xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp (revision a521f2116473fbd8c09db395518f060a27d02334)
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/FloatingPointMode.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumeBundleQueries.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/Loads.h"
30 #include "llvm/Analysis/MemoryBuiltins.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/IntrinsicsAArch64.h"
47 #include "llvm/IR/IntrinsicsAMDGPU.h"
48 #include "llvm/IR/IntrinsicsARM.h"
49 #include "llvm/IR/IntrinsicsHexagon.h"
50 #include "llvm/IR/IntrinsicsNVPTX.h"
51 #include "llvm/IR/IntrinsicsPowerPC.h"
52 #include "llvm/IR/IntrinsicsX86.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/ValueHandle.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/KnownBits.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <cstring>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 using namespace PatternMatch;
82 
83 #define DEBUG_TYPE "instcombine"
84 
85 STATISTIC(NumSimplified, "Number of library calls simplified");
86 
87 static cl::opt<unsigned> GuardWideningWindow(
88     "instcombine-guard-widening-window",
89     cl::init(3),
90     cl::desc("How wide an instruction window to bypass looking for "
91              "another guard"));
92 
93 /// Return the specified type promoted as it would be to pass though a va_arg
94 /// area.
95 static Type *getPromotedType(Type *Ty) {
96   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
97     if (ITy->getBitWidth() < 32)
98       return Type::getInt32Ty(Ty->getContext());
99   }
100   return Ty;
101 }
102 
103 /// Return a constant boolean vector that has true elements in all positions
104 /// where the input constant data vector has an element with the sign bit set.
105 static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
106   SmallVector<Constant *, 32> BoolVec;
107   IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
108   for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
109     Constant *Elt = V->getElementAsConstant(I);
110     assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
111            "Unexpected constant data vector element type");
112     bool Sign = V->getElementType()->isIntegerTy()
113                     ? cast<ConstantInt>(Elt)->isNegative()
114                     : cast<ConstantFP>(Elt)->isNegative();
115     BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
116   }
117   return ConstantVector::get(BoolVec);
118 }
119 
120 Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
121   Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
122   MaybeAlign CopyDstAlign = MI->getDestAlign();
123   if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
124     MI->setDestAlignment(DstAlign);
125     return MI;
126   }
127 
128   Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
129   MaybeAlign CopySrcAlign = MI->getSourceAlign();
130   if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
131     MI->setSourceAlignment(SrcAlign);
132     return MI;
133   }
134 
135   // If we have a store to a location which is known constant, we can conclude
136   // that the store must be storing the constant value (else the memory
137   // wouldn't be constant), and this must be a noop.
138   if (AA->pointsToConstantMemory(MI->getDest())) {
139     // Set the size of the copy to 0, it will be deleted on the next iteration.
140     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
141     return MI;
142   }
143 
144   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
145   // load/store.
146   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
147   if (!MemOpLength) return nullptr;
148 
149   // Source and destination pointer types are always "i8*" for intrinsic.  See
150   // if the size is something we can handle with a single primitive load/store.
151   // A single load+store correctly handles overlapping memory in the memmove
152   // case.
153   uint64_t Size = MemOpLength->getLimitedValue();
154   assert(Size && "0-sized memory transferring should be removed already.");
155 
156   if (Size > 8 || (Size&(Size-1)))
157     return nullptr;  // If not 1/2/4/8 bytes, exit.
158 
159   // If it is an atomic and alignment is less than the size then we will
160   // introduce the unaligned memory access which will be later transformed
161   // into libcall in CodeGen. This is not evident performance gain so disable
162   // it now.
163   if (isa<AtomicMemTransferInst>(MI))
164     if (*CopyDstAlign < Size || *CopySrcAlign < Size)
165       return nullptr;
166 
167   // Use an integer load+store unless we can find something better.
168   unsigned SrcAddrSp =
169     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
170   unsigned DstAddrSp =
171     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
172 
173   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
174   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
175   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
176 
177   // If the memcpy has metadata describing the members, see if we can get the
178   // TBAA tag describing our copy.
179   MDNode *CopyMD = nullptr;
180   if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
181     CopyMD = M;
182   } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
183     if (M->getNumOperands() == 3 && M->getOperand(0) &&
184         mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
185         mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
186         M->getOperand(1) &&
187         mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
188         mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
189         Size &&
190         M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
191       CopyMD = cast<MDNode>(M->getOperand(2));
192   }
193 
194   Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
195   Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
196   LoadInst *L = Builder.CreateLoad(IntType, Src);
197   // Alignment from the mem intrinsic will be better, so use it.
198   L->setAlignment(*CopySrcAlign);
199   if (CopyMD)
200     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
201   MDNode *LoopMemParallelMD =
202     MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
203   if (LoopMemParallelMD)
204     L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
205   MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
206   if (AccessGroupMD)
207     L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
208 
209   StoreInst *S = Builder.CreateStore(L, Dest);
210   // Alignment from the mem intrinsic will be better, so use it.
211   S->setAlignment(*CopyDstAlign);
212   if (CopyMD)
213     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
214   if (LoopMemParallelMD)
215     S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
216   if (AccessGroupMD)
217     S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
218 
219   if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
220     // non-atomics can be volatile
221     L->setVolatile(MT->isVolatile());
222     S->setVolatile(MT->isVolatile());
223   }
224   if (isa<AtomicMemTransferInst>(MI)) {
225     // atomics have to be unordered
226     L->setOrdering(AtomicOrdering::Unordered);
227     S->setOrdering(AtomicOrdering::Unordered);
228   }
229 
230   // Set the size of the copy to 0, it will be deleted on the next iteration.
231   MI->setLength(Constant::getNullValue(MemOpLength->getType()));
232   return MI;
233 }
234 
235 Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) {
236   const Align KnownAlignment =
237       getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
238   MaybeAlign MemSetAlign = MI->getDestAlign();
239   if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
240     MI->setDestAlignment(KnownAlignment);
241     return MI;
242   }
243 
244   // If we have a store to a location which is known constant, we can conclude
245   // that the store must be storing the constant value (else the memory
246   // wouldn't be constant), and this must be a noop.
247   if (AA->pointsToConstantMemory(MI->getDest())) {
248     // Set the size of the copy to 0, it will be deleted on the next iteration.
249     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
250     return MI;
251   }
252 
253   // Extract the length and alignment and fill if they are constant.
254   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
255   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
256   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
257     return nullptr;
258   const uint64_t Len = LenC->getLimitedValue();
259   assert(Len && "0-sized memory setting should be removed already.");
260   const Align Alignment = assumeAligned(MI->getDestAlignment());
261 
262   // If it is an atomic and alignment is less than the size then we will
263   // introduce the unaligned memory access which will be later transformed
264   // into libcall in CodeGen. This is not evident performance gain so disable
265   // it now.
266   if (isa<AtomicMemSetInst>(MI))
267     if (Alignment < Len)
268       return nullptr;
269 
270   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
271   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
272     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
273 
274     Value *Dest = MI->getDest();
275     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
276     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
277     Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
278 
279     // Extract the fill value and store.
280     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
281     StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
282                                        MI->isVolatile());
283     S->setAlignment(Alignment);
284     if (isa<AtomicMemSetInst>(MI))
285       S->setOrdering(AtomicOrdering::Unordered);
286 
287     // Set the size of the copy to 0, it will be deleted on the next iteration.
288     MI->setLength(Constant::getNullValue(LenC->getType()));
289     return MI;
290   }
291 
292   return nullptr;
293 }
294 
295 static Value *simplifyX86immShift(const IntrinsicInst &II,
296                                   InstCombiner::BuilderTy &Builder) {
297   bool LogicalShift = false;
298   bool ShiftLeft = false;
299   bool IsImm = false;
300 
301   switch (II.getIntrinsicID()) {
302   default: llvm_unreachable("Unexpected intrinsic!");
303   case Intrinsic::x86_sse2_psrai_d:
304   case Intrinsic::x86_sse2_psrai_w:
305   case Intrinsic::x86_avx2_psrai_d:
306   case Intrinsic::x86_avx2_psrai_w:
307   case Intrinsic::x86_avx512_psrai_q_128:
308   case Intrinsic::x86_avx512_psrai_q_256:
309   case Intrinsic::x86_avx512_psrai_d_512:
310   case Intrinsic::x86_avx512_psrai_q_512:
311   case Intrinsic::x86_avx512_psrai_w_512:
312     IsImm = true;
313     LLVM_FALLTHROUGH;
314   case Intrinsic::x86_sse2_psra_d:
315   case Intrinsic::x86_sse2_psra_w:
316   case Intrinsic::x86_avx2_psra_d:
317   case Intrinsic::x86_avx2_psra_w:
318   case Intrinsic::x86_avx512_psra_q_128:
319   case Intrinsic::x86_avx512_psra_q_256:
320   case Intrinsic::x86_avx512_psra_d_512:
321   case Intrinsic::x86_avx512_psra_q_512:
322   case Intrinsic::x86_avx512_psra_w_512:
323     LogicalShift = false;
324     ShiftLeft = false;
325     break;
326   case Intrinsic::x86_sse2_psrli_d:
327   case Intrinsic::x86_sse2_psrli_q:
328   case Intrinsic::x86_sse2_psrli_w:
329   case Intrinsic::x86_avx2_psrli_d:
330   case Intrinsic::x86_avx2_psrli_q:
331   case Intrinsic::x86_avx2_psrli_w:
332   case Intrinsic::x86_avx512_psrli_d_512:
333   case Intrinsic::x86_avx512_psrli_q_512:
334   case Intrinsic::x86_avx512_psrli_w_512:
335     IsImm = true;
336     LLVM_FALLTHROUGH;
337   case Intrinsic::x86_sse2_psrl_d:
338   case Intrinsic::x86_sse2_psrl_q:
339   case Intrinsic::x86_sse2_psrl_w:
340   case Intrinsic::x86_avx2_psrl_d:
341   case Intrinsic::x86_avx2_psrl_q:
342   case Intrinsic::x86_avx2_psrl_w:
343   case Intrinsic::x86_avx512_psrl_d_512:
344   case Intrinsic::x86_avx512_psrl_q_512:
345   case Intrinsic::x86_avx512_psrl_w_512:
346     LogicalShift = true;
347     ShiftLeft = false;
348     break;
349   case Intrinsic::x86_sse2_pslli_d:
350   case Intrinsic::x86_sse2_pslli_q:
351   case Intrinsic::x86_sse2_pslli_w:
352   case Intrinsic::x86_avx2_pslli_d:
353   case Intrinsic::x86_avx2_pslli_q:
354   case Intrinsic::x86_avx2_pslli_w:
355   case Intrinsic::x86_avx512_pslli_d_512:
356   case Intrinsic::x86_avx512_pslli_q_512:
357   case Intrinsic::x86_avx512_pslli_w_512:
358     IsImm = true;
359     LLVM_FALLTHROUGH;
360   case Intrinsic::x86_sse2_psll_d:
361   case Intrinsic::x86_sse2_psll_q:
362   case Intrinsic::x86_sse2_psll_w:
363   case Intrinsic::x86_avx2_psll_d:
364   case Intrinsic::x86_avx2_psll_q:
365   case Intrinsic::x86_avx2_psll_w:
366   case Intrinsic::x86_avx512_psll_d_512:
367   case Intrinsic::x86_avx512_psll_q_512:
368   case Intrinsic::x86_avx512_psll_w_512:
369     LogicalShift = true;
370     ShiftLeft = true;
371     break;
372   }
373   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
374 
375   auto Vec = II.getArgOperand(0);
376   auto Amt = II.getArgOperand(1);
377   auto VT = cast<VectorType>(Vec->getType());
378   auto SVT = VT->getElementType();
379   auto AmtVT = Amt->getType();
380   unsigned VWidth = VT->getNumElements();
381   unsigned BitWidth = SVT->getPrimitiveSizeInBits();
382 
383   // If the shift amount is guaranteed to be in-range we can replace it with a
384   // generic shift. If its guaranteed to be out of range, logical shifts combine to
385   // zero and arithmetic shifts are clamped to (BitWidth - 1).
386   if (IsImm) {
387     assert(AmtVT ->isIntegerTy(32) &&
388            "Unexpected shift-by-immediate type");
389     KnownBits KnownAmtBits =
390         llvm::computeKnownBits(Amt, II.getModule()->getDataLayout());
391     if (KnownAmtBits.getMaxValue().ult(BitWidth)) {
392       Amt = Builder.CreateZExtOrTrunc(Amt, SVT);
393       Amt = Builder.CreateVectorSplat(VWidth, Amt);
394       return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
395                                         : Builder.CreateLShr(Vec, Amt))
396                            : Builder.CreateAShr(Vec, Amt));
397     }
398     if (KnownAmtBits.getMinValue().uge(BitWidth)) {
399       if (LogicalShift)
400         return ConstantAggregateZero::get(VT);
401       Amt = ConstantInt::get(SVT, BitWidth - 1);
402       return Builder.CreateAShr(Vec, Builder.CreateVectorSplat(VWidth, Amt));
403     }
404   } else {
405     // Ensure the first element has an in-range value and the rest of the
406     // elements in the bottom 64 bits are zero.
407     assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 &&
408            cast<VectorType>(AmtVT)->getElementType() == SVT &&
409            "Unexpected shift-by-scalar type");
410     unsigned NumAmtElts = cast<VectorType>(AmtVT)->getNumElements();
411     APInt DemandedLower = APInt::getOneBitSet(NumAmtElts, 0);
412     APInt DemandedUpper = APInt::getBitsSet(NumAmtElts, 1, NumAmtElts / 2);
413     KnownBits KnownLowerBits = llvm::computeKnownBits(
414         Amt, DemandedLower, II.getModule()->getDataLayout());
415     KnownBits KnownUpperBits = llvm::computeKnownBits(
416         Amt, DemandedUpper, II.getModule()->getDataLayout());
417     if (KnownLowerBits.getMaxValue().ult(BitWidth) &&
418         (DemandedUpper.isNullValue() || KnownUpperBits.isZero())) {
419       SmallVector<int, 16> ZeroSplat(VWidth, 0);
420       Amt = Builder.CreateShuffleVector(Amt, Amt, ZeroSplat);
421       return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
422                                         : Builder.CreateLShr(Vec, Amt))
423                            : Builder.CreateAShr(Vec, Amt));
424     }
425   }
426 
427   // Simplify if count is constant vector.
428   auto CDV = dyn_cast<ConstantDataVector>(Amt);
429   if (!CDV)
430     return nullptr;
431 
432   // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
433   // operand to compute the shift amount.
434   assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 &&
435          cast<VectorType>(AmtVT)->getElementType() == SVT &&
436          "Unexpected shift-by-scalar type");
437 
438   // Concatenate the sub-elements to create the 64-bit value.
439   APInt Count(64, 0);
440   for (unsigned i = 0, NumSubElts = 64 / BitWidth; i != NumSubElts; ++i) {
441     unsigned SubEltIdx = (NumSubElts - 1) - i;
442     auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
443     Count <<= BitWidth;
444     Count |= SubElt->getValue().zextOrTrunc(64);
445   }
446 
447   // If shift-by-zero then just return the original value.
448   if (Count.isNullValue())
449     return Vec;
450 
451   // Handle cases when Shift >= BitWidth.
452   if (Count.uge(BitWidth)) {
453     // If LogicalShift - just return zero.
454     if (LogicalShift)
455       return ConstantAggregateZero::get(VT);
456 
457     // If ArithmeticShift - clamp Shift to (BitWidth - 1).
458     Count = APInt(64, BitWidth - 1);
459   }
460 
461   // Get a constant vector of the same type as the first operand.
462   auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
463   auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
464 
465   if (ShiftLeft)
466     return Builder.CreateShl(Vec, ShiftVec);
467 
468   if (LogicalShift)
469     return Builder.CreateLShr(Vec, ShiftVec);
470 
471   return Builder.CreateAShr(Vec, ShiftVec);
472 }
473 
474 // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
475 // Unlike the generic IR shifts, the intrinsics have defined behaviour for out
476 // of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
477 static Value *simplifyX86varShift(const IntrinsicInst &II,
478                                   InstCombiner::BuilderTy &Builder) {
479   bool LogicalShift = false;
480   bool ShiftLeft = false;
481 
482   switch (II.getIntrinsicID()) {
483   default: llvm_unreachable("Unexpected intrinsic!");
484   case Intrinsic::x86_avx2_psrav_d:
485   case Intrinsic::x86_avx2_psrav_d_256:
486   case Intrinsic::x86_avx512_psrav_q_128:
487   case Intrinsic::x86_avx512_psrav_q_256:
488   case Intrinsic::x86_avx512_psrav_d_512:
489   case Intrinsic::x86_avx512_psrav_q_512:
490   case Intrinsic::x86_avx512_psrav_w_128:
491   case Intrinsic::x86_avx512_psrav_w_256:
492   case Intrinsic::x86_avx512_psrav_w_512:
493     LogicalShift = false;
494     ShiftLeft = false;
495     break;
496   case Intrinsic::x86_avx2_psrlv_d:
497   case Intrinsic::x86_avx2_psrlv_d_256:
498   case Intrinsic::x86_avx2_psrlv_q:
499   case Intrinsic::x86_avx2_psrlv_q_256:
500   case Intrinsic::x86_avx512_psrlv_d_512:
501   case Intrinsic::x86_avx512_psrlv_q_512:
502   case Intrinsic::x86_avx512_psrlv_w_128:
503   case Intrinsic::x86_avx512_psrlv_w_256:
504   case Intrinsic::x86_avx512_psrlv_w_512:
505     LogicalShift = true;
506     ShiftLeft = false;
507     break;
508   case Intrinsic::x86_avx2_psllv_d:
509   case Intrinsic::x86_avx2_psllv_d_256:
510   case Intrinsic::x86_avx2_psllv_q:
511   case Intrinsic::x86_avx2_psllv_q_256:
512   case Intrinsic::x86_avx512_psllv_d_512:
513   case Intrinsic::x86_avx512_psllv_q_512:
514   case Intrinsic::x86_avx512_psllv_w_128:
515   case Intrinsic::x86_avx512_psllv_w_256:
516   case Intrinsic::x86_avx512_psllv_w_512:
517     LogicalShift = true;
518     ShiftLeft = true;
519     break;
520   }
521   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
522 
523   auto Vec = II.getArgOperand(0);
524   auto Amt = II.getArgOperand(1);
525   auto VT = cast<VectorType>(II.getType());
526   auto SVT = VT->getElementType();
527   int NumElts = VT->getNumElements();
528   int BitWidth = SVT->getIntegerBitWidth();
529 
530   // If the shift amount is guaranteed to be in-range we can replace it with a
531   // generic shift.
532   APInt UpperBits =
533       APInt::getHighBitsSet(BitWidth, BitWidth - Log2_32(BitWidth));
534   if (llvm::MaskedValueIsZero(Amt, UpperBits,
535                               II.getModule()->getDataLayout())) {
536     return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
537                                       : Builder.CreateLShr(Vec, Amt))
538                          : Builder.CreateAShr(Vec, Amt));
539   }
540 
541   // Simplify if all shift amounts are constant/undef.
542   auto *CShift = dyn_cast<Constant>(Amt);
543   if (!CShift)
544     return nullptr;
545 
546   // Collect each element's shift amount.
547   // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
548   bool AnyOutOfRange = false;
549   SmallVector<int, 8> ShiftAmts;
550   for (int I = 0; I < NumElts; ++I) {
551     auto *CElt = CShift->getAggregateElement(I);
552     if (CElt && isa<UndefValue>(CElt)) {
553       ShiftAmts.push_back(-1);
554       continue;
555     }
556 
557     auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
558     if (!COp)
559       return nullptr;
560 
561     // Handle out of range shifts.
562     // If LogicalShift - set to BitWidth (special case).
563     // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
564     APInt ShiftVal = COp->getValue();
565     if (ShiftVal.uge(BitWidth)) {
566       AnyOutOfRange = LogicalShift;
567       ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
568       continue;
569     }
570 
571     ShiftAmts.push_back((int)ShiftVal.getZExtValue());
572   }
573 
574   // If all elements out of range or UNDEF, return vector of zeros/undefs.
575   // ArithmeticShift should only hit this if they are all UNDEF.
576   auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
577   if (llvm::all_of(ShiftAmts, OutOfRange)) {
578     SmallVector<Constant *, 8> ConstantVec;
579     for (int Idx : ShiftAmts) {
580       if (Idx < 0) {
581         ConstantVec.push_back(UndefValue::get(SVT));
582       } else {
583         assert(LogicalShift && "Logical shift expected");
584         ConstantVec.push_back(ConstantInt::getNullValue(SVT));
585       }
586     }
587     return ConstantVector::get(ConstantVec);
588   }
589 
590   // We can't handle only some out of range values with generic logical shifts.
591   if (AnyOutOfRange)
592     return nullptr;
593 
594   // Build the shift amount constant vector.
595   SmallVector<Constant *, 8> ShiftVecAmts;
596   for (int Idx : ShiftAmts) {
597     if (Idx < 0)
598       ShiftVecAmts.push_back(UndefValue::get(SVT));
599     else
600       ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
601   }
602   auto ShiftVec = ConstantVector::get(ShiftVecAmts);
603 
604   if (ShiftLeft)
605     return Builder.CreateShl(Vec, ShiftVec);
606 
607   if (LogicalShift)
608     return Builder.CreateLShr(Vec, ShiftVec);
609 
610   return Builder.CreateAShr(Vec, ShiftVec);
611 }
612 
613 static Value *simplifyX86pack(IntrinsicInst &II,
614                               InstCombiner::BuilderTy &Builder, bool IsSigned) {
615   Value *Arg0 = II.getArgOperand(0);
616   Value *Arg1 = II.getArgOperand(1);
617   Type *ResTy = II.getType();
618 
619   // Fast all undef handling.
620   if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
621     return UndefValue::get(ResTy);
622 
623   auto *ArgTy = cast<VectorType>(Arg0->getType());
624   unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
625   unsigned NumSrcElts = ArgTy->getNumElements();
626   assert(cast<VectorType>(ResTy)->getNumElements() == (2 * NumSrcElts) &&
627          "Unexpected packing types");
628 
629   unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
630   unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
631   unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits();
632   assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) &&
633          "Unexpected packing types");
634 
635   // Constant folding.
636   if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
637     return nullptr;
638 
639   // Clamp Values - signed/unsigned both use signed clamp values, but they
640   // differ on the min/max values.
641   APInt MinValue, MaxValue;
642   if (IsSigned) {
643     // PACKSS: Truncate signed value with signed saturation.
644     // Source values less than dst minint are saturated to minint.
645     // Source values greater than dst maxint are saturated to maxint.
646     MinValue =
647         APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
648     MaxValue =
649         APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
650   } else {
651     // PACKUS: Truncate signed value with unsigned saturation.
652     // Source values less than zero are saturated to zero.
653     // Source values greater than dst maxuint are saturated to maxuint.
654     MinValue = APInt::getNullValue(SrcScalarSizeInBits);
655     MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits);
656   }
657 
658   auto *MinC = Constant::getIntegerValue(ArgTy, MinValue);
659   auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue);
660   Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0);
661   Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1);
662   Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0);
663   Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1);
664 
665   // Shuffle clamped args together at the lane level.
666   SmallVector<int, 32> PackMask;
667   for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
668     for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
669       PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane));
670     for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
671       PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts);
672   }
673   auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask);
674 
675   // Truncate to dst size.
676   return Builder.CreateTrunc(Shuffle, ResTy);
677 }
678 
679 static Value *simplifyX86movmsk(const IntrinsicInst &II,
680                                 InstCombiner::BuilderTy &Builder) {
681   Value *Arg = II.getArgOperand(0);
682   Type *ResTy = II.getType();
683 
684   // movmsk(undef) -> zero as we must ensure the upper bits are zero.
685   if (isa<UndefValue>(Arg))
686     return Constant::getNullValue(ResTy);
687 
688   auto *ArgTy = dyn_cast<VectorType>(Arg->getType());
689   // We can't easily peek through x86_mmx types.
690   if (!ArgTy)
691     return nullptr;
692 
693   // Expand MOVMSK to compare/bitcast/zext:
694   // e.g. PMOVMSKB(v16i8 x):
695   // %cmp = icmp slt <16 x i8> %x, zeroinitializer
696   // %int = bitcast <16 x i1> %cmp to i16
697   // %res = zext i16 %int to i32
698   unsigned NumElts = ArgTy->getNumElements();
699   Type *IntegerVecTy = VectorType::getInteger(ArgTy);
700   Type *IntegerTy = Builder.getIntNTy(NumElts);
701 
702   Value *Res = Builder.CreateBitCast(Arg, IntegerVecTy);
703   Res = Builder.CreateICmpSLT(Res, Constant::getNullValue(IntegerVecTy));
704   Res = Builder.CreateBitCast(Res, IntegerTy);
705   Res = Builder.CreateZExtOrTrunc(Res, ResTy);
706   return Res;
707 }
708 
709 static Value *simplifyX86addcarry(const IntrinsicInst &II,
710                                   InstCombiner::BuilderTy &Builder) {
711   Value *CarryIn = II.getArgOperand(0);
712   Value *Op1 = II.getArgOperand(1);
713   Value *Op2 = II.getArgOperand(2);
714   Type *RetTy = II.getType();
715   Type *OpTy = Op1->getType();
716   assert(RetTy->getStructElementType(0)->isIntegerTy(8) &&
717          RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() &&
718          "Unexpected types for x86 addcarry");
719 
720   // If carry-in is zero, this is just an unsigned add with overflow.
721   if (match(CarryIn, m_ZeroInt())) {
722     Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy,
723                                           { Op1, Op2 });
724     // The types have to be adjusted to match the x86 call types.
725     Value *UAddResult = Builder.CreateExtractValue(UAdd, 0);
726     Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1),
727                                        Builder.getInt8Ty());
728     Value *Res = UndefValue::get(RetTy);
729     Res = Builder.CreateInsertValue(Res, UAddOV, 0);
730     return Builder.CreateInsertValue(Res, UAddResult, 1);
731   }
732 
733   return nullptr;
734 }
735 
736 static Value *simplifyX86insertps(const IntrinsicInst &II,
737                                   InstCombiner::BuilderTy &Builder) {
738   auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
739   if (!CInt)
740     return nullptr;
741 
742   VectorType *VecTy = cast<VectorType>(II.getType());
743   assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
744 
745   // The immediate permute control byte looks like this:
746   //    [3:0] - zero mask for each 32-bit lane
747   //    [5:4] - select one 32-bit destination lane
748   //    [7:6] - select one 32-bit source lane
749 
750   uint8_t Imm = CInt->getZExtValue();
751   uint8_t ZMask = Imm & 0xf;
752   uint8_t DestLane = (Imm >> 4) & 0x3;
753   uint8_t SourceLane = (Imm >> 6) & 0x3;
754 
755   ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
756 
757   // If all zero mask bits are set, this was just a weird way to
758   // generate a zero vector.
759   if (ZMask == 0xf)
760     return ZeroVector;
761 
762   // Initialize by passing all of the first source bits through.
763   int ShuffleMask[4] = {0, 1, 2, 3};
764 
765   // We may replace the second operand with the zero vector.
766   Value *V1 = II.getArgOperand(1);
767 
768   if (ZMask) {
769     // If the zero mask is being used with a single input or the zero mask
770     // overrides the destination lane, this is a shuffle with the zero vector.
771     if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
772         (ZMask & (1 << DestLane))) {
773       V1 = ZeroVector;
774       // We may still move 32-bits of the first source vector from one lane
775       // to another.
776       ShuffleMask[DestLane] = SourceLane;
777       // The zero mask may override the previous insert operation.
778       for (unsigned i = 0; i < 4; ++i)
779         if ((ZMask >> i) & 0x1)
780           ShuffleMask[i] = i + 4;
781     } else {
782       // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
783       return nullptr;
784     }
785   } else {
786     // Replace the selected destination lane with the selected source lane.
787     ShuffleMask[DestLane] = SourceLane + 4;
788   }
789 
790   return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
791 }
792 
793 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
794 /// or conversion to a shuffle vector.
795 static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
796                                ConstantInt *CILength, ConstantInt *CIIndex,
797                                InstCombiner::BuilderTy &Builder) {
798   auto LowConstantHighUndef = [&](uint64_t Val) {
799     Type *IntTy64 = Type::getInt64Ty(II.getContext());
800     Constant *Args[] = {ConstantInt::get(IntTy64, Val),
801                         UndefValue::get(IntTy64)};
802     return ConstantVector::get(Args);
803   };
804 
805   // See if we're dealing with constant values.
806   Constant *C0 = dyn_cast<Constant>(Op0);
807   ConstantInt *CI0 =
808       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
809          : nullptr;
810 
811   // Attempt to constant fold.
812   if (CILength && CIIndex) {
813     // From AMD documentation: "The bit index and field length are each six
814     // bits in length other bits of the field are ignored."
815     APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
816     APInt APLength = CILength->getValue().zextOrTrunc(6);
817 
818     unsigned Index = APIndex.getZExtValue();
819 
820     // From AMD documentation: "a value of zero in the field length is
821     // defined as length of 64".
822     unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
823 
824     // From AMD documentation: "If the sum of the bit index + length field
825     // is greater than 64, the results are undefined".
826     unsigned End = Index + Length;
827 
828     // Note that both field index and field length are 8-bit quantities.
829     // Since variables 'Index' and 'Length' are unsigned values
830     // obtained from zero-extending field index and field length
831     // respectively, their sum should never wrap around.
832     if (End > 64)
833       return UndefValue::get(II.getType());
834 
835     // If we are inserting whole bytes, we can convert this to a shuffle.
836     // Lowering can recognize EXTRQI shuffle masks.
837     if ((Length % 8) == 0 && (Index % 8) == 0) {
838       // Convert bit indices to byte indices.
839       Length /= 8;
840       Index /= 8;
841 
842       Type *IntTy8 = Type::getInt8Ty(II.getContext());
843       auto *ShufTy = FixedVectorType::get(IntTy8, 16);
844 
845       SmallVector<int, 16> ShuffleMask;
846       for (int i = 0; i != (int)Length; ++i)
847         ShuffleMask.push_back(i + Index);
848       for (int i = Length; i != 8; ++i)
849         ShuffleMask.push_back(i + 16);
850       for (int i = 8; i != 16; ++i)
851         ShuffleMask.push_back(-1);
852 
853       Value *SV = Builder.CreateShuffleVector(
854           Builder.CreateBitCast(Op0, ShufTy),
855           ConstantAggregateZero::get(ShufTy), ShuffleMask);
856       return Builder.CreateBitCast(SV, II.getType());
857     }
858 
859     // Constant Fold - shift Index'th bit to lowest position and mask off
860     // Length bits.
861     if (CI0) {
862       APInt Elt = CI0->getValue();
863       Elt.lshrInPlace(Index);
864       Elt = Elt.zextOrTrunc(Length);
865       return LowConstantHighUndef(Elt.getZExtValue());
866     }
867 
868     // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
869     if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
870       Value *Args[] = {Op0, CILength, CIIndex};
871       Module *M = II.getModule();
872       Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
873       return Builder.CreateCall(F, Args);
874     }
875   }
876 
877   // Constant Fold - extraction from zero is always {zero, undef}.
878   if (CI0 && CI0->isZero())
879     return LowConstantHighUndef(0);
880 
881   return nullptr;
882 }
883 
884 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
885 /// folding or conversion to a shuffle vector.
886 static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
887                                  APInt APLength, APInt APIndex,
888                                  InstCombiner::BuilderTy &Builder) {
889   // From AMD documentation: "The bit index and field length are each six bits
890   // in length other bits of the field are ignored."
891   APIndex = APIndex.zextOrTrunc(6);
892   APLength = APLength.zextOrTrunc(6);
893 
894   // Attempt to constant fold.
895   unsigned Index = APIndex.getZExtValue();
896 
897   // From AMD documentation: "a value of zero in the field length is
898   // defined as length of 64".
899   unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
900 
901   // From AMD documentation: "If the sum of the bit index + length field
902   // is greater than 64, the results are undefined".
903   unsigned End = Index + Length;
904 
905   // Note that both field index and field length are 8-bit quantities.
906   // Since variables 'Index' and 'Length' are unsigned values
907   // obtained from zero-extending field index and field length
908   // respectively, their sum should never wrap around.
909   if (End > 64)
910     return UndefValue::get(II.getType());
911 
912   // If we are inserting whole bytes, we can convert this to a shuffle.
913   // Lowering can recognize INSERTQI shuffle masks.
914   if ((Length % 8) == 0 && (Index % 8) == 0) {
915     // Convert bit indices to byte indices.
916     Length /= 8;
917     Index /= 8;
918 
919     Type *IntTy8 = Type::getInt8Ty(II.getContext());
920     auto *ShufTy = FixedVectorType::get(IntTy8, 16);
921 
922     SmallVector<int, 16> ShuffleMask;
923     for (int i = 0; i != (int)Index; ++i)
924       ShuffleMask.push_back(i);
925     for (int i = 0; i != (int)Length; ++i)
926       ShuffleMask.push_back(i + 16);
927     for (int i = Index + Length; i != 8; ++i)
928       ShuffleMask.push_back(i);
929     for (int i = 8; i != 16; ++i)
930       ShuffleMask.push_back(-1);
931 
932     Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
933                                             Builder.CreateBitCast(Op1, ShufTy),
934                                             ShuffleMask);
935     return Builder.CreateBitCast(SV, II.getType());
936   }
937 
938   // See if we're dealing with constant values.
939   Constant *C0 = dyn_cast<Constant>(Op0);
940   Constant *C1 = dyn_cast<Constant>(Op1);
941   ConstantInt *CI00 =
942       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
943          : nullptr;
944   ConstantInt *CI10 =
945       C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
946          : nullptr;
947 
948   // Constant Fold - insert bottom Length bits starting at the Index'th bit.
949   if (CI00 && CI10) {
950     APInt V00 = CI00->getValue();
951     APInt V10 = CI10->getValue();
952     APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
953     V00 = V00 & ~Mask;
954     V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
955     APInt Val = V00 | V10;
956     Type *IntTy64 = Type::getInt64Ty(II.getContext());
957     Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
958                         UndefValue::get(IntTy64)};
959     return ConstantVector::get(Args);
960   }
961 
962   // If we were an INSERTQ call, we'll save demanded elements if we convert to
963   // INSERTQI.
964   if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
965     Type *IntTy8 = Type::getInt8Ty(II.getContext());
966     Constant *CILength = ConstantInt::get(IntTy8, Length, false);
967     Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
968 
969     Value *Args[] = {Op0, Op1, CILength, CIIndex};
970     Module *M = II.getModule();
971     Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
972     return Builder.CreateCall(F, Args);
973   }
974 
975   return nullptr;
976 }
977 
978 /// Attempt to convert pshufb* to shufflevector if the mask is constant.
979 static Value *simplifyX86pshufb(const IntrinsicInst &II,
980                                 InstCombiner::BuilderTy &Builder) {
981   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
982   if (!V)
983     return nullptr;
984 
985   auto *VecTy = cast<VectorType>(II.getType());
986   unsigned NumElts = VecTy->getNumElements();
987   assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
988          "Unexpected number of elements in shuffle mask!");
989 
990   // Construct a shuffle mask from constant integers or UNDEFs.
991   int Indexes[64];
992 
993   // Each byte in the shuffle control mask forms an index to permute the
994   // corresponding byte in the destination operand.
995   for (unsigned I = 0; I < NumElts; ++I) {
996     Constant *COp = V->getAggregateElement(I);
997     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
998       return nullptr;
999 
1000     if (isa<UndefValue>(COp)) {
1001       Indexes[I] = -1;
1002       continue;
1003     }
1004 
1005     int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
1006 
1007     // If the most significant bit (bit[7]) of each byte of the shuffle
1008     // control mask is set, then zero is written in the result byte.
1009     // The zero vector is in the right-hand side of the resulting
1010     // shufflevector.
1011 
1012     // The value of each index for the high 128-bit lane is the least
1013     // significant 4 bits of the respective shuffle control byte.
1014     Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
1015     Indexes[I] = Index;
1016   }
1017 
1018   auto V1 = II.getArgOperand(0);
1019   auto V2 = Constant::getNullValue(VecTy);
1020   return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes, NumElts));
1021 }
1022 
1023 /// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
1024 static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
1025                                     InstCombiner::BuilderTy &Builder) {
1026   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
1027   if (!V)
1028     return nullptr;
1029 
1030   auto *VecTy = cast<VectorType>(II.getType());
1031   unsigned NumElts = VecTy->getNumElements();
1032   bool IsPD = VecTy->getScalarType()->isDoubleTy();
1033   unsigned NumLaneElts = IsPD ? 2 : 4;
1034   assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
1035 
1036   // Construct a shuffle mask from constant integers or UNDEFs.
1037   int Indexes[16];
1038 
1039   // The intrinsics only read one or two bits, clear the rest.
1040   for (unsigned I = 0; I < NumElts; ++I) {
1041     Constant *COp = V->getAggregateElement(I);
1042     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
1043       return nullptr;
1044 
1045     if (isa<UndefValue>(COp)) {
1046       Indexes[I] = -1;
1047       continue;
1048     }
1049 
1050     APInt Index = cast<ConstantInt>(COp)->getValue();
1051     Index = Index.zextOrTrunc(32).getLoBits(2);
1052 
1053     // The PD variants uses bit 1 to select per-lane element index, so
1054     // shift down to convert to generic shuffle mask index.
1055     if (IsPD)
1056       Index.lshrInPlace(1);
1057 
1058     // The _256 variants are a bit trickier since the mask bits always index
1059     // into the corresponding 128 half. In order to convert to a generic
1060     // shuffle, we have to make that explicit.
1061     Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
1062 
1063     Indexes[I] = Index.getZExtValue();
1064   }
1065 
1066   auto V1 = II.getArgOperand(0);
1067   auto V2 = UndefValue::get(V1->getType());
1068   return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes, NumElts));
1069 }
1070 
1071 /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
1072 static Value *simplifyX86vpermv(const IntrinsicInst &II,
1073                                 InstCombiner::BuilderTy &Builder) {
1074   auto *V = dyn_cast<Constant>(II.getArgOperand(1));
1075   if (!V)
1076     return nullptr;
1077 
1078   auto *VecTy = cast<VectorType>(II.getType());
1079   unsigned Size = VecTy->getNumElements();
1080   assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
1081          "Unexpected shuffle mask size");
1082 
1083   // Construct a shuffle mask from constant integers or UNDEFs.
1084   int Indexes[64];
1085 
1086   for (unsigned I = 0; I < Size; ++I) {
1087     Constant *COp = V->getAggregateElement(I);
1088     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
1089       return nullptr;
1090 
1091     if (isa<UndefValue>(COp)) {
1092       Indexes[I] = -1;
1093       continue;
1094     }
1095 
1096     uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
1097     Index &= Size - 1;
1098     Indexes[I] = Index;
1099   }
1100 
1101   auto V1 = II.getArgOperand(0);
1102   auto V2 = UndefValue::get(VecTy);
1103   return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes, Size));
1104 }
1105 
1106 // TODO, Obvious Missing Transforms:
1107 // * Narrow width by halfs excluding zero/undef lanes
1108 Value *InstCombiner::simplifyMaskedLoad(IntrinsicInst &II) {
1109   Value *LoadPtr = II.getArgOperand(0);
1110   const Align Alignment =
1111       cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
1112 
1113   // If the mask is all ones or undefs, this is a plain vector load of the 1st
1114   // argument.
1115   if (maskIsAllOneOrUndef(II.getArgOperand(2)))
1116     return Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
1117                                      "unmaskedload");
1118 
1119   // If we can unconditionally load from this address, replace with a
1120   // load/select idiom. TODO: use DT for context sensitive query
1121   if (isDereferenceableAndAlignedPointer(LoadPtr, II.getType(), Alignment,
1122                                          II.getModule()->getDataLayout(), &II,
1123                                          nullptr)) {
1124     Value *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
1125                                          "unmaskedload");
1126     return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
1127   }
1128 
1129   return nullptr;
1130 }
1131 
1132 // TODO, Obvious Missing Transforms:
1133 // * Single constant active lane -> store
1134 // * Narrow width by halfs excluding zero/undef lanes
1135 Instruction *InstCombiner::simplifyMaskedStore(IntrinsicInst &II) {
1136   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1137   if (!ConstMask)
1138     return nullptr;
1139 
1140   // If the mask is all zeros, this instruction does nothing.
1141   if (ConstMask->isNullValue())
1142     return eraseInstFromFunction(II);
1143 
1144   // If the mask is all ones, this is a plain vector store of the 1st argument.
1145   if (ConstMask->isAllOnesValue()) {
1146     Value *StorePtr = II.getArgOperand(1);
1147     Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
1148     return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
1149   }
1150 
1151   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
1152   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
1153   APInt UndefElts(DemandedElts.getBitWidth(), 0);
1154   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0),
1155                                             DemandedElts, UndefElts))
1156     return replaceOperand(II, 0, V);
1157 
1158   return nullptr;
1159 }
1160 
1161 // TODO, Obvious Missing Transforms:
1162 // * Single constant active lane load -> load
1163 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
1164 // * Adjacent vector addresses -> masked.load
1165 // * Narrow width by halfs excluding zero/undef lanes
1166 // * Vector splat address w/known mask -> scalar load
1167 // * Vector incrementing address -> vector masked load
1168 Instruction *InstCombiner::simplifyMaskedGather(IntrinsicInst &II) {
1169   return nullptr;
1170 }
1171 
1172 // TODO, Obvious Missing Transforms:
1173 // * Single constant active lane -> store
1174 // * Adjacent vector addresses -> masked.store
1175 // * Narrow store width by halfs excluding zero/undef lanes
1176 // * Vector splat address w/known mask -> scalar store
1177 // * Vector incrementing address -> vector masked store
1178 Instruction *InstCombiner::simplifyMaskedScatter(IntrinsicInst &II) {
1179   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1180   if (!ConstMask)
1181     return nullptr;
1182 
1183   // If the mask is all zeros, a scatter does nothing.
1184   if (ConstMask->isNullValue())
1185     return eraseInstFromFunction(II);
1186 
1187   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
1188   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
1189   APInt UndefElts(DemandedElts.getBitWidth(), 0);
1190   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0),
1191                                             DemandedElts, UndefElts))
1192     return replaceOperand(II, 0, V);
1193   if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1),
1194                                             DemandedElts, UndefElts))
1195     return replaceOperand(II, 1, V);
1196 
1197   return nullptr;
1198 }
1199 
1200 /// This function transforms launder.invariant.group and strip.invariant.group
1201 /// like:
1202 /// launder(launder(%x)) -> launder(%x)       (the result is not the argument)
1203 /// launder(strip(%x)) -> launder(%x)
1204 /// strip(strip(%x)) -> strip(%x)             (the result is not the argument)
1205 /// strip(launder(%x)) -> strip(%x)
1206 /// This is legal because it preserves the most recent information about
1207 /// the presence or absence of invariant.group.
1208 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
1209                                                     InstCombiner &IC) {
1210   auto *Arg = II.getArgOperand(0);
1211   auto *StrippedArg = Arg->stripPointerCasts();
1212   auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups();
1213   if (StrippedArg == StrippedInvariantGroupsArg)
1214     return nullptr; // No launders/strips to remove.
1215 
1216   Value *Result = nullptr;
1217 
1218   if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
1219     Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
1220   else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
1221     Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
1222   else
1223     llvm_unreachable(
1224         "simplifyInvariantGroupIntrinsic only handles launder and strip");
1225   if (Result->getType()->getPointerAddressSpace() !=
1226       II.getType()->getPointerAddressSpace())
1227     Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
1228   if (Result->getType() != II.getType())
1229     Result = IC.Builder.CreateBitCast(Result, II.getType());
1230 
1231   return cast<Instruction>(Result);
1232 }
1233 
1234 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
1235   assert((II.getIntrinsicID() == Intrinsic::cttz ||
1236           II.getIntrinsicID() == Intrinsic::ctlz) &&
1237          "Expected cttz or ctlz intrinsic");
1238   bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
1239   Value *Op0 = II.getArgOperand(0);
1240   Value *X;
1241   // ctlz(bitreverse(x)) -> cttz(x)
1242   // cttz(bitreverse(x)) -> ctlz(x)
1243   if (match(Op0, m_BitReverse(m_Value(X)))) {
1244     Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
1245     Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
1246     return CallInst::Create(F, {X, II.getArgOperand(1)});
1247   }
1248 
1249   if (IsTZ) {
1250     // cttz(-x) -> cttz(x)
1251     if (match(Op0, m_Neg(m_Value(X))))
1252       return IC.replaceOperand(II, 0, X);
1253 
1254     // cttz(abs(x)) -> cttz(x)
1255     // cttz(nabs(x)) -> cttz(x)
1256     Value *Y;
1257     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
1258     if (SPF == SPF_ABS || SPF == SPF_NABS)
1259       return IC.replaceOperand(II, 0, X);
1260   }
1261 
1262   KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
1263 
1264   // Create a mask for bits above (ctlz) or below (cttz) the first known one.
1265   unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
1266                                 : Known.countMaxLeadingZeros();
1267   unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
1268                                 : Known.countMinLeadingZeros();
1269 
1270   // If all bits above (ctlz) or below (cttz) the first known one are known
1271   // zero, this value is constant.
1272   // FIXME: This should be in InstSimplify because we're replacing an
1273   // instruction with a constant.
1274   if (PossibleZeros == DefiniteZeros) {
1275     auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
1276     return IC.replaceInstUsesWith(II, C);
1277   }
1278 
1279   // If the input to cttz/ctlz is known to be non-zero,
1280   // then change the 'ZeroIsUndef' parameter to 'true'
1281   // because we know the zero behavior can't affect the result.
1282   if (!Known.One.isNullValue() ||
1283       isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
1284                      &IC.getDominatorTree())) {
1285     if (!match(II.getArgOperand(1), m_One()))
1286       return IC.replaceOperand(II, 1, IC.Builder.getTrue());
1287   }
1288 
1289   // Add range metadata since known bits can't completely reflect what we know.
1290   // TODO: Handle splat vectors.
1291   auto *IT = dyn_cast<IntegerType>(Op0->getType());
1292   if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1293     Metadata *LowAndHigh[] = {
1294         ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
1295         ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
1296     II.setMetadata(LLVMContext::MD_range,
1297                    MDNode::get(II.getContext(), LowAndHigh));
1298     return &II;
1299   }
1300 
1301   return nullptr;
1302 }
1303 
1304 static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) {
1305   assert(II.getIntrinsicID() == Intrinsic::ctpop &&
1306          "Expected ctpop intrinsic");
1307   Type *Ty = II.getType();
1308   unsigned BitWidth = Ty->getScalarSizeInBits();
1309   Value *Op0 = II.getArgOperand(0);
1310   Value *X;
1311 
1312   // ctpop(bitreverse(x)) -> ctpop(x)
1313   // ctpop(bswap(x)) -> ctpop(x)
1314   if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
1315     return IC.replaceOperand(II, 0, X);
1316 
1317   // ctpop(x | -x) -> bitwidth - cttz(x, false)
1318   if (Op0->hasOneUse() &&
1319       match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
1320     Function *F =
1321         Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
1322     auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()});
1323     auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
1324     return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
1325   }
1326 
1327   // ctpop(~x & (x - 1)) -> cttz(x, false)
1328   if (match(Op0,
1329             m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) {
1330     Function *F =
1331         Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
1332     return CallInst::Create(F, {X, IC.Builder.getFalse()});
1333   }
1334 
1335   // FIXME: Try to simplify vectors of integers.
1336   auto *IT = dyn_cast<IntegerType>(Ty);
1337   if (!IT)
1338     return nullptr;
1339 
1340   KnownBits Known(BitWidth);
1341   IC.computeKnownBits(Op0, Known, 0, &II);
1342 
1343   unsigned MinCount = Known.countMinPopulation();
1344   unsigned MaxCount = Known.countMaxPopulation();
1345 
1346   // Add range metadata since known bits can't completely reflect what we know.
1347   if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1348     Metadata *LowAndHigh[] = {
1349         ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
1350         ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
1351     II.setMetadata(LLVMContext::MD_range,
1352                    MDNode::get(II.getContext(), LowAndHigh));
1353     return &II;
1354   }
1355 
1356   return nullptr;
1357 }
1358 
1359 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1360 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1361 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
1362 static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
1363   Value *Ptr = II.getOperand(0);
1364   Value *Mask = II.getOperand(1);
1365   Constant *ZeroVec = Constant::getNullValue(II.getType());
1366 
1367   // Special case a zero mask since that's not a ConstantDataVector.
1368   // This masked load instruction creates a zero vector.
1369   if (isa<ConstantAggregateZero>(Mask))
1370     return IC.replaceInstUsesWith(II, ZeroVec);
1371 
1372   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1373   if (!ConstMask)
1374     return nullptr;
1375 
1376   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1377   // to allow target-independent optimizations.
1378 
1379   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1380   // the LLVM intrinsic definition for the pointer argument.
1381   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1382   PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
1383   Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
1384 
1385   // Second, convert the x86 XMM integer vector mask to a vector of bools based
1386   // on each element's most significant bit (the sign bit).
1387   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1388 
1389   // The pass-through vector for an x86 masked load is a zero vector.
1390   CallInst *NewMaskedLoad =
1391       IC.Builder.CreateMaskedLoad(PtrCast, Align(1), BoolMask, ZeroVec);
1392   return IC.replaceInstUsesWith(II, NewMaskedLoad);
1393 }
1394 
1395 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1396 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1397 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
1398 static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1399   Value *Ptr = II.getOperand(0);
1400   Value *Mask = II.getOperand(1);
1401   Value *Vec = II.getOperand(2);
1402 
1403   // Special case a zero mask since that's not a ConstantDataVector:
1404   // this masked store instruction does nothing.
1405   if (isa<ConstantAggregateZero>(Mask)) {
1406     IC.eraseInstFromFunction(II);
1407     return true;
1408   }
1409 
1410   // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
1411   // anything else at this level.
1412   if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
1413     return false;
1414 
1415   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1416   if (!ConstMask)
1417     return false;
1418 
1419   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1420   // to allow target-independent optimizations.
1421 
1422   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1423   // the LLVM intrinsic definition for the pointer argument.
1424   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1425   PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
1426   Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
1427 
1428   // Second, convert the x86 XMM integer vector mask to a vector of bools based
1429   // on each element's most significant bit (the sign bit).
1430   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1431 
1432   IC.Builder.CreateMaskedStore(Vec, PtrCast, Align(1), BoolMask);
1433 
1434   // 'Replace uses' doesn't work for stores. Erase the original masked store.
1435   IC.eraseInstFromFunction(II);
1436   return true;
1437 }
1438 
1439 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
1440 //
1441 // A single NaN input is folded to minnum, so we rely on that folding for
1442 // handling NaNs.
1443 static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
1444                            const APFloat &Src2) {
1445   APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
1446 
1447   APFloat::cmpResult Cmp0 = Max3.compare(Src0);
1448   assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
1449   if (Cmp0 == APFloat::cmpEqual)
1450     return maxnum(Src1, Src2);
1451 
1452   APFloat::cmpResult Cmp1 = Max3.compare(Src1);
1453   assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
1454   if (Cmp1 == APFloat::cmpEqual)
1455     return maxnum(Src0, Src2);
1456 
1457   return maxnum(Src0, Src1);
1458 }
1459 
1460 /// Convert a table lookup to shufflevector if the mask is constant.
1461 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
1462 /// which case we could lower the shufflevector with rev64 instructions
1463 /// as it's actually a byte reverse.
1464 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
1465                                InstCombiner::BuilderTy &Builder) {
1466   // Bail out if the mask is not a constant.
1467   auto *C = dyn_cast<Constant>(II.getArgOperand(1));
1468   if (!C)
1469     return nullptr;
1470 
1471   auto *VecTy = cast<VectorType>(II.getType());
1472   unsigned NumElts = VecTy->getNumElements();
1473 
1474   // Only perform this transformation for <8 x i8> vector types.
1475   if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
1476     return nullptr;
1477 
1478   int Indexes[8];
1479 
1480   for (unsigned I = 0; I < NumElts; ++I) {
1481     Constant *COp = C->getAggregateElement(I);
1482 
1483     if (!COp || !isa<ConstantInt>(COp))
1484       return nullptr;
1485 
1486     Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
1487 
1488     // Make sure the mask indices are in range.
1489     if ((unsigned)Indexes[I] >= NumElts)
1490       return nullptr;
1491   }
1492 
1493   auto *V1 = II.getArgOperand(0);
1494   auto *V2 = Constant::getNullValue(V1->getType());
1495   return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes));
1496 }
1497 
1498 /// Convert a vector load intrinsic into a simple llvm load instruction.
1499 /// This is beneficial when the underlying object being addressed comes
1500 /// from a constant, since we get constant-folding for free.
1501 static Value *simplifyNeonVld1(const IntrinsicInst &II,
1502                                unsigned MemAlign,
1503                                InstCombiner::BuilderTy &Builder) {
1504   auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
1505 
1506   if (!IntrAlign)
1507     return nullptr;
1508 
1509   unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ?
1510                        MemAlign : IntrAlign->getLimitedValue();
1511 
1512   if (!isPowerOf2_32(Alignment))
1513     return nullptr;
1514 
1515   auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
1516                                           PointerType::get(II.getType(), 0));
1517   return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment));
1518 }
1519 
1520 // Returns true iff the 2 intrinsics have the same operands, limiting the
1521 // comparison to the first NumOperands.
1522 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
1523                              unsigned NumOperands) {
1524   assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
1525   assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
1526   for (unsigned i = 0; i < NumOperands; i++)
1527     if (I.getArgOperand(i) != E.getArgOperand(i))
1528       return false;
1529   return true;
1530 }
1531 
1532 // Remove trivially empty start/end intrinsic ranges, i.e. a start
1533 // immediately followed by an end (ignoring debuginfo or other
1534 // start/end intrinsics in between). As this handles only the most trivial
1535 // cases, tracking the nesting level is not needed:
1536 //
1537 //   call @llvm.foo.start(i1 0)
1538 //   call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
1539 //   call @llvm.foo.end(i1 0)
1540 //   call @llvm.foo.end(i1 0) ; &I
1541 static bool removeTriviallyEmptyRange(
1542     IntrinsicInst &EndI, InstCombiner &IC,
1543     std::function<bool(const IntrinsicInst &)> IsStart) {
1544   // We start from the end intrinsic and scan backwards, so that InstCombine
1545   // has already processed (and potentially removed) all the instructions
1546   // before the end intrinsic.
1547   BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
1548   for (; BI != BE; ++BI) {
1549     if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
1550       if (isa<DbgInfoIntrinsic>(I) ||
1551           I->getIntrinsicID() == EndI.getIntrinsicID())
1552         continue;
1553       if (IsStart(*I)) {
1554         if (haveSameOperands(EndI, *I, EndI.getNumArgOperands())) {
1555           IC.eraseInstFromFunction(*I);
1556           IC.eraseInstFromFunction(EndI);
1557           return true;
1558         }
1559         // Skip start intrinsics that don't pair with this end intrinsic.
1560         continue;
1561       }
1562     }
1563     break;
1564   }
1565 
1566   return false;
1567 }
1568 
1569 // Convert NVVM intrinsics to target-generic LLVM code where possible.
1570 static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
1571   // Each NVVM intrinsic we can simplify can be replaced with one of:
1572   //
1573   //  * an LLVM intrinsic,
1574   //  * an LLVM cast operation,
1575   //  * an LLVM binary operation, or
1576   //  * ad-hoc LLVM IR for the particular operation.
1577 
1578   // Some transformations are only valid when the module's
1579   // flush-denormals-to-zero (ftz) setting is true/false, whereas other
1580   // transformations are valid regardless of the module's ftz setting.
1581   enum FtzRequirementTy {
1582     FTZ_Any,       // Any ftz setting is ok.
1583     FTZ_MustBeOn,  // Transformation is valid only if ftz is on.
1584     FTZ_MustBeOff, // Transformation is valid only if ftz is off.
1585   };
1586   // Classes of NVVM intrinsics that can't be replaced one-to-one with a
1587   // target-generic intrinsic, cast op, or binary op but that we can nonetheless
1588   // simplify.
1589   enum SpecialCase {
1590     SPC_Reciprocal,
1591   };
1592 
1593   // SimplifyAction is a poor-man's variant (plus an additional flag) that
1594   // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
1595   struct SimplifyAction {
1596     // Invariant: At most one of these Optionals has a value.
1597     Optional<Intrinsic::ID> IID;
1598     Optional<Instruction::CastOps> CastOp;
1599     Optional<Instruction::BinaryOps> BinaryOp;
1600     Optional<SpecialCase> Special;
1601 
1602     FtzRequirementTy FtzRequirement = FTZ_Any;
1603 
1604     SimplifyAction() = default;
1605 
1606     SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
1607         : IID(IID), FtzRequirement(FtzReq) {}
1608 
1609     // Cast operations don't have anything to do with FTZ, so we skip that
1610     // argument.
1611     SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
1612 
1613     SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
1614         : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
1615 
1616     SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
1617         : Special(Special), FtzRequirement(FtzReq) {}
1618   };
1619 
1620   // Try to generate a SimplifyAction describing how to replace our
1621   // IntrinsicInstr with target-generic LLVM IR.
1622   const SimplifyAction Action = [II]() -> SimplifyAction {
1623     switch (II->getIntrinsicID()) {
1624     // NVVM intrinsics that map directly to LLVM intrinsics.
1625     case Intrinsic::nvvm_ceil_d:
1626       return {Intrinsic::ceil, FTZ_Any};
1627     case Intrinsic::nvvm_ceil_f:
1628       return {Intrinsic::ceil, FTZ_MustBeOff};
1629     case Intrinsic::nvvm_ceil_ftz_f:
1630       return {Intrinsic::ceil, FTZ_MustBeOn};
1631     case Intrinsic::nvvm_fabs_d:
1632       return {Intrinsic::fabs, FTZ_Any};
1633     case Intrinsic::nvvm_fabs_f:
1634       return {Intrinsic::fabs, FTZ_MustBeOff};
1635     case Intrinsic::nvvm_fabs_ftz_f:
1636       return {Intrinsic::fabs, FTZ_MustBeOn};
1637     case Intrinsic::nvvm_floor_d:
1638       return {Intrinsic::floor, FTZ_Any};
1639     case Intrinsic::nvvm_floor_f:
1640       return {Intrinsic::floor, FTZ_MustBeOff};
1641     case Intrinsic::nvvm_floor_ftz_f:
1642       return {Intrinsic::floor, FTZ_MustBeOn};
1643     case Intrinsic::nvvm_fma_rn_d:
1644       return {Intrinsic::fma, FTZ_Any};
1645     case Intrinsic::nvvm_fma_rn_f:
1646       return {Intrinsic::fma, FTZ_MustBeOff};
1647     case Intrinsic::nvvm_fma_rn_ftz_f:
1648       return {Intrinsic::fma, FTZ_MustBeOn};
1649     case Intrinsic::nvvm_fmax_d:
1650       return {Intrinsic::maxnum, FTZ_Any};
1651     case Intrinsic::nvvm_fmax_f:
1652       return {Intrinsic::maxnum, FTZ_MustBeOff};
1653     case Intrinsic::nvvm_fmax_ftz_f:
1654       return {Intrinsic::maxnum, FTZ_MustBeOn};
1655     case Intrinsic::nvvm_fmin_d:
1656       return {Intrinsic::minnum, FTZ_Any};
1657     case Intrinsic::nvvm_fmin_f:
1658       return {Intrinsic::minnum, FTZ_MustBeOff};
1659     case Intrinsic::nvvm_fmin_ftz_f:
1660       return {Intrinsic::minnum, FTZ_MustBeOn};
1661     case Intrinsic::nvvm_round_d:
1662       return {Intrinsic::round, FTZ_Any};
1663     case Intrinsic::nvvm_round_f:
1664       return {Intrinsic::round, FTZ_MustBeOff};
1665     case Intrinsic::nvvm_round_ftz_f:
1666       return {Intrinsic::round, FTZ_MustBeOn};
1667     case Intrinsic::nvvm_sqrt_rn_d:
1668       return {Intrinsic::sqrt, FTZ_Any};
1669     case Intrinsic::nvvm_sqrt_f:
1670       // nvvm_sqrt_f is a special case.  For  most intrinsics, foo_ftz_f is the
1671       // ftz version, and foo_f is the non-ftz version.  But nvvm_sqrt_f adopts
1672       // the ftz-ness of the surrounding code.  sqrt_rn_f and sqrt_rn_ftz_f are
1673       // the versions with explicit ftz-ness.
1674       return {Intrinsic::sqrt, FTZ_Any};
1675     case Intrinsic::nvvm_sqrt_rn_f:
1676       return {Intrinsic::sqrt, FTZ_MustBeOff};
1677     case Intrinsic::nvvm_sqrt_rn_ftz_f:
1678       return {Intrinsic::sqrt, FTZ_MustBeOn};
1679     case Intrinsic::nvvm_trunc_d:
1680       return {Intrinsic::trunc, FTZ_Any};
1681     case Intrinsic::nvvm_trunc_f:
1682       return {Intrinsic::trunc, FTZ_MustBeOff};
1683     case Intrinsic::nvvm_trunc_ftz_f:
1684       return {Intrinsic::trunc, FTZ_MustBeOn};
1685 
1686     // NVVM intrinsics that map to LLVM cast operations.
1687     //
1688     // Note that llvm's target-generic conversion operators correspond to the rz
1689     // (round to zero) versions of the nvvm conversion intrinsics, even though
1690     // most everything else here uses the rn (round to nearest even) nvvm ops.
1691     case Intrinsic::nvvm_d2i_rz:
1692     case Intrinsic::nvvm_f2i_rz:
1693     case Intrinsic::nvvm_d2ll_rz:
1694     case Intrinsic::nvvm_f2ll_rz:
1695       return {Instruction::FPToSI};
1696     case Intrinsic::nvvm_d2ui_rz:
1697     case Intrinsic::nvvm_f2ui_rz:
1698     case Intrinsic::nvvm_d2ull_rz:
1699     case Intrinsic::nvvm_f2ull_rz:
1700       return {Instruction::FPToUI};
1701     case Intrinsic::nvvm_i2d_rz:
1702     case Intrinsic::nvvm_i2f_rz:
1703     case Intrinsic::nvvm_ll2d_rz:
1704     case Intrinsic::nvvm_ll2f_rz:
1705       return {Instruction::SIToFP};
1706     case Intrinsic::nvvm_ui2d_rz:
1707     case Intrinsic::nvvm_ui2f_rz:
1708     case Intrinsic::nvvm_ull2d_rz:
1709     case Intrinsic::nvvm_ull2f_rz:
1710       return {Instruction::UIToFP};
1711 
1712     // NVVM intrinsics that map to LLVM binary ops.
1713     case Intrinsic::nvvm_add_rn_d:
1714       return {Instruction::FAdd, FTZ_Any};
1715     case Intrinsic::nvvm_add_rn_f:
1716       return {Instruction::FAdd, FTZ_MustBeOff};
1717     case Intrinsic::nvvm_add_rn_ftz_f:
1718       return {Instruction::FAdd, FTZ_MustBeOn};
1719     case Intrinsic::nvvm_mul_rn_d:
1720       return {Instruction::FMul, FTZ_Any};
1721     case Intrinsic::nvvm_mul_rn_f:
1722       return {Instruction::FMul, FTZ_MustBeOff};
1723     case Intrinsic::nvvm_mul_rn_ftz_f:
1724       return {Instruction::FMul, FTZ_MustBeOn};
1725     case Intrinsic::nvvm_div_rn_d:
1726       return {Instruction::FDiv, FTZ_Any};
1727     case Intrinsic::nvvm_div_rn_f:
1728       return {Instruction::FDiv, FTZ_MustBeOff};
1729     case Intrinsic::nvvm_div_rn_ftz_f:
1730       return {Instruction::FDiv, FTZ_MustBeOn};
1731 
1732     // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
1733     // need special handling.
1734     //
1735     // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
1736     // as well.
1737     case Intrinsic::nvvm_rcp_rn_d:
1738       return {SPC_Reciprocal, FTZ_Any};
1739     case Intrinsic::nvvm_rcp_rn_f:
1740       return {SPC_Reciprocal, FTZ_MustBeOff};
1741     case Intrinsic::nvvm_rcp_rn_ftz_f:
1742       return {SPC_Reciprocal, FTZ_MustBeOn};
1743 
1744     // We do not currently simplify intrinsics that give an approximate answer.
1745     // These include:
1746     //
1747     //   - nvvm_cos_approx_{f,ftz_f}
1748     //   - nvvm_ex2_approx_{d,f,ftz_f}
1749     //   - nvvm_lg2_approx_{d,f,ftz_f}
1750     //   - nvvm_sin_approx_{f,ftz_f}
1751     //   - nvvm_sqrt_approx_{f,ftz_f}
1752     //   - nvvm_rsqrt_approx_{d,f,ftz_f}
1753     //   - nvvm_div_approx_{ftz_d,ftz_f,f}
1754     //   - nvvm_rcp_approx_ftz_d
1755     //
1756     // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
1757     // means that fastmath is enabled in the intrinsic.  Unfortunately only
1758     // binary operators (currently) have a fastmath bit in SelectionDAG, so this
1759     // information gets lost and we can't select on it.
1760     //
1761     // TODO: div and rcp are lowered to a binary op, so these we could in theory
1762     // lower them to "fast fdiv".
1763 
1764     default:
1765       return {};
1766     }
1767   }();
1768 
1769   // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
1770   // can bail out now.  (Notice that in the case that IID is not an NVVM
1771   // intrinsic, we don't have to look up any module metadata, as
1772   // FtzRequirementTy will be FTZ_Any.)
1773   if (Action.FtzRequirement != FTZ_Any) {
1774     StringRef Attr = II->getFunction()
1775                          ->getFnAttribute("denormal-fp-math-f32")
1776                          .getValueAsString();
1777     DenormalMode Mode = parseDenormalFPAttribute(Attr);
1778     bool FtzEnabled = Mode.Output != DenormalMode::IEEE;
1779 
1780     if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
1781       return nullptr;
1782   }
1783 
1784   // Simplify to target-generic intrinsic.
1785   if (Action.IID) {
1786     SmallVector<Value *, 4> Args(II->arg_operands());
1787     // All the target-generic intrinsics currently of interest to us have one
1788     // type argument, equal to that of the nvvm intrinsic's argument.
1789     Type *Tys[] = {II->getArgOperand(0)->getType()};
1790     return CallInst::Create(
1791         Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
1792   }
1793 
1794   // Simplify to target-generic binary op.
1795   if (Action.BinaryOp)
1796     return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
1797                                   II->getArgOperand(1), II->getName());
1798 
1799   // Simplify to target-generic cast op.
1800   if (Action.CastOp)
1801     return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
1802                             II->getName());
1803 
1804   // All that's left are the special cases.
1805   if (!Action.Special)
1806     return nullptr;
1807 
1808   switch (*Action.Special) {
1809   case SPC_Reciprocal:
1810     // Simplify reciprocal.
1811     return BinaryOperator::Create(
1812         Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
1813         II->getArgOperand(0), II->getName());
1814   }
1815   llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
1816 }
1817 
1818 Instruction *InstCombiner::visitVAEndInst(VAEndInst &I) {
1819   removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
1820     return I.getIntrinsicID() == Intrinsic::vastart ||
1821            I.getIntrinsicID() == Intrinsic::vacopy;
1822   });
1823   return nullptr;
1824 }
1825 
1826 static Instruction *canonicalizeConstantArg0ToArg1(CallInst &Call) {
1827   assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap");
1828   Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
1829   if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
1830     Call.setArgOperand(0, Arg1);
1831     Call.setArgOperand(1, Arg0);
1832     return &Call;
1833   }
1834   return nullptr;
1835 }
1836 
1837 Instruction *InstCombiner::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
1838   WithOverflowInst *WO = cast<WithOverflowInst>(II);
1839   Value *OperationResult = nullptr;
1840   Constant *OverflowResult = nullptr;
1841   if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
1842                             WO->getRHS(), *WO, OperationResult, OverflowResult))
1843     return CreateOverflowTuple(WO, OperationResult, OverflowResult);
1844   return nullptr;
1845 }
1846 
1847 /// CallInst simplification. This mostly only handles folding of intrinsic
1848 /// instructions. For normal calls, it allows visitCallBase to do the heavy
1849 /// lifting.
1850 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
1851   // Don't try to simplify calls without uses. It will not do anything useful,
1852   // but will result in the following folds being skipped.
1853   if (!CI.use_empty())
1854     if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
1855       return replaceInstUsesWith(CI, V);
1856 
1857   if (isFreeCall(&CI, &TLI))
1858     return visitFree(CI);
1859 
1860   // If the caller function is nounwind, mark the call as nounwind, even if the
1861   // callee isn't.
1862   if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1863     CI.setDoesNotThrow();
1864     return &CI;
1865   }
1866 
1867   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1868   if (!II) return visitCallBase(CI);
1869 
1870   // For atomic unordered mem intrinsics if len is not a positive or
1871   // not a multiple of element size then behavior is undefined.
1872   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
1873     if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
1874       if (NumBytes->getSExtValue() < 0 ||
1875           (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
1876         CreateNonTerminatorUnreachable(AMI);
1877         assert(AMI->getType()->isVoidTy() &&
1878                "non void atomic unordered mem intrinsic");
1879         return eraseInstFromFunction(*AMI);
1880       }
1881 
1882   // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1883   // instead of in visitCallBase.
1884   if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1885     bool Changed = false;
1886 
1887     // memmove/cpy/set of zero bytes is a noop.
1888     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1889       if (NumBytes->isNullValue())
1890         return eraseInstFromFunction(CI);
1891 
1892       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
1893         if (CI->getZExtValue() == 1) {
1894           // Replace the instruction with just byte operations.  We would
1895           // transform other cases to loads/stores, but we don't know if
1896           // alignment is sufficient.
1897         }
1898     }
1899 
1900     // No other transformations apply to volatile transfers.
1901     if (auto *M = dyn_cast<MemIntrinsic>(MI))
1902       if (M->isVolatile())
1903         return nullptr;
1904 
1905     // If we have a memmove and the source operation is a constant global,
1906     // then the source and dest pointers can't alias, so we can change this
1907     // into a call to memcpy.
1908     if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1909       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1910         if (GVSrc->isConstant()) {
1911           Module *M = CI.getModule();
1912           Intrinsic::ID MemCpyID =
1913               isa<AtomicMemMoveInst>(MMI)
1914                   ? Intrinsic::memcpy_element_unordered_atomic
1915                   : Intrinsic::memcpy;
1916           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1917                            CI.getArgOperand(1)->getType(),
1918                            CI.getArgOperand(2)->getType() };
1919           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1920           Changed = true;
1921         }
1922     }
1923 
1924     if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1925       // memmove(x,x,size) -> noop.
1926       if (MTI->getSource() == MTI->getDest())
1927         return eraseInstFromFunction(CI);
1928     }
1929 
1930     // If we can determine a pointer alignment that is bigger than currently
1931     // set, update the alignment.
1932     if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1933       if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1934         return I;
1935     } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1936       if (Instruction *I = SimplifyAnyMemSet(MSI))
1937         return I;
1938     }
1939 
1940     if (Changed) return II;
1941   }
1942 
1943   // For fixed width vector result intrinsics, use the generic demanded vector
1944   // support.
1945   if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
1946     auto VWidth = IIFVTy->getNumElements();
1947     APInt UndefElts(VWidth, 0);
1948     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1949     if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
1950       if (V != II)
1951         return replaceInstUsesWith(*II, V);
1952       return II;
1953     }
1954   }
1955 
1956   if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
1957     return I;
1958 
1959   auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
1960                                               unsigned DemandedWidth) {
1961     APInt UndefElts(Width, 0);
1962     APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
1963     return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
1964   };
1965 
1966   Intrinsic::ID IID = II->getIntrinsicID();
1967   switch (IID) {
1968   default: break;
1969   case Intrinsic::objectsize:
1970     if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
1971       return replaceInstUsesWith(CI, V);
1972     return nullptr;
1973   case Intrinsic::bswap: {
1974     Value *IIOperand = II->getArgOperand(0);
1975     Value *X = nullptr;
1976 
1977     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1978     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1979       unsigned C = X->getType()->getPrimitiveSizeInBits() -
1980         IIOperand->getType()->getPrimitiveSizeInBits();
1981       Value *CV = ConstantInt::get(X->getType(), C);
1982       Value *V = Builder.CreateLShr(X, CV);
1983       return new TruncInst(V, IIOperand->getType());
1984     }
1985     break;
1986   }
1987   case Intrinsic::masked_load:
1988     if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1989       return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1990     break;
1991   case Intrinsic::masked_store:
1992     return simplifyMaskedStore(*II);
1993   case Intrinsic::masked_gather:
1994     return simplifyMaskedGather(*II);
1995   case Intrinsic::masked_scatter:
1996     return simplifyMaskedScatter(*II);
1997   case Intrinsic::launder_invariant_group:
1998   case Intrinsic::strip_invariant_group:
1999     if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
2000       return replaceInstUsesWith(*II, SkippedBarrier);
2001     break;
2002   case Intrinsic::powi:
2003     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2004       // 0 and 1 are handled in instsimplify
2005 
2006       // powi(x, -1) -> 1/x
2007       if (Power->isMinusOne())
2008         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
2009                                           II->getArgOperand(0));
2010       // powi(x, 2) -> x*x
2011       if (Power->equalsInt(2))
2012         return BinaryOperator::CreateFMul(II->getArgOperand(0),
2013                                           II->getArgOperand(0));
2014     }
2015     break;
2016 
2017   case Intrinsic::cttz:
2018   case Intrinsic::ctlz:
2019     if (auto *I = foldCttzCtlz(*II, *this))
2020       return I;
2021     break;
2022 
2023   case Intrinsic::ctpop:
2024     if (auto *I = foldCtpop(*II, *this))
2025       return I;
2026     break;
2027 
2028   case Intrinsic::fshl:
2029   case Intrinsic::fshr: {
2030     Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
2031     Type *Ty = II->getType();
2032     unsigned BitWidth = Ty->getScalarSizeInBits();
2033     Constant *ShAmtC;
2034     if (match(II->getArgOperand(2), m_Constant(ShAmtC)) &&
2035         !isa<ConstantExpr>(ShAmtC) && !ShAmtC->containsConstantExpression()) {
2036       // Canonicalize a shift amount constant operand to modulo the bit-width.
2037       Constant *WidthC = ConstantInt::get(Ty, BitWidth);
2038       Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC);
2039       if (ModuloC != ShAmtC)
2040         return replaceOperand(*II, 2, ModuloC);
2041 
2042       assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
2043                  ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
2044              "Shift amount expected to be modulo bitwidth");
2045 
2046       // Canonicalize funnel shift right by constant to funnel shift left. This
2047       // is not entirely arbitrary. For historical reasons, the backend may
2048       // recognize rotate left patterns but miss rotate right patterns.
2049       if (IID == Intrinsic::fshr) {
2050         // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
2051         Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
2052         Module *Mod = II->getModule();
2053         Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
2054         return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
2055       }
2056       assert(IID == Intrinsic::fshl &&
2057              "All funnel shifts by simple constants should go left");
2058 
2059       // fshl(X, 0, C) --> shl X, C
2060       // fshl(X, undef, C) --> shl X, C
2061       if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
2062         return BinaryOperator::CreateShl(Op0, ShAmtC);
2063 
2064       // fshl(0, X, C) --> lshr X, (BW-C)
2065       // fshl(undef, X, C) --> lshr X, (BW-C)
2066       if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
2067         return BinaryOperator::CreateLShr(Op1,
2068                                           ConstantExpr::getSub(WidthC, ShAmtC));
2069 
2070       // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
2071       if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
2072         Module *Mod = II->getModule();
2073         Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
2074         return CallInst::Create(Bswap, { Op0 });
2075       }
2076     }
2077 
2078     // Left or right might be masked.
2079     if (SimplifyDemandedInstructionBits(*II))
2080       return &CI;
2081 
2082     // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
2083     // so only the low bits of the shift amount are demanded if the bitwidth is
2084     // a power-of-2.
2085     if (!isPowerOf2_32(BitWidth))
2086       break;
2087     APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
2088     KnownBits Op2Known(BitWidth);
2089     if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
2090       return &CI;
2091     break;
2092   }
2093   case Intrinsic::uadd_with_overflow:
2094   case Intrinsic::sadd_with_overflow: {
2095     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2096       return I;
2097     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2098       return I;
2099 
2100     // Given 2 constant operands whose sum does not overflow:
2101     // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2102     // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2103     Value *X;
2104     const APInt *C0, *C1;
2105     Value *Arg0 = II->getArgOperand(0);
2106     Value *Arg1 = II->getArgOperand(1);
2107     bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2108     bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
2109                              : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
2110     if (HasNWAdd && match(Arg1, m_APInt(C1))) {
2111       bool Overflow;
2112       APInt NewC =
2113           IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
2114       if (!Overflow)
2115         return replaceInstUsesWith(
2116             *II, Builder.CreateBinaryIntrinsic(
2117                      IID, X, ConstantInt::get(Arg1->getType(), NewC)));
2118     }
2119     break;
2120   }
2121 
2122   case Intrinsic::umul_with_overflow:
2123   case Intrinsic::smul_with_overflow:
2124     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2125       return I;
2126     LLVM_FALLTHROUGH;
2127 
2128   case Intrinsic::usub_with_overflow:
2129     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2130       return I;
2131     break;
2132 
2133   case Intrinsic::ssub_with_overflow: {
2134     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2135       return I;
2136 
2137     Constant *C;
2138     Value *Arg0 = II->getArgOperand(0);
2139     Value *Arg1 = II->getArgOperand(1);
2140     // Given a constant C that is not the minimum signed value
2141     // for an integer of a given bit width:
2142     //
2143     // ssubo X, C -> saddo X, -C
2144     if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
2145       Value *NegVal = ConstantExpr::getNeg(C);
2146       // Build a saddo call that is equivalent to the discovered
2147       // ssubo call.
2148       return replaceInstUsesWith(
2149           *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2150                                              Arg0, NegVal));
2151     }
2152 
2153     break;
2154   }
2155 
2156   case Intrinsic::uadd_sat:
2157   case Intrinsic::sadd_sat:
2158     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2159       return I;
2160     LLVM_FALLTHROUGH;
2161   case Intrinsic::usub_sat:
2162   case Intrinsic::ssub_sat: {
2163     SaturatingInst *SI = cast<SaturatingInst>(II);
2164     Type *Ty = SI->getType();
2165     Value *Arg0 = SI->getLHS();
2166     Value *Arg1 = SI->getRHS();
2167 
2168     // Make use of known overflow information.
2169     OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
2170                                         Arg0, Arg1, SI);
2171     switch (OR) {
2172       case OverflowResult::MayOverflow:
2173         break;
2174       case OverflowResult::NeverOverflows:
2175         if (SI->isSigned())
2176           return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
2177         else
2178           return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
2179       case OverflowResult::AlwaysOverflowsLow: {
2180         unsigned BitWidth = Ty->getScalarSizeInBits();
2181         APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
2182         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
2183       }
2184       case OverflowResult::AlwaysOverflowsHigh: {
2185         unsigned BitWidth = Ty->getScalarSizeInBits();
2186         APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
2187         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
2188       }
2189     }
2190 
2191     // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2192     Constant *C;
2193     if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2194         C->isNotMinSignedValue()) {
2195       Value *NegVal = ConstantExpr::getNeg(C);
2196       return replaceInstUsesWith(
2197           *II, Builder.CreateBinaryIntrinsic(
2198               Intrinsic::sadd_sat, Arg0, NegVal));
2199     }
2200 
2201     // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2202     // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2203     // if Val and Val2 have the same sign
2204     if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
2205       Value *X;
2206       const APInt *Val, *Val2;
2207       APInt NewVal;
2208       bool IsUnsigned =
2209           IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2210       if (Other->getIntrinsicID() == IID &&
2211           match(Arg1, m_APInt(Val)) &&
2212           match(Other->getArgOperand(0), m_Value(X)) &&
2213           match(Other->getArgOperand(1), m_APInt(Val2))) {
2214         if (IsUnsigned)
2215           NewVal = Val->uadd_sat(*Val2);
2216         else if (Val->isNonNegative() == Val2->isNonNegative()) {
2217           bool Overflow;
2218           NewVal = Val->sadd_ov(*Val2, Overflow);
2219           if (Overflow) {
2220             // Both adds together may add more than SignedMaxValue
2221             // without saturating the final result.
2222             break;
2223           }
2224         } else {
2225           // Cannot fold saturated addition with different signs.
2226           break;
2227         }
2228 
2229         return replaceInstUsesWith(
2230             *II, Builder.CreateBinaryIntrinsic(
2231                      IID, X, ConstantInt::get(II->getType(), NewVal)));
2232       }
2233     }
2234     break;
2235   }
2236 
2237   case Intrinsic::minnum:
2238   case Intrinsic::maxnum:
2239   case Intrinsic::minimum:
2240   case Intrinsic::maximum: {
2241     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2242       return I;
2243     Value *Arg0 = II->getArgOperand(0);
2244     Value *Arg1 = II->getArgOperand(1);
2245     Value *X, *Y;
2246     if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2247         (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2248       // If both operands are negated, invert the call and negate the result:
2249       // min(-X, -Y) --> -(max(X, Y))
2250       // max(-X, -Y) --> -(min(X, Y))
2251       Intrinsic::ID NewIID;
2252       switch (IID) {
2253       case Intrinsic::maxnum:
2254         NewIID = Intrinsic::minnum;
2255         break;
2256       case Intrinsic::minnum:
2257         NewIID = Intrinsic::maxnum;
2258         break;
2259       case Intrinsic::maximum:
2260         NewIID = Intrinsic::minimum;
2261         break;
2262       case Intrinsic::minimum:
2263         NewIID = Intrinsic::maximum;
2264         break;
2265       default:
2266         llvm_unreachable("unexpected intrinsic ID");
2267       }
2268       Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
2269       Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
2270       FNeg->copyIRFlags(II);
2271       return FNeg;
2272     }
2273 
2274     // m(m(X, C2), C1) -> m(X, C)
2275     const APFloat *C1, *C2;
2276     if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
2277       if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
2278           ((match(M->getArgOperand(0), m_Value(X)) &&
2279             match(M->getArgOperand(1), m_APFloat(C2))) ||
2280            (match(M->getArgOperand(1), m_Value(X)) &&
2281             match(M->getArgOperand(0), m_APFloat(C2))))) {
2282         APFloat Res(0.0);
2283         switch (IID) {
2284         case Intrinsic::maxnum:
2285           Res = maxnum(*C1, *C2);
2286           break;
2287         case Intrinsic::minnum:
2288           Res = minnum(*C1, *C2);
2289           break;
2290         case Intrinsic::maximum:
2291           Res = maximum(*C1, *C2);
2292           break;
2293         case Intrinsic::minimum:
2294           Res = minimum(*C1, *C2);
2295           break;
2296         default:
2297           llvm_unreachable("unexpected intrinsic ID");
2298         }
2299         Instruction *NewCall = Builder.CreateBinaryIntrinsic(
2300             IID, X, ConstantFP::get(Arg0->getType(), Res), II);
2301         // TODO: Conservatively intersecting FMF. If Res == C2, the transform
2302         //       was a simplification (so Arg0 and its original flags could
2303         //       propagate?)
2304         NewCall->andIRFlags(M);
2305         return replaceInstUsesWith(*II, NewCall);
2306       }
2307     }
2308 
2309     Value *ExtSrc0;
2310     Value *ExtSrc1;
2311 
2312     // minnum (fpext x), (fpext y) -> minnum x, y
2313     // maxnum (fpext x), (fpext y) -> maxnum x, y
2314     if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc0)))) &&
2315         match(II->getArgOperand(1), m_OneUse(m_FPExt(m_Value(ExtSrc1)))) &&
2316         ExtSrc0->getType() == ExtSrc1->getType()) {
2317       Function *F = Intrinsic::getDeclaration(
2318           II->getModule(), II->getIntrinsicID(), {ExtSrc0->getType()});
2319       CallInst *NewCall = Builder.CreateCall(F, { ExtSrc0, ExtSrc1 });
2320       NewCall->copyFastMathFlags(II);
2321       NewCall->takeName(II);
2322       return new FPExtInst(NewCall, II->getType());
2323     }
2324 
2325     break;
2326   }
2327   case Intrinsic::fmuladd: {
2328     // Canonicalize fast fmuladd to the separate fmul + fadd.
2329     if (II->isFast()) {
2330       BuilderTy::FastMathFlagGuard Guard(Builder);
2331       Builder.setFastMathFlags(II->getFastMathFlags());
2332       Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
2333                                       II->getArgOperand(1));
2334       Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
2335       Add->takeName(II);
2336       return replaceInstUsesWith(*II, Add);
2337     }
2338 
2339     // Try to simplify the underlying FMul.
2340     if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
2341                                     II->getFastMathFlags(),
2342                                     SQ.getWithInstruction(II))) {
2343       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2344       FAdd->copyFastMathFlags(II);
2345       return FAdd;
2346     }
2347 
2348     LLVM_FALLTHROUGH;
2349   }
2350   case Intrinsic::fma: {
2351     if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
2352       return I;
2353 
2354     // fma fneg(x), fneg(y), z -> fma x, y, z
2355     Value *Src0 = II->getArgOperand(0);
2356     Value *Src1 = II->getArgOperand(1);
2357     Value *X, *Y;
2358     if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2359       replaceOperand(*II, 0, X);
2360       replaceOperand(*II, 1, Y);
2361       return II;
2362     }
2363 
2364     // fma fabs(x), fabs(x), z -> fma x, x, z
2365     if (match(Src0, m_FAbs(m_Value(X))) &&
2366         match(Src1, m_FAbs(m_Specific(X)))) {
2367       replaceOperand(*II, 0, X);
2368       replaceOperand(*II, 1, X);
2369       return II;
2370     }
2371 
2372     // Try to simplify the underlying FMul. We can only apply simplifications
2373     // that do not require rounding.
2374     if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
2375                                    II->getFastMathFlags(),
2376                                    SQ.getWithInstruction(II))) {
2377       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2378       FAdd->copyFastMathFlags(II);
2379       return FAdd;
2380     }
2381 
2382     // fma x, y, 0 -> fmul x, y
2383     // This is always valid for -0.0, but requires nsz for +0.0 as
2384     // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
2385     if (match(II->getArgOperand(2), m_NegZeroFP()) ||
2386         (match(II->getArgOperand(2), m_PosZeroFP()) &&
2387          II->getFastMathFlags().noSignedZeros()))
2388       return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
2389 
2390     break;
2391   }
2392   case Intrinsic::copysign: {
2393     if (SignBitMustBeZero(II->getArgOperand(1), &TLI)) {
2394       // If we know that the sign argument is positive, reduce to FABS:
2395       // copysign X, Pos --> fabs X
2396       Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs,
2397                                                  II->getArgOperand(0), II);
2398       return replaceInstUsesWith(*II, Fabs);
2399     }
2400     // TODO: There should be a ValueTracking sibling like SignBitMustBeOne.
2401     const APFloat *C;
2402     if (match(II->getArgOperand(1), m_APFloat(C)) && C->isNegative()) {
2403       // If we know that the sign argument is negative, reduce to FNABS:
2404       // copysign X, Neg --> fneg (fabs X)
2405       Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs,
2406                                                  II->getArgOperand(0), II);
2407       return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
2408     }
2409 
2410     // Propagate sign argument through nested calls:
2411     // copysign X, (copysign ?, SignArg) --> copysign X, SignArg
2412     Value *SignArg;
2413     if (match(II->getArgOperand(1),
2414               m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(SignArg))))
2415       return replaceOperand(*II, 1, SignArg);
2416 
2417     break;
2418   }
2419   case Intrinsic::fabs: {
2420     Value *Cond;
2421     Constant *LHS, *RHS;
2422     if (match(II->getArgOperand(0),
2423               m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
2424       CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS});
2425       CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS});
2426       return SelectInst::Create(Cond, Call0, Call1);
2427     }
2428 
2429     LLVM_FALLTHROUGH;
2430   }
2431   case Intrinsic::ceil:
2432   case Intrinsic::floor:
2433   case Intrinsic::round:
2434   case Intrinsic::roundeven:
2435   case Intrinsic::nearbyint:
2436   case Intrinsic::rint:
2437   case Intrinsic::trunc: {
2438     Value *ExtSrc;
2439     if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
2440       // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2441       Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
2442       return new FPExtInst(NarrowII, II->getType());
2443     }
2444     break;
2445   }
2446   case Intrinsic::cos:
2447   case Intrinsic::amdgcn_cos: {
2448     Value *X;
2449     Value *Src = II->getArgOperand(0);
2450     if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
2451       // cos(-x) -> cos(x)
2452       // cos(fabs(x)) -> cos(x)
2453       return replaceOperand(*II, 0, X);
2454     }
2455     break;
2456   }
2457   case Intrinsic::sin: {
2458     Value *X;
2459     if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
2460       // sin(-x) --> -sin(x)
2461       Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
2462       Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin);
2463       FNeg->copyFastMathFlags(II);
2464       return FNeg;
2465     }
2466     break;
2467   }
2468   case Intrinsic::ppc_altivec_lvx:
2469   case Intrinsic::ppc_altivec_lvxl:
2470     // Turn PPC lvx -> load if the pointer is known aligned.
2471     if (getOrEnforceKnownAlignment(II->getArgOperand(0), Align(16), DL, II, &AC,
2472                                    &DT) >= 16) {
2473       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2474                                          PointerType::getUnqual(II->getType()));
2475       return new LoadInst(II->getType(), Ptr, "", false, Align(16));
2476     }
2477     break;
2478   case Intrinsic::ppc_vsx_lxvw4x:
2479   case Intrinsic::ppc_vsx_lxvd2x: {
2480     // Turn PPC VSX loads into normal loads.
2481     Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2482                                        PointerType::getUnqual(II->getType()));
2483     return new LoadInst(II->getType(), Ptr, Twine(""), false, Align(1));
2484   }
2485   case Intrinsic::ppc_altivec_stvx:
2486   case Intrinsic::ppc_altivec_stvxl:
2487     // Turn stvx -> store if the pointer is known aligned.
2488     if (getOrEnforceKnownAlignment(II->getArgOperand(1), Align(16), DL, II, &AC,
2489                                    &DT) >= 16) {
2490       Type *OpPtrTy =
2491         PointerType::getUnqual(II->getArgOperand(0)->getType());
2492       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2493       return new StoreInst(II->getArgOperand(0), Ptr, false, Align(16));
2494     }
2495     break;
2496   case Intrinsic::ppc_vsx_stxvw4x:
2497   case Intrinsic::ppc_vsx_stxvd2x: {
2498     // Turn PPC VSX stores into normal stores.
2499     Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
2500     Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2501     return new StoreInst(II->getArgOperand(0), Ptr, false, Align(1));
2502   }
2503   case Intrinsic::ppc_qpx_qvlfs:
2504     // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
2505     if (getOrEnforceKnownAlignment(II->getArgOperand(0), Align(16), DL, II, &AC,
2506                                    &DT) >= 16) {
2507       Type *VTy =
2508           VectorType::get(Builder.getFloatTy(),
2509                           cast<VectorType>(II->getType())->getElementCount());
2510       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2511                                          PointerType::getUnqual(VTy));
2512       Value *Load = Builder.CreateLoad(VTy, Ptr);
2513       return new FPExtInst(Load, II->getType());
2514     }
2515     break;
2516   case Intrinsic::ppc_qpx_qvlfd:
2517     // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
2518     if (getOrEnforceKnownAlignment(II->getArgOperand(0), Align(32), DL, II, &AC,
2519                                    &DT) >= 32) {
2520       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2521                                          PointerType::getUnqual(II->getType()));
2522       return new LoadInst(II->getType(), Ptr, "", false, Align(32));
2523     }
2524     break;
2525   case Intrinsic::ppc_qpx_qvstfs:
2526     // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
2527     if (getOrEnforceKnownAlignment(II->getArgOperand(1), Align(16), DL, II, &AC,
2528                                    &DT) >= 16) {
2529       Type *VTy = VectorType::get(
2530           Builder.getFloatTy(),
2531           cast<VectorType>(II->getArgOperand(0)->getType())->getElementCount());
2532       Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy);
2533       Type *OpPtrTy = PointerType::getUnqual(VTy);
2534       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2535       return new StoreInst(TOp, Ptr, false, Align(16));
2536     }
2537     break;
2538   case Intrinsic::ppc_qpx_qvstfd:
2539     // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
2540     if (getOrEnforceKnownAlignment(II->getArgOperand(1), Align(32), DL, II, &AC,
2541                                    &DT) >= 32) {
2542       Type *OpPtrTy =
2543         PointerType::getUnqual(II->getArgOperand(0)->getType());
2544       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2545       return new StoreInst(II->getArgOperand(0), Ptr, false, Align(32));
2546     }
2547     break;
2548 
2549   case Intrinsic::x86_bmi_bextr_32:
2550   case Intrinsic::x86_bmi_bextr_64:
2551   case Intrinsic::x86_tbm_bextri_u32:
2552   case Intrinsic::x86_tbm_bextri_u64:
2553     // If the RHS is a constant we can try some simplifications.
2554     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2555       uint64_t Shift = C->getZExtValue();
2556       uint64_t Length = (Shift >> 8) & 0xff;
2557       Shift &= 0xff;
2558       unsigned BitWidth = II->getType()->getIntegerBitWidth();
2559       // If the length is 0 or the shift is out of range, replace with zero.
2560       if (Length == 0 || Shift >= BitWidth)
2561         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2562       // If the LHS is also a constant, we can completely constant fold this.
2563       if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2564         uint64_t Result = InC->getZExtValue() >> Shift;
2565         if (Length > BitWidth)
2566           Length = BitWidth;
2567         Result &= maskTrailingOnes<uint64_t>(Length);
2568         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2569       }
2570       // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
2571       // are only masking bits that a shift already cleared?
2572     }
2573     break;
2574 
2575   case Intrinsic::x86_bmi_bzhi_32:
2576   case Intrinsic::x86_bmi_bzhi_64:
2577     // If the RHS is a constant we can try some simplifications.
2578     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2579       uint64_t Index = C->getZExtValue() & 0xff;
2580       unsigned BitWidth = II->getType()->getIntegerBitWidth();
2581       if (Index >= BitWidth)
2582         return replaceInstUsesWith(CI, II->getArgOperand(0));
2583       if (Index == 0)
2584         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2585       // If the LHS is also a constant, we can completely constant fold this.
2586       if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2587         uint64_t Result = InC->getZExtValue();
2588         Result &= maskTrailingOnes<uint64_t>(Index);
2589         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2590       }
2591       // TODO should we convert this to an AND if the RHS is constant?
2592     }
2593     break;
2594   case Intrinsic::x86_bmi_pext_32:
2595   case Intrinsic::x86_bmi_pext_64:
2596     if (auto *MaskC = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2597       if (MaskC->isNullValue())
2598         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2599       if (MaskC->isAllOnesValue())
2600         return replaceInstUsesWith(CI, II->getArgOperand(0));
2601 
2602       if (auto *SrcC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2603         uint64_t Src = SrcC->getZExtValue();
2604         uint64_t Mask = MaskC->getZExtValue();
2605         uint64_t Result = 0;
2606         uint64_t BitToSet = 1;
2607 
2608         while (Mask) {
2609           // Isolate lowest set bit.
2610           uint64_t BitToTest = Mask & -Mask;
2611           if (BitToTest & Src)
2612             Result |= BitToSet;
2613 
2614           BitToSet <<= 1;
2615           // Clear lowest set bit.
2616           Mask &= Mask - 1;
2617         }
2618 
2619         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2620       }
2621     }
2622     break;
2623   case Intrinsic::x86_bmi_pdep_32:
2624   case Intrinsic::x86_bmi_pdep_64:
2625     if (auto *MaskC = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2626       if (MaskC->isNullValue())
2627         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2628       if (MaskC->isAllOnesValue())
2629         return replaceInstUsesWith(CI, II->getArgOperand(0));
2630 
2631       if (auto *SrcC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2632         uint64_t Src = SrcC->getZExtValue();
2633         uint64_t Mask = MaskC->getZExtValue();
2634         uint64_t Result = 0;
2635         uint64_t BitToTest = 1;
2636 
2637         while (Mask) {
2638           // Isolate lowest set bit.
2639           uint64_t BitToSet = Mask & -Mask;
2640           if (BitToTest & Src)
2641             Result |= BitToSet;
2642 
2643           BitToTest <<= 1;
2644           // Clear lowest set bit;
2645           Mask &= Mask - 1;
2646         }
2647 
2648         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2649       }
2650     }
2651     break;
2652 
2653   case Intrinsic::x86_sse_cvtss2si:
2654   case Intrinsic::x86_sse_cvtss2si64:
2655   case Intrinsic::x86_sse_cvttss2si:
2656   case Intrinsic::x86_sse_cvttss2si64:
2657   case Intrinsic::x86_sse2_cvtsd2si:
2658   case Intrinsic::x86_sse2_cvtsd2si64:
2659   case Intrinsic::x86_sse2_cvttsd2si:
2660   case Intrinsic::x86_sse2_cvttsd2si64:
2661   case Intrinsic::x86_avx512_vcvtss2si32:
2662   case Intrinsic::x86_avx512_vcvtss2si64:
2663   case Intrinsic::x86_avx512_vcvtss2usi32:
2664   case Intrinsic::x86_avx512_vcvtss2usi64:
2665   case Intrinsic::x86_avx512_vcvtsd2si32:
2666   case Intrinsic::x86_avx512_vcvtsd2si64:
2667   case Intrinsic::x86_avx512_vcvtsd2usi32:
2668   case Intrinsic::x86_avx512_vcvtsd2usi64:
2669   case Intrinsic::x86_avx512_cvttss2si:
2670   case Intrinsic::x86_avx512_cvttss2si64:
2671   case Intrinsic::x86_avx512_cvttss2usi:
2672   case Intrinsic::x86_avx512_cvttss2usi64:
2673   case Intrinsic::x86_avx512_cvttsd2si:
2674   case Intrinsic::x86_avx512_cvttsd2si64:
2675   case Intrinsic::x86_avx512_cvttsd2usi:
2676   case Intrinsic::x86_avx512_cvttsd2usi64: {
2677     // These intrinsics only demand the 0th element of their input vectors. If
2678     // we can simplify the input based on that, do so now.
2679     Value *Arg = II->getArgOperand(0);
2680     unsigned VWidth = cast<VectorType>(Arg->getType())->getNumElements();
2681     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1))
2682       return replaceOperand(*II, 0, V);
2683     break;
2684   }
2685 
2686   case Intrinsic::x86_mmx_pmovmskb:
2687   case Intrinsic::x86_sse_movmsk_ps:
2688   case Intrinsic::x86_sse2_movmsk_pd:
2689   case Intrinsic::x86_sse2_pmovmskb_128:
2690   case Intrinsic::x86_avx_movmsk_pd_256:
2691   case Intrinsic::x86_avx_movmsk_ps_256:
2692   case Intrinsic::x86_avx2_pmovmskb:
2693     if (Value *V = simplifyX86movmsk(*II, Builder))
2694       return replaceInstUsesWith(*II, V);
2695     break;
2696 
2697   case Intrinsic::x86_sse_comieq_ss:
2698   case Intrinsic::x86_sse_comige_ss:
2699   case Intrinsic::x86_sse_comigt_ss:
2700   case Intrinsic::x86_sse_comile_ss:
2701   case Intrinsic::x86_sse_comilt_ss:
2702   case Intrinsic::x86_sse_comineq_ss:
2703   case Intrinsic::x86_sse_ucomieq_ss:
2704   case Intrinsic::x86_sse_ucomige_ss:
2705   case Intrinsic::x86_sse_ucomigt_ss:
2706   case Intrinsic::x86_sse_ucomile_ss:
2707   case Intrinsic::x86_sse_ucomilt_ss:
2708   case Intrinsic::x86_sse_ucomineq_ss:
2709   case Intrinsic::x86_sse2_comieq_sd:
2710   case Intrinsic::x86_sse2_comige_sd:
2711   case Intrinsic::x86_sse2_comigt_sd:
2712   case Intrinsic::x86_sse2_comile_sd:
2713   case Intrinsic::x86_sse2_comilt_sd:
2714   case Intrinsic::x86_sse2_comineq_sd:
2715   case Intrinsic::x86_sse2_ucomieq_sd:
2716   case Intrinsic::x86_sse2_ucomige_sd:
2717   case Intrinsic::x86_sse2_ucomigt_sd:
2718   case Intrinsic::x86_sse2_ucomile_sd:
2719   case Intrinsic::x86_sse2_ucomilt_sd:
2720   case Intrinsic::x86_sse2_ucomineq_sd:
2721   case Intrinsic::x86_avx512_vcomi_ss:
2722   case Intrinsic::x86_avx512_vcomi_sd:
2723   case Intrinsic::x86_avx512_mask_cmp_ss:
2724   case Intrinsic::x86_avx512_mask_cmp_sd: {
2725     // These intrinsics only demand the 0th element of their input vectors. If
2726     // we can simplify the input based on that, do so now.
2727     bool MadeChange = false;
2728     Value *Arg0 = II->getArgOperand(0);
2729     Value *Arg1 = II->getArgOperand(1);
2730     unsigned VWidth = cast<VectorType>(Arg0->getType())->getNumElements();
2731     if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
2732       replaceOperand(*II, 0, V);
2733       MadeChange = true;
2734     }
2735     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
2736       replaceOperand(*II, 1, V);
2737       MadeChange = true;
2738     }
2739     if (MadeChange)
2740       return II;
2741     break;
2742   }
2743   case Intrinsic::x86_avx512_cmp_pd_128:
2744   case Intrinsic::x86_avx512_cmp_pd_256:
2745   case Intrinsic::x86_avx512_cmp_pd_512:
2746   case Intrinsic::x86_avx512_cmp_ps_128:
2747   case Intrinsic::x86_avx512_cmp_ps_256:
2748   case Intrinsic::x86_avx512_cmp_ps_512: {
2749     // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
2750     Value *Arg0 = II->getArgOperand(0);
2751     Value *Arg1 = II->getArgOperand(1);
2752     bool Arg0IsZero = match(Arg0, m_PosZeroFP());
2753     if (Arg0IsZero)
2754       std::swap(Arg0, Arg1);
2755     Value *A, *B;
2756     // This fold requires only the NINF(not +/- inf) since inf minus
2757     // inf is nan.
2758     // NSZ(No Signed Zeros) is not needed because zeros of any sign are
2759     // equal for both compares.
2760     // NNAN is not needed because nans compare the same for both compares.
2761     // The compare intrinsic uses the above assumptions and therefore
2762     // doesn't require additional flags.
2763     if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) &&
2764          match(Arg1, m_PosZeroFP()) && isa<Instruction>(Arg0) &&
2765          cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) {
2766       if (Arg0IsZero)
2767         std::swap(A, B);
2768       replaceOperand(*II, 0, A);
2769       replaceOperand(*II, 1, B);
2770       return II;
2771     }
2772     break;
2773   }
2774 
2775   case Intrinsic::x86_avx512_add_ps_512:
2776   case Intrinsic::x86_avx512_div_ps_512:
2777   case Intrinsic::x86_avx512_mul_ps_512:
2778   case Intrinsic::x86_avx512_sub_ps_512:
2779   case Intrinsic::x86_avx512_add_pd_512:
2780   case Intrinsic::x86_avx512_div_pd_512:
2781   case Intrinsic::x86_avx512_mul_pd_512:
2782   case Intrinsic::x86_avx512_sub_pd_512:
2783     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2784     // IR operations.
2785     if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2786       if (R->getValue() == 4) {
2787         Value *Arg0 = II->getArgOperand(0);
2788         Value *Arg1 = II->getArgOperand(1);
2789 
2790         Value *V;
2791         switch (IID) {
2792         default: llvm_unreachable("Case stmts out of sync!");
2793         case Intrinsic::x86_avx512_add_ps_512:
2794         case Intrinsic::x86_avx512_add_pd_512:
2795           V = Builder.CreateFAdd(Arg0, Arg1);
2796           break;
2797         case Intrinsic::x86_avx512_sub_ps_512:
2798         case Intrinsic::x86_avx512_sub_pd_512:
2799           V = Builder.CreateFSub(Arg0, Arg1);
2800           break;
2801         case Intrinsic::x86_avx512_mul_ps_512:
2802         case Intrinsic::x86_avx512_mul_pd_512:
2803           V = Builder.CreateFMul(Arg0, Arg1);
2804           break;
2805         case Intrinsic::x86_avx512_div_ps_512:
2806         case Intrinsic::x86_avx512_div_pd_512:
2807           V = Builder.CreateFDiv(Arg0, Arg1);
2808           break;
2809         }
2810 
2811         return replaceInstUsesWith(*II, V);
2812       }
2813     }
2814     break;
2815 
2816   case Intrinsic::x86_avx512_mask_add_ss_round:
2817   case Intrinsic::x86_avx512_mask_div_ss_round:
2818   case Intrinsic::x86_avx512_mask_mul_ss_round:
2819   case Intrinsic::x86_avx512_mask_sub_ss_round:
2820   case Intrinsic::x86_avx512_mask_add_sd_round:
2821   case Intrinsic::x86_avx512_mask_div_sd_round:
2822   case Intrinsic::x86_avx512_mask_mul_sd_round:
2823   case Intrinsic::x86_avx512_mask_sub_sd_round:
2824     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2825     // IR operations.
2826     if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
2827       if (R->getValue() == 4) {
2828         // Extract the element as scalars.
2829         Value *Arg0 = II->getArgOperand(0);
2830         Value *Arg1 = II->getArgOperand(1);
2831         Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0);
2832         Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0);
2833 
2834         Value *V;
2835         switch (IID) {
2836         default: llvm_unreachable("Case stmts out of sync!");
2837         case Intrinsic::x86_avx512_mask_add_ss_round:
2838         case Intrinsic::x86_avx512_mask_add_sd_round:
2839           V = Builder.CreateFAdd(LHS, RHS);
2840           break;
2841         case Intrinsic::x86_avx512_mask_sub_ss_round:
2842         case Intrinsic::x86_avx512_mask_sub_sd_round:
2843           V = Builder.CreateFSub(LHS, RHS);
2844           break;
2845         case Intrinsic::x86_avx512_mask_mul_ss_round:
2846         case Intrinsic::x86_avx512_mask_mul_sd_round:
2847           V = Builder.CreateFMul(LHS, RHS);
2848           break;
2849         case Intrinsic::x86_avx512_mask_div_ss_round:
2850         case Intrinsic::x86_avx512_mask_div_sd_round:
2851           V = Builder.CreateFDiv(LHS, RHS);
2852           break;
2853         }
2854 
2855         // Handle the masking aspect of the intrinsic.
2856         Value *Mask = II->getArgOperand(3);
2857         auto *C = dyn_cast<ConstantInt>(Mask);
2858         // We don't need a select if we know the mask bit is a 1.
2859         if (!C || !C->getValue()[0]) {
2860           // Cast the mask to an i1 vector and then extract the lowest element.
2861           auto *MaskTy = FixedVectorType::get(
2862               Builder.getInt1Ty(),
2863               cast<IntegerType>(Mask->getType())->getBitWidth());
2864           Mask = Builder.CreateBitCast(Mask, MaskTy);
2865           Mask = Builder.CreateExtractElement(Mask, (uint64_t)0);
2866           // Extract the lowest element from the passthru operand.
2867           Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2),
2868                                                           (uint64_t)0);
2869           V = Builder.CreateSelect(Mask, V, Passthru);
2870         }
2871 
2872         // Insert the result back into the original argument 0.
2873         V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0);
2874 
2875         return replaceInstUsesWith(*II, V);
2876       }
2877     }
2878     break;
2879 
2880   // Constant fold ashr( <A x Bi>, Ci ).
2881   // Constant fold lshr( <A x Bi>, Ci ).
2882   // Constant fold shl( <A x Bi>, Ci ).
2883   case Intrinsic::x86_sse2_psrai_d:
2884   case Intrinsic::x86_sse2_psrai_w:
2885   case Intrinsic::x86_avx2_psrai_d:
2886   case Intrinsic::x86_avx2_psrai_w:
2887   case Intrinsic::x86_avx512_psrai_q_128:
2888   case Intrinsic::x86_avx512_psrai_q_256:
2889   case Intrinsic::x86_avx512_psrai_d_512:
2890   case Intrinsic::x86_avx512_psrai_q_512:
2891   case Intrinsic::x86_avx512_psrai_w_512:
2892   case Intrinsic::x86_sse2_psrli_d:
2893   case Intrinsic::x86_sse2_psrli_q:
2894   case Intrinsic::x86_sse2_psrli_w:
2895   case Intrinsic::x86_avx2_psrli_d:
2896   case Intrinsic::x86_avx2_psrli_q:
2897   case Intrinsic::x86_avx2_psrli_w:
2898   case Intrinsic::x86_avx512_psrli_d_512:
2899   case Intrinsic::x86_avx512_psrli_q_512:
2900   case Intrinsic::x86_avx512_psrli_w_512:
2901   case Intrinsic::x86_sse2_pslli_d:
2902   case Intrinsic::x86_sse2_pslli_q:
2903   case Intrinsic::x86_sse2_pslli_w:
2904   case Intrinsic::x86_avx2_pslli_d:
2905   case Intrinsic::x86_avx2_pslli_q:
2906   case Intrinsic::x86_avx2_pslli_w:
2907   case Intrinsic::x86_avx512_pslli_d_512:
2908   case Intrinsic::x86_avx512_pslli_q_512:
2909   case Intrinsic::x86_avx512_pslli_w_512:
2910     if (Value *V = simplifyX86immShift(*II, Builder))
2911       return replaceInstUsesWith(*II, V);
2912     break;
2913 
2914   case Intrinsic::x86_sse2_psra_d:
2915   case Intrinsic::x86_sse2_psra_w:
2916   case Intrinsic::x86_avx2_psra_d:
2917   case Intrinsic::x86_avx2_psra_w:
2918   case Intrinsic::x86_avx512_psra_q_128:
2919   case Intrinsic::x86_avx512_psra_q_256:
2920   case Intrinsic::x86_avx512_psra_d_512:
2921   case Intrinsic::x86_avx512_psra_q_512:
2922   case Intrinsic::x86_avx512_psra_w_512:
2923   case Intrinsic::x86_sse2_psrl_d:
2924   case Intrinsic::x86_sse2_psrl_q:
2925   case Intrinsic::x86_sse2_psrl_w:
2926   case Intrinsic::x86_avx2_psrl_d:
2927   case Intrinsic::x86_avx2_psrl_q:
2928   case Intrinsic::x86_avx2_psrl_w:
2929   case Intrinsic::x86_avx512_psrl_d_512:
2930   case Intrinsic::x86_avx512_psrl_q_512:
2931   case Intrinsic::x86_avx512_psrl_w_512:
2932   case Intrinsic::x86_sse2_psll_d:
2933   case Intrinsic::x86_sse2_psll_q:
2934   case Intrinsic::x86_sse2_psll_w:
2935   case Intrinsic::x86_avx2_psll_d:
2936   case Intrinsic::x86_avx2_psll_q:
2937   case Intrinsic::x86_avx2_psll_w:
2938   case Intrinsic::x86_avx512_psll_d_512:
2939   case Intrinsic::x86_avx512_psll_q_512:
2940   case Intrinsic::x86_avx512_psll_w_512: {
2941     if (Value *V = simplifyX86immShift(*II, Builder))
2942       return replaceInstUsesWith(*II, V);
2943 
2944     // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
2945     // operand to compute the shift amount.
2946     Value *Arg1 = II->getArgOperand(1);
2947     assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
2948            "Unexpected packed shift size");
2949     unsigned VWidth = cast<VectorType>(Arg1->getType())->getNumElements();
2950 
2951     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2))
2952       return replaceOperand(*II, 1, V);
2953     break;
2954   }
2955 
2956   case Intrinsic::x86_avx2_psllv_d:
2957   case Intrinsic::x86_avx2_psllv_d_256:
2958   case Intrinsic::x86_avx2_psllv_q:
2959   case Intrinsic::x86_avx2_psllv_q_256:
2960   case Intrinsic::x86_avx512_psllv_d_512:
2961   case Intrinsic::x86_avx512_psllv_q_512:
2962   case Intrinsic::x86_avx512_psllv_w_128:
2963   case Intrinsic::x86_avx512_psllv_w_256:
2964   case Intrinsic::x86_avx512_psllv_w_512:
2965   case Intrinsic::x86_avx2_psrav_d:
2966   case Intrinsic::x86_avx2_psrav_d_256:
2967   case Intrinsic::x86_avx512_psrav_q_128:
2968   case Intrinsic::x86_avx512_psrav_q_256:
2969   case Intrinsic::x86_avx512_psrav_d_512:
2970   case Intrinsic::x86_avx512_psrav_q_512:
2971   case Intrinsic::x86_avx512_psrav_w_128:
2972   case Intrinsic::x86_avx512_psrav_w_256:
2973   case Intrinsic::x86_avx512_psrav_w_512:
2974   case Intrinsic::x86_avx2_psrlv_d:
2975   case Intrinsic::x86_avx2_psrlv_d_256:
2976   case Intrinsic::x86_avx2_psrlv_q:
2977   case Intrinsic::x86_avx2_psrlv_q_256:
2978   case Intrinsic::x86_avx512_psrlv_d_512:
2979   case Intrinsic::x86_avx512_psrlv_q_512:
2980   case Intrinsic::x86_avx512_psrlv_w_128:
2981   case Intrinsic::x86_avx512_psrlv_w_256:
2982   case Intrinsic::x86_avx512_psrlv_w_512:
2983     if (Value *V = simplifyX86varShift(*II, Builder))
2984       return replaceInstUsesWith(*II, V);
2985     break;
2986 
2987   case Intrinsic::x86_sse2_packssdw_128:
2988   case Intrinsic::x86_sse2_packsswb_128:
2989   case Intrinsic::x86_avx2_packssdw:
2990   case Intrinsic::x86_avx2_packsswb:
2991   case Intrinsic::x86_avx512_packssdw_512:
2992   case Intrinsic::x86_avx512_packsswb_512:
2993     if (Value *V = simplifyX86pack(*II, Builder, true))
2994       return replaceInstUsesWith(*II, V);
2995     break;
2996 
2997   case Intrinsic::x86_sse2_packuswb_128:
2998   case Intrinsic::x86_sse41_packusdw:
2999   case Intrinsic::x86_avx2_packusdw:
3000   case Intrinsic::x86_avx2_packuswb:
3001   case Intrinsic::x86_avx512_packusdw_512:
3002   case Intrinsic::x86_avx512_packuswb_512:
3003     if (Value *V = simplifyX86pack(*II, Builder, false))
3004       return replaceInstUsesWith(*II, V);
3005     break;
3006 
3007   case Intrinsic::x86_pclmulqdq:
3008   case Intrinsic::x86_pclmulqdq_256:
3009   case Intrinsic::x86_pclmulqdq_512: {
3010     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
3011       unsigned Imm = C->getZExtValue();
3012 
3013       bool MadeChange = false;
3014       Value *Arg0 = II->getArgOperand(0);
3015       Value *Arg1 = II->getArgOperand(1);
3016       unsigned VWidth = cast<VectorType>(Arg0->getType())->getNumElements();
3017 
3018       APInt UndefElts1(VWidth, 0);
3019       APInt DemandedElts1 = APInt::getSplat(VWidth,
3020                                             APInt(2, (Imm & 0x01) ? 2 : 1));
3021       if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1,
3022                                                 UndefElts1)) {
3023         replaceOperand(*II, 0, V);
3024         MadeChange = true;
3025       }
3026 
3027       APInt UndefElts2(VWidth, 0);
3028       APInt DemandedElts2 = APInt::getSplat(VWidth,
3029                                             APInt(2, (Imm & 0x10) ? 2 : 1));
3030       if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2,
3031                                                 UndefElts2)) {
3032         replaceOperand(*II, 1, V);
3033         MadeChange = true;
3034       }
3035 
3036       // If either input elements are undef, the result is zero.
3037       if (DemandedElts1.isSubsetOf(UndefElts1) ||
3038           DemandedElts2.isSubsetOf(UndefElts2))
3039         return replaceInstUsesWith(*II,
3040                                    ConstantAggregateZero::get(II->getType()));
3041 
3042       if (MadeChange)
3043         return II;
3044     }
3045     break;
3046   }
3047 
3048   case Intrinsic::x86_sse41_insertps:
3049     if (Value *V = simplifyX86insertps(*II, Builder))
3050       return replaceInstUsesWith(*II, V);
3051     break;
3052 
3053   case Intrinsic::x86_sse4a_extrq: {
3054     Value *Op0 = II->getArgOperand(0);
3055     Value *Op1 = II->getArgOperand(1);
3056     unsigned VWidth0 = cast<VectorType>(Op0->getType())->getNumElements();
3057     unsigned VWidth1 = cast<VectorType>(Op1->getType())->getNumElements();
3058     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
3059            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
3060            VWidth1 == 16 && "Unexpected operand sizes");
3061 
3062     // See if we're dealing with constant values.
3063     Constant *C1 = dyn_cast<Constant>(Op1);
3064     ConstantInt *CILength =
3065         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
3066            : nullptr;
3067     ConstantInt *CIIndex =
3068         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
3069            : nullptr;
3070 
3071     // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
3072     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
3073       return replaceInstUsesWith(*II, V);
3074 
3075     // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
3076     // operands and the lowest 16-bits of the second.
3077     bool MadeChange = false;
3078     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
3079       replaceOperand(*II, 0, V);
3080       MadeChange = true;
3081     }
3082     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
3083       replaceOperand(*II, 1, V);
3084       MadeChange = true;
3085     }
3086     if (MadeChange)
3087       return II;
3088     break;
3089   }
3090 
3091   case Intrinsic::x86_sse4a_extrqi: {
3092     // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
3093     // bits of the lower 64-bits. The upper 64-bits are undefined.
3094     Value *Op0 = II->getArgOperand(0);
3095     unsigned VWidth = cast<VectorType>(Op0->getType())->getNumElements();
3096     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
3097            "Unexpected operand size");
3098 
3099     // See if we're dealing with constant values.
3100     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
3101     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
3102 
3103     // Attempt to simplify to a constant or shuffle vector.
3104     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
3105       return replaceInstUsesWith(*II, V);
3106 
3107     // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
3108     // operand.
3109     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1))
3110       return replaceOperand(*II, 0, V);
3111     break;
3112   }
3113 
3114   case Intrinsic::x86_sse4a_insertq: {
3115     Value *Op0 = II->getArgOperand(0);
3116     Value *Op1 = II->getArgOperand(1);
3117     unsigned VWidth = cast<VectorType>(Op0->getType())->getNumElements();
3118     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
3119            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
3120            cast<VectorType>(Op1->getType())->getNumElements() == 2 &&
3121            "Unexpected operand size");
3122 
3123     // See if we're dealing with constant values.
3124     Constant *C1 = dyn_cast<Constant>(Op1);
3125     ConstantInt *CI11 =
3126         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
3127            : nullptr;
3128 
3129     // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
3130     if (CI11) {
3131       const APInt &V11 = CI11->getValue();
3132       APInt Len = V11.zextOrTrunc(6);
3133       APInt Idx = V11.lshr(8).zextOrTrunc(6);
3134       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
3135         return replaceInstUsesWith(*II, V);
3136     }
3137 
3138     // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
3139     // operand.
3140     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1))
3141       return replaceOperand(*II, 0, V);
3142     break;
3143   }
3144 
3145   case Intrinsic::x86_sse4a_insertqi: {
3146     // INSERTQI: Extract lowest Length bits from lower half of second source and
3147     // insert over first source starting at Index bit. The upper 64-bits are
3148     // undefined.
3149     Value *Op0 = II->getArgOperand(0);
3150     Value *Op1 = II->getArgOperand(1);
3151     unsigned VWidth0 = cast<VectorType>(Op0->getType())->getNumElements();
3152     unsigned VWidth1 = cast<VectorType>(Op1->getType())->getNumElements();
3153     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
3154            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
3155            VWidth1 == 2 && "Unexpected operand sizes");
3156 
3157     // See if we're dealing with constant values.
3158     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
3159     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
3160 
3161     // Attempt to simplify to a constant or shuffle vector.
3162     if (CILength && CIIndex) {
3163       APInt Len = CILength->getValue().zextOrTrunc(6);
3164       APInt Idx = CIIndex->getValue().zextOrTrunc(6);
3165       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
3166         return replaceInstUsesWith(*II, V);
3167     }
3168 
3169     // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
3170     // operands.
3171     bool MadeChange = false;
3172     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
3173       replaceOperand(*II, 0, V);
3174       MadeChange = true;
3175     }
3176     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
3177       replaceOperand(*II, 1, V);
3178       MadeChange = true;
3179     }
3180     if (MadeChange)
3181       return II;
3182     break;
3183   }
3184 
3185   case Intrinsic::x86_sse41_pblendvb:
3186   case Intrinsic::x86_sse41_blendvps:
3187   case Intrinsic::x86_sse41_blendvpd:
3188   case Intrinsic::x86_avx_blendv_ps_256:
3189   case Intrinsic::x86_avx_blendv_pd_256:
3190   case Intrinsic::x86_avx2_pblendvb: {
3191     // fold (blend A, A, Mask) -> A
3192     Value *Op0 = II->getArgOperand(0);
3193     Value *Op1 = II->getArgOperand(1);
3194     Value *Mask = II->getArgOperand(2);
3195     if (Op0 == Op1)
3196       return replaceInstUsesWith(CI, Op0);
3197 
3198     // Zero Mask - select 1st argument.
3199     if (isa<ConstantAggregateZero>(Mask))
3200       return replaceInstUsesWith(CI, Op0);
3201 
3202     // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
3203     if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
3204       Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
3205       return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
3206     }
3207 
3208     // Convert to a vector select if we can bypass casts and find a boolean
3209     // vector condition value.
3210     Value *BoolVec;
3211     Mask = peekThroughBitcast(Mask);
3212     if (match(Mask, m_SExt(m_Value(BoolVec))) &&
3213         BoolVec->getType()->isVectorTy() &&
3214         BoolVec->getType()->getScalarSizeInBits() == 1) {
3215       assert(Mask->getType()->getPrimitiveSizeInBits() ==
3216              II->getType()->getPrimitiveSizeInBits() &&
3217              "Not expecting mask and operands with different sizes");
3218 
3219       unsigned NumMaskElts =
3220           cast<VectorType>(Mask->getType())->getNumElements();
3221       unsigned NumOperandElts =
3222           cast<VectorType>(II->getType())->getNumElements();
3223       if (NumMaskElts == NumOperandElts)
3224         return SelectInst::Create(BoolVec, Op1, Op0);
3225 
3226       // If the mask has less elements than the operands, each mask bit maps to
3227       // multiple elements of the operands. Bitcast back and forth.
3228       if (NumMaskElts < NumOperandElts) {
3229         Value *CastOp0 = Builder.CreateBitCast(Op0, Mask->getType());
3230         Value *CastOp1 = Builder.CreateBitCast(Op1, Mask->getType());
3231         Value *Sel = Builder.CreateSelect(BoolVec, CastOp1, CastOp0);
3232         return new BitCastInst(Sel, II->getType());
3233       }
3234     }
3235 
3236     break;
3237   }
3238 
3239   case Intrinsic::x86_ssse3_pshuf_b_128:
3240   case Intrinsic::x86_avx2_pshuf_b:
3241   case Intrinsic::x86_avx512_pshuf_b_512:
3242     if (Value *V = simplifyX86pshufb(*II, Builder))
3243       return replaceInstUsesWith(*II, V);
3244     break;
3245 
3246   case Intrinsic::x86_avx_vpermilvar_ps:
3247   case Intrinsic::x86_avx_vpermilvar_ps_256:
3248   case Intrinsic::x86_avx512_vpermilvar_ps_512:
3249   case Intrinsic::x86_avx_vpermilvar_pd:
3250   case Intrinsic::x86_avx_vpermilvar_pd_256:
3251   case Intrinsic::x86_avx512_vpermilvar_pd_512:
3252     if (Value *V = simplifyX86vpermilvar(*II, Builder))
3253       return replaceInstUsesWith(*II, V);
3254     break;
3255 
3256   case Intrinsic::x86_avx2_permd:
3257   case Intrinsic::x86_avx2_permps:
3258   case Intrinsic::x86_avx512_permvar_df_256:
3259   case Intrinsic::x86_avx512_permvar_df_512:
3260   case Intrinsic::x86_avx512_permvar_di_256:
3261   case Intrinsic::x86_avx512_permvar_di_512:
3262   case Intrinsic::x86_avx512_permvar_hi_128:
3263   case Intrinsic::x86_avx512_permvar_hi_256:
3264   case Intrinsic::x86_avx512_permvar_hi_512:
3265   case Intrinsic::x86_avx512_permvar_qi_128:
3266   case Intrinsic::x86_avx512_permvar_qi_256:
3267   case Intrinsic::x86_avx512_permvar_qi_512:
3268   case Intrinsic::x86_avx512_permvar_sf_512:
3269   case Intrinsic::x86_avx512_permvar_si_512:
3270     if (Value *V = simplifyX86vpermv(*II, Builder))
3271       return replaceInstUsesWith(*II, V);
3272     break;
3273 
3274   case Intrinsic::x86_avx_maskload_ps:
3275   case Intrinsic::x86_avx_maskload_pd:
3276   case Intrinsic::x86_avx_maskload_ps_256:
3277   case Intrinsic::x86_avx_maskload_pd_256:
3278   case Intrinsic::x86_avx2_maskload_d:
3279   case Intrinsic::x86_avx2_maskload_q:
3280   case Intrinsic::x86_avx2_maskload_d_256:
3281   case Intrinsic::x86_avx2_maskload_q_256:
3282     if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
3283       return I;
3284     break;
3285 
3286   case Intrinsic::x86_sse2_maskmov_dqu:
3287   case Intrinsic::x86_avx_maskstore_ps:
3288   case Intrinsic::x86_avx_maskstore_pd:
3289   case Intrinsic::x86_avx_maskstore_ps_256:
3290   case Intrinsic::x86_avx_maskstore_pd_256:
3291   case Intrinsic::x86_avx2_maskstore_d:
3292   case Intrinsic::x86_avx2_maskstore_q:
3293   case Intrinsic::x86_avx2_maskstore_d_256:
3294   case Intrinsic::x86_avx2_maskstore_q_256:
3295     if (simplifyX86MaskedStore(*II, *this))
3296       return nullptr;
3297     break;
3298 
3299   case Intrinsic::x86_addcarry_32:
3300   case Intrinsic::x86_addcarry_64:
3301     if (Value *V = simplifyX86addcarry(*II, Builder))
3302       return replaceInstUsesWith(*II, V);
3303     break;
3304 
3305   case Intrinsic::ppc_altivec_vperm:
3306     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
3307     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
3308     // a vectorshuffle for little endian, we must undo the transformation
3309     // performed on vec_perm in altivec.h.  That is, we must complement
3310     // the permutation mask with respect to 31 and reverse the order of
3311     // V1 and V2.
3312     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
3313       assert(cast<VectorType>(Mask->getType())->getNumElements() == 16 &&
3314              "Bad type for intrinsic!");
3315 
3316       // Check that all of the elements are integer constants or undefs.
3317       bool AllEltsOk = true;
3318       for (unsigned i = 0; i != 16; ++i) {
3319         Constant *Elt = Mask->getAggregateElement(i);
3320         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
3321           AllEltsOk = false;
3322           break;
3323         }
3324       }
3325 
3326       if (AllEltsOk) {
3327         // Cast the input vectors to byte vectors.
3328         Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0),
3329                                            Mask->getType());
3330         Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1),
3331                                            Mask->getType());
3332         Value *Result = UndefValue::get(Op0->getType());
3333 
3334         // Only extract each element once.
3335         Value *ExtractedElts[32];
3336         memset(ExtractedElts, 0, sizeof(ExtractedElts));
3337 
3338         for (unsigned i = 0; i != 16; ++i) {
3339           if (isa<UndefValue>(Mask->getAggregateElement(i)))
3340             continue;
3341           unsigned Idx =
3342             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
3343           Idx &= 31;  // Match the hardware behavior.
3344           if (DL.isLittleEndian())
3345             Idx = 31 - Idx;
3346 
3347           if (!ExtractedElts[Idx]) {
3348             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
3349             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
3350             ExtractedElts[Idx] =
3351               Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
3352                                            Builder.getInt32(Idx&15));
3353           }
3354 
3355           // Insert this value into the result vector.
3356           Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx],
3357                                                Builder.getInt32(i));
3358         }
3359         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
3360       }
3361     }
3362     break;
3363 
3364   case Intrinsic::arm_neon_vld1: {
3365     Align MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
3366     if (Value *V = simplifyNeonVld1(*II, MemAlign.value(), Builder))
3367       return replaceInstUsesWith(*II, V);
3368     break;
3369   }
3370 
3371   case Intrinsic::arm_neon_vld2:
3372   case Intrinsic::arm_neon_vld3:
3373   case Intrinsic::arm_neon_vld4:
3374   case Intrinsic::arm_neon_vld2lane:
3375   case Intrinsic::arm_neon_vld3lane:
3376   case Intrinsic::arm_neon_vld4lane:
3377   case Intrinsic::arm_neon_vst1:
3378   case Intrinsic::arm_neon_vst2:
3379   case Intrinsic::arm_neon_vst3:
3380   case Intrinsic::arm_neon_vst4:
3381   case Intrinsic::arm_neon_vst2lane:
3382   case Intrinsic::arm_neon_vst3lane:
3383   case Intrinsic::arm_neon_vst4lane: {
3384     Align MemAlign = getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
3385     unsigned AlignArg = II->getNumArgOperands() - 1;
3386     Value *AlignArgOp = II->getArgOperand(AlignArg);
3387     MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue();
3388     if (Align && *Align < MemAlign)
3389       return replaceOperand(*II, AlignArg,
3390                             ConstantInt::get(Type::getInt32Ty(II->getContext()),
3391                                              MemAlign.value(), false));
3392     break;
3393   }
3394 
3395   case Intrinsic::arm_neon_vtbl1:
3396   case Intrinsic::aarch64_neon_tbl1:
3397     if (Value *V = simplifyNeonTbl1(*II, Builder))
3398       return replaceInstUsesWith(*II, V);
3399     break;
3400 
3401   case Intrinsic::arm_neon_vmulls:
3402   case Intrinsic::arm_neon_vmullu:
3403   case Intrinsic::aarch64_neon_smull:
3404   case Intrinsic::aarch64_neon_umull: {
3405     Value *Arg0 = II->getArgOperand(0);
3406     Value *Arg1 = II->getArgOperand(1);
3407 
3408     // Handle mul by zero first:
3409     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
3410       return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
3411     }
3412 
3413     // Check for constant LHS & RHS - in this case we just simplify.
3414     bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
3415                  IID == Intrinsic::aarch64_neon_umull);
3416     VectorType *NewVT = cast<VectorType>(II->getType());
3417     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
3418       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
3419         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
3420         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
3421 
3422         return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
3423       }
3424 
3425       // Couldn't simplify - canonicalize constant to the RHS.
3426       std::swap(Arg0, Arg1);
3427     }
3428 
3429     // Handle mul by one:
3430     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
3431       if (ConstantInt *Splat =
3432               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
3433         if (Splat->isOne())
3434           return CastInst::CreateIntegerCast(Arg0, II->getType(),
3435                                              /*isSigned=*/!Zext);
3436 
3437     break;
3438   }
3439   case Intrinsic::arm_neon_aesd:
3440   case Intrinsic::arm_neon_aese:
3441   case Intrinsic::aarch64_crypto_aesd:
3442   case Intrinsic::aarch64_crypto_aese: {
3443     Value *DataArg = II->getArgOperand(0);
3444     Value *KeyArg  = II->getArgOperand(1);
3445 
3446     // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
3447     Value *Data, *Key;
3448     if (match(KeyArg, m_ZeroInt()) &&
3449         match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
3450       replaceOperand(*II, 0, Data);
3451       replaceOperand(*II, 1, Key);
3452       return II;
3453     }
3454     break;
3455   }
3456   case Intrinsic::arm_mve_pred_i2v: {
3457     Value *Arg = II->getArgOperand(0);
3458     Value *ArgArg;
3459     if (match(Arg, m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(m_Value(ArgArg))) &&
3460         II->getType() == ArgArg->getType())
3461       return replaceInstUsesWith(*II, ArgArg);
3462     Constant *XorMask;
3463     if (match(Arg,
3464               m_Xor(m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(m_Value(ArgArg)),
3465                     m_Constant(XorMask))) &&
3466         II->getType() == ArgArg->getType()) {
3467       if (auto *CI = dyn_cast<ConstantInt>(XorMask)) {
3468         if (CI->getValue().trunc(16).isAllOnesValue()) {
3469           auto TrueVector = Builder.CreateVectorSplat(
3470               cast<VectorType>(II->getType())->getNumElements(),
3471               Builder.getTrue());
3472           return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector);
3473         }
3474       }
3475     }
3476     KnownBits ScalarKnown(32);
3477     if (SimplifyDemandedBits(II, 0, APInt::getLowBitsSet(32, 16),
3478                              ScalarKnown, 0))
3479       return II;
3480     break;
3481   }
3482   case Intrinsic::arm_mve_pred_v2i: {
3483     Value *Arg = II->getArgOperand(0);
3484     Value *ArgArg;
3485     if (match(Arg, m_Intrinsic<Intrinsic::arm_mve_pred_i2v>(m_Value(ArgArg))))
3486       return replaceInstUsesWith(*II, ArgArg);
3487     if (!II->getMetadata(LLVMContext::MD_range)) {
3488       Type *IntTy32 = Type::getInt32Ty(II->getContext());
3489       Metadata *M[] = {
3490         ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)),
3491         ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0xFFFF))
3492       };
3493       II->setMetadata(LLVMContext::MD_range, MDNode::get(II->getContext(), M));
3494       return II;
3495     }
3496     break;
3497   }
3498   case Intrinsic::arm_mve_vadc:
3499   case Intrinsic::arm_mve_vadc_predicated: {
3500     unsigned CarryOp =
3501         (II->getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2;
3502     assert(II->getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 &&
3503            "Bad type for intrinsic!");
3504 
3505     KnownBits CarryKnown(32);
3506     if (SimplifyDemandedBits(II, CarryOp, APInt::getOneBitSet(32, 29),
3507                              CarryKnown))
3508       return II;
3509     break;
3510   }
3511   case Intrinsic::amdgcn_rcp: {
3512     Value *Src = II->getArgOperand(0);
3513 
3514     // TODO: Move to ConstantFolding/InstSimplify?
3515     if (isa<UndefValue>(Src)) {
3516       Type *Ty = II->getType();
3517       auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
3518       return replaceInstUsesWith(CI, QNaN);
3519     }
3520 
3521     if (II->isStrictFP())
3522       break;
3523 
3524     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3525       const APFloat &ArgVal = C->getValueAPF();
3526       APFloat Val(ArgVal.getSemantics(), 1);
3527       Val.divide(ArgVal, APFloat::rmNearestTiesToEven);
3528 
3529       // This is more precise than the instruction may give.
3530       //
3531       // TODO: The instruction always flushes denormal results (except for f16),
3532       // should this also?
3533       return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
3534     }
3535 
3536     break;
3537   }
3538   case Intrinsic::amdgcn_rsq: {
3539     Value *Src = II->getArgOperand(0);
3540 
3541     // TODO: Move to ConstantFolding/InstSimplify?
3542     if (isa<UndefValue>(Src)) {
3543       Type *Ty = II->getType();
3544       auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
3545       return replaceInstUsesWith(CI, QNaN);
3546     }
3547 
3548     break;
3549   }
3550   case Intrinsic::amdgcn_frexp_mant:
3551   case Intrinsic::amdgcn_frexp_exp: {
3552     Value *Src = II->getArgOperand(0);
3553     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3554       int Exp;
3555       APFloat Significand = frexp(C->getValueAPF(), Exp,
3556                                   APFloat::rmNearestTiesToEven);
3557 
3558       if (IID == Intrinsic::amdgcn_frexp_mant) {
3559         return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
3560                                                        Significand));
3561       }
3562 
3563       // Match instruction special case behavior.
3564       if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
3565         Exp = 0;
3566 
3567       return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
3568     }
3569 
3570     if (isa<UndefValue>(Src))
3571       return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
3572 
3573     break;
3574   }
3575   case Intrinsic::amdgcn_class: {
3576     enum  {
3577       S_NAN = 1 << 0,        // Signaling NaN
3578       Q_NAN = 1 << 1,        // Quiet NaN
3579       N_INFINITY = 1 << 2,   // Negative infinity
3580       N_NORMAL = 1 << 3,     // Negative normal
3581       N_SUBNORMAL = 1 << 4,  // Negative subnormal
3582       N_ZERO = 1 << 5,       // Negative zero
3583       P_ZERO = 1 << 6,       // Positive zero
3584       P_SUBNORMAL = 1 << 7,  // Positive subnormal
3585       P_NORMAL = 1 << 8,     // Positive normal
3586       P_INFINITY = 1 << 9    // Positive infinity
3587     };
3588 
3589     const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
3590       N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
3591 
3592     Value *Src0 = II->getArgOperand(0);
3593     Value *Src1 = II->getArgOperand(1);
3594     const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
3595     if (!CMask) {
3596       if (isa<UndefValue>(Src0))
3597         return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3598 
3599       if (isa<UndefValue>(Src1))
3600         return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3601       break;
3602     }
3603 
3604     uint32_t Mask = CMask->getZExtValue();
3605 
3606     // If all tests are made, it doesn't matter what the value is.
3607     if ((Mask & FullMask) == FullMask)
3608       return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
3609 
3610     if ((Mask & FullMask) == 0)
3611       return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3612 
3613     if (Mask == (S_NAN | Q_NAN)) {
3614       // Equivalent of isnan. Replace with standard fcmp.
3615       Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0);
3616       FCmp->takeName(II);
3617       return replaceInstUsesWith(*II, FCmp);
3618     }
3619 
3620     if (Mask == (N_ZERO | P_ZERO)) {
3621       // Equivalent of == 0.
3622       Value *FCmp = Builder.CreateFCmpOEQ(
3623         Src0, ConstantFP::get(Src0->getType(), 0.0));
3624 
3625       FCmp->takeName(II);
3626       return replaceInstUsesWith(*II, FCmp);
3627     }
3628 
3629     // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
3630     if (((Mask & S_NAN) || (Mask & Q_NAN)) && isKnownNeverNaN(Src0, &TLI))
3631       return replaceOperand(*II, 1, ConstantInt::get(Src1->getType(),
3632                                                      Mask & ~(S_NAN | Q_NAN)));
3633 
3634     const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
3635     if (!CVal) {
3636       if (isa<UndefValue>(Src0))
3637         return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3638 
3639       // Clamp mask to used bits
3640       if ((Mask & FullMask) != Mask) {
3641         CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(),
3642           { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
3643         );
3644 
3645         NewCall->takeName(II);
3646         return replaceInstUsesWith(*II, NewCall);
3647       }
3648 
3649       break;
3650     }
3651 
3652     const APFloat &Val = CVal->getValueAPF();
3653 
3654     bool Result =
3655       ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
3656       ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
3657       ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
3658       ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
3659       ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
3660       ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
3661       ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
3662       ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
3663       ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
3664       ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
3665 
3666     return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
3667   }
3668   case Intrinsic::amdgcn_cvt_pkrtz: {
3669     Value *Src0 = II->getArgOperand(0);
3670     Value *Src1 = II->getArgOperand(1);
3671     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3672       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3673         const fltSemantics &HalfSem
3674           = II->getType()->getScalarType()->getFltSemantics();
3675         bool LosesInfo;
3676         APFloat Val0 = C0->getValueAPF();
3677         APFloat Val1 = C1->getValueAPF();
3678         Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3679         Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3680 
3681         Constant *Folded = ConstantVector::get({
3682             ConstantFP::get(II->getContext(), Val0),
3683             ConstantFP::get(II->getContext(), Val1) });
3684         return replaceInstUsesWith(*II, Folded);
3685       }
3686     }
3687 
3688     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3689       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3690 
3691     break;
3692   }
3693   case Intrinsic::amdgcn_cvt_pknorm_i16:
3694   case Intrinsic::amdgcn_cvt_pknorm_u16:
3695   case Intrinsic::amdgcn_cvt_pk_i16:
3696   case Intrinsic::amdgcn_cvt_pk_u16: {
3697     Value *Src0 = II->getArgOperand(0);
3698     Value *Src1 = II->getArgOperand(1);
3699 
3700     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3701       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3702 
3703     break;
3704   }
3705   case Intrinsic::amdgcn_ubfe:
3706   case Intrinsic::amdgcn_sbfe: {
3707     // Decompose simple cases into standard shifts.
3708     Value *Src = II->getArgOperand(0);
3709     if (isa<UndefValue>(Src))
3710       return replaceInstUsesWith(*II, Src);
3711 
3712     unsigned Width;
3713     Type *Ty = II->getType();
3714     unsigned IntSize = Ty->getIntegerBitWidth();
3715 
3716     ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
3717     if (CWidth) {
3718       Width = CWidth->getZExtValue();
3719       if ((Width & (IntSize - 1)) == 0)
3720         return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
3721 
3722       // Hardware ignores high bits, so remove those.
3723       if (Width >= IntSize)
3724         return replaceOperand(*II, 2, ConstantInt::get(CWidth->getType(),
3725                                                        Width & (IntSize - 1)));
3726     }
3727 
3728     unsigned Offset;
3729     ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
3730     if (COffset) {
3731       Offset = COffset->getZExtValue();
3732       if (Offset >= IntSize)
3733         return replaceOperand(*II, 1, ConstantInt::get(COffset->getType(),
3734                                                        Offset & (IntSize - 1)));
3735     }
3736 
3737     bool Signed = IID == Intrinsic::amdgcn_sbfe;
3738 
3739     if (!CWidth || !COffset)
3740       break;
3741 
3742     // The case of Width == 0 is handled above, which makes this tranformation
3743     // safe.  If Width == 0, then the ashr and lshr instructions become poison
3744     // value since the shift amount would be equal to the bit size.
3745     assert(Width != 0);
3746 
3747     // TODO: This allows folding to undef when the hardware has specific
3748     // behavior?
3749     if (Offset + Width < IntSize) {
3750       Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width);
3751       Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width)
3752                                  : Builder.CreateLShr(Shl, IntSize - Width);
3753       RightShift->takeName(II);
3754       return replaceInstUsesWith(*II, RightShift);
3755     }
3756 
3757     Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset)
3758                                : Builder.CreateLShr(Src, Offset);
3759 
3760     RightShift->takeName(II);
3761     return replaceInstUsesWith(*II, RightShift);
3762   }
3763   case Intrinsic::amdgcn_exp:
3764   case Intrinsic::amdgcn_exp_compr: {
3765     ConstantInt *En = cast<ConstantInt>(II->getArgOperand(1));
3766     unsigned EnBits = En->getZExtValue();
3767     if (EnBits == 0xf)
3768       break; // All inputs enabled.
3769 
3770     bool IsCompr = IID == Intrinsic::amdgcn_exp_compr;
3771     bool Changed = false;
3772     for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
3773       if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
3774           (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
3775         Value *Src = II->getArgOperand(I + 2);
3776         if (!isa<UndefValue>(Src)) {
3777           replaceOperand(*II, I + 2, UndefValue::get(Src->getType()));
3778           Changed = true;
3779         }
3780       }
3781     }
3782 
3783     if (Changed)
3784       return II;
3785 
3786     break;
3787   }
3788   case Intrinsic::amdgcn_fmed3: {
3789     // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
3790     // for the shader.
3791 
3792     Value *Src0 = II->getArgOperand(0);
3793     Value *Src1 = II->getArgOperand(1);
3794     Value *Src2 = II->getArgOperand(2);
3795 
3796     // Checking for NaN before canonicalization provides better fidelity when
3797     // mapping other operations onto fmed3 since the order of operands is
3798     // unchanged.
3799     CallInst *NewCall = nullptr;
3800     if (match(Src0, m_NaN()) || isa<UndefValue>(Src0)) {
3801       NewCall = Builder.CreateMinNum(Src1, Src2);
3802     } else if (match(Src1, m_NaN()) || isa<UndefValue>(Src1)) {
3803       NewCall = Builder.CreateMinNum(Src0, Src2);
3804     } else if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
3805       NewCall = Builder.CreateMaxNum(Src0, Src1);
3806     }
3807 
3808     if (NewCall) {
3809       NewCall->copyFastMathFlags(II);
3810       NewCall->takeName(II);
3811       return replaceInstUsesWith(*II, NewCall);
3812     }
3813 
3814     bool Swap = false;
3815     // Canonicalize constants to RHS operands.
3816     //
3817     // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
3818     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3819       std::swap(Src0, Src1);
3820       Swap = true;
3821     }
3822 
3823     if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
3824       std::swap(Src1, Src2);
3825       Swap = true;
3826     }
3827 
3828     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3829       std::swap(Src0, Src1);
3830       Swap = true;
3831     }
3832 
3833     if (Swap) {
3834       II->setArgOperand(0, Src0);
3835       II->setArgOperand(1, Src1);
3836       II->setArgOperand(2, Src2);
3837       return II;
3838     }
3839 
3840     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3841       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3842         if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
3843           APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
3844                                        C2->getValueAPF());
3845           return replaceInstUsesWith(*II,
3846             ConstantFP::get(Builder.getContext(), Result));
3847         }
3848       }
3849     }
3850 
3851     break;
3852   }
3853   case Intrinsic::amdgcn_icmp:
3854   case Intrinsic::amdgcn_fcmp: {
3855     const ConstantInt *CC = cast<ConstantInt>(II->getArgOperand(2));
3856     // Guard against invalid arguments.
3857     int64_t CCVal = CC->getZExtValue();
3858     bool IsInteger = IID == Intrinsic::amdgcn_icmp;
3859     if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
3860                        CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
3861         (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
3862                         CCVal > CmpInst::LAST_FCMP_PREDICATE)))
3863       break;
3864 
3865     Value *Src0 = II->getArgOperand(0);
3866     Value *Src1 = II->getArgOperand(1);
3867 
3868     if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
3869       if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
3870         Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
3871         if (CCmp->isNullValue()) {
3872           return replaceInstUsesWith(
3873               *II, ConstantExpr::getSExt(CCmp, II->getType()));
3874         }
3875 
3876         // The result of V_ICMP/V_FCMP assembly instructions (which this
3877         // intrinsic exposes) is one bit per thread, masked with the EXEC
3878         // register (which contains the bitmask of live threads). So a
3879         // comparison that always returns true is the same as a read of the
3880         // EXEC register.
3881         Function *NewF = Intrinsic::getDeclaration(
3882             II->getModule(), Intrinsic::read_register, II->getType());
3883         Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")};
3884         MDNode *MD = MDNode::get(II->getContext(), MDArgs);
3885         Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)};
3886         CallInst *NewCall = Builder.CreateCall(NewF, Args);
3887         NewCall->addAttribute(AttributeList::FunctionIndex,
3888                               Attribute::Convergent);
3889         NewCall->takeName(II);
3890         return replaceInstUsesWith(*II, NewCall);
3891       }
3892 
3893       // Canonicalize constants to RHS.
3894       CmpInst::Predicate SwapPred
3895         = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
3896       II->setArgOperand(0, Src1);
3897       II->setArgOperand(1, Src0);
3898       II->setArgOperand(2, ConstantInt::get(CC->getType(),
3899                                             static_cast<int>(SwapPred)));
3900       return II;
3901     }
3902 
3903     if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
3904       break;
3905 
3906     // Canonicalize compare eq with true value to compare != 0
3907     // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
3908     //   -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
3909     // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
3910     //   -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
3911     Value *ExtSrc;
3912     if (CCVal == CmpInst::ICMP_EQ &&
3913         ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) ||
3914          (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) &&
3915         ExtSrc->getType()->isIntegerTy(1)) {
3916       replaceOperand(*II, 1, ConstantInt::getNullValue(Src1->getType()));
3917       replaceOperand(*II, 2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
3918       return II;
3919     }
3920 
3921     CmpInst::Predicate SrcPred;
3922     Value *SrcLHS;
3923     Value *SrcRHS;
3924 
3925     // Fold compare eq/ne with 0 from a compare result as the predicate to the
3926     // intrinsic. The typical use is a wave vote function in the library, which
3927     // will be fed from a user code condition compared with 0. Fold in the
3928     // redundant compare.
3929 
3930     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
3931     //   -> llvm.amdgcn.[if]cmp(a, b, pred)
3932     //
3933     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
3934     //   -> llvm.amdgcn.[if]cmp(a, b, inv pred)
3935     if (match(Src1, m_Zero()) &&
3936         match(Src0,
3937               m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) {
3938       if (CCVal == CmpInst::ICMP_EQ)
3939         SrcPred = CmpInst::getInversePredicate(SrcPred);
3940 
3941       Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ?
3942         Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp;
3943 
3944       Type *Ty = SrcLHS->getType();
3945       if (auto *CmpType = dyn_cast<IntegerType>(Ty)) {
3946         // Promote to next legal integer type.
3947         unsigned Width = CmpType->getBitWidth();
3948         unsigned NewWidth = Width;
3949 
3950         // Don't do anything for i1 comparisons.
3951         if (Width == 1)
3952           break;
3953 
3954         if (Width <= 16)
3955           NewWidth = 16;
3956         else if (Width <= 32)
3957           NewWidth = 32;
3958         else if (Width <= 64)
3959           NewWidth = 64;
3960         else if (Width > 64)
3961           break; // Can't handle this.
3962 
3963         if (Width != NewWidth) {
3964           IntegerType *CmpTy = Builder.getIntNTy(NewWidth);
3965           if (CmpInst::isSigned(SrcPred)) {
3966             SrcLHS = Builder.CreateSExt(SrcLHS, CmpTy);
3967             SrcRHS = Builder.CreateSExt(SrcRHS, CmpTy);
3968           } else {
3969             SrcLHS = Builder.CreateZExt(SrcLHS, CmpTy);
3970             SrcRHS = Builder.CreateZExt(SrcRHS, CmpTy);
3971           }
3972         }
3973       } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy())
3974         break;
3975 
3976       Function *NewF =
3977           Intrinsic::getDeclaration(II->getModule(), NewIID,
3978                                     { II->getType(),
3979                                       SrcLHS->getType() });
3980       Value *Args[] = { SrcLHS, SrcRHS,
3981                         ConstantInt::get(CC->getType(), SrcPred) };
3982       CallInst *NewCall = Builder.CreateCall(NewF, Args);
3983       NewCall->takeName(II);
3984       return replaceInstUsesWith(*II, NewCall);
3985     }
3986 
3987     break;
3988   }
3989   case Intrinsic::amdgcn_ballot: {
3990     if (auto *Src = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
3991       if (Src->isZero()) {
3992         // amdgcn.ballot(i1 0) is zero.
3993         return replaceInstUsesWith(*II, Constant::getNullValue(II->getType()));
3994       }
3995 
3996       if (Src->isOne()) {
3997         // amdgcn.ballot(i1 1) is exec.
3998         const char *RegName = "exec";
3999         if (II->getType()->isIntegerTy(32))
4000           RegName = "exec_lo";
4001         else if (!II->getType()->isIntegerTy(64))
4002           break;
4003 
4004         Function *NewF = Intrinsic::getDeclaration(
4005             II->getModule(), Intrinsic::read_register, II->getType());
4006         Metadata *MDArgs[] = {MDString::get(II->getContext(), RegName)};
4007         MDNode *MD = MDNode::get(II->getContext(), MDArgs);
4008         Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)};
4009         CallInst *NewCall = Builder.CreateCall(NewF, Args);
4010         NewCall->addAttribute(AttributeList::FunctionIndex,
4011                               Attribute::Convergent);
4012         NewCall->takeName(II);
4013         return replaceInstUsesWith(*II, NewCall);
4014       }
4015     }
4016     break;
4017   }
4018   case Intrinsic::amdgcn_wqm_vote: {
4019     // wqm_vote is identity when the argument is constant.
4020     if (!isa<Constant>(II->getArgOperand(0)))
4021       break;
4022 
4023     return replaceInstUsesWith(*II, II->getArgOperand(0));
4024   }
4025   case Intrinsic::amdgcn_kill: {
4026     const ConstantInt *C = dyn_cast<ConstantInt>(II->getArgOperand(0));
4027     if (!C || !C->getZExtValue())
4028       break;
4029 
4030     // amdgcn.kill(i1 1) is a no-op
4031     return eraseInstFromFunction(CI);
4032   }
4033   case Intrinsic::amdgcn_update_dpp: {
4034     Value *Old = II->getArgOperand(0);
4035 
4036     auto BC = cast<ConstantInt>(II->getArgOperand(5));
4037     auto RM = cast<ConstantInt>(II->getArgOperand(3));
4038     auto BM = cast<ConstantInt>(II->getArgOperand(4));
4039     if (BC->isZeroValue() ||
4040         RM->getZExtValue() != 0xF ||
4041         BM->getZExtValue() != 0xF ||
4042         isa<UndefValue>(Old))
4043       break;
4044 
4045     // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
4046     return replaceOperand(*II, 0, UndefValue::get(Old->getType()));
4047   }
4048   case Intrinsic::amdgcn_permlane16:
4049   case Intrinsic::amdgcn_permlanex16: {
4050     // Discard vdst_in if it's not going to be read.
4051     Value *VDstIn = II->getArgOperand(0);
4052    if (isa<UndefValue>(VDstIn))
4053      break;
4054 
4055     ConstantInt *FetchInvalid = cast<ConstantInt>(II->getArgOperand(4));
4056     ConstantInt *BoundCtrl = cast<ConstantInt>(II->getArgOperand(5));
4057     if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue())
4058       break;
4059 
4060     return replaceOperand(*II, 0, UndefValue::get(VDstIn->getType()));
4061   }
4062   case Intrinsic::amdgcn_readfirstlane:
4063   case Intrinsic::amdgcn_readlane: {
4064     // A constant value is trivially uniform.
4065     if (Constant *C = dyn_cast<Constant>(II->getArgOperand(0)))
4066       return replaceInstUsesWith(*II, C);
4067 
4068     // The rest of these may not be safe if the exec may not be the same between
4069     // the def and use.
4070     Value *Src = II->getArgOperand(0);
4071     Instruction *SrcInst = dyn_cast<Instruction>(Src);
4072     if (SrcInst && SrcInst->getParent() != II->getParent())
4073       break;
4074 
4075     // readfirstlane (readfirstlane x) -> readfirstlane x
4076     // readlane (readfirstlane x), y -> readfirstlane x
4077     if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readfirstlane>()))
4078       return replaceInstUsesWith(*II, Src);
4079 
4080     if (IID == Intrinsic::amdgcn_readfirstlane) {
4081       // readfirstlane (readlane x, y) -> readlane x, y
4082       if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>()))
4083         return replaceInstUsesWith(*II, Src);
4084     } else {
4085       // readlane (readlane x, y), y -> readlane x, y
4086       if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>(
4087                   m_Value(), m_Specific(II->getArgOperand(1)))))
4088         return replaceInstUsesWith(*II, Src);
4089     }
4090 
4091     break;
4092   }
4093   case Intrinsic::amdgcn_ldexp: {
4094     // FIXME: This doesn't introduce new instructions and belongs in
4095     // InstructionSimplify.
4096     Type *Ty = II->getType();
4097     Value *Op0 = II->getArgOperand(0);
4098     Value *Op1 = II->getArgOperand(1);
4099 
4100     // Folding undef to qnan is safe regardless of the FP mode.
4101     if (isa<UndefValue>(Op0)) {
4102       auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics()));
4103       return replaceInstUsesWith(*II, QNaN);
4104     }
4105 
4106     const APFloat *C = nullptr;
4107     match(Op0, m_APFloat(C));
4108 
4109     // FIXME: Should flush denorms depending on FP mode, but that's ignored
4110     // everywhere else.
4111     //
4112     // These cases should be safe, even with strictfp.
4113     // ldexp(0.0, x) -> 0.0
4114     // ldexp(-0.0, x) -> -0.0
4115     // ldexp(inf, x) -> inf
4116     // ldexp(-inf, x) -> -inf
4117     if (C && (C->isZero() || C->isInfinity()))
4118       return replaceInstUsesWith(*II, Op0);
4119 
4120     // With strictfp, be more careful about possibly needing to flush denormals
4121     // or not, and snan behavior depends on ieee_mode.
4122     if (II->isStrictFP())
4123       break;
4124 
4125     if (C && C->isNaN()) {
4126       // FIXME: We just need to make the nan quiet here, but that's unavailable
4127       // on APFloat, only IEEEfloat
4128       auto *Quieted = ConstantFP::get(
4129         Ty, scalbn(*C, 0, APFloat::rmNearestTiesToEven));
4130       return replaceInstUsesWith(*II, Quieted);
4131     }
4132 
4133     // ldexp(x, 0) -> x
4134     // ldexp(x, undef) -> x
4135     if (isa<UndefValue>(Op1) || match(Op1, m_ZeroInt()))
4136       return replaceInstUsesWith(*II, Op0);
4137 
4138     break;
4139   }
4140   case Intrinsic::hexagon_V6_vandvrt:
4141   case Intrinsic::hexagon_V6_vandvrt_128B: {
4142     // Simplify Q -> V -> Q conversion.
4143     if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
4144       Intrinsic::ID ID0 = Op0->getIntrinsicID();
4145       if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
4146           ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
4147         break;
4148       Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
4149       uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
4150       uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
4151       // Check if every byte has common bits in Bytes and Mask.
4152       uint64_t C = Bytes1 & Mask1;
4153       if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
4154         return replaceInstUsesWith(*II, Op0->getArgOperand(0));
4155     }
4156     break;
4157   }
4158   case Intrinsic::stackrestore: {
4159     // If the save is right next to the restore, remove the restore.  This can
4160     // happen when variable allocas are DCE'd.
4161     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
4162       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
4163         // Skip over debug info.
4164         if (SS->getNextNonDebugInstruction() == II) {
4165           return eraseInstFromFunction(CI);
4166         }
4167       }
4168     }
4169 
4170     // Scan down this block to see if there is another stack restore in the
4171     // same block without an intervening call/alloca.
4172     BasicBlock::iterator BI(II);
4173     Instruction *TI = II->getParent()->getTerminator();
4174     bool CannotRemove = false;
4175     for (++BI; &*BI != TI; ++BI) {
4176       if (isa<AllocaInst>(BI)) {
4177         CannotRemove = true;
4178         break;
4179       }
4180       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
4181         if (auto *II2 = dyn_cast<IntrinsicInst>(BCI)) {
4182           // If there is a stackrestore below this one, remove this one.
4183           if (II2->getIntrinsicID() == Intrinsic::stackrestore)
4184             return eraseInstFromFunction(CI);
4185 
4186           // Bail if we cross over an intrinsic with side effects, such as
4187           // llvm.stacksave, or llvm.read_register.
4188           if (II2->mayHaveSideEffects()) {
4189             CannotRemove = true;
4190             break;
4191           }
4192         } else {
4193           // If we found a non-intrinsic call, we can't remove the stack
4194           // restore.
4195           CannotRemove = true;
4196           break;
4197         }
4198       }
4199     }
4200 
4201     // If the stack restore is in a return, resume, or unwind block and if there
4202     // are no allocas or calls between the restore and the return, nuke the
4203     // restore.
4204     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
4205       return eraseInstFromFunction(CI);
4206     break;
4207   }
4208   case Intrinsic::lifetime_end:
4209     // Asan needs to poison memory to detect invalid access which is possible
4210     // even for empty lifetime range.
4211     if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
4212         II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
4213         II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
4214       break;
4215 
4216     if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
4217           return I.getIntrinsicID() == Intrinsic::lifetime_start;
4218         }))
4219       return nullptr;
4220     break;
4221   case Intrinsic::assume: {
4222     Value *IIOperand = II->getArgOperand(0);
4223     // Remove an assume if it is followed by an identical assume.
4224     // TODO: Do we need this? Unless there are conflicting assumptions, the
4225     // computeKnownBits(IIOperand) below here eliminates redundant assumes.
4226     Instruction *Next = II->getNextNonDebugInstruction();
4227     if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
4228       return eraseInstFromFunction(CI);
4229 
4230     // Canonicalize assume(a && b) -> assume(a); assume(b);
4231     // Note: New assumption intrinsics created here are registered by
4232     // the InstCombineIRInserter object.
4233     FunctionType *AssumeIntrinsicTy = II->getFunctionType();
4234     Value *AssumeIntrinsic = II->getCalledOperand();
4235     Value *A, *B;
4236     if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
4237       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, II->getName());
4238       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
4239       return eraseInstFromFunction(*II);
4240     }
4241     // assume(!(a || b)) -> assume(!a); assume(!b);
4242     if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
4243       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
4244                          Builder.CreateNot(A), II->getName());
4245       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
4246                          Builder.CreateNot(B), II->getName());
4247       return eraseInstFromFunction(*II);
4248     }
4249 
4250     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
4251     // (if assume is valid at the load)
4252     CmpInst::Predicate Pred;
4253     Instruction *LHS;
4254     if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
4255         Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
4256         LHS->getType()->isPointerTy() &&
4257         isValidAssumeForContext(II, LHS, &DT)) {
4258       MDNode *MD = MDNode::get(II->getContext(), None);
4259       LHS->setMetadata(LLVMContext::MD_nonnull, MD);
4260       return eraseInstFromFunction(*II);
4261 
4262       // TODO: apply nonnull return attributes to calls and invokes
4263       // TODO: apply range metadata for range check patterns?
4264     }
4265 
4266     // If there is a dominating assume with the same condition as this one,
4267     // then this one is redundant, and should be removed.
4268     KnownBits Known(1);
4269     computeKnownBits(IIOperand, Known, 0, II);
4270     if (Known.isAllOnes() && isAssumeWithEmptyBundle(*II))
4271       return eraseInstFromFunction(*II);
4272 
4273     // Update the cache of affected values for this assumption (we might be
4274     // here because we just simplified the condition).
4275     AC.updateAffectedValues(II);
4276     break;
4277   }
4278   case Intrinsic::experimental_gc_relocate: {
4279     auto &GCR = *cast<GCRelocateInst>(II);
4280 
4281     // If we have two copies of the same pointer in the statepoint argument
4282     // list, canonicalize to one.  This may let us common gc.relocates.
4283     if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
4284         GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
4285       auto *OpIntTy = GCR.getOperand(2)->getType();
4286       return replaceOperand(*II, 2,
4287           ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
4288     }
4289 
4290     // Translate facts known about a pointer before relocating into
4291     // facts about the relocate value, while being careful to
4292     // preserve relocation semantics.
4293     Value *DerivedPtr = GCR.getDerivedPtr();
4294 
4295     // Remove the relocation if unused, note that this check is required
4296     // to prevent the cases below from looping forever.
4297     if (II->use_empty())
4298       return eraseInstFromFunction(*II);
4299 
4300     // Undef is undef, even after relocation.
4301     // TODO: provide a hook for this in GCStrategy.  This is clearly legal for
4302     // most practical collectors, but there was discussion in the review thread
4303     // about whether it was legal for all possible collectors.
4304     if (isa<UndefValue>(DerivedPtr))
4305       // Use undef of gc_relocate's type to replace it.
4306       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
4307 
4308     if (auto *PT = dyn_cast<PointerType>(II->getType())) {
4309       // The relocation of null will be null for most any collector.
4310       // TODO: provide a hook for this in GCStrategy.  There might be some
4311       // weird collector this property does not hold for.
4312       if (isa<ConstantPointerNull>(DerivedPtr))
4313         // Use null-pointer of gc_relocate's type to replace it.
4314         return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
4315 
4316       // isKnownNonNull -> nonnull attribute
4317       if (!II->hasRetAttr(Attribute::NonNull) &&
4318           isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT)) {
4319         II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
4320         return II;
4321       }
4322     }
4323 
4324     // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
4325     // Canonicalize on the type from the uses to the defs
4326 
4327     // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
4328     break;
4329   }
4330 
4331   case Intrinsic::experimental_guard: {
4332     // Is this guard followed by another guard?  We scan forward over a small
4333     // fixed window of instructions to handle common cases with conditions
4334     // computed between guards.
4335     Instruction *NextInst = II->getNextNonDebugInstruction();
4336     for (unsigned i = 0; i < GuardWideningWindow; i++) {
4337       // Note: Using context-free form to avoid compile time blow up
4338       if (!isSafeToSpeculativelyExecute(NextInst))
4339         break;
4340       NextInst = NextInst->getNextNonDebugInstruction();
4341     }
4342     Value *NextCond = nullptr;
4343     if (match(NextInst,
4344               m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
4345       Value *CurrCond = II->getArgOperand(0);
4346 
4347       // Remove a guard that it is immediately preceded by an identical guard.
4348       // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
4349       if (CurrCond != NextCond) {
4350         Instruction *MoveI = II->getNextNonDebugInstruction();
4351         while (MoveI != NextInst) {
4352           auto *Temp = MoveI;
4353           MoveI = MoveI->getNextNonDebugInstruction();
4354           Temp->moveBefore(II);
4355         }
4356         replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
4357       }
4358       eraseInstFromFunction(*NextInst);
4359       return II;
4360     }
4361     break;
4362   }
4363   }
4364   return visitCallBase(*II);
4365 }
4366 
4367 // Fence instruction simplification
4368 Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
4369   // Remove identical consecutive fences.
4370   Instruction *Next = FI.getNextNonDebugInstruction();
4371   if (auto *NFI = dyn_cast<FenceInst>(Next))
4372     if (FI.isIdenticalTo(NFI))
4373       return eraseInstFromFunction(FI);
4374   return nullptr;
4375 }
4376 
4377 // InvokeInst simplification
4378 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
4379   return visitCallBase(II);
4380 }
4381 
4382 // CallBrInst simplification
4383 Instruction *InstCombiner::visitCallBrInst(CallBrInst &CBI) {
4384   return visitCallBase(CBI);
4385 }
4386 
4387 /// If this cast does not affect the value passed through the varargs area, we
4388 /// can eliminate the use of the cast.
4389 static bool isSafeToEliminateVarargsCast(const CallBase &Call,
4390                                          const DataLayout &DL,
4391                                          const CastInst *const CI,
4392                                          const int ix) {
4393   if (!CI->isLosslessCast())
4394     return false;
4395 
4396   // If this is a GC intrinsic, avoid munging types.  We need types for
4397   // statepoint reconstruction in SelectionDAG.
4398   // TODO: This is probably something which should be expanded to all
4399   // intrinsics since the entire point of intrinsics is that
4400   // they are understandable by the optimizer.
4401   if (isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) ||
4402       isa<GCResultInst>(Call))
4403     return false;
4404 
4405   // The size of ByVal or InAlloca arguments is derived from the type, so we
4406   // can't change to a type with a different size.  If the size were
4407   // passed explicitly we could avoid this check.
4408   if (!Call.isPassPointeeByValueArgument(ix))
4409     return true;
4410 
4411   Type* SrcTy =
4412             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
4413   Type *DstTy = Call.isByValArgument(ix)
4414                     ? Call.getParamByValType(ix)
4415                     : cast<PointerType>(CI->getType())->getElementType();
4416   if (!SrcTy->isSized() || !DstTy->isSized())
4417     return false;
4418   if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
4419     return false;
4420   return true;
4421 }
4422 
4423 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
4424   if (!CI->getCalledFunction()) return nullptr;
4425 
4426   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
4427     replaceInstUsesWith(*From, With);
4428   };
4429   auto InstCombineErase = [this](Instruction *I) {
4430     eraseInstFromFunction(*I);
4431   };
4432   LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW,
4433                                InstCombineErase);
4434   if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
4435     ++NumSimplified;
4436     return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
4437   }
4438 
4439   return nullptr;
4440 }
4441 
4442 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
4443   // Strip off at most one level of pointer casts, looking for an alloca.  This
4444   // is good enough in practice and simpler than handling any number of casts.
4445   Value *Underlying = TrampMem->stripPointerCasts();
4446   if (Underlying != TrampMem &&
4447       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
4448     return nullptr;
4449   if (!isa<AllocaInst>(Underlying))
4450     return nullptr;
4451 
4452   IntrinsicInst *InitTrampoline = nullptr;
4453   for (User *U : TrampMem->users()) {
4454     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4455     if (!II)
4456       return nullptr;
4457     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
4458       if (InitTrampoline)
4459         // More than one init_trampoline writes to this value.  Give up.
4460         return nullptr;
4461       InitTrampoline = II;
4462       continue;
4463     }
4464     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
4465       // Allow any number of calls to adjust.trampoline.
4466       continue;
4467     return nullptr;
4468   }
4469 
4470   // No call to init.trampoline found.
4471   if (!InitTrampoline)
4472     return nullptr;
4473 
4474   // Check that the alloca is being used in the expected way.
4475   if (InitTrampoline->getOperand(0) != TrampMem)
4476     return nullptr;
4477 
4478   return InitTrampoline;
4479 }
4480 
4481 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
4482                                                Value *TrampMem) {
4483   // Visit all the previous instructions in the basic block, and try to find a
4484   // init.trampoline which has a direct path to the adjust.trampoline.
4485   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
4486                             E = AdjustTramp->getParent()->begin();
4487        I != E;) {
4488     Instruction *Inst = &*--I;
4489     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
4490       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
4491           II->getOperand(0) == TrampMem)
4492         return II;
4493     if (Inst->mayWriteToMemory())
4494       return nullptr;
4495   }
4496   return nullptr;
4497 }
4498 
4499 // Given a call to llvm.adjust.trampoline, find and return the corresponding
4500 // call to llvm.init.trampoline if the call to the trampoline can be optimized
4501 // to a direct call to a function.  Otherwise return NULL.
4502 static IntrinsicInst *findInitTrampoline(Value *Callee) {
4503   Callee = Callee->stripPointerCasts();
4504   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
4505   if (!AdjustTramp ||
4506       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
4507     return nullptr;
4508 
4509   Value *TrampMem = AdjustTramp->getOperand(0);
4510 
4511   if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
4512     return IT;
4513   if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
4514     return IT;
4515   return nullptr;
4516 }
4517 
4518 static void annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) {
4519   unsigned NumArgs = Call.getNumArgOperands();
4520   ConstantInt *Op0C = dyn_cast<ConstantInt>(Call.getOperand(0));
4521   ConstantInt *Op1C =
4522       (NumArgs == 1) ? nullptr : dyn_cast<ConstantInt>(Call.getOperand(1));
4523   // Bail out if the allocation size is zero (or an invalid alignment of zero
4524   // with aligned_alloc).
4525   if ((Op0C && Op0C->isNullValue()) || (Op1C && Op1C->isNullValue()))
4526     return;
4527 
4528   if (isMallocLikeFn(&Call, TLI) && Op0C) {
4529     if (isOpNewLikeFn(&Call, TLI))
4530       Call.addAttribute(AttributeList::ReturnIndex,
4531                         Attribute::getWithDereferenceableBytes(
4532                             Call.getContext(), Op0C->getZExtValue()));
4533     else
4534       Call.addAttribute(AttributeList::ReturnIndex,
4535                         Attribute::getWithDereferenceableOrNullBytes(
4536                             Call.getContext(), Op0C->getZExtValue()));
4537   } else if (isAlignedAllocLikeFn(&Call, TLI) && Op1C) {
4538     Call.addAttribute(AttributeList::ReturnIndex,
4539                       Attribute::getWithDereferenceableOrNullBytes(
4540                           Call.getContext(), Op1C->getZExtValue()));
4541     // Add alignment attribute if alignment is a power of two constant.
4542     if (Op0C && Op0C->getValue().ult(llvm::Value::MaximumAlignment)) {
4543       uint64_t AlignmentVal = Op0C->getZExtValue();
4544       if (llvm::isPowerOf2_64(AlignmentVal))
4545         Call.addAttribute(AttributeList::ReturnIndex,
4546                           Attribute::getWithAlignment(Call.getContext(),
4547                                                       Align(AlignmentVal)));
4548     }
4549   } else if (isReallocLikeFn(&Call, TLI) && Op1C) {
4550     Call.addAttribute(AttributeList::ReturnIndex,
4551                       Attribute::getWithDereferenceableOrNullBytes(
4552                           Call.getContext(), Op1C->getZExtValue()));
4553   } else if (isCallocLikeFn(&Call, TLI) && Op0C && Op1C) {
4554     bool Overflow;
4555     const APInt &N = Op0C->getValue();
4556     APInt Size = N.umul_ov(Op1C->getValue(), Overflow);
4557     if (!Overflow)
4558       Call.addAttribute(AttributeList::ReturnIndex,
4559                         Attribute::getWithDereferenceableOrNullBytes(
4560                             Call.getContext(), Size.getZExtValue()));
4561   } else if (isStrdupLikeFn(&Call, TLI)) {
4562     uint64_t Len = GetStringLength(Call.getOperand(0));
4563     if (Len) {
4564       // strdup
4565       if (NumArgs == 1)
4566         Call.addAttribute(AttributeList::ReturnIndex,
4567                           Attribute::getWithDereferenceableOrNullBytes(
4568                               Call.getContext(), Len));
4569       // strndup
4570       else if (NumArgs == 2 && Op1C)
4571         Call.addAttribute(
4572             AttributeList::ReturnIndex,
4573             Attribute::getWithDereferenceableOrNullBytes(
4574                 Call.getContext(), std::min(Len, Op1C->getZExtValue() + 1)));
4575     }
4576   }
4577 }
4578 
4579 /// Improvements for call, callbr and invoke instructions.
4580 Instruction *InstCombiner::visitCallBase(CallBase &Call) {
4581   if (isAllocationFn(&Call, &TLI))
4582     annotateAnyAllocSite(Call, &TLI);
4583 
4584   bool Changed = false;
4585 
4586   // Mark any parameters that are known to be non-null with the nonnull
4587   // attribute.  This is helpful for inlining calls to functions with null
4588   // checks on their arguments.
4589   SmallVector<unsigned, 4> ArgNos;
4590   unsigned ArgNo = 0;
4591 
4592   for (Value *V : Call.args()) {
4593     if (V->getType()->isPointerTy() &&
4594         !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
4595         isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
4596       ArgNos.push_back(ArgNo);
4597     ArgNo++;
4598   }
4599 
4600   assert(ArgNo == Call.arg_size() && "sanity check");
4601 
4602   if (!ArgNos.empty()) {
4603     AttributeList AS = Call.getAttributes();
4604     LLVMContext &Ctx = Call.getContext();
4605     AS = AS.addParamAttribute(Ctx, ArgNos,
4606                               Attribute::get(Ctx, Attribute::NonNull));
4607     Call.setAttributes(AS);
4608     Changed = true;
4609   }
4610 
4611   // If the callee is a pointer to a function, attempt to move any casts to the
4612   // arguments of the call/callbr/invoke.
4613   Value *Callee = Call.getCalledOperand();
4614   if (!isa<Function>(Callee) && transformConstExprCastCall(Call))
4615     return nullptr;
4616 
4617   if (Function *CalleeF = dyn_cast<Function>(Callee)) {
4618     // Remove the convergent attr on calls when the callee is not convergent.
4619     if (Call.isConvergent() && !CalleeF->isConvergent() &&
4620         !CalleeF->isIntrinsic()) {
4621       LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
4622                         << "\n");
4623       Call.setNotConvergent();
4624       return &Call;
4625     }
4626 
4627     // If the call and callee calling conventions don't match, this call must
4628     // be unreachable, as the call is undefined.
4629     if (CalleeF->getCallingConv() != Call.getCallingConv() &&
4630         // Only do this for calls to a function with a body.  A prototype may
4631         // not actually end up matching the implementation's calling conv for a
4632         // variety of reasons (e.g. it may be written in assembly).
4633         !CalleeF->isDeclaration()) {
4634       Instruction *OldCall = &Call;
4635       CreateNonTerminatorUnreachable(OldCall);
4636       // If OldCall does not return void then replaceAllUsesWith undef.
4637       // This allows ValueHandlers and custom metadata to adjust itself.
4638       if (!OldCall->getType()->isVoidTy())
4639         replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
4640       if (isa<CallInst>(OldCall))
4641         return eraseInstFromFunction(*OldCall);
4642 
4643       // We cannot remove an invoke or a callbr, because it would change thexi
4644       // CFG, just change the callee to a null pointer.
4645       cast<CallBase>(OldCall)->setCalledFunction(
4646           CalleeF->getFunctionType(),
4647           Constant::getNullValue(CalleeF->getType()));
4648       return nullptr;
4649     }
4650   }
4651 
4652   if ((isa<ConstantPointerNull>(Callee) &&
4653        !NullPointerIsDefined(Call.getFunction())) ||
4654       isa<UndefValue>(Callee)) {
4655     // If Call does not return void then replaceAllUsesWith undef.
4656     // This allows ValueHandlers and custom metadata to adjust itself.
4657     if (!Call.getType()->isVoidTy())
4658       replaceInstUsesWith(Call, UndefValue::get(Call.getType()));
4659 
4660     if (Call.isTerminator()) {
4661       // Can't remove an invoke or callbr because we cannot change the CFG.
4662       return nullptr;
4663     }
4664 
4665     // This instruction is not reachable, just remove it.
4666     CreateNonTerminatorUnreachable(&Call);
4667     return eraseInstFromFunction(Call);
4668   }
4669 
4670   if (IntrinsicInst *II = findInitTrampoline(Callee))
4671     return transformCallThroughTrampoline(Call, *II);
4672 
4673   PointerType *PTy = cast<PointerType>(Callee->getType());
4674   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
4675   if (FTy->isVarArg()) {
4676     int ix = FTy->getNumParams();
4677     // See if we can optimize any arguments passed through the varargs area of
4678     // the call.
4679     for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end();
4680          I != E; ++I, ++ix) {
4681       CastInst *CI = dyn_cast<CastInst>(*I);
4682       if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) {
4683         replaceUse(*I, CI->getOperand(0));
4684 
4685         // Update the byval type to match the argument type.
4686         if (Call.isByValArgument(ix)) {
4687           Call.removeParamAttr(ix, Attribute::ByVal);
4688           Call.addParamAttr(
4689               ix, Attribute::getWithByValType(
4690                       Call.getContext(),
4691                       CI->getOperand(0)->getType()->getPointerElementType()));
4692         }
4693         Changed = true;
4694       }
4695     }
4696   }
4697 
4698   if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
4699     // Inline asm calls cannot throw - mark them 'nounwind'.
4700     Call.setDoesNotThrow();
4701     Changed = true;
4702   }
4703 
4704   // Try to optimize the call if possible, we require DataLayout for most of
4705   // this.  None of these calls are seen as possibly dead so go ahead and
4706   // delete the instruction now.
4707   if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
4708     Instruction *I = tryOptimizeCall(CI);
4709     // If we changed something return the result, etc. Otherwise let
4710     // the fallthrough check.
4711     if (I) return eraseInstFromFunction(*I);
4712   }
4713 
4714   if (!Call.use_empty() && !Call.isMustTailCall())
4715     if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
4716       Type *CallTy = Call.getType();
4717       Type *RetArgTy = ReturnedArg->getType();
4718       if (RetArgTy->canLosslesslyBitCastTo(CallTy))
4719         return replaceInstUsesWith(
4720             Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
4721     }
4722 
4723   if (isAllocLikeFn(&Call, &TLI))
4724     return visitAllocSite(Call);
4725 
4726   return Changed ? &Call : nullptr;
4727 }
4728 
4729 /// If the callee is a constexpr cast of a function, attempt to move the cast to
4730 /// the arguments of the call/callbr/invoke.
4731 bool InstCombiner::transformConstExprCastCall(CallBase &Call) {
4732   auto *Callee =
4733       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
4734   if (!Callee)
4735     return false;
4736 
4737   // If this is a call to a thunk function, don't remove the cast. Thunks are
4738   // used to transparently forward all incoming parameters and outgoing return
4739   // values, so it's important to leave the cast in place.
4740   if (Callee->hasFnAttribute("thunk"))
4741     return false;
4742 
4743   // If this is a musttail call, the callee's prototype must match the caller's
4744   // prototype with the exception of pointee types. The code below doesn't
4745   // implement that, so we can't do this transform.
4746   // TODO: Do the transform if it only requires adding pointer casts.
4747   if (Call.isMustTailCall())
4748     return false;
4749 
4750   Instruction *Caller = &Call;
4751   const AttributeList &CallerPAL = Call.getAttributes();
4752 
4753   // Okay, this is a cast from a function to a different type.  Unless doing so
4754   // would cause a type conversion of one of our arguments, change this call to
4755   // be a direct call with arguments casted to the appropriate types.
4756   FunctionType *FT = Callee->getFunctionType();
4757   Type *OldRetTy = Caller->getType();
4758   Type *NewRetTy = FT->getReturnType();
4759 
4760   // Check to see if we are changing the return type...
4761   if (OldRetTy != NewRetTy) {
4762 
4763     if (NewRetTy->isStructTy())
4764       return false; // TODO: Handle multiple return values.
4765 
4766     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
4767       if (Callee->isDeclaration())
4768         return false;   // Cannot transform this return value.
4769 
4770       if (!Caller->use_empty() &&
4771           // void -> non-void is handled specially
4772           !NewRetTy->isVoidTy())
4773         return false;   // Cannot transform this return value.
4774     }
4775 
4776     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
4777       AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
4778       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
4779         return false;   // Attribute not compatible with transformed value.
4780     }
4781 
4782     // If the callbase is an invoke/callbr instruction, and the return value is
4783     // used by a PHI node in a successor, we cannot change the return type of
4784     // the call because there is no place to put the cast instruction (without
4785     // breaking the critical edge).  Bail out in this case.
4786     if (!Caller->use_empty()) {
4787       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
4788         for (User *U : II->users())
4789           if (PHINode *PN = dyn_cast<PHINode>(U))
4790             if (PN->getParent() == II->getNormalDest() ||
4791                 PN->getParent() == II->getUnwindDest())
4792               return false;
4793       // FIXME: Be conservative for callbr to avoid a quadratic search.
4794       if (isa<CallBrInst>(Caller))
4795         return false;
4796     }
4797   }
4798 
4799   unsigned NumActualArgs = Call.arg_size();
4800   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4801 
4802   // Prevent us turning:
4803   // declare void @takes_i32_inalloca(i32* inalloca)
4804   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4805   //
4806   // into:
4807   //  call void @takes_i32_inalloca(i32* null)
4808   //
4809   //  Similarly, avoid folding away bitcasts of byval calls.
4810   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4811       Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated) ||
4812       Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
4813     return false;
4814 
4815   auto AI = Call.arg_begin();
4816   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
4817     Type *ParamTy = FT->getParamType(i);
4818     Type *ActTy = (*AI)->getType();
4819 
4820     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
4821       return false;   // Cannot transform this parameter value.
4822 
4823     if (AttrBuilder(CallerPAL.getParamAttributes(i))
4824             .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
4825       return false;   // Attribute not compatible with transformed value.
4826 
4827     if (Call.isInAllocaArgument(i))
4828       return false;   // Cannot transform to and from inalloca.
4829 
4830     // If the parameter is passed as a byval argument, then we have to have a
4831     // sized type and the sized type has to have the same size as the old type.
4832     if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
4833       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
4834       if (!ParamPTy || !ParamPTy->getElementType()->isSized())
4835         return false;
4836 
4837       Type *CurElTy = Call.getParamByValType(i);
4838       if (DL.getTypeAllocSize(CurElTy) !=
4839           DL.getTypeAllocSize(ParamPTy->getElementType()))
4840         return false;
4841     }
4842   }
4843 
4844   if (Callee->isDeclaration()) {
4845     // Do not delete arguments unless we have a function body.
4846     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
4847       return false;
4848 
4849     // If the callee is just a declaration, don't change the varargsness of the
4850     // call.  We don't want to introduce a varargs call where one doesn't
4851     // already exist.
4852     PointerType *APTy = cast<PointerType>(Call.getCalledOperand()->getType());
4853     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
4854       return false;
4855 
4856     // If both the callee and the cast type are varargs, we still have to make
4857     // sure the number of fixed parameters are the same or we have the same
4858     // ABI issues as if we introduce a varargs call.
4859     if (FT->isVarArg() &&
4860         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
4861         FT->getNumParams() !=
4862         cast<FunctionType>(APTy->getElementType())->getNumParams())
4863       return false;
4864   }
4865 
4866   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4867       !CallerPAL.isEmpty()) {
4868     // In this case we have more arguments than the new function type, but we
4869     // won't be dropping them.  Check that these extra arguments have attributes
4870     // that are compatible with being a vararg call argument.
4871     unsigned SRetIdx;
4872     if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4873         SRetIdx > FT->getNumParams())
4874       return false;
4875   }
4876 
4877   // Okay, we decided that this is a safe thing to do: go ahead and start
4878   // inserting cast instructions as necessary.
4879   SmallVector<Value *, 8> Args;
4880   SmallVector<AttributeSet, 8> ArgAttrs;
4881   Args.reserve(NumActualArgs);
4882   ArgAttrs.reserve(NumActualArgs);
4883 
4884   // Get any return attributes.
4885   AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
4886 
4887   // If the return value is not being used, the type may not be compatible
4888   // with the existing attributes.  Wipe out any problematic attributes.
4889   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
4890 
4891   LLVMContext &Ctx = Call.getContext();
4892   AI = Call.arg_begin();
4893   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4894     Type *ParamTy = FT->getParamType(i);
4895 
4896     Value *NewArg = *AI;
4897     if ((*AI)->getType() != ParamTy)
4898       NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
4899     Args.push_back(NewArg);
4900 
4901     // Add any parameter attributes.
4902     if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
4903       AttrBuilder AB(CallerPAL.getParamAttributes(i));
4904       AB.addByValAttr(NewArg->getType()->getPointerElementType());
4905       ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
4906     } else
4907       ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
4908   }
4909 
4910   // If the function takes more arguments than the call was taking, add them
4911   // now.
4912   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4913     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
4914     ArgAttrs.push_back(AttributeSet());
4915   }
4916 
4917   // If we are removing arguments to the function, emit an obnoxious warning.
4918   if (FT->getNumParams() < NumActualArgs) {
4919     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4920     if (FT->isVarArg()) {
4921       // Add all of the arguments in their promoted form to the arg list.
4922       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4923         Type *PTy = getPromotedType((*AI)->getType());
4924         Value *NewArg = *AI;
4925         if (PTy != (*AI)->getType()) {
4926           // Must promote to pass through va_arg area!
4927           Instruction::CastOps opcode =
4928             CastInst::getCastOpcode(*AI, false, PTy, false);
4929           NewArg = Builder.CreateCast(opcode, *AI, PTy);
4930         }
4931         Args.push_back(NewArg);
4932 
4933         // Add any parameter attributes.
4934         ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
4935       }
4936     }
4937   }
4938 
4939   AttributeSet FnAttrs = CallerPAL.getFnAttributes();
4940 
4941   if (NewRetTy->isVoidTy())
4942     Caller->setName("");   // Void type should not have a name.
4943 
4944   assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4945          "missing argument attributes");
4946   AttributeList NewCallerPAL = AttributeList::get(
4947       Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
4948 
4949   SmallVector<OperandBundleDef, 1> OpBundles;
4950   Call.getOperandBundlesAsDefs(OpBundles);
4951 
4952   CallBase *NewCall;
4953   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4954     NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
4955                                    II->getUnwindDest(), Args, OpBundles);
4956   } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
4957     NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(),
4958                                    CBI->getIndirectDests(), Args, OpBundles);
4959   } else {
4960     NewCall = Builder.CreateCall(Callee, Args, OpBundles);
4961     cast<CallInst>(NewCall)->setTailCallKind(
4962         cast<CallInst>(Caller)->getTailCallKind());
4963   }
4964   NewCall->takeName(Caller);
4965   NewCall->setCallingConv(Call.getCallingConv());
4966   NewCall->setAttributes(NewCallerPAL);
4967 
4968   // Preserve prof metadata if any.
4969   NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
4970 
4971   // Insert a cast of the return type as necessary.
4972   Instruction *NC = NewCall;
4973   Value *NV = NC;
4974   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4975     if (!NV->getType()->isVoidTy()) {
4976       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
4977       NC->setDebugLoc(Caller->getDebugLoc());
4978 
4979       // If this is an invoke/callbr instruction, we should insert it after the
4980       // first non-phi instruction in the normal successor block.
4981       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4982         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
4983         InsertNewInstBefore(NC, *I);
4984       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
4985         BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt();
4986         InsertNewInstBefore(NC, *I);
4987       } else {
4988         // Otherwise, it's a call, just insert cast right after the call.
4989         InsertNewInstBefore(NC, *Caller);
4990       }
4991       Worklist.pushUsersToWorkList(*Caller);
4992     } else {
4993       NV = UndefValue::get(Caller->getType());
4994     }
4995   }
4996 
4997   if (!Caller->use_empty())
4998     replaceInstUsesWith(*Caller, NV);
4999   else if (Caller->hasValueHandle()) {
5000     if (OldRetTy == NV->getType())
5001       ValueHandleBase::ValueIsRAUWd(Caller, NV);
5002     else
5003       // We cannot call ValueIsRAUWd with a different type, and the
5004       // actual tracked value will disappear.
5005       ValueHandleBase::ValueIsDeleted(Caller);
5006   }
5007 
5008   eraseInstFromFunction(*Caller);
5009   return true;
5010 }
5011 
5012 /// Turn a call to a function created by init_trampoline / adjust_trampoline
5013 /// intrinsic pair into a direct call to the underlying function.
5014 Instruction *
5015 InstCombiner::transformCallThroughTrampoline(CallBase &Call,
5016                                              IntrinsicInst &Tramp) {
5017   Value *Callee = Call.getCalledOperand();
5018   Type *CalleeTy = Callee->getType();
5019   FunctionType *FTy = Call.getFunctionType();
5020   AttributeList Attrs = Call.getAttributes();
5021 
5022   // If the call already has the 'nest' attribute somewhere then give up -
5023   // otherwise 'nest' would occur twice after splicing in the chain.
5024   if (Attrs.hasAttrSomewhere(Attribute::Nest))
5025     return nullptr;
5026 
5027   Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
5028   FunctionType *NestFTy = NestF->getFunctionType();
5029 
5030   AttributeList NestAttrs = NestF->getAttributes();
5031   if (!NestAttrs.isEmpty()) {
5032     unsigned NestArgNo = 0;
5033     Type *NestTy = nullptr;
5034     AttributeSet NestAttr;
5035 
5036     // Look for a parameter marked with the 'nest' attribute.
5037     for (FunctionType::param_iterator I = NestFTy->param_begin(),
5038                                       E = NestFTy->param_end();
5039          I != E; ++NestArgNo, ++I) {
5040       AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
5041       if (AS.hasAttribute(Attribute::Nest)) {
5042         // Record the parameter type and any other attributes.
5043         NestTy = *I;
5044         NestAttr = AS;
5045         break;
5046       }
5047     }
5048 
5049     if (NestTy) {
5050       std::vector<Value*> NewArgs;
5051       std::vector<AttributeSet> NewArgAttrs;
5052       NewArgs.reserve(Call.arg_size() + 1);
5053       NewArgAttrs.reserve(Call.arg_size());
5054 
5055       // Insert the nest argument into the call argument list, which may
5056       // mean appending it.  Likewise for attributes.
5057 
5058       {
5059         unsigned ArgNo = 0;
5060         auto I = Call.arg_begin(), E = Call.arg_end();
5061         do {
5062           if (ArgNo == NestArgNo) {
5063             // Add the chain argument and attributes.
5064             Value *NestVal = Tramp.getArgOperand(2);
5065             if (NestVal->getType() != NestTy)
5066               NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
5067             NewArgs.push_back(NestVal);
5068             NewArgAttrs.push_back(NestAttr);
5069           }
5070 
5071           if (I == E)
5072             break;
5073 
5074           // Add the original argument and attributes.
5075           NewArgs.push_back(*I);
5076           NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
5077 
5078           ++ArgNo;
5079           ++I;
5080         } while (true);
5081       }
5082 
5083       // The trampoline may have been bitcast to a bogus type (FTy).
5084       // Handle this by synthesizing a new function type, equal to FTy
5085       // with the chain parameter inserted.
5086 
5087       std::vector<Type*> NewTypes;
5088       NewTypes.reserve(FTy->getNumParams()+1);
5089 
5090       // Insert the chain's type into the list of parameter types, which may
5091       // mean appending it.
5092       {
5093         unsigned ArgNo = 0;
5094         FunctionType::param_iterator I = FTy->param_begin(),
5095           E = FTy->param_end();
5096 
5097         do {
5098           if (ArgNo == NestArgNo)
5099             // Add the chain's type.
5100             NewTypes.push_back(NestTy);
5101 
5102           if (I == E)
5103             break;
5104 
5105           // Add the original type.
5106           NewTypes.push_back(*I);
5107 
5108           ++ArgNo;
5109           ++I;
5110         } while (true);
5111       }
5112 
5113       // Replace the trampoline call with a direct call.  Let the generic
5114       // code sort out any function type mismatches.
5115       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
5116                                                 FTy->isVarArg());
5117       Constant *NewCallee =
5118         NestF->getType() == PointerType::getUnqual(NewFTy) ?
5119         NestF : ConstantExpr::getBitCast(NestF,
5120                                          PointerType::getUnqual(NewFTy));
5121       AttributeList NewPAL =
5122           AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
5123                              Attrs.getRetAttributes(), NewArgAttrs);
5124 
5125       SmallVector<OperandBundleDef, 1> OpBundles;
5126       Call.getOperandBundlesAsDefs(OpBundles);
5127 
5128       Instruction *NewCaller;
5129       if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
5130         NewCaller = InvokeInst::Create(NewFTy, NewCallee,
5131                                        II->getNormalDest(), II->getUnwindDest(),
5132                                        NewArgs, OpBundles);
5133         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
5134         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
5135       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
5136         NewCaller =
5137             CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
5138                                CBI->getIndirectDests(), NewArgs, OpBundles);
5139         cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
5140         cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
5141       } else {
5142         NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
5143         cast<CallInst>(NewCaller)->setTailCallKind(
5144             cast<CallInst>(Call).getTailCallKind());
5145         cast<CallInst>(NewCaller)->setCallingConv(
5146             cast<CallInst>(Call).getCallingConv());
5147         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
5148       }
5149       NewCaller->setDebugLoc(Call.getDebugLoc());
5150 
5151       return NewCaller;
5152     }
5153   }
5154 
5155   // Replace the trampoline call with a direct call.  Since there is no 'nest'
5156   // parameter, there is no need to adjust the argument list.  Let the generic
5157   // code sort out any function type mismatches.
5158   Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
5159   Call.setCalledFunction(FTy, NewCallee);
5160   return &Call;
5161 }
5162