebugLoc());
4475 
4476       return NewCaller;
4477     }
4478   }
4479 
4480   // Replace the trampoline call with a direct call.  Since there is no 'nest'
4481   // parameter, there is no need to adjust the argument list.  Let the generic
4482   // code sort out any function type mismatches.
4483   Call.setCalledFunction(FTy, NestF);
4484   return &Call;
4485 }
4486