1 //===- InstCombineCalls.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitCall, visitInvoke, and visitCallBr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallBitVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumeBundleQueries.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/IR/AttributeMask.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/IntrinsicsAArch64.h" 47 #include "llvm/IR/IntrinsicsAMDGPU.h" 48 #include "llvm/IR/IntrinsicsARM.h" 49 #include "llvm/IR/IntrinsicsHexagon.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/PatternMatch.h" 53 #include "llvm/IR/Statepoint.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueHandle.h" 58 #include "llvm/Support/AtomicOrdering.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/InstCombine/InstCombiner.h" 68 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <optional> 75 #include <utility> 76 #include <vector> 77 78 #define DEBUG_TYPE "instcombine" 79 #include "llvm/Transforms/Utils/InstructionWorklist.h" 80 81 using namespace llvm; 82 using namespace PatternMatch; 83 84 STATISTIC(NumSimplified, "Number of library calls simplified"); 85 86 static cl::opt<unsigned> GuardWideningWindow( 87 "instcombine-guard-widening-window", 88 cl::init(3), 89 cl::desc("How wide an instruction window to bypass looking for " 90 "another guard")); 91 92 /// Return the specified type promoted as it would be to pass though a va_arg 93 /// area. 94 static Type *getPromotedType(Type *Ty) { 95 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { 96 if (ITy->getBitWidth() < 32) 97 return Type::getInt32Ty(Ty->getContext()); 98 } 99 return Ty; 100 } 101 102 /// Recognize a memcpy/memmove from a trivially otherwise unused alloca. 103 /// TODO: This should probably be integrated with visitAllocSites, but that 104 /// requires a deeper change to allow either unread or unwritten objects. 105 static bool hasUndefSource(AnyMemTransferInst *MI) { 106 auto *Src = MI->getRawSource(); 107 while (isa<GetElementPtrInst>(Src) || isa<BitCastInst>(Src)) { 108 if (!Src->hasOneUse()) 109 return false; 110 Src = cast<Instruction>(Src)->getOperand(0); 111 } 112 return isa<AllocaInst>(Src) && Src->hasOneUse(); 113 } 114 115 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) { 116 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT); 117 MaybeAlign CopyDstAlign = MI->getDestAlign(); 118 if (!CopyDstAlign || *CopyDstAlign < DstAlign) { 119 MI->setDestAlignment(DstAlign); 120 return MI; 121 } 122 123 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT); 124 MaybeAlign CopySrcAlign = MI->getSourceAlign(); 125 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) { 126 MI->setSourceAlignment(SrcAlign); 127 return MI; 128 } 129 130 // If we have a store to a location which is known constant, we can conclude 131 // that the store must be storing the constant value (else the memory 132 // wouldn't be constant), and this must be a noop. 133 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) { 134 // Set the size of the copy to 0, it will be deleted on the next iteration. 135 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 136 return MI; 137 } 138 139 // If the source is provably undef, the memcpy/memmove doesn't do anything 140 // (unless the transfer is volatile). 141 if (hasUndefSource(MI) && !MI->isVolatile()) { 142 // Set the size of the copy to 0, it will be deleted on the next iteration. 143 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 144 return MI; 145 } 146 147 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with 148 // load/store. 149 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength()); 150 if (!MemOpLength) return nullptr; 151 152 // Source and destination pointer types are always "i8*" for intrinsic. See 153 // if the size is something we can handle with a single primitive load/store. 154 // A single load+store correctly handles overlapping memory in the memmove 155 // case. 156 uint64_t Size = MemOpLength->getLimitedValue(); 157 assert(Size && "0-sized memory transferring should be removed already."); 158 159 if (Size > 8 || (Size&(Size-1))) 160 return nullptr; // If not 1/2/4/8 bytes, exit. 161 162 // If it is an atomic and alignment is less than the size then we will 163 // introduce the unaligned memory access which will be later transformed 164 // into libcall in CodeGen. This is not evident performance gain so disable 165 // it now. 166 if (isa<AtomicMemTransferInst>(MI)) 167 if (*CopyDstAlign < Size || *CopySrcAlign < Size) 168 return nullptr; 169 170 // Use an integer load+store unless we can find something better. 171 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); 172 173 // If the memcpy has metadata describing the members, see if we can get the 174 // TBAA, scope and noalias tags describing our copy. 175 AAMDNodes AACopyMD = MI->getAAMetadata().adjustForAccess(Size); 176 177 Value *Src = MI->getArgOperand(1); 178 Value *Dest = MI->getArgOperand(0); 179 LoadInst *L = Builder.CreateLoad(IntType, Src); 180 // Alignment from the mem intrinsic will be better, so use it. 181 L->setAlignment(*CopySrcAlign); 182 L->setAAMetadata(AACopyMD); 183 MDNode *LoopMemParallelMD = 184 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 185 if (LoopMemParallelMD) 186 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 187 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group); 188 if (AccessGroupMD) 189 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 190 191 StoreInst *S = Builder.CreateStore(L, Dest); 192 // Alignment from the mem intrinsic will be better, so use it. 193 S->setAlignment(*CopyDstAlign); 194 S->setAAMetadata(AACopyMD); 195 if (LoopMemParallelMD) 196 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 197 if (AccessGroupMD) 198 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 199 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID); 200 201 if (auto *MT = dyn_cast<MemTransferInst>(MI)) { 202 // non-atomics can be volatile 203 L->setVolatile(MT->isVolatile()); 204 S->setVolatile(MT->isVolatile()); 205 } 206 if (isa<AtomicMemTransferInst>(MI)) { 207 // atomics have to be unordered 208 L->setOrdering(AtomicOrdering::Unordered); 209 S->setOrdering(AtomicOrdering::Unordered); 210 } 211 212 // Set the size of the copy to 0, it will be deleted on the next iteration. 213 MI->setLength(Constant::getNullValue(MemOpLength->getType())); 214 return MI; 215 } 216 217 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) { 218 const Align KnownAlignment = 219 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); 220 MaybeAlign MemSetAlign = MI->getDestAlign(); 221 if (!MemSetAlign || *MemSetAlign < KnownAlignment) { 222 MI->setDestAlignment(KnownAlignment); 223 return MI; 224 } 225 226 // If we have a store to a location which is known constant, we can conclude 227 // that the store must be storing the constant value (else the memory 228 // wouldn't be constant), and this must be a noop. 229 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) { 230 // Set the size of the copy to 0, it will be deleted on the next iteration. 231 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 232 return MI; 233 } 234 235 // Remove memset with an undef value. 236 // FIXME: This is technically incorrect because it might overwrite a poison 237 // value. Change to PoisonValue once #52930 is resolved. 238 if (isa<UndefValue>(MI->getValue())) { 239 // Set the size of the copy to 0, it will be deleted on the next iteration. 240 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 241 return MI; 242 } 243 244 // Extract the length and alignment and fill if they are constant. 245 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); 246 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); 247 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) 248 return nullptr; 249 const uint64_t Len = LenC->getLimitedValue(); 250 assert(Len && "0-sized memory setting should be removed already."); 251 const Align Alignment = MI->getDestAlign().valueOrOne(); 252 253 // If it is an atomic and alignment is less than the size then we will 254 // introduce the unaligned memory access which will be later transformed 255 // into libcall in CodeGen. This is not evident performance gain so disable 256 // it now. 257 if (isa<AtomicMemSetInst>(MI)) 258 if (Alignment < Len) 259 return nullptr; 260 261 // memset(s,c,n) -> store s, c (for n=1,2,4,8) 262 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { 263 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. 264 265 Value *Dest = MI->getDest(); 266 267 // Extract the fill value and store. 268 const uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; 269 Constant *FillVal = ConstantInt::get(ITy, Fill); 270 StoreInst *S = Builder.CreateStore(FillVal, Dest, MI->isVolatile()); 271 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID); 272 auto replaceOpForAssignmentMarkers = [FillC, FillVal](auto *DbgAssign) { 273 if (llvm::is_contained(DbgAssign->location_ops(), FillC)) 274 DbgAssign->replaceVariableLocationOp(FillC, FillVal); 275 }; 276 for_each(at::getAssignmentMarkers(S), replaceOpForAssignmentMarkers); 277 for_each(at::getDVRAssignmentMarkers(S), replaceOpForAssignmentMarkers); 278 279 S->setAlignment(Alignment); 280 if (isa<AtomicMemSetInst>(MI)) 281 S->setOrdering(AtomicOrdering::Unordered); 282 283 // Set the size of the copy to 0, it will be deleted on the next iteration. 284 MI->setLength(Constant::getNullValue(LenC->getType())); 285 return MI; 286 } 287 288 return nullptr; 289 } 290 291 // TODO, Obvious Missing Transforms: 292 // * Narrow width by halfs excluding zero/undef lanes 293 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) { 294 Value *LoadPtr = II.getArgOperand(0); 295 const Align Alignment = 296 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue(); 297 298 // If the mask is all ones or undefs, this is a plain vector load of the 1st 299 // argument. 300 if (maskIsAllOneOrUndef(II.getArgOperand(2))) { 301 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 302 "unmaskedload"); 303 L->copyMetadata(II); 304 return L; 305 } 306 307 // If we can unconditionally load from this address, replace with a 308 // load/select idiom. TODO: use DT for context sensitive query 309 if (isDereferenceablePointer(LoadPtr, II.getType(), 310 II.getDataLayout(), &II, &AC)) { 311 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 312 "unmaskedload"); 313 LI->copyMetadata(II); 314 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3)); 315 } 316 317 return nullptr; 318 } 319 320 // TODO, Obvious Missing Transforms: 321 // * Single constant active lane -> store 322 // * Narrow width by halfs excluding zero/undef lanes 323 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) { 324 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 325 if (!ConstMask) 326 return nullptr; 327 328 // If the mask is all zeros, this instruction does nothing. 329 if (ConstMask->isNullValue()) 330 return eraseInstFromFunction(II); 331 332 // If the mask is all ones, this is a plain vector store of the 1st argument. 333 if (ConstMask->isAllOnesValue()) { 334 Value *StorePtr = II.getArgOperand(1); 335 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 336 StoreInst *S = 337 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); 338 S->copyMetadata(II); 339 return S; 340 } 341 342 if (isa<ScalableVectorType>(ConstMask->getType())) 343 return nullptr; 344 345 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 346 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 347 APInt PoisonElts(DemandedElts.getBitWidth(), 0); 348 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, 349 PoisonElts)) 350 return replaceOperand(II, 0, V); 351 352 return nullptr; 353 } 354 355 // TODO, Obvious Missing Transforms: 356 // * Single constant active lane load -> load 357 // * Dereferenceable address & few lanes -> scalarize speculative load/selects 358 // * Adjacent vector addresses -> masked.load 359 // * Narrow width by halfs excluding zero/undef lanes 360 // * Vector incrementing address -> vector masked load 361 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) { 362 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2)); 363 if (!ConstMask) 364 return nullptr; 365 366 // Vector splat address w/known mask -> scalar load 367 // Fold the gather to load the source vector first lane 368 // because it is reloading the same value each time 369 if (ConstMask->isAllOnesValue()) 370 if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) { 371 auto *VecTy = cast<VectorType>(II.getType()); 372 const Align Alignment = 373 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue(); 374 LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr, 375 Alignment, "load.scalar"); 376 Value *Shuf = 377 Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast"); 378 return replaceInstUsesWith(II, cast<Instruction>(Shuf)); 379 } 380 381 return nullptr; 382 } 383 384 // TODO, Obvious Missing Transforms: 385 // * Single constant active lane -> store 386 // * Adjacent vector addresses -> masked.store 387 // * Narrow store width by halfs excluding zero/undef lanes 388 // * Vector incrementing address -> vector masked store 389 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) { 390 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 391 if (!ConstMask) 392 return nullptr; 393 394 // If the mask is all zeros, a scatter does nothing. 395 if (ConstMask->isNullValue()) 396 return eraseInstFromFunction(II); 397 398 // Vector splat address -> scalar store 399 if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) { 400 // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr 401 if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) { 402 if (maskContainsAllOneOrUndef(ConstMask)) { 403 Align Alignment = 404 cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 405 StoreInst *S = new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false, 406 Alignment); 407 S->copyMetadata(II); 408 return S; 409 } 410 } 411 // scatter(vector, splat(ptr), splat(true)) -> store extract(vector, 412 // lastlane), ptr 413 if (ConstMask->isAllOnesValue()) { 414 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 415 VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType()); 416 ElementCount VF = WideLoadTy->getElementCount(); 417 Value *RunTimeVF = Builder.CreateElementCount(Builder.getInt32Ty(), VF); 418 Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1)); 419 Value *Extract = 420 Builder.CreateExtractElement(II.getArgOperand(0), LastLane); 421 StoreInst *S = 422 new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment); 423 S->copyMetadata(II); 424 return S; 425 } 426 } 427 if (isa<ScalableVectorType>(ConstMask->getType())) 428 return nullptr; 429 430 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 431 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 432 APInt PoisonElts(DemandedElts.getBitWidth(), 0); 433 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, 434 PoisonElts)) 435 return replaceOperand(II, 0, V); 436 if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, 437 PoisonElts)) 438 return replaceOperand(II, 1, V); 439 440 return nullptr; 441 } 442 443 /// This function transforms launder.invariant.group and strip.invariant.group 444 /// like: 445 /// launder(launder(%x)) -> launder(%x) (the result is not the argument) 446 /// launder(strip(%x)) -> launder(%x) 447 /// strip(strip(%x)) -> strip(%x) (the result is not the argument) 448 /// strip(launder(%x)) -> strip(%x) 449 /// This is legal because it preserves the most recent information about 450 /// the presence or absence of invariant.group. 451 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II, 452 InstCombinerImpl &IC) { 453 auto *Arg = II.getArgOperand(0); 454 auto *StrippedArg = Arg->stripPointerCasts(); 455 auto *StrippedInvariantGroupsArg = StrippedArg; 456 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) { 457 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group && 458 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group) 459 break; 460 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts(); 461 } 462 if (StrippedArg == StrippedInvariantGroupsArg) 463 return nullptr; // No launders/strips to remove. 464 465 Value *Result = nullptr; 466 467 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group) 468 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg); 469 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group) 470 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg); 471 else 472 llvm_unreachable( 473 "simplifyInvariantGroupIntrinsic only handles launder and strip"); 474 if (Result->getType()->getPointerAddressSpace() != 475 II.getType()->getPointerAddressSpace()) 476 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType()); 477 478 return cast<Instruction>(Result); 479 } 480 481 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) { 482 assert((II.getIntrinsicID() == Intrinsic::cttz || 483 II.getIntrinsicID() == Intrinsic::ctlz) && 484 "Expected cttz or ctlz intrinsic"); 485 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; 486 Value *Op0 = II.getArgOperand(0); 487 Value *Op1 = II.getArgOperand(1); 488 Value *X; 489 // ctlz(bitreverse(x)) -> cttz(x) 490 // cttz(bitreverse(x)) -> ctlz(x) 491 if (match(Op0, m_BitReverse(m_Value(X)))) { 492 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz; 493 Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType()); 494 return CallInst::Create(F, {X, II.getArgOperand(1)}); 495 } 496 497 if (II.getType()->isIntOrIntVectorTy(1)) { 498 // ctlz/cttz i1 Op0 --> not Op0 499 if (match(Op1, m_Zero())) 500 return BinaryOperator::CreateNot(Op0); 501 // If zero is poison, then the input can be assumed to be "true", so the 502 // instruction simplifies to "false". 503 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1"); 504 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType())); 505 } 506 507 // If ctlz/cttz is only used as a shift amount, set is_zero_poison to true. 508 if (II.hasOneUse() && match(Op1, m_Zero()) && 509 match(II.user_back(), m_Shift(m_Value(), m_Specific(&II)))) 510 return IC.replaceOperand(II, 1, IC.Builder.getTrue()); 511 512 Constant *C; 513 514 if (IsTZ) { 515 // cttz(-x) -> cttz(x) 516 if (match(Op0, m_Neg(m_Value(X)))) 517 return IC.replaceOperand(II, 0, X); 518 519 // cttz(-x & x) -> cttz(x) 520 if (match(Op0, m_c_And(m_Neg(m_Value(X)), m_Deferred(X)))) 521 return IC.replaceOperand(II, 0, X); 522 523 // cttz(sext(x)) -> cttz(zext(x)) 524 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) { 525 auto *Zext = IC.Builder.CreateZExt(X, II.getType()); 526 auto *CttzZext = 527 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1); 528 return IC.replaceInstUsesWith(II, CttzZext); 529 } 530 531 // Zext doesn't change the number of trailing zeros, so narrow: 532 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'. 533 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) { 534 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X, 535 IC.Builder.getTrue()); 536 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType()); 537 return IC.replaceInstUsesWith(II, ZextCttz); 538 } 539 540 // cttz(abs(x)) -> cttz(x) 541 // cttz(nabs(x)) -> cttz(x) 542 Value *Y; 543 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; 544 if (SPF == SPF_ABS || SPF == SPF_NABS) 545 return IC.replaceOperand(II, 0, X); 546 547 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) 548 return IC.replaceOperand(II, 0, X); 549 550 // cttz(shl(%const, %val), 1) --> add(cttz(%const, 1), %val) 551 if (match(Op0, m_Shl(m_ImmConstant(C), m_Value(X))) && 552 match(Op1, m_One())) { 553 Value *ConstCttz = 554 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1); 555 return BinaryOperator::CreateAdd(ConstCttz, X); 556 } 557 558 // cttz(lshr exact (%const, %val), 1) --> sub(cttz(%const, 1), %val) 559 if (match(Op0, m_Exact(m_LShr(m_ImmConstant(C), m_Value(X)))) && 560 match(Op1, m_One())) { 561 Value *ConstCttz = 562 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, C, Op1); 563 return BinaryOperator::CreateSub(ConstCttz, X); 564 } 565 566 // cttz(add(lshr(UINT_MAX, %val), 1)) --> sub(width, %val) 567 if (match(Op0, m_Add(m_LShr(m_AllOnes(), m_Value(X)), m_One()))) { 568 Value *Width = 569 ConstantInt::get(II.getType(), II.getType()->getScalarSizeInBits()); 570 return BinaryOperator::CreateSub(Width, X); 571 } 572 } else { 573 // ctlz(lshr(%const, %val), 1) --> add(ctlz(%const, 1), %val) 574 if (match(Op0, m_LShr(m_ImmConstant(C), m_Value(X))) && 575 match(Op1, m_One())) { 576 Value *ConstCtlz = 577 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1); 578 return BinaryOperator::CreateAdd(ConstCtlz, X); 579 } 580 581 // ctlz(shl nuw (%const, %val), 1) --> sub(ctlz(%const, 1), %val) 582 if (match(Op0, m_NUWShl(m_ImmConstant(C), m_Value(X))) && 583 match(Op1, m_One())) { 584 Value *ConstCtlz = 585 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ctlz, C, Op1); 586 return BinaryOperator::CreateSub(ConstCtlz, X); 587 } 588 } 589 590 KnownBits Known = IC.computeKnownBits(Op0, 0, &II); 591 592 // Create a mask for bits above (ctlz) or below (cttz) the first known one. 593 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros() 594 : Known.countMaxLeadingZeros(); 595 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros() 596 : Known.countMinLeadingZeros(); 597 598 // If all bits above (ctlz) or below (cttz) the first known one are known 599 // zero, this value is constant. 600 // FIXME: This should be in InstSimplify because we're replacing an 601 // instruction with a constant. 602 if (PossibleZeros == DefiniteZeros) { 603 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros); 604 return IC.replaceInstUsesWith(II, C); 605 } 606 607 // If the input to cttz/ctlz is known to be non-zero, 608 // then change the 'ZeroIsPoison' parameter to 'true' 609 // because we know the zero behavior can't affect the result. 610 if (!Known.One.isZero() || 611 isKnownNonZero(Op0, IC.getSimplifyQuery().getWithInstruction(&II))) { 612 if (!match(II.getArgOperand(1), m_One())) 613 return IC.replaceOperand(II, 1, IC.Builder.getTrue()); 614 } 615 616 // Add range attribute since known bits can't completely reflect what we know. 617 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 618 if (BitWidth != 1 && !II.hasRetAttr(Attribute::Range) && 619 !II.getMetadata(LLVMContext::MD_range)) { 620 ConstantRange Range(APInt(BitWidth, DefiniteZeros), 621 APInt(BitWidth, PossibleZeros + 1)); 622 II.addRangeRetAttr(Range); 623 return &II; 624 } 625 626 return nullptr; 627 } 628 629 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) { 630 assert(II.getIntrinsicID() == Intrinsic::ctpop && 631 "Expected ctpop intrinsic"); 632 Type *Ty = II.getType(); 633 unsigned BitWidth = Ty->getScalarSizeInBits(); 634 Value *Op0 = II.getArgOperand(0); 635 Value *X, *Y; 636 637 // ctpop(bitreverse(x)) -> ctpop(x) 638 // ctpop(bswap(x)) -> ctpop(x) 639 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) 640 return IC.replaceOperand(II, 0, X); 641 642 // ctpop(rot(x)) -> ctpop(x) 643 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) || 644 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) && 645 X == Y) 646 return IC.replaceOperand(II, 0, X); 647 648 // ctpop(x | -x) -> bitwidth - cttz(x, false) 649 if (Op0->hasOneUse() && 650 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) { 651 Function *F = 652 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); 653 auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()}); 654 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth)); 655 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz)); 656 } 657 658 // ctpop(~x & (x - 1)) -> cttz(x, false) 659 if (match(Op0, 660 m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) { 661 Function *F = 662 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); 663 return CallInst::Create(F, {X, IC.Builder.getFalse()}); 664 } 665 666 // Zext doesn't change the number of set bits, so narrow: 667 // ctpop (zext X) --> zext (ctpop X) 668 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 669 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X); 670 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty); 671 } 672 673 KnownBits Known(BitWidth); 674 IC.computeKnownBits(Op0, Known, 0, &II); 675 676 // If all bits are zero except for exactly one fixed bit, then the result 677 // must be 0 or 1, and we can get that answer by shifting to LSB: 678 // ctpop (X & 32) --> (X & 32) >> 5 679 // TODO: Investigate removing this as its likely unnecessary given the below 680 // `isKnownToBeAPowerOfTwo` check. 681 if ((~Known.Zero).isPowerOf2()) 682 return BinaryOperator::CreateLShr( 683 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2())); 684 685 // More generally we can also handle non-constant power of 2 patterns such as 686 // shl/shr(Pow2, X), (X & -X), etc... by transforming: 687 // ctpop(Pow2OrZero) --> icmp ne X, 0 688 if (IC.isKnownToBeAPowerOfTwo(Op0, /* OrZero */ true)) 689 return CastInst::Create(Instruction::ZExt, 690 IC.Builder.CreateICmp(ICmpInst::ICMP_NE, Op0, 691 Constant::getNullValue(Ty)), 692 Ty); 693 694 // Add range attribute since known bits can't completely reflect what we know. 695 if (BitWidth != 1 && !II.hasRetAttr(Attribute::Range) && 696 !II.getMetadata(LLVMContext::MD_range)) { 697 ConstantRange Range(APInt(BitWidth, Known.countMinPopulation()), 698 APInt(BitWidth, Known.countMaxPopulation() + 1)); 699 II.addRangeRetAttr(Range); 700 return &II; 701 } 702 703 return nullptr; 704 } 705 706 /// Convert a table lookup to shufflevector if the mask is constant. 707 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in 708 /// which case we could lower the shufflevector with rev64 instructions 709 /// as it's actually a byte reverse. 710 static Value *simplifyNeonTbl1(const IntrinsicInst &II, 711 InstCombiner::BuilderTy &Builder) { 712 // Bail out if the mask is not a constant. 713 auto *C = dyn_cast<Constant>(II.getArgOperand(1)); 714 if (!C) 715 return nullptr; 716 717 auto *VecTy = cast<FixedVectorType>(II.getType()); 718 unsigned NumElts = VecTy->getNumElements(); 719 720 // Only perform this transformation for <8 x i8> vector types. 721 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8) 722 return nullptr; 723 724 int Indexes[8]; 725 726 for (unsigned I = 0; I < NumElts; ++I) { 727 Constant *COp = C->getAggregateElement(I); 728 729 if (!COp || !isa<ConstantInt>(COp)) 730 return nullptr; 731 732 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue(); 733 734 // Make sure the mask indices are in range. 735 if ((unsigned)Indexes[I] >= NumElts) 736 return nullptr; 737 } 738 739 auto *V1 = II.getArgOperand(0); 740 auto *V2 = Constant::getNullValue(V1->getType()); 741 return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes)); 742 } 743 744 // Returns true iff the 2 intrinsics have the same operands, limiting the 745 // comparison to the first NumOperands. 746 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, 747 unsigned NumOperands) { 748 assert(I.arg_size() >= NumOperands && "Not enough operands"); 749 assert(E.arg_size() >= NumOperands && "Not enough operands"); 750 for (unsigned i = 0; i < NumOperands; i++) 751 if (I.getArgOperand(i) != E.getArgOperand(i)) 752 return false; 753 return true; 754 } 755 756 // Remove trivially empty start/end intrinsic ranges, i.e. a start 757 // immediately followed by an end (ignoring debuginfo or other 758 // start/end intrinsics in between). As this handles only the most trivial 759 // cases, tracking the nesting level is not needed: 760 // 761 // call @llvm.foo.start(i1 0) 762 // call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed 763 // call @llvm.foo.end(i1 0) 764 // call @llvm.foo.end(i1 0) ; &I 765 static bool 766 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, 767 std::function<bool(const IntrinsicInst &)> IsStart) { 768 // We start from the end intrinsic and scan backwards, so that InstCombine 769 // has already processed (and potentially removed) all the instructions 770 // before the end intrinsic. 771 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend()); 772 for (; BI != BE; ++BI) { 773 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) { 774 if (I->isDebugOrPseudoInst() || 775 I->getIntrinsicID() == EndI.getIntrinsicID()) 776 continue; 777 if (IsStart(*I)) { 778 if (haveSameOperands(EndI, *I, EndI.arg_size())) { 779 IC.eraseInstFromFunction(*I); 780 IC.eraseInstFromFunction(EndI); 781 return true; 782 } 783 // Skip start intrinsics that don't pair with this end intrinsic. 784 continue; 785 } 786 } 787 break; 788 } 789 790 return false; 791 } 792 793 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) { 794 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) { 795 return I.getIntrinsicID() == Intrinsic::vastart || 796 I.getIntrinsicID() == Intrinsic::vacopy; 797 }); 798 return nullptr; 799 } 800 801 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) { 802 assert(Call.arg_size() > 1 && "Need at least 2 args to swap"); 803 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1); 804 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) { 805 Call.setArgOperand(0, Arg1); 806 Call.setArgOperand(1, Arg0); 807 return &Call; 808 } 809 return nullptr; 810 } 811 812 /// Creates a result tuple for an overflow intrinsic \p II with a given 813 /// \p Result and a constant \p Overflow value. 814 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result, 815 Constant *Overflow) { 816 Constant *V[] = {PoisonValue::get(Result->getType()), Overflow}; 817 StructType *ST = cast<StructType>(II->getType()); 818 Constant *Struct = ConstantStruct::get(ST, V); 819 return InsertValueInst::Create(Struct, Result, 0); 820 } 821 822 Instruction * 823 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) { 824 WithOverflowInst *WO = cast<WithOverflowInst>(II); 825 Value *OperationResult = nullptr; 826 Constant *OverflowResult = nullptr; 827 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(), 828 WO->getRHS(), *WO, OperationResult, OverflowResult)) 829 return createOverflowTuple(WO, OperationResult, OverflowResult); 830 return nullptr; 831 } 832 833 static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) { 834 Ty = Ty->getScalarType(); 835 return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE; 836 } 837 838 static bool inputDenormalIsDAZ(const Function &F, const Type *Ty) { 839 Ty = Ty->getScalarType(); 840 return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero(); 841 } 842 843 /// \returns the compare predicate type if the test performed by 844 /// llvm.is.fpclass(x, \p Mask) is equivalent to fcmp o__ x, 0.0 with the 845 /// floating-point environment assumed for \p F for type \p Ty 846 static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask, 847 const Function &F, Type *Ty) { 848 switch (static_cast<unsigned>(Mask)) { 849 case fcZero: 850 if (inputDenormalIsIEEE(F, Ty)) 851 return FCmpInst::FCMP_OEQ; 852 break; 853 case fcZero | fcSubnormal: 854 if (inputDenormalIsDAZ(F, Ty)) 855 return FCmpInst::FCMP_OEQ; 856 break; 857 case fcPositive | fcNegZero: 858 if (inputDenormalIsIEEE(F, Ty)) 859 return FCmpInst::FCMP_OGE; 860 break; 861 case fcPositive | fcNegZero | fcNegSubnormal: 862 if (inputDenormalIsDAZ(F, Ty)) 863 return FCmpInst::FCMP_OGE; 864 break; 865 case fcPosSubnormal | fcPosNormal | fcPosInf: 866 if (inputDenormalIsIEEE(F, Ty)) 867 return FCmpInst::FCMP_OGT; 868 break; 869 case fcNegative | fcPosZero: 870 if (inputDenormalIsIEEE(F, Ty)) 871 return FCmpInst::FCMP_OLE; 872 break; 873 case fcNegative | fcPosZero | fcPosSubnormal: 874 if (inputDenormalIsDAZ(F, Ty)) 875 return FCmpInst::FCMP_OLE; 876 break; 877 case fcNegSubnormal | fcNegNormal | fcNegInf: 878 if (inputDenormalIsIEEE(F, Ty)) 879 return FCmpInst::FCMP_OLT; 880 break; 881 case fcPosNormal | fcPosInf: 882 if (inputDenormalIsDAZ(F, Ty)) 883 return FCmpInst::FCMP_OGT; 884 break; 885 case fcNegNormal | fcNegInf: 886 if (inputDenormalIsDAZ(F, Ty)) 887 return FCmpInst::FCMP_OLT; 888 break; 889 case ~fcZero & ~fcNan: 890 if (inputDenormalIsIEEE(F, Ty)) 891 return FCmpInst::FCMP_ONE; 892 break; 893 case ~(fcZero | fcSubnormal) & ~fcNan: 894 if (inputDenormalIsDAZ(F, Ty)) 895 return FCmpInst::FCMP_ONE; 896 break; 897 default: 898 break; 899 } 900 901 return FCmpInst::BAD_FCMP_PREDICATE; 902 } 903 904 Instruction *InstCombinerImpl::foldIntrinsicIsFPClass(IntrinsicInst &II) { 905 Value *Src0 = II.getArgOperand(0); 906 Value *Src1 = II.getArgOperand(1); 907 const ConstantInt *CMask = cast<ConstantInt>(Src1); 908 FPClassTest Mask = static_cast<FPClassTest>(CMask->getZExtValue()); 909 const bool IsUnordered = (Mask & fcNan) == fcNan; 910 const bool IsOrdered = (Mask & fcNan) == fcNone; 911 const FPClassTest OrderedMask = Mask & ~fcNan; 912 const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan; 913 914 const bool IsStrict = 915 II.getFunction()->getAttributes().hasFnAttr(Attribute::StrictFP); 916 917 Value *FNegSrc; 918 if (match(Src0, m_FNeg(m_Value(FNegSrc)))) { 919 // is.fpclass (fneg x), mask -> is.fpclass x, (fneg mask) 920 921 II.setArgOperand(1, ConstantInt::get(Src1->getType(), fneg(Mask))); 922 return replaceOperand(II, 0, FNegSrc); 923 } 924 925 Value *FAbsSrc; 926 if (match(Src0, m_FAbs(m_Value(FAbsSrc)))) { 927 II.setArgOperand(1, ConstantInt::get(Src1->getType(), inverse_fabs(Mask))); 928 return replaceOperand(II, 0, FAbsSrc); 929 } 930 931 if ((OrderedMask == fcInf || OrderedInvertedMask == fcInf) && 932 (IsOrdered || IsUnordered) && !IsStrict) { 933 // is.fpclass(x, fcInf) -> fcmp oeq fabs(x), +inf 934 // is.fpclass(x, ~fcInf) -> fcmp one fabs(x), +inf 935 // is.fpclass(x, fcInf|fcNan) -> fcmp ueq fabs(x), +inf 936 // is.fpclass(x, ~(fcInf|fcNan)) -> fcmp une fabs(x), +inf 937 Constant *Inf = ConstantFP::getInfinity(Src0->getType()); 938 FCmpInst::Predicate Pred = 939 IsUnordered ? FCmpInst::FCMP_UEQ : FCmpInst::FCMP_OEQ; 940 if (OrderedInvertedMask == fcInf) 941 Pred = IsUnordered ? FCmpInst::FCMP_UNE : FCmpInst::FCMP_ONE; 942 943 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0); 944 Value *CmpInf = Builder.CreateFCmp(Pred, Fabs, Inf); 945 CmpInf->takeName(&II); 946 return replaceInstUsesWith(II, CmpInf); 947 } 948 949 if ((OrderedMask == fcPosInf || OrderedMask == fcNegInf) && 950 (IsOrdered || IsUnordered) && !IsStrict) { 951 // is.fpclass(x, fcPosInf) -> fcmp oeq x, +inf 952 // is.fpclass(x, fcNegInf) -> fcmp oeq x, -inf 953 // is.fpclass(x, fcPosInf|fcNan) -> fcmp ueq x, +inf 954 // is.fpclass(x, fcNegInf|fcNan) -> fcmp ueq x, -inf 955 Constant *Inf = 956 ConstantFP::getInfinity(Src0->getType(), OrderedMask == fcNegInf); 957 Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(Src0, Inf) 958 : Builder.CreateFCmpOEQ(Src0, Inf); 959 960 EqInf->takeName(&II); 961 return replaceInstUsesWith(II, EqInf); 962 } 963 964 if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) && 965 (IsOrdered || IsUnordered) && !IsStrict) { 966 // is.fpclass(x, ~fcPosInf) -> fcmp one x, +inf 967 // is.fpclass(x, ~fcNegInf) -> fcmp one x, -inf 968 // is.fpclass(x, ~fcPosInf|fcNan) -> fcmp une x, +inf 969 // is.fpclass(x, ~fcNegInf|fcNan) -> fcmp une x, -inf 970 Constant *Inf = ConstantFP::getInfinity(Src0->getType(), 971 OrderedInvertedMask == fcNegInf); 972 Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(Src0, Inf) 973 : Builder.CreateFCmpONE(Src0, Inf); 974 NeInf->takeName(&II); 975 return replaceInstUsesWith(II, NeInf); 976 } 977 978 if (Mask == fcNan && !IsStrict) { 979 // Equivalent of isnan. Replace with standard fcmp if we don't care about FP 980 // exceptions. 981 Value *IsNan = 982 Builder.CreateFCmpUNO(Src0, ConstantFP::getZero(Src0->getType())); 983 IsNan->takeName(&II); 984 return replaceInstUsesWith(II, IsNan); 985 } 986 987 if (Mask == (~fcNan & fcAllFlags) && !IsStrict) { 988 // Equivalent of !isnan. Replace with standard fcmp. 989 Value *FCmp = 990 Builder.CreateFCmpORD(Src0, ConstantFP::getZero(Src0->getType())); 991 FCmp->takeName(&II); 992 return replaceInstUsesWith(II, FCmp); 993 } 994 995 FCmpInst::Predicate PredType = FCmpInst::BAD_FCMP_PREDICATE; 996 997 // Try to replace with an fcmp with 0 998 // 999 // is.fpclass(x, fcZero) -> fcmp oeq x, 0.0 1000 // is.fpclass(x, fcZero | fcNan) -> fcmp ueq x, 0.0 1001 // is.fpclass(x, ~fcZero & ~fcNan) -> fcmp one x, 0.0 1002 // is.fpclass(x, ~fcZero) -> fcmp une x, 0.0 1003 // 1004 // is.fpclass(x, fcPosSubnormal | fcPosNormal | fcPosInf) -> fcmp ogt x, 0.0 1005 // is.fpclass(x, fcPositive | fcNegZero) -> fcmp oge x, 0.0 1006 // 1007 // is.fpclass(x, fcNegSubnormal | fcNegNormal | fcNegInf) -> fcmp olt x, 0.0 1008 // is.fpclass(x, fcNegative | fcPosZero) -> fcmp ole x, 0.0 1009 // 1010 if (!IsStrict && (IsOrdered || IsUnordered) && 1011 (PredType = fpclassTestIsFCmp0(OrderedMask, *II.getFunction(), 1012 Src0->getType())) != 1013 FCmpInst::BAD_FCMP_PREDICATE) { 1014 Constant *Zero = ConstantFP::getZero(Src0->getType()); 1015 // Equivalent of == 0. 1016 Value *FCmp = Builder.CreateFCmp( 1017 IsUnordered ? FCmpInst::getUnorderedPredicate(PredType) : PredType, 1018 Src0, Zero); 1019 1020 FCmp->takeName(&II); 1021 return replaceInstUsesWith(II, FCmp); 1022 } 1023 1024 KnownFPClass Known = computeKnownFPClass(Src0, Mask, &II); 1025 1026 // Clear test bits we know must be false from the source value. 1027 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other 1028 // fp_class (ninf x), ninf|pinf|other -> fp_class (ninf x), other 1029 if ((Mask & Known.KnownFPClasses) != Mask) { 1030 II.setArgOperand( 1031 1, ConstantInt::get(Src1->getType(), Mask & Known.KnownFPClasses)); 1032 return &II; 1033 } 1034 1035 // If none of the tests which can return false are possible, fold to true. 1036 // fp_class (nnan x), ~(qnan|snan) -> true 1037 // fp_class (ninf x), ~(ninf|pinf) -> true 1038 if (Mask == Known.KnownFPClasses) 1039 return replaceInstUsesWith(II, ConstantInt::get(II.getType(), true)); 1040 1041 return nullptr; 1042 } 1043 1044 static std::optional<bool> getKnownSign(Value *Op, const SimplifyQuery &SQ) { 1045 KnownBits Known = computeKnownBits(Op, /*Depth=*/0, SQ); 1046 if (Known.isNonNegative()) 1047 return false; 1048 if (Known.isNegative()) 1049 return true; 1050 1051 Value *X, *Y; 1052 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y)))) 1053 return isImpliedByDomCondition(ICmpInst::ICMP_SLT, X, Y, SQ.CxtI, SQ.DL); 1054 1055 return std::nullopt; 1056 } 1057 1058 static std::optional<bool> getKnownSignOrZero(Value *Op, 1059 const SimplifyQuery &SQ) { 1060 if (std::optional<bool> Sign = getKnownSign(Op, SQ)) 1061 return Sign; 1062 1063 Value *X, *Y; 1064 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y)))) 1065 return isImpliedByDomCondition(ICmpInst::ICMP_SLE, X, Y, SQ.CxtI, SQ.DL); 1066 1067 return std::nullopt; 1068 } 1069 1070 /// Return true if two values \p Op0 and \p Op1 are known to have the same sign. 1071 static bool signBitMustBeTheSame(Value *Op0, Value *Op1, 1072 const SimplifyQuery &SQ) { 1073 std::optional<bool> Known1 = getKnownSign(Op1, SQ); 1074 if (!Known1) 1075 return false; 1076 std::optional<bool> Known0 = getKnownSign(Op0, SQ); 1077 if (!Known0) 1078 return false; 1079 return *Known0 == *Known1; 1080 } 1081 1082 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This 1083 /// can trigger other combines. 1084 static Instruction *moveAddAfterMinMax(IntrinsicInst *II, 1085 InstCombiner::BuilderTy &Builder) { 1086 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 1087 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin || 1088 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) && 1089 "Expected a min or max intrinsic"); 1090 1091 // TODO: Match vectors with undef elements, but undef may not propagate. 1092 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); 1093 Value *X; 1094 const APInt *C0, *C1; 1095 if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) || 1096 !match(Op1, m_APInt(C1))) 1097 return nullptr; 1098 1099 // Check for necessary no-wrap and overflow constraints. 1100 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin; 1101 auto *Add = cast<BinaryOperator>(Op0); 1102 if ((IsSigned && !Add->hasNoSignedWrap()) || 1103 (!IsSigned && !Add->hasNoUnsignedWrap())) 1104 return nullptr; 1105 1106 // If the constant difference overflows, then instsimplify should reduce the 1107 // min/max to the add or C1. 1108 bool Overflow; 1109 APInt CDiff = 1110 IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow); 1111 assert(!Overflow && "Expected simplify of min/max"); 1112 1113 // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0 1114 // Note: the "mismatched" no-overflow setting does not propagate. 1115 Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff); 1116 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC); 1117 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1)) 1118 : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1)); 1119 } 1120 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 1121 Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) { 1122 Type *Ty = MinMax1.getType(); 1123 1124 // We are looking for a tree of: 1125 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 1126 // Where the min and max could be reversed 1127 Instruction *MinMax2; 1128 BinaryOperator *AddSub; 1129 const APInt *MinValue, *MaxValue; 1130 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 1131 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 1132 return nullptr; 1133 } else if (match(&MinMax1, 1134 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 1135 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 1136 return nullptr; 1137 } else 1138 return nullptr; 1139 1140 // Check that the constants clamp a saturate, and that the new type would be 1141 // sensible to convert to. 1142 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 1143 return nullptr; 1144 // In what bitwidth can this be treated as saturating arithmetics? 1145 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 1146 // FIXME: This isn't quite right for vectors, but using the scalar type is a 1147 // good first approximation for what should be done there. 1148 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 1149 return nullptr; 1150 1151 // Also make sure that the inner min/max and the add/sub have one use. 1152 if (!MinMax2->hasOneUse() || !AddSub->hasOneUse()) 1153 return nullptr; 1154 1155 // Create the new type (which can be a vector type) 1156 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 1157 1158 Intrinsic::ID IntrinsicID; 1159 if (AddSub->getOpcode() == Instruction::Add) 1160 IntrinsicID = Intrinsic::sadd_sat; 1161 else if (AddSub->getOpcode() == Instruction::Sub) 1162 IntrinsicID = Intrinsic::ssub_sat; 1163 else 1164 return nullptr; 1165 1166 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This 1167 // is usually achieved via a sext from a smaller type. 1168 if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) > 1169 NewBitWidth || 1170 ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth) 1171 return nullptr; 1172 1173 // Finally create and return the sat intrinsic, truncated to the new type 1174 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 1175 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy); 1176 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy); 1177 Value *Sat = Builder.CreateCall(F, {AT, BT}); 1178 return CastInst::Create(Instruction::SExt, Sat, Ty); 1179 } 1180 1181 1182 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output 1183 /// can only be one of two possible constant values -- turn that into a select 1184 /// of constants. 1185 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II, 1186 InstCombiner::BuilderTy &Builder) { 1187 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1188 Value *X; 1189 const APInt *C0, *C1; 1190 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse()) 1191 return nullptr; 1192 1193 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 1194 switch (II->getIntrinsicID()) { 1195 case Intrinsic::smax: 1196 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 1197 Pred = ICmpInst::ICMP_SGT; 1198 break; 1199 case Intrinsic::smin: 1200 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 1201 Pred = ICmpInst::ICMP_SLT; 1202 break; 1203 case Intrinsic::umax: 1204 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 1205 Pred = ICmpInst::ICMP_UGT; 1206 break; 1207 case Intrinsic::umin: 1208 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 1209 Pred = ICmpInst::ICMP_ULT; 1210 break; 1211 default: 1212 llvm_unreachable("Expected min/max intrinsic"); 1213 } 1214 if (Pred == CmpInst::BAD_ICMP_PREDICATE) 1215 return nullptr; 1216 1217 // max (min X, 42), 41 --> X > 41 ? 42 : 41 1218 // min (max X, 42), 43 --> X < 43 ? 42 : 43 1219 Value *Cmp = Builder.CreateICmp(Pred, X, I1); 1220 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1); 1221 } 1222 1223 /// If this min/max has a constant operand and an operand that is a matching 1224 /// min/max with a constant operand, constant-fold the 2 constant operands. 1225 static Value *reassociateMinMaxWithConstants(IntrinsicInst *II, 1226 IRBuilderBase &Builder, 1227 const SimplifyQuery &SQ) { 1228 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 1229 auto *LHS = dyn_cast<MinMaxIntrinsic>(II->getArgOperand(0)); 1230 if (!LHS) 1231 return nullptr; 1232 1233 Constant *C0, *C1; 1234 if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) || 1235 !match(II->getArgOperand(1), m_ImmConstant(C1))) 1236 return nullptr; 1237 1238 // max (max X, C0), C1 --> max X, (max C0, C1) 1239 // min (min X, C0), C1 --> min X, (min C0, C1) 1240 // umax (smax X, nneg C0), nneg C1 --> smax X, (umax C0, C1) 1241 // smin (umin X, nneg C0), nneg C1 --> umin X, (smin C0, C1) 1242 Intrinsic::ID InnerMinMaxID = LHS->getIntrinsicID(); 1243 if (InnerMinMaxID != MinMaxID && 1244 !(((MinMaxID == Intrinsic::umax && InnerMinMaxID == Intrinsic::smax) || 1245 (MinMaxID == Intrinsic::smin && InnerMinMaxID == Intrinsic::umin)) && 1246 isKnownNonNegative(C0, SQ) && isKnownNonNegative(C1, SQ))) 1247 return nullptr; 1248 1249 ICmpInst::Predicate Pred = MinMaxIntrinsic::getPredicate(MinMaxID); 1250 Value *CondC = Builder.CreateICmp(Pred, C0, C1); 1251 Value *NewC = Builder.CreateSelect(CondC, C0, C1); 1252 return Builder.CreateIntrinsic(InnerMinMaxID, II->getType(), 1253 {LHS->getArgOperand(0), NewC}); 1254 } 1255 1256 /// If this min/max has a matching min/max operand with a constant, try to push 1257 /// the constant operand into this instruction. This can enable more folds. 1258 static Instruction * 1259 reassociateMinMaxWithConstantInOperand(IntrinsicInst *II, 1260 InstCombiner::BuilderTy &Builder) { 1261 // Match and capture a min/max operand candidate. 1262 Value *X, *Y; 1263 Constant *C; 1264 Instruction *Inner; 1265 if (!match(II, m_c_MaxOrMin(m_OneUse(m_CombineAnd( 1266 m_Instruction(Inner), 1267 m_MaxOrMin(m_Value(X), m_ImmConstant(C)))), 1268 m_Value(Y)))) 1269 return nullptr; 1270 1271 // The inner op must match. Check for constants to avoid infinite loops. 1272 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 1273 auto *InnerMM = dyn_cast<IntrinsicInst>(Inner); 1274 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID || 1275 match(X, m_ImmConstant()) || match(Y, m_ImmConstant())) 1276 return nullptr; 1277 1278 // max (max X, C), Y --> max (max X, Y), C 1279 Function *MinMax = 1280 Intrinsic::getDeclaration(II->getModule(), MinMaxID, II->getType()); 1281 Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y); 1282 NewInner->takeName(Inner); 1283 return CallInst::Create(MinMax, {NewInner, C}); 1284 } 1285 1286 /// Reduce a sequence of min/max intrinsics with a common operand. 1287 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) { 1288 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 1289 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 1290 auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1)); 1291 Intrinsic::ID MinMaxID = II->getIntrinsicID(); 1292 if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID || 1293 RHS->getIntrinsicID() != MinMaxID || 1294 (!LHS->hasOneUse() && !RHS->hasOneUse())) 1295 return nullptr; 1296 1297 Value *A = LHS->getArgOperand(0); 1298 Value *B = LHS->getArgOperand(1); 1299 Value *C = RHS->getArgOperand(0); 1300 Value *D = RHS->getArgOperand(1); 1301 1302 // Look for a common operand. 1303 Value *MinMaxOp = nullptr; 1304 Value *ThirdOp = nullptr; 1305 if (LHS->hasOneUse()) { 1306 // If the LHS is only used in this chain and the RHS is used outside of it, 1307 // reuse the RHS min/max because that will eliminate the LHS. 1308 if (D == A || C == A) { 1309 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 1310 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 1311 MinMaxOp = RHS; 1312 ThirdOp = B; 1313 } else if (D == B || C == B) { 1314 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 1315 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 1316 MinMaxOp = RHS; 1317 ThirdOp = A; 1318 } 1319 } else { 1320 assert(RHS->hasOneUse() && "Expected one-use operand"); 1321 // Reuse the LHS. This will eliminate the RHS. 1322 if (D == A || D == B) { 1323 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 1324 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 1325 MinMaxOp = LHS; 1326 ThirdOp = C; 1327 } else if (C == A || C == B) { 1328 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 1329 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 1330 MinMaxOp = LHS; 1331 ThirdOp = D; 1332 } 1333 } 1334 1335 if (!MinMaxOp || !ThirdOp) 1336 return nullptr; 1337 1338 Module *Mod = II->getModule(); 1339 Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType()); 1340 return CallInst::Create(MinMax, { MinMaxOp, ThirdOp }); 1341 } 1342 1343 /// If all arguments of the intrinsic are unary shuffles with the same mask, 1344 /// try to shuffle after the intrinsic. 1345 static Instruction * 1346 foldShuffledIntrinsicOperands(IntrinsicInst *II, 1347 InstCombiner::BuilderTy &Builder) { 1348 // TODO: This should be extended to handle other intrinsics like fshl, ctpop, 1349 // etc. Use llvm::isTriviallyVectorizable() and related to determine 1350 // which intrinsics are safe to shuffle? 1351 switch (II->getIntrinsicID()) { 1352 case Intrinsic::smax: 1353 case Intrinsic::smin: 1354 case Intrinsic::umax: 1355 case Intrinsic::umin: 1356 case Intrinsic::fma: 1357 case Intrinsic::fshl: 1358 case Intrinsic::fshr: 1359 break; 1360 default: 1361 return nullptr; 1362 } 1363 1364 Value *X; 1365 ArrayRef<int> Mask; 1366 if (!match(II->getArgOperand(0), 1367 m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask)))) 1368 return nullptr; 1369 1370 // At least 1 operand must have 1 use because we are creating 2 instructions. 1371 if (none_of(II->args(), [](Value *V) { return V->hasOneUse(); })) 1372 return nullptr; 1373 1374 // See if all arguments are shuffled with the same mask. 1375 SmallVector<Value *, 4> NewArgs(II->arg_size()); 1376 NewArgs[0] = X; 1377 Type *SrcTy = X->getType(); 1378 for (unsigned i = 1, e = II->arg_size(); i != e; ++i) { 1379 if (!match(II->getArgOperand(i), 1380 m_Shuffle(m_Value(X), m_Undef(), m_SpecificMask(Mask))) || 1381 X->getType() != SrcTy) 1382 return nullptr; 1383 NewArgs[i] = X; 1384 } 1385 1386 // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M 1387 Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr; 1388 Value *NewIntrinsic = 1389 Builder.CreateIntrinsic(II->getIntrinsicID(), SrcTy, NewArgs, FPI); 1390 return new ShuffleVectorInst(NewIntrinsic, Mask); 1391 } 1392 1393 /// Fold the following cases and accepts bswap and bitreverse intrinsics: 1394 /// bswap(logic_op(bswap(x), y)) --> logic_op(x, bswap(y)) 1395 /// bswap(logic_op(bswap(x), bswap(y))) --> logic_op(x, y) (ignores multiuse) 1396 template <Intrinsic::ID IntrID> 1397 static Instruction *foldBitOrderCrossLogicOp(Value *V, 1398 InstCombiner::BuilderTy &Builder) { 1399 static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse, 1400 "This helper only supports BSWAP and BITREVERSE intrinsics"); 1401 1402 Value *X, *Y; 1403 // Find bitwise logic op. Check that it is a BinaryOperator explicitly so we 1404 // don't match ConstantExpr that aren't meaningful for this transform. 1405 if (match(V, m_OneUse(m_BitwiseLogic(m_Value(X), m_Value(Y)))) && 1406 isa<BinaryOperator>(V)) { 1407 Value *OldReorderX, *OldReorderY; 1408 BinaryOperator::BinaryOps Op = cast<BinaryOperator>(V)->getOpcode(); 1409 1410 // If both X and Y are bswap/bitreverse, the transform reduces the number 1411 // of instructions even if there's multiuse. 1412 // If only one operand is bswap/bitreverse, we need to ensure the operand 1413 // have only one use. 1414 if (match(X, m_Intrinsic<IntrID>(m_Value(OldReorderX))) && 1415 match(Y, m_Intrinsic<IntrID>(m_Value(OldReorderY)))) { 1416 return BinaryOperator::Create(Op, OldReorderX, OldReorderY); 1417 } 1418 1419 if (match(X, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderX))))) { 1420 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, Y); 1421 return BinaryOperator::Create(Op, OldReorderX, NewReorder); 1422 } 1423 1424 if (match(Y, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderY))))) { 1425 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, X); 1426 return BinaryOperator::Create(Op, NewReorder, OldReorderY); 1427 } 1428 } 1429 return nullptr; 1430 } 1431 1432 static Value *simplifyReductionOperand(Value *Arg, bool CanReorderLanes) { 1433 if (!CanReorderLanes) 1434 return nullptr; 1435 1436 Value *V; 1437 if (match(Arg, m_VecReverse(m_Value(V)))) 1438 return V; 1439 1440 ArrayRef<int> Mask; 1441 if (!isa<FixedVectorType>(Arg->getType()) || 1442 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) || 1443 !cast<ShuffleVectorInst>(Arg)->isSingleSource()) 1444 return nullptr; 1445 1446 int Sz = Mask.size(); 1447 SmallBitVector UsedIndices(Sz); 1448 for (int Idx : Mask) { 1449 if (Idx == PoisonMaskElem || UsedIndices.test(Idx)) 1450 return nullptr; 1451 UsedIndices.set(Idx); 1452 } 1453 1454 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or 1455 // other changes. 1456 return UsedIndices.all() ? V : nullptr; 1457 } 1458 1459 /// Fold an unsigned minimum of trailing or leading zero bits counts: 1460 /// umin(cttz(CtOp, ZeroUndef), ConstOp) --> cttz(CtOp | (1 << ConstOp)) 1461 /// umin(ctlz(CtOp, ZeroUndef), ConstOp) --> ctlz(CtOp | (SignedMin 1462 /// >> ConstOp)) 1463 template <Intrinsic::ID IntrID> 1464 static Value * 1465 foldMinimumOverTrailingOrLeadingZeroCount(Value *I0, Value *I1, 1466 const DataLayout &DL, 1467 InstCombiner::BuilderTy &Builder) { 1468 static_assert(IntrID == Intrinsic::cttz || IntrID == Intrinsic::ctlz, 1469 "This helper only supports cttz and ctlz intrinsics"); 1470 1471 Value *CtOp; 1472 Value *ZeroUndef; 1473 if (!match(I0, 1474 m_OneUse(m_Intrinsic<IntrID>(m_Value(CtOp), m_Value(ZeroUndef))))) 1475 return nullptr; 1476 1477 unsigned BitWidth = I1->getType()->getScalarSizeInBits(); 1478 auto LessBitWidth = [BitWidth](auto &C) { return C.ult(BitWidth); }; 1479 if (!match(I1, m_CheckedInt(LessBitWidth))) 1480 // We have a constant >= BitWidth (which can be handled by CVP) 1481 // or a non-splat vector with elements < and >= BitWidth 1482 return nullptr; 1483 1484 Type *Ty = I1->getType(); 1485 Constant *NewConst = ConstantFoldBinaryOpOperands( 1486 IntrID == Intrinsic::cttz ? Instruction::Shl : Instruction::LShr, 1487 IntrID == Intrinsic::cttz 1488 ? ConstantInt::get(Ty, 1) 1489 : ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth)), 1490 cast<Constant>(I1), DL); 1491 return Builder.CreateBinaryIntrinsic( 1492 IntrID, Builder.CreateOr(CtOp, NewConst), 1493 ConstantInt::getTrue(ZeroUndef->getType())); 1494 } 1495 1496 /// CallInst simplification. This mostly only handles folding of intrinsic 1497 /// instructions. For normal calls, it allows visitCallBase to do the heavy 1498 /// lifting. 1499 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) { 1500 // Don't try to simplify calls without uses. It will not do anything useful, 1501 // but will result in the following folds being skipped. 1502 if (!CI.use_empty()) { 1503 SmallVector<Value *, 4> Args; 1504 Args.reserve(CI.arg_size()); 1505 for (Value *Op : CI.args()) 1506 Args.push_back(Op); 1507 if (Value *V = simplifyCall(&CI, CI.getCalledOperand(), Args, 1508 SQ.getWithInstruction(&CI))) 1509 return replaceInstUsesWith(CI, V); 1510 } 1511 1512 if (Value *FreedOp = getFreedOperand(&CI, &TLI)) 1513 return visitFree(CI, FreedOp); 1514 1515 // If the caller function (i.e. us, the function that contains this CallInst) 1516 // is nounwind, mark the call as nounwind, even if the callee isn't. 1517 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { 1518 CI.setDoesNotThrow(); 1519 return &CI; 1520 } 1521 1522 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); 1523 if (!II) return visitCallBase(CI); 1524 1525 // For atomic unordered mem intrinsics if len is not a positive or 1526 // not a multiple of element size then behavior is undefined. 1527 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II)) 1528 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength())) 1529 if (NumBytes->isNegative() || 1530 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) { 1531 CreateNonTerminatorUnreachable(AMI); 1532 assert(AMI->getType()->isVoidTy() && 1533 "non void atomic unordered mem intrinsic"); 1534 return eraseInstFromFunction(*AMI); 1535 } 1536 1537 // Intrinsics cannot occur in an invoke or a callbr, so handle them here 1538 // instead of in visitCallBase. 1539 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) { 1540 bool Changed = false; 1541 1542 // memmove/cpy/set of zero bytes is a noop. 1543 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { 1544 if (NumBytes->isNullValue()) 1545 return eraseInstFromFunction(CI); 1546 } 1547 1548 // No other transformations apply to volatile transfers. 1549 if (auto *M = dyn_cast<MemIntrinsic>(MI)) 1550 if (M->isVolatile()) 1551 return nullptr; 1552 1553 // If we have a memmove and the source operation is a constant global, 1554 // then the source and dest pointers can't alias, so we can change this 1555 // into a call to memcpy. 1556 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) { 1557 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) 1558 if (GVSrc->isConstant()) { 1559 Module *M = CI.getModule(); 1560 Intrinsic::ID MemCpyID = 1561 isa<AtomicMemMoveInst>(MMI) 1562 ? Intrinsic::memcpy_element_unordered_atomic 1563 : Intrinsic::memcpy; 1564 Type *Tys[3] = { CI.getArgOperand(0)->getType(), 1565 CI.getArgOperand(1)->getType(), 1566 CI.getArgOperand(2)->getType() }; 1567 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); 1568 Changed = true; 1569 } 1570 } 1571 1572 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 1573 // memmove(x,x,size) -> noop. 1574 if (MTI->getSource() == MTI->getDest()) 1575 return eraseInstFromFunction(CI); 1576 } 1577 1578 // If we can determine a pointer alignment that is bigger than currently 1579 // set, update the alignment. 1580 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 1581 if (Instruction *I = SimplifyAnyMemTransfer(MTI)) 1582 return I; 1583 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) { 1584 if (Instruction *I = SimplifyAnyMemSet(MSI)) 1585 return I; 1586 } 1587 1588 if (Changed) return II; 1589 } 1590 1591 // For fixed width vector result intrinsics, use the generic demanded vector 1592 // support. 1593 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) { 1594 auto VWidth = IIFVTy->getNumElements(); 1595 APInt PoisonElts(VWidth, 0); 1596 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 1597 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, PoisonElts)) { 1598 if (V != II) 1599 return replaceInstUsesWith(*II, V); 1600 return II; 1601 } 1602 } 1603 1604 if (II->isCommutative()) { 1605 if (auto Pair = matchSymmetricPair(II->getOperand(0), II->getOperand(1))) { 1606 replaceOperand(*II, 0, Pair->first); 1607 replaceOperand(*II, 1, Pair->second); 1608 return II; 1609 } 1610 1611 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI)) 1612 return NewCall; 1613 } 1614 1615 // Unused constrained FP intrinsic calls may have declared side effect, which 1616 // prevents it from being removed. In some cases however the side effect is 1617 // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it 1618 // returns a replacement, the call may be removed. 1619 if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) { 1620 if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI))) 1621 return eraseInstFromFunction(CI); 1622 } 1623 1624 Intrinsic::ID IID = II->getIntrinsicID(); 1625 switch (IID) { 1626 case Intrinsic::objectsize: { 1627 SmallVector<Instruction *> InsertedInstructions; 1628 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false, 1629 &InsertedInstructions)) { 1630 for (Instruction *Inserted : InsertedInstructions) 1631 Worklist.add(Inserted); 1632 return replaceInstUsesWith(CI, V); 1633 } 1634 return nullptr; 1635 } 1636 case Intrinsic::abs: { 1637 Value *IIOperand = II->getArgOperand(0); 1638 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue(); 1639 1640 // abs(-x) -> abs(x) 1641 // TODO: Copy nsw if it was present on the neg? 1642 Value *X; 1643 if (match(IIOperand, m_Neg(m_Value(X)))) 1644 return replaceOperand(*II, 0, X); 1645 if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X))))) 1646 return replaceOperand(*II, 0, X); 1647 if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X)))) 1648 return replaceOperand(*II, 0, X); 1649 1650 Value *Y; 1651 // abs(a * abs(b)) -> abs(a * b) 1652 if (match(IIOperand, 1653 m_OneUse(m_c_Mul(m_Value(X), 1654 m_Intrinsic<Intrinsic::abs>(m_Value(Y)))))) { 1655 bool NSW = 1656 cast<Instruction>(IIOperand)->hasNoSignedWrap() && IntMinIsPoison; 1657 auto *XY = NSW ? Builder.CreateNSWMul(X, Y) : Builder.CreateMul(X, Y); 1658 return replaceOperand(*II, 0, XY); 1659 } 1660 1661 if (std::optional<bool> Known = 1662 getKnownSignOrZero(IIOperand, SQ.getWithInstruction(II))) { 1663 // abs(x) -> x if x >= 0 (include abs(x-y) --> x - y where x >= y) 1664 // abs(x) -> x if x > 0 (include abs(x-y) --> x - y where x > y) 1665 if (!*Known) 1666 return replaceInstUsesWith(*II, IIOperand); 1667 1668 // abs(x) -> -x if x < 0 1669 // abs(x) -> -x if x < = 0 (include abs(x-y) --> y - x where x <= y) 1670 if (IntMinIsPoison) 1671 return BinaryOperator::CreateNSWNeg(IIOperand); 1672 return BinaryOperator::CreateNeg(IIOperand); 1673 } 1674 1675 // abs (sext X) --> zext (abs X*) 1676 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing. 1677 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) { 1678 Value *NarrowAbs = 1679 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse()); 1680 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType()); 1681 } 1682 1683 // Match a complicated way to check if a number is odd/even: 1684 // abs (srem X, 2) --> and X, 1 1685 const APInt *C; 1686 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2) 1687 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1)); 1688 1689 break; 1690 } 1691 case Intrinsic::umin: { 1692 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1693 // umin(x, 1) == zext(x != 0) 1694 if (match(I1, m_One())) { 1695 assert(II->getType()->getScalarSizeInBits() != 1 && 1696 "Expected simplify of umin with max constant"); 1697 Value *Zero = Constant::getNullValue(I0->getType()); 1698 Value *Cmp = Builder.CreateICmpNE(I0, Zero); 1699 return CastInst::Create(Instruction::ZExt, Cmp, II->getType()); 1700 } 1701 // umin(cttz(x), const) --> cttz(x | (1 << const)) 1702 if (Value *FoldedCttz = 1703 foldMinimumOverTrailingOrLeadingZeroCount<Intrinsic::cttz>( 1704 I0, I1, DL, Builder)) 1705 return replaceInstUsesWith(*II, FoldedCttz); 1706 // umin(ctlz(x), const) --> ctlz(x | (SignedMin >> const)) 1707 if (Value *FoldedCtlz = 1708 foldMinimumOverTrailingOrLeadingZeroCount<Intrinsic::ctlz>( 1709 I0, I1, DL, Builder)) 1710 return replaceInstUsesWith(*II, FoldedCtlz); 1711 [[fallthrough]]; 1712 } 1713 case Intrinsic::umax: { 1714 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1715 Value *X, *Y; 1716 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) && 1717 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 1718 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 1719 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 1720 } 1721 Constant *C; 1722 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) && 1723 I0->hasOneUse()) { 1724 if (Constant *NarrowC = getLosslessUnsignedTrunc(C, X->getType())) { 1725 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 1726 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 1727 } 1728 } 1729 // If both operands of unsigned min/max are sign-extended, it is still ok 1730 // to narrow the operation. 1731 [[fallthrough]]; 1732 } 1733 case Intrinsic::smax: 1734 case Intrinsic::smin: { 1735 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 1736 Value *X, *Y; 1737 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) && 1738 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 1739 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 1740 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 1741 } 1742 1743 Constant *C; 1744 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) && 1745 I0->hasOneUse()) { 1746 if (Constant *NarrowC = getLosslessSignedTrunc(C, X->getType())) { 1747 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 1748 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 1749 } 1750 } 1751 1752 // umin(i1 X, i1 Y) -> and i1 X, Y 1753 // smax(i1 X, i1 Y) -> and i1 X, Y 1754 if ((IID == Intrinsic::umin || IID == Intrinsic::smax) && 1755 II->getType()->isIntOrIntVectorTy(1)) { 1756 return BinaryOperator::CreateAnd(I0, I1); 1757 } 1758 1759 // umax(i1 X, i1 Y) -> or i1 X, Y 1760 // smin(i1 X, i1 Y) -> or i1 X, Y 1761 if ((IID == Intrinsic::umax || IID == Intrinsic::smin) && 1762 II->getType()->isIntOrIntVectorTy(1)) { 1763 return BinaryOperator::CreateOr(I0, I1); 1764 } 1765 1766 if (IID == Intrinsic::smax || IID == Intrinsic::smin) { 1767 // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y) 1768 // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y) 1769 // TODO: Canonicalize neg after min/max if I1 is constant. 1770 if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) && 1771 (I0->hasOneUse() || I1->hasOneUse())) { 1772 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); 1773 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y); 1774 return BinaryOperator::CreateNSWNeg(InvMaxMin); 1775 } 1776 } 1777 1778 // (umax X, (xor X, Pow2)) 1779 // -> (or X, Pow2) 1780 // (umin X, (xor X, Pow2)) 1781 // -> (and X, ~Pow2) 1782 // (smax X, (xor X, Pos_Pow2)) 1783 // -> (or X, Pos_Pow2) 1784 // (smin X, (xor X, Pos_Pow2)) 1785 // -> (and X, ~Pos_Pow2) 1786 // (smax X, (xor X, Neg_Pow2)) 1787 // -> (and X, ~Neg_Pow2) 1788 // (smin X, (xor X, Neg_Pow2)) 1789 // -> (or X, Neg_Pow2) 1790 if ((match(I0, m_c_Xor(m_Specific(I1), m_Value(X))) || 1791 match(I1, m_c_Xor(m_Specific(I0), m_Value(X)))) && 1792 isKnownToBeAPowerOfTwo(X, /* OrZero */ true)) { 1793 bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax; 1794 bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin; 1795 1796 if (IID == Intrinsic::smax || IID == Intrinsic::smin) { 1797 auto KnownSign = getKnownSign(X, SQ.getWithInstruction(II)); 1798 if (KnownSign == std::nullopt) { 1799 UseOr = false; 1800 UseAndN = false; 1801 } else if (*KnownSign /* true is Signed. */) { 1802 UseOr ^= true; 1803 UseAndN ^= true; 1804 Type *Ty = I0->getType(); 1805 // Negative power of 2 must be IntMin. It's possible to be able to 1806 // prove negative / power of 2 without actually having known bits, so 1807 // just get the value by hand. 1808 X = Constant::getIntegerValue( 1809 Ty, APInt::getSignedMinValue(Ty->getScalarSizeInBits())); 1810 } 1811 } 1812 if (UseOr) 1813 return BinaryOperator::CreateOr(I0, X); 1814 else if (UseAndN) 1815 return BinaryOperator::CreateAnd(I0, Builder.CreateNot(X)); 1816 } 1817 1818 // If we can eliminate ~A and Y is free to invert: 1819 // max ~A, Y --> ~(min A, ~Y) 1820 // 1821 // Examples: 1822 // max ~A, ~Y --> ~(min A, Y) 1823 // max ~A, C --> ~(min A, ~C) 1824 // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z)) 1825 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 1826 Value *A; 1827 if (match(X, m_OneUse(m_Not(m_Value(A)))) && 1828 !isFreeToInvert(A, A->hasOneUse())) { 1829 if (Value *NotY = getFreelyInverted(Y, Y->hasOneUse(), &Builder)) { 1830 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); 1831 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY); 1832 return BinaryOperator::CreateNot(InvMaxMin); 1833 } 1834 } 1835 return nullptr; 1836 }; 1837 1838 if (Instruction *I = moveNotAfterMinMax(I0, I1)) 1839 return I; 1840 if (Instruction *I = moveNotAfterMinMax(I1, I0)) 1841 return I; 1842 1843 if (Instruction *I = moveAddAfterMinMax(II, Builder)) 1844 return I; 1845 1846 // minmax (X & NegPow2C, Y & NegPow2C) --> minmax(X, Y) & NegPow2C 1847 const APInt *RHSC; 1848 if (match(I0, m_OneUse(m_And(m_Value(X), m_NegatedPower2(RHSC)))) && 1849 match(I1, m_OneUse(m_And(m_Value(Y), m_SpecificInt(*RHSC))))) 1850 return BinaryOperator::CreateAnd(Builder.CreateBinaryIntrinsic(IID, X, Y), 1851 ConstantInt::get(II->getType(), *RHSC)); 1852 1853 // smax(X, -X) --> abs(X) 1854 // smin(X, -X) --> -abs(X) 1855 // umax(X, -X) --> -abs(X) 1856 // umin(X, -X) --> abs(X) 1857 if (isKnownNegation(I0, I1)) { 1858 // We can choose either operand as the input to abs(), but if we can 1859 // eliminate the only use of a value, that's better for subsequent 1860 // transforms/analysis. 1861 if (I0->hasOneUse() && !I1->hasOneUse()) 1862 std::swap(I0, I1); 1863 1864 // This is some variant of abs(). See if we can propagate 'nsw' to the abs 1865 // operation and potentially its negation. 1866 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true); 1867 Value *Abs = Builder.CreateBinaryIntrinsic( 1868 Intrinsic::abs, I0, 1869 ConstantInt::getBool(II->getContext(), IntMinIsPoison)); 1870 1871 // We don't have a "nabs" intrinsic, so negate if needed based on the 1872 // max/min operation. 1873 if (IID == Intrinsic::smin || IID == Intrinsic::umax) 1874 Abs = Builder.CreateNeg(Abs, "nabs", IntMinIsPoison); 1875 return replaceInstUsesWith(CI, Abs); 1876 } 1877 1878 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder)) 1879 return Sel; 1880 1881 if (Instruction *SAdd = matchSAddSubSat(*II)) 1882 return SAdd; 1883 1884 if (Value *NewMinMax = reassociateMinMaxWithConstants(II, Builder, SQ)) 1885 return replaceInstUsesWith(*II, NewMinMax); 1886 1887 if (Instruction *R = reassociateMinMaxWithConstantInOperand(II, Builder)) 1888 return R; 1889 1890 if (Instruction *NewMinMax = factorizeMinMaxTree(II)) 1891 return NewMinMax; 1892 1893 // Try to fold minmax with constant RHS based on range information 1894 if (match(I1, m_APIntAllowPoison(RHSC))) { 1895 ICmpInst::Predicate Pred = 1896 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 1897 bool IsSigned = MinMaxIntrinsic::isSigned(IID); 1898 ConstantRange LHS_CR = computeConstantRangeIncludingKnownBits( 1899 I0, IsSigned, SQ.getWithInstruction(II)); 1900 if (!LHS_CR.isFullSet()) { 1901 if (LHS_CR.icmp(Pred, *RHSC)) 1902 return replaceInstUsesWith(*II, I0); 1903 if (LHS_CR.icmp(ICmpInst::getSwappedPredicate(Pred), *RHSC)) 1904 return replaceInstUsesWith(*II, 1905 ConstantInt::get(II->getType(), *RHSC)); 1906 } 1907 } 1908 1909 break; 1910 } 1911 case Intrinsic::bitreverse: { 1912 Value *IIOperand = II->getArgOperand(0); 1913 // bitrev (zext i1 X to ?) --> X ? SignBitC : 0 1914 Value *X; 1915 if (match(IIOperand, m_ZExt(m_Value(X))) && 1916 X->getType()->isIntOrIntVectorTy(1)) { 1917 Type *Ty = II->getType(); 1918 APInt SignBit = APInt::getSignMask(Ty->getScalarSizeInBits()); 1919 return SelectInst::Create(X, ConstantInt::get(Ty, SignBit), 1920 ConstantInt::getNullValue(Ty)); 1921 } 1922 1923 if (Instruction *crossLogicOpFold = 1924 foldBitOrderCrossLogicOp<Intrinsic::bitreverse>(IIOperand, Builder)) 1925 return crossLogicOpFold; 1926 1927 break; 1928 } 1929 case Intrinsic::bswap: { 1930 Value *IIOperand = II->getArgOperand(0); 1931 1932 // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as 1933 // inverse-shift-of-bswap: 1934 // bswap (shl X, Y) --> lshr (bswap X), Y 1935 // bswap (lshr X, Y) --> shl (bswap X), Y 1936 Value *X, *Y; 1937 if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) { 1938 unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits(); 1939 if (MaskedValueIsZero(Y, APInt::getLowBitsSet(BitWidth, 3))) { 1940 Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X); 1941 BinaryOperator::BinaryOps InverseShift = 1942 cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl 1943 ? Instruction::LShr 1944 : Instruction::Shl; 1945 return BinaryOperator::Create(InverseShift, NewSwap, Y); 1946 } 1947 } 1948 1949 KnownBits Known = computeKnownBits(IIOperand, 0, II); 1950 uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8); 1951 uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8); 1952 unsigned BW = Known.getBitWidth(); 1953 1954 // bswap(x) -> shift(x) if x has exactly one "active byte" 1955 if (BW - LZ - TZ == 8) { 1956 assert(LZ != TZ && "active byte cannot be in the middle"); 1957 if (LZ > TZ) // -> shl(x) if the "active byte" is in the low part of x 1958 return BinaryOperator::CreateNUWShl( 1959 IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ)); 1960 // -> lshr(x) if the "active byte" is in the high part of x 1961 return BinaryOperator::CreateExactLShr( 1962 IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ)); 1963 } 1964 1965 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) 1966 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { 1967 unsigned C = X->getType()->getScalarSizeInBits() - BW; 1968 Value *CV = ConstantInt::get(X->getType(), C); 1969 Value *V = Builder.CreateLShr(X, CV); 1970 return new TruncInst(V, IIOperand->getType()); 1971 } 1972 1973 if (Instruction *crossLogicOpFold = 1974 foldBitOrderCrossLogicOp<Intrinsic::bswap>(IIOperand, Builder)) { 1975 return crossLogicOpFold; 1976 } 1977 1978 // Try to fold into bitreverse if bswap is the root of the expression tree. 1979 if (Instruction *BitOp = matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ false, 1980 /*MatchBitReversals*/ true)) 1981 return BitOp; 1982 break; 1983 } 1984 case Intrinsic::masked_load: 1985 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II)) 1986 return replaceInstUsesWith(CI, SimplifiedMaskedOp); 1987 break; 1988 case Intrinsic::masked_store: 1989 return simplifyMaskedStore(*II); 1990 case Intrinsic::masked_gather: 1991 return simplifyMaskedGather(*II); 1992 case Intrinsic::masked_scatter: 1993 return simplifyMaskedScatter(*II); 1994 case Intrinsic::launder_invariant_group: 1995 case Intrinsic::strip_invariant_group: 1996 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this)) 1997 return replaceInstUsesWith(*II, SkippedBarrier); 1998 break; 1999 case Intrinsic::powi: 2000 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { 2001 // 0 and 1 are handled in instsimplify 2002 // powi(x, -1) -> 1/x 2003 if (Power->isMinusOne()) 2004 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0), 2005 II->getArgOperand(0), II); 2006 // powi(x, 2) -> x*x 2007 if (Power->equalsInt(2)) 2008 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0), 2009 II->getArgOperand(0), II); 2010 2011 if (!Power->getValue()[0]) { 2012 Value *X; 2013 // If power is even: 2014 // powi(-x, p) -> powi(x, p) 2015 // powi(fabs(x), p) -> powi(x, p) 2016 // powi(copysign(x, y), p) -> powi(x, p) 2017 if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) || 2018 match(II->getArgOperand(0), m_FAbs(m_Value(X))) || 2019 match(II->getArgOperand(0), 2020 m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value()))) 2021 return replaceOperand(*II, 0, X); 2022 } 2023 } 2024 break; 2025 2026 case Intrinsic::cttz: 2027 case Intrinsic::ctlz: 2028 if (auto *I = foldCttzCtlz(*II, *this)) 2029 return I; 2030 break; 2031 2032 case Intrinsic::ctpop: 2033 if (auto *I = foldCtpop(*II, *this)) 2034 return I; 2035 break; 2036 2037 case Intrinsic::fshl: 2038 case Intrinsic::fshr: { 2039 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); 2040 Type *Ty = II->getType(); 2041 unsigned BitWidth = Ty->getScalarSizeInBits(); 2042 Constant *ShAmtC; 2043 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) { 2044 // Canonicalize a shift amount constant operand to modulo the bit-width. 2045 Constant *WidthC = ConstantInt::get(Ty, BitWidth); 2046 Constant *ModuloC = 2047 ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL); 2048 if (!ModuloC) 2049 return nullptr; 2050 if (ModuloC != ShAmtC) 2051 return replaceOperand(*II, 2, ModuloC); 2052 2053 assert(match(ConstantFoldCompareInstOperands(ICmpInst::ICMP_UGT, WidthC, 2054 ShAmtC, DL), 2055 m_One()) && 2056 "Shift amount expected to be modulo bitwidth"); 2057 2058 // Canonicalize funnel shift right by constant to funnel shift left. This 2059 // is not entirely arbitrary. For historical reasons, the backend may 2060 // recognize rotate left patterns but miss rotate right patterns. 2061 if (IID == Intrinsic::fshr) { 2062 // fshr X, Y, C --> fshl X, Y, (BitWidth - C) if C is not zero. 2063 if (!isKnownNonZero(ShAmtC, SQ.getWithInstruction(II))) 2064 return nullptr; 2065 2066 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC); 2067 Module *Mod = II->getModule(); 2068 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty); 2069 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC }); 2070 } 2071 assert(IID == Intrinsic::fshl && 2072 "All funnel shifts by simple constants should go left"); 2073 2074 // fshl(X, 0, C) --> shl X, C 2075 // fshl(X, undef, C) --> shl X, C 2076 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef())) 2077 return BinaryOperator::CreateShl(Op0, ShAmtC); 2078 2079 // fshl(0, X, C) --> lshr X, (BW-C) 2080 // fshl(undef, X, C) --> lshr X, (BW-C) 2081 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef())) 2082 return BinaryOperator::CreateLShr(Op1, 2083 ConstantExpr::getSub(WidthC, ShAmtC)); 2084 2085 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form) 2086 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) { 2087 Module *Mod = II->getModule(); 2088 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty); 2089 return CallInst::Create(Bswap, { Op0 }); 2090 } 2091 if (Instruction *BitOp = 2092 matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ true, 2093 /*MatchBitReversals*/ true)) 2094 return BitOp; 2095 } 2096 2097 // Left or right might be masked. 2098 if (SimplifyDemandedInstructionBits(*II)) 2099 return &CI; 2100 2101 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth, 2102 // so only the low bits of the shift amount are demanded if the bitwidth is 2103 // a power-of-2. 2104 if (!isPowerOf2_32(BitWidth)) 2105 break; 2106 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth)); 2107 KnownBits Op2Known(BitWidth); 2108 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known)) 2109 return &CI; 2110 break; 2111 } 2112 case Intrinsic::ptrmask: { 2113 unsigned BitWidth = DL.getPointerTypeSizeInBits(II->getType()); 2114 KnownBits Known(BitWidth); 2115 if (SimplifyDemandedInstructionBits(*II, Known)) 2116 return II; 2117 2118 Value *InnerPtr, *InnerMask; 2119 bool Changed = false; 2120 // Combine: 2121 // (ptrmask (ptrmask p, A), B) 2122 // -> (ptrmask p, (and A, B)) 2123 if (match(II->getArgOperand(0), 2124 m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(InnerPtr), 2125 m_Value(InnerMask))))) { 2126 assert(II->getArgOperand(1)->getType() == InnerMask->getType() && 2127 "Mask types must match"); 2128 // TODO: If InnerMask == Op1, we could copy attributes from inner 2129 // callsite -> outer callsite. 2130 Value *NewMask = Builder.CreateAnd(II->getArgOperand(1), InnerMask); 2131 replaceOperand(CI, 0, InnerPtr); 2132 replaceOperand(CI, 1, NewMask); 2133 Changed = true; 2134 } 2135 2136 // See if we can deduce non-null. 2137 if (!CI.hasRetAttr(Attribute::NonNull) && 2138 (Known.isNonZero() || 2139 isKnownNonZero(II, getSimplifyQuery().getWithInstruction(II)))) { 2140 CI.addRetAttr(Attribute::NonNull); 2141 Changed = true; 2142 } 2143 2144 unsigned NewAlignmentLog = 2145 std::min(Value::MaxAlignmentExponent, 2146 std::min(BitWidth - 1, Known.countMinTrailingZeros())); 2147 // Known bits will capture if we had alignment information associated with 2148 // the pointer argument. 2149 if (NewAlignmentLog > Log2(CI.getRetAlign().valueOrOne())) { 2150 CI.addRetAttr(Attribute::getWithAlignment( 2151 CI.getContext(), Align(uint64_t(1) << NewAlignmentLog))); 2152 Changed = true; 2153 } 2154 if (Changed) 2155 return &CI; 2156 break; 2157 } 2158 case Intrinsic::uadd_with_overflow: 2159 case Intrinsic::sadd_with_overflow: { 2160 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 2161 return I; 2162 2163 // Given 2 constant operands whose sum does not overflow: 2164 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1 2165 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1 2166 Value *X; 2167 const APInt *C0, *C1; 2168 Value *Arg0 = II->getArgOperand(0); 2169 Value *Arg1 = II->getArgOperand(1); 2170 bool IsSigned = IID == Intrinsic::sadd_with_overflow; 2171 bool HasNWAdd = IsSigned 2172 ? match(Arg0, m_NSWAddLike(m_Value(X), m_APInt(C0))) 2173 : match(Arg0, m_NUWAddLike(m_Value(X), m_APInt(C0))); 2174 if (HasNWAdd && match(Arg1, m_APInt(C1))) { 2175 bool Overflow; 2176 APInt NewC = 2177 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow); 2178 if (!Overflow) 2179 return replaceInstUsesWith( 2180 *II, Builder.CreateBinaryIntrinsic( 2181 IID, X, ConstantInt::get(Arg1->getType(), NewC))); 2182 } 2183 break; 2184 } 2185 2186 case Intrinsic::umul_with_overflow: 2187 case Intrinsic::smul_with_overflow: 2188 case Intrinsic::usub_with_overflow: 2189 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 2190 return I; 2191 break; 2192 2193 case Intrinsic::ssub_with_overflow: { 2194 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 2195 return I; 2196 2197 Constant *C; 2198 Value *Arg0 = II->getArgOperand(0); 2199 Value *Arg1 = II->getArgOperand(1); 2200 // Given a constant C that is not the minimum signed value 2201 // for an integer of a given bit width: 2202 // 2203 // ssubo X, C -> saddo X, -C 2204 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) { 2205 Value *NegVal = ConstantExpr::getNeg(C); 2206 // Build a saddo call that is equivalent to the discovered 2207 // ssubo call. 2208 return replaceInstUsesWith( 2209 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, 2210 Arg0, NegVal)); 2211 } 2212 2213 break; 2214 } 2215 2216 case Intrinsic::uadd_sat: 2217 case Intrinsic::sadd_sat: 2218 case Intrinsic::usub_sat: 2219 case Intrinsic::ssub_sat: { 2220 SaturatingInst *SI = cast<SaturatingInst>(II); 2221 Type *Ty = SI->getType(); 2222 Value *Arg0 = SI->getLHS(); 2223 Value *Arg1 = SI->getRHS(); 2224 2225 // Make use of known overflow information. 2226 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(), 2227 Arg0, Arg1, SI); 2228 switch (OR) { 2229 case OverflowResult::MayOverflow: 2230 break; 2231 case OverflowResult::NeverOverflows: 2232 if (SI->isSigned()) 2233 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1); 2234 else 2235 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1); 2236 case OverflowResult::AlwaysOverflowsLow: { 2237 unsigned BitWidth = Ty->getScalarSizeInBits(); 2238 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned()); 2239 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min)); 2240 } 2241 case OverflowResult::AlwaysOverflowsHigh: { 2242 unsigned BitWidth = Ty->getScalarSizeInBits(); 2243 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned()); 2244 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max)); 2245 } 2246 } 2247 2248 // usub_sat((sub nuw C, A), C1) -> usub_sat(usub_sat(C, C1), A) 2249 // which after that: 2250 // usub_sat((sub nuw C, A), C1) -> usub_sat(C - C1, A) if C1 u< C 2251 // usub_sat((sub nuw C, A), C1) -> 0 otherwise 2252 Constant *C, *C1; 2253 Value *A; 2254 if (IID == Intrinsic::usub_sat && 2255 match(Arg0, m_NUWSub(m_ImmConstant(C), m_Value(A))) && 2256 match(Arg1, m_ImmConstant(C1))) { 2257 auto *NewC = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, C, C1); 2258 auto *NewSub = 2259 Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, NewC, A); 2260 return replaceInstUsesWith(*SI, NewSub); 2261 } 2262 2263 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN 2264 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) && 2265 C->isNotMinSignedValue()) { 2266 Value *NegVal = ConstantExpr::getNeg(C); 2267 return replaceInstUsesWith( 2268 *II, Builder.CreateBinaryIntrinsic( 2269 Intrinsic::sadd_sat, Arg0, NegVal)); 2270 } 2271 2272 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2)) 2273 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2)) 2274 // if Val and Val2 have the same sign 2275 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) { 2276 Value *X; 2277 const APInt *Val, *Val2; 2278 APInt NewVal; 2279 bool IsUnsigned = 2280 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat; 2281 if (Other->getIntrinsicID() == IID && 2282 match(Arg1, m_APInt(Val)) && 2283 match(Other->getArgOperand(0), m_Value(X)) && 2284 match(Other->getArgOperand(1), m_APInt(Val2))) { 2285 if (IsUnsigned) 2286 NewVal = Val->uadd_sat(*Val2); 2287 else if (Val->isNonNegative() == Val2->isNonNegative()) { 2288 bool Overflow; 2289 NewVal = Val->sadd_ov(*Val2, Overflow); 2290 if (Overflow) { 2291 // Both adds together may add more than SignedMaxValue 2292 // without saturating the final result. 2293 break; 2294 } 2295 } else { 2296 // Cannot fold saturated addition with different signs. 2297 break; 2298 } 2299 2300 return replaceInstUsesWith( 2301 *II, Builder.CreateBinaryIntrinsic( 2302 IID, X, ConstantInt::get(II->getType(), NewVal))); 2303 } 2304 } 2305 break; 2306 } 2307 2308 case Intrinsic::minnum: 2309 case Intrinsic::maxnum: 2310 case Intrinsic::minimum: 2311 case Intrinsic::maximum: { 2312 Value *Arg0 = II->getArgOperand(0); 2313 Value *Arg1 = II->getArgOperand(1); 2314 Value *X, *Y; 2315 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) && 2316 (Arg0->hasOneUse() || Arg1->hasOneUse())) { 2317 // If both operands are negated, invert the call and negate the result: 2318 // min(-X, -Y) --> -(max(X, Y)) 2319 // max(-X, -Y) --> -(min(X, Y)) 2320 Intrinsic::ID NewIID; 2321 switch (IID) { 2322 case Intrinsic::maxnum: 2323 NewIID = Intrinsic::minnum; 2324 break; 2325 case Intrinsic::minnum: 2326 NewIID = Intrinsic::maxnum; 2327 break; 2328 case Intrinsic::maximum: 2329 NewIID = Intrinsic::minimum; 2330 break; 2331 case Intrinsic::minimum: 2332 NewIID = Intrinsic::maximum; 2333 break; 2334 default: 2335 llvm_unreachable("unexpected intrinsic ID"); 2336 } 2337 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II); 2338 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall); 2339 FNeg->copyIRFlags(II); 2340 return FNeg; 2341 } 2342 2343 // m(m(X, C2), C1) -> m(X, C) 2344 const APFloat *C1, *C2; 2345 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) { 2346 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) && 2347 ((match(M->getArgOperand(0), m_Value(X)) && 2348 match(M->getArgOperand(1), m_APFloat(C2))) || 2349 (match(M->getArgOperand(1), m_Value(X)) && 2350 match(M->getArgOperand(0), m_APFloat(C2))))) { 2351 APFloat Res(0.0); 2352 switch (IID) { 2353 case Intrinsic::maxnum: 2354 Res = maxnum(*C1, *C2); 2355 break; 2356 case Intrinsic::minnum: 2357 Res = minnum(*C1, *C2); 2358 break; 2359 case Intrinsic::maximum: 2360 Res = maximum(*C1, *C2); 2361 break; 2362 case Intrinsic::minimum: 2363 Res = minimum(*C1, *C2); 2364 break; 2365 default: 2366 llvm_unreachable("unexpected intrinsic ID"); 2367 } 2368 Value *V = Builder.CreateBinaryIntrinsic( 2369 IID, X, ConstantFP::get(Arg0->getType(), Res), II); 2370 // TODO: Conservatively intersecting FMF. If Res == C2, the transform 2371 // was a simplification (so Arg0 and its original flags could 2372 // propagate?) 2373 if (auto *CI = dyn_cast<CallInst>(V)) 2374 CI->andIRFlags(M); 2375 return replaceInstUsesWith(*II, V); 2376 } 2377 } 2378 2379 // m((fpext X), (fpext Y)) -> fpext (m(X, Y)) 2380 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) && 2381 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) && 2382 X->getType() == Y->getType()) { 2383 Value *NewCall = 2384 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName()); 2385 return new FPExtInst(NewCall, II->getType()); 2386 } 2387 2388 // max X, -X --> fabs X 2389 // min X, -X --> -(fabs X) 2390 // TODO: Remove one-use limitation? That is obviously better for max, 2391 // hence why we don't check for one-use for that. However, 2392 // it would be an extra instruction for min (fnabs), but 2393 // that is still likely better for analysis and codegen. 2394 auto IsMinMaxOrXNegX = [IID, &X](Value *Op0, Value *Op1) { 2395 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Specific(X))) 2396 return Op0->hasOneUse() || 2397 (IID != Intrinsic::minimum && IID != Intrinsic::minnum); 2398 return false; 2399 }; 2400 2401 if (IsMinMaxOrXNegX(Arg0, Arg1) || IsMinMaxOrXNegX(Arg1, Arg0)) { 2402 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II); 2403 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum) 2404 R = Builder.CreateFNegFMF(R, II); 2405 return replaceInstUsesWith(*II, R); 2406 } 2407 2408 break; 2409 } 2410 case Intrinsic::matrix_multiply: { 2411 // Optimize negation in matrix multiplication. 2412 2413 // -A * -B -> A * B 2414 Value *A, *B; 2415 if (match(II->getArgOperand(0), m_FNeg(m_Value(A))) && 2416 match(II->getArgOperand(1), m_FNeg(m_Value(B)))) { 2417 replaceOperand(*II, 0, A); 2418 replaceOperand(*II, 1, B); 2419 return II; 2420 } 2421 2422 Value *Op0 = II->getOperand(0); 2423 Value *Op1 = II->getOperand(1); 2424 Value *OpNotNeg, *NegatedOp; 2425 unsigned NegatedOpArg, OtherOpArg; 2426 if (match(Op0, m_FNeg(m_Value(OpNotNeg)))) { 2427 NegatedOp = Op0; 2428 NegatedOpArg = 0; 2429 OtherOpArg = 1; 2430 } else if (match(Op1, m_FNeg(m_Value(OpNotNeg)))) { 2431 NegatedOp = Op1; 2432 NegatedOpArg = 1; 2433 OtherOpArg = 0; 2434 } else 2435 // Multiplication doesn't have a negated operand. 2436 break; 2437 2438 // Only optimize if the negated operand has only one use. 2439 if (!NegatedOp->hasOneUse()) 2440 break; 2441 2442 Value *OtherOp = II->getOperand(OtherOpArg); 2443 VectorType *RetTy = cast<VectorType>(II->getType()); 2444 VectorType *NegatedOpTy = cast<VectorType>(NegatedOp->getType()); 2445 VectorType *OtherOpTy = cast<VectorType>(OtherOp->getType()); 2446 ElementCount NegatedCount = NegatedOpTy->getElementCount(); 2447 ElementCount OtherCount = OtherOpTy->getElementCount(); 2448 ElementCount RetCount = RetTy->getElementCount(); 2449 // (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa. 2450 if (ElementCount::isKnownGT(NegatedCount, OtherCount) && 2451 ElementCount::isKnownLT(OtherCount, RetCount)) { 2452 Value *InverseOtherOp = Builder.CreateFNeg(OtherOp); 2453 replaceOperand(*II, NegatedOpArg, OpNotNeg); 2454 replaceOperand(*II, OtherOpArg, InverseOtherOp); 2455 return II; 2456 } 2457 // (-A) * B -> -(A * B), if it is cheaper to negate the result 2458 if (ElementCount::isKnownGT(NegatedCount, RetCount)) { 2459 SmallVector<Value *, 5> NewArgs(II->args()); 2460 NewArgs[NegatedOpArg] = OpNotNeg; 2461 Instruction *NewMul = 2462 Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II); 2463 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(NewMul, II)); 2464 } 2465 break; 2466 } 2467 case Intrinsic::fmuladd: { 2468 // Try to simplify the underlying FMul. 2469 if (Value *V = simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1), 2470 II->getFastMathFlags(), 2471 SQ.getWithInstruction(II))) { 2472 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); 2473 FAdd->copyFastMathFlags(II); 2474 return FAdd; 2475 } 2476 2477 [[fallthrough]]; 2478 } 2479 case Intrinsic::fma: { 2480 // fma fneg(x), fneg(y), z -> fma x, y, z 2481 Value *Src0 = II->getArgOperand(0); 2482 Value *Src1 = II->getArgOperand(1); 2483 Value *X, *Y; 2484 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) { 2485 replaceOperand(*II, 0, X); 2486 replaceOperand(*II, 1, Y); 2487 return II; 2488 } 2489 2490 // fma fabs(x), fabs(x), z -> fma x, x, z 2491 if (match(Src0, m_FAbs(m_Value(X))) && 2492 match(Src1, m_FAbs(m_Specific(X)))) { 2493 replaceOperand(*II, 0, X); 2494 replaceOperand(*II, 1, X); 2495 return II; 2496 } 2497 2498 // Try to simplify the underlying FMul. We can only apply simplifications 2499 // that do not require rounding. 2500 if (Value *V = simplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1), 2501 II->getFastMathFlags(), 2502 SQ.getWithInstruction(II))) { 2503 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); 2504 FAdd->copyFastMathFlags(II); 2505 return FAdd; 2506 } 2507 2508 // fma x, y, 0 -> fmul x, y 2509 // This is always valid for -0.0, but requires nsz for +0.0 as 2510 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own. 2511 if (match(II->getArgOperand(2), m_NegZeroFP()) || 2512 (match(II->getArgOperand(2), m_PosZeroFP()) && 2513 II->getFastMathFlags().noSignedZeros())) 2514 return BinaryOperator::CreateFMulFMF(Src0, Src1, II); 2515 2516 break; 2517 } 2518 case Intrinsic::copysign: { 2519 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1); 2520 if (std::optional<bool> KnownSignBit = computeKnownFPSignBit( 2521 Sign, /*Depth=*/0, getSimplifyQuery().getWithInstruction(II))) { 2522 if (*KnownSignBit) { 2523 // If we know that the sign argument is negative, reduce to FNABS: 2524 // copysign Mag, -Sign --> fneg (fabs Mag) 2525 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 2526 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II)); 2527 } 2528 2529 // If we know that the sign argument is positive, reduce to FABS: 2530 // copysign Mag, +Sign --> fabs Mag 2531 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 2532 return replaceInstUsesWith(*II, Fabs); 2533 } 2534 2535 // Propagate sign argument through nested calls: 2536 // copysign Mag, (copysign ?, X) --> copysign Mag, X 2537 Value *X; 2538 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X)))) 2539 return replaceOperand(*II, 1, X); 2540 2541 // Clear sign-bit of constant magnitude: 2542 // copysign -MagC, X --> copysign MagC, X 2543 // TODO: Support constant folding for fabs 2544 const APFloat *MagC; 2545 if (match(Mag, m_APFloat(MagC)) && MagC->isNegative()) { 2546 APFloat PosMagC = *MagC; 2547 PosMagC.clearSign(); 2548 return replaceOperand(*II, 0, ConstantFP::get(Mag->getType(), PosMagC)); 2549 } 2550 2551 // Peek through changes of magnitude's sign-bit. This call rewrites those: 2552 // copysign (fabs X), Sign --> copysign X, Sign 2553 // copysign (fneg X), Sign --> copysign X, Sign 2554 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X)))) 2555 return replaceOperand(*II, 0, X); 2556 2557 break; 2558 } 2559 case Intrinsic::fabs: { 2560 Value *Cond, *TVal, *FVal; 2561 Value *Arg = II->getArgOperand(0); 2562 Value *X; 2563 // fabs (-X) --> fabs (X) 2564 if (match(Arg, m_FNeg(m_Value(X)))) { 2565 CallInst *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II); 2566 return replaceInstUsesWith(CI, Fabs); 2567 } 2568 2569 if (match(Arg, m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) { 2570 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF 2571 if (isa<Constant>(TVal) || isa<Constant>(FVal)) { 2572 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal}); 2573 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal}); 2574 SelectInst *SI = SelectInst::Create(Cond, AbsT, AbsF); 2575 FastMathFlags FMF1 = II->getFastMathFlags(); 2576 FastMathFlags FMF2 = cast<SelectInst>(Arg)->getFastMathFlags(); 2577 FMF2.setNoSignedZeros(false); 2578 SI->setFastMathFlags(FMF1 | FMF2); 2579 return SI; 2580 } 2581 // fabs (select Cond, -FVal, FVal) --> fabs FVal 2582 if (match(TVal, m_FNeg(m_Specific(FVal)))) 2583 return replaceOperand(*II, 0, FVal); 2584 // fabs (select Cond, TVal, -TVal) --> fabs TVal 2585 if (match(FVal, m_FNeg(m_Specific(TVal)))) 2586 return replaceOperand(*II, 0, TVal); 2587 } 2588 2589 Value *Magnitude, *Sign; 2590 if (match(II->getArgOperand(0), 2591 m_CopySign(m_Value(Magnitude), m_Value(Sign)))) { 2592 // fabs (copysign x, y) -> (fabs x) 2593 CallInst *AbsSign = 2594 Builder.CreateCall(II->getCalledFunction(), {Magnitude}); 2595 AbsSign->copyFastMathFlags(II); 2596 return replaceInstUsesWith(*II, AbsSign); 2597 } 2598 2599 [[fallthrough]]; 2600 } 2601 case Intrinsic::ceil: 2602 case Intrinsic::floor: 2603 case Intrinsic::round: 2604 case Intrinsic::roundeven: 2605 case Intrinsic::nearbyint: 2606 case Intrinsic::rint: 2607 case Intrinsic::trunc: { 2608 Value *ExtSrc; 2609 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) { 2610 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x) 2611 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II); 2612 return new FPExtInst(NarrowII, II->getType()); 2613 } 2614 break; 2615 } 2616 case Intrinsic::cos: 2617 case Intrinsic::amdgcn_cos: { 2618 Value *X, *Sign; 2619 Value *Src = II->getArgOperand(0); 2620 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X))) || 2621 match(Src, m_CopySign(m_Value(X), m_Value(Sign)))) { 2622 // cos(-x) --> cos(x) 2623 // cos(fabs(x)) --> cos(x) 2624 // cos(copysign(x, y)) --> cos(x) 2625 return replaceOperand(*II, 0, X); 2626 } 2627 break; 2628 } 2629 case Intrinsic::sin: 2630 case Intrinsic::amdgcn_sin: { 2631 Value *X; 2632 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) { 2633 // sin(-x) --> -sin(x) 2634 Value *NewSin = Builder.CreateUnaryIntrinsic(IID, X, II); 2635 return UnaryOperator::CreateFNegFMF(NewSin, II); 2636 } 2637 break; 2638 } 2639 case Intrinsic::ldexp: { 2640 // ldexp(ldexp(x, a), b) -> ldexp(x, a + b) 2641 // 2642 // The danger is if the first ldexp would overflow to infinity or underflow 2643 // to zero, but the combined exponent avoids it. We ignore this with 2644 // reassoc. 2645 // 2646 // It's also safe to fold if we know both exponents are >= 0 or <= 0 since 2647 // it would just double down on the overflow/underflow which would occur 2648 // anyway. 2649 // 2650 // TODO: Could do better if we had range tracking for the input value 2651 // exponent. Also could broaden sign check to cover == 0 case. 2652 Value *Src = II->getArgOperand(0); 2653 Value *Exp = II->getArgOperand(1); 2654 Value *InnerSrc; 2655 Value *InnerExp; 2656 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ldexp>( 2657 m_Value(InnerSrc), m_Value(InnerExp)))) && 2658 Exp->getType() == InnerExp->getType()) { 2659 FastMathFlags FMF = II->getFastMathFlags(); 2660 FastMathFlags InnerFlags = cast<FPMathOperator>(Src)->getFastMathFlags(); 2661 2662 if ((FMF.allowReassoc() && InnerFlags.allowReassoc()) || 2663 signBitMustBeTheSame(Exp, InnerExp, SQ.getWithInstruction(II))) { 2664 // TODO: Add nsw/nuw probably safe if integer type exceeds exponent 2665 // width. 2666 Value *NewExp = Builder.CreateAdd(InnerExp, Exp); 2667 II->setArgOperand(1, NewExp); 2668 II->setFastMathFlags(InnerFlags); // Or the inner flags. 2669 return replaceOperand(*II, 0, InnerSrc); 2670 } 2671 } 2672 2673 // ldexp(x, zext(i1 y)) -> fmul x, (select y, 2.0, 1.0) 2674 // ldexp(x, sext(i1 y)) -> fmul x, (select y, 0.5, 1.0) 2675 Value *ExtSrc; 2676 if (match(Exp, m_ZExt(m_Value(ExtSrc))) && 2677 ExtSrc->getType()->getScalarSizeInBits() == 1) { 2678 Value *Select = 2679 Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 2.0), 2680 ConstantFP::get(II->getType(), 1.0)); 2681 return BinaryOperator::CreateFMulFMF(Src, Select, II); 2682 } 2683 if (match(Exp, m_SExt(m_Value(ExtSrc))) && 2684 ExtSrc->getType()->getScalarSizeInBits() == 1) { 2685 Value *Select = 2686 Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 0.5), 2687 ConstantFP::get(II->getType(), 1.0)); 2688 return BinaryOperator::CreateFMulFMF(Src, Select, II); 2689 } 2690 2691 // ldexp(x, c ? exp : 0) -> c ? ldexp(x, exp) : x 2692 // ldexp(x, c ? 0 : exp) -> c ? x : ldexp(x, exp) 2693 /// 2694 // TODO: If we cared, should insert a canonicalize for x 2695 Value *SelectCond, *SelectLHS, *SelectRHS; 2696 if (match(II->getArgOperand(1), 2697 m_OneUse(m_Select(m_Value(SelectCond), m_Value(SelectLHS), 2698 m_Value(SelectRHS))))) { 2699 Value *NewLdexp = nullptr; 2700 Value *Select = nullptr; 2701 if (match(SelectRHS, m_ZeroInt())) { 2702 NewLdexp = Builder.CreateLdexp(Src, SelectLHS); 2703 Select = Builder.CreateSelect(SelectCond, NewLdexp, Src); 2704 } else if (match(SelectLHS, m_ZeroInt())) { 2705 NewLdexp = Builder.CreateLdexp(Src, SelectRHS); 2706 Select = Builder.CreateSelect(SelectCond, Src, NewLdexp); 2707 } 2708 2709 if (NewLdexp) { 2710 Select->takeName(II); 2711 cast<Instruction>(NewLdexp)->copyFastMathFlags(II); 2712 return replaceInstUsesWith(*II, Select); 2713 } 2714 } 2715 2716 break; 2717 } 2718 case Intrinsic::ptrauth_auth: 2719 case Intrinsic::ptrauth_resign: { 2720 // (sign|resign) + (auth|resign) can be folded by omitting the middle 2721 // sign+auth component if the key and discriminator match. 2722 bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign; 2723 Value *Ptr = II->getArgOperand(0); 2724 Value *Key = II->getArgOperand(1); 2725 Value *Disc = II->getArgOperand(2); 2726 2727 // AuthKey will be the key we need to end up authenticating against in 2728 // whatever we replace this sequence with. 2729 Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr; 2730 if (const auto *CI = dyn_cast<CallBase>(Ptr)) { 2731 BasePtr = CI->getArgOperand(0); 2732 if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) { 2733 if (CI->getArgOperand(1) != Key || CI->getArgOperand(2) != Disc) 2734 break; 2735 } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) { 2736 if (CI->getArgOperand(3) != Key || CI->getArgOperand(4) != Disc) 2737 break; 2738 AuthKey = CI->getArgOperand(1); 2739 AuthDisc = CI->getArgOperand(2); 2740 } else 2741 break; 2742 } else if (const auto *PtrToInt = dyn_cast<PtrToIntOperator>(Ptr)) { 2743 // ptrauth constants are equivalent to a call to @llvm.ptrauth.sign for 2744 // our purposes, so check for that too. 2745 const auto *CPA = dyn_cast<ConstantPtrAuth>(PtrToInt->getOperand(0)); 2746 if (!CPA || !CPA->isKnownCompatibleWith(Key, Disc, DL)) 2747 break; 2748 2749 // resign(ptrauth(p,ks,ds),ks,ds,kr,dr) -> ptrauth(p,kr,dr) 2750 if (NeedSign && isa<ConstantInt>(II->getArgOperand(4))) { 2751 auto *SignKey = cast<ConstantInt>(II->getArgOperand(3)); 2752 auto *SignDisc = cast<ConstantInt>(II->getArgOperand(4)); 2753 auto *SignAddrDisc = ConstantPointerNull::get(Builder.getPtrTy()); 2754 auto *NewCPA = ConstantPtrAuth::get(CPA->getPointer(), SignKey, 2755 SignDisc, SignAddrDisc); 2756 replaceInstUsesWith( 2757 *II, ConstantExpr::getPointerCast(NewCPA, II->getType())); 2758 return eraseInstFromFunction(*II); 2759 } 2760 2761 // auth(ptrauth(p,k,d),k,d) -> p 2762 BasePtr = Builder.CreatePtrToInt(CPA->getPointer(), II->getType()); 2763 } else 2764 break; 2765 2766 unsigned NewIntrin; 2767 if (AuthKey && NeedSign) { 2768 // resign(0,1) + resign(1,2) = resign(0, 2) 2769 NewIntrin = Intrinsic::ptrauth_resign; 2770 } else if (AuthKey) { 2771 // resign(0,1) + auth(1) = auth(0) 2772 NewIntrin = Intrinsic::ptrauth_auth; 2773 } else if (NeedSign) { 2774 // sign(0) + resign(0, 1) = sign(1) 2775 NewIntrin = Intrinsic::ptrauth_sign; 2776 } else { 2777 // sign(0) + auth(0) = nop 2778 replaceInstUsesWith(*II, BasePtr); 2779 return eraseInstFromFunction(*II); 2780 } 2781 2782 SmallVector<Value *, 4> CallArgs; 2783 CallArgs.push_back(BasePtr); 2784 if (AuthKey) { 2785 CallArgs.push_back(AuthKey); 2786 CallArgs.push_back(AuthDisc); 2787 } 2788 2789 if (NeedSign) { 2790 CallArgs.push_back(II->getArgOperand(3)); 2791 CallArgs.push_back(II->getArgOperand(4)); 2792 } 2793 2794 Function *NewFn = Intrinsic::getDeclaration(II->getModule(), NewIntrin); 2795 return CallInst::Create(NewFn, CallArgs); 2796 } 2797 case Intrinsic::arm_neon_vtbl1: 2798 case Intrinsic::aarch64_neon_tbl1: 2799 if (Value *V = simplifyNeonTbl1(*II, Builder)) 2800 return replaceInstUsesWith(*II, V); 2801 break; 2802 2803 case Intrinsic::arm_neon_vmulls: 2804 case Intrinsic::arm_neon_vmullu: 2805 case Intrinsic::aarch64_neon_smull: 2806 case Intrinsic::aarch64_neon_umull: { 2807 Value *Arg0 = II->getArgOperand(0); 2808 Value *Arg1 = II->getArgOperand(1); 2809 2810 // Handle mul by zero first: 2811 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { 2812 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); 2813 } 2814 2815 // Check for constant LHS & RHS - in this case we just simplify. 2816 bool Zext = (IID == Intrinsic::arm_neon_vmullu || 2817 IID == Intrinsic::aarch64_neon_umull); 2818 VectorType *NewVT = cast<VectorType>(II->getType()); 2819 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { 2820 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { 2821 Value *V0 = Builder.CreateIntCast(CV0, NewVT, /*isSigned=*/!Zext); 2822 Value *V1 = Builder.CreateIntCast(CV1, NewVT, /*isSigned=*/!Zext); 2823 return replaceInstUsesWith(CI, Builder.CreateMul(V0, V1)); 2824 } 2825 2826 // Couldn't simplify - canonicalize constant to the RHS. 2827 std::swap(Arg0, Arg1); 2828 } 2829 2830 // Handle mul by one: 2831 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) 2832 if (ConstantInt *Splat = 2833 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) 2834 if (Splat->isOne()) 2835 return CastInst::CreateIntegerCast(Arg0, II->getType(), 2836 /*isSigned=*/!Zext); 2837 2838 break; 2839 } 2840 case Intrinsic::arm_neon_aesd: 2841 case Intrinsic::arm_neon_aese: 2842 case Intrinsic::aarch64_crypto_aesd: 2843 case Intrinsic::aarch64_crypto_aese: { 2844 Value *DataArg = II->getArgOperand(0); 2845 Value *KeyArg = II->getArgOperand(1); 2846 2847 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR 2848 Value *Data, *Key; 2849 if (match(KeyArg, m_ZeroInt()) && 2850 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) { 2851 replaceOperand(*II, 0, Data); 2852 replaceOperand(*II, 1, Key); 2853 return II; 2854 } 2855 break; 2856 } 2857 case Intrinsic::hexagon_V6_vandvrt: 2858 case Intrinsic::hexagon_V6_vandvrt_128B: { 2859 // Simplify Q -> V -> Q conversion. 2860 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 2861 Intrinsic::ID ID0 = Op0->getIntrinsicID(); 2862 if (ID0 != Intrinsic::hexagon_V6_vandqrt && 2863 ID0 != Intrinsic::hexagon_V6_vandqrt_128B) 2864 break; 2865 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1); 2866 uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue(); 2867 uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue(); 2868 // Check if every byte has common bits in Bytes and Mask. 2869 uint64_t C = Bytes1 & Mask1; 2870 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000)) 2871 return replaceInstUsesWith(*II, Op0->getArgOperand(0)); 2872 } 2873 break; 2874 } 2875 case Intrinsic::stackrestore: { 2876 enum class ClassifyResult { 2877 None, 2878 Alloca, 2879 StackRestore, 2880 CallWithSideEffects, 2881 }; 2882 auto Classify = [](const Instruction *I) { 2883 if (isa<AllocaInst>(I)) 2884 return ClassifyResult::Alloca; 2885 2886 if (auto *CI = dyn_cast<CallInst>(I)) { 2887 if (auto *II = dyn_cast<IntrinsicInst>(CI)) { 2888 if (II->getIntrinsicID() == Intrinsic::stackrestore) 2889 return ClassifyResult::StackRestore; 2890 2891 if (II->mayHaveSideEffects()) 2892 return ClassifyResult::CallWithSideEffects; 2893 } else { 2894 // Consider all non-intrinsic calls to be side effects 2895 return ClassifyResult::CallWithSideEffects; 2896 } 2897 } 2898 2899 return ClassifyResult::None; 2900 }; 2901 2902 // If the stacksave and the stackrestore are in the same BB, and there is 2903 // no intervening call, alloca, or stackrestore of a different stacksave, 2904 // remove the restore. This can happen when variable allocas are DCE'd. 2905 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 2906 if (SS->getIntrinsicID() == Intrinsic::stacksave && 2907 SS->getParent() == II->getParent()) { 2908 BasicBlock::iterator BI(SS); 2909 bool CannotRemove = false; 2910 for (++BI; &*BI != II; ++BI) { 2911 switch (Classify(&*BI)) { 2912 case ClassifyResult::None: 2913 // So far so good, look at next instructions. 2914 break; 2915 2916 case ClassifyResult::StackRestore: 2917 // If we found an intervening stackrestore for a different 2918 // stacksave, we can't remove the stackrestore. Otherwise, continue. 2919 if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS) 2920 CannotRemove = true; 2921 break; 2922 2923 case ClassifyResult::Alloca: 2924 case ClassifyResult::CallWithSideEffects: 2925 // If we found an alloca, a non-intrinsic call, or an intrinsic 2926 // call with side effects, we can't remove the stackrestore. 2927 CannotRemove = true; 2928 break; 2929 } 2930 if (CannotRemove) 2931 break; 2932 } 2933 2934 if (!CannotRemove) 2935 return eraseInstFromFunction(CI); 2936 } 2937 } 2938 2939 // Scan down this block to see if there is another stack restore in the 2940 // same block without an intervening call/alloca. 2941 BasicBlock::iterator BI(II); 2942 Instruction *TI = II->getParent()->getTerminator(); 2943 bool CannotRemove = false; 2944 for (++BI; &*BI != TI; ++BI) { 2945 switch (Classify(&*BI)) { 2946 case ClassifyResult::None: 2947 // So far so good, look at next instructions. 2948 break; 2949 2950 case ClassifyResult::StackRestore: 2951 // If there is a stackrestore below this one, remove this one. 2952 return eraseInstFromFunction(CI); 2953 2954 case ClassifyResult::Alloca: 2955 case ClassifyResult::CallWithSideEffects: 2956 // If we found an alloca, a non-intrinsic call, or an intrinsic call 2957 // with side effects (such as llvm.stacksave and llvm.read_register), 2958 // we can't remove the stack restore. 2959 CannotRemove = true; 2960 break; 2961 } 2962 if (CannotRemove) 2963 break; 2964 } 2965 2966 // If the stack restore is in a return, resume, or unwind block and if there 2967 // are no allocas or calls between the restore and the return, nuke the 2968 // restore. 2969 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) 2970 return eraseInstFromFunction(CI); 2971 break; 2972 } 2973 case Intrinsic::lifetime_end: 2974 // Asan needs to poison memory to detect invalid access which is possible 2975 // even for empty lifetime range. 2976 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 2977 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) || 2978 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 2979 break; 2980 2981 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) { 2982 return I.getIntrinsicID() == Intrinsic::lifetime_start; 2983 })) 2984 return nullptr; 2985 break; 2986 case Intrinsic::assume: { 2987 Value *IIOperand = II->getArgOperand(0); 2988 SmallVector<OperandBundleDef, 4> OpBundles; 2989 II->getOperandBundlesAsDefs(OpBundles); 2990 2991 /// This will remove the boolean Condition from the assume given as 2992 /// argument and remove the assume if it becomes useless. 2993 /// always returns nullptr for use as a return values. 2994 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * { 2995 assert(isa<AssumeInst>(Assume)); 2996 if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II))) 2997 return eraseInstFromFunction(CI); 2998 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext())); 2999 return nullptr; 3000 }; 3001 // Remove an assume if it is followed by an identical assume. 3002 // TODO: Do we need this? Unless there are conflicting assumptions, the 3003 // computeKnownBits(IIOperand) below here eliminates redundant assumes. 3004 Instruction *Next = II->getNextNonDebugInstruction(); 3005 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand)))) 3006 return RemoveConditionFromAssume(Next); 3007 3008 // Canonicalize assume(a && b) -> assume(a); assume(b); 3009 // Note: New assumption intrinsics created here are registered by 3010 // the InstCombineIRInserter object. 3011 FunctionType *AssumeIntrinsicTy = II->getFunctionType(); 3012 Value *AssumeIntrinsic = II->getCalledOperand(); 3013 Value *A, *B; 3014 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) { 3015 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles, 3016 II->getName()); 3017 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName()); 3018 return eraseInstFromFunction(*II); 3019 } 3020 // assume(!(a || b)) -> assume(!a); assume(!b); 3021 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) { 3022 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 3023 Builder.CreateNot(A), OpBundles, II->getName()); 3024 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 3025 Builder.CreateNot(B), II->getName()); 3026 return eraseInstFromFunction(*II); 3027 } 3028 3029 // assume( (load addr) != null ) -> add 'nonnull' metadata to load 3030 // (if assume is valid at the load) 3031 CmpInst::Predicate Pred; 3032 Instruction *LHS; 3033 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) && 3034 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load && 3035 LHS->getType()->isPointerTy() && 3036 isValidAssumeForContext(II, LHS, &DT)) { 3037 MDNode *MD = MDNode::get(II->getContext(), std::nullopt); 3038 LHS->setMetadata(LLVMContext::MD_nonnull, MD); 3039 LHS->setMetadata(LLVMContext::MD_noundef, MD); 3040 return RemoveConditionFromAssume(II); 3041 3042 // TODO: apply nonnull return attributes to calls and invokes 3043 // TODO: apply range metadata for range check patterns? 3044 } 3045 3046 // Separate storage assumptions apply to the underlying allocations, not any 3047 // particular pointer within them. When evaluating the hints for AA purposes 3048 // we getUnderlyingObject them; by precomputing the answers here we can 3049 // avoid having to do so repeatedly there. 3050 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) { 3051 OperandBundleUse OBU = II->getOperandBundleAt(Idx); 3052 if (OBU.getTagName() == "separate_storage") { 3053 assert(OBU.Inputs.size() == 2); 3054 auto MaybeSimplifyHint = [&](const Use &U) { 3055 Value *Hint = U.get(); 3056 // Not having a limit is safe because InstCombine removes unreachable 3057 // code. 3058 Value *UnderlyingObject = getUnderlyingObject(Hint, /*MaxLookup*/ 0); 3059 if (Hint != UnderlyingObject) 3060 replaceUse(const_cast<Use &>(U), UnderlyingObject); 3061 }; 3062 MaybeSimplifyHint(OBU.Inputs[0]); 3063 MaybeSimplifyHint(OBU.Inputs[1]); 3064 } 3065 } 3066 3067 // Convert nonnull assume like: 3068 // %A = icmp ne i32* %PTR, null 3069 // call void @llvm.assume(i1 %A) 3070 // into 3071 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ] 3072 if (EnableKnowledgeRetention && 3073 match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) && 3074 Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) { 3075 if (auto *Replacement = buildAssumeFromKnowledge( 3076 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) { 3077 3078 Replacement->insertBefore(Next); 3079 AC.registerAssumption(Replacement); 3080 return RemoveConditionFromAssume(II); 3081 } 3082 } 3083 3084 // Convert alignment assume like: 3085 // %B = ptrtoint i32* %A to i64 3086 // %C = and i64 %B, Constant 3087 // %D = icmp eq i64 %C, 0 3088 // call void @llvm.assume(i1 %D) 3089 // into 3090 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)] 3091 uint64_t AlignMask; 3092 if (EnableKnowledgeRetention && 3093 match(IIOperand, 3094 m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)), 3095 m_Zero())) && 3096 Pred == CmpInst::ICMP_EQ) { 3097 if (isPowerOf2_64(AlignMask + 1)) { 3098 uint64_t Offset = 0; 3099 match(A, m_Add(m_Value(A), m_ConstantInt(Offset))); 3100 if (match(A, m_PtrToInt(m_Value(A)))) { 3101 /// Note: this doesn't preserve the offset information but merges 3102 /// offset and alignment. 3103 /// TODO: we can generate a GEP instead of merging the alignment with 3104 /// the offset. 3105 RetainedKnowledge RK{Attribute::Alignment, 3106 (unsigned)MinAlign(Offset, AlignMask + 1), A}; 3107 if (auto *Replacement = 3108 buildAssumeFromKnowledge(RK, Next, &AC, &DT)) { 3109 3110 Replacement->insertAfter(II); 3111 AC.registerAssumption(Replacement); 3112 } 3113 return RemoveConditionFromAssume(II); 3114 } 3115 } 3116 } 3117 3118 /// Canonicalize Knowledge in operand bundles. 3119 if (EnableKnowledgeRetention && II->hasOperandBundles()) { 3120 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) { 3121 auto &BOI = II->bundle_op_info_begin()[Idx]; 3122 RetainedKnowledge RK = 3123 llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI); 3124 if (BOI.End - BOI.Begin > 2) 3125 continue; // Prevent reducing knowledge in an align with offset since 3126 // extracting a RetainedKnowledge from them looses offset 3127 // information 3128 RetainedKnowledge CanonRK = 3129 llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK, 3130 &getAssumptionCache(), 3131 &getDominatorTree()); 3132 if (CanonRK == RK) 3133 continue; 3134 if (!CanonRK) { 3135 if (BOI.End - BOI.Begin > 0) { 3136 Worklist.pushValue(II->op_begin()[BOI.Begin]); 3137 Value::dropDroppableUse(II->op_begin()[BOI.Begin]); 3138 } 3139 continue; 3140 } 3141 assert(RK.AttrKind == CanonRK.AttrKind); 3142 if (BOI.End - BOI.Begin > 0) 3143 II->op_begin()[BOI.Begin].set(CanonRK.WasOn); 3144 if (BOI.End - BOI.Begin > 1) 3145 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get( 3146 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue)); 3147 if (RK.WasOn) 3148 Worklist.pushValue(RK.WasOn); 3149 return II; 3150 } 3151 } 3152 3153 // If there is a dominating assume with the same condition as this one, 3154 // then this one is redundant, and should be removed. 3155 KnownBits Known(1); 3156 computeKnownBits(IIOperand, Known, 0, II); 3157 if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) 3158 return eraseInstFromFunction(*II); 3159 3160 // assume(false) is unreachable. 3161 if (match(IIOperand, m_CombineOr(m_Zero(), m_Undef()))) { 3162 CreateNonTerminatorUnreachable(II); 3163 return eraseInstFromFunction(*II); 3164 } 3165 3166 // Update the cache of affected values for this assumption (we might be 3167 // here because we just simplified the condition). 3168 AC.updateAffectedValues(cast<AssumeInst>(II)); 3169 break; 3170 } 3171 case Intrinsic::experimental_guard: { 3172 // Is this guard followed by another guard? We scan forward over a small 3173 // fixed window of instructions to handle common cases with conditions 3174 // computed between guards. 3175 Instruction *NextInst = II->getNextNonDebugInstruction(); 3176 for (unsigned i = 0; i < GuardWideningWindow; i++) { 3177 // Note: Using context-free form to avoid compile time blow up 3178 if (!isSafeToSpeculativelyExecute(NextInst)) 3179 break; 3180 NextInst = NextInst->getNextNonDebugInstruction(); 3181 } 3182 Value *NextCond = nullptr; 3183 if (match(NextInst, 3184 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) { 3185 Value *CurrCond = II->getArgOperand(0); 3186 3187 // Remove a guard that it is immediately preceded by an identical guard. 3188 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b). 3189 if (CurrCond != NextCond) { 3190 Instruction *MoveI = II->getNextNonDebugInstruction(); 3191 while (MoveI != NextInst) { 3192 auto *Temp = MoveI; 3193 MoveI = MoveI->getNextNonDebugInstruction(); 3194 Temp->moveBefore(II); 3195 } 3196 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond)); 3197 } 3198 eraseInstFromFunction(*NextInst); 3199 return II; 3200 } 3201 break; 3202 } 3203 case Intrinsic::vector_insert: { 3204 Value *Vec = II->getArgOperand(0); 3205 Value *SubVec = II->getArgOperand(1); 3206 Value *Idx = II->getArgOperand(2); 3207 auto *DstTy = dyn_cast<FixedVectorType>(II->getType()); 3208 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType()); 3209 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType()); 3210 3211 // Only canonicalize if the destination vector, Vec, and SubVec are all 3212 // fixed vectors. 3213 if (DstTy && VecTy && SubVecTy) { 3214 unsigned DstNumElts = DstTy->getNumElements(); 3215 unsigned VecNumElts = VecTy->getNumElements(); 3216 unsigned SubVecNumElts = SubVecTy->getNumElements(); 3217 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 3218 3219 // An insert that entirely overwrites Vec with SubVec is a nop. 3220 if (VecNumElts == SubVecNumElts) 3221 return replaceInstUsesWith(CI, SubVec); 3222 3223 // Widen SubVec into a vector of the same width as Vec, since 3224 // shufflevector requires the two input vectors to be the same width. 3225 // Elements beyond the bounds of SubVec within the widened vector are 3226 // undefined. 3227 SmallVector<int, 8> WidenMask; 3228 unsigned i; 3229 for (i = 0; i != SubVecNumElts; ++i) 3230 WidenMask.push_back(i); 3231 for (; i != VecNumElts; ++i) 3232 WidenMask.push_back(PoisonMaskElem); 3233 3234 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask); 3235 3236 SmallVector<int, 8> Mask; 3237 for (unsigned i = 0; i != IdxN; ++i) 3238 Mask.push_back(i); 3239 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i) 3240 Mask.push_back(i); 3241 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i) 3242 Mask.push_back(i); 3243 3244 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask); 3245 return replaceInstUsesWith(CI, Shuffle); 3246 } 3247 break; 3248 } 3249 case Intrinsic::vector_extract: { 3250 Value *Vec = II->getArgOperand(0); 3251 Value *Idx = II->getArgOperand(1); 3252 3253 Type *ReturnType = II->getType(); 3254 // (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx), 3255 // ExtractIdx) 3256 unsigned ExtractIdx = cast<ConstantInt>(Idx)->getZExtValue(); 3257 Value *InsertTuple, *InsertIdx, *InsertValue; 3258 if (match(Vec, m_Intrinsic<Intrinsic::vector_insert>(m_Value(InsertTuple), 3259 m_Value(InsertValue), 3260 m_Value(InsertIdx))) && 3261 InsertValue->getType() == ReturnType) { 3262 unsigned Index = cast<ConstantInt>(InsertIdx)->getZExtValue(); 3263 // Case where we get the same index right after setting it. 3264 // extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) --> 3265 // InsertValue 3266 if (ExtractIdx == Index) 3267 return replaceInstUsesWith(CI, InsertValue); 3268 // If we are getting a different index than what was set in the 3269 // insert.vector intrinsic. We can just set the input tuple to the one up 3270 // in the chain. extract.vector(insert.vector(InsertTuple, InsertValue, 3271 // InsertIndex), ExtractIndex) 3272 // --> extract.vector(InsertTuple, ExtractIndex) 3273 else 3274 return replaceOperand(CI, 0, InsertTuple); 3275 } 3276 3277 auto *DstTy = dyn_cast<VectorType>(ReturnType); 3278 auto *VecTy = dyn_cast<VectorType>(Vec->getType()); 3279 3280 if (DstTy && VecTy) { 3281 auto DstEltCnt = DstTy->getElementCount(); 3282 auto VecEltCnt = VecTy->getElementCount(); 3283 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 3284 3285 // Extracting the entirety of Vec is a nop. 3286 if (DstEltCnt == VecTy->getElementCount()) { 3287 replaceInstUsesWith(CI, Vec); 3288 return eraseInstFromFunction(CI); 3289 } 3290 3291 // Only canonicalize to shufflevector if the destination vector and 3292 // Vec are fixed vectors. 3293 if (VecEltCnt.isScalable() || DstEltCnt.isScalable()) 3294 break; 3295 3296 SmallVector<int, 8> Mask; 3297 for (unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i) 3298 Mask.push_back(IdxN + i); 3299 3300 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask); 3301 return replaceInstUsesWith(CI, Shuffle); 3302 } 3303 break; 3304 } 3305 case Intrinsic::vector_reverse: { 3306 Value *BO0, *BO1, *X, *Y; 3307 Value *Vec = II->getArgOperand(0); 3308 if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) { 3309 auto *OldBinOp = cast<BinaryOperator>(Vec); 3310 if (match(BO0, m_VecReverse(m_Value(X)))) { 3311 // rev(binop rev(X), rev(Y)) --> binop X, Y 3312 if (match(BO1, m_VecReverse(m_Value(Y)))) 3313 return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags( 3314 OldBinOp->getOpcode(), X, Y, 3315 OldBinOp, OldBinOp->getName(), 3316 II->getIterator())); 3317 // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat 3318 if (isSplatValue(BO1)) 3319 return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags( 3320 OldBinOp->getOpcode(), X, BO1, 3321 OldBinOp, OldBinOp->getName(), 3322 II->getIterator())); 3323 } 3324 // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y 3325 if (match(BO1, m_VecReverse(m_Value(Y))) && isSplatValue(BO0)) 3326 return replaceInstUsesWith(CI, 3327 BinaryOperator::CreateWithCopiedFlags( 3328 OldBinOp->getOpcode(), BO0, Y, OldBinOp, 3329 OldBinOp->getName(), II->getIterator())); 3330 } 3331 // rev(unop rev(X)) --> unop X 3332 if (match(Vec, m_OneUse(m_UnOp(m_VecReverse(m_Value(X)))))) { 3333 auto *OldUnOp = cast<UnaryOperator>(Vec); 3334 auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags( 3335 OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), 3336 II->getIterator()); 3337 return replaceInstUsesWith(CI, NewUnOp); 3338 } 3339 break; 3340 } 3341 case Intrinsic::vector_reduce_or: 3342 case Intrinsic::vector_reduce_and: { 3343 // Canonicalize logical or/and reductions: 3344 // Or reduction for i1 is represented as: 3345 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 3346 // %res = cmp ne iReduxWidth %val, 0 3347 // And reduction for i1 is represented as: 3348 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 3349 // %res = cmp eq iReduxWidth %val, 11111 3350 Value *Arg = II->getArgOperand(0); 3351 Value *Vect; 3352 3353 if (Value *NewOp = 3354 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) { 3355 replaceUse(II->getOperandUse(0), NewOp); 3356 return II; 3357 } 3358 3359 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3360 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 3361 if (FTy->getElementType() == Builder.getInt1Ty()) { 3362 Value *Res = Builder.CreateBitCast( 3363 Vect, Builder.getIntNTy(FTy->getNumElements())); 3364 if (IID == Intrinsic::vector_reduce_and) { 3365 Res = Builder.CreateICmpEQ( 3366 Res, ConstantInt::getAllOnesValue(Res->getType())); 3367 } else { 3368 assert(IID == Intrinsic::vector_reduce_or && 3369 "Expected or reduction."); 3370 Res = Builder.CreateIsNotNull(Res); 3371 } 3372 if (Arg != Vect) 3373 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 3374 II->getType()); 3375 return replaceInstUsesWith(CI, Res); 3376 } 3377 } 3378 [[fallthrough]]; 3379 } 3380 case Intrinsic::vector_reduce_add: { 3381 if (IID == Intrinsic::vector_reduce_add) { 3382 // Convert vector_reduce_add(ZExt(<n x i1>)) to 3383 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). 3384 // Convert vector_reduce_add(SExt(<n x i1>)) to 3385 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). 3386 // Convert vector_reduce_add(<n x i1>) to 3387 // Trunc(ctpop(bitcast <n x i1> to in)). 3388 Value *Arg = II->getArgOperand(0); 3389 Value *Vect; 3390 3391 if (Value *NewOp = 3392 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) { 3393 replaceUse(II->getOperandUse(0), NewOp); 3394 return II; 3395 } 3396 3397 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3398 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 3399 if (FTy->getElementType() == Builder.getInt1Ty()) { 3400 Value *V = Builder.CreateBitCast( 3401 Vect, Builder.getIntNTy(FTy->getNumElements())); 3402 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V); 3403 if (Res->getType() != II->getType()) 3404 Res = Builder.CreateZExtOrTrunc(Res, II->getType()); 3405 if (Arg != Vect && 3406 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt) 3407 Res = Builder.CreateNeg(Res); 3408 return replaceInstUsesWith(CI, Res); 3409 } 3410 } 3411 } 3412 [[fallthrough]]; 3413 } 3414 case Intrinsic::vector_reduce_xor: { 3415 if (IID == Intrinsic::vector_reduce_xor) { 3416 // Exclusive disjunction reduction over the vector with 3417 // (potentially-extended) i1 element type is actually a 3418 // (potentially-extended) arithmetic `add` reduction over the original 3419 // non-extended value: 3420 // vector_reduce_xor(?ext(<n x i1>)) 3421 // --> 3422 // ?ext(vector_reduce_add(<n x i1>)) 3423 Value *Arg = II->getArgOperand(0); 3424 Value *Vect; 3425 3426 if (Value *NewOp = 3427 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) { 3428 replaceUse(II->getOperandUse(0), NewOp); 3429 return II; 3430 } 3431 3432 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3433 if (auto *VTy = dyn_cast<VectorType>(Vect->getType())) 3434 if (VTy->getElementType() == Builder.getInt1Ty()) { 3435 Value *Res = Builder.CreateAddReduce(Vect); 3436 if (Arg != Vect) 3437 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 3438 II->getType()); 3439 return replaceInstUsesWith(CI, Res); 3440 } 3441 } 3442 } 3443 [[fallthrough]]; 3444 } 3445 case Intrinsic::vector_reduce_mul: { 3446 if (IID == Intrinsic::vector_reduce_mul) { 3447 // Multiplicative reduction over the vector with (potentially-extended) 3448 // i1 element type is actually a (potentially zero-extended) 3449 // logical `and` reduction over the original non-extended value: 3450 // vector_reduce_mul(?ext(<n x i1>)) 3451 // --> 3452 // zext(vector_reduce_and(<n x i1>)) 3453 Value *Arg = II->getArgOperand(0); 3454 Value *Vect; 3455 3456 if (Value *NewOp = 3457 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) { 3458 replaceUse(II->getOperandUse(0), NewOp); 3459 return II; 3460 } 3461 3462 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3463 if (auto *VTy = dyn_cast<VectorType>(Vect->getType())) 3464 if (VTy->getElementType() == Builder.getInt1Ty()) { 3465 Value *Res = Builder.CreateAndReduce(Vect); 3466 if (Res->getType() != II->getType()) 3467 Res = Builder.CreateZExt(Res, II->getType()); 3468 return replaceInstUsesWith(CI, Res); 3469 } 3470 } 3471 } 3472 [[fallthrough]]; 3473 } 3474 case Intrinsic::vector_reduce_umin: 3475 case Intrinsic::vector_reduce_umax: { 3476 if (IID == Intrinsic::vector_reduce_umin || 3477 IID == Intrinsic::vector_reduce_umax) { 3478 // UMin/UMax reduction over the vector with (potentially-extended) 3479 // i1 element type is actually a (potentially-extended) 3480 // logical `and`/`or` reduction over the original non-extended value: 3481 // vector_reduce_u{min,max}(?ext(<n x i1>)) 3482 // --> 3483 // ?ext(vector_reduce_{and,or}(<n x i1>)) 3484 Value *Arg = II->getArgOperand(0); 3485 Value *Vect; 3486 3487 if (Value *NewOp = 3488 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) { 3489 replaceUse(II->getOperandUse(0), NewOp); 3490 return II; 3491 } 3492 3493 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3494 if (auto *VTy = dyn_cast<VectorType>(Vect->getType())) 3495 if (VTy->getElementType() == Builder.getInt1Ty()) { 3496 Value *Res = IID == Intrinsic::vector_reduce_umin 3497 ? Builder.CreateAndReduce(Vect) 3498 : Builder.CreateOrReduce(Vect); 3499 if (Arg != Vect) 3500 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res, 3501 II->getType()); 3502 return replaceInstUsesWith(CI, Res); 3503 } 3504 } 3505 } 3506 [[fallthrough]]; 3507 } 3508 case Intrinsic::vector_reduce_smin: 3509 case Intrinsic::vector_reduce_smax: { 3510 if (IID == Intrinsic::vector_reduce_smin || 3511 IID == Intrinsic::vector_reduce_smax) { 3512 // SMin/SMax reduction over the vector with (potentially-extended) 3513 // i1 element type is actually a (potentially-extended) 3514 // logical `and`/`or` reduction over the original non-extended value: 3515 // vector_reduce_s{min,max}(<n x i1>) 3516 // --> 3517 // vector_reduce_{or,and}(<n x i1>) 3518 // and 3519 // vector_reduce_s{min,max}(sext(<n x i1>)) 3520 // --> 3521 // sext(vector_reduce_{or,and}(<n x i1>)) 3522 // and 3523 // vector_reduce_s{min,max}(zext(<n x i1>)) 3524 // --> 3525 // zext(vector_reduce_{and,or}(<n x i1>)) 3526 Value *Arg = II->getArgOperand(0); 3527 Value *Vect; 3528 3529 if (Value *NewOp = 3530 simplifyReductionOperand(Arg, /*CanReorderLanes=*/true)) { 3531 replaceUse(II->getOperandUse(0), NewOp); 3532 return II; 3533 } 3534 3535 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 3536 if (auto *VTy = dyn_cast<VectorType>(Vect->getType())) 3537 if (VTy->getElementType() == Builder.getInt1Ty()) { 3538 Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd; 3539 if (Arg != Vect) 3540 ExtOpc = cast<CastInst>(Arg)->getOpcode(); 3541 Value *Res = ((IID == Intrinsic::vector_reduce_smin) == 3542 (ExtOpc == Instruction::CastOps::ZExt)) 3543 ? Builder.CreateAndReduce(Vect) 3544 : Builder.CreateOrReduce(Vect); 3545 if (Arg != Vect) 3546 Res = Builder.CreateCast(ExtOpc, Res, II->getType()); 3547 return replaceInstUsesWith(CI, Res); 3548 } 3549 } 3550 } 3551 [[fallthrough]]; 3552 } 3553 case Intrinsic::vector_reduce_fmax: 3554 case Intrinsic::vector_reduce_fmin: 3555 case Intrinsic::vector_reduce_fadd: 3556 case Intrinsic::vector_reduce_fmul: { 3557 bool CanReorderLanes = (IID != Intrinsic::vector_reduce_fadd && 3558 IID != Intrinsic::vector_reduce_fmul) || 3559 II->hasAllowReassoc(); 3560 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd || 3561 IID == Intrinsic::vector_reduce_fmul) 3562 ? 1 3563 : 0; 3564 Value *Arg = II->getArgOperand(ArgIdx); 3565 if (Value *NewOp = simplifyReductionOperand(Arg, CanReorderLanes)) { 3566 replaceUse(II->getOperandUse(ArgIdx), NewOp); 3567 return nullptr; 3568 } 3569 break; 3570 } 3571 case Intrinsic::is_fpclass: { 3572 if (Instruction *I = foldIntrinsicIsFPClass(*II)) 3573 return I; 3574 break; 3575 } 3576 case Intrinsic::threadlocal_address: { 3577 Align MinAlign = getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT); 3578 MaybeAlign Align = II->getRetAlign(); 3579 if (MinAlign > Align.valueOrOne()) { 3580 II->addRetAttr(Attribute::getWithAlignment(II->getContext(), MinAlign)); 3581 return II; 3582 } 3583 break; 3584 } 3585 default: { 3586 // Handle target specific intrinsics 3587 std::optional<Instruction *> V = targetInstCombineIntrinsic(*II); 3588 if (V) 3589 return *V; 3590 break; 3591 } 3592 } 3593 3594 // Try to fold intrinsic into select operands. This is legal if: 3595 // * The intrinsic is speculatable. 3596 // * The select condition is not a vector, or the intrinsic does not 3597 // perform cross-lane operations. 3598 switch (IID) { 3599 case Intrinsic::ctlz: 3600 case Intrinsic::cttz: 3601 case Intrinsic::ctpop: 3602 case Intrinsic::umin: 3603 case Intrinsic::umax: 3604 case Intrinsic::smin: 3605 case Intrinsic::smax: 3606 case Intrinsic::usub_sat: 3607 case Intrinsic::uadd_sat: 3608 case Intrinsic::ssub_sat: 3609 case Intrinsic::sadd_sat: 3610 for (Value *Op : II->args()) 3611 if (auto *Sel = dyn_cast<SelectInst>(Op)) 3612 if (Instruction *R = FoldOpIntoSelect(*II, Sel)) 3613 return R; 3614 [[fallthrough]]; 3615 default: 3616 break; 3617 } 3618 3619 if (Instruction *Shuf = foldShuffledIntrinsicOperands(II, Builder)) 3620 return Shuf; 3621 3622 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke 3623 // context, so it is handled in visitCallBase and we should trigger it. 3624 return visitCallBase(*II); 3625 } 3626 3627 // Fence instruction simplification 3628 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) { 3629 auto *NFI = dyn_cast<FenceInst>(FI.getNextNonDebugInstruction()); 3630 // This check is solely here to handle arbitrary target-dependent syncscopes. 3631 // TODO: Can remove if does not matter in practice. 3632 if (NFI && FI.isIdenticalTo(NFI)) 3633 return eraseInstFromFunction(FI); 3634 3635 // Returns true if FI1 is identical or stronger fence than FI2. 3636 auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) { 3637 auto FI1SyncScope = FI1->getSyncScopeID(); 3638 // Consider same scope, where scope is global or single-thread. 3639 if (FI1SyncScope != FI2->getSyncScopeID() || 3640 (FI1SyncScope != SyncScope::System && 3641 FI1SyncScope != SyncScope::SingleThread)) 3642 return false; 3643 3644 return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering()); 3645 }; 3646 if (NFI && isIdenticalOrStrongerFence(NFI, &FI)) 3647 return eraseInstFromFunction(FI); 3648 3649 if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNonDebugInstruction())) 3650 if (isIdenticalOrStrongerFence(PFI, &FI)) 3651 return eraseInstFromFunction(FI); 3652 return nullptr; 3653 } 3654 3655 // InvokeInst simplification 3656 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) { 3657 return visitCallBase(II); 3658 } 3659 3660 // CallBrInst simplification 3661 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) { 3662 return visitCallBase(CBI); 3663 } 3664 3665 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) { 3666 if (!CI->getCalledFunction()) return nullptr; 3667 3668 // Skip optimizing notail and musttail calls so 3669 // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants. 3670 // LibCallSimplifier::optimizeCall should try to preseve tail calls though. 3671 if (CI->isMustTailCall() || CI->isNoTailCall()) 3672 return nullptr; 3673 3674 auto InstCombineRAUW = [this](Instruction *From, Value *With) { 3675 replaceInstUsesWith(*From, With); 3676 }; 3677 auto InstCombineErase = [this](Instruction *I) { 3678 eraseInstFromFunction(*I); 3679 }; 3680 LibCallSimplifier Simplifier(DL, &TLI, &AC, ORE, BFI, PSI, InstCombineRAUW, 3681 InstCombineErase); 3682 if (Value *With = Simplifier.optimizeCall(CI, Builder)) { 3683 ++NumSimplified; 3684 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); 3685 } 3686 3687 return nullptr; 3688 } 3689 3690 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { 3691 // Strip off at most one level of pointer casts, looking for an alloca. This 3692 // is good enough in practice and simpler than handling any number of casts. 3693 Value *Underlying = TrampMem->stripPointerCasts(); 3694 if (Underlying != TrampMem && 3695 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) 3696 return nullptr; 3697 if (!isa<AllocaInst>(Underlying)) 3698 return nullptr; 3699 3700 IntrinsicInst *InitTrampoline = nullptr; 3701 for (User *U : TrampMem->users()) { 3702 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3703 if (!II) 3704 return nullptr; 3705 if (II->getIntrinsicID() == Intrinsic::init_trampoline) { 3706 if (InitTrampoline) 3707 // More than one init_trampoline writes to this value. Give up. 3708 return nullptr; 3709 InitTrampoline = II; 3710 continue; 3711 } 3712 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) 3713 // Allow any number of calls to adjust.trampoline. 3714 continue; 3715 return nullptr; 3716 } 3717 3718 // No call to init.trampoline found. 3719 if (!InitTrampoline) 3720 return nullptr; 3721 3722 // Check that the alloca is being used in the expected way. 3723 if (InitTrampoline->getOperand(0) != TrampMem) 3724 return nullptr; 3725 3726 return InitTrampoline; 3727 } 3728 3729 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, 3730 Value *TrampMem) { 3731 // Visit all the previous instructions in the basic block, and try to find a 3732 // init.trampoline which has a direct path to the adjust.trampoline. 3733 for (BasicBlock::iterator I = AdjustTramp->getIterator(), 3734 E = AdjustTramp->getParent()->begin(); 3735 I != E;) { 3736 Instruction *Inst = &*--I; 3737 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 3738 if (II->getIntrinsicID() == Intrinsic::init_trampoline && 3739 II->getOperand(0) == TrampMem) 3740 return II; 3741 if (Inst->mayWriteToMemory()) 3742 return nullptr; 3743 } 3744 return nullptr; 3745 } 3746 3747 // Given a call to llvm.adjust.trampoline, find and return the corresponding 3748 // call to llvm.init.trampoline if the call to the trampoline can be optimized 3749 // to a direct call to a function. Otherwise return NULL. 3750 static IntrinsicInst *findInitTrampoline(Value *Callee) { 3751 Callee = Callee->stripPointerCasts(); 3752 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee); 3753 if (!AdjustTramp || 3754 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) 3755 return nullptr; 3756 3757 Value *TrampMem = AdjustTramp->getOperand(0); 3758 3759 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) 3760 return IT; 3761 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) 3762 return IT; 3763 return nullptr; 3764 } 3765 3766 bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call, 3767 const TargetLibraryInfo *TLI) { 3768 // Note: We only handle cases which can't be driven from generic attributes 3769 // here. So, for example, nonnull and noalias (which are common properties 3770 // of some allocation functions) are expected to be handled via annotation 3771 // of the respective allocator declaration with generic attributes. 3772 bool Changed = false; 3773 3774 if (!Call.getType()->isPointerTy()) 3775 return Changed; 3776 3777 std::optional<APInt> Size = getAllocSize(&Call, TLI); 3778 if (Size && *Size != 0) { 3779 // TODO: We really should just emit deref_or_null here and then 3780 // let the generic inference code combine that with nonnull. 3781 if (Call.hasRetAttr(Attribute::NonNull)) { 3782 Changed = !Call.hasRetAttr(Attribute::Dereferenceable); 3783 Call.addRetAttr(Attribute::getWithDereferenceableBytes( 3784 Call.getContext(), Size->getLimitedValue())); 3785 } else { 3786 Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull); 3787 Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes( 3788 Call.getContext(), Size->getLimitedValue())); 3789 } 3790 } 3791 3792 // Add alignment attribute if alignment is a power of two constant. 3793 Value *Alignment = getAllocAlignment(&Call, TLI); 3794 if (!Alignment) 3795 return Changed; 3796 3797 ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment); 3798 if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) { 3799 uint64_t AlignmentVal = AlignOpC->getZExtValue(); 3800 if (llvm::isPowerOf2_64(AlignmentVal)) { 3801 Align ExistingAlign = Call.getRetAlign().valueOrOne(); 3802 Align NewAlign = Align(AlignmentVal); 3803 if (NewAlign > ExistingAlign) { 3804 Call.addRetAttr( 3805 Attribute::getWithAlignment(Call.getContext(), NewAlign)); 3806 Changed = true; 3807 } 3808 } 3809 } 3810 return Changed; 3811 } 3812 3813 /// Improvements for call, callbr and invoke instructions. 3814 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) { 3815 bool Changed = annotateAnyAllocSite(Call, &TLI); 3816 3817 // Mark any parameters that are known to be non-null with the nonnull 3818 // attribute. This is helpful for inlining calls to functions with null 3819 // checks on their arguments. 3820 SmallVector<unsigned, 4> ArgNos; 3821 unsigned ArgNo = 0; 3822 3823 for (Value *V : Call.args()) { 3824 if (V->getType()->isPointerTy() && 3825 !Call.paramHasAttr(ArgNo, Attribute::NonNull) && 3826 isKnownNonZero(V, getSimplifyQuery().getWithInstruction(&Call))) 3827 ArgNos.push_back(ArgNo); 3828 ArgNo++; 3829 } 3830 3831 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly."); 3832 3833 if (!ArgNos.empty()) { 3834 AttributeList AS = Call.getAttributes(); 3835 LLVMContext &Ctx = Call.getContext(); 3836 AS = AS.addParamAttribute(Ctx, ArgNos, 3837 Attribute::get(Ctx, Attribute::NonNull)); 3838 Call.setAttributes(AS); 3839 Changed = true; 3840 } 3841 3842 // If the callee is a pointer to a function, attempt to move any casts to the 3843 // arguments of the call/callbr/invoke. 3844 Value *Callee = Call.getCalledOperand(); 3845 Function *CalleeF = dyn_cast<Function>(Callee); 3846 if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) && 3847 transformConstExprCastCall(Call)) 3848 return nullptr; 3849 3850 if (CalleeF) { 3851 // Remove the convergent attr on calls when the callee is not convergent. 3852 if (Call.isConvergent() && !CalleeF->isConvergent() && 3853 !CalleeF->isIntrinsic()) { 3854 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call 3855 << "\n"); 3856 Call.setNotConvergent(); 3857 return &Call; 3858 } 3859 3860 // If the call and callee calling conventions don't match, and neither one 3861 // of the calling conventions is compatible with C calling convention 3862 // this call must be unreachable, as the call is undefined. 3863 if ((CalleeF->getCallingConv() != Call.getCallingConv() && 3864 !(CalleeF->getCallingConv() == llvm::CallingConv::C && 3865 TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) && 3866 !(Call.getCallingConv() == llvm::CallingConv::C && 3867 TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) && 3868 // Only do this for calls to a function with a body. A prototype may 3869 // not actually end up matching the implementation's calling conv for a 3870 // variety of reasons (e.g. it may be written in assembly). 3871 !CalleeF->isDeclaration()) { 3872 Instruction *OldCall = &Call; 3873 CreateNonTerminatorUnreachable(OldCall); 3874 // If OldCall does not return void then replaceInstUsesWith poison. 3875 // This allows ValueHandlers and custom metadata to adjust itself. 3876 if (!OldCall->getType()->isVoidTy()) 3877 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType())); 3878 if (isa<CallInst>(OldCall)) 3879 return eraseInstFromFunction(*OldCall); 3880 3881 // We cannot remove an invoke or a callbr, because it would change thexi 3882 // CFG, just change the callee to a null pointer. 3883 cast<CallBase>(OldCall)->setCalledFunction( 3884 CalleeF->getFunctionType(), 3885 Constant::getNullValue(CalleeF->getType())); 3886 return nullptr; 3887 } 3888 } 3889 3890 // Calling a null function pointer is undefined if a null address isn't 3891 // dereferenceable. 3892 if ((isa<ConstantPointerNull>(Callee) && 3893 !NullPointerIsDefined(Call.getFunction())) || 3894 isa<UndefValue>(Callee)) { 3895 // If Call does not return void then replaceInstUsesWith poison. 3896 // This allows ValueHandlers and custom metadata to adjust itself. 3897 if (!Call.getType()->isVoidTy()) 3898 replaceInstUsesWith(Call, PoisonValue::get(Call.getType())); 3899 3900 if (Call.isTerminator()) { 3901 // Can't remove an invoke or callbr because we cannot change the CFG. 3902 return nullptr; 3903 } 3904 3905 // This instruction is not reachable, just remove it. 3906 CreateNonTerminatorUnreachable(&Call); 3907 return eraseInstFromFunction(Call); 3908 } 3909 3910 if (IntrinsicInst *II = findInitTrampoline(Callee)) 3911 return transformCallThroughTrampoline(Call, *II); 3912 3913 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) { 3914 InlineAsm *IA = cast<InlineAsm>(Callee); 3915 if (!IA->canThrow()) { 3916 // Normal inline asm calls cannot throw - mark them 3917 // 'nounwind'. 3918 Call.setDoesNotThrow(); 3919 Changed = true; 3920 } 3921 } 3922 3923 // Try to optimize the call if possible, we require DataLayout for most of 3924 // this. None of these calls are seen as possibly dead so go ahead and 3925 // delete the instruction now. 3926 if (CallInst *CI = dyn_cast<CallInst>(&Call)) { 3927 Instruction *I = tryOptimizeCall(CI); 3928 // If we changed something return the result, etc. Otherwise let 3929 // the fallthrough check. 3930 if (I) return eraseInstFromFunction(*I); 3931 } 3932 3933 if (!Call.use_empty() && !Call.isMustTailCall()) 3934 if (Value *ReturnedArg = Call.getReturnedArgOperand()) { 3935 Type *CallTy = Call.getType(); 3936 Type *RetArgTy = ReturnedArg->getType(); 3937 if (RetArgTy->canLosslesslyBitCastTo(CallTy)) 3938 return replaceInstUsesWith( 3939 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy)); 3940 } 3941 3942 // Drop unnecessary kcfi operand bundles from calls that were converted 3943 // into direct calls. 3944 auto Bundle = Call.getOperandBundle(LLVMContext::OB_kcfi); 3945 if (Bundle && !Call.isIndirectCall()) { 3946 DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", { 3947 if (CalleeF) { 3948 ConstantInt *FunctionType = nullptr; 3949 ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]); 3950 3951 if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type)) 3952 FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3953 3954 if (FunctionType && 3955 FunctionType->getZExtValue() != ExpectedType->getZExtValue()) 3956 dbgs() << Call.getModule()->getName() 3957 << ": warning: kcfi: " << Call.getCaller()->getName() 3958 << ": call to " << CalleeF->getName() 3959 << " using a mismatching function pointer type\n"; 3960 } 3961 }); 3962 3963 return CallBase::removeOperandBundle(&Call, LLVMContext::OB_kcfi); 3964 } 3965 3966 if (isRemovableAlloc(&Call, &TLI)) 3967 return visitAllocSite(Call); 3968 3969 // Handle intrinsics which can be used in both call and invoke context. 3970 switch (Call.getIntrinsicID()) { 3971 case Intrinsic::experimental_gc_statepoint: { 3972 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call); 3973 SmallPtrSet<Value *, 32> LiveGcValues; 3974 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 3975 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 3976 3977 // Remove the relocation if unused. 3978 if (GCR.use_empty()) { 3979 eraseInstFromFunction(GCR); 3980 continue; 3981 } 3982 3983 Value *DerivedPtr = GCR.getDerivedPtr(); 3984 Value *BasePtr = GCR.getBasePtr(); 3985 3986 // Undef is undef, even after relocation. 3987 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) { 3988 replaceInstUsesWith(GCR, UndefValue::get(GCR.getType())); 3989 eraseInstFromFunction(GCR); 3990 continue; 3991 } 3992 3993 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) { 3994 // The relocation of null will be null for most any collector. 3995 // TODO: provide a hook for this in GCStrategy. There might be some 3996 // weird collector this property does not hold for. 3997 if (isa<ConstantPointerNull>(DerivedPtr)) { 3998 // Use null-pointer of gc_relocate's type to replace it. 3999 replaceInstUsesWith(GCR, ConstantPointerNull::get(PT)); 4000 eraseInstFromFunction(GCR); 4001 continue; 4002 } 4003 4004 // isKnownNonNull -> nonnull attribute 4005 if (!GCR.hasRetAttr(Attribute::NonNull) && 4006 isKnownNonZero(DerivedPtr, 4007 getSimplifyQuery().getWithInstruction(&Call))) { 4008 GCR.addRetAttr(Attribute::NonNull); 4009 // We discovered new fact, re-check users. 4010 Worklist.pushUsersToWorkList(GCR); 4011 } 4012 } 4013 4014 // If we have two copies of the same pointer in the statepoint argument 4015 // list, canonicalize to one. This may let us common gc.relocates. 4016 if (GCR.getBasePtr() == GCR.getDerivedPtr() && 4017 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) { 4018 auto *OpIntTy = GCR.getOperand(2)->getType(); 4019 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex())); 4020 } 4021 4022 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) 4023 // Canonicalize on the type from the uses to the defs 4024 4025 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) 4026 LiveGcValues.insert(BasePtr); 4027 LiveGcValues.insert(DerivedPtr); 4028 } 4029 std::optional<OperandBundleUse> Bundle = 4030 GCSP.getOperandBundle(LLVMContext::OB_gc_live); 4031 unsigned NumOfGCLives = LiveGcValues.size(); 4032 if (!Bundle || NumOfGCLives == Bundle->Inputs.size()) 4033 break; 4034 // We can reduce the size of gc live bundle. 4035 DenseMap<Value *, unsigned> Val2Idx; 4036 std::vector<Value *> NewLiveGc; 4037 for (Value *V : Bundle->Inputs) { 4038 if (Val2Idx.count(V)) 4039 continue; 4040 if (LiveGcValues.count(V)) { 4041 Val2Idx[V] = NewLiveGc.size(); 4042 NewLiveGc.push_back(V); 4043 } else 4044 Val2Idx[V] = NumOfGCLives; 4045 } 4046 // Update all gc.relocates 4047 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 4048 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 4049 Value *BasePtr = GCR.getBasePtr(); 4050 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives && 4051 "Missed live gc for base pointer"); 4052 auto *OpIntTy1 = GCR.getOperand(1)->getType(); 4053 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr])); 4054 Value *DerivedPtr = GCR.getDerivedPtr(); 4055 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives && 4056 "Missed live gc for derived pointer"); 4057 auto *OpIntTy2 = GCR.getOperand(2)->getType(); 4058 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr])); 4059 } 4060 // Create new statepoint instruction. 4061 OperandBundleDef NewBundle("gc-live", NewLiveGc); 4062 return CallBase::Create(&Call, NewBundle); 4063 } 4064 default: { break; } 4065 } 4066 4067 return Changed ? &Call : nullptr; 4068 } 4069 4070 /// If the callee is a constexpr cast of a function, attempt to move the cast to 4071 /// the arguments of the call/invoke. 4072 /// CallBrInst is not supported. 4073 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) { 4074 auto *Callee = 4075 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 4076 if (!Callee) 4077 return false; 4078 4079 assert(!isa<CallBrInst>(Call) && 4080 "CallBr's don't have a single point after a def to insert at"); 4081 4082 // If this is a call to a thunk function, don't remove the cast. Thunks are 4083 // used to transparently forward all incoming parameters and outgoing return 4084 // values, so it's important to leave the cast in place. 4085 if (Callee->hasFnAttribute("thunk")) 4086 return false; 4087 4088 // If this is a call to a naked function, the assembly might be 4089 // using an argument, or otherwise rely on the frame layout, 4090 // the function prototype will mismatch. 4091 if (Callee->hasFnAttribute(Attribute::Naked)) 4092 return false; 4093 4094 // If this is a musttail call, the callee's prototype must match the caller's 4095 // prototype with the exception of pointee types. The code below doesn't 4096 // implement that, so we can't do this transform. 4097 // TODO: Do the transform if it only requires adding pointer casts. 4098 if (Call.isMustTailCall()) 4099 return false; 4100 4101 Instruction *Caller = &Call; 4102 const AttributeList &CallerPAL = Call.getAttributes(); 4103 4104 // Okay, this is a cast from a function to a different type. Unless doing so 4105 // would cause a type conversion of one of our arguments, change this call to 4106 // be a direct call with arguments casted to the appropriate types. 4107 FunctionType *FT = Callee->getFunctionType(); 4108 Type *OldRetTy = Caller->getType(); 4109 Type *NewRetTy = FT->getReturnType(); 4110 4111 // Check to see if we are changing the return type... 4112 if (OldRetTy != NewRetTy) { 4113 4114 if (NewRetTy->isStructTy()) 4115 return false; // TODO: Handle multiple return values. 4116 4117 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { 4118 if (Callee->isDeclaration()) 4119 return false; // Cannot transform this return value. 4120 4121 if (!Caller->use_empty() && 4122 // void -> non-void is handled specially 4123 !NewRetTy->isVoidTy()) 4124 return false; // Cannot transform this return value. 4125 } 4126 4127 if (!CallerPAL.isEmpty() && !Caller->use_empty()) { 4128 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs()); 4129 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) 4130 return false; // Attribute not compatible with transformed value. 4131 } 4132 4133 // If the callbase is an invoke instruction, and the return value is 4134 // used by a PHI node in a successor, we cannot change the return type of 4135 // the call because there is no place to put the cast instruction (without 4136 // breaking the critical edge). Bail out in this case. 4137 if (!Caller->use_empty()) { 4138 BasicBlock *PhisNotSupportedBlock = nullptr; 4139 if (auto *II = dyn_cast<InvokeInst>(Caller)) 4140 PhisNotSupportedBlock = II->getNormalDest(); 4141 if (PhisNotSupportedBlock) 4142 for (User *U : Caller->users()) 4143 if (PHINode *PN = dyn_cast<PHINode>(U)) 4144 if (PN->getParent() == PhisNotSupportedBlock) 4145 return false; 4146 } 4147 } 4148 4149 unsigned NumActualArgs = Call.arg_size(); 4150 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); 4151 4152 // Prevent us turning: 4153 // declare void @takes_i32_inalloca(i32* inalloca) 4154 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) 4155 // 4156 // into: 4157 // call void @takes_i32_inalloca(i32* null) 4158 // 4159 // Similarly, avoid folding away bitcasts of byval calls. 4160 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || 4161 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) 4162 return false; 4163 4164 auto AI = Call.arg_begin(); 4165 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { 4166 Type *ParamTy = FT->getParamType(i); 4167 Type *ActTy = (*AI)->getType(); 4168 4169 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) 4170 return false; // Cannot transform this parameter value. 4171 4172 // Check if there are any incompatible attributes we cannot drop safely. 4173 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i)) 4174 .overlaps(AttributeFuncs::typeIncompatible( 4175 ParamTy, AttributeFuncs::ASK_UNSAFE_TO_DROP))) 4176 return false; // Attribute not compatible with transformed value. 4177 4178 if (Call.isInAllocaArgument(i) || 4179 CallerPAL.hasParamAttr(i, Attribute::Preallocated)) 4180 return false; // Cannot transform to and from inalloca/preallocated. 4181 4182 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError)) 4183 return false; 4184 4185 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) != 4186 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal)) 4187 return false; // Cannot transform to or from byval. 4188 } 4189 4190 if (Callee->isDeclaration()) { 4191 // Do not delete arguments unless we have a function body. 4192 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) 4193 return false; 4194 4195 // If the callee is just a declaration, don't change the varargsness of the 4196 // call. We don't want to introduce a varargs call where one doesn't 4197 // already exist. 4198 if (FT->isVarArg() != Call.getFunctionType()->isVarArg()) 4199 return false; 4200 4201 // If both the callee and the cast type are varargs, we still have to make 4202 // sure the number of fixed parameters are the same or we have the same 4203 // ABI issues as if we introduce a varargs call. 4204 if (FT->isVarArg() && Call.getFunctionType()->isVarArg() && 4205 FT->getNumParams() != Call.getFunctionType()->getNumParams()) 4206 return false; 4207 } 4208 4209 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && 4210 !CallerPAL.isEmpty()) { 4211 // In this case we have more arguments than the new function type, but we 4212 // won't be dropping them. Check that these extra arguments have attributes 4213 // that are compatible with being a vararg call argument. 4214 unsigned SRetIdx; 4215 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) && 4216 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams()) 4217 return false; 4218 } 4219 4220 // Okay, we decided that this is a safe thing to do: go ahead and start 4221 // inserting cast instructions as necessary. 4222 SmallVector<Value *, 8> Args; 4223 SmallVector<AttributeSet, 8> ArgAttrs; 4224 Args.reserve(NumActualArgs); 4225 ArgAttrs.reserve(NumActualArgs); 4226 4227 // Get any return attributes. 4228 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs()); 4229 4230 // If the return value is not being used, the type may not be compatible 4231 // with the existing attributes. Wipe out any problematic attributes. 4232 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); 4233 4234 LLVMContext &Ctx = Call.getContext(); 4235 AI = Call.arg_begin(); 4236 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { 4237 Type *ParamTy = FT->getParamType(i); 4238 4239 Value *NewArg = *AI; 4240 if ((*AI)->getType() != ParamTy) 4241 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy); 4242 Args.push_back(NewArg); 4243 4244 // Add any parameter attributes except the ones incompatible with the new 4245 // type. Note that we made sure all incompatible ones are safe to drop. 4246 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible( 4247 ParamTy, AttributeFuncs::ASK_SAFE_TO_DROP); 4248 ArgAttrs.push_back( 4249 CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs)); 4250 } 4251 4252 // If the function takes more arguments than the call was taking, add them 4253 // now. 4254 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) { 4255 Args.push_back(Constant::getNullValue(FT->getParamType(i))); 4256 ArgAttrs.push_back(AttributeSet()); 4257 } 4258 4259 // If we are removing arguments to the function, emit an obnoxious warning. 4260 if (FT->getNumParams() < NumActualArgs) { 4261 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 4262 if (FT->isVarArg()) { 4263 // Add all of the arguments in their promoted form to the arg list. 4264 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { 4265 Type *PTy = getPromotedType((*AI)->getType()); 4266 Value *NewArg = *AI; 4267 if (PTy != (*AI)->getType()) { 4268 // Must promote to pass through va_arg area! 4269 Instruction::CastOps opcode = 4270 CastInst::getCastOpcode(*AI, false, PTy, false); 4271 NewArg = Builder.CreateCast(opcode, *AI, PTy); 4272 } 4273 Args.push_back(NewArg); 4274 4275 // Add any parameter attributes. 4276 ArgAttrs.push_back(CallerPAL.getParamAttrs(i)); 4277 } 4278 } 4279 } 4280 4281 AttributeSet FnAttrs = CallerPAL.getFnAttrs(); 4282 4283 if (NewRetTy->isVoidTy()) 4284 Caller->setName(""); // Void type should not have a name. 4285 4286 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) && 4287 "missing argument attributes"); 4288 AttributeList NewCallerPAL = AttributeList::get( 4289 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs); 4290 4291 SmallVector<OperandBundleDef, 1> OpBundles; 4292 Call.getOperandBundlesAsDefs(OpBundles); 4293 4294 CallBase *NewCall; 4295 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { 4296 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(), 4297 II->getUnwindDest(), Args, OpBundles); 4298 } else { 4299 NewCall = Builder.CreateCall(Callee, Args, OpBundles); 4300 cast<CallInst>(NewCall)->setTailCallKind( 4301 cast<CallInst>(Caller)->getTailCallKind()); 4302 } 4303 NewCall->takeName(Caller); 4304 NewCall->setCallingConv(Call.getCallingConv()); 4305 NewCall->setAttributes(NewCallerPAL); 4306 4307 // Preserve prof metadata if any. 4308 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof}); 4309 4310 // Insert a cast of the return type as necessary. 4311 Instruction *NC = NewCall; 4312 Value *NV = NC; 4313 if (OldRetTy != NV->getType() && !Caller->use_empty()) { 4314 if (!NV->getType()->isVoidTy()) { 4315 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); 4316 NC->setDebugLoc(Caller->getDebugLoc()); 4317 4318 auto OptInsertPt = NewCall->getInsertionPointAfterDef(); 4319 assert(OptInsertPt && "No place to insert cast"); 4320 InsertNewInstBefore(NC, *OptInsertPt); 4321 Worklist.pushUsersToWorkList(*Caller); 4322 } else { 4323 NV = PoisonValue::get(Caller->getType()); 4324 } 4325 } 4326 4327 if (!Caller->use_empty()) 4328 replaceInstUsesWith(*Caller, NV); 4329 else if (Caller->hasValueHandle()) { 4330 if (OldRetTy == NV->getType()) 4331 ValueHandleBase::ValueIsRAUWd(Caller, NV); 4332 else 4333 // We cannot call ValueIsRAUWd with a different type, and the 4334 // actual tracked value will disappear. 4335 ValueHandleBase::ValueIsDeleted(Caller); 4336 } 4337 4338 eraseInstFromFunction(*Caller); 4339 return true; 4340 } 4341 4342 /// Turn a call to a function created by init_trampoline / adjust_trampoline 4343 /// intrinsic pair into a direct call to the underlying function. 4344 Instruction * 4345 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call, 4346 IntrinsicInst &Tramp) { 4347 FunctionType *FTy = Call.getFunctionType(); 4348 AttributeList Attrs = Call.getAttributes(); 4349 4350 // If the call already has the 'nest' attribute somewhere then give up - 4351 // otherwise 'nest' would occur twice after splicing in the chain. 4352 if (Attrs.hasAttrSomewhere(Attribute::Nest)) 4353 return nullptr; 4354 4355 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts()); 4356 FunctionType *NestFTy = NestF->getFunctionType(); 4357 4358 AttributeList NestAttrs = NestF->getAttributes(); 4359 if (!NestAttrs.isEmpty()) { 4360 unsigned NestArgNo = 0; 4361 Type *NestTy = nullptr; 4362 AttributeSet NestAttr; 4363 4364 // Look for a parameter marked with the 'nest' attribute. 4365 for (FunctionType::param_iterator I = NestFTy->param_begin(), 4366 E = NestFTy->param_end(); 4367 I != E; ++NestArgNo, ++I) { 4368 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo); 4369 if (AS.hasAttribute(Attribute::Nest)) { 4370 // Record the parameter type and any other attributes. 4371 NestTy = *I; 4372 NestAttr = AS; 4373 break; 4374 } 4375 } 4376 4377 if (NestTy) { 4378 std::vector<Value*> NewArgs; 4379 std::vector<AttributeSet> NewArgAttrs; 4380 NewArgs.reserve(Call.arg_size() + 1); 4381 NewArgAttrs.reserve(Call.arg_size()); 4382 4383 // Insert the nest argument into the call argument list, which may 4384 // mean appending it. Likewise for attributes. 4385 4386 { 4387 unsigned ArgNo = 0; 4388 auto I = Call.arg_begin(), E = Call.arg_end(); 4389 do { 4390 if (ArgNo == NestArgNo) { 4391 // Add the chain argument and attributes. 4392 Value *NestVal = Tramp.getArgOperand(2); 4393 if (NestVal->getType() != NestTy) 4394 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest"); 4395 NewArgs.push_back(NestVal); 4396 NewArgAttrs.push_back(NestAttr); 4397 } 4398 4399 if (I == E) 4400 break; 4401 4402 // Add the original argument and attributes. 4403 NewArgs.push_back(*I); 4404 NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo)); 4405 4406 ++ArgNo; 4407 ++I; 4408 } while (true); 4409 } 4410 4411 // The trampoline may have been bitcast to a bogus type (FTy). 4412 // Handle this by synthesizing a new function type, equal to FTy 4413 // with the chain parameter inserted. 4414 4415 std::vector<Type*> NewTypes; 4416 NewTypes.reserve(FTy->getNumParams()+1); 4417 4418 // Insert the chain's type into the list of parameter types, which may 4419 // mean appending it. 4420 { 4421 unsigned ArgNo = 0; 4422 FunctionType::param_iterator I = FTy->param_begin(), 4423 E = FTy->param_end(); 4424 4425 do { 4426 if (ArgNo == NestArgNo) 4427 // Add the chain's type. 4428 NewTypes.push_back(NestTy); 4429 4430 if (I == E) 4431 break; 4432 4433 // Add the original type. 4434 NewTypes.push_back(*I); 4435 4436 ++ArgNo; 4437 ++I; 4438 } while (true); 4439 } 4440 4441 // Replace the trampoline call with a direct call. Let the generic 4442 // code sort out any function type mismatches. 4443 FunctionType *NewFTy = 4444 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg()); 4445 AttributeList NewPAL = 4446 AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(), 4447 Attrs.getRetAttrs(), NewArgAttrs); 4448 4449 SmallVector<OperandBundleDef, 1> OpBundles; 4450 Call.getOperandBundlesAsDefs(OpBundles); 4451 4452 Instruction *NewCaller; 4453 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 4454 NewCaller = InvokeInst::Create(NewFTy, NestF, II->getNormalDest(), 4455 II->getUnwindDest(), NewArgs, OpBundles); 4456 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); 4457 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); 4458 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) { 4459 NewCaller = 4460 CallBrInst::Create(NewFTy, NestF, CBI->getDefaultDest(), 4461 CBI->getIndirectDests(), NewArgs, OpBundles); 4462 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv()); 4463 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL); 4464 } else { 4465 NewCaller = CallInst::Create(NewFTy, NestF, NewArgs, OpBundles); 4466 cast<CallInst>(NewCaller)->setTailCallKind( 4467 cast<CallInst>(Call).getTailCallKind()); 4468 cast<CallInst>(NewCaller)->setCallingConv( 4469 cast<CallInst>(Call).getCallingConv()); 4470 cast<CallInst>(NewCaller)->setAttributes(NewPAL); 4471 } 4472 NewCaller->setDebugLoc(Call.getDebugLoc()); 4473 4474 return NewCaller; 4475 } 4476 } 4477 4478 // Replace the trampoline call with a direct call. Since there is no 'nest' 4479 // parameter, there is no need to adjust the argument list. Let the generic 4480 // code sort out any function type mismatches. 4481 Call.setCalledFunction(FTy, NestF); 4482 return &Call; 4483 } 4484