xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/FloatingPointMode.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallBitVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/IntrinsicsAArch64.h"
50 #include "llvm/IR/IntrinsicsAMDGPU.h"
51 #include "llvm/IR/IntrinsicsARM.h"
52 #include "llvm/IR/IntrinsicsHexagon.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/ValueHandle.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/KnownBits.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/InstCombine/InstCombiner.h"
71 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <cstring>
78 #include <utility>
79 #include <vector>
80 
81 #define DEBUG_TYPE "instcombine"
82 #include "llvm/Transforms/Utils/InstructionWorklist.h"
83 
84 using namespace llvm;
85 using namespace PatternMatch;
86 
87 STATISTIC(NumSimplified, "Number of library calls simplified");
88 
89 static cl::opt<unsigned> GuardWideningWindow(
90     "instcombine-guard-widening-window",
91     cl::init(3),
92     cl::desc("How wide an instruction window to bypass looking for "
93              "another guard"));
94 
95 namespace llvm {
96 /// enable preservation of attributes in assume like:
97 /// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
98 extern cl::opt<bool> EnableKnowledgeRetention;
99 } // namespace llvm
100 
101 /// Return the specified type promoted as it would be to pass though a va_arg
102 /// area.
103 static Type *getPromotedType(Type *Ty) {
104   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
105     if (ITy->getBitWidth() < 32)
106       return Type::getInt32Ty(Ty->getContext());
107   }
108   return Ty;
109 }
110 
111 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
112   Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
113   MaybeAlign CopyDstAlign = MI->getDestAlign();
114   if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
115     MI->setDestAlignment(DstAlign);
116     return MI;
117   }
118 
119   Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
120   MaybeAlign CopySrcAlign = MI->getSourceAlign();
121   if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
122     MI->setSourceAlignment(SrcAlign);
123     return MI;
124   }
125 
126   // If we have a store to a location which is known constant, we can conclude
127   // that the store must be storing the constant value (else the memory
128   // wouldn't be constant), and this must be a noop.
129   if (AA->pointsToConstantMemory(MI->getDest())) {
130     // Set the size of the copy to 0, it will be deleted on the next iteration.
131     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
132     return MI;
133   }
134 
135   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
136   // load/store.
137   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
138   if (!MemOpLength) return nullptr;
139 
140   // Source and destination pointer types are always "i8*" for intrinsic.  See
141   // if the size is something we can handle with a single primitive load/store.
142   // A single load+store correctly handles overlapping memory in the memmove
143   // case.
144   uint64_t Size = MemOpLength->getLimitedValue();
145   assert(Size && "0-sized memory transferring should be removed already.");
146 
147   if (Size > 8 || (Size&(Size-1)))
148     return nullptr;  // If not 1/2/4/8 bytes, exit.
149 
150   // If it is an atomic and alignment is less than the size then we will
151   // introduce the unaligned memory access which will be later transformed
152   // into libcall in CodeGen. This is not evident performance gain so disable
153   // it now.
154   if (isa<AtomicMemTransferInst>(MI))
155     if (*CopyDstAlign < Size || *CopySrcAlign < Size)
156       return nullptr;
157 
158   // Use an integer load+store unless we can find something better.
159   unsigned SrcAddrSp =
160     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
161   unsigned DstAddrSp =
162     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
163 
164   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
165   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
166   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
167 
168   // If the memcpy has metadata describing the members, see if we can get the
169   // TBAA tag describing our copy.
170   MDNode *CopyMD = nullptr;
171   if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
172     CopyMD = M;
173   } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
174     if (M->getNumOperands() == 3 && M->getOperand(0) &&
175         mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
176         mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
177         M->getOperand(1) &&
178         mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
179         mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
180         Size &&
181         M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
182       CopyMD = cast<MDNode>(M->getOperand(2));
183   }
184 
185   Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
186   Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
187   LoadInst *L = Builder.CreateLoad(IntType, Src);
188   // Alignment from the mem intrinsic will be better, so use it.
189   L->setAlignment(*CopySrcAlign);
190   if (CopyMD)
191     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
192   MDNode *LoopMemParallelMD =
193     MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
194   if (LoopMemParallelMD)
195     L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
196   MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
197   if (AccessGroupMD)
198     L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
199 
200   StoreInst *S = Builder.CreateStore(L, Dest);
201   // Alignment from the mem intrinsic will be better, so use it.
202   S->setAlignment(*CopyDstAlign);
203   if (CopyMD)
204     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
205   if (LoopMemParallelMD)
206     S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
207   if (AccessGroupMD)
208     S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
209 
210   if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
211     // non-atomics can be volatile
212     L->setVolatile(MT->isVolatile());
213     S->setVolatile(MT->isVolatile());
214   }
215   if (isa<AtomicMemTransferInst>(MI)) {
216     // atomics have to be unordered
217     L->setOrdering(AtomicOrdering::Unordered);
218     S->setOrdering(AtomicOrdering::Unordered);
219   }
220 
221   // Set the size of the copy to 0, it will be deleted on the next iteration.
222   MI->setLength(Constant::getNullValue(MemOpLength->getType()));
223   return MI;
224 }
225 
226 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) {
227   const Align KnownAlignment =
228       getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
229   MaybeAlign MemSetAlign = MI->getDestAlign();
230   if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
231     MI->setDestAlignment(KnownAlignment);
232     return MI;
233   }
234 
235   // If we have a store to a location which is known constant, we can conclude
236   // that the store must be storing the constant value (else the memory
237   // wouldn't be constant), and this must be a noop.
238   if (AA->pointsToConstantMemory(MI->getDest())) {
239     // Set the size of the copy to 0, it will be deleted on the next iteration.
240     MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
241     return MI;
242   }
243 
244   // Extract the length and alignment and fill if they are constant.
245   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
246   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
247   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
248     return nullptr;
249   const uint64_t Len = LenC->getLimitedValue();
250   assert(Len && "0-sized memory setting should be removed already.");
251   const Align Alignment = assumeAligned(MI->getDestAlignment());
252 
253   // If it is an atomic and alignment is less than the size then we will
254   // introduce the unaligned memory access which will be later transformed
255   // into libcall in CodeGen. This is not evident performance gain so disable
256   // it now.
257   if (isa<AtomicMemSetInst>(MI))
258     if (Alignment < Len)
259       return nullptr;
260 
261   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
262   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
263     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
264 
265     Value *Dest = MI->getDest();
266     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
267     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
268     Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
269 
270     // Extract the fill value and store.
271     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
272     StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
273                                        MI->isVolatile());
274     S->setAlignment(Alignment);
275     if (isa<AtomicMemSetInst>(MI))
276       S->setOrdering(AtomicOrdering::Unordered);
277 
278     // Set the size of the copy to 0, it will be deleted on the next iteration.
279     MI->setLength(Constant::getNullValue(LenC->getType()));
280     return MI;
281   }
282 
283   return nullptr;
284 }
285 
286 // TODO, Obvious Missing Transforms:
287 // * Narrow width by halfs excluding zero/undef lanes
288 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
289   Value *LoadPtr = II.getArgOperand(0);
290   const Align Alignment =
291       cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
292 
293   // If the mask is all ones or undefs, this is a plain vector load of the 1st
294   // argument.
295   if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
296     LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
297                                             "unmaskedload");
298     L->copyMetadata(II);
299     return L;
300   }
301 
302   // If we can unconditionally load from this address, replace with a
303   // load/select idiom. TODO: use DT for context sensitive query
304   if (isDereferenceablePointer(LoadPtr, II.getType(),
305                                II.getModule()->getDataLayout(), &II, nullptr)) {
306     LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
307                                              "unmaskedload");
308     LI->copyMetadata(II);
309     return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
310   }
311 
312   return nullptr;
313 }
314 
315 // TODO, Obvious Missing Transforms:
316 // * Single constant active lane -> store
317 // * Narrow width by halfs excluding zero/undef lanes
318 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
319   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
320   if (!ConstMask)
321     return nullptr;
322 
323   // If the mask is all zeros, this instruction does nothing.
324   if (ConstMask->isNullValue())
325     return eraseInstFromFunction(II);
326 
327   // If the mask is all ones, this is a plain vector store of the 1st argument.
328   if (ConstMask->isAllOnesValue()) {
329     Value *StorePtr = II.getArgOperand(1);
330     Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
331     StoreInst *S =
332         new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
333     S->copyMetadata(II);
334     return S;
335   }
336 
337   if (isa<ScalableVectorType>(ConstMask->getType()))
338     return nullptr;
339 
340   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
341   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
342   APInt UndefElts(DemandedElts.getBitWidth(), 0);
343   if (Value *V =
344           SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
345     return replaceOperand(II, 0, V);
346 
347   return nullptr;
348 }
349 
350 // TODO, Obvious Missing Transforms:
351 // * Single constant active lane load -> load
352 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
353 // * Adjacent vector addresses -> masked.load
354 // * Narrow width by halfs excluding zero/undef lanes
355 // * Vector incrementing address -> vector masked load
356 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
357   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
358   if (!ConstMask)
359     return nullptr;
360 
361   // Vector splat address w/known mask -> scalar load
362   // Fold the gather to load the source vector first lane
363   // because it is reloading the same value each time
364   if (ConstMask->isAllOnesValue())
365     if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
366       auto *VecTy = cast<VectorType>(II.getType());
367       const Align Alignment =
368           cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
369       LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
370                                               Alignment, "load.scalar");
371       Value *Shuf =
372           Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
373       return replaceInstUsesWith(II, cast<Instruction>(Shuf));
374     }
375 
376   return nullptr;
377 }
378 
379 // TODO, Obvious Missing Transforms:
380 // * Single constant active lane -> store
381 // * Adjacent vector addresses -> masked.store
382 // * Narrow store width by halfs excluding zero/undef lanes
383 // * Vector incrementing address -> vector masked store
384 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
385   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
386   if (!ConstMask)
387     return nullptr;
388 
389   // If the mask is all zeros, a scatter does nothing.
390   if (ConstMask->isNullValue())
391     return eraseInstFromFunction(II);
392 
393   // Vector splat address -> scalar store
394   if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
395     // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
396     if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
397       Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
398       StoreInst *S =
399           new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false, Alignment);
400       S->copyMetadata(II);
401       return S;
402     }
403     // scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
404     // lastlane), ptr
405     if (ConstMask->isAllOnesValue()) {
406       Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
407       VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType());
408       ElementCount VF = WideLoadTy->getElementCount();
409       Constant *EC =
410           ConstantInt::get(Builder.getInt32Ty(), VF.getKnownMinValue());
411       Value *RunTimeVF = VF.isScalable() ? Builder.CreateVScale(EC) : EC;
412       Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1));
413       Value *Extract =
414           Builder.CreateExtractElement(II.getArgOperand(0), LastLane);
415       StoreInst *S =
416           new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
417       S->copyMetadata(II);
418       return S;
419     }
420   }
421   if (isa<ScalableVectorType>(ConstMask->getType()))
422     return nullptr;
423 
424   // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
425   APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
426   APInt UndefElts(DemandedElts.getBitWidth(), 0);
427   if (Value *V =
428           SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
429     return replaceOperand(II, 0, V);
430   if (Value *V =
431           SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts))
432     return replaceOperand(II, 1, V);
433 
434   return nullptr;
435 }
436 
437 /// This function transforms launder.invariant.group and strip.invariant.group
438 /// like:
439 /// launder(launder(%x)) -> launder(%x)       (the result is not the argument)
440 /// launder(strip(%x)) -> launder(%x)
441 /// strip(strip(%x)) -> strip(%x)             (the result is not the argument)
442 /// strip(launder(%x)) -> strip(%x)
443 /// This is legal because it preserves the most recent information about
444 /// the presence or absence of invariant.group.
445 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
446                                                     InstCombinerImpl &IC) {
447   auto *Arg = II.getArgOperand(0);
448   auto *StrippedArg = Arg->stripPointerCasts();
449   auto *StrippedInvariantGroupsArg = StrippedArg;
450   while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
451     if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
452         Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
453       break;
454     StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
455   }
456   if (StrippedArg == StrippedInvariantGroupsArg)
457     return nullptr; // No launders/strips to remove.
458 
459   Value *Result = nullptr;
460 
461   if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
462     Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
463   else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
464     Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
465   else
466     llvm_unreachable(
467         "simplifyInvariantGroupIntrinsic only handles launder and strip");
468   if (Result->getType()->getPointerAddressSpace() !=
469       II.getType()->getPointerAddressSpace())
470     Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
471   if (Result->getType() != II.getType())
472     Result = IC.Builder.CreateBitCast(Result, II.getType());
473 
474   return cast<Instruction>(Result);
475 }
476 
477 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) {
478   assert((II.getIntrinsicID() == Intrinsic::cttz ||
479           II.getIntrinsicID() == Intrinsic::ctlz) &&
480          "Expected cttz or ctlz intrinsic");
481   bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
482   Value *Op0 = II.getArgOperand(0);
483   Value *Op1 = II.getArgOperand(1);
484   Value *X;
485   // ctlz(bitreverse(x)) -> cttz(x)
486   // cttz(bitreverse(x)) -> ctlz(x)
487   if (match(Op0, m_BitReverse(m_Value(X)))) {
488     Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
489     Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
490     return CallInst::Create(F, {X, II.getArgOperand(1)});
491   }
492 
493   if (II.getType()->isIntOrIntVectorTy(1)) {
494     // ctlz/cttz i1 Op0 --> not Op0
495     if (match(Op1, m_Zero()))
496       return BinaryOperator::CreateNot(Op0);
497     // If zero is poison, then the input can be assumed to be "true", so the
498     // instruction simplifies to "false".
499     assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
500     return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
501   }
502 
503   // If the operand is a select with constant arm(s), try to hoist ctlz/cttz.
504   if (auto *Sel = dyn_cast<SelectInst>(Op0))
505     if (Instruction *R = IC.FoldOpIntoSelect(II, Sel))
506       return R;
507 
508   if (IsTZ) {
509     // cttz(-x) -> cttz(x)
510     if (match(Op0, m_Neg(m_Value(X))))
511       return IC.replaceOperand(II, 0, X);
512 
513     // cttz(sext(x)) -> cttz(zext(x))
514     if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
515       auto *Zext = IC.Builder.CreateZExt(X, II.getType());
516       auto *CttzZext =
517           IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
518       return IC.replaceInstUsesWith(II, CttzZext);
519     }
520 
521     // Zext doesn't change the number of trailing zeros, so narrow:
522     // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
523     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
524       auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
525                                                     IC.Builder.getTrue());
526       auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
527       return IC.replaceInstUsesWith(II, ZextCttz);
528     }
529 
530     // cttz(abs(x)) -> cttz(x)
531     // cttz(nabs(x)) -> cttz(x)
532     Value *Y;
533     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
534     if (SPF == SPF_ABS || SPF == SPF_NABS)
535       return IC.replaceOperand(II, 0, X);
536 
537     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
538       return IC.replaceOperand(II, 0, X);
539   }
540 
541   KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
542 
543   // Create a mask for bits above (ctlz) or below (cttz) the first known one.
544   unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
545                                 : Known.countMaxLeadingZeros();
546   unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
547                                 : Known.countMinLeadingZeros();
548 
549   // If all bits above (ctlz) or below (cttz) the first known one are known
550   // zero, this value is constant.
551   // FIXME: This should be in InstSimplify because we're replacing an
552   // instruction with a constant.
553   if (PossibleZeros == DefiniteZeros) {
554     auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
555     return IC.replaceInstUsesWith(II, C);
556   }
557 
558   // If the input to cttz/ctlz is known to be non-zero,
559   // then change the 'ZeroIsPoison' parameter to 'true'
560   // because we know the zero behavior can't affect the result.
561   if (!Known.One.isZero() ||
562       isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
563                      &IC.getDominatorTree())) {
564     if (!match(II.getArgOperand(1), m_One()))
565       return IC.replaceOperand(II, 1, IC.Builder.getTrue());
566   }
567 
568   // Add range metadata since known bits can't completely reflect what we know.
569   // TODO: Handle splat vectors.
570   auto *IT = dyn_cast<IntegerType>(Op0->getType());
571   if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
572     Metadata *LowAndHigh[] = {
573         ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
574         ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
575     II.setMetadata(LLVMContext::MD_range,
576                    MDNode::get(II.getContext(), LowAndHigh));
577     return &II;
578   }
579 
580   return nullptr;
581 }
582 
583 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) {
584   assert(II.getIntrinsicID() == Intrinsic::ctpop &&
585          "Expected ctpop intrinsic");
586   Type *Ty = II.getType();
587   unsigned BitWidth = Ty->getScalarSizeInBits();
588   Value *Op0 = II.getArgOperand(0);
589   Value *X, *Y;
590 
591   // ctpop(bitreverse(x)) -> ctpop(x)
592   // ctpop(bswap(x)) -> ctpop(x)
593   if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
594     return IC.replaceOperand(II, 0, X);
595 
596   // ctpop(rot(x)) -> ctpop(x)
597   if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
598        match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
599       X == Y)
600     return IC.replaceOperand(II, 0, X);
601 
602   // ctpop(x | -x) -> bitwidth - cttz(x, false)
603   if (Op0->hasOneUse() &&
604       match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
605     Function *F =
606         Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
607     auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()});
608     auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
609     return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
610   }
611 
612   // ctpop(~x & (x - 1)) -> cttz(x, false)
613   if (match(Op0,
614             m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) {
615     Function *F =
616         Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
617     return CallInst::Create(F, {X, IC.Builder.getFalse()});
618   }
619 
620   // Zext doesn't change the number of set bits, so narrow:
621   // ctpop (zext X) --> zext (ctpop X)
622   if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
623     Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
624     return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
625   }
626 
627   // If the operand is a select with constant arm(s), try to hoist ctpop.
628   if (auto *Sel = dyn_cast<SelectInst>(Op0))
629     if (Instruction *R = IC.FoldOpIntoSelect(II, Sel))
630       return R;
631 
632   KnownBits Known(BitWidth);
633   IC.computeKnownBits(Op0, Known, 0, &II);
634 
635   // If all bits are zero except for exactly one fixed bit, then the result
636   // must be 0 or 1, and we can get that answer by shifting to LSB:
637   // ctpop (X & 32) --> (X & 32) >> 5
638   if ((~Known.Zero).isPowerOf2())
639     return BinaryOperator::CreateLShr(
640         Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
641 
642   // FIXME: Try to simplify vectors of integers.
643   auto *IT = dyn_cast<IntegerType>(Ty);
644   if (!IT)
645     return nullptr;
646 
647   // Add range metadata since known bits can't completely reflect what we know.
648   unsigned MinCount = Known.countMinPopulation();
649   unsigned MaxCount = Known.countMaxPopulation();
650   if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
651     Metadata *LowAndHigh[] = {
652         ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
653         ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
654     II.setMetadata(LLVMContext::MD_range,
655                    MDNode::get(II.getContext(), LowAndHigh));
656     return &II;
657   }
658 
659   return nullptr;
660 }
661 
662 /// Convert a table lookup to shufflevector if the mask is constant.
663 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
664 /// which case we could lower the shufflevector with rev64 instructions
665 /// as it's actually a byte reverse.
666 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
667                                InstCombiner::BuilderTy &Builder) {
668   // Bail out if the mask is not a constant.
669   auto *C = dyn_cast<Constant>(II.getArgOperand(1));
670   if (!C)
671     return nullptr;
672 
673   auto *VecTy = cast<FixedVectorType>(II.getType());
674   unsigned NumElts = VecTy->getNumElements();
675 
676   // Only perform this transformation for <8 x i8> vector types.
677   if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
678     return nullptr;
679 
680   int Indexes[8];
681 
682   for (unsigned I = 0; I < NumElts; ++I) {
683     Constant *COp = C->getAggregateElement(I);
684 
685     if (!COp || !isa<ConstantInt>(COp))
686       return nullptr;
687 
688     Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
689 
690     // Make sure the mask indices are in range.
691     if ((unsigned)Indexes[I] >= NumElts)
692       return nullptr;
693   }
694 
695   auto *V1 = II.getArgOperand(0);
696   auto *V2 = Constant::getNullValue(V1->getType());
697   return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes));
698 }
699 
700 // Returns true iff the 2 intrinsics have the same operands, limiting the
701 // comparison to the first NumOperands.
702 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
703                              unsigned NumOperands) {
704   assert(I.arg_size() >= NumOperands && "Not enough operands");
705   assert(E.arg_size() >= NumOperands && "Not enough operands");
706   for (unsigned i = 0; i < NumOperands; i++)
707     if (I.getArgOperand(i) != E.getArgOperand(i))
708       return false;
709   return true;
710 }
711 
712 // Remove trivially empty start/end intrinsic ranges, i.e. a start
713 // immediately followed by an end (ignoring debuginfo or other
714 // start/end intrinsics in between). As this handles only the most trivial
715 // cases, tracking the nesting level is not needed:
716 //
717 //   call @llvm.foo.start(i1 0)
718 //   call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
719 //   call @llvm.foo.end(i1 0)
720 //   call @llvm.foo.end(i1 0) ; &I
721 static bool
722 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC,
723                           std::function<bool(const IntrinsicInst &)> IsStart) {
724   // We start from the end intrinsic and scan backwards, so that InstCombine
725   // has already processed (and potentially removed) all the instructions
726   // before the end intrinsic.
727   BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
728   for (; BI != BE; ++BI) {
729     if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
730       if (I->isDebugOrPseudoInst() ||
731           I->getIntrinsicID() == EndI.getIntrinsicID())
732         continue;
733       if (IsStart(*I)) {
734         if (haveSameOperands(EndI, *I, EndI.arg_size())) {
735           IC.eraseInstFromFunction(*I);
736           IC.eraseInstFromFunction(EndI);
737           return true;
738         }
739         // Skip start intrinsics that don't pair with this end intrinsic.
740         continue;
741       }
742     }
743     break;
744   }
745 
746   return false;
747 }
748 
749 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) {
750   removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
751     return I.getIntrinsicID() == Intrinsic::vastart ||
752            I.getIntrinsicID() == Intrinsic::vacopy;
753   });
754   return nullptr;
755 }
756 
757 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) {
758   assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
759   Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
760   if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
761     Call.setArgOperand(0, Arg1);
762     Call.setArgOperand(1, Arg0);
763     return &Call;
764   }
765   return nullptr;
766 }
767 
768 /// Creates a result tuple for an overflow intrinsic \p II with a given
769 /// \p Result and a constant \p Overflow value.
770 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result,
771                                         Constant *Overflow) {
772   Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
773   StructType *ST = cast<StructType>(II->getType());
774   Constant *Struct = ConstantStruct::get(ST, V);
775   return InsertValueInst::Create(Struct, Result, 0);
776 }
777 
778 Instruction *
779 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
780   WithOverflowInst *WO = cast<WithOverflowInst>(II);
781   Value *OperationResult = nullptr;
782   Constant *OverflowResult = nullptr;
783   if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
784                             WO->getRHS(), *WO, OperationResult, OverflowResult))
785     return createOverflowTuple(WO, OperationResult, OverflowResult);
786   return nullptr;
787 }
788 
789 static Optional<bool> getKnownSign(Value *Op, Instruction *CxtI,
790                                    const DataLayout &DL, AssumptionCache *AC,
791                                    DominatorTree *DT) {
792   KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT);
793   if (Known.isNonNegative())
794     return false;
795   if (Known.isNegative())
796     return true;
797 
798   return isImpliedByDomCondition(
799       ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL);
800 }
801 
802 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
803 /// can trigger other combines.
804 static Instruction *moveAddAfterMinMax(IntrinsicInst *II,
805                                        InstCombiner::BuilderTy &Builder) {
806   Intrinsic::ID MinMaxID = II->getIntrinsicID();
807   assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
808           MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
809          "Expected a min or max intrinsic");
810 
811   // TODO: Match vectors with undef elements, but undef may not propagate.
812   Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
813   Value *X;
814   const APInt *C0, *C1;
815   if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
816       !match(Op1, m_APInt(C1)))
817     return nullptr;
818 
819   // Check for necessary no-wrap and overflow constraints.
820   bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
821   auto *Add = cast<BinaryOperator>(Op0);
822   if ((IsSigned && !Add->hasNoSignedWrap()) ||
823       (!IsSigned && !Add->hasNoUnsignedWrap()))
824     return nullptr;
825 
826   // If the constant difference overflows, then instsimplify should reduce the
827   // min/max to the add or C1.
828   bool Overflow;
829   APInt CDiff =
830       IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
831   assert(!Overflow && "Expected simplify of min/max");
832 
833   // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
834   // Note: the "mismatched" no-overflow setting does not propagate.
835   Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
836   Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
837   return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
838                   : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
839 }
840 
841 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output
842 /// can only be one of two possible constant values -- turn that into a select
843 /// of constants.
844 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II,
845                                         InstCombiner::BuilderTy &Builder) {
846   Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
847   Value *X;
848   const APInt *C0, *C1;
849   if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
850     return nullptr;
851 
852   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
853   switch (II->getIntrinsicID()) {
854   case Intrinsic::smax:
855     if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
856       Pred = ICmpInst::ICMP_SGT;
857     break;
858   case Intrinsic::smin:
859     if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
860       Pred = ICmpInst::ICMP_SLT;
861     break;
862   case Intrinsic::umax:
863     if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
864       Pred = ICmpInst::ICMP_UGT;
865     break;
866   case Intrinsic::umin:
867     if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
868       Pred = ICmpInst::ICMP_ULT;
869     break;
870   default:
871     llvm_unreachable("Expected min/max intrinsic");
872   }
873   if (Pred == CmpInst::BAD_ICMP_PREDICATE)
874     return nullptr;
875 
876   // max (min X, 42), 41 --> X > 41 ? 42 : 41
877   // min (max X, 42), 43 --> X < 43 ? 42 : 43
878   Value *Cmp = Builder.CreateICmp(Pred, X, I1);
879   return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
880 }
881 
882 /// Reduce a sequence of min/max intrinsics with a common operand.
883 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) {
884   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
885   auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
886   auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
887   Intrinsic::ID MinMaxID = II->getIntrinsicID();
888   if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
889       RHS->getIntrinsicID() != MinMaxID ||
890       (!LHS->hasOneUse() && !RHS->hasOneUse()))
891     return nullptr;
892 
893   Value *A = LHS->getArgOperand(0);
894   Value *B = LHS->getArgOperand(1);
895   Value *C = RHS->getArgOperand(0);
896   Value *D = RHS->getArgOperand(1);
897 
898   // Look for a common operand.
899   Value *MinMaxOp = nullptr;
900   Value *ThirdOp = nullptr;
901   if (LHS->hasOneUse()) {
902     // If the LHS is only used in this chain and the RHS is used outside of it,
903     // reuse the RHS min/max because that will eliminate the LHS.
904     if (D == A || C == A) {
905       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
906       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
907       MinMaxOp = RHS;
908       ThirdOp = B;
909     } else if (D == B || C == B) {
910       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
911       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
912       MinMaxOp = RHS;
913       ThirdOp = A;
914     }
915   } else {
916     assert(RHS->hasOneUse() && "Expected one-use operand");
917     // Reuse the LHS. This will eliminate the RHS.
918     if (D == A || D == B) {
919       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
920       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
921       MinMaxOp = LHS;
922       ThirdOp = C;
923     } else if (C == A || C == B) {
924       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
925       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
926       MinMaxOp = LHS;
927       ThirdOp = D;
928     }
929   }
930 
931   if (!MinMaxOp || !ThirdOp)
932     return nullptr;
933 
934   Module *Mod = II->getModule();
935   Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType());
936   return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
937 }
938 
939 /// CallInst simplification. This mostly only handles folding of intrinsic
940 /// instructions. For normal calls, it allows visitCallBase to do the heavy
941 /// lifting.
942 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) {
943   // Don't try to simplify calls without uses. It will not do anything useful,
944   // but will result in the following folds being skipped.
945   if (!CI.use_empty())
946     if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
947       return replaceInstUsesWith(CI, V);
948 
949   if (isFreeCall(&CI, &TLI))
950     return visitFree(CI);
951 
952   // If the caller function is nounwind, mark the call as nounwind, even if the
953   // callee isn't.
954   if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
955     CI.setDoesNotThrow();
956     return &CI;
957   }
958 
959   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
960   if (!II) return visitCallBase(CI);
961 
962   // For atomic unordered mem intrinsics if len is not a positive or
963   // not a multiple of element size then behavior is undefined.
964   if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
965     if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
966       if (NumBytes->getSExtValue() < 0 ||
967           (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
968         CreateNonTerminatorUnreachable(AMI);
969         assert(AMI->getType()->isVoidTy() &&
970                "non void atomic unordered mem intrinsic");
971         return eraseInstFromFunction(*AMI);
972       }
973 
974   // Intrinsics cannot occur in an invoke or a callbr, so handle them here
975   // instead of in visitCallBase.
976   if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
977     bool Changed = false;
978 
979     // memmove/cpy/set of zero bytes is a noop.
980     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
981       if (NumBytes->isNullValue())
982         return eraseInstFromFunction(CI);
983 
984       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
985         if (CI->getZExtValue() == 1) {
986           // Replace the instruction with just byte operations.  We would
987           // transform other cases to loads/stores, but we don't know if
988           // alignment is sufficient.
989         }
990     }
991 
992     // No other transformations apply to volatile transfers.
993     if (auto *M = dyn_cast<MemIntrinsic>(MI))
994       if (M->isVolatile())
995         return nullptr;
996 
997     // If we have a memmove and the source operation is a constant global,
998     // then the source and dest pointers can't alias, so we can change this
999     // into a call to memcpy.
1000     if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1001       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1002         if (GVSrc->isConstant()) {
1003           Module *M = CI.getModule();
1004           Intrinsic::ID MemCpyID =
1005               isa<AtomicMemMoveInst>(MMI)
1006                   ? Intrinsic::memcpy_element_unordered_atomic
1007                   : Intrinsic::memcpy;
1008           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1009                            CI.getArgOperand(1)->getType(),
1010                            CI.getArgOperand(2)->getType() };
1011           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1012           Changed = true;
1013         }
1014     }
1015 
1016     if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1017       // memmove(x,x,size) -> noop.
1018       if (MTI->getSource() == MTI->getDest())
1019         return eraseInstFromFunction(CI);
1020     }
1021 
1022     // If we can determine a pointer alignment that is bigger than currently
1023     // set, update the alignment.
1024     if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1025       if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1026         return I;
1027     } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1028       if (Instruction *I = SimplifyAnyMemSet(MSI))
1029         return I;
1030     }
1031 
1032     if (Changed) return II;
1033   }
1034 
1035   // For fixed width vector result intrinsics, use the generic demanded vector
1036   // support.
1037   if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
1038     auto VWidth = IIFVTy->getNumElements();
1039     APInt UndefElts(VWidth, 0);
1040     APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1041     if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
1042       if (V != II)
1043         return replaceInstUsesWith(*II, V);
1044       return II;
1045     }
1046   }
1047 
1048   if (II->isCommutative()) {
1049     if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
1050       return NewCall;
1051   }
1052 
1053   Intrinsic::ID IID = II->getIntrinsicID();
1054   switch (IID) {
1055   case Intrinsic::objectsize:
1056     if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
1057       return replaceInstUsesWith(CI, V);
1058     return nullptr;
1059   case Intrinsic::abs: {
1060     Value *IIOperand = II->getArgOperand(0);
1061     bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
1062 
1063     // abs(-x) -> abs(x)
1064     // TODO: Copy nsw if it was present on the neg?
1065     Value *X;
1066     if (match(IIOperand, m_Neg(m_Value(X))))
1067       return replaceOperand(*II, 0, X);
1068     if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X)))))
1069       return replaceOperand(*II, 0, X);
1070     if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X))))
1071       return replaceOperand(*II, 0, X);
1072 
1073     if (Optional<bool> Sign = getKnownSign(IIOperand, II, DL, &AC, &DT)) {
1074       // abs(x) -> x if x >= 0
1075       if (!*Sign)
1076         return replaceInstUsesWith(*II, IIOperand);
1077 
1078       // abs(x) -> -x if x < 0
1079       if (IntMinIsPoison)
1080         return BinaryOperator::CreateNSWNeg(IIOperand);
1081       return BinaryOperator::CreateNeg(IIOperand);
1082     }
1083 
1084     // abs (sext X) --> zext (abs X*)
1085     // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
1086     if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
1087       Value *NarrowAbs =
1088           Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
1089       return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
1090     }
1091 
1092     // Match a complicated way to check if a number is odd/even:
1093     // abs (srem X, 2) --> and X, 1
1094     const APInt *C;
1095     if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
1096       return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
1097 
1098     break;
1099   }
1100   case Intrinsic::umin: {
1101     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1102     // umin(x, 1) == zext(x != 0)
1103     if (match(I1, m_One())) {
1104       Value *Zero = Constant::getNullValue(I0->getType());
1105       Value *Cmp = Builder.CreateICmpNE(I0, Zero);
1106       return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
1107     }
1108     LLVM_FALLTHROUGH;
1109   }
1110   case Intrinsic::umax: {
1111     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1112     Value *X, *Y;
1113     if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
1114         (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1115       Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1116       return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1117     }
1118     Constant *C;
1119     if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1120         I0->hasOneUse()) {
1121       Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
1122       if (ConstantExpr::getZExt(NarrowC, II->getType()) == C) {
1123         Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1124         return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1125       }
1126     }
1127     // If both operands of unsigned min/max are sign-extended, it is still ok
1128     // to narrow the operation.
1129     LLVM_FALLTHROUGH;
1130   }
1131   case Intrinsic::smax:
1132   case Intrinsic::smin: {
1133     Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1134     Value *X, *Y;
1135     if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
1136         (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1137       Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1138       return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1139     }
1140 
1141     Constant *C;
1142     if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1143         I0->hasOneUse()) {
1144       Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
1145       if (ConstantExpr::getSExt(NarrowC, II->getType()) == C) {
1146         Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1147         return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1148       }
1149     }
1150 
1151     if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1152       // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
1153       // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
1154       // TODO: Canonicalize neg after min/max if I1 is constant.
1155       if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
1156           (I0->hasOneUse() || I1->hasOneUse())) {
1157         Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1158         Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
1159         return BinaryOperator::CreateNSWNeg(InvMaxMin);
1160       }
1161     }
1162 
1163     // If we can eliminate ~A and Y is free to invert:
1164     // max ~A, Y --> ~(min A, ~Y)
1165     //
1166     // Examples:
1167     // max ~A, ~Y --> ~(min A, Y)
1168     // max ~A, C --> ~(min A, ~C)
1169     // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
1170     auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
1171       Value *A;
1172       if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
1173           !isFreeToInvert(A, A->hasOneUse()) &&
1174           isFreeToInvert(Y, Y->hasOneUse())) {
1175         Value *NotY = Builder.CreateNot(Y);
1176         Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1177         Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
1178         return BinaryOperator::CreateNot(InvMaxMin);
1179       }
1180       return nullptr;
1181     };
1182 
1183     if (Instruction *I = moveNotAfterMinMax(I0, I1))
1184       return I;
1185     if (Instruction *I = moveNotAfterMinMax(I1, I0))
1186       return I;
1187 
1188     if (Instruction *I = moveAddAfterMinMax(II, Builder))
1189       return I;
1190 
1191     // smax(X, -X) --> abs(X)
1192     // smin(X, -X) --> -abs(X)
1193     // umax(X, -X) --> -abs(X)
1194     // umin(X, -X) --> abs(X)
1195     if (isKnownNegation(I0, I1)) {
1196       // We can choose either operand as the input to abs(), but if we can
1197       // eliminate the only use of a value, that's better for subsequent
1198       // transforms/analysis.
1199       if (I0->hasOneUse() && !I1->hasOneUse())
1200         std::swap(I0, I1);
1201 
1202       // This is some variant of abs(). See if we can propagate 'nsw' to the abs
1203       // operation and potentially its negation.
1204       bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
1205       Value *Abs = Builder.CreateBinaryIntrinsic(
1206           Intrinsic::abs, I0,
1207           ConstantInt::getBool(II->getContext(), IntMinIsPoison));
1208 
1209       // We don't have a "nabs" intrinsic, so negate if needed based on the
1210       // max/min operation.
1211       if (IID == Intrinsic::smin || IID == Intrinsic::umax)
1212         Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison);
1213       return replaceInstUsesWith(CI, Abs);
1214     }
1215 
1216     if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
1217       return Sel;
1218 
1219     if (Instruction *SAdd = matchSAddSubSat(*II))
1220       return SAdd;
1221 
1222     if (match(I1, m_ImmConstant()))
1223       if (auto *Sel = dyn_cast<SelectInst>(I0))
1224         if (Instruction *R = FoldOpIntoSelect(*II, Sel))
1225           return R;
1226 
1227     if (Instruction *NewMinMax = factorizeMinMaxTree(II))
1228        return NewMinMax;
1229 
1230     break;
1231   }
1232   case Intrinsic::bswap: {
1233     Value *IIOperand = II->getArgOperand(0);
1234     Value *X = nullptr;
1235 
1236     KnownBits Known = computeKnownBits(IIOperand, 0, II);
1237     uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8);
1238     uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8);
1239 
1240     // bswap(x) -> shift(x) if x has exactly one "active byte"
1241     if (Known.getBitWidth() - LZ - TZ == 8) {
1242       assert(LZ != TZ && "active byte cannot be in the middle");
1243       if (LZ > TZ)  // -> shl(x) if the "active byte" is in the low part of x
1244         return BinaryOperator::CreateNUWShl(
1245             IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
1246       // -> lshr(x) if the "active byte" is in the high part of x
1247       return BinaryOperator::CreateExactLShr(
1248             IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
1249     }
1250 
1251     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1252     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1253       unsigned C = X->getType()->getScalarSizeInBits() -
1254                    IIOperand->getType()->getScalarSizeInBits();
1255       Value *CV = ConstantInt::get(X->getType(), C);
1256       Value *V = Builder.CreateLShr(X, CV);
1257       return new TruncInst(V, IIOperand->getType());
1258     }
1259     break;
1260   }
1261   case Intrinsic::masked_load:
1262     if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1263       return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1264     break;
1265   case Intrinsic::masked_store:
1266     return simplifyMaskedStore(*II);
1267   case Intrinsic::masked_gather:
1268     return simplifyMaskedGather(*II);
1269   case Intrinsic::masked_scatter:
1270     return simplifyMaskedScatter(*II);
1271   case Intrinsic::launder_invariant_group:
1272   case Intrinsic::strip_invariant_group:
1273     if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1274       return replaceInstUsesWith(*II, SkippedBarrier);
1275     break;
1276   case Intrinsic::powi:
1277     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1278       // 0 and 1 are handled in instsimplify
1279       // powi(x, -1) -> 1/x
1280       if (Power->isMinusOne())
1281         return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
1282                                              II->getArgOperand(0), II);
1283       // powi(x, 2) -> x*x
1284       if (Power->equalsInt(2))
1285         return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
1286                                              II->getArgOperand(0), II);
1287 
1288       if (!Power->getValue()[0]) {
1289         Value *X;
1290         // If power is even:
1291         // powi(-x, p) -> powi(x, p)
1292         // powi(fabs(x), p) -> powi(x, p)
1293         // powi(copysign(x, y), p) -> powi(x, p)
1294         if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
1295             match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
1296             match(II->getArgOperand(0),
1297                   m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value())))
1298           return replaceOperand(*II, 0, X);
1299       }
1300     }
1301     break;
1302 
1303   case Intrinsic::cttz:
1304   case Intrinsic::ctlz:
1305     if (auto *I = foldCttzCtlz(*II, *this))
1306       return I;
1307     break;
1308 
1309   case Intrinsic::ctpop:
1310     if (auto *I = foldCtpop(*II, *this))
1311       return I;
1312     break;
1313 
1314   case Intrinsic::fshl:
1315   case Intrinsic::fshr: {
1316     Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1317     Type *Ty = II->getType();
1318     unsigned BitWidth = Ty->getScalarSizeInBits();
1319     Constant *ShAmtC;
1320     if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC)) &&
1321         !ShAmtC->containsConstantExpression()) {
1322       // Canonicalize a shift amount constant operand to modulo the bit-width.
1323       Constant *WidthC = ConstantInt::get(Ty, BitWidth);
1324       Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC);
1325       if (ModuloC != ShAmtC)
1326         return replaceOperand(*II, 2, ModuloC);
1327 
1328       assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
1329                  ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
1330              "Shift amount expected to be modulo bitwidth");
1331 
1332       // Canonicalize funnel shift right by constant to funnel shift left. This
1333       // is not entirely arbitrary. For historical reasons, the backend may
1334       // recognize rotate left patterns but miss rotate right patterns.
1335       if (IID == Intrinsic::fshr) {
1336         // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1337         Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
1338         Module *Mod = II->getModule();
1339         Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1340         return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
1341       }
1342       assert(IID == Intrinsic::fshl &&
1343              "All funnel shifts by simple constants should go left");
1344 
1345       // fshl(X, 0, C) --> shl X, C
1346       // fshl(X, undef, C) --> shl X, C
1347       if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
1348         return BinaryOperator::CreateShl(Op0, ShAmtC);
1349 
1350       // fshl(0, X, C) --> lshr X, (BW-C)
1351       // fshl(undef, X, C) --> lshr X, (BW-C)
1352       if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
1353         return BinaryOperator::CreateLShr(Op1,
1354                                           ConstantExpr::getSub(WidthC, ShAmtC));
1355 
1356       // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1357       if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
1358         Module *Mod = II->getModule();
1359         Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
1360         return CallInst::Create(Bswap, { Op0 });
1361       }
1362     }
1363 
1364     // Left or right might be masked.
1365     if (SimplifyDemandedInstructionBits(*II))
1366       return &CI;
1367 
1368     // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
1369     // so only the low bits of the shift amount are demanded if the bitwidth is
1370     // a power-of-2.
1371     if (!isPowerOf2_32(BitWidth))
1372       break;
1373     APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
1374     KnownBits Op2Known(BitWidth);
1375     if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
1376       return &CI;
1377     break;
1378   }
1379   case Intrinsic::uadd_with_overflow:
1380   case Intrinsic::sadd_with_overflow: {
1381     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1382       return I;
1383 
1384     // Given 2 constant operands whose sum does not overflow:
1385     // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
1386     // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
1387     Value *X;
1388     const APInt *C0, *C1;
1389     Value *Arg0 = II->getArgOperand(0);
1390     Value *Arg1 = II->getArgOperand(1);
1391     bool IsSigned = IID == Intrinsic::sadd_with_overflow;
1392     bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
1393                              : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
1394     if (HasNWAdd && match(Arg1, m_APInt(C1))) {
1395       bool Overflow;
1396       APInt NewC =
1397           IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
1398       if (!Overflow)
1399         return replaceInstUsesWith(
1400             *II, Builder.CreateBinaryIntrinsic(
1401                      IID, X, ConstantInt::get(Arg1->getType(), NewC)));
1402     }
1403     break;
1404   }
1405 
1406   case Intrinsic::umul_with_overflow:
1407   case Intrinsic::smul_with_overflow:
1408   case Intrinsic::usub_with_overflow:
1409     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1410       return I;
1411     break;
1412 
1413   case Intrinsic::ssub_with_overflow: {
1414     if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1415       return I;
1416 
1417     Constant *C;
1418     Value *Arg0 = II->getArgOperand(0);
1419     Value *Arg1 = II->getArgOperand(1);
1420     // Given a constant C that is not the minimum signed value
1421     // for an integer of a given bit width:
1422     //
1423     // ssubo X, C -> saddo X, -C
1424     if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
1425       Value *NegVal = ConstantExpr::getNeg(C);
1426       // Build a saddo call that is equivalent to the discovered
1427       // ssubo call.
1428       return replaceInstUsesWith(
1429           *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
1430                                              Arg0, NegVal));
1431     }
1432 
1433     break;
1434   }
1435 
1436   case Intrinsic::uadd_sat:
1437   case Intrinsic::sadd_sat:
1438   case Intrinsic::usub_sat:
1439   case Intrinsic::ssub_sat: {
1440     SaturatingInst *SI = cast<SaturatingInst>(II);
1441     Type *Ty = SI->getType();
1442     Value *Arg0 = SI->getLHS();
1443     Value *Arg1 = SI->getRHS();
1444 
1445     // Make use of known overflow information.
1446     OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
1447                                         Arg0, Arg1, SI);
1448     switch (OR) {
1449       case OverflowResult::MayOverflow:
1450         break;
1451       case OverflowResult::NeverOverflows:
1452         if (SI->isSigned())
1453           return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
1454         else
1455           return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
1456       case OverflowResult::AlwaysOverflowsLow: {
1457         unsigned BitWidth = Ty->getScalarSizeInBits();
1458         APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
1459         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
1460       }
1461       case OverflowResult::AlwaysOverflowsHigh: {
1462         unsigned BitWidth = Ty->getScalarSizeInBits();
1463         APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
1464         return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
1465       }
1466     }
1467 
1468     // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
1469     Constant *C;
1470     if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
1471         C->isNotMinSignedValue()) {
1472       Value *NegVal = ConstantExpr::getNeg(C);
1473       return replaceInstUsesWith(
1474           *II, Builder.CreateBinaryIntrinsic(
1475               Intrinsic::sadd_sat, Arg0, NegVal));
1476     }
1477 
1478     // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
1479     // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
1480     // if Val and Val2 have the same sign
1481     if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
1482       Value *X;
1483       const APInt *Val, *Val2;
1484       APInt NewVal;
1485       bool IsUnsigned =
1486           IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
1487       if (Other->getIntrinsicID() == IID &&
1488           match(Arg1, m_APInt(Val)) &&
1489           match(Other->getArgOperand(0), m_Value(X)) &&
1490           match(Other->getArgOperand(1), m_APInt(Val2))) {
1491         if (IsUnsigned)
1492           NewVal = Val->uadd_sat(*Val2);
1493         else if (Val->isNonNegative() == Val2->isNonNegative()) {
1494           bool Overflow;
1495           NewVal = Val->sadd_ov(*Val2, Overflow);
1496           if (Overflow) {
1497             // Both adds together may add more than SignedMaxValue
1498             // without saturating the final result.
1499             break;
1500           }
1501         } else {
1502           // Cannot fold saturated addition with different signs.
1503           break;
1504         }
1505 
1506         return replaceInstUsesWith(
1507             *II, Builder.CreateBinaryIntrinsic(
1508                      IID, X, ConstantInt::get(II->getType(), NewVal)));
1509       }
1510     }
1511     break;
1512   }
1513 
1514   case Intrinsic::minnum:
1515   case Intrinsic::maxnum:
1516   case Intrinsic::minimum:
1517   case Intrinsic::maximum: {
1518     Value *Arg0 = II->getArgOperand(0);
1519     Value *Arg1 = II->getArgOperand(1);
1520     Value *X, *Y;
1521     if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
1522         (Arg0->hasOneUse() || Arg1->hasOneUse())) {
1523       // If both operands are negated, invert the call and negate the result:
1524       // min(-X, -Y) --> -(max(X, Y))
1525       // max(-X, -Y) --> -(min(X, Y))
1526       Intrinsic::ID NewIID;
1527       switch (IID) {
1528       case Intrinsic::maxnum:
1529         NewIID = Intrinsic::minnum;
1530         break;
1531       case Intrinsic::minnum:
1532         NewIID = Intrinsic::maxnum;
1533         break;
1534       case Intrinsic::maximum:
1535         NewIID = Intrinsic::minimum;
1536         break;
1537       case Intrinsic::minimum:
1538         NewIID = Intrinsic::maximum;
1539         break;
1540       default:
1541         llvm_unreachable("unexpected intrinsic ID");
1542       }
1543       Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
1544       Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
1545       FNeg->copyIRFlags(II);
1546       return FNeg;
1547     }
1548 
1549     // m(m(X, C2), C1) -> m(X, C)
1550     const APFloat *C1, *C2;
1551     if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
1552       if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
1553           ((match(M->getArgOperand(0), m_Value(X)) &&
1554             match(M->getArgOperand(1), m_APFloat(C2))) ||
1555            (match(M->getArgOperand(1), m_Value(X)) &&
1556             match(M->getArgOperand(0), m_APFloat(C2))))) {
1557         APFloat Res(0.0);
1558         switch (IID) {
1559         case Intrinsic::maxnum:
1560           Res = maxnum(*C1, *C2);
1561           break;
1562         case Intrinsic::minnum:
1563           Res = minnum(*C1, *C2);
1564           break;
1565         case Intrinsic::maximum:
1566           Res = maximum(*C1, *C2);
1567           break;
1568         case Intrinsic::minimum:
1569           Res = minimum(*C1, *C2);
1570           break;
1571         default:
1572           llvm_unreachable("unexpected intrinsic ID");
1573         }
1574         Instruction *NewCall = Builder.CreateBinaryIntrinsic(
1575             IID, X, ConstantFP::get(Arg0->getType(), Res), II);
1576         // TODO: Conservatively intersecting FMF. If Res == C2, the transform
1577         //       was a simplification (so Arg0 and its original flags could
1578         //       propagate?)
1579         NewCall->andIRFlags(M);
1580         return replaceInstUsesWith(*II, NewCall);
1581       }
1582     }
1583 
1584     // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
1585     if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
1586         match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
1587         X->getType() == Y->getType()) {
1588       Value *NewCall =
1589           Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
1590       return new FPExtInst(NewCall, II->getType());
1591     }
1592 
1593     // max X, -X --> fabs X
1594     // min X, -X --> -(fabs X)
1595     // TODO: Remove one-use limitation? That is obviously better for max.
1596     //       It would be an extra instruction for min (fnabs), but that is
1597     //       still likely better for analysis and codegen.
1598     if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) ||
1599         (match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) {
1600       Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
1601       if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
1602         R = Builder.CreateFNegFMF(R, II);
1603       return replaceInstUsesWith(*II, R);
1604     }
1605 
1606     break;
1607   }
1608   case Intrinsic::fmuladd: {
1609     // Canonicalize fast fmuladd to the separate fmul + fadd.
1610     if (II->isFast()) {
1611       BuilderTy::FastMathFlagGuard Guard(Builder);
1612       Builder.setFastMathFlags(II->getFastMathFlags());
1613       Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
1614                                       II->getArgOperand(1));
1615       Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
1616       Add->takeName(II);
1617       return replaceInstUsesWith(*II, Add);
1618     }
1619 
1620     // Try to simplify the underlying FMul.
1621     if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
1622                                     II->getFastMathFlags(),
1623                                     SQ.getWithInstruction(II))) {
1624       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1625       FAdd->copyFastMathFlags(II);
1626       return FAdd;
1627     }
1628 
1629     LLVM_FALLTHROUGH;
1630   }
1631   case Intrinsic::fma: {
1632     // fma fneg(x), fneg(y), z -> fma x, y, z
1633     Value *Src0 = II->getArgOperand(0);
1634     Value *Src1 = II->getArgOperand(1);
1635     Value *X, *Y;
1636     if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
1637       replaceOperand(*II, 0, X);
1638       replaceOperand(*II, 1, Y);
1639       return II;
1640     }
1641 
1642     // fma fabs(x), fabs(x), z -> fma x, x, z
1643     if (match(Src0, m_FAbs(m_Value(X))) &&
1644         match(Src1, m_FAbs(m_Specific(X)))) {
1645       replaceOperand(*II, 0, X);
1646       replaceOperand(*II, 1, X);
1647       return II;
1648     }
1649 
1650     // Try to simplify the underlying FMul. We can only apply simplifications
1651     // that do not require rounding.
1652     if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
1653                                    II->getFastMathFlags(),
1654                                    SQ.getWithInstruction(II))) {
1655       auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1656       FAdd->copyFastMathFlags(II);
1657       return FAdd;
1658     }
1659 
1660     // fma x, y, 0 -> fmul x, y
1661     // This is always valid for -0.0, but requires nsz for +0.0 as
1662     // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
1663     if (match(II->getArgOperand(2), m_NegZeroFP()) ||
1664         (match(II->getArgOperand(2), m_PosZeroFP()) &&
1665          II->getFastMathFlags().noSignedZeros()))
1666       return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
1667 
1668     break;
1669   }
1670   case Intrinsic::copysign: {
1671     Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
1672     if (SignBitMustBeZero(Sign, &TLI)) {
1673       // If we know that the sign argument is positive, reduce to FABS:
1674       // copysign Mag, +Sign --> fabs Mag
1675       Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1676       return replaceInstUsesWith(*II, Fabs);
1677     }
1678     // TODO: There should be a ValueTracking sibling like SignBitMustBeOne.
1679     const APFloat *C;
1680     if (match(Sign, m_APFloat(C)) && C->isNegative()) {
1681       // If we know that the sign argument is negative, reduce to FNABS:
1682       // copysign Mag, -Sign --> fneg (fabs Mag)
1683       Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1684       return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
1685     }
1686 
1687     // Propagate sign argument through nested calls:
1688     // copysign Mag, (copysign ?, X) --> copysign Mag, X
1689     Value *X;
1690     if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X))))
1691       return replaceOperand(*II, 1, X);
1692 
1693     // Peek through changes of magnitude's sign-bit. This call rewrites those:
1694     // copysign (fabs X), Sign --> copysign X, Sign
1695     // copysign (fneg X), Sign --> copysign X, Sign
1696     if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
1697       return replaceOperand(*II, 0, X);
1698 
1699     break;
1700   }
1701   case Intrinsic::fabs: {
1702     Value *Cond, *TVal, *FVal;
1703     if (match(II->getArgOperand(0),
1704               m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
1705       // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
1706       if (isa<Constant>(TVal) && isa<Constant>(FVal)) {
1707         CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
1708         CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
1709         return SelectInst::Create(Cond, AbsT, AbsF);
1710       }
1711       // fabs (select Cond, -FVal, FVal) --> fabs FVal
1712       if (match(TVal, m_FNeg(m_Specific(FVal))))
1713         return replaceOperand(*II, 0, FVal);
1714       // fabs (select Cond, TVal, -TVal) --> fabs TVal
1715       if (match(FVal, m_FNeg(m_Specific(TVal))))
1716         return replaceOperand(*II, 0, TVal);
1717     }
1718 
1719     LLVM_FALLTHROUGH;
1720   }
1721   case Intrinsic::ceil:
1722   case Intrinsic::floor:
1723   case Intrinsic::round:
1724   case Intrinsic::roundeven:
1725   case Intrinsic::nearbyint:
1726   case Intrinsic::rint:
1727   case Intrinsic::trunc: {
1728     Value *ExtSrc;
1729     if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
1730       // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
1731       Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
1732       return new FPExtInst(NarrowII, II->getType());
1733     }
1734     break;
1735   }
1736   case Intrinsic::cos:
1737   case Intrinsic::amdgcn_cos: {
1738     Value *X;
1739     Value *Src = II->getArgOperand(0);
1740     if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
1741       // cos(-x) -> cos(x)
1742       // cos(fabs(x)) -> cos(x)
1743       return replaceOperand(*II, 0, X);
1744     }
1745     break;
1746   }
1747   case Intrinsic::sin: {
1748     Value *X;
1749     if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
1750       // sin(-x) --> -sin(x)
1751       Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
1752       Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin);
1753       FNeg->copyFastMathFlags(II);
1754       return FNeg;
1755     }
1756     break;
1757   }
1758 
1759   case Intrinsic::arm_neon_vtbl1:
1760   case Intrinsic::aarch64_neon_tbl1:
1761     if (Value *V = simplifyNeonTbl1(*II, Builder))
1762       return replaceInstUsesWith(*II, V);
1763     break;
1764 
1765   case Intrinsic::arm_neon_vmulls:
1766   case Intrinsic::arm_neon_vmullu:
1767   case Intrinsic::aarch64_neon_smull:
1768   case Intrinsic::aarch64_neon_umull: {
1769     Value *Arg0 = II->getArgOperand(0);
1770     Value *Arg1 = II->getArgOperand(1);
1771 
1772     // Handle mul by zero first:
1773     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
1774       return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
1775     }
1776 
1777     // Check for constant LHS & RHS - in this case we just simplify.
1778     bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
1779                  IID == Intrinsic::aarch64_neon_umull);
1780     VectorType *NewVT = cast<VectorType>(II->getType());
1781     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
1782       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
1783         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
1784         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
1785 
1786         return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
1787       }
1788 
1789       // Couldn't simplify - canonicalize constant to the RHS.
1790       std::swap(Arg0, Arg1);
1791     }
1792 
1793     // Handle mul by one:
1794     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
1795       if (ConstantInt *Splat =
1796               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
1797         if (Splat->isOne())
1798           return CastInst::CreateIntegerCast(Arg0, II->getType(),
1799                                              /*isSigned=*/!Zext);
1800 
1801     break;
1802   }
1803   case Intrinsic::arm_neon_aesd:
1804   case Intrinsic::arm_neon_aese:
1805   case Intrinsic::aarch64_crypto_aesd:
1806   case Intrinsic::aarch64_crypto_aese: {
1807     Value *DataArg = II->getArgOperand(0);
1808     Value *KeyArg  = II->getArgOperand(1);
1809 
1810     // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
1811     Value *Data, *Key;
1812     if (match(KeyArg, m_ZeroInt()) &&
1813         match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
1814       replaceOperand(*II, 0, Data);
1815       replaceOperand(*II, 1, Key);
1816       return II;
1817     }
1818     break;
1819   }
1820   case Intrinsic::hexagon_V6_vandvrt:
1821   case Intrinsic::hexagon_V6_vandvrt_128B: {
1822     // Simplify Q -> V -> Q conversion.
1823     if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
1824       Intrinsic::ID ID0 = Op0->getIntrinsicID();
1825       if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
1826           ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
1827         break;
1828       Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
1829       uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
1830       uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
1831       // Check if every byte has common bits in Bytes and Mask.
1832       uint64_t C = Bytes1 & Mask1;
1833       if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
1834         return replaceInstUsesWith(*II, Op0->getArgOperand(0));
1835     }
1836     break;
1837   }
1838   case Intrinsic::stackrestore: {
1839     enum class ClassifyResult {
1840       None,
1841       Alloca,
1842       StackRestore,
1843       CallWithSideEffects,
1844     };
1845     auto Classify = [](const Instruction *I) {
1846       if (isa<AllocaInst>(I))
1847         return ClassifyResult::Alloca;
1848 
1849       if (auto *CI = dyn_cast<CallInst>(I)) {
1850         if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
1851           if (II->getIntrinsicID() == Intrinsic::stackrestore)
1852             return ClassifyResult::StackRestore;
1853 
1854           if (II->mayHaveSideEffects())
1855             return ClassifyResult::CallWithSideEffects;
1856         } else {
1857           // Consider all non-intrinsic calls to be side effects
1858           return ClassifyResult::CallWithSideEffects;
1859         }
1860       }
1861 
1862       return ClassifyResult::None;
1863     };
1864 
1865     // If the stacksave and the stackrestore are in the same BB, and there is
1866     // no intervening call, alloca, or stackrestore of a different stacksave,
1867     // remove the restore. This can happen when variable allocas are DCE'd.
1868     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
1869       if (SS->getIntrinsicID() == Intrinsic::stacksave &&
1870           SS->getParent() == II->getParent()) {
1871         BasicBlock::iterator BI(SS);
1872         bool CannotRemove = false;
1873         for (++BI; &*BI != II; ++BI) {
1874           switch (Classify(&*BI)) {
1875           case ClassifyResult::None:
1876             // So far so good, look at next instructions.
1877             break;
1878 
1879           case ClassifyResult::StackRestore:
1880             // If we found an intervening stackrestore for a different
1881             // stacksave, we can't remove the stackrestore. Otherwise, continue.
1882             if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
1883               CannotRemove = true;
1884             break;
1885 
1886           case ClassifyResult::Alloca:
1887           case ClassifyResult::CallWithSideEffects:
1888             // If we found an alloca, a non-intrinsic call, or an intrinsic
1889             // call with side effects, we can't remove the stackrestore.
1890             CannotRemove = true;
1891             break;
1892           }
1893           if (CannotRemove)
1894             break;
1895         }
1896 
1897         if (!CannotRemove)
1898           return eraseInstFromFunction(CI);
1899       }
1900     }
1901 
1902     // Scan down this block to see if there is another stack restore in the
1903     // same block without an intervening call/alloca.
1904     BasicBlock::iterator BI(II);
1905     Instruction *TI = II->getParent()->getTerminator();
1906     bool CannotRemove = false;
1907     for (++BI; &*BI != TI; ++BI) {
1908       switch (Classify(&*BI)) {
1909       case ClassifyResult::None:
1910         // So far so good, look at next instructions.
1911         break;
1912 
1913       case ClassifyResult::StackRestore:
1914         // If there is a stackrestore below this one, remove this one.
1915         return eraseInstFromFunction(CI);
1916 
1917       case ClassifyResult::Alloca:
1918       case ClassifyResult::CallWithSideEffects:
1919         // If we found an alloca, a non-intrinsic call, or an intrinsic call
1920         // with side effects (such as llvm.stacksave and llvm.read_register),
1921         // we can't remove the stack restore.
1922         CannotRemove = true;
1923         break;
1924       }
1925       if (CannotRemove)
1926         break;
1927     }
1928 
1929     // If the stack restore is in a return, resume, or unwind block and if there
1930     // are no allocas or calls between the restore and the return, nuke the
1931     // restore.
1932     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
1933       return eraseInstFromFunction(CI);
1934     break;
1935   }
1936   case Intrinsic::lifetime_end:
1937     // Asan needs to poison memory to detect invalid access which is possible
1938     // even for empty lifetime range.
1939     if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
1940         II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
1941         II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
1942       break;
1943 
1944     if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
1945           return I.getIntrinsicID() == Intrinsic::lifetime_start;
1946         }))
1947       return nullptr;
1948     break;
1949   case Intrinsic::assume: {
1950     Value *IIOperand = II->getArgOperand(0);
1951     SmallVector<OperandBundleDef, 4> OpBundles;
1952     II->getOperandBundlesAsDefs(OpBundles);
1953 
1954     /// This will remove the boolean Condition from the assume given as
1955     /// argument and remove the assume if it becomes useless.
1956     /// always returns nullptr for use as a return values.
1957     auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
1958       assert(isa<AssumeInst>(Assume));
1959       if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II)))
1960         return eraseInstFromFunction(CI);
1961       replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
1962       return nullptr;
1963     };
1964     // Remove an assume if it is followed by an identical assume.
1965     // TODO: Do we need this? Unless there are conflicting assumptions, the
1966     // computeKnownBits(IIOperand) below here eliminates redundant assumes.
1967     Instruction *Next = II->getNextNonDebugInstruction();
1968     if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
1969       return RemoveConditionFromAssume(Next);
1970 
1971     // Canonicalize assume(a && b) -> assume(a); assume(b);
1972     // Note: New assumption intrinsics created here are registered by
1973     // the InstCombineIRInserter object.
1974     FunctionType *AssumeIntrinsicTy = II->getFunctionType();
1975     Value *AssumeIntrinsic = II->getCalledOperand();
1976     Value *A, *B;
1977     if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
1978       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
1979                          II->getName());
1980       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
1981       return eraseInstFromFunction(*II);
1982     }
1983     // assume(!(a || b)) -> assume(!a); assume(!b);
1984     if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
1985       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
1986                          Builder.CreateNot(A), OpBundles, II->getName());
1987       Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
1988                          Builder.CreateNot(B), II->getName());
1989       return eraseInstFromFunction(*II);
1990     }
1991 
1992     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
1993     // (if assume is valid at the load)
1994     CmpInst::Predicate Pred;
1995     Instruction *LHS;
1996     if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
1997         Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
1998         LHS->getType()->isPointerTy() &&
1999         isValidAssumeForContext(II, LHS, &DT)) {
2000       MDNode *MD = MDNode::get(II->getContext(), None);
2001       LHS->setMetadata(LLVMContext::MD_nonnull, MD);
2002       return RemoveConditionFromAssume(II);
2003 
2004       // TODO: apply nonnull return attributes to calls and invokes
2005       // TODO: apply range metadata for range check patterns?
2006     }
2007 
2008     // Convert nonnull assume like:
2009     // %A = icmp ne i32* %PTR, null
2010     // call void @llvm.assume(i1 %A)
2011     // into
2012     // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
2013     if (EnableKnowledgeRetention &&
2014         match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) &&
2015         Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) {
2016       if (auto *Replacement = buildAssumeFromKnowledge(
2017               {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
2018 
2019         Replacement->insertBefore(Next);
2020         AC.registerAssumption(Replacement);
2021         return RemoveConditionFromAssume(II);
2022       }
2023     }
2024 
2025     // Convert alignment assume like:
2026     // %B = ptrtoint i32* %A to i64
2027     // %C = and i64 %B, Constant
2028     // %D = icmp eq i64 %C, 0
2029     // call void @llvm.assume(i1 %D)
2030     // into
2031     // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64  Constant + 1)]
2032     uint64_t AlignMask;
2033     if (EnableKnowledgeRetention &&
2034         match(IIOperand,
2035               m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)),
2036                     m_Zero())) &&
2037         Pred == CmpInst::ICMP_EQ) {
2038       if (isPowerOf2_64(AlignMask + 1)) {
2039         uint64_t Offset = 0;
2040         match(A, m_Add(m_Value(A), m_ConstantInt(Offset)));
2041         if (match(A, m_PtrToInt(m_Value(A)))) {
2042           /// Note: this doesn't preserve the offset information but merges
2043           /// offset and alignment.
2044           /// TODO: we can generate a GEP instead of merging the alignment with
2045           /// the offset.
2046           RetainedKnowledge RK{Attribute::Alignment,
2047                                (unsigned)MinAlign(Offset, AlignMask + 1), A};
2048           if (auto *Replacement =
2049                   buildAssumeFromKnowledge(RK, Next, &AC, &DT)) {
2050 
2051             Replacement->insertAfter(II);
2052             AC.registerAssumption(Replacement);
2053           }
2054           return RemoveConditionFromAssume(II);
2055         }
2056       }
2057     }
2058 
2059     /// Canonicalize Knowledge in operand bundles.
2060     if (EnableKnowledgeRetention && II->hasOperandBundles()) {
2061       for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
2062         auto &BOI = II->bundle_op_info_begin()[Idx];
2063         RetainedKnowledge RK =
2064           llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI);
2065         if (BOI.End - BOI.Begin > 2)
2066           continue; // Prevent reducing knowledge in an align with offset since
2067                     // extracting a RetainedKnowledge form them looses offset
2068                     // information
2069         RetainedKnowledge CanonRK =
2070           llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK,
2071                                           &getAssumptionCache(),
2072                                           &getDominatorTree());
2073         if (CanonRK == RK)
2074           continue;
2075         if (!CanonRK) {
2076           if (BOI.End - BOI.Begin > 0) {
2077             Worklist.pushValue(II->op_begin()[BOI.Begin]);
2078             Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
2079           }
2080           continue;
2081         }
2082         assert(RK.AttrKind == CanonRK.AttrKind);
2083         if (BOI.End - BOI.Begin > 0)
2084           II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
2085         if (BOI.End - BOI.Begin > 1)
2086           II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
2087               Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
2088         if (RK.WasOn)
2089           Worklist.pushValue(RK.WasOn);
2090         return II;
2091       }
2092     }
2093 
2094     // If there is a dominating assume with the same condition as this one,
2095     // then this one is redundant, and should be removed.
2096     KnownBits Known(1);
2097     computeKnownBits(IIOperand, Known, 0, II);
2098     if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II)))
2099       return eraseInstFromFunction(*II);
2100 
2101     // Update the cache of affected values for this assumption (we might be
2102     // here because we just simplified the condition).
2103     AC.updateAffectedValues(cast<AssumeInst>(II));
2104     break;
2105   }
2106   case Intrinsic::experimental_guard: {
2107     // Is this guard followed by another guard?  We scan forward over a small
2108     // fixed window of instructions to handle common cases with conditions
2109     // computed between guards.
2110     Instruction *NextInst = II->getNextNonDebugInstruction();
2111     for (unsigned i = 0; i < GuardWideningWindow; i++) {
2112       // Note: Using context-free form to avoid compile time blow up
2113       if (!isSafeToSpeculativelyExecute(NextInst))
2114         break;
2115       NextInst = NextInst->getNextNonDebugInstruction();
2116     }
2117     Value *NextCond = nullptr;
2118     if (match(NextInst,
2119               m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
2120       Value *CurrCond = II->getArgOperand(0);
2121 
2122       // Remove a guard that it is immediately preceded by an identical guard.
2123       // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
2124       if (CurrCond != NextCond) {
2125         Instruction *MoveI = II->getNextNonDebugInstruction();
2126         while (MoveI != NextInst) {
2127           auto *Temp = MoveI;
2128           MoveI = MoveI->getNextNonDebugInstruction();
2129           Temp->moveBefore(II);
2130         }
2131         replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
2132       }
2133       eraseInstFromFunction(*NextInst);
2134       return II;
2135     }
2136     break;
2137   }
2138   case Intrinsic::experimental_vector_insert: {
2139     Value *Vec = II->getArgOperand(0);
2140     Value *SubVec = II->getArgOperand(1);
2141     Value *Idx = II->getArgOperand(2);
2142     auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
2143     auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
2144     auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
2145 
2146     // Only canonicalize if the destination vector, Vec, and SubVec are all
2147     // fixed vectors.
2148     if (DstTy && VecTy && SubVecTy) {
2149       unsigned DstNumElts = DstTy->getNumElements();
2150       unsigned VecNumElts = VecTy->getNumElements();
2151       unsigned SubVecNumElts = SubVecTy->getNumElements();
2152       unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
2153 
2154       // An insert that entirely overwrites Vec with SubVec is a nop.
2155       if (VecNumElts == SubVecNumElts)
2156         return replaceInstUsesWith(CI, SubVec);
2157 
2158       // Widen SubVec into a vector of the same width as Vec, since
2159       // shufflevector requires the two input vectors to be the same width.
2160       // Elements beyond the bounds of SubVec within the widened vector are
2161       // undefined.
2162       SmallVector<int, 8> WidenMask;
2163       unsigned i;
2164       for (i = 0; i != SubVecNumElts; ++i)
2165         WidenMask.push_back(i);
2166       for (; i != VecNumElts; ++i)
2167         WidenMask.push_back(UndefMaskElem);
2168 
2169       Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
2170 
2171       SmallVector<int, 8> Mask;
2172       for (unsigned i = 0; i != IdxN; ++i)
2173         Mask.push_back(i);
2174       for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
2175         Mask.push_back(i);
2176       for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
2177         Mask.push_back(i);
2178 
2179       Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
2180       return replaceInstUsesWith(CI, Shuffle);
2181     }
2182     break;
2183   }
2184   case Intrinsic::experimental_vector_extract: {
2185     Value *Vec = II->getArgOperand(0);
2186     Value *Idx = II->getArgOperand(1);
2187 
2188     auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
2189     auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
2190 
2191     // Only canonicalize if the the destination vector and Vec are fixed
2192     // vectors.
2193     if (DstTy && VecTy) {
2194       unsigned DstNumElts = DstTy->getNumElements();
2195       unsigned VecNumElts = VecTy->getNumElements();
2196       unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
2197 
2198       // Extracting the entirety of Vec is a nop.
2199       if (VecNumElts == DstNumElts) {
2200         replaceInstUsesWith(CI, Vec);
2201         return eraseInstFromFunction(CI);
2202       }
2203 
2204       SmallVector<int, 8> Mask;
2205       for (unsigned i = 0; i != DstNumElts; ++i)
2206         Mask.push_back(IdxN + i);
2207 
2208       Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
2209       return replaceInstUsesWith(CI, Shuffle);
2210     }
2211     break;
2212   }
2213   case Intrinsic::experimental_vector_reverse: {
2214     Value *BO0, *BO1, *X, *Y;
2215     Value *Vec = II->getArgOperand(0);
2216     if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) {
2217       auto *OldBinOp = cast<BinaryOperator>(Vec);
2218       if (match(BO0, m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2219                          m_Value(X)))) {
2220         // rev(binop rev(X), rev(Y)) --> binop X, Y
2221         if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2222                            m_Value(Y))))
2223           return replaceInstUsesWith(CI,
2224                                      BinaryOperator::CreateWithCopiedFlags(
2225                                          OldBinOp->getOpcode(), X, Y, OldBinOp,
2226                                          OldBinOp->getName(), II));
2227         // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat
2228         if (isSplatValue(BO1))
2229           return replaceInstUsesWith(CI,
2230                                      BinaryOperator::CreateWithCopiedFlags(
2231                                          OldBinOp->getOpcode(), X, BO1,
2232                                          OldBinOp, OldBinOp->getName(), II));
2233       }
2234       // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y
2235       if (match(BO1, m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2236                          m_Value(Y))) &&
2237           isSplatValue(BO0))
2238         return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags(
2239                                            OldBinOp->getOpcode(), BO0, Y,
2240                                            OldBinOp, OldBinOp->getName(), II));
2241     }
2242     // rev(unop rev(X)) --> unop X
2243     if (match(Vec, m_OneUse(m_UnOp(
2244                        m_Intrinsic<Intrinsic::experimental_vector_reverse>(
2245                            m_Value(X)))))) {
2246       auto *OldUnOp = cast<UnaryOperator>(Vec);
2247       auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags(
2248           OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), II);
2249       return replaceInstUsesWith(CI, NewUnOp);
2250     }
2251     break;
2252   }
2253   case Intrinsic::vector_reduce_or:
2254   case Intrinsic::vector_reduce_and: {
2255     // Canonicalize logical or/and reductions:
2256     // Or reduction for i1 is represented as:
2257     // %val = bitcast <ReduxWidth x i1> to iReduxWidth
2258     // %res = cmp ne iReduxWidth %val, 0
2259     // And reduction for i1 is represented as:
2260     // %val = bitcast <ReduxWidth x i1> to iReduxWidth
2261     // %res = cmp eq iReduxWidth %val, 11111
2262     Value *Arg = II->getArgOperand(0);
2263     Value *Vect;
2264     if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2265       if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2266         if (FTy->getElementType() == Builder.getInt1Ty()) {
2267           Value *Res = Builder.CreateBitCast(
2268               Vect, Builder.getIntNTy(FTy->getNumElements()));
2269           if (IID == Intrinsic::vector_reduce_and) {
2270             Res = Builder.CreateICmpEQ(
2271                 Res, ConstantInt::getAllOnesValue(Res->getType()));
2272           } else {
2273             assert(IID == Intrinsic::vector_reduce_or &&
2274                    "Expected or reduction.");
2275             Res = Builder.CreateIsNotNull(Res);
2276           }
2277           if (Arg != Vect)
2278             Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2279                                      II->getType());
2280           return replaceInstUsesWith(CI, Res);
2281         }
2282     }
2283     LLVM_FALLTHROUGH;
2284   }
2285   case Intrinsic::vector_reduce_add: {
2286     if (IID == Intrinsic::vector_reduce_add) {
2287       // Convert vector_reduce_add(ZExt(<n x i1>)) to
2288       // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
2289       // Convert vector_reduce_add(SExt(<n x i1>)) to
2290       // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
2291       // Convert vector_reduce_add(<n x i1>) to
2292       // Trunc(ctpop(bitcast <n x i1> to in)).
2293       Value *Arg = II->getArgOperand(0);
2294       Value *Vect;
2295       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2296         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2297           if (FTy->getElementType() == Builder.getInt1Ty()) {
2298             Value *V = Builder.CreateBitCast(
2299                 Vect, Builder.getIntNTy(FTy->getNumElements()));
2300             Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
2301             if (Res->getType() != II->getType())
2302               Res = Builder.CreateZExtOrTrunc(Res, II->getType());
2303             if (Arg != Vect &&
2304                 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
2305               Res = Builder.CreateNeg(Res);
2306             return replaceInstUsesWith(CI, Res);
2307           }
2308       }
2309     }
2310     LLVM_FALLTHROUGH;
2311   }
2312   case Intrinsic::vector_reduce_xor: {
2313     if (IID == Intrinsic::vector_reduce_xor) {
2314       // Exclusive disjunction reduction over the vector with
2315       // (potentially-extended) i1 element type is actually a
2316       // (potentially-extended) arithmetic `add` reduction over the original
2317       // non-extended value:
2318       //   vector_reduce_xor(?ext(<n x i1>))
2319       //     -->
2320       //   ?ext(vector_reduce_add(<n x i1>))
2321       Value *Arg = II->getArgOperand(0);
2322       Value *Vect;
2323       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2324         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2325           if (FTy->getElementType() == Builder.getInt1Ty()) {
2326             Value *Res = Builder.CreateAddReduce(Vect);
2327             if (Arg != Vect)
2328               Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2329                                        II->getType());
2330             return replaceInstUsesWith(CI, Res);
2331           }
2332       }
2333     }
2334     LLVM_FALLTHROUGH;
2335   }
2336   case Intrinsic::vector_reduce_mul: {
2337     if (IID == Intrinsic::vector_reduce_mul) {
2338       // Multiplicative reduction over the vector with (potentially-extended)
2339       // i1 element type is actually a (potentially zero-extended)
2340       // logical `and` reduction over the original non-extended value:
2341       //   vector_reduce_mul(?ext(<n x i1>))
2342       //     -->
2343       //   zext(vector_reduce_and(<n x i1>))
2344       Value *Arg = II->getArgOperand(0);
2345       Value *Vect;
2346       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2347         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2348           if (FTy->getElementType() == Builder.getInt1Ty()) {
2349             Value *Res = Builder.CreateAndReduce(Vect);
2350             if (Res->getType() != II->getType())
2351               Res = Builder.CreateZExt(Res, II->getType());
2352             return replaceInstUsesWith(CI, Res);
2353           }
2354       }
2355     }
2356     LLVM_FALLTHROUGH;
2357   }
2358   case Intrinsic::vector_reduce_umin:
2359   case Intrinsic::vector_reduce_umax: {
2360     if (IID == Intrinsic::vector_reduce_umin ||
2361         IID == Intrinsic::vector_reduce_umax) {
2362       // UMin/UMax reduction over the vector with (potentially-extended)
2363       // i1 element type is actually a (potentially-extended)
2364       // logical `and`/`or` reduction over the original non-extended value:
2365       //   vector_reduce_u{min,max}(?ext(<n x i1>))
2366       //     -->
2367       //   ?ext(vector_reduce_{and,or}(<n x i1>))
2368       Value *Arg = II->getArgOperand(0);
2369       Value *Vect;
2370       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2371         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2372           if (FTy->getElementType() == Builder.getInt1Ty()) {
2373             Value *Res = IID == Intrinsic::vector_reduce_umin
2374                              ? Builder.CreateAndReduce(Vect)
2375                              : Builder.CreateOrReduce(Vect);
2376             if (Arg != Vect)
2377               Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
2378                                        II->getType());
2379             return replaceInstUsesWith(CI, Res);
2380           }
2381       }
2382     }
2383     LLVM_FALLTHROUGH;
2384   }
2385   case Intrinsic::vector_reduce_smin:
2386   case Intrinsic::vector_reduce_smax: {
2387     if (IID == Intrinsic::vector_reduce_smin ||
2388         IID == Intrinsic::vector_reduce_smax) {
2389       // SMin/SMax reduction over the vector with (potentially-extended)
2390       // i1 element type is actually a (potentially-extended)
2391       // logical `and`/`or` reduction over the original non-extended value:
2392       //   vector_reduce_s{min,max}(<n x i1>)
2393       //     -->
2394       //   vector_reduce_{or,and}(<n x i1>)
2395       // and
2396       //   vector_reduce_s{min,max}(sext(<n x i1>))
2397       //     -->
2398       //   sext(vector_reduce_{or,and}(<n x i1>))
2399       // and
2400       //   vector_reduce_s{min,max}(zext(<n x i1>))
2401       //     -->
2402       //   zext(vector_reduce_{and,or}(<n x i1>))
2403       Value *Arg = II->getArgOperand(0);
2404       Value *Vect;
2405       if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2406         if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2407           if (FTy->getElementType() == Builder.getInt1Ty()) {
2408             Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
2409             if (Arg != Vect)
2410               ExtOpc = cast<CastInst>(Arg)->getOpcode();
2411             Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
2412                           (ExtOpc == Instruction::CastOps::ZExt))
2413                              ? Builder.CreateAndReduce(Vect)
2414                              : Builder.CreateOrReduce(Vect);
2415             if (Arg != Vect)
2416               Res = Builder.CreateCast(ExtOpc, Res, II->getType());
2417             return replaceInstUsesWith(CI, Res);
2418           }
2419       }
2420     }
2421     LLVM_FALLTHROUGH;
2422   }
2423   case Intrinsic::vector_reduce_fmax:
2424   case Intrinsic::vector_reduce_fmin:
2425   case Intrinsic::vector_reduce_fadd:
2426   case Intrinsic::vector_reduce_fmul: {
2427     bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd &&
2428                               IID != Intrinsic::vector_reduce_fmul) ||
2429                              II->hasAllowReassoc();
2430     const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
2431                              IID == Intrinsic::vector_reduce_fmul)
2432                                 ? 1
2433                                 : 0;
2434     Value *Arg = II->getArgOperand(ArgIdx);
2435     Value *V;
2436     ArrayRef<int> Mask;
2437     if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated ||
2438         !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
2439         !cast<ShuffleVectorInst>(Arg)->isSingleSource())
2440       break;
2441     int Sz = Mask.size();
2442     SmallBitVector UsedIndices(Sz);
2443     for (int Idx : Mask) {
2444       if (Idx == UndefMaskElem || UsedIndices.test(Idx))
2445         break;
2446       UsedIndices.set(Idx);
2447     }
2448     // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
2449     // other changes.
2450     if (UsedIndices.all()) {
2451       replaceUse(II->getOperandUse(ArgIdx), V);
2452       return nullptr;
2453     }
2454     break;
2455   }
2456   default: {
2457     // Handle target specific intrinsics
2458     Optional<Instruction *> V = targetInstCombineIntrinsic(*II);
2459     if (V.hasValue())
2460       return V.getValue();
2461     break;
2462   }
2463   }
2464   // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
2465   // context, so it is handled in visitCallBase and we should trigger it.
2466   return visitCallBase(*II);
2467 }
2468 
2469 // Fence instruction simplification
2470 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) {
2471   auto *NFI = dyn_cast<FenceInst>(FI.getNextNonDebugInstruction());
2472   // This check is solely here to handle arbitrary target-dependent syncscopes.
2473   // TODO: Can remove if does not matter in practice.
2474   if (NFI && FI.isIdenticalTo(NFI))
2475     return eraseInstFromFunction(FI);
2476 
2477   // Returns true if FI1 is identical or stronger fence than FI2.
2478   auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
2479     auto FI1SyncScope = FI1->getSyncScopeID();
2480     // Consider same scope, where scope is global or single-thread.
2481     if (FI1SyncScope != FI2->getSyncScopeID() ||
2482         (FI1SyncScope != SyncScope::System &&
2483          FI1SyncScope != SyncScope::SingleThread))
2484       return false;
2485 
2486     return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering());
2487   };
2488   if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
2489     return eraseInstFromFunction(FI);
2490 
2491   if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNonDebugInstruction()))
2492     if (isIdenticalOrStrongerFence(PFI, &FI))
2493       return eraseInstFromFunction(FI);
2494   return nullptr;
2495 }
2496 
2497 // InvokeInst simplification
2498 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) {
2499   return visitCallBase(II);
2500 }
2501 
2502 // CallBrInst simplification
2503 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) {
2504   return visitCallBase(CBI);
2505 }
2506 
2507 /// If this cast does not affect the value passed through the varargs area, we
2508 /// can eliminate the use of the cast.
2509 static bool isSafeToEliminateVarargsCast(const CallBase &Call,
2510                                          const DataLayout &DL,
2511                                          const CastInst *const CI,
2512                                          const int ix) {
2513   if (!CI->isLosslessCast())
2514     return false;
2515 
2516   // If this is a GC intrinsic, avoid munging types.  We need types for
2517   // statepoint reconstruction in SelectionDAG.
2518   // TODO: This is probably something which should be expanded to all
2519   // intrinsics since the entire point of intrinsics is that
2520   // they are understandable by the optimizer.
2521   if (isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) ||
2522       isa<GCResultInst>(Call))
2523     return false;
2524 
2525   // Opaque pointers are compatible with any byval types.
2526   PointerType *SrcTy = cast<PointerType>(CI->getOperand(0)->getType());
2527   if (SrcTy->isOpaque())
2528     return true;
2529 
2530   // The size of ByVal or InAlloca arguments is derived from the type, so we
2531   // can't change to a type with a different size.  If the size were
2532   // passed explicitly we could avoid this check.
2533   if (!Call.isPassPointeeByValueArgument(ix))
2534     return true;
2535 
2536   // The transform currently only handles type replacement for byval, not other
2537   // type-carrying attributes.
2538   if (!Call.isByValArgument(ix))
2539     return false;
2540 
2541   Type *SrcElemTy = SrcTy->getNonOpaquePointerElementType();
2542   Type *DstElemTy = Call.getParamByValType(ix);
2543   if (!SrcElemTy->isSized() || !DstElemTy->isSized())
2544     return false;
2545   if (DL.getTypeAllocSize(SrcElemTy) != DL.getTypeAllocSize(DstElemTy))
2546     return false;
2547   return true;
2548 }
2549 
2550 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
2551   if (!CI->getCalledFunction()) return nullptr;
2552 
2553   // Skip optimizing notail and musttail calls so
2554   // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
2555   // LibCallSimplifier::optimizeCall should try to preseve tail calls though.
2556   if (CI->isMustTailCall() || CI->isNoTailCall())
2557     return nullptr;
2558 
2559   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
2560     replaceInstUsesWith(*From, With);
2561   };
2562   auto InstCombineErase = [this](Instruction *I) {
2563     eraseInstFromFunction(*I);
2564   };
2565   LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW,
2566                                InstCombineErase);
2567   if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
2568     ++NumSimplified;
2569     return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
2570   }
2571 
2572   return nullptr;
2573 }
2574 
2575 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
2576   // Strip off at most one level of pointer casts, looking for an alloca.  This
2577   // is good enough in practice and simpler than handling any number of casts.
2578   Value *Underlying = TrampMem->stripPointerCasts();
2579   if (Underlying != TrampMem &&
2580       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
2581     return nullptr;
2582   if (!isa<AllocaInst>(Underlying))
2583     return nullptr;
2584 
2585   IntrinsicInst *InitTrampoline = nullptr;
2586   for (User *U : TrampMem->users()) {
2587     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
2588     if (!II)
2589       return nullptr;
2590     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
2591       if (InitTrampoline)
2592         // More than one init_trampoline writes to this value.  Give up.
2593         return nullptr;
2594       InitTrampoline = II;
2595       continue;
2596     }
2597     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
2598       // Allow any number of calls to adjust.trampoline.
2599       continue;
2600     return nullptr;
2601   }
2602 
2603   // No call to init.trampoline found.
2604   if (!InitTrampoline)
2605     return nullptr;
2606 
2607   // Check that the alloca is being used in the expected way.
2608   if (InitTrampoline->getOperand(0) != TrampMem)
2609     return nullptr;
2610 
2611   return InitTrampoline;
2612 }
2613 
2614 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
2615                                                Value *TrampMem) {
2616   // Visit all the previous instructions in the basic block, and try to find a
2617   // init.trampoline which has a direct path to the adjust.trampoline.
2618   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
2619                             E = AdjustTramp->getParent()->begin();
2620        I != E;) {
2621     Instruction *Inst = &*--I;
2622     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2623       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
2624           II->getOperand(0) == TrampMem)
2625         return II;
2626     if (Inst->mayWriteToMemory())
2627       return nullptr;
2628   }
2629   return nullptr;
2630 }
2631 
2632 // Given a call to llvm.adjust.trampoline, find and return the corresponding
2633 // call to llvm.init.trampoline if the call to the trampoline can be optimized
2634 // to a direct call to a function.  Otherwise return NULL.
2635 static IntrinsicInst *findInitTrampoline(Value *Callee) {
2636   Callee = Callee->stripPointerCasts();
2637   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
2638   if (!AdjustTramp ||
2639       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
2640     return nullptr;
2641 
2642   Value *TrampMem = AdjustTramp->getOperand(0);
2643 
2644   if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
2645     return IT;
2646   if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
2647     return IT;
2648   return nullptr;
2649 }
2650 
2651 void InstCombinerImpl::annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) {
2652   // Note: We only handle cases which can't be driven from generic attributes
2653   // here.  So, for example, nonnull and noalias (which are common properties
2654   // of some allocation functions) are expected to be handled via annotation
2655   // of the respective allocator declaration with generic attributes.
2656 
2657   uint64_t Size;
2658   ObjectSizeOpts Opts;
2659   if (getObjectSize(&Call, Size, DL, TLI, Opts) && Size > 0) {
2660     // TODO: We really should just emit deref_or_null here and then
2661     // let the generic inference code combine that with nonnull.
2662     if (Call.hasRetAttr(Attribute::NonNull))
2663       Call.addRetAttr(Attribute::getWithDereferenceableBytes(
2664           Call.getContext(), Size));
2665     else
2666       Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
2667           Call.getContext(), Size));
2668   }
2669 
2670   // Add alignment attribute if alignment is a power of two constant.
2671   Value *Alignment = getAllocAlignment(&Call, TLI);
2672   if (!Alignment)
2673     return;
2674 
2675   ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment);
2676   if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) {
2677     uint64_t AlignmentVal = AlignOpC->getZExtValue();
2678     if (llvm::isPowerOf2_64(AlignmentVal)) {
2679       Call.removeRetAttr(Attribute::Alignment);
2680       Call.addRetAttr(Attribute::getWithAlignment(Call.getContext(),
2681                                                   Align(AlignmentVal)));
2682     }
2683   }
2684 }
2685 
2686 /// Improvements for call, callbr and invoke instructions.
2687 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
2688   if (isAllocationFn(&Call, &TLI))
2689     annotateAnyAllocSite(Call, &TLI);
2690 
2691   bool Changed = false;
2692 
2693   // Mark any parameters that are known to be non-null with the nonnull
2694   // attribute.  This is helpful for inlining calls to functions with null
2695   // checks on their arguments.
2696   SmallVector<unsigned, 4> ArgNos;
2697   unsigned ArgNo = 0;
2698 
2699   for (Value *V : Call.args()) {
2700     if (V->getType()->isPointerTy() &&
2701         !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
2702         isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
2703       ArgNos.push_back(ArgNo);
2704     ArgNo++;
2705   }
2706 
2707   assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
2708 
2709   if (!ArgNos.empty()) {
2710     AttributeList AS = Call.getAttributes();
2711     LLVMContext &Ctx = Call.getContext();
2712     AS = AS.addParamAttribute(Ctx, ArgNos,
2713                               Attribute::get(Ctx, Attribute::NonNull));
2714     Call.setAttributes(AS);
2715     Changed = true;
2716   }
2717 
2718   // If the callee is a pointer to a function, attempt to move any casts to the
2719   // arguments of the call/callbr/invoke.
2720   Value *Callee = Call.getCalledOperand();
2721   if (!isa<Function>(Callee) && transformConstExprCastCall(Call))
2722     return nullptr;
2723 
2724   if (Function *CalleeF = dyn_cast<Function>(Callee)) {
2725     // Remove the convergent attr on calls when the callee is not convergent.
2726     if (Call.isConvergent() && !CalleeF->isConvergent() &&
2727         !CalleeF->isIntrinsic()) {
2728       LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
2729                         << "\n");
2730       Call.setNotConvergent();
2731       return &Call;
2732     }
2733 
2734     // If the call and callee calling conventions don't match, and neither one
2735     // of the calling conventions is compatible with C calling convention
2736     // this call must be unreachable, as the call is undefined.
2737     if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
2738          !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
2739            TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) &&
2740          !(Call.getCallingConv() == llvm::CallingConv::C &&
2741            TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) &&
2742         // Only do this for calls to a function with a body.  A prototype may
2743         // not actually end up matching the implementation's calling conv for a
2744         // variety of reasons (e.g. it may be written in assembly).
2745         !CalleeF->isDeclaration()) {
2746       Instruction *OldCall = &Call;
2747       CreateNonTerminatorUnreachable(OldCall);
2748       // If OldCall does not return void then replaceInstUsesWith poison.
2749       // This allows ValueHandlers and custom metadata to adjust itself.
2750       if (!OldCall->getType()->isVoidTy())
2751         replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
2752       if (isa<CallInst>(OldCall))
2753         return eraseInstFromFunction(*OldCall);
2754 
2755       // We cannot remove an invoke or a callbr, because it would change thexi
2756       // CFG, just change the callee to a null pointer.
2757       cast<CallBase>(OldCall)->setCalledFunction(
2758           CalleeF->getFunctionType(),
2759           Constant::getNullValue(CalleeF->getType()));
2760       return nullptr;
2761     }
2762   }
2763 
2764   // Calling a null function pointer is undefined if a null address isn't
2765   // dereferenceable.
2766   if ((isa<ConstantPointerNull>(Callee) &&
2767        !NullPointerIsDefined(Call.getFunction())) ||
2768       isa<UndefValue>(Callee)) {
2769     // If Call does not return void then replaceInstUsesWith poison.
2770     // This allows ValueHandlers and custom metadata to adjust itself.
2771     if (!Call.getType()->isVoidTy())
2772       replaceInstUsesWith(Call, PoisonValue::get(Call.getType()));
2773 
2774     if (Call.isTerminator()) {
2775       // Can't remove an invoke or callbr because we cannot change the CFG.
2776       return nullptr;
2777     }
2778 
2779     // This instruction is not reachable, just remove it.
2780     CreateNonTerminatorUnreachable(&Call);
2781     return eraseInstFromFunction(Call);
2782   }
2783 
2784   if (IntrinsicInst *II = findInitTrampoline(Callee))
2785     return transformCallThroughTrampoline(Call, *II);
2786 
2787   // TODO: Drop this transform once opaque pointer transition is done.
2788   FunctionType *FTy = Call.getFunctionType();
2789   if (FTy->isVarArg()) {
2790     int ix = FTy->getNumParams();
2791     // See if we can optimize any arguments passed through the varargs area of
2792     // the call.
2793     for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end();
2794          I != E; ++I, ++ix) {
2795       CastInst *CI = dyn_cast<CastInst>(*I);
2796       if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) {
2797         replaceUse(*I, CI->getOperand(0));
2798 
2799         // Update the byval type to match the pointer type.
2800         // Not necessary for opaque pointers.
2801         PointerType *NewTy = cast<PointerType>(CI->getOperand(0)->getType());
2802         if (!NewTy->isOpaque() && Call.isByValArgument(ix)) {
2803           Call.removeParamAttr(ix, Attribute::ByVal);
2804           Call.addParamAttr(ix, Attribute::getWithByValType(
2805                                     Call.getContext(),
2806                                     NewTy->getNonOpaquePointerElementType()));
2807         }
2808         Changed = true;
2809       }
2810     }
2811   }
2812 
2813   if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
2814     InlineAsm *IA = cast<InlineAsm>(Callee);
2815     if (!IA->canThrow()) {
2816       // Normal inline asm calls cannot throw - mark them
2817       // 'nounwind'.
2818       Call.setDoesNotThrow();
2819       Changed = true;
2820     }
2821   }
2822 
2823   // Try to optimize the call if possible, we require DataLayout for most of
2824   // this.  None of these calls are seen as possibly dead so go ahead and
2825   // delete the instruction now.
2826   if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
2827     Instruction *I = tryOptimizeCall(CI);
2828     // If we changed something return the result, etc. Otherwise let
2829     // the fallthrough check.
2830     if (I) return eraseInstFromFunction(*I);
2831   }
2832 
2833   if (!Call.use_empty() && !Call.isMustTailCall())
2834     if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
2835       Type *CallTy = Call.getType();
2836       Type *RetArgTy = ReturnedArg->getType();
2837       if (RetArgTy->canLosslesslyBitCastTo(CallTy))
2838         return replaceInstUsesWith(
2839             Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
2840     }
2841 
2842   if (isAllocationFn(&Call, &TLI) &&
2843       isAllocRemovable(&cast<CallBase>(Call), &TLI))
2844     return visitAllocSite(Call);
2845 
2846   // Handle intrinsics which can be used in both call and invoke context.
2847   switch (Call.getIntrinsicID()) {
2848   case Intrinsic::experimental_gc_statepoint: {
2849     GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
2850     SmallPtrSet<Value *, 32> LiveGcValues;
2851     for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
2852       GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
2853 
2854       // Remove the relocation if unused.
2855       if (GCR.use_empty()) {
2856         eraseInstFromFunction(GCR);
2857         continue;
2858       }
2859 
2860       Value *DerivedPtr = GCR.getDerivedPtr();
2861       Value *BasePtr = GCR.getBasePtr();
2862 
2863       // Undef is undef, even after relocation.
2864       if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
2865         replaceInstUsesWith(GCR, UndefValue::get(GCR.getType()));
2866         eraseInstFromFunction(GCR);
2867         continue;
2868       }
2869 
2870       if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
2871         // The relocation of null will be null for most any collector.
2872         // TODO: provide a hook for this in GCStrategy.  There might be some
2873         // weird collector this property does not hold for.
2874         if (isa<ConstantPointerNull>(DerivedPtr)) {
2875           // Use null-pointer of gc_relocate's type to replace it.
2876           replaceInstUsesWith(GCR, ConstantPointerNull::get(PT));
2877           eraseInstFromFunction(GCR);
2878           continue;
2879         }
2880 
2881         // isKnownNonNull -> nonnull attribute
2882         if (!GCR.hasRetAttr(Attribute::NonNull) &&
2883             isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) {
2884           GCR.addRetAttr(Attribute::NonNull);
2885           // We discovered new fact, re-check users.
2886           Worklist.pushUsersToWorkList(GCR);
2887         }
2888       }
2889 
2890       // If we have two copies of the same pointer in the statepoint argument
2891       // list, canonicalize to one.  This may let us common gc.relocates.
2892       if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
2893           GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
2894         auto *OpIntTy = GCR.getOperand(2)->getType();
2895         GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
2896       }
2897 
2898       // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
2899       // Canonicalize on the type from the uses to the defs
2900 
2901       // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
2902       LiveGcValues.insert(BasePtr);
2903       LiveGcValues.insert(DerivedPtr);
2904     }
2905     Optional<OperandBundleUse> Bundle =
2906         GCSP.getOperandBundle(LLVMContext::OB_gc_live);
2907     unsigned NumOfGCLives = LiveGcValues.size();
2908     if (!Bundle.hasValue() || NumOfGCLives == Bundle->Inputs.size())
2909       break;
2910     // We can reduce the size of gc live bundle.
2911     DenseMap<Value *, unsigned> Val2Idx;
2912     std::vector<Value *> NewLiveGc;
2913     for (unsigned I = 0, E = Bundle->Inputs.size(); I < E; ++I) {
2914       Value *V = Bundle->Inputs[I];
2915       if (Val2Idx.count(V))
2916         continue;
2917       if (LiveGcValues.count(V)) {
2918         Val2Idx[V] = NewLiveGc.size();
2919         NewLiveGc.push_back(V);
2920       } else
2921         Val2Idx[V] = NumOfGCLives;
2922     }
2923     // Update all gc.relocates
2924     for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
2925       GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
2926       Value *BasePtr = GCR.getBasePtr();
2927       assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
2928              "Missed live gc for base pointer");
2929       auto *OpIntTy1 = GCR.getOperand(1)->getType();
2930       GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
2931       Value *DerivedPtr = GCR.getDerivedPtr();
2932       assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
2933              "Missed live gc for derived pointer");
2934       auto *OpIntTy2 = GCR.getOperand(2)->getType();
2935       GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
2936     }
2937     // Create new statepoint instruction.
2938     OperandBundleDef NewBundle("gc-live", NewLiveGc);
2939     return CallBase::Create(&Call, NewBundle);
2940   }
2941   default: { break; }
2942   }
2943 
2944   return Changed ? &Call : nullptr;
2945 }
2946 
2947 /// If the callee is a constexpr cast of a function, attempt to move the cast to
2948 /// the arguments of the call/callbr/invoke.
2949 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
2950   auto *Callee =
2951       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
2952   if (!Callee)
2953     return false;
2954 
2955   // If this is a call to a thunk function, don't remove the cast. Thunks are
2956   // used to transparently forward all incoming parameters and outgoing return
2957   // values, so it's important to leave the cast in place.
2958   if (Callee->hasFnAttribute("thunk"))
2959     return false;
2960 
2961   // If this is a musttail call, the callee's prototype must match the caller's
2962   // prototype with the exception of pointee types. The code below doesn't
2963   // implement that, so we can't do this transform.
2964   // TODO: Do the transform if it only requires adding pointer casts.
2965   if (Call.isMustTailCall())
2966     return false;
2967 
2968   Instruction *Caller = &Call;
2969   const AttributeList &CallerPAL = Call.getAttributes();
2970 
2971   // Okay, this is a cast from a function to a different type.  Unless doing so
2972   // would cause a type conversion of one of our arguments, change this call to
2973   // be a direct call with arguments casted to the appropriate types.
2974   FunctionType *FT = Callee->getFunctionType();
2975   Type *OldRetTy = Caller->getType();
2976   Type *NewRetTy = FT->getReturnType();
2977 
2978   // Check to see if we are changing the return type...
2979   if (OldRetTy != NewRetTy) {
2980 
2981     if (NewRetTy->isStructTy())
2982       return false; // TODO: Handle multiple return values.
2983 
2984     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
2985       if (Callee->isDeclaration())
2986         return false;   // Cannot transform this return value.
2987 
2988       if (!Caller->use_empty() &&
2989           // void -> non-void is handled specially
2990           !NewRetTy->isVoidTy())
2991         return false;   // Cannot transform this return value.
2992     }
2993 
2994     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
2995       AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
2996       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
2997         return false;   // Attribute not compatible with transformed value.
2998     }
2999 
3000     // If the callbase is an invoke/callbr instruction, and the return value is
3001     // used by a PHI node in a successor, we cannot change the return type of
3002     // the call because there is no place to put the cast instruction (without
3003     // breaking the critical edge).  Bail out in this case.
3004     if (!Caller->use_empty()) {
3005       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
3006         for (User *U : II->users())
3007           if (PHINode *PN = dyn_cast<PHINode>(U))
3008             if (PN->getParent() == II->getNormalDest() ||
3009                 PN->getParent() == II->getUnwindDest())
3010               return false;
3011       // FIXME: Be conservative for callbr to avoid a quadratic search.
3012       if (isa<CallBrInst>(Caller))
3013         return false;
3014     }
3015   }
3016 
3017   unsigned NumActualArgs = Call.arg_size();
3018   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
3019 
3020   // Prevent us turning:
3021   // declare void @takes_i32_inalloca(i32* inalloca)
3022   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
3023   //
3024   // into:
3025   //  call void @takes_i32_inalloca(i32* null)
3026   //
3027   //  Similarly, avoid folding away bitcasts of byval calls.
3028   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
3029       Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated) ||
3030       Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
3031     return false;
3032 
3033   auto AI = Call.arg_begin();
3034   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
3035     Type *ParamTy = FT->getParamType(i);
3036     Type *ActTy = (*AI)->getType();
3037 
3038     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
3039       return false;   // Cannot transform this parameter value.
3040 
3041     if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
3042             .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
3043       return false;   // Attribute not compatible with transformed value.
3044 
3045     if (Call.isInAllocaArgument(i))
3046       return false;   // Cannot transform to and from inalloca.
3047 
3048     if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
3049       return false;
3050 
3051     // If the parameter is passed as a byval argument, then we have to have a
3052     // sized type and the sized type has to have the same size as the old type.
3053     if (ParamTy != ActTy && CallerPAL.hasParamAttr(i, Attribute::ByVal)) {
3054       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
3055       if (!ParamPTy || !ParamPTy->getPointerElementType()->isSized())
3056         return false;
3057 
3058       Type *CurElTy = Call.getParamByValType(i);
3059       if (DL.getTypeAllocSize(CurElTy) !=
3060           DL.getTypeAllocSize(ParamPTy->getPointerElementType()))
3061         return false;
3062     }
3063   }
3064 
3065   if (Callee->isDeclaration()) {
3066     // Do not delete arguments unless we have a function body.
3067     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
3068       return false;
3069 
3070     // If the callee is just a declaration, don't change the varargsness of the
3071     // call.  We don't want to introduce a varargs call where one doesn't
3072     // already exist.
3073     if (FT->isVarArg() != Call.getFunctionType()->isVarArg())
3074       return false;
3075 
3076     // If both the callee and the cast type are varargs, we still have to make
3077     // sure the number of fixed parameters are the same or we have the same
3078     // ABI issues as if we introduce a varargs call.
3079     if (FT->isVarArg() && Call.getFunctionType()->isVarArg() &&
3080         FT->getNumParams() != Call.getFunctionType()->getNumParams())
3081       return false;
3082   }
3083 
3084   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
3085       !CallerPAL.isEmpty()) {
3086     // In this case we have more arguments than the new function type, but we
3087     // won't be dropping them.  Check that these extra arguments have attributes
3088     // that are compatible with being a vararg call argument.
3089     unsigned SRetIdx;
3090     if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
3091         SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
3092       return false;
3093   }
3094 
3095   // Okay, we decided that this is a safe thing to do: go ahead and start
3096   // inserting cast instructions as necessary.
3097   SmallVector<Value *, 8> Args;
3098   SmallVector<AttributeSet, 8> ArgAttrs;
3099   Args.reserve(NumActualArgs);
3100   ArgAttrs.reserve(NumActualArgs);
3101 
3102   // Get any return attributes.
3103   AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
3104 
3105   // If the return value is not being used, the type may not be compatible
3106   // with the existing attributes.  Wipe out any problematic attributes.
3107   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
3108 
3109   LLVMContext &Ctx = Call.getContext();
3110   AI = Call.arg_begin();
3111   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
3112     Type *ParamTy = FT->getParamType(i);
3113 
3114     Value *NewArg = *AI;
3115     if ((*AI)->getType() != ParamTy)
3116       NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
3117     Args.push_back(NewArg);
3118 
3119     // Add any parameter attributes.
3120     if (CallerPAL.hasParamAttr(i, Attribute::ByVal)) {
3121       AttrBuilder AB(FT->getContext(), CallerPAL.getParamAttrs(i));
3122       AB.addByValAttr(NewArg->getType()->getPointerElementType());
3123       ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
3124     } else
3125       ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
3126   }
3127 
3128   // If the function takes more arguments than the call was taking, add them
3129   // now.
3130   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
3131     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
3132     ArgAttrs.push_back(AttributeSet());
3133   }
3134 
3135   // If we are removing arguments to the function, emit an obnoxious warning.
3136   if (FT->getNumParams() < NumActualArgs) {
3137     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
3138     if (FT->isVarArg()) {
3139       // Add all of the arguments in their promoted form to the arg list.
3140       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
3141         Type *PTy = getPromotedType((*AI)->getType());
3142         Value *NewArg = *AI;
3143         if (PTy != (*AI)->getType()) {
3144           // Must promote to pass through va_arg area!
3145           Instruction::CastOps opcode =
3146             CastInst::getCastOpcode(*AI, false, PTy, false);
3147           NewArg = Builder.CreateCast(opcode, *AI, PTy);
3148         }
3149         Args.push_back(NewArg);
3150 
3151         // Add any parameter attributes.
3152         ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
3153       }
3154     }
3155   }
3156 
3157   AttributeSet FnAttrs = CallerPAL.getFnAttrs();
3158 
3159   if (NewRetTy->isVoidTy())
3160     Caller->setName("");   // Void type should not have a name.
3161 
3162   assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
3163          "missing argument attributes");
3164   AttributeList NewCallerPAL = AttributeList::get(
3165       Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
3166 
3167   SmallVector<OperandBundleDef, 1> OpBundles;
3168   Call.getOperandBundlesAsDefs(OpBundles);
3169 
3170   CallBase *NewCall;
3171   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
3172     NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
3173                                    II->getUnwindDest(), Args, OpBundles);
3174   } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
3175     NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(),
3176                                    CBI->getIndirectDests(), Args, OpBundles);
3177   } else {
3178     NewCall = Builder.CreateCall(Callee, Args, OpBundles);
3179     cast<CallInst>(NewCall)->setTailCallKind(
3180         cast<CallInst>(Caller)->getTailCallKind());
3181   }
3182   NewCall->takeName(Caller);
3183   NewCall->setCallingConv(Call.getCallingConv());
3184   NewCall->setAttributes(NewCallerPAL);
3185 
3186   // Preserve prof metadata if any.
3187   NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
3188 
3189   // Insert a cast of the return type as necessary.
3190   Instruction *NC = NewCall;
3191   Value *NV = NC;
3192   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
3193     if (!NV->getType()->isVoidTy()) {
3194       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
3195       NC->setDebugLoc(Caller->getDebugLoc());
3196 
3197       // If this is an invoke/callbr instruction, we should insert it after the
3198       // first non-phi instruction in the normal successor block.
3199       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
3200         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
3201         InsertNewInstBefore(NC, *I);
3202       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
3203         BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt();
3204         InsertNewInstBefore(NC, *I);
3205       } else {
3206         // Otherwise, it's a call, just insert cast right after the call.
3207         InsertNewInstBefore(NC, *Caller);
3208       }
3209       Worklist.pushUsersToWorkList(*Caller);
3210     } else {
3211       NV = UndefValue::get(Caller->getType());
3212     }
3213   }
3214 
3215   if (!Caller->use_empty())
3216     replaceInstUsesWith(*Caller, NV);
3217   else if (Caller->hasValueHandle()) {
3218     if (OldRetTy == NV->getType())
3219       ValueHandleBase::ValueIsRAUWd(Caller, NV);
3220     else
3221       // We cannot call ValueIsRAUWd with a different type, and the
3222       // actual tracked value will disappear.
3223       ValueHandleBase::ValueIsDeleted(Caller);
3224   }
3225 
3226   eraseInstFromFunction(*Caller);
3227   return true;
3228 }
3229 
3230 /// Turn a call to a function created by init_trampoline / adjust_trampoline
3231 /// intrinsic pair into a direct call to the underlying function.
3232 Instruction *
3233 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
3234                                                  IntrinsicInst &Tramp) {
3235   Value *Callee = Call.getCalledOperand();
3236   Type *CalleeTy = Callee->getType();
3237   FunctionType *FTy = Call.getFunctionType();
3238   AttributeList Attrs = Call.getAttributes();
3239 
3240   // If the call already has the 'nest' attribute somewhere then give up -
3241   // otherwise 'nest' would occur twice after splicing in the chain.
3242   if (Attrs.hasAttrSomewhere(Attribute::Nest))
3243     return nullptr;
3244 
3245   Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
3246   FunctionType *NestFTy = NestF->getFunctionType();
3247 
3248   AttributeList NestAttrs = NestF->getAttributes();
3249   if (!NestAttrs.isEmpty()) {
3250     unsigned NestArgNo = 0;
3251     Type *NestTy = nullptr;
3252     AttributeSet NestAttr;
3253 
3254     // Look for a parameter marked with the 'nest' attribute.
3255     for (FunctionType::param_iterator I = NestFTy->param_begin(),
3256                                       E = NestFTy->param_end();
3257          I != E; ++NestArgNo, ++I) {
3258       AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
3259       if (AS.hasAttribute(Attribute::Nest)) {
3260         // Record the parameter type and any other attributes.
3261         NestTy = *I;
3262         NestAttr = AS;
3263         break;
3264       }
3265     }
3266 
3267     if (NestTy) {
3268       std::vector<Value*> NewArgs;
3269       std::vector<AttributeSet> NewArgAttrs;
3270       NewArgs.reserve(Call.arg_size() + 1);
3271       NewArgAttrs.reserve(Call.arg_size());
3272 
3273       // Insert the nest argument into the call argument list, which may
3274       // mean appending it.  Likewise for attributes.
3275 
3276       {
3277         unsigned ArgNo = 0;
3278         auto I = Call.arg_begin(), E = Call.arg_end();
3279         do {
3280           if (ArgNo == NestArgNo) {
3281             // Add the chain argument and attributes.
3282             Value *NestVal = Tramp.getArgOperand(2);
3283             if (NestVal->getType() != NestTy)
3284               NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
3285             NewArgs.push_back(NestVal);
3286             NewArgAttrs.push_back(NestAttr);
3287           }
3288 
3289           if (I == E)
3290             break;
3291 
3292           // Add the original argument and attributes.
3293           NewArgs.push_back(*I);
3294           NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
3295 
3296           ++ArgNo;
3297           ++I;
3298         } while (true);
3299       }
3300 
3301       // The trampoline may have been bitcast to a bogus type (FTy).
3302       // Handle this by synthesizing a new function type, equal to FTy
3303       // with the chain parameter inserted.
3304 
3305       std::vector<Type*> NewTypes;
3306       NewTypes.reserve(FTy->getNumParams()+1);
3307 
3308       // Insert the chain's type into the list of parameter types, which may
3309       // mean appending it.
3310       {
3311         unsigned ArgNo = 0;
3312         FunctionType::param_iterator I = FTy->param_begin(),
3313           E = FTy->param_end();
3314 
3315         do {
3316           if (ArgNo == NestArgNo)
3317             // Add the chain's type.
3318             NewTypes.push_back(NestTy);
3319 
3320           if (I == E)
3321             break;
3322 
3323           // Add the original type.
3324           NewTypes.push_back(*I);
3325 
3326           ++ArgNo;
3327           ++I;
3328         } while (true);
3329       }
3330 
3331       // Replace the trampoline call with a direct call.  Let the generic
3332       // code sort out any function type mismatches.
3333       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
3334                                                 FTy->isVarArg());
3335       Constant *NewCallee =
3336         NestF->getType() == PointerType::getUnqual(NewFTy) ?
3337         NestF : ConstantExpr::getBitCast(NestF,
3338                                          PointerType::getUnqual(NewFTy));
3339       AttributeList NewPAL =
3340           AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
3341                              Attrs.getRetAttrs(), NewArgAttrs);
3342 
3343       SmallVector<OperandBundleDef, 1> OpBundles;
3344       Call.getOperandBundlesAsDefs(OpBundles);
3345 
3346       Instruction *NewCaller;
3347       if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
3348         NewCaller = InvokeInst::Create(NewFTy, NewCallee,
3349                                        II->getNormalDest(), II->getUnwindDest(),
3350                                        NewArgs, OpBundles);
3351         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
3352         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
3353       } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
3354         NewCaller =
3355             CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
3356                                CBI->getIndirectDests(), NewArgs, OpBundles);
3357         cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
3358         cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
3359       } else {
3360         NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
3361         cast<CallInst>(NewCaller)->setTailCallKind(
3362             cast<CallInst>(Call).getTailCallKind());
3363         cast<CallInst>(NewCaller)->setCallingConv(
3364             cast<CallInst>(Call).getCallingConv());
3365         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
3366       }
3367       NewCaller->setDebugLoc(Call.getDebugLoc());
3368 
3369       return NewCaller;
3370     }
3371   }
3372 
3373   // Replace the trampoline call with a direct call.  Since there is no 'nest'
3374   // parameter, there is no need to adjust the argument list.  Let the generic
3375   // code sort out any function type mismatches.
3376   Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
3377   Call.setCalledFunction(FTy, NewCallee);
3378   return &Call;
3379 }
3380