1 //===- InstCombineCalls.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitCall, visitInvoke, and visitCallBr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/FloatingPointMode.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallBitVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/IntrinsicsAArch64.h" 50 #include "llvm/IR/IntrinsicsAMDGPU.h" 51 #include "llvm/IR/IntrinsicsARM.h" 52 #include "llvm/IR/IntrinsicsHexagon.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/IR/Statepoint.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/ValueHandle.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 71 #include "llvm/Transforms/InstCombine/InstCombiner.h" 72 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 73 #include "llvm/Transforms/Utils/Local.h" 74 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstdint> 78 #include <cstring> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 using namespace PatternMatch; 84 85 #define DEBUG_TYPE "instcombine" 86 87 STATISTIC(NumSimplified, "Number of library calls simplified"); 88 89 static cl::opt<unsigned> GuardWideningWindow( 90 "instcombine-guard-widening-window", 91 cl::init(3), 92 cl::desc("How wide an instruction window to bypass looking for " 93 "another guard")); 94 95 namespace llvm { 96 /// enable preservation of attributes in assume like: 97 /// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ] 98 extern cl::opt<bool> EnableKnowledgeRetention; 99 } // namespace llvm 100 101 /// Return the specified type promoted as it would be to pass though a va_arg 102 /// area. 103 static Type *getPromotedType(Type *Ty) { 104 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { 105 if (ITy->getBitWidth() < 32) 106 return Type::getInt32Ty(Ty->getContext()); 107 } 108 return Ty; 109 } 110 111 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) { 112 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT); 113 MaybeAlign CopyDstAlign = MI->getDestAlign(); 114 if (!CopyDstAlign || *CopyDstAlign < DstAlign) { 115 MI->setDestAlignment(DstAlign); 116 return MI; 117 } 118 119 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT); 120 MaybeAlign CopySrcAlign = MI->getSourceAlign(); 121 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) { 122 MI->setSourceAlignment(SrcAlign); 123 return MI; 124 } 125 126 // If we have a store to a location which is known constant, we can conclude 127 // that the store must be storing the constant value (else the memory 128 // wouldn't be constant), and this must be a noop. 129 if (AA->pointsToConstantMemory(MI->getDest())) { 130 // Set the size of the copy to 0, it will be deleted on the next iteration. 131 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 132 return MI; 133 } 134 135 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with 136 // load/store. 137 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength()); 138 if (!MemOpLength) return nullptr; 139 140 // Source and destination pointer types are always "i8*" for intrinsic. See 141 // if the size is something we can handle with a single primitive load/store. 142 // A single load+store correctly handles overlapping memory in the memmove 143 // case. 144 uint64_t Size = MemOpLength->getLimitedValue(); 145 assert(Size && "0-sized memory transferring should be removed already."); 146 147 if (Size > 8 || (Size&(Size-1))) 148 return nullptr; // If not 1/2/4/8 bytes, exit. 149 150 // If it is an atomic and alignment is less than the size then we will 151 // introduce the unaligned memory access which will be later transformed 152 // into libcall in CodeGen. This is not evident performance gain so disable 153 // it now. 154 if (isa<AtomicMemTransferInst>(MI)) 155 if (*CopyDstAlign < Size || *CopySrcAlign < Size) 156 return nullptr; 157 158 // Use an integer load+store unless we can find something better. 159 unsigned SrcAddrSp = 160 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace(); 161 unsigned DstAddrSp = 162 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace(); 163 164 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); 165 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); 166 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); 167 168 // If the memcpy has metadata describing the members, see if we can get the 169 // TBAA tag describing our copy. 170 MDNode *CopyMD = nullptr; 171 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) { 172 CopyMD = M; 173 } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) { 174 if (M->getNumOperands() == 3 && M->getOperand(0) && 175 mdconst::hasa<ConstantInt>(M->getOperand(0)) && 176 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() && 177 M->getOperand(1) && 178 mdconst::hasa<ConstantInt>(M->getOperand(1)) && 179 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() == 180 Size && 181 M->getOperand(2) && isa<MDNode>(M->getOperand(2))) 182 CopyMD = cast<MDNode>(M->getOperand(2)); 183 } 184 185 Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy); 186 Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy); 187 LoadInst *L = Builder.CreateLoad(IntType, Src); 188 // Alignment from the mem intrinsic will be better, so use it. 189 L->setAlignment(*CopySrcAlign); 190 if (CopyMD) 191 L->setMetadata(LLVMContext::MD_tbaa, CopyMD); 192 MDNode *LoopMemParallelMD = 193 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access); 194 if (LoopMemParallelMD) 195 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 196 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group); 197 if (AccessGroupMD) 198 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 199 200 StoreInst *S = Builder.CreateStore(L, Dest); 201 // Alignment from the mem intrinsic will be better, so use it. 202 S->setAlignment(*CopyDstAlign); 203 if (CopyMD) 204 S->setMetadata(LLVMContext::MD_tbaa, CopyMD); 205 if (LoopMemParallelMD) 206 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD); 207 if (AccessGroupMD) 208 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD); 209 210 if (auto *MT = dyn_cast<MemTransferInst>(MI)) { 211 // non-atomics can be volatile 212 L->setVolatile(MT->isVolatile()); 213 S->setVolatile(MT->isVolatile()); 214 } 215 if (isa<AtomicMemTransferInst>(MI)) { 216 // atomics have to be unordered 217 L->setOrdering(AtomicOrdering::Unordered); 218 S->setOrdering(AtomicOrdering::Unordered); 219 } 220 221 // Set the size of the copy to 0, it will be deleted on the next iteration. 222 MI->setLength(Constant::getNullValue(MemOpLength->getType())); 223 return MI; 224 } 225 226 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) { 227 const Align KnownAlignment = 228 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT); 229 MaybeAlign MemSetAlign = MI->getDestAlign(); 230 if (!MemSetAlign || *MemSetAlign < KnownAlignment) { 231 MI->setDestAlignment(KnownAlignment); 232 return MI; 233 } 234 235 // If we have a store to a location which is known constant, we can conclude 236 // that the store must be storing the constant value (else the memory 237 // wouldn't be constant), and this must be a noop. 238 if (AA->pointsToConstantMemory(MI->getDest())) { 239 // Set the size of the copy to 0, it will be deleted on the next iteration. 240 MI->setLength(Constant::getNullValue(MI->getLength()->getType())); 241 return MI; 242 } 243 244 // Extract the length and alignment and fill if they are constant. 245 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); 246 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); 247 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) 248 return nullptr; 249 const uint64_t Len = LenC->getLimitedValue(); 250 assert(Len && "0-sized memory setting should be removed already."); 251 const Align Alignment = assumeAligned(MI->getDestAlignment()); 252 253 // If it is an atomic and alignment is less than the size then we will 254 // introduce the unaligned memory access which will be later transformed 255 // into libcall in CodeGen. This is not evident performance gain so disable 256 // it now. 257 if (isa<AtomicMemSetInst>(MI)) 258 if (Alignment < Len) 259 return nullptr; 260 261 // memset(s,c,n) -> store s, c (for n=1,2,4,8) 262 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { 263 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. 264 265 Value *Dest = MI->getDest(); 266 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace(); 267 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp); 268 Dest = Builder.CreateBitCast(Dest, NewDstPtrTy); 269 270 // Extract the fill value and store. 271 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; 272 StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest, 273 MI->isVolatile()); 274 S->setAlignment(Alignment); 275 if (isa<AtomicMemSetInst>(MI)) 276 S->setOrdering(AtomicOrdering::Unordered); 277 278 // Set the size of the copy to 0, it will be deleted on the next iteration. 279 MI->setLength(Constant::getNullValue(LenC->getType())); 280 return MI; 281 } 282 283 return nullptr; 284 } 285 286 // TODO, Obvious Missing Transforms: 287 // * Narrow width by halfs excluding zero/undef lanes 288 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) { 289 Value *LoadPtr = II.getArgOperand(0); 290 const Align Alignment = 291 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue(); 292 293 // If the mask is all ones or undefs, this is a plain vector load of the 1st 294 // argument. 295 if (maskIsAllOneOrUndef(II.getArgOperand(2))) { 296 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 297 "unmaskedload"); 298 L->copyMetadata(II); 299 return L; 300 } 301 302 // If we can unconditionally load from this address, replace with a 303 // load/select idiom. TODO: use DT for context sensitive query 304 if (isDereferenceablePointer(LoadPtr, II.getType(), 305 II.getModule()->getDataLayout(), &II, nullptr)) { 306 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment, 307 "unmaskedload"); 308 LI->copyMetadata(II); 309 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3)); 310 } 311 312 return nullptr; 313 } 314 315 // TODO, Obvious Missing Transforms: 316 // * Single constant active lane -> store 317 // * Narrow width by halfs excluding zero/undef lanes 318 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) { 319 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 320 if (!ConstMask) 321 return nullptr; 322 323 // If the mask is all zeros, this instruction does nothing. 324 if (ConstMask->isNullValue()) 325 return eraseInstFromFunction(II); 326 327 // If the mask is all ones, this is a plain vector store of the 1st argument. 328 if (ConstMask->isAllOnesValue()) { 329 Value *StorePtr = II.getArgOperand(1); 330 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue(); 331 StoreInst *S = 332 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment); 333 S->copyMetadata(II); 334 return S; 335 } 336 337 if (isa<ScalableVectorType>(ConstMask->getType())) 338 return nullptr; 339 340 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 341 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 342 APInt UndefElts(DemandedElts.getBitWidth(), 0); 343 if (Value *V = 344 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts)) 345 return replaceOperand(II, 0, V); 346 347 return nullptr; 348 } 349 350 // TODO, Obvious Missing Transforms: 351 // * Single constant active lane load -> load 352 // * Dereferenceable address & few lanes -> scalarize speculative load/selects 353 // * Adjacent vector addresses -> masked.load 354 // * Narrow width by halfs excluding zero/undef lanes 355 // * Vector splat address w/known mask -> scalar load 356 // * Vector incrementing address -> vector masked load 357 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) { 358 return nullptr; 359 } 360 361 // TODO, Obvious Missing Transforms: 362 // * Single constant active lane -> store 363 // * Adjacent vector addresses -> masked.store 364 // * Narrow store width by halfs excluding zero/undef lanes 365 // * Vector splat address w/known mask -> scalar store 366 // * Vector incrementing address -> vector masked store 367 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) { 368 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3)); 369 if (!ConstMask) 370 return nullptr; 371 372 // If the mask is all zeros, a scatter does nothing. 373 if (ConstMask->isNullValue()) 374 return eraseInstFromFunction(II); 375 376 if (isa<ScalableVectorType>(ConstMask->getType())) 377 return nullptr; 378 379 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts 380 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask); 381 APInt UndefElts(DemandedElts.getBitWidth(), 0); 382 if (Value *V = 383 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts)) 384 return replaceOperand(II, 0, V); 385 if (Value *V = 386 SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts)) 387 return replaceOperand(II, 1, V); 388 389 return nullptr; 390 } 391 392 /// This function transforms launder.invariant.group and strip.invariant.group 393 /// like: 394 /// launder(launder(%x)) -> launder(%x) (the result is not the argument) 395 /// launder(strip(%x)) -> launder(%x) 396 /// strip(strip(%x)) -> strip(%x) (the result is not the argument) 397 /// strip(launder(%x)) -> strip(%x) 398 /// This is legal because it preserves the most recent information about 399 /// the presence or absence of invariant.group. 400 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II, 401 InstCombinerImpl &IC) { 402 auto *Arg = II.getArgOperand(0); 403 auto *StrippedArg = Arg->stripPointerCasts(); 404 auto *StrippedInvariantGroupsArg = StrippedArg; 405 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) { 406 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group && 407 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group) 408 break; 409 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts(); 410 } 411 if (StrippedArg == StrippedInvariantGroupsArg) 412 return nullptr; // No launders/strips to remove. 413 414 Value *Result = nullptr; 415 416 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group) 417 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg); 418 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group) 419 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg); 420 else 421 llvm_unreachable( 422 "simplifyInvariantGroupIntrinsic only handles launder and strip"); 423 if (Result->getType()->getPointerAddressSpace() != 424 II.getType()->getPointerAddressSpace()) 425 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType()); 426 if (Result->getType() != II.getType()) 427 Result = IC.Builder.CreateBitCast(Result, II.getType()); 428 429 return cast<Instruction>(Result); 430 } 431 432 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) { 433 assert((II.getIntrinsicID() == Intrinsic::cttz || 434 II.getIntrinsicID() == Intrinsic::ctlz) && 435 "Expected cttz or ctlz intrinsic"); 436 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz; 437 Value *Op0 = II.getArgOperand(0); 438 Value *Op1 = II.getArgOperand(1); 439 Value *X; 440 // ctlz(bitreverse(x)) -> cttz(x) 441 // cttz(bitreverse(x)) -> ctlz(x) 442 if (match(Op0, m_BitReverse(m_Value(X)))) { 443 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz; 444 Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType()); 445 return CallInst::Create(F, {X, II.getArgOperand(1)}); 446 } 447 448 if (II.getType()->isIntOrIntVectorTy(1)) { 449 // ctlz/cttz i1 Op0 --> not Op0 450 if (match(Op1, m_Zero())) 451 return BinaryOperator::CreateNot(Op0); 452 // If zero is undef, then the input can be assumed to be "true", so the 453 // instruction simplifies to "false". 454 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1"); 455 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType())); 456 } 457 458 // If the operand is a select with constant arm(s), try to hoist ctlz/cttz. 459 if (auto *Sel = dyn_cast<SelectInst>(Op0)) 460 if (Instruction *R = IC.FoldOpIntoSelect(II, Sel)) 461 return R; 462 463 if (IsTZ) { 464 // cttz(-x) -> cttz(x) 465 if (match(Op0, m_Neg(m_Value(X)))) 466 return IC.replaceOperand(II, 0, X); 467 468 // cttz(sext(x)) -> cttz(zext(x)) 469 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) { 470 auto *Zext = IC.Builder.CreateZExt(X, II.getType()); 471 auto *CttzZext = 472 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1); 473 return IC.replaceInstUsesWith(II, CttzZext); 474 } 475 476 // Zext doesn't change the number of trailing zeros, so narrow: 477 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsUndef' parameter is 'true'. 478 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) { 479 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X, 480 IC.Builder.getTrue()); 481 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType()); 482 return IC.replaceInstUsesWith(II, ZextCttz); 483 } 484 485 // cttz(abs(x)) -> cttz(x) 486 // cttz(nabs(x)) -> cttz(x) 487 Value *Y; 488 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor; 489 if (SPF == SPF_ABS || SPF == SPF_NABS) 490 return IC.replaceOperand(II, 0, X); 491 492 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) 493 return IC.replaceOperand(II, 0, X); 494 } 495 496 KnownBits Known = IC.computeKnownBits(Op0, 0, &II); 497 498 // Create a mask for bits above (ctlz) or below (cttz) the first known one. 499 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros() 500 : Known.countMaxLeadingZeros(); 501 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros() 502 : Known.countMinLeadingZeros(); 503 504 // If all bits above (ctlz) or below (cttz) the first known one are known 505 // zero, this value is constant. 506 // FIXME: This should be in InstSimplify because we're replacing an 507 // instruction with a constant. 508 if (PossibleZeros == DefiniteZeros) { 509 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros); 510 return IC.replaceInstUsesWith(II, C); 511 } 512 513 // If the input to cttz/ctlz is known to be non-zero, 514 // then change the 'ZeroIsUndef' parameter to 'true' 515 // because we know the zero behavior can't affect the result. 516 if (!Known.One.isNullValue() || 517 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II, 518 &IC.getDominatorTree())) { 519 if (!match(II.getArgOperand(1), m_One())) 520 return IC.replaceOperand(II, 1, IC.Builder.getTrue()); 521 } 522 523 // Add range metadata since known bits can't completely reflect what we know. 524 // TODO: Handle splat vectors. 525 auto *IT = dyn_cast<IntegerType>(Op0->getType()); 526 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { 527 Metadata *LowAndHigh[] = { 528 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)), 529 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))}; 530 II.setMetadata(LLVMContext::MD_range, 531 MDNode::get(II.getContext(), LowAndHigh)); 532 return &II; 533 } 534 535 return nullptr; 536 } 537 538 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) { 539 assert(II.getIntrinsicID() == Intrinsic::ctpop && 540 "Expected ctpop intrinsic"); 541 Type *Ty = II.getType(); 542 unsigned BitWidth = Ty->getScalarSizeInBits(); 543 Value *Op0 = II.getArgOperand(0); 544 Value *X, *Y; 545 546 // ctpop(bitreverse(x)) -> ctpop(x) 547 // ctpop(bswap(x)) -> ctpop(x) 548 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) 549 return IC.replaceOperand(II, 0, X); 550 551 // ctpop(rot(x)) -> ctpop(x) 552 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) || 553 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) && 554 X == Y) 555 return IC.replaceOperand(II, 0, X); 556 557 // ctpop(x | -x) -> bitwidth - cttz(x, false) 558 if (Op0->hasOneUse() && 559 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) { 560 Function *F = 561 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); 562 auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()}); 563 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth)); 564 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz)); 565 } 566 567 // ctpop(~x & (x - 1)) -> cttz(x, false) 568 if (match(Op0, 569 m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) { 570 Function *F = 571 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty); 572 return CallInst::Create(F, {X, IC.Builder.getFalse()}); 573 } 574 575 // Zext doesn't change the number of set bits, so narrow: 576 // ctpop (zext X) --> zext (ctpop X) 577 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 578 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X); 579 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty); 580 } 581 582 // If the operand is a select with constant arm(s), try to hoist ctpop. 583 if (auto *Sel = dyn_cast<SelectInst>(Op0)) 584 if (Instruction *R = IC.FoldOpIntoSelect(II, Sel)) 585 return R; 586 587 KnownBits Known(BitWidth); 588 IC.computeKnownBits(Op0, Known, 0, &II); 589 590 // If all bits are zero except for exactly one fixed bit, then the result 591 // must be 0 or 1, and we can get that answer by shifting to LSB: 592 // ctpop (X & 32) --> (X & 32) >> 5 593 if ((~Known.Zero).isPowerOf2()) 594 return BinaryOperator::CreateLShr( 595 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2())); 596 597 // FIXME: Try to simplify vectors of integers. 598 auto *IT = dyn_cast<IntegerType>(Ty); 599 if (!IT) 600 return nullptr; 601 602 // Add range metadata since known bits can't completely reflect what we know. 603 unsigned MinCount = Known.countMinPopulation(); 604 unsigned MaxCount = Known.countMaxPopulation(); 605 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) { 606 Metadata *LowAndHigh[] = { 607 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)), 608 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))}; 609 II.setMetadata(LLVMContext::MD_range, 610 MDNode::get(II.getContext(), LowAndHigh)); 611 return &II; 612 } 613 614 return nullptr; 615 } 616 617 /// Convert a table lookup to shufflevector if the mask is constant. 618 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in 619 /// which case we could lower the shufflevector with rev64 instructions 620 /// as it's actually a byte reverse. 621 static Value *simplifyNeonTbl1(const IntrinsicInst &II, 622 InstCombiner::BuilderTy &Builder) { 623 // Bail out if the mask is not a constant. 624 auto *C = dyn_cast<Constant>(II.getArgOperand(1)); 625 if (!C) 626 return nullptr; 627 628 auto *VecTy = cast<FixedVectorType>(II.getType()); 629 unsigned NumElts = VecTy->getNumElements(); 630 631 // Only perform this transformation for <8 x i8> vector types. 632 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8) 633 return nullptr; 634 635 int Indexes[8]; 636 637 for (unsigned I = 0; I < NumElts; ++I) { 638 Constant *COp = C->getAggregateElement(I); 639 640 if (!COp || !isa<ConstantInt>(COp)) 641 return nullptr; 642 643 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue(); 644 645 // Make sure the mask indices are in range. 646 if ((unsigned)Indexes[I] >= NumElts) 647 return nullptr; 648 } 649 650 auto *V1 = II.getArgOperand(0); 651 auto *V2 = Constant::getNullValue(V1->getType()); 652 return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes)); 653 } 654 655 // Returns true iff the 2 intrinsics have the same operands, limiting the 656 // comparison to the first NumOperands. 657 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, 658 unsigned NumOperands) { 659 assert(I.getNumArgOperands() >= NumOperands && "Not enough operands"); 660 assert(E.getNumArgOperands() >= NumOperands && "Not enough operands"); 661 for (unsigned i = 0; i < NumOperands; i++) 662 if (I.getArgOperand(i) != E.getArgOperand(i)) 663 return false; 664 return true; 665 } 666 667 // Remove trivially empty start/end intrinsic ranges, i.e. a start 668 // immediately followed by an end (ignoring debuginfo or other 669 // start/end intrinsics in between). As this handles only the most trivial 670 // cases, tracking the nesting level is not needed: 671 // 672 // call @llvm.foo.start(i1 0) 673 // call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed 674 // call @llvm.foo.end(i1 0) 675 // call @llvm.foo.end(i1 0) ; &I 676 static bool 677 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, 678 std::function<bool(const IntrinsicInst &)> IsStart) { 679 // We start from the end intrinsic and scan backwards, so that InstCombine 680 // has already processed (and potentially removed) all the instructions 681 // before the end intrinsic. 682 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend()); 683 for (; BI != BE; ++BI) { 684 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) { 685 if (isa<DbgInfoIntrinsic>(I) || 686 I->getIntrinsicID() == EndI.getIntrinsicID()) 687 continue; 688 if (IsStart(*I)) { 689 if (haveSameOperands(EndI, *I, EndI.getNumArgOperands())) { 690 IC.eraseInstFromFunction(*I); 691 IC.eraseInstFromFunction(EndI); 692 return true; 693 } 694 // Skip start intrinsics that don't pair with this end intrinsic. 695 continue; 696 } 697 } 698 break; 699 } 700 701 return false; 702 } 703 704 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) { 705 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) { 706 return I.getIntrinsicID() == Intrinsic::vastart || 707 I.getIntrinsicID() == Intrinsic::vacopy; 708 }); 709 return nullptr; 710 } 711 712 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) { 713 assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap"); 714 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1); 715 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) { 716 Call.setArgOperand(0, Arg1); 717 Call.setArgOperand(1, Arg0); 718 return &Call; 719 } 720 return nullptr; 721 } 722 723 /// Creates a result tuple for an overflow intrinsic \p II with a given 724 /// \p Result and a constant \p Overflow value. 725 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result, 726 Constant *Overflow) { 727 Constant *V[] = {UndefValue::get(Result->getType()), Overflow}; 728 StructType *ST = cast<StructType>(II->getType()); 729 Constant *Struct = ConstantStruct::get(ST, V); 730 return InsertValueInst::Create(Struct, Result, 0); 731 } 732 733 Instruction * 734 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) { 735 WithOverflowInst *WO = cast<WithOverflowInst>(II); 736 Value *OperationResult = nullptr; 737 Constant *OverflowResult = nullptr; 738 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(), 739 WO->getRHS(), *WO, OperationResult, OverflowResult)) 740 return createOverflowTuple(WO, OperationResult, OverflowResult); 741 return nullptr; 742 } 743 744 static Optional<bool> getKnownSign(Value *Op, Instruction *CxtI, 745 const DataLayout &DL, AssumptionCache *AC, 746 DominatorTree *DT) { 747 KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT); 748 if (Known.isNonNegative()) 749 return false; 750 if (Known.isNegative()) 751 return true; 752 753 return isImpliedByDomCondition( 754 ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL); 755 } 756 757 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output 758 /// can only be one of two possible constant values -- turn that into a select 759 /// of constants. 760 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II, 761 InstCombiner::BuilderTy &Builder) { 762 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 763 Value *X; 764 const APInt *C0, *C1; 765 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse()) 766 return nullptr; 767 768 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 769 switch (II->getIntrinsicID()) { 770 case Intrinsic::smax: 771 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 772 Pred = ICmpInst::ICMP_SGT; 773 break; 774 case Intrinsic::smin: 775 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 776 Pred = ICmpInst::ICMP_SLT; 777 break; 778 case Intrinsic::umax: 779 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1) 780 Pred = ICmpInst::ICMP_UGT; 781 break; 782 case Intrinsic::umin: 783 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1) 784 Pred = ICmpInst::ICMP_ULT; 785 break; 786 default: 787 llvm_unreachable("Expected min/max intrinsic"); 788 } 789 if (Pred == CmpInst::BAD_ICMP_PREDICATE) 790 return nullptr; 791 792 // max (min X, 42), 41 --> X > 41 ? 42 : 41 793 // min (max X, 42), 43 --> X < 43 ? 42 : 43 794 Value *Cmp = Builder.CreateICmp(Pred, X, I1); 795 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1); 796 } 797 798 /// CallInst simplification. This mostly only handles folding of intrinsic 799 /// instructions. For normal calls, it allows visitCallBase to do the heavy 800 /// lifting. 801 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) { 802 // Don't try to simplify calls without uses. It will not do anything useful, 803 // but will result in the following folds being skipped. 804 if (!CI.use_empty()) 805 if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI))) 806 return replaceInstUsesWith(CI, V); 807 808 if (isFreeCall(&CI, &TLI)) 809 return visitFree(CI); 810 811 // If the caller function is nounwind, mark the call as nounwind, even if the 812 // callee isn't. 813 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) { 814 CI.setDoesNotThrow(); 815 return &CI; 816 } 817 818 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); 819 if (!II) return visitCallBase(CI); 820 821 // For atomic unordered mem intrinsics if len is not a positive or 822 // not a multiple of element size then behavior is undefined. 823 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II)) 824 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength())) 825 if (NumBytes->getSExtValue() < 0 || 826 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) { 827 CreateNonTerminatorUnreachable(AMI); 828 assert(AMI->getType()->isVoidTy() && 829 "non void atomic unordered mem intrinsic"); 830 return eraseInstFromFunction(*AMI); 831 } 832 833 // Intrinsics cannot occur in an invoke or a callbr, so handle them here 834 // instead of in visitCallBase. 835 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) { 836 bool Changed = false; 837 838 // memmove/cpy/set of zero bytes is a noop. 839 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { 840 if (NumBytes->isNullValue()) 841 return eraseInstFromFunction(CI); 842 843 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) 844 if (CI->getZExtValue() == 1) { 845 // Replace the instruction with just byte operations. We would 846 // transform other cases to loads/stores, but we don't know if 847 // alignment is sufficient. 848 } 849 } 850 851 // No other transformations apply to volatile transfers. 852 if (auto *M = dyn_cast<MemIntrinsic>(MI)) 853 if (M->isVolatile()) 854 return nullptr; 855 856 // If we have a memmove and the source operation is a constant global, 857 // then the source and dest pointers can't alias, so we can change this 858 // into a call to memcpy. 859 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) { 860 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) 861 if (GVSrc->isConstant()) { 862 Module *M = CI.getModule(); 863 Intrinsic::ID MemCpyID = 864 isa<AtomicMemMoveInst>(MMI) 865 ? Intrinsic::memcpy_element_unordered_atomic 866 : Intrinsic::memcpy; 867 Type *Tys[3] = { CI.getArgOperand(0)->getType(), 868 CI.getArgOperand(1)->getType(), 869 CI.getArgOperand(2)->getType() }; 870 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys)); 871 Changed = true; 872 } 873 } 874 875 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 876 // memmove(x,x,size) -> noop. 877 if (MTI->getSource() == MTI->getDest()) 878 return eraseInstFromFunction(CI); 879 } 880 881 // If we can determine a pointer alignment that is bigger than currently 882 // set, update the alignment. 883 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) { 884 if (Instruction *I = SimplifyAnyMemTransfer(MTI)) 885 return I; 886 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) { 887 if (Instruction *I = SimplifyAnyMemSet(MSI)) 888 return I; 889 } 890 891 if (Changed) return II; 892 } 893 894 // For fixed width vector result intrinsics, use the generic demanded vector 895 // support. 896 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) { 897 auto VWidth = IIFVTy->getNumElements(); 898 APInt UndefElts(VWidth, 0); 899 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 900 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) { 901 if (V != II) 902 return replaceInstUsesWith(*II, V); 903 return II; 904 } 905 } 906 907 if (II->isCommutative()) { 908 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI)) 909 return NewCall; 910 } 911 912 Intrinsic::ID IID = II->getIntrinsicID(); 913 switch (IID) { 914 case Intrinsic::objectsize: 915 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false)) 916 return replaceInstUsesWith(CI, V); 917 return nullptr; 918 case Intrinsic::abs: { 919 Value *IIOperand = II->getArgOperand(0); 920 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue(); 921 922 // abs(-x) -> abs(x) 923 // TODO: Copy nsw if it was present on the neg? 924 Value *X; 925 if (match(IIOperand, m_Neg(m_Value(X)))) 926 return replaceOperand(*II, 0, X); 927 if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X))))) 928 return replaceOperand(*II, 0, X); 929 if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X)))) 930 return replaceOperand(*II, 0, X); 931 932 if (Optional<bool> Sign = getKnownSign(IIOperand, II, DL, &AC, &DT)) { 933 // abs(x) -> x if x >= 0 934 if (!*Sign) 935 return replaceInstUsesWith(*II, IIOperand); 936 937 // abs(x) -> -x if x < 0 938 if (IntMinIsPoison) 939 return BinaryOperator::CreateNSWNeg(IIOperand); 940 return BinaryOperator::CreateNeg(IIOperand); 941 } 942 943 // abs (sext X) --> zext (abs X*) 944 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing. 945 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) { 946 Value *NarrowAbs = 947 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse()); 948 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType()); 949 } 950 951 // Match a complicated way to check if a number is odd/even: 952 // abs (srem X, 2) --> and X, 1 953 const APInt *C; 954 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2) 955 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1)); 956 957 break; 958 } 959 case Intrinsic::umin: { 960 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 961 // umin(x, 1) == zext(x != 0) 962 if (match(I1, m_One())) { 963 Value *Zero = Constant::getNullValue(I0->getType()); 964 Value *Cmp = Builder.CreateICmpNE(I0, Zero); 965 return CastInst::Create(Instruction::ZExt, Cmp, II->getType()); 966 } 967 LLVM_FALLTHROUGH; 968 } 969 case Intrinsic::umax: { 970 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 971 Value *X, *Y; 972 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) && 973 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 974 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 975 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 976 } 977 Constant *C; 978 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) && 979 I0->hasOneUse()) { 980 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType()); 981 if (ConstantExpr::getZExt(NarrowC, II->getType()) == C) { 982 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 983 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType()); 984 } 985 } 986 // If both operands of unsigned min/max are sign-extended, it is still ok 987 // to narrow the operation. 988 LLVM_FALLTHROUGH; 989 } 990 case Intrinsic::smax: 991 case Intrinsic::smin: { 992 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1); 993 Value *X, *Y; 994 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) && 995 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) { 996 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y); 997 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 998 } 999 1000 Constant *C; 1001 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) && 1002 I0->hasOneUse()) { 1003 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType()); 1004 if (ConstantExpr::getSExt(NarrowC, II->getType()) == C) { 1005 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC); 1006 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType()); 1007 } 1008 } 1009 1010 if (match(I0, m_Not(m_Value(X)))) { 1011 // max (not X), (not Y) --> not (min X, Y) 1012 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID); 1013 if (match(I1, m_Not(m_Value(Y))) && 1014 (I0->hasOneUse() || I1->hasOneUse())) { 1015 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y); 1016 return BinaryOperator::CreateNot(InvMaxMin); 1017 } 1018 // max (not X), C --> not(min X, ~C) 1019 if (match(I1, m_Constant(C)) && I0->hasOneUse()) { 1020 Constant *NotC = ConstantExpr::getNot(C); 1021 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotC); 1022 return BinaryOperator::CreateNot(InvMaxMin); 1023 } 1024 } 1025 1026 // smax(X, -X) --> abs(X) 1027 // smin(X, -X) --> -abs(X) 1028 // umax(X, -X) --> -abs(X) 1029 // umin(X, -X) --> abs(X) 1030 if (isKnownNegation(I0, I1)) { 1031 // We can choose either operand as the input to abs(), but if we can 1032 // eliminate the only use of a value, that's better for subsequent 1033 // transforms/analysis. 1034 if (I0->hasOneUse() && !I1->hasOneUse()) 1035 std::swap(I0, I1); 1036 1037 // This is some variant of abs(). See if we can propagate 'nsw' to the abs 1038 // operation and potentially its negation. 1039 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true); 1040 Value *Abs = Builder.CreateBinaryIntrinsic( 1041 Intrinsic::abs, I0, 1042 ConstantInt::getBool(II->getContext(), IntMinIsPoison)); 1043 1044 // We don't have a "nabs" intrinsic, so negate if needed based on the 1045 // max/min operation. 1046 if (IID == Intrinsic::smin || IID == Intrinsic::umax) 1047 Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison); 1048 return replaceInstUsesWith(CI, Abs); 1049 } 1050 1051 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder)) 1052 return Sel; 1053 1054 if (match(I1, m_ImmConstant())) 1055 if (auto *Sel = dyn_cast<SelectInst>(I0)) 1056 if (Instruction *R = FoldOpIntoSelect(*II, Sel)) 1057 return R; 1058 1059 break; 1060 } 1061 case Intrinsic::bswap: { 1062 Value *IIOperand = II->getArgOperand(0); 1063 Value *X = nullptr; 1064 1065 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) 1066 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) { 1067 unsigned C = X->getType()->getScalarSizeInBits() - 1068 IIOperand->getType()->getScalarSizeInBits(); 1069 Value *CV = ConstantInt::get(X->getType(), C); 1070 Value *V = Builder.CreateLShr(X, CV); 1071 return new TruncInst(V, IIOperand->getType()); 1072 } 1073 break; 1074 } 1075 case Intrinsic::masked_load: 1076 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II)) 1077 return replaceInstUsesWith(CI, SimplifiedMaskedOp); 1078 break; 1079 case Intrinsic::masked_store: 1080 return simplifyMaskedStore(*II); 1081 case Intrinsic::masked_gather: 1082 return simplifyMaskedGather(*II); 1083 case Intrinsic::masked_scatter: 1084 return simplifyMaskedScatter(*II); 1085 case Intrinsic::launder_invariant_group: 1086 case Intrinsic::strip_invariant_group: 1087 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this)) 1088 return replaceInstUsesWith(*II, SkippedBarrier); 1089 break; 1090 case Intrinsic::powi: 1091 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) { 1092 // 0 and 1 are handled in instsimplify 1093 // powi(x, -1) -> 1/x 1094 if (Power->isMinusOne()) 1095 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0), 1096 II->getArgOperand(0), II); 1097 // powi(x, 2) -> x*x 1098 if (Power->equalsInt(2)) 1099 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0), 1100 II->getArgOperand(0), II); 1101 } 1102 break; 1103 1104 case Intrinsic::cttz: 1105 case Intrinsic::ctlz: 1106 if (auto *I = foldCttzCtlz(*II, *this)) 1107 return I; 1108 break; 1109 1110 case Intrinsic::ctpop: 1111 if (auto *I = foldCtpop(*II, *this)) 1112 return I; 1113 break; 1114 1115 case Intrinsic::fshl: 1116 case Intrinsic::fshr: { 1117 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1); 1118 Type *Ty = II->getType(); 1119 unsigned BitWidth = Ty->getScalarSizeInBits(); 1120 Constant *ShAmtC; 1121 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC)) && 1122 !ShAmtC->containsConstantExpression()) { 1123 // Canonicalize a shift amount constant operand to modulo the bit-width. 1124 Constant *WidthC = ConstantInt::get(Ty, BitWidth); 1125 Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC); 1126 if (ModuloC != ShAmtC) 1127 return replaceOperand(*II, 2, ModuloC); 1128 1129 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) == 1130 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) && 1131 "Shift amount expected to be modulo bitwidth"); 1132 1133 // Canonicalize funnel shift right by constant to funnel shift left. This 1134 // is not entirely arbitrary. For historical reasons, the backend may 1135 // recognize rotate left patterns but miss rotate right patterns. 1136 if (IID == Intrinsic::fshr) { 1137 // fshr X, Y, C --> fshl X, Y, (BitWidth - C) 1138 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC); 1139 Module *Mod = II->getModule(); 1140 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty); 1141 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC }); 1142 } 1143 assert(IID == Intrinsic::fshl && 1144 "All funnel shifts by simple constants should go left"); 1145 1146 // fshl(X, 0, C) --> shl X, C 1147 // fshl(X, undef, C) --> shl X, C 1148 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef())) 1149 return BinaryOperator::CreateShl(Op0, ShAmtC); 1150 1151 // fshl(0, X, C) --> lshr X, (BW-C) 1152 // fshl(undef, X, C) --> lshr X, (BW-C) 1153 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef())) 1154 return BinaryOperator::CreateLShr(Op1, 1155 ConstantExpr::getSub(WidthC, ShAmtC)); 1156 1157 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form) 1158 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) { 1159 Module *Mod = II->getModule(); 1160 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty); 1161 return CallInst::Create(Bswap, { Op0 }); 1162 } 1163 } 1164 1165 // Left or right might be masked. 1166 if (SimplifyDemandedInstructionBits(*II)) 1167 return &CI; 1168 1169 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth, 1170 // so only the low bits of the shift amount are demanded if the bitwidth is 1171 // a power-of-2. 1172 if (!isPowerOf2_32(BitWidth)) 1173 break; 1174 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth)); 1175 KnownBits Op2Known(BitWidth); 1176 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known)) 1177 return &CI; 1178 break; 1179 } 1180 case Intrinsic::uadd_with_overflow: 1181 case Intrinsic::sadd_with_overflow: { 1182 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 1183 return I; 1184 1185 // Given 2 constant operands whose sum does not overflow: 1186 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1 1187 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1 1188 Value *X; 1189 const APInt *C0, *C1; 1190 Value *Arg0 = II->getArgOperand(0); 1191 Value *Arg1 = II->getArgOperand(1); 1192 bool IsSigned = IID == Intrinsic::sadd_with_overflow; 1193 bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0))) 1194 : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0))); 1195 if (HasNWAdd && match(Arg1, m_APInt(C1))) { 1196 bool Overflow; 1197 APInt NewC = 1198 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow); 1199 if (!Overflow) 1200 return replaceInstUsesWith( 1201 *II, Builder.CreateBinaryIntrinsic( 1202 IID, X, ConstantInt::get(Arg1->getType(), NewC))); 1203 } 1204 break; 1205 } 1206 1207 case Intrinsic::umul_with_overflow: 1208 case Intrinsic::smul_with_overflow: 1209 case Intrinsic::usub_with_overflow: 1210 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 1211 return I; 1212 break; 1213 1214 case Intrinsic::ssub_with_overflow: { 1215 if (Instruction *I = foldIntrinsicWithOverflowCommon(II)) 1216 return I; 1217 1218 Constant *C; 1219 Value *Arg0 = II->getArgOperand(0); 1220 Value *Arg1 = II->getArgOperand(1); 1221 // Given a constant C that is not the minimum signed value 1222 // for an integer of a given bit width: 1223 // 1224 // ssubo X, C -> saddo X, -C 1225 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) { 1226 Value *NegVal = ConstantExpr::getNeg(C); 1227 // Build a saddo call that is equivalent to the discovered 1228 // ssubo call. 1229 return replaceInstUsesWith( 1230 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, 1231 Arg0, NegVal)); 1232 } 1233 1234 break; 1235 } 1236 1237 case Intrinsic::uadd_sat: 1238 case Intrinsic::sadd_sat: 1239 case Intrinsic::usub_sat: 1240 case Intrinsic::ssub_sat: { 1241 SaturatingInst *SI = cast<SaturatingInst>(II); 1242 Type *Ty = SI->getType(); 1243 Value *Arg0 = SI->getLHS(); 1244 Value *Arg1 = SI->getRHS(); 1245 1246 // Make use of known overflow information. 1247 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(), 1248 Arg0, Arg1, SI); 1249 switch (OR) { 1250 case OverflowResult::MayOverflow: 1251 break; 1252 case OverflowResult::NeverOverflows: 1253 if (SI->isSigned()) 1254 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1); 1255 else 1256 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1); 1257 case OverflowResult::AlwaysOverflowsLow: { 1258 unsigned BitWidth = Ty->getScalarSizeInBits(); 1259 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned()); 1260 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min)); 1261 } 1262 case OverflowResult::AlwaysOverflowsHigh: { 1263 unsigned BitWidth = Ty->getScalarSizeInBits(); 1264 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned()); 1265 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max)); 1266 } 1267 } 1268 1269 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN 1270 Constant *C; 1271 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) && 1272 C->isNotMinSignedValue()) { 1273 Value *NegVal = ConstantExpr::getNeg(C); 1274 return replaceInstUsesWith( 1275 *II, Builder.CreateBinaryIntrinsic( 1276 Intrinsic::sadd_sat, Arg0, NegVal)); 1277 } 1278 1279 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2)) 1280 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2)) 1281 // if Val and Val2 have the same sign 1282 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) { 1283 Value *X; 1284 const APInt *Val, *Val2; 1285 APInt NewVal; 1286 bool IsUnsigned = 1287 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat; 1288 if (Other->getIntrinsicID() == IID && 1289 match(Arg1, m_APInt(Val)) && 1290 match(Other->getArgOperand(0), m_Value(X)) && 1291 match(Other->getArgOperand(1), m_APInt(Val2))) { 1292 if (IsUnsigned) 1293 NewVal = Val->uadd_sat(*Val2); 1294 else if (Val->isNonNegative() == Val2->isNonNegative()) { 1295 bool Overflow; 1296 NewVal = Val->sadd_ov(*Val2, Overflow); 1297 if (Overflow) { 1298 // Both adds together may add more than SignedMaxValue 1299 // without saturating the final result. 1300 break; 1301 } 1302 } else { 1303 // Cannot fold saturated addition with different signs. 1304 break; 1305 } 1306 1307 return replaceInstUsesWith( 1308 *II, Builder.CreateBinaryIntrinsic( 1309 IID, X, ConstantInt::get(II->getType(), NewVal))); 1310 } 1311 } 1312 break; 1313 } 1314 1315 case Intrinsic::minnum: 1316 case Intrinsic::maxnum: 1317 case Intrinsic::minimum: 1318 case Intrinsic::maximum: { 1319 Value *Arg0 = II->getArgOperand(0); 1320 Value *Arg1 = II->getArgOperand(1); 1321 Value *X, *Y; 1322 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) && 1323 (Arg0->hasOneUse() || Arg1->hasOneUse())) { 1324 // If both operands are negated, invert the call and negate the result: 1325 // min(-X, -Y) --> -(max(X, Y)) 1326 // max(-X, -Y) --> -(min(X, Y)) 1327 Intrinsic::ID NewIID; 1328 switch (IID) { 1329 case Intrinsic::maxnum: 1330 NewIID = Intrinsic::minnum; 1331 break; 1332 case Intrinsic::minnum: 1333 NewIID = Intrinsic::maxnum; 1334 break; 1335 case Intrinsic::maximum: 1336 NewIID = Intrinsic::minimum; 1337 break; 1338 case Intrinsic::minimum: 1339 NewIID = Intrinsic::maximum; 1340 break; 1341 default: 1342 llvm_unreachable("unexpected intrinsic ID"); 1343 } 1344 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II); 1345 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall); 1346 FNeg->copyIRFlags(II); 1347 return FNeg; 1348 } 1349 1350 // m(m(X, C2), C1) -> m(X, C) 1351 const APFloat *C1, *C2; 1352 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) { 1353 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) && 1354 ((match(M->getArgOperand(0), m_Value(X)) && 1355 match(M->getArgOperand(1), m_APFloat(C2))) || 1356 (match(M->getArgOperand(1), m_Value(X)) && 1357 match(M->getArgOperand(0), m_APFloat(C2))))) { 1358 APFloat Res(0.0); 1359 switch (IID) { 1360 case Intrinsic::maxnum: 1361 Res = maxnum(*C1, *C2); 1362 break; 1363 case Intrinsic::minnum: 1364 Res = minnum(*C1, *C2); 1365 break; 1366 case Intrinsic::maximum: 1367 Res = maximum(*C1, *C2); 1368 break; 1369 case Intrinsic::minimum: 1370 Res = minimum(*C1, *C2); 1371 break; 1372 default: 1373 llvm_unreachable("unexpected intrinsic ID"); 1374 } 1375 Instruction *NewCall = Builder.CreateBinaryIntrinsic( 1376 IID, X, ConstantFP::get(Arg0->getType(), Res), II); 1377 // TODO: Conservatively intersecting FMF. If Res == C2, the transform 1378 // was a simplification (so Arg0 and its original flags could 1379 // propagate?) 1380 NewCall->andIRFlags(M); 1381 return replaceInstUsesWith(*II, NewCall); 1382 } 1383 } 1384 1385 // m((fpext X), (fpext Y)) -> fpext (m(X, Y)) 1386 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) && 1387 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) && 1388 X->getType() == Y->getType()) { 1389 Value *NewCall = 1390 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName()); 1391 return new FPExtInst(NewCall, II->getType()); 1392 } 1393 1394 // max X, -X --> fabs X 1395 // min X, -X --> -(fabs X) 1396 // TODO: Remove one-use limitation? That is obviously better for max. 1397 // It would be an extra instruction for min (fnabs), but that is 1398 // still likely better for analysis and codegen. 1399 if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) || 1400 (match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) { 1401 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II); 1402 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum) 1403 R = Builder.CreateFNegFMF(R, II); 1404 return replaceInstUsesWith(*II, R); 1405 } 1406 1407 break; 1408 } 1409 case Intrinsic::fmuladd: { 1410 // Canonicalize fast fmuladd to the separate fmul + fadd. 1411 if (II->isFast()) { 1412 BuilderTy::FastMathFlagGuard Guard(Builder); 1413 Builder.setFastMathFlags(II->getFastMathFlags()); 1414 Value *Mul = Builder.CreateFMul(II->getArgOperand(0), 1415 II->getArgOperand(1)); 1416 Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2)); 1417 Add->takeName(II); 1418 return replaceInstUsesWith(*II, Add); 1419 } 1420 1421 // Try to simplify the underlying FMul. 1422 if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1), 1423 II->getFastMathFlags(), 1424 SQ.getWithInstruction(II))) { 1425 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); 1426 FAdd->copyFastMathFlags(II); 1427 return FAdd; 1428 } 1429 1430 LLVM_FALLTHROUGH; 1431 } 1432 case Intrinsic::fma: { 1433 // fma fneg(x), fneg(y), z -> fma x, y, z 1434 Value *Src0 = II->getArgOperand(0); 1435 Value *Src1 = II->getArgOperand(1); 1436 Value *X, *Y; 1437 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) { 1438 replaceOperand(*II, 0, X); 1439 replaceOperand(*II, 1, Y); 1440 return II; 1441 } 1442 1443 // fma fabs(x), fabs(x), z -> fma x, x, z 1444 if (match(Src0, m_FAbs(m_Value(X))) && 1445 match(Src1, m_FAbs(m_Specific(X)))) { 1446 replaceOperand(*II, 0, X); 1447 replaceOperand(*II, 1, X); 1448 return II; 1449 } 1450 1451 // Try to simplify the underlying FMul. We can only apply simplifications 1452 // that do not require rounding. 1453 if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1), 1454 II->getFastMathFlags(), 1455 SQ.getWithInstruction(II))) { 1456 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2)); 1457 FAdd->copyFastMathFlags(II); 1458 return FAdd; 1459 } 1460 1461 // fma x, y, 0 -> fmul x, y 1462 // This is always valid for -0.0, but requires nsz for +0.0 as 1463 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own. 1464 if (match(II->getArgOperand(2), m_NegZeroFP()) || 1465 (match(II->getArgOperand(2), m_PosZeroFP()) && 1466 II->getFastMathFlags().noSignedZeros())) 1467 return BinaryOperator::CreateFMulFMF(Src0, Src1, II); 1468 1469 break; 1470 } 1471 case Intrinsic::copysign: { 1472 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1); 1473 if (SignBitMustBeZero(Sign, &TLI)) { 1474 // If we know that the sign argument is positive, reduce to FABS: 1475 // copysign Mag, +Sign --> fabs Mag 1476 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 1477 return replaceInstUsesWith(*II, Fabs); 1478 } 1479 // TODO: There should be a ValueTracking sibling like SignBitMustBeOne. 1480 const APFloat *C; 1481 if (match(Sign, m_APFloat(C)) && C->isNegative()) { 1482 // If we know that the sign argument is negative, reduce to FNABS: 1483 // copysign Mag, -Sign --> fneg (fabs Mag) 1484 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II); 1485 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II)); 1486 } 1487 1488 // Propagate sign argument through nested calls: 1489 // copysign Mag, (copysign ?, X) --> copysign Mag, X 1490 Value *X; 1491 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X)))) 1492 return replaceOperand(*II, 1, X); 1493 1494 // Peek through changes of magnitude's sign-bit. This call rewrites those: 1495 // copysign (fabs X), Sign --> copysign X, Sign 1496 // copysign (fneg X), Sign --> copysign X, Sign 1497 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X)))) 1498 return replaceOperand(*II, 0, X); 1499 1500 break; 1501 } 1502 case Intrinsic::fabs: { 1503 Value *Cond, *TVal, *FVal; 1504 if (match(II->getArgOperand(0), 1505 m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) { 1506 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF 1507 if (isa<Constant>(TVal) && isa<Constant>(FVal)) { 1508 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal}); 1509 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal}); 1510 return SelectInst::Create(Cond, AbsT, AbsF); 1511 } 1512 // fabs (select Cond, -FVal, FVal) --> fabs FVal 1513 if (match(TVal, m_FNeg(m_Specific(FVal)))) 1514 return replaceOperand(*II, 0, FVal); 1515 // fabs (select Cond, TVal, -TVal) --> fabs TVal 1516 if (match(FVal, m_FNeg(m_Specific(TVal)))) 1517 return replaceOperand(*II, 0, TVal); 1518 } 1519 1520 LLVM_FALLTHROUGH; 1521 } 1522 case Intrinsic::ceil: 1523 case Intrinsic::floor: 1524 case Intrinsic::round: 1525 case Intrinsic::roundeven: 1526 case Intrinsic::nearbyint: 1527 case Intrinsic::rint: 1528 case Intrinsic::trunc: { 1529 Value *ExtSrc; 1530 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) { 1531 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x) 1532 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II); 1533 return new FPExtInst(NarrowII, II->getType()); 1534 } 1535 break; 1536 } 1537 case Intrinsic::cos: 1538 case Intrinsic::amdgcn_cos: { 1539 Value *X; 1540 Value *Src = II->getArgOperand(0); 1541 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) { 1542 // cos(-x) -> cos(x) 1543 // cos(fabs(x)) -> cos(x) 1544 return replaceOperand(*II, 0, X); 1545 } 1546 break; 1547 } 1548 case Intrinsic::sin: { 1549 Value *X; 1550 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) { 1551 // sin(-x) --> -sin(x) 1552 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II); 1553 Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin); 1554 FNeg->copyFastMathFlags(II); 1555 return FNeg; 1556 } 1557 break; 1558 } 1559 1560 case Intrinsic::arm_neon_vtbl1: 1561 case Intrinsic::aarch64_neon_tbl1: 1562 if (Value *V = simplifyNeonTbl1(*II, Builder)) 1563 return replaceInstUsesWith(*II, V); 1564 break; 1565 1566 case Intrinsic::arm_neon_vmulls: 1567 case Intrinsic::arm_neon_vmullu: 1568 case Intrinsic::aarch64_neon_smull: 1569 case Intrinsic::aarch64_neon_umull: { 1570 Value *Arg0 = II->getArgOperand(0); 1571 Value *Arg1 = II->getArgOperand(1); 1572 1573 // Handle mul by zero first: 1574 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) { 1575 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType())); 1576 } 1577 1578 // Check for constant LHS & RHS - in this case we just simplify. 1579 bool Zext = (IID == Intrinsic::arm_neon_vmullu || 1580 IID == Intrinsic::aarch64_neon_umull); 1581 VectorType *NewVT = cast<VectorType>(II->getType()); 1582 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) { 1583 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) { 1584 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext); 1585 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext); 1586 1587 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1)); 1588 } 1589 1590 // Couldn't simplify - canonicalize constant to the RHS. 1591 std::swap(Arg0, Arg1); 1592 } 1593 1594 // Handle mul by one: 1595 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) 1596 if (ConstantInt *Splat = 1597 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue())) 1598 if (Splat->isOne()) 1599 return CastInst::CreateIntegerCast(Arg0, II->getType(), 1600 /*isSigned=*/!Zext); 1601 1602 break; 1603 } 1604 case Intrinsic::arm_neon_aesd: 1605 case Intrinsic::arm_neon_aese: 1606 case Intrinsic::aarch64_crypto_aesd: 1607 case Intrinsic::aarch64_crypto_aese: { 1608 Value *DataArg = II->getArgOperand(0); 1609 Value *KeyArg = II->getArgOperand(1); 1610 1611 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR 1612 Value *Data, *Key; 1613 if (match(KeyArg, m_ZeroInt()) && 1614 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) { 1615 replaceOperand(*II, 0, Data); 1616 replaceOperand(*II, 1, Key); 1617 return II; 1618 } 1619 break; 1620 } 1621 case Intrinsic::hexagon_V6_vandvrt: 1622 case Intrinsic::hexagon_V6_vandvrt_128B: { 1623 // Simplify Q -> V -> Q conversion. 1624 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 1625 Intrinsic::ID ID0 = Op0->getIntrinsicID(); 1626 if (ID0 != Intrinsic::hexagon_V6_vandqrt && 1627 ID0 != Intrinsic::hexagon_V6_vandqrt_128B) 1628 break; 1629 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1); 1630 uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue(); 1631 uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue(); 1632 // Check if every byte has common bits in Bytes and Mask. 1633 uint64_t C = Bytes1 & Mask1; 1634 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000)) 1635 return replaceInstUsesWith(*II, Op0->getArgOperand(0)); 1636 } 1637 break; 1638 } 1639 case Intrinsic::stackrestore: { 1640 // If the save is right next to the restore, remove the restore. This can 1641 // happen when variable allocas are DCE'd. 1642 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) { 1643 if (SS->getIntrinsicID() == Intrinsic::stacksave) { 1644 // Skip over debug info. 1645 if (SS->getNextNonDebugInstruction() == II) { 1646 return eraseInstFromFunction(CI); 1647 } 1648 } 1649 } 1650 1651 // Scan down this block to see if there is another stack restore in the 1652 // same block without an intervening call/alloca. 1653 BasicBlock::iterator BI(II); 1654 Instruction *TI = II->getParent()->getTerminator(); 1655 bool CannotRemove = false; 1656 for (++BI; &*BI != TI; ++BI) { 1657 if (isa<AllocaInst>(BI)) { 1658 CannotRemove = true; 1659 break; 1660 } 1661 if (CallInst *BCI = dyn_cast<CallInst>(BI)) { 1662 if (auto *II2 = dyn_cast<IntrinsicInst>(BCI)) { 1663 // If there is a stackrestore below this one, remove this one. 1664 if (II2->getIntrinsicID() == Intrinsic::stackrestore) 1665 return eraseInstFromFunction(CI); 1666 1667 // Bail if we cross over an intrinsic with side effects, such as 1668 // llvm.stacksave, or llvm.read_register. 1669 if (II2->mayHaveSideEffects()) { 1670 CannotRemove = true; 1671 break; 1672 } 1673 } else { 1674 // If we found a non-intrinsic call, we can't remove the stack 1675 // restore. 1676 CannotRemove = true; 1677 break; 1678 } 1679 } 1680 } 1681 1682 // If the stack restore is in a return, resume, or unwind block and if there 1683 // are no allocas or calls between the restore and the return, nuke the 1684 // restore. 1685 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI))) 1686 return eraseInstFromFunction(CI); 1687 break; 1688 } 1689 case Intrinsic::lifetime_end: 1690 // Asan needs to poison memory to detect invalid access which is possible 1691 // even for empty lifetime range. 1692 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 1693 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) || 1694 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 1695 break; 1696 1697 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) { 1698 return I.getIntrinsicID() == Intrinsic::lifetime_start; 1699 })) 1700 return nullptr; 1701 break; 1702 case Intrinsic::assume: { 1703 Value *IIOperand = II->getArgOperand(0); 1704 SmallVector<OperandBundleDef, 4> OpBundles; 1705 II->getOperandBundlesAsDefs(OpBundles); 1706 1707 /// This will remove the boolean Condition from the assume given as 1708 /// argument and remove the assume if it becomes useless. 1709 /// always returns nullptr for use as a return values. 1710 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * { 1711 assert(isa<AssumeInst>(Assume)); 1712 if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II))) 1713 return eraseInstFromFunction(CI); 1714 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext())); 1715 return nullptr; 1716 }; 1717 // Remove an assume if it is followed by an identical assume. 1718 // TODO: Do we need this? Unless there are conflicting assumptions, the 1719 // computeKnownBits(IIOperand) below here eliminates redundant assumes. 1720 Instruction *Next = II->getNextNonDebugInstruction(); 1721 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand)))) 1722 return RemoveConditionFromAssume(Next); 1723 1724 // Canonicalize assume(a && b) -> assume(a); assume(b); 1725 // Note: New assumption intrinsics created here are registered by 1726 // the InstCombineIRInserter object. 1727 FunctionType *AssumeIntrinsicTy = II->getFunctionType(); 1728 Value *AssumeIntrinsic = II->getCalledOperand(); 1729 Value *A, *B; 1730 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) { 1731 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles, 1732 II->getName()); 1733 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName()); 1734 return eraseInstFromFunction(*II); 1735 } 1736 // assume(!(a || b)) -> assume(!a); assume(!b); 1737 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) { 1738 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 1739 Builder.CreateNot(A), OpBundles, II->getName()); 1740 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, 1741 Builder.CreateNot(B), II->getName()); 1742 return eraseInstFromFunction(*II); 1743 } 1744 1745 // assume( (load addr) != null ) -> add 'nonnull' metadata to load 1746 // (if assume is valid at the load) 1747 CmpInst::Predicate Pred; 1748 Instruction *LHS; 1749 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) && 1750 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load && 1751 LHS->getType()->isPointerTy() && 1752 isValidAssumeForContext(II, LHS, &DT)) { 1753 MDNode *MD = MDNode::get(II->getContext(), None); 1754 LHS->setMetadata(LLVMContext::MD_nonnull, MD); 1755 return RemoveConditionFromAssume(II); 1756 1757 // TODO: apply nonnull return attributes to calls and invokes 1758 // TODO: apply range metadata for range check patterns? 1759 } 1760 1761 // Convert nonnull assume like: 1762 // %A = icmp ne i32* %PTR, null 1763 // call void @llvm.assume(i1 %A) 1764 // into 1765 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ] 1766 if (EnableKnowledgeRetention && 1767 match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) && 1768 Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) { 1769 if (auto *Replacement = buildAssumeFromKnowledge( 1770 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) { 1771 1772 Replacement->insertBefore(Next); 1773 AC.registerAssumption(Replacement); 1774 return RemoveConditionFromAssume(II); 1775 } 1776 } 1777 1778 // Convert alignment assume like: 1779 // %B = ptrtoint i32* %A to i64 1780 // %C = and i64 %B, Constant 1781 // %D = icmp eq i64 %C, 0 1782 // call void @llvm.assume(i1 %D) 1783 // into 1784 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)] 1785 uint64_t AlignMask; 1786 if (EnableKnowledgeRetention && 1787 match(IIOperand, 1788 m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)), 1789 m_Zero())) && 1790 Pred == CmpInst::ICMP_EQ) { 1791 if (isPowerOf2_64(AlignMask + 1)) { 1792 uint64_t Offset = 0; 1793 match(A, m_Add(m_Value(A), m_ConstantInt(Offset))); 1794 if (match(A, m_PtrToInt(m_Value(A)))) { 1795 /// Note: this doesn't preserve the offset information but merges 1796 /// offset and alignment. 1797 /// TODO: we can generate a GEP instead of merging the alignment with 1798 /// the offset. 1799 RetainedKnowledge RK{Attribute::Alignment, 1800 (unsigned)MinAlign(Offset, AlignMask + 1), A}; 1801 if (auto *Replacement = 1802 buildAssumeFromKnowledge(RK, Next, &AC, &DT)) { 1803 1804 Replacement->insertAfter(II); 1805 AC.registerAssumption(Replacement); 1806 } 1807 return RemoveConditionFromAssume(II); 1808 } 1809 } 1810 } 1811 1812 /// Canonicalize Knowledge in operand bundles. 1813 if (EnableKnowledgeRetention && II->hasOperandBundles()) { 1814 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) { 1815 auto &BOI = II->bundle_op_info_begin()[Idx]; 1816 RetainedKnowledge RK = 1817 llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI); 1818 if (BOI.End - BOI.Begin > 2) 1819 continue; // Prevent reducing knowledge in an align with offset since 1820 // extracting a RetainedKnowledge form them looses offset 1821 // information 1822 RetainedKnowledge CanonRK = 1823 llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK, 1824 &getAssumptionCache(), 1825 &getDominatorTree()); 1826 if (CanonRK == RK) 1827 continue; 1828 if (!CanonRK) { 1829 if (BOI.End - BOI.Begin > 0) { 1830 Worklist.pushValue(II->op_begin()[BOI.Begin]); 1831 Value::dropDroppableUse(II->op_begin()[BOI.Begin]); 1832 } 1833 continue; 1834 } 1835 assert(RK.AttrKind == CanonRK.AttrKind); 1836 if (BOI.End - BOI.Begin > 0) 1837 II->op_begin()[BOI.Begin].set(CanonRK.WasOn); 1838 if (BOI.End - BOI.Begin > 1) 1839 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get( 1840 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue)); 1841 if (RK.WasOn) 1842 Worklist.pushValue(RK.WasOn); 1843 return II; 1844 } 1845 } 1846 1847 // If there is a dominating assume with the same condition as this one, 1848 // then this one is redundant, and should be removed. 1849 KnownBits Known(1); 1850 computeKnownBits(IIOperand, Known, 0, II); 1851 if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) 1852 return eraseInstFromFunction(*II); 1853 1854 // Update the cache of affected values for this assumption (we might be 1855 // here because we just simplified the condition). 1856 AC.updateAffectedValues(cast<AssumeInst>(II)); 1857 break; 1858 } 1859 case Intrinsic::experimental_guard: { 1860 // Is this guard followed by another guard? We scan forward over a small 1861 // fixed window of instructions to handle common cases with conditions 1862 // computed between guards. 1863 Instruction *NextInst = II->getNextNonDebugInstruction(); 1864 for (unsigned i = 0; i < GuardWideningWindow; i++) { 1865 // Note: Using context-free form to avoid compile time blow up 1866 if (!isSafeToSpeculativelyExecute(NextInst)) 1867 break; 1868 NextInst = NextInst->getNextNonDebugInstruction(); 1869 } 1870 Value *NextCond = nullptr; 1871 if (match(NextInst, 1872 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) { 1873 Value *CurrCond = II->getArgOperand(0); 1874 1875 // Remove a guard that it is immediately preceded by an identical guard. 1876 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b). 1877 if (CurrCond != NextCond) { 1878 Instruction *MoveI = II->getNextNonDebugInstruction(); 1879 while (MoveI != NextInst) { 1880 auto *Temp = MoveI; 1881 MoveI = MoveI->getNextNonDebugInstruction(); 1882 Temp->moveBefore(II); 1883 } 1884 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond)); 1885 } 1886 eraseInstFromFunction(*NextInst); 1887 return II; 1888 } 1889 break; 1890 } 1891 case Intrinsic::experimental_vector_insert: { 1892 Value *Vec = II->getArgOperand(0); 1893 Value *SubVec = II->getArgOperand(1); 1894 Value *Idx = II->getArgOperand(2); 1895 auto *DstTy = dyn_cast<FixedVectorType>(II->getType()); 1896 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType()); 1897 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType()); 1898 1899 // Only canonicalize if the destination vector, Vec, and SubVec are all 1900 // fixed vectors. 1901 if (DstTy && VecTy && SubVecTy) { 1902 unsigned DstNumElts = DstTy->getNumElements(); 1903 unsigned VecNumElts = VecTy->getNumElements(); 1904 unsigned SubVecNumElts = SubVecTy->getNumElements(); 1905 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 1906 1907 // An insert that entirely overwrites Vec with SubVec is a nop. 1908 if (VecNumElts == SubVecNumElts) 1909 return replaceInstUsesWith(CI, SubVec); 1910 1911 // Widen SubVec into a vector of the same width as Vec, since 1912 // shufflevector requires the two input vectors to be the same width. 1913 // Elements beyond the bounds of SubVec within the widened vector are 1914 // undefined. 1915 SmallVector<int, 8> WidenMask; 1916 unsigned i; 1917 for (i = 0; i != SubVecNumElts; ++i) 1918 WidenMask.push_back(i); 1919 for (; i != VecNumElts; ++i) 1920 WidenMask.push_back(UndefMaskElem); 1921 1922 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask); 1923 1924 SmallVector<int, 8> Mask; 1925 for (unsigned i = 0; i != IdxN; ++i) 1926 Mask.push_back(i); 1927 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i) 1928 Mask.push_back(i); 1929 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i) 1930 Mask.push_back(i); 1931 1932 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask); 1933 return replaceInstUsesWith(CI, Shuffle); 1934 } 1935 break; 1936 } 1937 case Intrinsic::experimental_vector_extract: { 1938 Value *Vec = II->getArgOperand(0); 1939 Value *Idx = II->getArgOperand(1); 1940 1941 auto *DstTy = dyn_cast<FixedVectorType>(II->getType()); 1942 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType()); 1943 1944 // Only canonicalize if the the destination vector and Vec are fixed 1945 // vectors. 1946 if (DstTy && VecTy) { 1947 unsigned DstNumElts = DstTy->getNumElements(); 1948 unsigned VecNumElts = VecTy->getNumElements(); 1949 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 1950 1951 // Extracting the entirety of Vec is a nop. 1952 if (VecNumElts == DstNumElts) { 1953 replaceInstUsesWith(CI, Vec); 1954 return eraseInstFromFunction(CI); 1955 } 1956 1957 SmallVector<int, 8> Mask; 1958 for (unsigned i = 0; i != DstNumElts; ++i) 1959 Mask.push_back(IdxN + i); 1960 1961 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask); 1962 return replaceInstUsesWith(CI, Shuffle); 1963 } 1964 break; 1965 } 1966 case Intrinsic::vector_reduce_or: 1967 case Intrinsic::vector_reduce_and: { 1968 // Canonicalize logical or/and reductions: 1969 // Or reduction for i1 is represented as: 1970 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 1971 // %res = cmp ne iReduxWidth %val, 0 1972 // And reduction for i1 is represented as: 1973 // %val = bitcast <ReduxWidth x i1> to iReduxWidth 1974 // %res = cmp eq iReduxWidth %val, 11111 1975 Value *Arg = II->getArgOperand(0); 1976 Type *RetTy = II->getType(); 1977 if (RetTy == Builder.getInt1Ty()) 1978 if (auto *FVTy = dyn_cast<FixedVectorType>(Arg->getType())) { 1979 Value *Res = Builder.CreateBitCast( 1980 Arg, Builder.getIntNTy(FVTy->getNumElements())); 1981 if (IID == Intrinsic::vector_reduce_and) { 1982 Res = Builder.CreateICmpEQ( 1983 Res, ConstantInt::getAllOnesValue(Res->getType())); 1984 } else { 1985 assert(IID == Intrinsic::vector_reduce_or && 1986 "Expected or reduction."); 1987 Res = Builder.CreateIsNotNull(Res); 1988 } 1989 return replaceInstUsesWith(CI, Res); 1990 } 1991 LLVM_FALLTHROUGH; 1992 } 1993 case Intrinsic::vector_reduce_add: { 1994 if (IID == Intrinsic::vector_reduce_add) { 1995 // Convert vector_reduce_add(ZExt(<n x i1>)) to 1996 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). 1997 // Convert vector_reduce_add(SExt(<n x i1>)) to 1998 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)). 1999 // Convert vector_reduce_add(<n x i1>) to 2000 // Trunc(ctpop(bitcast <n x i1> to in)). 2001 Value *Arg = II->getArgOperand(0); 2002 Value *Vect; 2003 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) { 2004 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType())) 2005 if (FTy->getElementType() == Builder.getInt1Ty()) { 2006 Value *V = Builder.CreateBitCast( 2007 Vect, Builder.getIntNTy(FTy->getNumElements())); 2008 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V); 2009 if (Res->getType() != II->getType()) 2010 Res = Builder.CreateZExtOrTrunc(Res, II->getType()); 2011 if (Arg != Vect && 2012 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt) 2013 Res = Builder.CreateNeg(Res); 2014 return replaceInstUsesWith(CI, Res); 2015 } 2016 } 2017 } 2018 LLVM_FALLTHROUGH; 2019 } 2020 case Intrinsic::vector_reduce_mul: 2021 case Intrinsic::vector_reduce_xor: 2022 case Intrinsic::vector_reduce_umax: 2023 case Intrinsic::vector_reduce_umin: 2024 case Intrinsic::vector_reduce_smax: 2025 case Intrinsic::vector_reduce_smin: 2026 case Intrinsic::vector_reduce_fmax: 2027 case Intrinsic::vector_reduce_fmin: 2028 case Intrinsic::vector_reduce_fadd: 2029 case Intrinsic::vector_reduce_fmul: { 2030 bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd && 2031 IID != Intrinsic::vector_reduce_fmul) || 2032 II->hasAllowReassoc(); 2033 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd || 2034 IID == Intrinsic::vector_reduce_fmul) 2035 ? 1 2036 : 0; 2037 Value *Arg = II->getArgOperand(ArgIdx); 2038 Value *V; 2039 ArrayRef<int> Mask; 2040 if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated || 2041 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) || 2042 !cast<ShuffleVectorInst>(Arg)->isSingleSource()) 2043 break; 2044 int Sz = Mask.size(); 2045 SmallBitVector UsedIndices(Sz); 2046 for (int Idx : Mask) { 2047 if (Idx == UndefMaskElem || UsedIndices.test(Idx)) 2048 break; 2049 UsedIndices.set(Idx); 2050 } 2051 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or 2052 // other changes. 2053 if (UsedIndices.all()) { 2054 replaceUse(II->getOperandUse(ArgIdx), V); 2055 return nullptr; 2056 } 2057 break; 2058 } 2059 default: { 2060 // Handle target specific intrinsics 2061 Optional<Instruction *> V = targetInstCombineIntrinsic(*II); 2062 if (V.hasValue()) 2063 return V.getValue(); 2064 break; 2065 } 2066 } 2067 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke 2068 // context, so it is handled in visitCallBase and we should trigger it. 2069 return visitCallBase(*II); 2070 } 2071 2072 // Fence instruction simplification 2073 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) { 2074 // Remove identical consecutive fences. 2075 Instruction *Next = FI.getNextNonDebugInstruction(); 2076 if (auto *NFI = dyn_cast<FenceInst>(Next)) 2077 if (FI.isIdenticalTo(NFI)) 2078 return eraseInstFromFunction(FI); 2079 return nullptr; 2080 } 2081 2082 // InvokeInst simplification 2083 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) { 2084 return visitCallBase(II); 2085 } 2086 2087 // CallBrInst simplification 2088 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) { 2089 return visitCallBase(CBI); 2090 } 2091 2092 /// If this cast does not affect the value passed through the varargs area, we 2093 /// can eliminate the use of the cast. 2094 static bool isSafeToEliminateVarargsCast(const CallBase &Call, 2095 const DataLayout &DL, 2096 const CastInst *const CI, 2097 const int ix) { 2098 if (!CI->isLosslessCast()) 2099 return false; 2100 2101 // If this is a GC intrinsic, avoid munging types. We need types for 2102 // statepoint reconstruction in SelectionDAG. 2103 // TODO: This is probably something which should be expanded to all 2104 // intrinsics since the entire point of intrinsics is that 2105 // they are understandable by the optimizer. 2106 if (isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) || 2107 isa<GCResultInst>(Call)) 2108 return false; 2109 2110 // Opaque pointers are compatible with any byval types. 2111 PointerType *SrcTy = cast<PointerType>(CI->getOperand(0)->getType()); 2112 if (SrcTy->isOpaque()) 2113 return true; 2114 2115 // The size of ByVal or InAlloca arguments is derived from the type, so we 2116 // can't change to a type with a different size. If the size were 2117 // passed explicitly we could avoid this check. 2118 if (!Call.isPassPointeeByValueArgument(ix)) 2119 return true; 2120 2121 // The transform currently only handles type replacement for byval, not other 2122 // type-carrying attributes. 2123 if (!Call.isByValArgument(ix)) 2124 return false; 2125 2126 Type *SrcElemTy = SrcTy->getElementType(); 2127 Type *DstElemTy = Call.getParamByValType(ix); 2128 if (!SrcElemTy->isSized() || !DstElemTy->isSized()) 2129 return false; 2130 if (DL.getTypeAllocSize(SrcElemTy) != DL.getTypeAllocSize(DstElemTy)) 2131 return false; 2132 return true; 2133 } 2134 2135 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) { 2136 if (!CI->getCalledFunction()) return nullptr; 2137 2138 auto InstCombineRAUW = [this](Instruction *From, Value *With) { 2139 replaceInstUsesWith(*From, With); 2140 }; 2141 auto InstCombineErase = [this](Instruction *I) { 2142 eraseInstFromFunction(*I); 2143 }; 2144 LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW, 2145 InstCombineErase); 2146 if (Value *With = Simplifier.optimizeCall(CI, Builder)) { 2147 ++NumSimplified; 2148 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With); 2149 } 2150 2151 return nullptr; 2152 } 2153 2154 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) { 2155 // Strip off at most one level of pointer casts, looking for an alloca. This 2156 // is good enough in practice and simpler than handling any number of casts. 2157 Value *Underlying = TrampMem->stripPointerCasts(); 2158 if (Underlying != TrampMem && 2159 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem)) 2160 return nullptr; 2161 if (!isa<AllocaInst>(Underlying)) 2162 return nullptr; 2163 2164 IntrinsicInst *InitTrampoline = nullptr; 2165 for (User *U : TrampMem->users()) { 2166 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2167 if (!II) 2168 return nullptr; 2169 if (II->getIntrinsicID() == Intrinsic::init_trampoline) { 2170 if (InitTrampoline) 2171 // More than one init_trampoline writes to this value. Give up. 2172 return nullptr; 2173 InitTrampoline = II; 2174 continue; 2175 } 2176 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline) 2177 // Allow any number of calls to adjust.trampoline. 2178 continue; 2179 return nullptr; 2180 } 2181 2182 // No call to init.trampoline found. 2183 if (!InitTrampoline) 2184 return nullptr; 2185 2186 // Check that the alloca is being used in the expected way. 2187 if (InitTrampoline->getOperand(0) != TrampMem) 2188 return nullptr; 2189 2190 return InitTrampoline; 2191 } 2192 2193 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, 2194 Value *TrampMem) { 2195 // Visit all the previous instructions in the basic block, and try to find a 2196 // init.trampoline which has a direct path to the adjust.trampoline. 2197 for (BasicBlock::iterator I = AdjustTramp->getIterator(), 2198 E = AdjustTramp->getParent()->begin(); 2199 I != E;) { 2200 Instruction *Inst = &*--I; 2201 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2202 if (II->getIntrinsicID() == Intrinsic::init_trampoline && 2203 II->getOperand(0) == TrampMem) 2204 return II; 2205 if (Inst->mayWriteToMemory()) 2206 return nullptr; 2207 } 2208 return nullptr; 2209 } 2210 2211 // Given a call to llvm.adjust.trampoline, find and return the corresponding 2212 // call to llvm.init.trampoline if the call to the trampoline can be optimized 2213 // to a direct call to a function. Otherwise return NULL. 2214 static IntrinsicInst *findInitTrampoline(Value *Callee) { 2215 Callee = Callee->stripPointerCasts(); 2216 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee); 2217 if (!AdjustTramp || 2218 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline) 2219 return nullptr; 2220 2221 Value *TrampMem = AdjustTramp->getOperand(0); 2222 2223 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem)) 2224 return IT; 2225 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem)) 2226 return IT; 2227 return nullptr; 2228 } 2229 2230 void InstCombinerImpl::annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) { 2231 unsigned NumArgs = Call.getNumArgOperands(); 2232 ConstantInt *Op0C = dyn_cast<ConstantInt>(Call.getOperand(0)); 2233 ConstantInt *Op1C = 2234 (NumArgs == 1) ? nullptr : dyn_cast<ConstantInt>(Call.getOperand(1)); 2235 // Bail out if the allocation size is zero (or an invalid alignment of zero 2236 // with aligned_alloc). 2237 if ((Op0C && Op0C->isNullValue()) || (Op1C && Op1C->isNullValue())) 2238 return; 2239 2240 if (isMallocLikeFn(&Call, TLI) && Op0C) { 2241 if (isOpNewLikeFn(&Call, TLI)) 2242 Call.addAttribute(AttributeList::ReturnIndex, 2243 Attribute::getWithDereferenceableBytes( 2244 Call.getContext(), Op0C->getZExtValue())); 2245 else 2246 Call.addAttribute(AttributeList::ReturnIndex, 2247 Attribute::getWithDereferenceableOrNullBytes( 2248 Call.getContext(), Op0C->getZExtValue())); 2249 } else if (isAlignedAllocLikeFn(&Call, TLI)) { 2250 if (Op1C) 2251 Call.addAttribute(AttributeList::ReturnIndex, 2252 Attribute::getWithDereferenceableOrNullBytes( 2253 Call.getContext(), Op1C->getZExtValue())); 2254 // Add alignment attribute if alignment is a power of two constant. 2255 if (Op0C && Op0C->getValue().ult(llvm::Value::MaximumAlignment) && 2256 isKnownNonZero(Call.getOperand(1), DL, 0, &AC, &Call, &DT)) { 2257 uint64_t AlignmentVal = Op0C->getZExtValue(); 2258 if (llvm::isPowerOf2_64(AlignmentVal)) { 2259 Call.removeAttribute(AttributeList::ReturnIndex, Attribute::Alignment); 2260 Call.addAttribute(AttributeList::ReturnIndex, 2261 Attribute::getWithAlignment(Call.getContext(), 2262 Align(AlignmentVal))); 2263 } 2264 } 2265 } else if (isReallocLikeFn(&Call, TLI) && Op1C) { 2266 Call.addAttribute(AttributeList::ReturnIndex, 2267 Attribute::getWithDereferenceableOrNullBytes( 2268 Call.getContext(), Op1C->getZExtValue())); 2269 } else if (isCallocLikeFn(&Call, TLI) && Op0C && Op1C) { 2270 bool Overflow; 2271 const APInt &N = Op0C->getValue(); 2272 APInt Size = N.umul_ov(Op1C->getValue(), Overflow); 2273 if (!Overflow) 2274 Call.addAttribute(AttributeList::ReturnIndex, 2275 Attribute::getWithDereferenceableOrNullBytes( 2276 Call.getContext(), Size.getZExtValue())); 2277 } else if (isStrdupLikeFn(&Call, TLI)) { 2278 uint64_t Len = GetStringLength(Call.getOperand(0)); 2279 if (Len) { 2280 // strdup 2281 if (NumArgs == 1) 2282 Call.addAttribute(AttributeList::ReturnIndex, 2283 Attribute::getWithDereferenceableOrNullBytes( 2284 Call.getContext(), Len)); 2285 // strndup 2286 else if (NumArgs == 2 && Op1C) 2287 Call.addAttribute( 2288 AttributeList::ReturnIndex, 2289 Attribute::getWithDereferenceableOrNullBytes( 2290 Call.getContext(), std::min(Len, Op1C->getZExtValue() + 1))); 2291 } 2292 } 2293 } 2294 2295 /// Improvements for call, callbr and invoke instructions. 2296 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) { 2297 if (isAllocationFn(&Call, &TLI)) 2298 annotateAnyAllocSite(Call, &TLI); 2299 2300 bool Changed = false; 2301 2302 // Mark any parameters that are known to be non-null with the nonnull 2303 // attribute. This is helpful for inlining calls to functions with null 2304 // checks on their arguments. 2305 SmallVector<unsigned, 4> ArgNos; 2306 unsigned ArgNo = 0; 2307 2308 for (Value *V : Call.args()) { 2309 if (V->getType()->isPointerTy() && 2310 !Call.paramHasAttr(ArgNo, Attribute::NonNull) && 2311 isKnownNonZero(V, DL, 0, &AC, &Call, &DT)) 2312 ArgNos.push_back(ArgNo); 2313 ArgNo++; 2314 } 2315 2316 assert(ArgNo == Call.arg_size() && "sanity check"); 2317 2318 if (!ArgNos.empty()) { 2319 AttributeList AS = Call.getAttributes(); 2320 LLVMContext &Ctx = Call.getContext(); 2321 AS = AS.addParamAttribute(Ctx, ArgNos, 2322 Attribute::get(Ctx, Attribute::NonNull)); 2323 Call.setAttributes(AS); 2324 Changed = true; 2325 } 2326 2327 // If the callee is a pointer to a function, attempt to move any casts to the 2328 // arguments of the call/callbr/invoke. 2329 Value *Callee = Call.getCalledOperand(); 2330 if (!isa<Function>(Callee) && transformConstExprCastCall(Call)) 2331 return nullptr; 2332 2333 if (Function *CalleeF = dyn_cast<Function>(Callee)) { 2334 // Remove the convergent attr on calls when the callee is not convergent. 2335 if (Call.isConvergent() && !CalleeF->isConvergent() && 2336 !CalleeF->isIntrinsic()) { 2337 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call 2338 << "\n"); 2339 Call.setNotConvergent(); 2340 return &Call; 2341 } 2342 2343 // If the call and callee calling conventions don't match, and neither one 2344 // of the calling conventions is compatible with C calling convention 2345 // this call must be unreachable, as the call is undefined. 2346 if ((CalleeF->getCallingConv() != Call.getCallingConv() && 2347 !(CalleeF->getCallingConv() == llvm::CallingConv::C && 2348 TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) && 2349 !(Call.getCallingConv() == llvm::CallingConv::C && 2350 TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) && 2351 // Only do this for calls to a function with a body. A prototype may 2352 // not actually end up matching the implementation's calling conv for a 2353 // variety of reasons (e.g. it may be written in assembly). 2354 !CalleeF->isDeclaration()) { 2355 Instruction *OldCall = &Call; 2356 CreateNonTerminatorUnreachable(OldCall); 2357 // If OldCall does not return void then replaceInstUsesWith poison. 2358 // This allows ValueHandlers and custom metadata to adjust itself. 2359 if (!OldCall->getType()->isVoidTy()) 2360 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType())); 2361 if (isa<CallInst>(OldCall)) 2362 return eraseInstFromFunction(*OldCall); 2363 2364 // We cannot remove an invoke or a callbr, because it would change thexi 2365 // CFG, just change the callee to a null pointer. 2366 cast<CallBase>(OldCall)->setCalledFunction( 2367 CalleeF->getFunctionType(), 2368 Constant::getNullValue(CalleeF->getType())); 2369 return nullptr; 2370 } 2371 } 2372 2373 // Calling a null function pointer is undefined if a null address isn't 2374 // dereferenceable. 2375 if ((isa<ConstantPointerNull>(Callee) && 2376 !NullPointerIsDefined(Call.getFunction())) || 2377 isa<UndefValue>(Callee)) { 2378 // If Call does not return void then replaceInstUsesWith poison. 2379 // This allows ValueHandlers and custom metadata to adjust itself. 2380 if (!Call.getType()->isVoidTy()) 2381 replaceInstUsesWith(Call, PoisonValue::get(Call.getType())); 2382 2383 if (Call.isTerminator()) { 2384 // Can't remove an invoke or callbr because we cannot change the CFG. 2385 return nullptr; 2386 } 2387 2388 // This instruction is not reachable, just remove it. 2389 CreateNonTerminatorUnreachable(&Call); 2390 return eraseInstFromFunction(Call); 2391 } 2392 2393 if (IntrinsicInst *II = findInitTrampoline(Callee)) 2394 return transformCallThroughTrampoline(Call, *II); 2395 2396 // TODO: Drop this transform once opaque pointer transition is done. 2397 FunctionType *FTy = Call.getFunctionType(); 2398 if (FTy->isVarArg()) { 2399 int ix = FTy->getNumParams(); 2400 // See if we can optimize any arguments passed through the varargs area of 2401 // the call. 2402 for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end(); 2403 I != E; ++I, ++ix) { 2404 CastInst *CI = dyn_cast<CastInst>(*I); 2405 if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) { 2406 replaceUse(*I, CI->getOperand(0)); 2407 2408 // Update the byval type to match the pointer type. 2409 // Not necessary for opaque pointers. 2410 PointerType *NewTy = cast<PointerType>(CI->getOperand(0)->getType()); 2411 if (!NewTy->isOpaque() && Call.isByValArgument(ix)) { 2412 Call.removeParamAttr(ix, Attribute::ByVal); 2413 Call.addParamAttr( 2414 ix, Attribute::getWithByValType( 2415 Call.getContext(), NewTy->getElementType())); 2416 } 2417 Changed = true; 2418 } 2419 } 2420 } 2421 2422 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) { 2423 InlineAsm *IA = cast<InlineAsm>(Callee); 2424 if (!IA->canThrow()) { 2425 // Normal inline asm calls cannot throw - mark them 2426 // 'nounwind'. 2427 Call.setDoesNotThrow(); 2428 Changed = true; 2429 } 2430 } 2431 2432 // Try to optimize the call if possible, we require DataLayout for most of 2433 // this. None of these calls are seen as possibly dead so go ahead and 2434 // delete the instruction now. 2435 if (CallInst *CI = dyn_cast<CallInst>(&Call)) { 2436 Instruction *I = tryOptimizeCall(CI); 2437 // If we changed something return the result, etc. Otherwise let 2438 // the fallthrough check. 2439 if (I) return eraseInstFromFunction(*I); 2440 } 2441 2442 if (!Call.use_empty() && !Call.isMustTailCall()) 2443 if (Value *ReturnedArg = Call.getReturnedArgOperand()) { 2444 Type *CallTy = Call.getType(); 2445 Type *RetArgTy = ReturnedArg->getType(); 2446 if (RetArgTy->canLosslesslyBitCastTo(CallTy)) 2447 return replaceInstUsesWith( 2448 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy)); 2449 } 2450 2451 if (isAllocLikeFn(&Call, &TLI)) 2452 return visitAllocSite(Call); 2453 2454 // Handle intrinsics which can be used in both call and invoke context. 2455 switch (Call.getIntrinsicID()) { 2456 case Intrinsic::experimental_gc_statepoint: { 2457 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call); 2458 SmallPtrSet<Value *, 32> LiveGcValues; 2459 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 2460 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 2461 2462 // Remove the relocation if unused. 2463 if (GCR.use_empty()) { 2464 eraseInstFromFunction(GCR); 2465 continue; 2466 } 2467 2468 Value *DerivedPtr = GCR.getDerivedPtr(); 2469 Value *BasePtr = GCR.getBasePtr(); 2470 2471 // Undef is undef, even after relocation. 2472 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) { 2473 replaceInstUsesWith(GCR, UndefValue::get(GCR.getType())); 2474 eraseInstFromFunction(GCR); 2475 continue; 2476 } 2477 2478 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) { 2479 // The relocation of null will be null for most any collector. 2480 // TODO: provide a hook for this in GCStrategy. There might be some 2481 // weird collector this property does not hold for. 2482 if (isa<ConstantPointerNull>(DerivedPtr)) { 2483 // Use null-pointer of gc_relocate's type to replace it. 2484 replaceInstUsesWith(GCR, ConstantPointerNull::get(PT)); 2485 eraseInstFromFunction(GCR); 2486 continue; 2487 } 2488 2489 // isKnownNonNull -> nonnull attribute 2490 if (!GCR.hasRetAttr(Attribute::NonNull) && 2491 isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) { 2492 GCR.addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 2493 // We discovered new fact, re-check users. 2494 Worklist.pushUsersToWorkList(GCR); 2495 } 2496 } 2497 2498 // If we have two copies of the same pointer in the statepoint argument 2499 // list, canonicalize to one. This may let us common gc.relocates. 2500 if (GCR.getBasePtr() == GCR.getDerivedPtr() && 2501 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) { 2502 auto *OpIntTy = GCR.getOperand(2)->getType(); 2503 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex())); 2504 } 2505 2506 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p)) 2507 // Canonicalize on the type from the uses to the defs 2508 2509 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...) 2510 LiveGcValues.insert(BasePtr); 2511 LiveGcValues.insert(DerivedPtr); 2512 } 2513 Optional<OperandBundleUse> Bundle = 2514 GCSP.getOperandBundle(LLVMContext::OB_gc_live); 2515 unsigned NumOfGCLives = LiveGcValues.size(); 2516 if (!Bundle.hasValue() || NumOfGCLives == Bundle->Inputs.size()) 2517 break; 2518 // We can reduce the size of gc live bundle. 2519 DenseMap<Value *, unsigned> Val2Idx; 2520 std::vector<Value *> NewLiveGc; 2521 for (unsigned I = 0, E = Bundle->Inputs.size(); I < E; ++I) { 2522 Value *V = Bundle->Inputs[I]; 2523 if (Val2Idx.count(V)) 2524 continue; 2525 if (LiveGcValues.count(V)) { 2526 Val2Idx[V] = NewLiveGc.size(); 2527 NewLiveGc.push_back(V); 2528 } else 2529 Val2Idx[V] = NumOfGCLives; 2530 } 2531 // Update all gc.relocates 2532 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) { 2533 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc); 2534 Value *BasePtr = GCR.getBasePtr(); 2535 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives && 2536 "Missed live gc for base pointer"); 2537 auto *OpIntTy1 = GCR.getOperand(1)->getType(); 2538 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr])); 2539 Value *DerivedPtr = GCR.getDerivedPtr(); 2540 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives && 2541 "Missed live gc for derived pointer"); 2542 auto *OpIntTy2 = GCR.getOperand(2)->getType(); 2543 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr])); 2544 } 2545 // Create new statepoint instruction. 2546 OperandBundleDef NewBundle("gc-live", NewLiveGc); 2547 return CallBase::Create(&Call, NewBundle); 2548 } 2549 default: { break; } 2550 } 2551 2552 return Changed ? &Call : nullptr; 2553 } 2554 2555 /// If the callee is a constexpr cast of a function, attempt to move the cast to 2556 /// the arguments of the call/callbr/invoke. 2557 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) { 2558 auto *Callee = 2559 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 2560 if (!Callee) 2561 return false; 2562 2563 // If this is a call to a thunk function, don't remove the cast. Thunks are 2564 // used to transparently forward all incoming parameters and outgoing return 2565 // values, so it's important to leave the cast in place. 2566 if (Callee->hasFnAttribute("thunk")) 2567 return false; 2568 2569 // If this is a musttail call, the callee's prototype must match the caller's 2570 // prototype with the exception of pointee types. The code below doesn't 2571 // implement that, so we can't do this transform. 2572 // TODO: Do the transform if it only requires adding pointer casts. 2573 if (Call.isMustTailCall()) 2574 return false; 2575 2576 Instruction *Caller = &Call; 2577 const AttributeList &CallerPAL = Call.getAttributes(); 2578 2579 // Okay, this is a cast from a function to a different type. Unless doing so 2580 // would cause a type conversion of one of our arguments, change this call to 2581 // be a direct call with arguments casted to the appropriate types. 2582 FunctionType *FT = Callee->getFunctionType(); 2583 Type *OldRetTy = Caller->getType(); 2584 Type *NewRetTy = FT->getReturnType(); 2585 2586 // Check to see if we are changing the return type... 2587 if (OldRetTy != NewRetTy) { 2588 2589 if (NewRetTy->isStructTy()) 2590 return false; // TODO: Handle multiple return values. 2591 2592 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) { 2593 if (Callee->isDeclaration()) 2594 return false; // Cannot transform this return value. 2595 2596 if (!Caller->use_empty() && 2597 // void -> non-void is handled specially 2598 !NewRetTy->isVoidTy()) 2599 return false; // Cannot transform this return value. 2600 } 2601 2602 if (!CallerPAL.isEmpty() && !Caller->use_empty()) { 2603 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); 2604 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy))) 2605 return false; // Attribute not compatible with transformed value. 2606 } 2607 2608 // If the callbase is an invoke/callbr instruction, and the return value is 2609 // used by a PHI node in a successor, we cannot change the return type of 2610 // the call because there is no place to put the cast instruction (without 2611 // breaking the critical edge). Bail out in this case. 2612 if (!Caller->use_empty()) { 2613 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) 2614 for (User *U : II->users()) 2615 if (PHINode *PN = dyn_cast<PHINode>(U)) 2616 if (PN->getParent() == II->getNormalDest() || 2617 PN->getParent() == II->getUnwindDest()) 2618 return false; 2619 // FIXME: Be conservative for callbr to avoid a quadratic search. 2620 if (isa<CallBrInst>(Caller)) 2621 return false; 2622 } 2623 } 2624 2625 unsigned NumActualArgs = Call.arg_size(); 2626 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); 2627 2628 // Prevent us turning: 2629 // declare void @takes_i32_inalloca(i32* inalloca) 2630 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0) 2631 // 2632 // into: 2633 // call void @takes_i32_inalloca(i32* null) 2634 // 2635 // Similarly, avoid folding away bitcasts of byval calls. 2636 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) || 2637 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated) || 2638 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 2639 return false; 2640 2641 auto AI = Call.arg_begin(); 2642 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { 2643 Type *ParamTy = FT->getParamType(i); 2644 Type *ActTy = (*AI)->getType(); 2645 2646 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL)) 2647 return false; // Cannot transform this parameter value. 2648 2649 if (AttrBuilder(CallerPAL.getParamAttributes(i)) 2650 .overlaps(AttributeFuncs::typeIncompatible(ParamTy))) 2651 return false; // Attribute not compatible with transformed value. 2652 2653 if (Call.isInAllocaArgument(i)) 2654 return false; // Cannot transform to and from inalloca. 2655 2656 if (CallerPAL.hasParamAttribute(i, Attribute::SwiftError)) 2657 return false; 2658 2659 // If the parameter is passed as a byval argument, then we have to have a 2660 // sized type and the sized type has to have the same size as the old type. 2661 if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) { 2662 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy); 2663 if (!ParamPTy || !ParamPTy->getElementType()->isSized()) 2664 return false; 2665 2666 Type *CurElTy = Call.getParamByValType(i); 2667 if (DL.getTypeAllocSize(CurElTy) != 2668 DL.getTypeAllocSize(ParamPTy->getElementType())) 2669 return false; 2670 } 2671 } 2672 2673 if (Callee->isDeclaration()) { 2674 // Do not delete arguments unless we have a function body. 2675 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg()) 2676 return false; 2677 2678 // If the callee is just a declaration, don't change the varargsness of the 2679 // call. We don't want to introduce a varargs call where one doesn't 2680 // already exist. 2681 PointerType *APTy = cast<PointerType>(Call.getCalledOperand()->getType()); 2682 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg()) 2683 return false; 2684 2685 // If both the callee and the cast type are varargs, we still have to make 2686 // sure the number of fixed parameters are the same or we have the same 2687 // ABI issues as if we introduce a varargs call. 2688 if (FT->isVarArg() && 2689 cast<FunctionType>(APTy->getElementType())->isVarArg() && 2690 FT->getNumParams() != 2691 cast<FunctionType>(APTy->getElementType())->getNumParams()) 2692 return false; 2693 } 2694 2695 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && 2696 !CallerPAL.isEmpty()) { 2697 // In this case we have more arguments than the new function type, but we 2698 // won't be dropping them. Check that these extra arguments have attributes 2699 // that are compatible with being a vararg call argument. 2700 unsigned SRetIdx; 2701 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) && 2702 SRetIdx > FT->getNumParams()) 2703 return false; 2704 } 2705 2706 // Okay, we decided that this is a safe thing to do: go ahead and start 2707 // inserting cast instructions as necessary. 2708 SmallVector<Value *, 8> Args; 2709 SmallVector<AttributeSet, 8> ArgAttrs; 2710 Args.reserve(NumActualArgs); 2711 ArgAttrs.reserve(NumActualArgs); 2712 2713 // Get any return attributes. 2714 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex); 2715 2716 // If the return value is not being used, the type may not be compatible 2717 // with the existing attributes. Wipe out any problematic attributes. 2718 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy)); 2719 2720 LLVMContext &Ctx = Call.getContext(); 2721 AI = Call.arg_begin(); 2722 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { 2723 Type *ParamTy = FT->getParamType(i); 2724 2725 Value *NewArg = *AI; 2726 if ((*AI)->getType() != ParamTy) 2727 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy); 2728 Args.push_back(NewArg); 2729 2730 // Add any parameter attributes. 2731 if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) { 2732 AttrBuilder AB(CallerPAL.getParamAttributes(i)); 2733 AB.addByValAttr(NewArg->getType()->getPointerElementType()); 2734 ArgAttrs.push_back(AttributeSet::get(Ctx, AB)); 2735 } else 2736 ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); 2737 } 2738 2739 // If the function takes more arguments than the call was taking, add them 2740 // now. 2741 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) { 2742 Args.push_back(Constant::getNullValue(FT->getParamType(i))); 2743 ArgAttrs.push_back(AttributeSet()); 2744 } 2745 2746 // If we are removing arguments to the function, emit an obnoxious warning. 2747 if (FT->getNumParams() < NumActualArgs) { 2748 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722 2749 if (FT->isVarArg()) { 2750 // Add all of the arguments in their promoted form to the arg list. 2751 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { 2752 Type *PTy = getPromotedType((*AI)->getType()); 2753 Value *NewArg = *AI; 2754 if (PTy != (*AI)->getType()) { 2755 // Must promote to pass through va_arg area! 2756 Instruction::CastOps opcode = 2757 CastInst::getCastOpcode(*AI, false, PTy, false); 2758 NewArg = Builder.CreateCast(opcode, *AI, PTy); 2759 } 2760 Args.push_back(NewArg); 2761 2762 // Add any parameter attributes. 2763 ArgAttrs.push_back(CallerPAL.getParamAttributes(i)); 2764 } 2765 } 2766 } 2767 2768 AttributeSet FnAttrs = CallerPAL.getFnAttributes(); 2769 2770 if (NewRetTy->isVoidTy()) 2771 Caller->setName(""); // Void type should not have a name. 2772 2773 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) && 2774 "missing argument attributes"); 2775 AttributeList NewCallerPAL = AttributeList::get( 2776 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs); 2777 2778 SmallVector<OperandBundleDef, 1> OpBundles; 2779 Call.getOperandBundlesAsDefs(OpBundles); 2780 2781 CallBase *NewCall; 2782 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { 2783 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(), 2784 II->getUnwindDest(), Args, OpBundles); 2785 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { 2786 NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(), 2787 CBI->getIndirectDests(), Args, OpBundles); 2788 } else { 2789 NewCall = Builder.CreateCall(Callee, Args, OpBundles); 2790 cast<CallInst>(NewCall)->setTailCallKind( 2791 cast<CallInst>(Caller)->getTailCallKind()); 2792 } 2793 NewCall->takeName(Caller); 2794 NewCall->setCallingConv(Call.getCallingConv()); 2795 NewCall->setAttributes(NewCallerPAL); 2796 2797 // Preserve prof metadata if any. 2798 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof}); 2799 2800 // Insert a cast of the return type as necessary. 2801 Instruction *NC = NewCall; 2802 Value *NV = NC; 2803 if (OldRetTy != NV->getType() && !Caller->use_empty()) { 2804 if (!NV->getType()->isVoidTy()) { 2805 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy); 2806 NC->setDebugLoc(Caller->getDebugLoc()); 2807 2808 // If this is an invoke/callbr instruction, we should insert it after the 2809 // first non-phi instruction in the normal successor block. 2810 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { 2811 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt(); 2812 InsertNewInstBefore(NC, *I); 2813 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) { 2814 BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt(); 2815 InsertNewInstBefore(NC, *I); 2816 } else { 2817 // Otherwise, it's a call, just insert cast right after the call. 2818 InsertNewInstBefore(NC, *Caller); 2819 } 2820 Worklist.pushUsersToWorkList(*Caller); 2821 } else { 2822 NV = UndefValue::get(Caller->getType()); 2823 } 2824 } 2825 2826 if (!Caller->use_empty()) 2827 replaceInstUsesWith(*Caller, NV); 2828 else if (Caller->hasValueHandle()) { 2829 if (OldRetTy == NV->getType()) 2830 ValueHandleBase::ValueIsRAUWd(Caller, NV); 2831 else 2832 // We cannot call ValueIsRAUWd with a different type, and the 2833 // actual tracked value will disappear. 2834 ValueHandleBase::ValueIsDeleted(Caller); 2835 } 2836 2837 eraseInstFromFunction(*Caller); 2838 return true; 2839 } 2840 2841 /// Turn a call to a function created by init_trampoline / adjust_trampoline 2842 /// intrinsic pair into a direct call to the underlying function. 2843 Instruction * 2844 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call, 2845 IntrinsicInst &Tramp) { 2846 Value *Callee = Call.getCalledOperand(); 2847 Type *CalleeTy = Callee->getType(); 2848 FunctionType *FTy = Call.getFunctionType(); 2849 AttributeList Attrs = Call.getAttributes(); 2850 2851 // If the call already has the 'nest' attribute somewhere then give up - 2852 // otherwise 'nest' would occur twice after splicing in the chain. 2853 if (Attrs.hasAttrSomewhere(Attribute::Nest)) 2854 return nullptr; 2855 2856 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts()); 2857 FunctionType *NestFTy = NestF->getFunctionType(); 2858 2859 AttributeList NestAttrs = NestF->getAttributes(); 2860 if (!NestAttrs.isEmpty()) { 2861 unsigned NestArgNo = 0; 2862 Type *NestTy = nullptr; 2863 AttributeSet NestAttr; 2864 2865 // Look for a parameter marked with the 'nest' attribute. 2866 for (FunctionType::param_iterator I = NestFTy->param_begin(), 2867 E = NestFTy->param_end(); 2868 I != E; ++NestArgNo, ++I) { 2869 AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo); 2870 if (AS.hasAttribute(Attribute::Nest)) { 2871 // Record the parameter type and any other attributes. 2872 NestTy = *I; 2873 NestAttr = AS; 2874 break; 2875 } 2876 } 2877 2878 if (NestTy) { 2879 std::vector<Value*> NewArgs; 2880 std::vector<AttributeSet> NewArgAttrs; 2881 NewArgs.reserve(Call.arg_size() + 1); 2882 NewArgAttrs.reserve(Call.arg_size()); 2883 2884 // Insert the nest argument into the call argument list, which may 2885 // mean appending it. Likewise for attributes. 2886 2887 { 2888 unsigned ArgNo = 0; 2889 auto I = Call.arg_begin(), E = Call.arg_end(); 2890 do { 2891 if (ArgNo == NestArgNo) { 2892 // Add the chain argument and attributes. 2893 Value *NestVal = Tramp.getArgOperand(2); 2894 if (NestVal->getType() != NestTy) 2895 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest"); 2896 NewArgs.push_back(NestVal); 2897 NewArgAttrs.push_back(NestAttr); 2898 } 2899 2900 if (I == E) 2901 break; 2902 2903 // Add the original argument and attributes. 2904 NewArgs.push_back(*I); 2905 NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); 2906 2907 ++ArgNo; 2908 ++I; 2909 } while (true); 2910 } 2911 2912 // The trampoline may have been bitcast to a bogus type (FTy). 2913 // Handle this by synthesizing a new function type, equal to FTy 2914 // with the chain parameter inserted. 2915 2916 std::vector<Type*> NewTypes; 2917 NewTypes.reserve(FTy->getNumParams()+1); 2918 2919 // Insert the chain's type into the list of parameter types, which may 2920 // mean appending it. 2921 { 2922 unsigned ArgNo = 0; 2923 FunctionType::param_iterator I = FTy->param_begin(), 2924 E = FTy->param_end(); 2925 2926 do { 2927 if (ArgNo == NestArgNo) 2928 // Add the chain's type. 2929 NewTypes.push_back(NestTy); 2930 2931 if (I == E) 2932 break; 2933 2934 // Add the original type. 2935 NewTypes.push_back(*I); 2936 2937 ++ArgNo; 2938 ++I; 2939 } while (true); 2940 } 2941 2942 // Replace the trampoline call with a direct call. Let the generic 2943 // code sort out any function type mismatches. 2944 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, 2945 FTy->isVarArg()); 2946 Constant *NewCallee = 2947 NestF->getType() == PointerType::getUnqual(NewFTy) ? 2948 NestF : ConstantExpr::getBitCast(NestF, 2949 PointerType::getUnqual(NewFTy)); 2950 AttributeList NewPAL = 2951 AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(), 2952 Attrs.getRetAttributes(), NewArgAttrs); 2953 2954 SmallVector<OperandBundleDef, 1> OpBundles; 2955 Call.getOperandBundlesAsDefs(OpBundles); 2956 2957 Instruction *NewCaller; 2958 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 2959 NewCaller = InvokeInst::Create(NewFTy, NewCallee, 2960 II->getNormalDest(), II->getUnwindDest(), 2961 NewArgs, OpBundles); 2962 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); 2963 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); 2964 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) { 2965 NewCaller = 2966 CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(), 2967 CBI->getIndirectDests(), NewArgs, OpBundles); 2968 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv()); 2969 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL); 2970 } else { 2971 NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles); 2972 cast<CallInst>(NewCaller)->setTailCallKind( 2973 cast<CallInst>(Call).getTailCallKind()); 2974 cast<CallInst>(NewCaller)->setCallingConv( 2975 cast<CallInst>(Call).getCallingConv()); 2976 cast<CallInst>(NewCaller)->setAttributes(NewPAL); 2977 } 2978 NewCaller->setDebugLoc(Call.getDebugLoc()); 2979 2980 return NewCaller; 2981 } 2982 } 2983 2984 // Replace the trampoline call with a direct call. Since there is no 'nest' 2985 // parameter, there is no need to adjust the argument list. Let the generic 2986 // code sort out any function type mismatches. 2987 Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy); 2988 Call.setCalledFunction(FTy, NewCallee); 2989 return &Call; 2990 } 2991