1 //===- InstCombineAndOrXor.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitAnd, visitOr, and visitXor functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/CmpInstAnalysis.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/IR/ConstantRange.h" 17 #include "llvm/IR/Intrinsics.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Transforms/InstCombine/InstCombiner.h" 20 #include "llvm/Transforms/Utils/Local.h" 21 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// This is the complement of getICmpCode, which turns an opcode and two 28 /// operands into either a constant true or false, or a brand new ICmp 29 /// instruction. The sign is passed in to determine which kind of predicate to 30 /// use in the new icmp instruction. 31 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS, 32 InstCombiner::BuilderTy &Builder) { 33 ICmpInst::Predicate NewPred; 34 if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred)) 35 return TorF; 36 return Builder.CreateICmp(NewPred, LHS, RHS); 37 } 38 39 /// This is the complement of getFCmpCode, which turns an opcode and two 40 /// operands into either a FCmp instruction, or a true/false constant. 41 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS, 42 InstCombiner::BuilderTy &Builder) { 43 FCmpInst::Predicate NewPred; 44 if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred)) 45 return TorF; 46 return Builder.CreateFCmp(NewPred, LHS, RHS); 47 } 48 49 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or 50 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B)) 51 /// \param I Binary operator to transform. 52 /// \return Pointer to node that must replace the original binary operator, or 53 /// null pointer if no transformation was made. 54 static Value *SimplifyBSwap(BinaryOperator &I, 55 InstCombiner::BuilderTy &Builder) { 56 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying"); 57 58 Value *OldLHS = I.getOperand(0); 59 Value *OldRHS = I.getOperand(1); 60 61 Value *NewLHS; 62 if (!match(OldLHS, m_BSwap(m_Value(NewLHS)))) 63 return nullptr; 64 65 Value *NewRHS; 66 const APInt *C; 67 68 if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) { 69 // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) ) 70 if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse()) 71 return nullptr; 72 // NewRHS initialized by the matcher. 73 } else if (match(OldRHS, m_APInt(C))) { 74 // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) ) 75 if (!OldLHS->hasOneUse()) 76 return nullptr; 77 NewRHS = ConstantInt::get(I.getType(), C->byteSwap()); 78 } else 79 return nullptr; 80 81 Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS); 82 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, 83 I.getType()); 84 return Builder.CreateCall(F, BinOp); 85 } 86 87 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise 88 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates 89 /// whether to treat V, Lo, and Hi as signed or not. 90 Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo, 91 const APInt &Hi, bool isSigned, 92 bool Inside) { 93 assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) && 94 "Lo is not < Hi in range emission code!"); 95 96 Type *Ty = V->getType(); 97 98 // V >= Min && V < Hi --> V < Hi 99 // V < Min || V >= Hi --> V >= Hi 100 ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 101 if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) { 102 Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred; 103 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi)); 104 } 105 106 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo 107 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo 108 Value *VMinusLo = 109 Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off"); 110 Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo); 111 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo); 112 } 113 114 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns 115 /// that can be simplified. 116 /// One of A and B is considered the mask. The other is the value. This is 117 /// described as the "AMask" or "BMask" part of the enum. If the enum contains 118 /// only "Mask", then both A and B can be considered masks. If A is the mask, 119 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0. 120 /// If both A and C are constants, this proof is also easy. 121 /// For the following explanations, we assume that A is the mask. 122 /// 123 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all 124 /// bits of A are set in B. 125 /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes 126 /// 127 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all 128 /// bits of A are cleared in B. 129 /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes 130 /// 131 /// "Mixed" declares that (A & B) == C and C might or might not contain any 132 /// number of one bits and zero bits. 133 /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed 134 /// 135 /// "Not" means that in above descriptions "==" should be replaced by "!=". 136 /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes 137 /// 138 /// If the mask A contains a single bit, then the following is equivalent: 139 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0) 140 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0) 141 enum MaskedICmpType { 142 AMask_AllOnes = 1, 143 AMask_NotAllOnes = 2, 144 BMask_AllOnes = 4, 145 BMask_NotAllOnes = 8, 146 Mask_AllZeros = 16, 147 Mask_NotAllZeros = 32, 148 AMask_Mixed = 64, 149 AMask_NotMixed = 128, 150 BMask_Mixed = 256, 151 BMask_NotMixed = 512 152 }; 153 154 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) 155 /// satisfies. 156 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, 157 ICmpInst::Predicate Pred) { 158 const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr; 159 match(A, m_APInt(ConstA)); 160 match(B, m_APInt(ConstB)); 161 match(C, m_APInt(ConstC)); 162 bool IsEq = (Pred == ICmpInst::ICMP_EQ); 163 bool IsAPow2 = ConstA && ConstA->isPowerOf2(); 164 bool IsBPow2 = ConstB && ConstB->isPowerOf2(); 165 unsigned MaskVal = 0; 166 if (ConstC && ConstC->isZero()) { 167 // if C is zero, then both A and B qualify as mask 168 MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed) 169 : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed)); 170 if (IsAPow2) 171 MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed) 172 : (AMask_AllOnes | AMask_Mixed)); 173 if (IsBPow2) 174 MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed) 175 : (BMask_AllOnes | BMask_Mixed)); 176 return MaskVal; 177 } 178 179 if (A == C) { 180 MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed) 181 : (AMask_NotAllOnes | AMask_NotMixed)); 182 if (IsAPow2) 183 MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed) 184 : (Mask_AllZeros | AMask_Mixed)); 185 } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) { 186 MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed); 187 } 188 189 if (B == C) { 190 MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed) 191 : (BMask_NotAllOnes | BMask_NotMixed)); 192 if (IsBPow2) 193 MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed) 194 : (Mask_AllZeros | BMask_Mixed)); 195 } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) { 196 MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed); 197 } 198 199 return MaskVal; 200 } 201 202 /// Convert an analysis of a masked ICmp into its equivalent if all boolean 203 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=) 204 /// is adjacent to the corresponding normal flag (recording ==), this just 205 /// involves swapping those bits over. 206 static unsigned conjugateICmpMask(unsigned Mask) { 207 unsigned NewMask; 208 NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros | 209 AMask_Mixed | BMask_Mixed)) 210 << 1; 211 212 NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros | 213 AMask_NotMixed | BMask_NotMixed)) 214 >> 1; 215 216 return NewMask; 217 } 218 219 // Adapts the external decomposeBitTestICmp for local use. 220 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred, 221 Value *&X, Value *&Y, Value *&Z) { 222 APInt Mask; 223 if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask)) 224 return false; 225 226 Y = ConstantInt::get(X->getType(), Mask); 227 Z = ConstantInt::get(X->getType(), 0); 228 return true; 229 } 230 231 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E). 232 /// Return the pattern classes (from MaskedICmpType) for the left hand side and 233 /// the right hand side as a pair. 234 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL 235 /// and PredR are their predicates, respectively. 236 static std::optional<std::pair<unsigned, unsigned>> getMaskedTypeForICmpPair( 237 Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, ICmpInst *LHS, 238 ICmpInst *RHS, ICmpInst::Predicate &PredL, ICmpInst::Predicate &PredR) { 239 // Don't allow pointers. Splat vectors are fine. 240 if (!LHS->getOperand(0)->getType()->isIntOrIntVectorTy() || 241 !RHS->getOperand(0)->getType()->isIntOrIntVectorTy()) 242 return std::nullopt; 243 244 // Here comes the tricky part: 245 // LHS might be of the form L11 & L12 == X, X == L21 & L22, 246 // and L11 & L12 == L21 & L22. The same goes for RHS. 247 // Now we must find those components L** and R**, that are equal, so 248 // that we can extract the parameters A, B, C, D, and E for the canonical 249 // above. 250 Value *L1 = LHS->getOperand(0); 251 Value *L2 = LHS->getOperand(1); 252 Value *L11, *L12, *L21, *L22; 253 // Check whether the icmp can be decomposed into a bit test. 254 if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) { 255 L21 = L22 = L1 = nullptr; 256 } else { 257 // Look for ANDs in the LHS icmp. 258 if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) { 259 // Any icmp can be viewed as being trivially masked; if it allows us to 260 // remove one, it's worth it. 261 L11 = L1; 262 L12 = Constant::getAllOnesValue(L1->getType()); 263 } 264 265 if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) { 266 L21 = L2; 267 L22 = Constant::getAllOnesValue(L2->getType()); 268 } 269 } 270 271 // Bail if LHS was a icmp that can't be decomposed into an equality. 272 if (!ICmpInst::isEquality(PredL)) 273 return std::nullopt; 274 275 Value *R1 = RHS->getOperand(0); 276 Value *R2 = RHS->getOperand(1); 277 Value *R11, *R12; 278 bool Ok = false; 279 if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) { 280 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 281 A = R11; 282 D = R12; 283 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 284 A = R12; 285 D = R11; 286 } else { 287 return std::nullopt; 288 } 289 E = R2; 290 R1 = nullptr; 291 Ok = true; 292 } else { 293 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) { 294 // As before, model no mask as a trivial mask if it'll let us do an 295 // optimization. 296 R11 = R1; 297 R12 = Constant::getAllOnesValue(R1->getType()); 298 } 299 300 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 301 A = R11; 302 D = R12; 303 E = R2; 304 Ok = true; 305 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 306 A = R12; 307 D = R11; 308 E = R2; 309 Ok = true; 310 } 311 } 312 313 // Bail if RHS was a icmp that can't be decomposed into an equality. 314 if (!ICmpInst::isEquality(PredR)) 315 return std::nullopt; 316 317 // Look for ANDs on the right side of the RHS icmp. 318 if (!Ok) { 319 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) { 320 R11 = R2; 321 R12 = Constant::getAllOnesValue(R2->getType()); 322 } 323 324 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 325 A = R11; 326 D = R12; 327 E = R1; 328 Ok = true; 329 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 330 A = R12; 331 D = R11; 332 E = R1; 333 Ok = true; 334 } else { 335 return std::nullopt; 336 } 337 338 assert(Ok && "Failed to find AND on the right side of the RHS icmp."); 339 } 340 341 if (L11 == A) { 342 B = L12; 343 C = L2; 344 } else if (L12 == A) { 345 B = L11; 346 C = L2; 347 } else if (L21 == A) { 348 B = L22; 349 C = L1; 350 } else if (L22 == A) { 351 B = L21; 352 C = L1; 353 } 354 355 unsigned LeftType = getMaskedICmpType(A, B, C, PredL); 356 unsigned RightType = getMaskedICmpType(A, D, E, PredR); 357 return std::optional<std::pair<unsigned, unsigned>>( 358 std::make_pair(LeftType, RightType)); 359 } 360 361 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single 362 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros 363 /// and the right hand side is of type BMask_Mixed. For example, 364 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8). 365 /// Also used for logical and/or, must be poison safe. 366 static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 367 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C, 368 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, 369 InstCombiner::BuilderTy &Builder) { 370 // We are given the canonical form: 371 // (icmp ne (A & B), 0) & (icmp eq (A & D), E). 372 // where D & E == E. 373 // 374 // If IsAnd is false, we get it in negated form: 375 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) -> 376 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)). 377 // 378 // We currently handle the case of B, C, D, E are constant. 379 // 380 const APInt *BCst, *CCst, *DCst, *OrigECst; 381 if (!match(B, m_APInt(BCst)) || !match(C, m_APInt(CCst)) || 382 !match(D, m_APInt(DCst)) || !match(E, m_APInt(OrigECst))) 383 return nullptr; 384 385 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 386 387 // Update E to the canonical form when D is a power of two and RHS is 388 // canonicalized as, 389 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or 390 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0). 391 APInt ECst = *OrigECst; 392 if (PredR != NewCC) 393 ECst ^= *DCst; 394 395 // If B or D is zero, skip because if LHS or RHS can be trivially folded by 396 // other folding rules and this pattern won't apply any more. 397 if (*BCst == 0 || *DCst == 0) 398 return nullptr; 399 400 // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't 401 // deduce anything from it. 402 // For example, 403 // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding. 404 if ((*BCst & *DCst) == 0) 405 return nullptr; 406 407 // If the following two conditions are met: 408 // 409 // 1. mask B covers only a single bit that's not covered by mask D, that is, 410 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of 411 // B and D has only one bit set) and, 412 // 413 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other 414 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0 415 // 416 // then that single bit in B must be one and thus the whole expression can be 417 // folded to 418 // (A & (B | D)) == (B & (B ^ D)) | E. 419 // 420 // For example, 421 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9) 422 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8) 423 if ((((*BCst & *DCst) & ECst) == 0) && 424 (*BCst & (*BCst ^ *DCst)).isPowerOf2()) { 425 APInt BorD = *BCst | *DCst; 426 APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst; 427 Value *NewMask = ConstantInt::get(A->getType(), BorD); 428 Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE); 429 Value *NewAnd = Builder.CreateAnd(A, NewMask); 430 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue); 431 } 432 433 auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) { 434 return (*C1 & *C2) == *C1; 435 }; 436 auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) { 437 return (*C1 & *C2) == *C2; 438 }; 439 440 // In the following, we consider only the cases where B is a superset of D, B 441 // is a subset of D, or B == D because otherwise there's at least one bit 442 // covered by B but not D, in which case we can't deduce much from it, so 443 // no folding (aside from the single must-be-one bit case right above.) 444 // For example, 445 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding. 446 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst)) 447 return nullptr; 448 449 // At this point, either B is a superset of D, B is a subset of D or B == D. 450 451 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict 452 // and the whole expression becomes false (or true if negated), otherwise, no 453 // folding. 454 // For example, 455 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false. 456 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding. 457 if (ECst.isZero()) { 458 if (IsSubSetOrEqual(BCst, DCst)) 459 return ConstantInt::get(LHS->getType(), !IsAnd); 460 return nullptr; 461 } 462 463 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B == 464 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is 465 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes 466 // RHS. For example, 467 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 468 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 469 if (IsSuperSetOrEqual(BCst, DCst)) 470 return RHS; 471 // Otherwise, B is a subset of D. If B and E have a common bit set, 472 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example. 473 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 474 assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code"); 475 if ((*BCst & ECst) != 0) 476 return RHS; 477 // Otherwise, LHS and RHS contradict and the whole expression becomes false 478 // (or true if negated.) For example, 479 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false. 480 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false. 481 return ConstantInt::get(LHS->getType(), !IsAnd); 482 } 483 484 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single 485 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side 486 /// aren't of the common mask pattern type. 487 /// Also used for logical and/or, must be poison safe. 488 static Value *foldLogOpOfMaskedICmpsAsymmetric( 489 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C, 490 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, 491 unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) { 492 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 493 "Expected equality predicates for masked type of icmps."); 494 // Handle Mask_NotAllZeros-BMask_Mixed cases. 495 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or 496 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E) 497 // which gets swapped to 498 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C). 499 if (!IsAnd) { 500 LHSMask = conjugateICmpMask(LHSMask); 501 RHSMask = conjugateICmpMask(RHSMask); 502 } 503 if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) { 504 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 505 LHS, RHS, IsAnd, A, B, C, D, E, 506 PredL, PredR, Builder)) { 507 return V; 508 } 509 } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) { 510 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 511 RHS, LHS, IsAnd, A, D, E, B, C, 512 PredR, PredL, Builder)) { 513 return V; 514 } 515 } 516 return nullptr; 517 } 518 519 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) 520 /// into a single (icmp(A & X) ==/!= Y). 521 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 522 bool IsLogical, 523 InstCombiner::BuilderTy &Builder) { 524 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; 525 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 526 std::optional<std::pair<unsigned, unsigned>> MaskPair = 527 getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR); 528 if (!MaskPair) 529 return nullptr; 530 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 531 "Expected equality predicates for masked type of icmps."); 532 unsigned LHSMask = MaskPair->first; 533 unsigned RHSMask = MaskPair->second; 534 unsigned Mask = LHSMask & RHSMask; 535 if (Mask == 0) { 536 // Even if the two sides don't share a common pattern, check if folding can 537 // still happen. 538 if (Value *V = foldLogOpOfMaskedICmpsAsymmetric( 539 LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask, 540 Builder)) 541 return V; 542 return nullptr; 543 } 544 545 // In full generality: 546 // (icmp (A & B) Op C) | (icmp (A & D) Op E) 547 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] 548 // 549 // If the latter can be converted into (icmp (A & X) Op Y) then the former is 550 // equivalent to (icmp (A & X) !Op Y). 551 // 552 // Therefore, we can pretend for the rest of this function that we're dealing 553 // with the conjunction, provided we flip the sense of any comparisons (both 554 // input and output). 555 556 // In most cases we're going to produce an EQ for the "&&" case. 557 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 558 if (!IsAnd) { 559 // Convert the masking analysis into its equivalent with negated 560 // comparisons. 561 Mask = conjugateICmpMask(Mask); 562 } 563 564 if (Mask & Mask_AllZeros) { 565 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) 566 // -> (icmp eq (A & (B|D)), 0) 567 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D)) 568 return nullptr; // TODO: Use freeze? 569 Value *NewOr = Builder.CreateOr(B, D); 570 Value *NewAnd = Builder.CreateAnd(A, NewOr); 571 // We can't use C as zero because we might actually handle 572 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 573 // with B and D, having a single bit set. 574 Value *Zero = Constant::getNullValue(A->getType()); 575 return Builder.CreateICmp(NewCC, NewAnd, Zero); 576 } 577 if (Mask & BMask_AllOnes) { 578 // (icmp eq (A & B), B) & (icmp eq (A & D), D) 579 // -> (icmp eq (A & (B|D)), (B|D)) 580 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D)) 581 return nullptr; // TODO: Use freeze? 582 Value *NewOr = Builder.CreateOr(B, D); 583 Value *NewAnd = Builder.CreateAnd(A, NewOr); 584 return Builder.CreateICmp(NewCC, NewAnd, NewOr); 585 } 586 if (Mask & AMask_AllOnes) { 587 // (icmp eq (A & B), A) & (icmp eq (A & D), A) 588 // -> (icmp eq (A & (B&D)), A) 589 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D)) 590 return nullptr; // TODO: Use freeze? 591 Value *NewAnd1 = Builder.CreateAnd(B, D); 592 Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1); 593 return Builder.CreateICmp(NewCC, NewAnd2, A); 594 } 595 596 // Remaining cases assume at least that B and D are constant, and depend on 597 // their actual values. This isn't strictly necessary, just a "handle the 598 // easy cases for now" decision. 599 const APInt *ConstB, *ConstD; 600 if (!match(B, m_APInt(ConstB)) || !match(D, m_APInt(ConstD))) 601 return nullptr; 602 603 if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) { 604 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and 605 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 606 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) 607 // Only valid if one of the masks is a superset of the other (check "B&D" is 608 // the same as either B or D). 609 APInt NewMask = *ConstB & *ConstD; 610 if (NewMask == *ConstB) 611 return LHS; 612 else if (NewMask == *ConstD) 613 return RHS; 614 } 615 616 if (Mask & AMask_NotAllOnes) { 617 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 618 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A) 619 // Only valid if one of the masks is a superset of the other (check "B|D" is 620 // the same as either B or D). 621 APInt NewMask = *ConstB | *ConstD; 622 if (NewMask == *ConstB) 623 return LHS; 624 else if (NewMask == *ConstD) 625 return RHS; 626 } 627 628 if (Mask & (BMask_Mixed | BMask_NotMixed)) { 629 // Mixed: 630 // (icmp eq (A & B), C) & (icmp eq (A & D), E) 631 // We already know that B & C == C && D & E == E. 632 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of 633 // C and E, which are shared by both the mask B and the mask D, don't 634 // contradict, then we can transform to 635 // -> (icmp eq (A & (B|D)), (C|E)) 636 // Currently, we only handle the case of B, C, D, and E being constant. 637 // We can't simply use C and E because we might actually handle 638 // (icmp ne (A & B), B) & (icmp eq (A & D), D) 639 // with B and D, having a single bit set. 640 641 // NotMixed: 642 // (icmp ne (A & B), C) & (icmp ne (A & D), E) 643 // -> (icmp ne (A & (B & D)), (C & E)) 644 // Check the intersection (B & D) for inequality. 645 // Assume that (B & D) == B || (B & D) == D, i.e B/D is a subset of D/B 646 // and (B & D) & (C ^ E) == 0, bits of C and E, which are shared by both the 647 // B and the D, don't contradict. 648 // Note that we can assume (~B & C) == 0 && (~D & E) == 0, previous 649 // operation should delete these icmps if it hadn't been met. 650 651 const APInt *OldConstC, *OldConstE; 652 if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE))) 653 return nullptr; 654 655 auto FoldBMixed = [&](ICmpInst::Predicate CC, bool IsNot) -> Value * { 656 CC = IsNot ? CmpInst::getInversePredicate(CC) : CC; 657 const APInt ConstC = PredL != CC ? *ConstB ^ *OldConstC : *OldConstC; 658 const APInt ConstE = PredR != CC ? *ConstD ^ *OldConstE : *OldConstE; 659 660 if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue()) 661 return IsNot ? nullptr : ConstantInt::get(LHS->getType(), !IsAnd); 662 663 if (IsNot && !ConstB->isSubsetOf(*ConstD) && !ConstD->isSubsetOf(*ConstB)) 664 return nullptr; 665 666 APInt BD, CE; 667 if (IsNot) { 668 BD = *ConstB & *ConstD; 669 CE = ConstC & ConstE; 670 } else { 671 BD = *ConstB | *ConstD; 672 CE = ConstC | ConstE; 673 } 674 Value *NewAnd = Builder.CreateAnd(A, BD); 675 Value *CEVal = ConstantInt::get(A->getType(), CE); 676 return Builder.CreateICmp(CC, CEVal, NewAnd); 677 }; 678 679 if (Mask & BMask_Mixed) 680 return FoldBMixed(NewCC, false); 681 if (Mask & BMask_NotMixed) // can be else also 682 return FoldBMixed(NewCC, true); 683 } 684 return nullptr; 685 } 686 687 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp. 688 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 689 /// If \p Inverted is true then the check is for the inverted range, e.g. 690 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 691 Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, 692 bool Inverted) { 693 // Check the lower range comparison, e.g. x >= 0 694 // InstCombine already ensured that if there is a constant it's on the RHS. 695 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1)); 696 if (!RangeStart) 697 return nullptr; 698 699 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() : 700 Cmp0->getPredicate()); 701 702 // Accept x > -1 or x >= 0 (after potentially inverting the predicate). 703 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) || 704 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero()))) 705 return nullptr; 706 707 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() : 708 Cmp1->getPredicate()); 709 710 Value *Input = Cmp0->getOperand(0); 711 Value *RangeEnd; 712 if (Cmp1->getOperand(0) == Input) { 713 // For the upper range compare we have: icmp x, n 714 RangeEnd = Cmp1->getOperand(1); 715 } else if (Cmp1->getOperand(1) == Input) { 716 // For the upper range compare we have: icmp n, x 717 RangeEnd = Cmp1->getOperand(0); 718 Pred1 = ICmpInst::getSwappedPredicate(Pred1); 719 } else { 720 return nullptr; 721 } 722 723 // Check the upper range comparison, e.g. x < n 724 ICmpInst::Predicate NewPred; 725 switch (Pred1) { 726 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break; 727 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break; 728 default: return nullptr; 729 } 730 731 // This simplification is only valid if the upper range is not negative. 732 KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1); 733 if (!Known.isNonNegative()) 734 return nullptr; 735 736 if (Inverted) 737 NewPred = ICmpInst::getInversePredicate(NewPred); 738 739 return Builder.CreateICmp(NewPred, Input, RangeEnd); 740 } 741 742 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 743 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) 744 Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, 745 ICmpInst *RHS, 746 Instruction *CxtI, 747 bool IsAnd, 748 bool IsLogical) { 749 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 750 if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred) 751 return nullptr; 752 753 if (!match(LHS->getOperand(1), m_Zero()) || 754 !match(RHS->getOperand(1), m_Zero())) 755 return nullptr; 756 757 Value *L1, *L2, *R1, *R2; 758 if (match(LHS->getOperand(0), m_And(m_Value(L1), m_Value(L2))) && 759 match(RHS->getOperand(0), m_And(m_Value(R1), m_Value(R2)))) { 760 if (L1 == R2 || L2 == R2) 761 std::swap(R1, R2); 762 if (L2 == R1) 763 std::swap(L1, L2); 764 765 if (L1 == R1 && 766 isKnownToBeAPowerOfTwo(L2, false, 0, CxtI) && 767 isKnownToBeAPowerOfTwo(R2, false, 0, CxtI)) { 768 // If this is a logical and/or, then we must prevent propagation of a 769 // poison value from the RHS by inserting freeze. 770 if (IsLogical) 771 R2 = Builder.CreateFreeze(R2); 772 Value *Mask = Builder.CreateOr(L2, R2); 773 Value *Masked = Builder.CreateAnd(L1, Mask); 774 auto NewPred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 775 return Builder.CreateICmp(NewPred, Masked, Mask); 776 } 777 } 778 779 return nullptr; 780 } 781 782 /// General pattern: 783 /// X & Y 784 /// 785 /// Where Y is checking that all the high bits (covered by a mask 4294967168) 786 /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0 787 /// Pattern can be one of: 788 /// %t = add i32 %arg, 128 789 /// %r = icmp ult i32 %t, 256 790 /// Or 791 /// %t0 = shl i32 %arg, 24 792 /// %t1 = ashr i32 %t0, 24 793 /// %r = icmp eq i32 %t1, %arg 794 /// Or 795 /// %t0 = trunc i32 %arg to i8 796 /// %t1 = sext i8 %t0 to i32 797 /// %r = icmp eq i32 %t1, %arg 798 /// This pattern is a signed truncation check. 799 /// 800 /// And X is checking that some bit in that same mask is zero. 801 /// I.e. can be one of: 802 /// %r = icmp sgt i32 %arg, -1 803 /// Or 804 /// %t = and i32 %arg, 2147483648 805 /// %r = icmp eq i32 %t, 0 806 /// 807 /// Since we are checking that all the bits in that mask are the same, 808 /// and a particular bit is zero, what we are really checking is that all the 809 /// masked bits are zero. 810 /// So this should be transformed to: 811 /// %r = icmp ult i32 %arg, 128 812 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1, 813 Instruction &CxtI, 814 InstCombiner::BuilderTy &Builder) { 815 assert(CxtI.getOpcode() == Instruction::And); 816 817 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two) 818 auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X, 819 APInt &SignBitMask) -> bool { 820 CmpInst::Predicate Pred; 821 const APInt *I01, *I1; // powers of two; I1 == I01 << 1 822 if (!(match(ICmp, 823 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) && 824 Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1)) 825 return false; 826 // Which bit is the new sign bit as per the 'signed truncation' pattern? 827 SignBitMask = *I01; 828 return true; 829 }; 830 831 // One icmp needs to be 'signed truncation check'. 832 // We need to match this first, else we will mismatch commutative cases. 833 Value *X1; 834 APInt HighestBit; 835 ICmpInst *OtherICmp; 836 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit)) 837 OtherICmp = ICmp0; 838 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit)) 839 OtherICmp = ICmp1; 840 else 841 return nullptr; 842 843 assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)"); 844 845 // Try to match/decompose into: icmp eq (X & Mask), 0 846 auto tryToDecompose = [](ICmpInst *ICmp, Value *&X, 847 APInt &UnsetBitsMask) -> bool { 848 CmpInst::Predicate Pred = ICmp->getPredicate(); 849 // Can it be decomposed into icmp eq (X & Mask), 0 ? 850 if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1), 851 Pred, X, UnsetBitsMask, 852 /*LookThroughTrunc=*/false) && 853 Pred == ICmpInst::ICMP_EQ) 854 return true; 855 // Is it icmp eq (X & Mask), 0 already? 856 const APInt *Mask; 857 if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) && 858 Pred == ICmpInst::ICMP_EQ) { 859 UnsetBitsMask = *Mask; 860 return true; 861 } 862 return false; 863 }; 864 865 // And the other icmp needs to be decomposable into a bit test. 866 Value *X0; 867 APInt UnsetBitsMask; 868 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask)) 869 return nullptr; 870 871 assert(!UnsetBitsMask.isZero() && "empty mask makes no sense."); 872 873 // Are they working on the same value? 874 Value *X; 875 if (X1 == X0) { 876 // Ok as is. 877 X = X1; 878 } else if (match(X0, m_Trunc(m_Specific(X1)))) { 879 UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits()); 880 X = X1; 881 } else 882 return nullptr; 883 884 // So which bits should be uniform as per the 'signed truncation check'? 885 // (all the bits starting with (i.e. including) HighestBit) 886 APInt SignBitsMask = ~(HighestBit - 1U); 887 888 // UnsetBitsMask must have some common bits with SignBitsMask, 889 if (!UnsetBitsMask.intersects(SignBitsMask)) 890 return nullptr; 891 892 // Does UnsetBitsMask contain any bits outside of SignBitsMask? 893 if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) { 894 APInt OtherHighestBit = (~UnsetBitsMask) + 1U; 895 if (!OtherHighestBit.isPowerOf2()) 896 return nullptr; 897 HighestBit = APIntOps::umin(HighestBit, OtherHighestBit); 898 } 899 // Else, if it does not, then all is ok as-is. 900 901 // %r = icmp ult %X, SignBit 902 return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit), 903 CxtI.getName() + ".simplified"); 904 } 905 906 /// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and 907 /// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1). 908 /// Also used for logical and/or, must be poison safe. 909 static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, 910 InstCombiner::BuilderTy &Builder) { 911 CmpInst::Predicate Pred0, Pred1; 912 Value *X; 913 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), 914 m_SpecificInt(1))) || 915 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt()))) 916 return nullptr; 917 918 Value *CtPop = Cmp0->getOperand(0); 919 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE) 920 return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1)); 921 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ) 922 return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2)); 923 924 return nullptr; 925 } 926 927 /// Reduce a pair of compares that check if a value has exactly 1 bit set. 928 /// Also used for logical and/or, must be poison safe. 929 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, 930 InstCombiner::BuilderTy &Builder) { 931 // Handle 'and' / 'or' commutation: make the equality check the first operand. 932 if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE) 933 std::swap(Cmp0, Cmp1); 934 else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ) 935 std::swap(Cmp0, Cmp1); 936 937 // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1 938 CmpInst::Predicate Pred0, Pred1; 939 Value *X; 940 if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && 941 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), 942 m_SpecificInt(2))) && 943 Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) { 944 Value *CtPop = Cmp1->getOperand(0); 945 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1)); 946 } 947 // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1 948 if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && 949 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), 950 m_SpecificInt(1))) && 951 Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) { 952 Value *CtPop = Cmp1->getOperand(0); 953 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1)); 954 } 955 return nullptr; 956 } 957 958 /// Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff 959 /// B is a contiguous set of ones starting from the most significant bit 960 /// (negative power of 2), D and E are equal, and D is a contiguous set of ones 961 /// starting at the most significant zero bit in B. Parameter B supports masking 962 /// using undef/poison in either scalar or vector values. 963 static Value *foldNegativePower2AndShiftedMask( 964 Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL, 965 ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder) { 966 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 967 "Expected equality predicates for masked type of icmps."); 968 if (PredL != ICmpInst::ICMP_EQ || PredR != ICmpInst::ICMP_NE) 969 return nullptr; 970 971 if (!match(B, m_NegatedPower2()) || !match(D, m_ShiftedMask()) || 972 !match(E, m_ShiftedMask())) 973 return nullptr; 974 975 // Test scalar arguments for conversion. B has been validated earlier to be a 976 // negative power of two and thus is guaranteed to have one or more contiguous 977 // ones starting from the MSB followed by zero or more contiguous zeros. D has 978 // been validated earlier to be a shifted set of one or more contiguous ones. 979 // In order to match, B leading ones and D leading zeros should be equal. The 980 // predicate that B be a negative power of 2 prevents the condition of there 981 // ever being zero leading ones. Thus 0 == 0 cannot occur. The predicate that 982 // D always be a shifted mask prevents the condition of D equaling 0. This 983 // prevents matching the condition where B contains the maximum number of 984 // leading one bits (-1) and D contains the maximum number of leading zero 985 // bits (0). 986 auto isReducible = [](const Value *B, const Value *D, const Value *E) { 987 const APInt *BCst, *DCst, *ECst; 988 return match(B, m_APIntAllowUndef(BCst)) && match(D, m_APInt(DCst)) && 989 match(E, m_APInt(ECst)) && *DCst == *ECst && 990 (isa<UndefValue>(B) || 991 (BCst->countLeadingOnes() == DCst->countLeadingZeros())); 992 }; 993 994 // Test vector type arguments for conversion. 995 if (const auto *BVTy = dyn_cast<VectorType>(B->getType())) { 996 const auto *BFVTy = dyn_cast<FixedVectorType>(BVTy); 997 const auto *BConst = dyn_cast<Constant>(B); 998 const auto *DConst = dyn_cast<Constant>(D); 999 const auto *EConst = dyn_cast<Constant>(E); 1000 1001 if (!BFVTy || !BConst || !DConst || !EConst) 1002 return nullptr; 1003 1004 for (unsigned I = 0; I != BFVTy->getNumElements(); ++I) { 1005 const auto *BElt = BConst->getAggregateElement(I); 1006 const auto *DElt = DConst->getAggregateElement(I); 1007 const auto *EElt = EConst->getAggregateElement(I); 1008 1009 if (!BElt || !DElt || !EElt) 1010 return nullptr; 1011 if (!isReducible(BElt, DElt, EElt)) 1012 return nullptr; 1013 } 1014 } else { 1015 // Test scalar type arguments for conversion. 1016 if (!isReducible(B, D, E)) 1017 return nullptr; 1018 } 1019 return Builder.CreateICmp(ICmpInst::ICMP_ULT, A, D); 1020 } 1021 1022 /// Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) & 1023 /// (icmp(X & M) != M)) into (icmp X u< M). Where P is a power of 2, M < P, and 1024 /// M is a contiguous shifted mask starting at the right most significant zero 1025 /// bit in P. SGT is supported as when P is the largest representable power of 1026 /// 2, an earlier optimization converts the expression into (icmp X s> -1). 1027 /// Parameter P supports masking using undef/poison in either scalar or vector 1028 /// values. 1029 static Value *foldPowerOf2AndShiftedMask(ICmpInst *Cmp0, ICmpInst *Cmp1, 1030 bool JoinedByAnd, 1031 InstCombiner::BuilderTy &Builder) { 1032 if (!JoinedByAnd) 1033 return nullptr; 1034 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; 1035 ICmpInst::Predicate CmpPred0 = Cmp0->getPredicate(), 1036 CmpPred1 = Cmp1->getPredicate(); 1037 // Assuming P is a 2^n, getMaskedTypeForICmpPair will normalize (icmp X u< 1038 // 2^n) into (icmp (X & ~(2^n-1)) == 0) and (icmp X s> -1) into (icmp (X & 1039 // SignMask) == 0). 1040 std::optional<std::pair<unsigned, unsigned>> MaskPair = 1041 getMaskedTypeForICmpPair(A, B, C, D, E, Cmp0, Cmp1, CmpPred0, CmpPred1); 1042 if (!MaskPair) 1043 return nullptr; 1044 1045 const auto compareBMask = BMask_NotMixed | BMask_NotAllOnes; 1046 unsigned CmpMask0 = MaskPair->first; 1047 unsigned CmpMask1 = MaskPair->second; 1048 if ((CmpMask0 & Mask_AllZeros) && (CmpMask1 == compareBMask)) { 1049 if (Value *V = foldNegativePower2AndShiftedMask(A, B, D, E, CmpPred0, 1050 CmpPred1, Builder)) 1051 return V; 1052 } else if ((CmpMask0 == compareBMask) && (CmpMask1 & Mask_AllZeros)) { 1053 if (Value *V = foldNegativePower2AndShiftedMask(A, D, B, C, CmpPred1, 1054 CmpPred0, Builder)) 1055 return V; 1056 } 1057 return nullptr; 1058 } 1059 1060 /// Commuted variants are assumed to be handled by calling this function again 1061 /// with the parameters swapped. 1062 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp, 1063 ICmpInst *UnsignedICmp, bool IsAnd, 1064 const SimplifyQuery &Q, 1065 InstCombiner::BuilderTy &Builder) { 1066 Value *ZeroCmpOp; 1067 ICmpInst::Predicate EqPred; 1068 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) || 1069 !ICmpInst::isEquality(EqPred)) 1070 return nullptr; 1071 1072 auto IsKnownNonZero = [&](Value *V) { 1073 return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1074 }; 1075 1076 ICmpInst::Predicate UnsignedPred; 1077 1078 Value *A, *B; 1079 if (match(UnsignedICmp, 1080 m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) && 1081 match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) && 1082 (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) { 1083 auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) { 1084 if (!IsKnownNonZero(NonZero)) 1085 std::swap(NonZero, Other); 1086 return IsKnownNonZero(NonZero); 1087 }; 1088 1089 // Given ZeroCmpOp = (A + B) 1090 // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff 1091 // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff 1092 // with X being the value (A/B) that is known to be non-zero, 1093 // and Y being remaining value. 1094 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE && 1095 IsAnd && GetKnownNonZeroAndOther(B, A)) 1096 return Builder.CreateICmpULT(Builder.CreateNeg(B), A); 1097 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ && 1098 !IsAnd && GetKnownNonZeroAndOther(B, A)) 1099 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A); 1100 } 1101 1102 Value *Base, *Offset; 1103 if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset)))) 1104 return nullptr; 1105 1106 if (!match(UnsignedICmp, 1107 m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) || 1108 !ICmpInst::isUnsigned(UnsignedPred)) 1109 return nullptr; 1110 1111 // Base >=/> Offset && (Base - Offset) != 0 <--> Base > Offset 1112 // (no overflow and not null) 1113 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1114 UnsignedPred == ICmpInst::ICMP_UGT) && 1115 EqPred == ICmpInst::ICMP_NE && IsAnd) 1116 return Builder.CreateICmpUGT(Base, Offset); 1117 1118 // Base <=/< Offset || (Base - Offset) == 0 <--> Base <= Offset 1119 // (overflow or null) 1120 if ((UnsignedPred == ICmpInst::ICMP_ULE || 1121 UnsignedPred == ICmpInst::ICMP_ULT) && 1122 EqPred == ICmpInst::ICMP_EQ && !IsAnd) 1123 return Builder.CreateICmpULE(Base, Offset); 1124 1125 // Base <= Offset && (Base - Offset) != 0 --> Base < Offset 1126 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1127 IsAnd) 1128 return Builder.CreateICmpULT(Base, Offset); 1129 1130 // Base > Offset || (Base - Offset) == 0 --> Base >= Offset 1131 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1132 !IsAnd) 1133 return Builder.CreateICmpUGE(Base, Offset); 1134 1135 return nullptr; 1136 } 1137 1138 struct IntPart { 1139 Value *From; 1140 unsigned StartBit; 1141 unsigned NumBits; 1142 }; 1143 1144 /// Match an extraction of bits from an integer. 1145 static std::optional<IntPart> matchIntPart(Value *V) { 1146 Value *X; 1147 if (!match(V, m_OneUse(m_Trunc(m_Value(X))))) 1148 return std::nullopt; 1149 1150 unsigned NumOriginalBits = X->getType()->getScalarSizeInBits(); 1151 unsigned NumExtractedBits = V->getType()->getScalarSizeInBits(); 1152 Value *Y; 1153 const APInt *Shift; 1154 // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits 1155 // from Y, not any shifted-in zeroes. 1156 if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) && 1157 Shift->ule(NumOriginalBits - NumExtractedBits)) 1158 return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}}; 1159 return {{X, 0, NumExtractedBits}}; 1160 } 1161 1162 /// Materialize an extraction of bits from an integer in IR. 1163 static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) { 1164 Value *V = P.From; 1165 if (P.StartBit) 1166 V = Builder.CreateLShr(V, P.StartBit); 1167 Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits); 1168 if (TruncTy != V->getType()) 1169 V = Builder.CreateTrunc(V, TruncTy); 1170 return V; 1171 } 1172 1173 /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01 1174 /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01 1175 /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer. 1176 Value *InstCombinerImpl::foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1, 1177 bool IsAnd) { 1178 if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse()) 1179 return nullptr; 1180 1181 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1182 if (Cmp0->getPredicate() != Pred || Cmp1->getPredicate() != Pred) 1183 return nullptr; 1184 1185 std::optional<IntPart> L0 = matchIntPart(Cmp0->getOperand(0)); 1186 std::optional<IntPart> R0 = matchIntPart(Cmp0->getOperand(1)); 1187 std::optional<IntPart> L1 = matchIntPart(Cmp1->getOperand(0)); 1188 std::optional<IntPart> R1 = matchIntPart(Cmp1->getOperand(1)); 1189 if (!L0 || !R0 || !L1 || !R1) 1190 return nullptr; 1191 1192 // Make sure the LHS/RHS compare a part of the same value, possibly after 1193 // an operand swap. 1194 if (L0->From != L1->From || R0->From != R1->From) { 1195 if (L0->From != R1->From || R0->From != L1->From) 1196 return nullptr; 1197 std::swap(L1, R1); 1198 } 1199 1200 // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being 1201 // the low part and L1/R1 being the high part. 1202 if (L0->StartBit + L0->NumBits != L1->StartBit || 1203 R0->StartBit + R0->NumBits != R1->StartBit) { 1204 if (L1->StartBit + L1->NumBits != L0->StartBit || 1205 R1->StartBit + R1->NumBits != R0->StartBit) 1206 return nullptr; 1207 std::swap(L0, L1); 1208 std::swap(R0, R1); 1209 } 1210 1211 // We can simplify to a comparison of these larger parts of the integers. 1212 IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits}; 1213 IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits}; 1214 Value *LValue = extractIntPart(L, Builder); 1215 Value *RValue = extractIntPart(R, Builder); 1216 return Builder.CreateICmp(Pred, LValue, RValue); 1217 } 1218 1219 /// Reduce logic-of-compares with equality to a constant by substituting a 1220 /// common operand with the constant. Callers are expected to call this with 1221 /// Cmp0/Cmp1 switched to handle logic op commutativity. 1222 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1, 1223 bool IsAnd, bool IsLogical, 1224 InstCombiner::BuilderTy &Builder, 1225 const SimplifyQuery &Q) { 1226 // Match an equality compare with a non-poison constant as Cmp0. 1227 // Also, give up if the compare can be constant-folded to avoid looping. 1228 ICmpInst::Predicate Pred0; 1229 Value *X; 1230 Constant *C; 1231 if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) || 1232 !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X)) 1233 return nullptr; 1234 if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) || 1235 (!IsAnd && Pred0 != ICmpInst::ICMP_NE)) 1236 return nullptr; 1237 1238 // The other compare must include a common operand (X). Canonicalize the 1239 // common operand as operand 1 (Pred1 is swapped if the common operand was 1240 // operand 0). 1241 Value *Y; 1242 ICmpInst::Predicate Pred1; 1243 if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X)))) 1244 return nullptr; 1245 1246 // Replace variable with constant value equivalence to remove a variable use: 1247 // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C) 1248 // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C) 1249 // Can think of the 'or' substitution with the 'and' bool equivalent: 1250 // A || B --> A || (!A && B) 1251 Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q); 1252 if (!SubstituteCmp) { 1253 // If we need to create a new instruction, require that the old compare can 1254 // be removed. 1255 if (!Cmp1->hasOneUse()) 1256 return nullptr; 1257 SubstituteCmp = Builder.CreateICmp(Pred1, Y, C); 1258 } 1259 if (IsLogical) 1260 return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp) 1261 : Builder.CreateLogicalOr(Cmp0, SubstituteCmp); 1262 return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0, 1263 SubstituteCmp); 1264 } 1265 1266 /// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2) 1267 /// or (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2) 1268 /// into a single comparison using range-based reasoning. 1269 /// NOTE: This is also used for logical and/or, must be poison-safe! 1270 Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1, 1271 ICmpInst *ICmp2, 1272 bool IsAnd) { 1273 ICmpInst::Predicate Pred1, Pred2; 1274 Value *V1, *V2; 1275 const APInt *C1, *C2; 1276 if (!match(ICmp1, m_ICmp(Pred1, m_Value(V1), m_APInt(C1))) || 1277 !match(ICmp2, m_ICmp(Pred2, m_Value(V2), m_APInt(C2)))) 1278 return nullptr; 1279 1280 // Look through add of a constant offset on V1, V2, or both operands. This 1281 // allows us to interpret the V + C' < C'' range idiom into a proper range. 1282 const APInt *Offset1 = nullptr, *Offset2 = nullptr; 1283 if (V1 != V2) { 1284 Value *X; 1285 if (match(V1, m_Add(m_Value(X), m_APInt(Offset1)))) 1286 V1 = X; 1287 if (match(V2, m_Add(m_Value(X), m_APInt(Offset2)))) 1288 V2 = X; 1289 } 1290 1291 if (V1 != V2) 1292 return nullptr; 1293 1294 ConstantRange CR1 = ConstantRange::makeExactICmpRegion( 1295 IsAnd ? ICmpInst::getInversePredicate(Pred1) : Pred1, *C1); 1296 if (Offset1) 1297 CR1 = CR1.subtract(*Offset1); 1298 1299 ConstantRange CR2 = ConstantRange::makeExactICmpRegion( 1300 IsAnd ? ICmpInst::getInversePredicate(Pred2) : Pred2, *C2); 1301 if (Offset2) 1302 CR2 = CR2.subtract(*Offset2); 1303 1304 Type *Ty = V1->getType(); 1305 Value *NewV = V1; 1306 std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2); 1307 if (!CR) { 1308 if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() || 1309 CR2.isWrappedSet()) 1310 return nullptr; 1311 1312 // Check whether we have equal-size ranges that only differ by one bit. 1313 // In that case we can apply a mask to map one range onto the other. 1314 APInt LowerDiff = CR1.getLower() ^ CR2.getLower(); 1315 APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1); 1316 APInt CR1Size = CR1.getUpper() - CR1.getLower(); 1317 if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff || 1318 CR1Size != CR2.getUpper() - CR2.getLower()) 1319 return nullptr; 1320 1321 CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2; 1322 NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff)); 1323 } 1324 1325 if (IsAnd) 1326 CR = CR->inverse(); 1327 1328 CmpInst::Predicate NewPred; 1329 APInt NewC, Offset; 1330 CR->getEquivalentICmp(NewPred, NewC, Offset); 1331 1332 if (Offset != 0) 1333 NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset)); 1334 return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC)); 1335 } 1336 1337 /// Ignore all operations which only change the sign of a value, returning the 1338 /// underlying magnitude value. 1339 static Value *stripSignOnlyFPOps(Value *Val) { 1340 match(Val, m_FNeg(m_Value(Val))); 1341 match(Val, m_FAbs(m_Value(Val))); 1342 match(Val, m_CopySign(m_Value(Val), m_Value())); 1343 return Val; 1344 } 1345 1346 /// Matches canonical form of isnan, fcmp ord x, 0 1347 static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS) { 1348 return P == FCmpInst::FCMP_ORD && match(RHS, m_AnyZeroFP()); 1349 } 1350 1351 /// Matches fcmp u__ x, +/-inf 1352 static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS, 1353 Value *RHS) { 1354 return FCmpInst::isUnordered(P) && match(RHS, m_Inf()); 1355 } 1356 1357 /// and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf 1358 /// 1359 /// Clang emits this pattern for doing an isfinite check in __builtin_isnormal. 1360 static Value *matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS, 1361 FCmpInst *RHS) { 1362 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1363 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1364 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1365 1366 if (!matchIsNotNaN(PredL, LHS0, LHS1) || 1367 !matchUnorderedInfCompare(PredR, RHS0, RHS1)) 1368 return nullptr; 1369 1370 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1371 FastMathFlags FMF = LHS->getFastMathFlags(); 1372 FMF &= RHS->getFastMathFlags(); 1373 Builder.setFastMathFlags(FMF); 1374 1375 return Builder.CreateFCmp(FCmpInst::getOrderedPredicate(PredR), RHS0, RHS1); 1376 } 1377 1378 Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, 1379 bool IsAnd, bool IsLogicalSelect) { 1380 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1381 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1382 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1383 1384 if (LHS0 == RHS1 && RHS0 == LHS1) { 1385 // Swap RHS operands to match LHS. 1386 PredR = FCmpInst::getSwappedPredicate(PredR); 1387 std::swap(RHS0, RHS1); 1388 } 1389 1390 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). 1391 // Suppose the relation between x and y is R, where R is one of 1392 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for 1393 // testing the desired relations. 1394 // 1395 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 1396 // bool(R & CC0) && bool(R & CC1) 1397 // = bool((R & CC0) & (R & CC1)) 1398 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency 1399 // 1400 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 1401 // bool(R & CC0) || bool(R & CC1) 1402 // = bool((R & CC0) | (R & CC1)) 1403 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;) 1404 if (LHS0 == RHS0 && LHS1 == RHS1) { 1405 unsigned FCmpCodeL = getFCmpCode(PredL); 1406 unsigned FCmpCodeR = getFCmpCode(PredR); 1407 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR; 1408 1409 // Intersect the fast math flags. 1410 // TODO: We can union the fast math flags unless this is a logical select. 1411 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1412 FastMathFlags FMF = LHS->getFastMathFlags(); 1413 FMF &= RHS->getFastMathFlags(); 1414 Builder.setFastMathFlags(FMF); 1415 1416 return getFCmpValue(NewPred, LHS0, LHS1, Builder); 1417 } 1418 1419 // This transform is not valid for a logical select. 1420 if (!IsLogicalSelect && 1421 ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1422 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && 1423 !IsAnd))) { 1424 if (LHS0->getType() != RHS0->getType()) 1425 return nullptr; 1426 1427 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and 1428 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0). 1429 if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP())) 1430 // Ignore the constants because they are obviously not NANs: 1431 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y) 1432 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y) 1433 return Builder.CreateFCmp(PredL, LHS0, RHS0); 1434 } 1435 1436 if (IsAnd && stripSignOnlyFPOps(LHS0) == stripSignOnlyFPOps(RHS0)) { 1437 // and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf 1438 // and (fcmp ord x, 0), (fcmp u* fabs(x), inf) -> fcmp o* x, inf 1439 if (Value *Left = matchIsFiniteTest(Builder, LHS, RHS)) 1440 return Left; 1441 if (Value *Right = matchIsFiniteTest(Builder, RHS, LHS)) 1442 return Right; 1443 } 1444 1445 // Turn at least two fcmps with constants into llvm.is.fpclass. 1446 // 1447 // If we can represent a combined value test with one class call, we can 1448 // potentially eliminate 4-6 instructions. If we can represent a test with a 1449 // single fcmp with fneg and fabs, that's likely a better canonical form. 1450 if (LHS->hasOneUse() && RHS->hasOneUse()) { 1451 auto [ClassValRHS, ClassMaskRHS] = 1452 fcmpToClassTest(PredR, *RHS->getFunction(), RHS0, RHS1); 1453 if (ClassValRHS) { 1454 auto [ClassValLHS, ClassMaskLHS] = 1455 fcmpToClassTest(PredL, *LHS->getFunction(), LHS0, LHS1); 1456 if (ClassValLHS == ClassValRHS) { 1457 unsigned CombinedMask = IsAnd ? (ClassMaskLHS & ClassMaskRHS) 1458 : (ClassMaskLHS | ClassMaskRHS); 1459 return Builder.CreateIntrinsic( 1460 Intrinsic::is_fpclass, {ClassValLHS->getType()}, 1461 {ClassValLHS, Builder.getInt32(CombinedMask)}); 1462 } 1463 } 1464 } 1465 1466 return nullptr; 1467 } 1468 1469 /// Match an fcmp against a special value that performs a test possible by 1470 /// llvm.is.fpclass. 1471 static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal, 1472 uint64_t &ClassMask) { 1473 auto *FCmp = dyn_cast<FCmpInst>(Op); 1474 if (!FCmp || !FCmp->hasOneUse()) 1475 return false; 1476 1477 std::tie(ClassVal, ClassMask) = 1478 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(), 1479 FCmp->getOperand(0), FCmp->getOperand(1)); 1480 return ClassVal != nullptr; 1481 } 1482 1483 /// or (is_fpclass x, mask0), (is_fpclass x, mask1) 1484 /// -> is_fpclass x, (mask0 | mask1) 1485 /// and (is_fpclass x, mask0), (is_fpclass x, mask1) 1486 /// -> is_fpclass x, (mask0 & mask1) 1487 /// xor (is_fpclass x, mask0), (is_fpclass x, mask1) 1488 /// -> is_fpclass x, (mask0 ^ mask1) 1489 Instruction *InstCombinerImpl::foldLogicOfIsFPClass(BinaryOperator &BO, 1490 Value *Op0, Value *Op1) { 1491 Value *ClassVal0 = nullptr; 1492 Value *ClassVal1 = nullptr; 1493 uint64_t ClassMask0, ClassMask1; 1494 1495 // Restrict to folding one fcmp into one is.fpclass for now, don't introduce a 1496 // new class. 1497 // 1498 // TODO: Support forming is.fpclass out of 2 separate fcmps when codegen is 1499 // better. 1500 1501 bool IsLHSClass = 1502 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>( 1503 m_Value(ClassVal0), m_ConstantInt(ClassMask0)))); 1504 bool IsRHSClass = 1505 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>( 1506 m_Value(ClassVal1), m_ConstantInt(ClassMask1)))); 1507 if ((((IsLHSClass || matchIsFPClassLikeFCmp(Op0, ClassVal0, ClassMask0)) && 1508 (IsRHSClass || matchIsFPClassLikeFCmp(Op1, ClassVal1, ClassMask1)))) && 1509 ClassVal0 == ClassVal1) { 1510 unsigned NewClassMask; 1511 switch (BO.getOpcode()) { 1512 case Instruction::And: 1513 NewClassMask = ClassMask0 & ClassMask1; 1514 break; 1515 case Instruction::Or: 1516 NewClassMask = ClassMask0 | ClassMask1; 1517 break; 1518 case Instruction::Xor: 1519 NewClassMask = ClassMask0 ^ ClassMask1; 1520 break; 1521 default: 1522 llvm_unreachable("not a binary logic operator"); 1523 } 1524 1525 if (IsLHSClass) { 1526 auto *II = cast<IntrinsicInst>(Op0); 1527 II->setArgOperand( 1528 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask)); 1529 return replaceInstUsesWith(BO, II); 1530 } 1531 1532 if (IsRHSClass) { 1533 auto *II = cast<IntrinsicInst>(Op1); 1534 II->setArgOperand( 1535 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask)); 1536 return replaceInstUsesWith(BO, II); 1537 } 1538 1539 CallInst *NewClass = 1540 Builder.CreateIntrinsic(Intrinsic::is_fpclass, {ClassVal0->getType()}, 1541 {ClassVal0, Builder.getInt32(NewClassMask)}); 1542 return replaceInstUsesWith(BO, NewClass); 1543 } 1544 1545 return nullptr; 1546 } 1547 1548 /// Look for the pattern that conditionally negates a value via math operations: 1549 /// cond.splat = sext i1 cond 1550 /// sub = add cond.splat, x 1551 /// xor = xor sub, cond.splat 1552 /// and rewrite it to do the same, but via logical operations: 1553 /// value.neg = sub 0, value 1554 /// cond = select i1 neg, value.neg, value 1555 Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect( 1556 BinaryOperator &I) { 1557 assert(I.getOpcode() == BinaryOperator::Xor && "Only for xor!"); 1558 Value *Cond, *X; 1559 // As per complexity ordering, `xor` is not commutative here. 1560 if (!match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())) || 1561 !match(I.getOperand(1), m_SExt(m_Value(Cond))) || 1562 !Cond->getType()->isIntOrIntVectorTy(1) || 1563 !match(I.getOperand(0), m_c_Add(m_SExt(m_Deferred(Cond)), m_Value(X)))) 1564 return nullptr; 1565 return SelectInst::Create(Cond, Builder.CreateNeg(X, X->getName() + ".neg"), 1566 X); 1567 } 1568 1569 /// This a limited reassociation for a special case (see above) where we are 1570 /// checking if two values are either both NAN (unordered) or not-NAN (ordered). 1571 /// This could be handled more generally in '-reassociation', but it seems like 1572 /// an unlikely pattern for a large number of logic ops and fcmps. 1573 static Instruction *reassociateFCmps(BinaryOperator &BO, 1574 InstCombiner::BuilderTy &Builder) { 1575 Instruction::BinaryOps Opcode = BO.getOpcode(); 1576 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1577 "Expecting and/or op for fcmp transform"); 1578 1579 // There are 4 commuted variants of the pattern. Canonicalize operands of this 1580 // logic op so an fcmp is operand 0 and a matching logic op is operand 1. 1581 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X; 1582 FCmpInst::Predicate Pred; 1583 if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP()))) 1584 std::swap(Op0, Op1); 1585 1586 // Match inner binop and the predicate for combining 2 NAN checks into 1. 1587 Value *BO10, *BO11; 1588 FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD 1589 : FCmpInst::FCMP_UNO; 1590 if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred || 1591 !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11)))) 1592 return nullptr; 1593 1594 // The inner logic op must have a matching fcmp operand. 1595 Value *Y; 1596 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || 1597 Pred != NanPred || X->getType() != Y->getType()) 1598 std::swap(BO10, BO11); 1599 1600 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || 1601 Pred != NanPred || X->getType() != Y->getType()) 1602 return nullptr; 1603 1604 // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z 1605 // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z 1606 Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y); 1607 if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) { 1608 // Intersect FMF from the 2 source fcmps. 1609 NewFCmpInst->copyIRFlags(Op0); 1610 NewFCmpInst->andIRFlags(BO10); 1611 } 1612 return BinaryOperator::Create(Opcode, NewFCmp, BO11); 1613 } 1614 1615 /// Match variations of De Morgan's Laws: 1616 /// (~A & ~B) == (~(A | B)) 1617 /// (~A | ~B) == (~(A & B)) 1618 static Instruction *matchDeMorgansLaws(BinaryOperator &I, 1619 InstCombiner::BuilderTy &Builder) { 1620 const Instruction::BinaryOps Opcode = I.getOpcode(); 1621 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1622 "Trying to match De Morgan's Laws with something other than and/or"); 1623 1624 // Flip the logic operation. 1625 const Instruction::BinaryOps FlippedOpcode = 1626 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; 1627 1628 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1629 Value *A, *B; 1630 if (match(Op0, m_OneUse(m_Not(m_Value(A)))) && 1631 match(Op1, m_OneUse(m_Not(m_Value(B)))) && 1632 !InstCombiner::isFreeToInvert(A, A->hasOneUse()) && 1633 !InstCombiner::isFreeToInvert(B, B->hasOneUse())) { 1634 Value *AndOr = 1635 Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan"); 1636 return BinaryOperator::CreateNot(AndOr); 1637 } 1638 1639 // The 'not' ops may require reassociation. 1640 // (A & ~B) & ~C --> A & ~(B | C) 1641 // (~B & A) & ~C --> A & ~(B | C) 1642 // (A | ~B) | ~C --> A | ~(B & C) 1643 // (~B | A) | ~C --> A | ~(B & C) 1644 Value *C; 1645 if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) && 1646 match(Op1, m_Not(m_Value(C)))) { 1647 Value *FlippedBO = Builder.CreateBinOp(FlippedOpcode, B, C); 1648 return BinaryOperator::Create(Opcode, A, Builder.CreateNot(FlippedBO)); 1649 } 1650 1651 return nullptr; 1652 } 1653 1654 bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) { 1655 Value *CastSrc = CI->getOperand(0); 1656 1657 // Noop casts and casts of constants should be eliminated trivially. 1658 if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc)) 1659 return false; 1660 1661 // If this cast is paired with another cast that can be eliminated, we prefer 1662 // to have it eliminated. 1663 if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc)) 1664 if (isEliminableCastPair(PrecedingCI, CI)) 1665 return false; 1666 1667 return true; 1668 } 1669 1670 /// Fold {and,or,xor} (cast X), C. 1671 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, 1672 InstCombiner::BuilderTy &Builder) { 1673 Constant *C = dyn_cast<Constant>(Logic.getOperand(1)); 1674 if (!C) 1675 return nullptr; 1676 1677 auto LogicOpc = Logic.getOpcode(); 1678 Type *DestTy = Logic.getType(); 1679 Type *SrcTy = Cast->getSrcTy(); 1680 1681 // Move the logic operation ahead of a zext or sext if the constant is 1682 // unchanged in the smaller source type. Performing the logic in a smaller 1683 // type may provide more information to later folds, and the smaller logic 1684 // instruction may be cheaper (particularly in the case of vectors). 1685 Value *X; 1686 if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) { 1687 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy); 1688 Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy); 1689 if (ZextTruncC == C) { 1690 // LogicOpc (zext X), C --> zext (LogicOpc X, C) 1691 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC); 1692 return new ZExtInst(NewOp, DestTy); 1693 } 1694 } 1695 1696 if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) { 1697 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy); 1698 Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy); 1699 if (SextTruncC == C) { 1700 // LogicOpc (sext X), C --> sext (LogicOpc X, C) 1701 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC); 1702 return new SExtInst(NewOp, DestTy); 1703 } 1704 } 1705 1706 return nullptr; 1707 } 1708 1709 /// Fold {and,or,xor} (cast X), Y. 1710 Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) { 1711 auto LogicOpc = I.getOpcode(); 1712 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding"); 1713 1714 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1715 1716 // fold bitwise(A >> BW - 1, zext(icmp)) (BW is the scalar bits of the 1717 // type of A) 1718 // -> bitwise(zext(A < 0), zext(icmp)) 1719 // -> zext(bitwise(A < 0, icmp)) 1720 auto FoldBitwiseICmpZeroWithICmp = [&](Value *Op0, 1721 Value *Op1) -> Instruction * { 1722 ICmpInst::Predicate Pred; 1723 Value *A; 1724 bool IsMatched = 1725 match(Op0, 1726 m_OneUse(m_LShr( 1727 m_Value(A), 1728 m_SpecificInt(Op0->getType()->getScalarSizeInBits() - 1)))) && 1729 match(Op1, m_OneUse(m_ZExt(m_ICmp(Pred, m_Value(), m_Value())))); 1730 1731 if (!IsMatched) 1732 return nullptr; 1733 1734 auto *ICmpL = 1735 Builder.CreateICmpSLT(A, Constant::getNullValue(A->getType())); 1736 auto *ICmpR = cast<ZExtInst>(Op1)->getOperand(0); 1737 auto *BitwiseOp = Builder.CreateBinOp(LogicOpc, ICmpL, ICmpR); 1738 1739 return new ZExtInst(BitwiseOp, Op0->getType()); 1740 }; 1741 1742 if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op0, Op1)) 1743 return Ret; 1744 1745 if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op1, Op0)) 1746 return Ret; 1747 1748 CastInst *Cast0 = dyn_cast<CastInst>(Op0); 1749 if (!Cast0) 1750 return nullptr; 1751 1752 // This must be a cast from an integer or integer vector source type to allow 1753 // transformation of the logic operation to the source type. 1754 Type *DestTy = I.getType(); 1755 Type *SrcTy = Cast0->getSrcTy(); 1756 if (!SrcTy->isIntOrIntVectorTy()) 1757 return nullptr; 1758 1759 if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder)) 1760 return Ret; 1761 1762 CastInst *Cast1 = dyn_cast<CastInst>(Op1); 1763 if (!Cast1) 1764 return nullptr; 1765 1766 // Both operands of the logic operation are casts. The casts must be the 1767 // same kind for reduction. 1768 Instruction::CastOps CastOpcode = Cast0->getOpcode(); 1769 if (CastOpcode != Cast1->getOpcode()) 1770 return nullptr; 1771 1772 // If the source types do not match, but the casts are matching extends, we 1773 // can still narrow the logic op. 1774 if (SrcTy != Cast1->getSrcTy()) { 1775 Value *X, *Y; 1776 if (match(Cast0, m_OneUse(m_ZExtOrSExt(m_Value(X)))) && 1777 match(Cast1, m_OneUse(m_ZExtOrSExt(m_Value(Y))))) { 1778 // Cast the narrower source to the wider source type. 1779 unsigned XNumBits = X->getType()->getScalarSizeInBits(); 1780 unsigned YNumBits = Y->getType()->getScalarSizeInBits(); 1781 if (XNumBits < YNumBits) 1782 X = Builder.CreateCast(CastOpcode, X, Y->getType()); 1783 else 1784 Y = Builder.CreateCast(CastOpcode, Y, X->getType()); 1785 // Do the logic op in the intermediate width, then widen more. 1786 Value *NarrowLogic = Builder.CreateBinOp(LogicOpc, X, Y); 1787 return CastInst::Create(CastOpcode, NarrowLogic, DestTy); 1788 } 1789 1790 // Give up for other cast opcodes. 1791 return nullptr; 1792 } 1793 1794 Value *Cast0Src = Cast0->getOperand(0); 1795 Value *Cast1Src = Cast1->getOperand(0); 1796 1797 // fold logic(cast(A), cast(B)) -> cast(logic(A, B)) 1798 if ((Cast0->hasOneUse() || Cast1->hasOneUse()) && 1799 shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) { 1800 Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src, 1801 I.getName()); 1802 return CastInst::Create(CastOpcode, NewOp, DestTy); 1803 } 1804 1805 // For now, only 'and'/'or' have optimizations after this. 1806 if (LogicOpc == Instruction::Xor) 1807 return nullptr; 1808 1809 // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the 1810 // cast is otherwise not optimizable. This happens for vector sexts. 1811 ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src); 1812 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src); 1813 if (ICmp0 && ICmp1) { 1814 if (Value *Res = 1815 foldAndOrOfICmps(ICmp0, ICmp1, I, LogicOpc == Instruction::And)) 1816 return CastInst::Create(CastOpcode, Res, DestTy); 1817 return nullptr; 1818 } 1819 1820 // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the 1821 // cast is otherwise not optimizable. This happens for vector sexts. 1822 FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src); 1823 FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src); 1824 if (FCmp0 && FCmp1) 1825 if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And)) 1826 return CastInst::Create(CastOpcode, R, DestTy); 1827 1828 return nullptr; 1829 } 1830 1831 static Instruction *foldAndToXor(BinaryOperator &I, 1832 InstCombiner::BuilderTy &Builder) { 1833 assert(I.getOpcode() == Instruction::And); 1834 Value *Op0 = I.getOperand(0); 1835 Value *Op1 = I.getOperand(1); 1836 Value *A, *B; 1837 1838 // Operand complexity canonicalization guarantees that the 'or' is Op0. 1839 // (A | B) & ~(A & B) --> A ^ B 1840 // (A | B) & ~(B & A) --> A ^ B 1841 if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)), 1842 m_Not(m_c_And(m_Deferred(A), m_Deferred(B)))))) 1843 return BinaryOperator::CreateXor(A, B); 1844 1845 // (A | ~B) & (~A | B) --> ~(A ^ B) 1846 // (A | ~B) & (B | ~A) --> ~(A ^ B) 1847 // (~B | A) & (~A | B) --> ~(A ^ B) 1848 // (~B | A) & (B | ~A) --> ~(A ^ B) 1849 if (Op0->hasOneUse() || Op1->hasOneUse()) 1850 if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))), 1851 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) 1852 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 1853 1854 return nullptr; 1855 } 1856 1857 static Instruction *foldOrToXor(BinaryOperator &I, 1858 InstCombiner::BuilderTy &Builder) { 1859 assert(I.getOpcode() == Instruction::Or); 1860 Value *Op0 = I.getOperand(0); 1861 Value *Op1 = I.getOperand(1); 1862 Value *A, *B; 1863 1864 // Operand complexity canonicalization guarantees that the 'and' is Op0. 1865 // (A & B) | ~(A | B) --> ~(A ^ B) 1866 // (A & B) | ~(B | A) --> ~(A ^ B) 1867 if (Op0->hasOneUse() || Op1->hasOneUse()) 1868 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1869 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 1870 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 1871 1872 // Operand complexity canonicalization guarantees that the 'xor' is Op0. 1873 // (A ^ B) | ~(A | B) --> ~(A & B) 1874 // (A ^ B) | ~(B | A) --> ~(A & B) 1875 if (Op0->hasOneUse() || Op1->hasOneUse()) 1876 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1877 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 1878 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); 1879 1880 // (A & ~B) | (~A & B) --> A ^ B 1881 // (A & ~B) | (B & ~A) --> A ^ B 1882 // (~B & A) | (~A & B) --> A ^ B 1883 // (~B & A) | (B & ~A) --> A ^ B 1884 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 1885 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))) 1886 return BinaryOperator::CreateXor(A, B); 1887 1888 return nullptr; 1889 } 1890 1891 /// Return true if a constant shift amount is always less than the specified 1892 /// bit-width. If not, the shift could create poison in the narrower type. 1893 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) { 1894 APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth); 1895 return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold)); 1896 } 1897 1898 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and 1899 /// a common zext operand: and (binop (zext X), C), (zext X). 1900 Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) { 1901 // This transform could also apply to {or, and, xor}, but there are better 1902 // folds for those cases, so we don't expect those patterns here. AShr is not 1903 // handled because it should always be transformed to LShr in this sequence. 1904 // The subtract transform is different because it has a constant on the left. 1905 // Add/mul commute the constant to RHS; sub with constant RHS becomes add. 1906 Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1); 1907 Constant *C; 1908 if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) && 1909 !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) && 1910 !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) && 1911 !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) && 1912 !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1))))) 1913 return nullptr; 1914 1915 Value *X; 1916 if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3)) 1917 return nullptr; 1918 1919 Type *Ty = And.getType(); 1920 if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType())) 1921 return nullptr; 1922 1923 // If we're narrowing a shift, the shift amount must be safe (less than the 1924 // width) in the narrower type. If the shift amount is greater, instsimplify 1925 // usually handles that case, but we can't guarantee/assert it. 1926 Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode(); 1927 if (Opc == Instruction::LShr || Opc == Instruction::Shl) 1928 if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits())) 1929 return nullptr; 1930 1931 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X) 1932 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X) 1933 Value *NewC = ConstantExpr::getTrunc(C, X->getType()); 1934 Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X) 1935 : Builder.CreateBinOp(Opc, X, NewC); 1936 return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty); 1937 } 1938 1939 /// Try folding relatively complex patterns for both And and Or operations 1940 /// with all And and Or swapped. 1941 static Instruction *foldComplexAndOrPatterns(BinaryOperator &I, 1942 InstCombiner::BuilderTy &Builder) { 1943 const Instruction::BinaryOps Opcode = I.getOpcode(); 1944 assert(Opcode == Instruction::And || Opcode == Instruction::Or); 1945 1946 // Flip the logic operation. 1947 const Instruction::BinaryOps FlippedOpcode = 1948 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; 1949 1950 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1951 Value *A, *B, *C, *X, *Y, *Dummy; 1952 1953 // Match following expressions: 1954 // (~(A | B) & C) 1955 // (~(A & B) | C) 1956 // Captures X = ~(A | B) or ~(A & B) 1957 const auto matchNotOrAnd = 1958 [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C, 1959 Value *&X, bool CountUses = false) -> bool { 1960 if (CountUses && !Op->hasOneUse()) 1961 return false; 1962 1963 if (match(Op, m_c_BinOp(FlippedOpcode, 1964 m_CombineAnd(m_Value(X), 1965 m_Not(m_c_BinOp(Opcode, m_A, m_B))), 1966 m_C))) 1967 return !CountUses || X->hasOneUse(); 1968 1969 return false; 1970 }; 1971 1972 // (~(A | B) & C) | ... --> ... 1973 // (~(A & B) | C) & ... --> ... 1974 // TODO: One use checks are conservative. We just need to check that a total 1975 // number of multiple used values does not exceed reduction 1976 // in operations. 1977 if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) { 1978 // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A 1979 // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A) 1980 if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy, 1981 true)) { 1982 Value *Xor = Builder.CreateXor(B, C); 1983 return (Opcode == Instruction::Or) 1984 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A)) 1985 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A)); 1986 } 1987 1988 // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B 1989 // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B) 1990 if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy, 1991 true)) { 1992 Value *Xor = Builder.CreateXor(A, C); 1993 return (Opcode == Instruction::Or) 1994 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B)) 1995 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B)); 1996 } 1997 1998 // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A) 1999 // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A) 2000 if (match(Op1, m_OneUse(m_Not(m_OneUse( 2001 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C))))))) 2002 return BinaryOperator::CreateNot(Builder.CreateBinOp( 2003 Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A)); 2004 2005 // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B) 2006 // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B) 2007 if (match(Op1, m_OneUse(m_Not(m_OneUse( 2008 m_c_BinOp(Opcode, m_Specific(B), m_Specific(C))))))) 2009 return BinaryOperator::CreateNot(Builder.CreateBinOp( 2010 Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B)); 2011 2012 // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B))) 2013 // Note, the pattern with swapped and/or is not handled because the 2014 // result is more undefined than a source: 2015 // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid. 2016 if (Opcode == Instruction::Or && Op0->hasOneUse() && 2017 match(Op1, m_OneUse(m_Not(m_CombineAnd( 2018 m_Value(Y), 2019 m_c_BinOp(Opcode, m_Specific(C), 2020 m_c_Xor(m_Specific(A), m_Specific(B)))))))) { 2021 // X = ~(A | B) 2022 // Y = (C | (A ^ B) 2023 Value *Or = cast<BinaryOperator>(X)->getOperand(0); 2024 return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y)); 2025 } 2026 } 2027 2028 // (~A & B & C) | ... --> ... 2029 // (~A | B | C) | ... --> ... 2030 // TODO: One use checks are conservative. We just need to check that a total 2031 // number of multiple used values does not exceed reduction 2032 // in operations. 2033 if (match(Op0, 2034 m_OneUse(m_c_BinOp(FlippedOpcode, 2035 m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)), 2036 m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) || 2037 match(Op0, m_OneUse(m_c_BinOp( 2038 FlippedOpcode, 2039 m_c_BinOp(FlippedOpcode, m_Value(C), 2040 m_CombineAnd(m_Value(X), m_Not(m_Value(A)))), 2041 m_Value(B))))) { 2042 // X = ~A 2043 // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C)) 2044 // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C)) 2045 if (match(Op1, m_OneUse(m_Not(m_c_BinOp( 2046 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)), 2047 m_Specific(C))))) || 2048 match(Op1, m_OneUse(m_Not(m_c_BinOp( 2049 Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)), 2050 m_Specific(A))))) || 2051 match(Op1, m_OneUse(m_Not(m_c_BinOp( 2052 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)), 2053 m_Specific(B)))))) { 2054 Value *Xor = Builder.CreateXor(B, C); 2055 return (Opcode == Instruction::Or) 2056 ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A)) 2057 : BinaryOperator::CreateOr(Xor, X); 2058 } 2059 2060 // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A 2061 // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A 2062 if (match(Op1, m_OneUse(m_Not(m_OneUse( 2063 m_c_BinOp(Opcode, m_Specific(A), m_Specific(B))))))) 2064 return BinaryOperator::Create( 2065 FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)), 2066 X); 2067 2068 // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A 2069 // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A 2070 if (match(Op1, m_OneUse(m_Not(m_OneUse( 2071 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C))))))) 2072 return BinaryOperator::Create( 2073 FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)), 2074 X); 2075 } 2076 2077 return nullptr; 2078 } 2079 2080 /// Try to reassociate a pair of binops so that values with one use only are 2081 /// part of the same instruction. This may enable folds that are limited with 2082 /// multi-use restrictions and makes it more likely to match other patterns that 2083 /// are looking for a common operand. 2084 static Instruction *reassociateForUses(BinaryOperator &BO, 2085 InstCombinerImpl::BuilderTy &Builder) { 2086 Instruction::BinaryOps Opcode = BO.getOpcode(); 2087 Value *X, *Y, *Z; 2088 if (match(&BO, 2089 m_c_BinOp(Opcode, m_OneUse(m_BinOp(Opcode, m_Value(X), m_Value(Y))), 2090 m_OneUse(m_Value(Z))))) { 2091 if (!isa<Constant>(X) && !isa<Constant>(Y) && !isa<Constant>(Z)) { 2092 // (X op Y) op Z --> (Y op Z) op X 2093 if (!X->hasOneUse()) { 2094 Value *YZ = Builder.CreateBinOp(Opcode, Y, Z); 2095 return BinaryOperator::Create(Opcode, YZ, X); 2096 } 2097 // (X op Y) op Z --> (X op Z) op Y 2098 if (!Y->hasOneUse()) { 2099 Value *XZ = Builder.CreateBinOp(Opcode, X, Z); 2100 return BinaryOperator::Create(Opcode, XZ, Y); 2101 } 2102 } 2103 } 2104 2105 return nullptr; 2106 } 2107 2108 // Match 2109 // (X + C2) | C 2110 // (X + C2) ^ C 2111 // (X + C2) & C 2112 // and convert to do the bitwise logic first: 2113 // (X | C) + C2 2114 // (X ^ C) + C2 2115 // (X & C) + C2 2116 // iff bits affected by logic op are lower than last bit affected by math op 2117 static Instruction *canonicalizeLogicFirst(BinaryOperator &I, 2118 InstCombiner::BuilderTy &Builder) { 2119 Type *Ty = I.getType(); 2120 Instruction::BinaryOps OpC = I.getOpcode(); 2121 Value *Op0 = I.getOperand(0); 2122 Value *Op1 = I.getOperand(1); 2123 Value *X; 2124 const APInt *C, *C2; 2125 2126 if (!(match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C2)))) && 2127 match(Op1, m_APInt(C)))) 2128 return nullptr; 2129 2130 unsigned Width = Ty->getScalarSizeInBits(); 2131 unsigned LastOneMath = Width - C2->countr_zero(); 2132 2133 switch (OpC) { 2134 case Instruction::And: 2135 if (C->countl_one() < LastOneMath) 2136 return nullptr; 2137 break; 2138 case Instruction::Xor: 2139 case Instruction::Or: 2140 if (C->countl_zero() < LastOneMath) 2141 return nullptr; 2142 break; 2143 default: 2144 llvm_unreachable("Unexpected BinaryOp!"); 2145 } 2146 2147 Value *NewBinOp = Builder.CreateBinOp(OpC, X, ConstantInt::get(Ty, *C)); 2148 return BinaryOperator::CreateWithCopiedFlags(Instruction::Add, NewBinOp, 2149 ConstantInt::get(Ty, *C2), Op0); 2150 } 2151 2152 // binop(shift(ShiftedC1, ShAmt), shift(ShiftedC2, add(ShAmt, AddC))) -> 2153 // shift(binop(ShiftedC1, shift(ShiftedC2, AddC)), ShAmt) 2154 // where both shifts are the same and AddC is a valid shift amount. 2155 Instruction *InstCombinerImpl::foldBinOpOfDisplacedShifts(BinaryOperator &I) { 2156 assert((I.isBitwiseLogicOp() || I.getOpcode() == Instruction::Add) && 2157 "Unexpected opcode"); 2158 2159 Value *ShAmt; 2160 Constant *ShiftedC1, *ShiftedC2, *AddC; 2161 Type *Ty = I.getType(); 2162 unsigned BitWidth = Ty->getScalarSizeInBits(); 2163 if (!match(&I, 2164 m_c_BinOp(m_Shift(m_ImmConstant(ShiftedC1), m_Value(ShAmt)), 2165 m_Shift(m_ImmConstant(ShiftedC2), 2166 m_Add(m_Deferred(ShAmt), m_ImmConstant(AddC)))))) 2167 return nullptr; 2168 2169 // Make sure the add constant is a valid shift amount. 2170 if (!match(AddC, 2171 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(BitWidth, BitWidth)))) 2172 return nullptr; 2173 2174 // Avoid constant expressions. 2175 auto *Op0Inst = dyn_cast<Instruction>(I.getOperand(0)); 2176 auto *Op1Inst = dyn_cast<Instruction>(I.getOperand(1)); 2177 if (!Op0Inst || !Op1Inst) 2178 return nullptr; 2179 2180 // Both shifts must be the same. 2181 Instruction::BinaryOps ShiftOp = 2182 static_cast<Instruction::BinaryOps>(Op0Inst->getOpcode()); 2183 if (ShiftOp != Op1Inst->getOpcode()) 2184 return nullptr; 2185 2186 // For adds, only left shifts are supported. 2187 if (I.getOpcode() == Instruction::Add && ShiftOp != Instruction::Shl) 2188 return nullptr; 2189 2190 Value *NewC = Builder.CreateBinOp( 2191 I.getOpcode(), ShiftedC1, Builder.CreateBinOp(ShiftOp, ShiftedC2, AddC)); 2192 return BinaryOperator::Create(ShiftOp, NewC, ShAmt); 2193 } 2194 2195 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 2196 // here. We should standardize that construct where it is needed or choose some 2197 // other way to ensure that commutated variants of patterns are not missed. 2198 Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) { 2199 Type *Ty = I.getType(); 2200 2201 if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1), 2202 SQ.getWithInstruction(&I))) 2203 return replaceInstUsesWith(I, V); 2204 2205 if (SimplifyAssociativeOrCommutative(I)) 2206 return &I; 2207 2208 if (Instruction *X = foldVectorBinop(I)) 2209 return X; 2210 2211 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2212 return Phi; 2213 2214 // See if we can simplify any instructions used by the instruction whose sole 2215 // purpose is to compute bits we don't care about. 2216 if (SimplifyDemandedInstructionBits(I)) 2217 return &I; 2218 2219 // Do this before using distributive laws to catch simple and/or/not patterns. 2220 if (Instruction *Xor = foldAndToXor(I, Builder)) 2221 return Xor; 2222 2223 if (Instruction *X = foldComplexAndOrPatterns(I, Builder)) 2224 return X; 2225 2226 // (A|B)&(A|C) -> A|(B&C) etc 2227 if (Value *V = foldUsingDistributiveLaws(I)) 2228 return replaceInstUsesWith(I, V); 2229 2230 if (Value *V = SimplifyBSwap(I, Builder)) 2231 return replaceInstUsesWith(I, V); 2232 2233 if (Instruction *R = foldBinOpShiftWithShift(I)) 2234 return R; 2235 2236 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2237 2238 Value *X, *Y; 2239 if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) && 2240 match(Op1, m_One())) { 2241 // (1 << X) & 1 --> zext(X == 0) 2242 // (1 >> X) & 1 --> zext(X == 0) 2243 Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0)); 2244 return new ZExtInst(IsZero, Ty); 2245 } 2246 2247 // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y 2248 Value *Neg; 2249 if (match(&I, 2250 m_c_And(m_CombineAnd(m_Value(Neg), 2251 m_OneUse(m_Neg(m_And(m_Value(), m_One())))), 2252 m_Value(Y)))) { 2253 Value *Cmp = Builder.CreateIsNull(Neg); 2254 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Y); 2255 } 2256 2257 const APInt *C; 2258 if (match(Op1, m_APInt(C))) { 2259 const APInt *XorC; 2260 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) { 2261 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) 2262 Constant *NewC = ConstantInt::get(Ty, *C & *XorC); 2263 Value *And = Builder.CreateAnd(X, Op1); 2264 And->takeName(Op0); 2265 return BinaryOperator::CreateXor(And, NewC); 2266 } 2267 2268 const APInt *OrC; 2269 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) { 2270 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2) 2271 // NOTE: This reduces the number of bits set in the & mask, which 2272 // can expose opportunities for store narrowing for scalars. 2273 // NOTE: SimplifyDemandedBits should have already removed bits from C1 2274 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in 2275 // above, but this feels safer. 2276 APInt Together = *C & *OrC; 2277 Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C)); 2278 And->takeName(Op0); 2279 return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together)); 2280 } 2281 2282 unsigned Width = Ty->getScalarSizeInBits(); 2283 const APInt *ShiftC; 2284 if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) && 2285 ShiftC->ult(Width)) { 2286 if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) { 2287 // We are clearing high bits that were potentially set by sext+ashr: 2288 // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC 2289 Value *Sext = Builder.CreateSExt(X, Ty); 2290 Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width)); 2291 return BinaryOperator::CreateLShr(Sext, ShAmtC); 2292 } 2293 } 2294 2295 // If this 'and' clears the sign-bits added by ashr, replace with lshr: 2296 // and (ashr X, ShiftC), C --> lshr X, ShiftC 2297 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) && 2298 C->isMask(Width - ShiftC->getZExtValue())) 2299 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC)); 2300 2301 const APInt *AddC; 2302 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) { 2303 // If we add zeros to every bit below a mask, the add has no effect: 2304 // (X + AddC) & LowMaskC --> X & LowMaskC 2305 unsigned Ctlz = C->countl_zero(); 2306 APInt LowMask(APInt::getLowBitsSet(Width, Width - Ctlz)); 2307 if ((*AddC & LowMask).isZero()) 2308 return BinaryOperator::CreateAnd(X, Op1); 2309 2310 // If we are masking the result of the add down to exactly one bit and 2311 // the constant we are adding has no bits set below that bit, then the 2312 // add is flipping a single bit. Example: 2313 // (X + 4) & 4 --> (X & 4) ^ 4 2314 if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) { 2315 assert((*C & *AddC) != 0 && "Expected common bit"); 2316 Value *NewAnd = Builder.CreateAnd(X, Op1); 2317 return BinaryOperator::CreateXor(NewAnd, Op1); 2318 } 2319 } 2320 2321 // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the 2322 // bitwidth of X and OP behaves well when given trunc(C1) and X. 2323 auto isNarrowableBinOpcode = [](BinaryOperator *B) { 2324 switch (B->getOpcode()) { 2325 case Instruction::Xor: 2326 case Instruction::Or: 2327 case Instruction::Mul: 2328 case Instruction::Add: 2329 case Instruction::Sub: 2330 return true; 2331 default: 2332 return false; 2333 } 2334 }; 2335 BinaryOperator *BO; 2336 if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) { 2337 Instruction::BinaryOps BOpcode = BO->getOpcode(); 2338 Value *X; 2339 const APInt *C1; 2340 // TODO: The one-use restrictions could be relaxed a little if the AND 2341 // is going to be removed. 2342 // Try to narrow the 'and' and a binop with constant operand: 2343 // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC) 2344 if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) && 2345 C->isIntN(X->getType()->getScalarSizeInBits())) { 2346 unsigned XWidth = X->getType()->getScalarSizeInBits(); 2347 Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth)); 2348 Value *BinOp = isa<ZExtInst>(BO->getOperand(0)) 2349 ? Builder.CreateBinOp(BOpcode, X, TruncC1) 2350 : Builder.CreateBinOp(BOpcode, TruncC1, X); 2351 Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth)); 2352 Value *And = Builder.CreateAnd(BinOp, TruncC); 2353 return new ZExtInst(And, Ty); 2354 } 2355 2356 // Similar to above: if the mask matches the zext input width, then the 2357 // 'and' can be eliminated, so we can truncate the other variable op: 2358 // and (bo (zext X), Y), C --> zext (bo X, (trunc Y)) 2359 if (isa<Instruction>(BO->getOperand(0)) && 2360 match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) && 2361 C->isMask(X->getType()->getScalarSizeInBits())) { 2362 Y = BO->getOperand(1); 2363 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr"); 2364 Value *NewBO = 2365 Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow"); 2366 return new ZExtInst(NewBO, Ty); 2367 } 2368 // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X) 2369 if (isa<Instruction>(BO->getOperand(1)) && 2370 match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) && 2371 C->isMask(X->getType()->getScalarSizeInBits())) { 2372 Y = BO->getOperand(0); 2373 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr"); 2374 Value *NewBO = 2375 Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow"); 2376 return new ZExtInst(NewBO, Ty); 2377 } 2378 } 2379 2380 // This is intentionally placed after the narrowing transforms for 2381 // efficiency (transform directly to the narrow logic op if possible). 2382 // If the mask is only needed on one incoming arm, push the 'and' op up. 2383 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) || 2384 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 2385 APInt NotAndMask(~(*C)); 2386 BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode(); 2387 if (MaskedValueIsZero(X, NotAndMask, 0, &I)) { 2388 // Not masking anything out for the LHS, move mask to RHS. 2389 // and ({x}or X, Y), C --> {x}or X, (and Y, C) 2390 Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked"); 2391 return BinaryOperator::Create(BinOp, X, NewRHS); 2392 } 2393 if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) { 2394 // Not masking anything out for the RHS, move mask to LHS. 2395 // and ({x}or X, Y), C --> {x}or (and X, C), Y 2396 Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked"); 2397 return BinaryOperator::Create(BinOp, NewLHS, Y); 2398 } 2399 } 2400 2401 // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2 2402 // constant, test if the shift amount equals the offset bit index: 2403 // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0 2404 // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0 2405 if (C->isPowerOf2() && 2406 match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) { 2407 int Log2ShiftC = ShiftC->exactLogBase2(); 2408 int Log2C = C->exactLogBase2(); 2409 bool IsShiftLeft = 2410 cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl; 2411 int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C; 2412 assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask"); 2413 Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum)); 2414 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C), 2415 ConstantInt::getNullValue(Ty)); 2416 } 2417 2418 Constant *C1, *C2; 2419 const APInt *C3 = C; 2420 Value *X; 2421 if (C3->isPowerOf2()) { 2422 Constant *Log2C3 = ConstantInt::get(Ty, C3->countr_zero()); 2423 if (match(Op0, m_OneUse(m_LShr(m_Shl(m_ImmConstant(C1), m_Value(X)), 2424 m_ImmConstant(C2)))) && 2425 match(C1, m_Power2())) { 2426 Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1); 2427 Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3); 2428 KnownBits KnownLShrc = computeKnownBits(LshrC, 0, nullptr); 2429 if (KnownLShrc.getMaxValue().ult(Width)) { 2430 // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth: 2431 // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0 2432 Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1); 2433 Value *Cmp = Builder.CreateICmpEQ(X, CmpC); 2434 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3), 2435 ConstantInt::getNullValue(Ty)); 2436 } 2437 } 2438 2439 if (match(Op0, m_OneUse(m_Shl(m_LShr(m_ImmConstant(C1), m_Value(X)), 2440 m_ImmConstant(C2)))) && 2441 match(C1, m_Power2())) { 2442 Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1); 2443 Constant *Cmp = 2444 ConstantExpr::getCompare(ICmpInst::ICMP_ULT, Log2C3, C2); 2445 if (Cmp->isZeroValue()) { 2446 // iff C1,C3 is pow2 and Log2(C3) >= C2: 2447 // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0 2448 Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1); 2449 Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3); 2450 Value *Cmp = Builder.CreateICmpEQ(X, CmpC); 2451 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3), 2452 ConstantInt::getNullValue(Ty)); 2453 } 2454 } 2455 } 2456 } 2457 2458 if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))), 2459 m_SignMask())) && 2460 match(Y, m_SpecificInt_ICMP( 2461 ICmpInst::Predicate::ICMP_EQ, 2462 APInt(Ty->getScalarSizeInBits(), 2463 Ty->getScalarSizeInBits() - 2464 X->getType()->getScalarSizeInBits())))) { 2465 auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext"); 2466 auto *SanitizedSignMask = cast<Constant>(Op1); 2467 // We must be careful with the undef elements of the sign bit mask, however: 2468 // the mask elt can be undef iff the shift amount for that lane was undef, 2469 // otherwise we need to sanitize undef masks to zero. 2470 SanitizedSignMask = Constant::replaceUndefsWith( 2471 SanitizedSignMask, ConstantInt::getNullValue(Ty->getScalarType())); 2472 SanitizedSignMask = 2473 Constant::mergeUndefsWith(SanitizedSignMask, cast<Constant>(Y)); 2474 return BinaryOperator::CreateAnd(SExt, SanitizedSignMask); 2475 } 2476 2477 if (Instruction *Z = narrowMaskedBinOp(I)) 2478 return Z; 2479 2480 if (I.getType()->isIntOrIntVectorTy(1)) { 2481 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) { 2482 if (auto *I = 2483 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true)) 2484 return I; 2485 } 2486 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) { 2487 if (auto *I = 2488 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true)) 2489 return I; 2490 } 2491 } 2492 2493 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 2494 return FoldedLogic; 2495 2496 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) 2497 return DeMorgan; 2498 2499 { 2500 Value *A, *B, *C; 2501 // A & (A ^ B) --> A & ~B 2502 if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B))))) 2503 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B)); 2504 // (A ^ B) & A --> A & ~B 2505 if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B))))) 2506 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B)); 2507 2508 // A & ~(A ^ B) --> A & B 2509 if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B))))) 2510 return BinaryOperator::CreateAnd(Op0, B); 2511 // ~(A ^ B) & A --> A & B 2512 if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B))))) 2513 return BinaryOperator::CreateAnd(Op1, B); 2514 2515 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C 2516 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 2517 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 2518 if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse())) 2519 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C)); 2520 2521 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C 2522 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 2523 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 2524 if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse())) 2525 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C)); 2526 2527 // (A | B) & (~A ^ B) -> A & B 2528 // (A | B) & (B ^ ~A) -> A & B 2529 // (B | A) & (~A ^ B) -> A & B 2530 // (B | A) & (B ^ ~A) -> A & B 2531 if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2532 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2533 return BinaryOperator::CreateAnd(A, B); 2534 2535 // (~A ^ B) & (A | B) -> A & B 2536 // (~A ^ B) & (B | A) -> A & B 2537 // (B ^ ~A) & (A | B) -> A & B 2538 // (B ^ ~A) & (B | A) -> A & B 2539 if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2540 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 2541 return BinaryOperator::CreateAnd(A, B); 2542 2543 // (~A | B) & (A ^ B) -> ~A & B 2544 // (~A | B) & (B ^ A) -> ~A & B 2545 // (B | ~A) & (A ^ B) -> ~A & B 2546 // (B | ~A) & (B ^ A) -> ~A & B 2547 if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2548 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B)))) 2549 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 2550 2551 // (A ^ B) & (~A | B) -> ~A & B 2552 // (B ^ A) & (~A | B) -> ~A & B 2553 // (A ^ B) & (B | ~A) -> ~A & B 2554 // (B ^ A) & (B | ~A) -> ~A & B 2555 if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2556 match(Op0, m_c_Xor(m_Specific(A), m_Specific(B)))) 2557 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 2558 } 2559 2560 { 2561 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 2562 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 2563 if (LHS && RHS) 2564 if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ true)) 2565 return replaceInstUsesWith(I, Res); 2566 2567 // TODO: Make this recursive; it's a little tricky because an arbitrary 2568 // number of 'and' instructions might have to be created. 2569 if (LHS && match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) { 2570 bool IsLogical = isa<SelectInst>(Op1); 2571 // LHS & (X && Y) --> (LHS && X) && Y 2572 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2573 if (Value *Res = 2574 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true, IsLogical)) 2575 return replaceInstUsesWith(I, IsLogical 2576 ? Builder.CreateLogicalAnd(Res, Y) 2577 : Builder.CreateAnd(Res, Y)); 2578 // LHS & (X && Y) --> X && (LHS & Y) 2579 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2580 if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true, 2581 /* IsLogical */ false)) 2582 return replaceInstUsesWith(I, IsLogical 2583 ? Builder.CreateLogicalAnd(X, Res) 2584 : Builder.CreateAnd(X, Res)); 2585 } 2586 if (RHS && match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) { 2587 bool IsLogical = isa<SelectInst>(Op0); 2588 // (X && Y) & RHS --> (X && RHS) && Y 2589 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2590 if (Value *Res = 2591 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true, IsLogical)) 2592 return replaceInstUsesWith(I, IsLogical 2593 ? Builder.CreateLogicalAnd(Res, Y) 2594 : Builder.CreateAnd(Res, Y)); 2595 // (X && Y) & RHS --> X && (Y & RHS) 2596 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2597 if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true, 2598 /* IsLogical */ false)) 2599 return replaceInstUsesWith(I, IsLogical 2600 ? Builder.CreateLogicalAnd(X, Res) 2601 : Builder.CreateAnd(X, Res)); 2602 } 2603 } 2604 2605 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 2606 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 2607 if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true)) 2608 return replaceInstUsesWith(I, Res); 2609 2610 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) 2611 return FoldedFCmps; 2612 2613 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I)) 2614 return CastedAnd; 2615 2616 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I)) 2617 return Sel; 2618 2619 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>. 2620 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold 2621 // with binop identity constant. But creating a select with non-constant 2622 // arm may not be reversible due to poison semantics. Is that a good 2623 // canonicalization? 2624 Value *A; 2625 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) && 2626 A->getType()->isIntOrIntVectorTy(1)) 2627 return SelectInst::Create(A, Op1, Constant::getNullValue(Ty)); 2628 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) && 2629 A->getType()->isIntOrIntVectorTy(1)) 2630 return SelectInst::Create(A, Op0, Constant::getNullValue(Ty)); 2631 2632 // Similarly, a 'not' of the bool translates to a swap of the select arms: 2633 // ~sext(A) & Op1 --> A ? 0 : Op1 2634 // Op0 & ~sext(A) --> A ? 0 : Op0 2635 if (match(Op0, m_Not(m_SExt(m_Value(A)))) && 2636 A->getType()->isIntOrIntVectorTy(1)) 2637 return SelectInst::Create(A, Constant::getNullValue(Ty), Op1); 2638 if (match(Op1, m_Not(m_SExt(m_Value(A)))) && 2639 A->getType()->isIntOrIntVectorTy(1)) 2640 return SelectInst::Create(A, Constant::getNullValue(Ty), Op0); 2641 2642 // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0 -- with optional sext 2643 if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf( 2644 m_AShr(m_Value(X), m_APIntAllowUndef(C)))), 2645 m_Value(Y))) && 2646 *C == X->getType()->getScalarSizeInBits() - 1) { 2647 Value *IsNeg = Builder.CreateIsNeg(X, "isneg"); 2648 return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty)); 2649 } 2650 // If there's a 'not' of the shifted value, swap the select operands: 2651 // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y -- with optional sext 2652 if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf( 2653 m_Not(m_AShr(m_Value(X), m_APIntAllowUndef(C))))), 2654 m_Value(Y))) && 2655 *C == X->getType()->getScalarSizeInBits() - 1) { 2656 Value *IsNeg = Builder.CreateIsNeg(X, "isneg"); 2657 return SelectInst::Create(IsNeg, ConstantInt::getNullValue(Ty), Y); 2658 } 2659 2660 // (~x) & y --> ~(x | (~y)) iff that gets rid of inversions 2661 if (sinkNotIntoOtherHandOfLogicalOp(I)) 2662 return &I; 2663 2664 // An and recurrence w/loop invariant step is equivelent to (and start, step) 2665 PHINode *PN = nullptr; 2666 Value *Start = nullptr, *Step = nullptr; 2667 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN)) 2668 return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step)); 2669 2670 if (Instruction *R = reassociateForUses(I, Builder)) 2671 return R; 2672 2673 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) 2674 return Canonicalized; 2675 2676 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1)) 2677 return Folded; 2678 2679 if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 2680 return Res; 2681 2682 return nullptr; 2683 } 2684 2685 Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I, 2686 bool MatchBSwaps, 2687 bool MatchBitReversals) { 2688 SmallVector<Instruction *, 4> Insts; 2689 if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals, 2690 Insts)) 2691 return nullptr; 2692 Instruction *LastInst = Insts.pop_back_val(); 2693 LastInst->removeFromParent(); 2694 2695 for (auto *Inst : Insts) 2696 Worklist.push(Inst); 2697 return LastInst; 2698 } 2699 2700 /// Match UB-safe variants of the funnel shift intrinsic. 2701 static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) { 2702 // TODO: Can we reduce the code duplication between this and the related 2703 // rotate matching code under visitSelect and visitTrunc? 2704 unsigned Width = Or.getType()->getScalarSizeInBits(); 2705 2706 // First, find an or'd pair of opposite shifts: 2707 // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1) 2708 BinaryOperator *Or0, *Or1; 2709 if (!match(Or.getOperand(0), m_BinOp(Or0)) || 2710 !match(Or.getOperand(1), m_BinOp(Or1))) 2711 return nullptr; 2712 2713 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 2714 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 2715 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 2716 Or0->getOpcode() == Or1->getOpcode()) 2717 return nullptr; 2718 2719 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 2720 if (Or0->getOpcode() == BinaryOperator::LShr) { 2721 std::swap(Or0, Or1); 2722 std::swap(ShVal0, ShVal1); 2723 std::swap(ShAmt0, ShAmt1); 2724 } 2725 assert(Or0->getOpcode() == BinaryOperator::Shl && 2726 Or1->getOpcode() == BinaryOperator::LShr && 2727 "Illegal or(shift,shift) pair"); 2728 2729 // Match the shift amount operands for a funnel shift pattern. This always 2730 // matches a subtraction on the R operand. 2731 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 2732 // Check for constant shift amounts that sum to the bitwidth. 2733 const APInt *LI, *RI; 2734 if (match(L, m_APIntAllowUndef(LI)) && match(R, m_APIntAllowUndef(RI))) 2735 if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width) 2736 return ConstantInt::get(L->getType(), *LI); 2737 2738 Constant *LC, *RC; 2739 if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) && 2740 match(L, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) && 2741 match(R, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) && 2742 match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowUndef(Width))) 2743 return ConstantExpr::mergeUndefsWith(LC, RC); 2744 2745 // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width. 2746 // We limit this to X < Width in case the backend re-expands the intrinsic, 2747 // and has to reintroduce a shift modulo operation (InstCombine might remove 2748 // it after this fold). This still doesn't guarantee that the final codegen 2749 // will match this original pattern. 2750 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) { 2751 KnownBits KnownL = IC.computeKnownBits(L, /*Depth*/ 0, &Or); 2752 return KnownL.getMaxValue().ult(Width) ? L : nullptr; 2753 } 2754 2755 // For non-constant cases, the following patterns currently only work for 2756 // rotation patterns. 2757 // TODO: Add general funnel-shift compatible patterns. 2758 if (ShVal0 != ShVal1) 2759 return nullptr; 2760 2761 // For non-constant cases we don't support non-pow2 shift masks. 2762 // TODO: Is it worth matching urem as well? 2763 if (!isPowerOf2_32(Width)) 2764 return nullptr; 2765 2766 // The shift amount may be masked with negation: 2767 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) 2768 Value *X; 2769 unsigned Mask = Width - 1; 2770 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 2771 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 2772 return X; 2773 2774 // Similar to above, but the shift amount may be extended after masking, 2775 // so return the extended value as the parameter for the intrinsic. 2776 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 2777 match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))), 2778 m_SpecificInt(Mask)))) 2779 return L; 2780 2781 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 2782 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 2783 return L; 2784 2785 return nullptr; 2786 }; 2787 2788 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width); 2789 bool IsFshl = true; // Sub on LSHR. 2790 if (!ShAmt) { 2791 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width); 2792 IsFshl = false; // Sub on SHL. 2793 } 2794 if (!ShAmt) 2795 return nullptr; 2796 2797 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2798 Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType()); 2799 return CallInst::Create(F, {ShVal0, ShVal1, ShAmt}); 2800 } 2801 2802 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns. 2803 static Instruction *matchOrConcat(Instruction &Or, 2804 InstCombiner::BuilderTy &Builder) { 2805 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'"); 2806 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1); 2807 Type *Ty = Or.getType(); 2808 2809 unsigned Width = Ty->getScalarSizeInBits(); 2810 if ((Width & 1) != 0) 2811 return nullptr; 2812 unsigned HalfWidth = Width / 2; 2813 2814 // Canonicalize zext (lower half) to LHS. 2815 if (!isa<ZExtInst>(Op0)) 2816 std::swap(Op0, Op1); 2817 2818 // Find lower/upper half. 2819 Value *LowerSrc, *ShlVal, *UpperSrc; 2820 const APInt *C; 2821 if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) || 2822 !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) || 2823 !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc))))) 2824 return nullptr; 2825 if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() || 2826 LowerSrc->getType()->getScalarSizeInBits() != HalfWidth) 2827 return nullptr; 2828 2829 auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) { 2830 Value *NewLower = Builder.CreateZExt(Lo, Ty); 2831 Value *NewUpper = Builder.CreateZExt(Hi, Ty); 2832 NewUpper = Builder.CreateShl(NewUpper, HalfWidth); 2833 Value *BinOp = Builder.CreateOr(NewLower, NewUpper); 2834 Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty); 2835 return Builder.CreateCall(F, BinOp); 2836 }; 2837 2838 // BSWAP: Push the concat down, swapping the lower/upper sources. 2839 // concat(bswap(x),bswap(y)) -> bswap(concat(x,y)) 2840 Value *LowerBSwap, *UpperBSwap; 2841 if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) && 2842 match(UpperSrc, m_BSwap(m_Value(UpperBSwap)))) 2843 return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap); 2844 2845 // BITREVERSE: Push the concat down, swapping the lower/upper sources. 2846 // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y)) 2847 Value *LowerBRev, *UpperBRev; 2848 if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) && 2849 match(UpperSrc, m_BitReverse(m_Value(UpperBRev)))) 2850 return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev); 2851 2852 return nullptr; 2853 } 2854 2855 /// If all elements of two constant vectors are 0/-1 and inverses, return true. 2856 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) { 2857 unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements(); 2858 for (unsigned i = 0; i != NumElts; ++i) { 2859 Constant *EltC1 = C1->getAggregateElement(i); 2860 Constant *EltC2 = C2->getAggregateElement(i); 2861 if (!EltC1 || !EltC2) 2862 return false; 2863 2864 // One element must be all ones, and the other must be all zeros. 2865 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) || 2866 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes())))) 2867 return false; 2868 } 2869 return true; 2870 } 2871 2872 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or 2873 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of 2874 /// B, it can be used as the condition operand of a select instruction. 2875 /// We will detect (A & C) | ~(B | D) when the flag ABIsTheSame enabled. 2876 Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B, 2877 bool ABIsTheSame) { 2878 // We may have peeked through bitcasts in the caller. 2879 // Exit immediately if we don't have (vector) integer types. 2880 Type *Ty = A->getType(); 2881 if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy()) 2882 return nullptr; 2883 2884 // If A is the 'not' operand of B and has enough signbits, we have our answer. 2885 if (ABIsTheSame ? (A == B) : match(B, m_Not(m_Specific(A)))) { 2886 // If these are scalars or vectors of i1, A can be used directly. 2887 if (Ty->isIntOrIntVectorTy(1)) 2888 return A; 2889 2890 // If we look through a vector bitcast, the caller will bitcast the operands 2891 // to match the condition's number of bits (N x i1). 2892 // To make this poison-safe, disallow bitcast from wide element to narrow 2893 // element. That could allow poison in lanes where it was not present in the 2894 // original code. 2895 A = peekThroughBitcast(A); 2896 if (A->getType()->isIntOrIntVectorTy()) { 2897 unsigned NumSignBits = ComputeNumSignBits(A); 2898 if (NumSignBits == A->getType()->getScalarSizeInBits() && 2899 NumSignBits <= Ty->getScalarSizeInBits()) 2900 return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType())); 2901 } 2902 return nullptr; 2903 } 2904 2905 // TODO: add support for sext and constant case 2906 if (ABIsTheSame) 2907 return nullptr; 2908 2909 // If both operands are constants, see if the constants are inverse bitmasks. 2910 Constant *AConst, *BConst; 2911 if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst))) 2912 if (AConst == ConstantExpr::getNot(BConst) && 2913 ComputeNumSignBits(A) == Ty->getScalarSizeInBits()) 2914 return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty)); 2915 2916 // Look for more complex patterns. The 'not' op may be hidden behind various 2917 // casts. Look through sexts and bitcasts to find the booleans. 2918 Value *Cond; 2919 Value *NotB; 2920 if (match(A, m_SExt(m_Value(Cond))) && 2921 Cond->getType()->isIntOrIntVectorTy(1)) { 2922 // A = sext i1 Cond; B = sext (not (i1 Cond)) 2923 if (match(B, m_SExt(m_Not(m_Specific(Cond))))) 2924 return Cond; 2925 2926 // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond))) 2927 // TODO: The one-use checks are unnecessary or misplaced. If the caller 2928 // checked for uses on logic ops/casts, that should be enough to 2929 // make this transform worthwhile. 2930 if (match(B, m_OneUse(m_Not(m_Value(NotB))))) { 2931 NotB = peekThroughBitcast(NotB, true); 2932 if (match(NotB, m_SExt(m_Specific(Cond)))) 2933 return Cond; 2934 } 2935 } 2936 2937 // All scalar (and most vector) possibilities should be handled now. 2938 // Try more matches that only apply to non-splat constant vectors. 2939 if (!Ty->isVectorTy()) 2940 return nullptr; 2941 2942 // If both operands are xor'd with constants using the same sexted boolean 2943 // operand, see if the constants are inverse bitmasks. 2944 // TODO: Use ConstantExpr::getNot()? 2945 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) && 2946 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) && 2947 Cond->getType()->isIntOrIntVectorTy(1) && 2948 areInverseVectorBitmasks(AConst, BConst)) { 2949 AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty)); 2950 return Builder.CreateXor(Cond, AConst); 2951 } 2952 return nullptr; 2953 } 2954 2955 /// We have an expression of the form (A & C) | (B & D). Try to simplify this 2956 /// to "A' ? C : D", where A' is a boolean or vector of booleans. 2957 /// When InvertFalseVal is set to true, we try to match the pattern 2958 /// where we have peeked through a 'not' op and A and B are the same: 2959 /// (A & C) | ~(A | D) --> (A & C) | (~A & ~D) --> A' ? C : ~D 2960 Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *C, Value *B, 2961 Value *D, bool InvertFalseVal) { 2962 // The potential condition of the select may be bitcasted. In that case, look 2963 // through its bitcast and the corresponding bitcast of the 'not' condition. 2964 Type *OrigType = A->getType(); 2965 A = peekThroughBitcast(A, true); 2966 B = peekThroughBitcast(B, true); 2967 if (Value *Cond = getSelectCondition(A, B, InvertFalseVal)) { 2968 // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D)) 2969 // If this is a vector, we may need to cast to match the condition's length. 2970 // The bitcasts will either all exist or all not exist. The builder will 2971 // not create unnecessary casts if the types already match. 2972 Type *SelTy = A->getType(); 2973 if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) { 2974 // For a fixed or scalable vector get N from <{vscale x} N x iM> 2975 unsigned Elts = VecTy->getElementCount().getKnownMinValue(); 2976 // For a fixed or scalable vector, get the size in bits of N x iM; for a 2977 // scalar this is just M. 2978 unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinValue(); 2979 Type *EltTy = Builder.getIntNTy(SelEltSize / Elts); 2980 SelTy = VectorType::get(EltTy, VecTy->getElementCount()); 2981 } 2982 Value *BitcastC = Builder.CreateBitCast(C, SelTy); 2983 if (InvertFalseVal) 2984 D = Builder.CreateNot(D); 2985 Value *BitcastD = Builder.CreateBitCast(D, SelTy); 2986 Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD); 2987 return Builder.CreateBitCast(Select, OrigType); 2988 } 2989 2990 return nullptr; 2991 } 2992 2993 // (icmp eq X, C) | (icmp ult Other, (X - C)) -> (icmp ule Other, (X - (C + 1))) 2994 // (icmp ne X, C) & (icmp uge Other, (X - C)) -> (icmp ugt Other, (X - (C + 1))) 2995 static Value *foldAndOrOfICmpEqConstantAndICmp(ICmpInst *LHS, ICmpInst *RHS, 2996 bool IsAnd, bool IsLogical, 2997 IRBuilderBase &Builder) { 2998 Value *LHS0 = LHS->getOperand(0); 2999 Value *RHS0 = RHS->getOperand(0); 3000 Value *RHS1 = RHS->getOperand(1); 3001 3002 ICmpInst::Predicate LPred = 3003 IsAnd ? LHS->getInversePredicate() : LHS->getPredicate(); 3004 ICmpInst::Predicate RPred = 3005 IsAnd ? RHS->getInversePredicate() : RHS->getPredicate(); 3006 3007 const APInt *CInt; 3008 if (LPred != ICmpInst::ICMP_EQ || 3009 !match(LHS->getOperand(1), m_APIntAllowUndef(CInt)) || 3010 !LHS0->getType()->isIntOrIntVectorTy() || 3011 !(LHS->hasOneUse() || RHS->hasOneUse())) 3012 return nullptr; 3013 3014 auto MatchRHSOp = [LHS0, CInt](const Value *RHSOp) { 3015 return match(RHSOp, 3016 m_Add(m_Specific(LHS0), m_SpecificIntAllowUndef(-*CInt))) || 3017 (CInt->isZero() && RHSOp == LHS0); 3018 }; 3019 3020 Value *Other; 3021 if (RPred == ICmpInst::ICMP_ULT && MatchRHSOp(RHS1)) 3022 Other = RHS0; 3023 else if (RPred == ICmpInst::ICMP_UGT && MatchRHSOp(RHS0)) 3024 Other = RHS1; 3025 else 3026 return nullptr; 3027 3028 if (IsLogical) 3029 Other = Builder.CreateFreeze(Other); 3030 3031 return Builder.CreateICmp( 3032 IsAnd ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE, 3033 Builder.CreateSub(LHS0, ConstantInt::get(LHS0->getType(), *CInt + 1)), 3034 Other); 3035 } 3036 3037 /// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible. 3038 /// If IsLogical is true, then the and/or is in select form and the transform 3039 /// must be poison-safe. 3040 Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, 3041 Instruction &I, bool IsAnd, 3042 bool IsLogical) { 3043 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3044 3045 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 3046 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) 3047 // if K1 and K2 are a one-bit mask. 3048 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &I, IsAnd, IsLogical)) 3049 return V; 3050 3051 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 3052 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); 3053 Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1); 3054 const APInt *LHSC = nullptr, *RHSC = nullptr; 3055 match(LHS1, m_APInt(LHSC)); 3056 match(RHS1, m_APInt(RHSC)); 3057 3058 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) 3059 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) 3060 if (predicatesFoldable(PredL, PredR)) { 3061 if (LHS0 == RHS1 && LHS1 == RHS0) { 3062 PredL = ICmpInst::getSwappedPredicate(PredL); 3063 std::swap(LHS0, LHS1); 3064 } 3065 if (LHS0 == RHS0 && LHS1 == RHS1) { 3066 unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR) 3067 : getICmpCode(PredL) | getICmpCode(PredR); 3068 bool IsSigned = LHS->isSigned() || RHS->isSigned(); 3069 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder); 3070 } 3071 } 3072 3073 // handle (roughly): 3074 // (icmp ne (A & B), C) | (icmp ne (A & D), E) 3075 // (icmp eq (A & B), C) & (icmp eq (A & D), E) 3076 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder)) 3077 return V; 3078 3079 if (Value *V = 3080 foldAndOrOfICmpEqConstantAndICmp(LHS, RHS, IsAnd, IsLogical, Builder)) 3081 return V; 3082 // We can treat logical like bitwise here, because both operands are used on 3083 // the LHS, and as such poison from both will propagate. 3084 if (Value *V = foldAndOrOfICmpEqConstantAndICmp(RHS, LHS, IsAnd, 3085 /*IsLogical*/ false, Builder)) 3086 return V; 3087 3088 if (Value *V = 3089 foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, IsLogical, Builder, Q)) 3090 return V; 3091 // We can convert this case to bitwise and, because both operands are used 3092 // on the LHS, and as such poison from both will propagate. 3093 if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, IsAnd, 3094 /*IsLogical*/ false, Builder, Q)) 3095 return V; 3096 3097 if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder)) 3098 return V; 3099 if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder)) 3100 return V; 3101 3102 // TODO: One of these directions is fine with logical and/or, the other could 3103 // be supported by inserting freeze. 3104 if (!IsLogical) { 3105 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 3106 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 3107 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/!IsAnd)) 3108 return V; 3109 3110 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n 3111 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n 3112 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/!IsAnd)) 3113 return V; 3114 } 3115 3116 // TODO: Add conjugated or fold, check whether it is safe for logical and/or. 3117 if (IsAnd && !IsLogical) 3118 if (Value *V = foldSignedTruncationCheck(LHS, RHS, I, Builder)) 3119 return V; 3120 3121 if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder)) 3122 return V; 3123 3124 if (Value *V = foldPowerOf2AndShiftedMask(LHS, RHS, IsAnd, Builder)) 3125 return V; 3126 3127 // TODO: Verify whether this is safe for logical and/or. 3128 if (!IsLogical) { 3129 if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder)) 3130 return X; 3131 if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder)) 3132 return X; 3133 } 3134 3135 if (Value *X = foldEqOfParts(LHS, RHS, IsAnd)) 3136 return X; 3137 3138 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) 3139 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) 3140 // TODO: Remove this and below when foldLogOpOfMaskedICmps can handle undefs. 3141 if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && 3142 PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) && 3143 LHS0->getType() == RHS0->getType()) { 3144 Value *NewOr = Builder.CreateOr(LHS0, RHS0); 3145 return Builder.CreateICmp(PredL, NewOr, 3146 Constant::getNullValue(NewOr->getType())); 3147 } 3148 3149 // (icmp ne A, -1) | (icmp ne B, -1) --> (icmp ne (A&B), -1) 3150 // (icmp eq A, -1) & (icmp eq B, -1) --> (icmp eq (A&B), -1) 3151 if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && 3152 PredL == PredR && match(LHS1, m_AllOnes()) && match(RHS1, m_AllOnes()) && 3153 LHS0->getType() == RHS0->getType()) { 3154 Value *NewAnd = Builder.CreateAnd(LHS0, RHS0); 3155 return Builder.CreateICmp(PredL, NewAnd, 3156 Constant::getAllOnesValue(LHS0->getType())); 3157 } 3158 3159 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). 3160 if (!LHSC || !RHSC) 3161 return nullptr; 3162 3163 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2 3164 // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2 3165 // where CMAX is the all ones value for the truncated type, 3166 // iff the lower bits of C2 and CA are zero. 3167 if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && 3168 PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) { 3169 Value *V; 3170 const APInt *AndC, *SmallC = nullptr, *BigC = nullptr; 3171 3172 // (trunc x) == C1 & (and x, CA) == C2 3173 // (and x, CA) == C2 & (trunc x) == C1 3174 if (match(RHS0, m_Trunc(m_Value(V))) && 3175 match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) { 3176 SmallC = RHSC; 3177 BigC = LHSC; 3178 } else if (match(LHS0, m_Trunc(m_Value(V))) && 3179 match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) { 3180 SmallC = LHSC; 3181 BigC = RHSC; 3182 } 3183 3184 if (SmallC && BigC) { 3185 unsigned BigBitSize = BigC->getBitWidth(); 3186 unsigned SmallBitSize = SmallC->getBitWidth(); 3187 3188 // Check that the low bits are zero. 3189 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize); 3190 if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) { 3191 Value *NewAnd = Builder.CreateAnd(V, Low | *AndC); 3192 APInt N = SmallC->zext(BigBitSize) | *BigC; 3193 Value *NewVal = ConstantInt::get(NewAnd->getType(), N); 3194 return Builder.CreateICmp(PredL, NewAnd, NewVal); 3195 } 3196 } 3197 } 3198 3199 // Match naive pattern (and its inverted form) for checking if two values 3200 // share same sign. An example of the pattern: 3201 // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1) 3202 // Inverted form (example): 3203 // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0) 3204 bool TrueIfSignedL, TrueIfSignedR; 3205 if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) && 3206 isSignBitCheck(PredR, *RHSC, TrueIfSignedR) && 3207 (RHS->hasOneUse() || LHS->hasOneUse())) { 3208 Value *X, *Y; 3209 if (IsAnd) { 3210 if ((TrueIfSignedL && !TrueIfSignedR && 3211 match(LHS0, m_Or(m_Value(X), m_Value(Y))) && 3212 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) || 3213 (!TrueIfSignedL && TrueIfSignedR && 3214 match(LHS0, m_And(m_Value(X), m_Value(Y))) && 3215 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) { 3216 Value *NewXor = Builder.CreateXor(X, Y); 3217 return Builder.CreateIsNeg(NewXor); 3218 } 3219 } else { 3220 if ((TrueIfSignedL && !TrueIfSignedR && 3221 match(LHS0, m_And(m_Value(X), m_Value(Y))) && 3222 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) || 3223 (!TrueIfSignedL && TrueIfSignedR && 3224 match(LHS0, m_Or(m_Value(X), m_Value(Y))) && 3225 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) { 3226 Value *NewXor = Builder.CreateXor(X, Y); 3227 return Builder.CreateIsNotNeg(NewXor); 3228 } 3229 } 3230 } 3231 3232 return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd); 3233 } 3234 3235 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 3236 // here. We should standardize that construct where it is needed or choose some 3237 // other way to ensure that commutated variants of patterns are not missed. 3238 Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) { 3239 if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1), 3240 SQ.getWithInstruction(&I))) 3241 return replaceInstUsesWith(I, V); 3242 3243 if (SimplifyAssociativeOrCommutative(I)) 3244 return &I; 3245 3246 if (Instruction *X = foldVectorBinop(I)) 3247 return X; 3248 3249 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 3250 return Phi; 3251 3252 // See if we can simplify any instructions used by the instruction whose sole 3253 // purpose is to compute bits we don't care about. 3254 if (SimplifyDemandedInstructionBits(I)) 3255 return &I; 3256 3257 // Do this before using distributive laws to catch simple and/or/not patterns. 3258 if (Instruction *Xor = foldOrToXor(I, Builder)) 3259 return Xor; 3260 3261 if (Instruction *X = foldComplexAndOrPatterns(I, Builder)) 3262 return X; 3263 3264 // (A&B)|(A&C) -> A&(B|C) etc 3265 if (Value *V = foldUsingDistributiveLaws(I)) 3266 return replaceInstUsesWith(I, V); 3267 3268 if (Value *V = SimplifyBSwap(I, Builder)) 3269 return replaceInstUsesWith(I, V); 3270 3271 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3272 Type *Ty = I.getType(); 3273 if (Ty->isIntOrIntVectorTy(1)) { 3274 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) { 3275 if (auto *I = 3276 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false)) 3277 return I; 3278 } 3279 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) { 3280 if (auto *I = 3281 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false)) 3282 return I; 3283 } 3284 } 3285 3286 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 3287 return FoldedLogic; 3288 3289 if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true, 3290 /*MatchBitReversals*/ true)) 3291 return BitOp; 3292 3293 if (Instruction *Funnel = matchFunnelShift(I, *this)) 3294 return Funnel; 3295 3296 if (Instruction *Concat = matchOrConcat(I, Builder)) 3297 return replaceInstUsesWith(I, Concat); 3298 3299 if (Instruction *R = foldBinOpShiftWithShift(I)) 3300 return R; 3301 3302 Value *X, *Y; 3303 const APInt *CV; 3304 if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) && 3305 !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) { 3306 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0 3307 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X). 3308 Value *Or = Builder.CreateOr(X, Y); 3309 return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV)); 3310 } 3311 3312 // If the operands have no common bits set: 3313 // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1) 3314 if (match(&I, 3315 m_c_Or(m_OneUse(m_Mul(m_Value(X), m_Value(Y))), m_Deferred(X))) && 3316 haveNoCommonBitsSet(Op0, Op1, DL)) { 3317 Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1)); 3318 return BinaryOperator::CreateMul(X, IncrementY); 3319 } 3320 3321 // X | (X ^ Y) --> X | Y (4 commuted patterns) 3322 if (match(&I, m_c_Or(m_Value(X), m_c_Xor(m_Deferred(X), m_Value(Y))))) 3323 return BinaryOperator::CreateOr(X, Y); 3324 3325 // (A & C) | (B & D) 3326 Value *A, *B, *C, *D; 3327 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 3328 match(Op1, m_And(m_Value(B), m_Value(D)))) { 3329 3330 // (A & C0) | (B & C1) 3331 const APInt *C0, *C1; 3332 if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) { 3333 Value *X; 3334 if (*C0 == ~*C1) { 3335 // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B 3336 if (match(A, m_c_Or(m_Value(X), m_Specific(B)))) 3337 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B); 3338 // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A 3339 if (match(B, m_c_Or(m_Specific(A), m_Value(X)))) 3340 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A); 3341 3342 // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B 3343 if (match(A, m_c_Xor(m_Value(X), m_Specific(B)))) 3344 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B); 3345 // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A 3346 if (match(B, m_c_Xor(m_Specific(A), m_Value(X)))) 3347 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A); 3348 } 3349 3350 if ((*C0 & *C1).isZero()) { 3351 // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1) 3352 // iff (C0 & C1) == 0 and (X & ~C0) == 0 3353 if (match(A, m_c_Or(m_Value(X), m_Specific(B))) && 3354 MaskedValueIsZero(X, ~*C0, 0, &I)) { 3355 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1); 3356 return BinaryOperator::CreateAnd(A, C01); 3357 } 3358 // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1) 3359 // iff (C0 & C1) == 0 and (X & ~C1) == 0 3360 if (match(B, m_c_Or(m_Value(X), m_Specific(A))) && 3361 MaskedValueIsZero(X, ~*C1, 0, &I)) { 3362 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1); 3363 return BinaryOperator::CreateAnd(B, C01); 3364 } 3365 // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1) 3366 // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0. 3367 const APInt *C2, *C3; 3368 if (match(A, m_Or(m_Value(X), m_APInt(C2))) && 3369 match(B, m_Or(m_Specific(X), m_APInt(C3))) && 3370 (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) { 3371 Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield"); 3372 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1); 3373 return BinaryOperator::CreateAnd(Or, C01); 3374 } 3375 } 3376 } 3377 3378 // Don't try to form a select if it's unlikely that we'll get rid of at 3379 // least one of the operands. A select is generally more expensive than the 3380 // 'or' that it is replacing. 3381 if (Op0->hasOneUse() || Op1->hasOneUse()) { 3382 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants. 3383 if (Value *V = matchSelectFromAndOr(A, C, B, D)) 3384 return replaceInstUsesWith(I, V); 3385 if (Value *V = matchSelectFromAndOr(A, C, D, B)) 3386 return replaceInstUsesWith(I, V); 3387 if (Value *V = matchSelectFromAndOr(C, A, B, D)) 3388 return replaceInstUsesWith(I, V); 3389 if (Value *V = matchSelectFromAndOr(C, A, D, B)) 3390 return replaceInstUsesWith(I, V); 3391 if (Value *V = matchSelectFromAndOr(B, D, A, C)) 3392 return replaceInstUsesWith(I, V); 3393 if (Value *V = matchSelectFromAndOr(B, D, C, A)) 3394 return replaceInstUsesWith(I, V); 3395 if (Value *V = matchSelectFromAndOr(D, B, A, C)) 3396 return replaceInstUsesWith(I, V); 3397 if (Value *V = matchSelectFromAndOr(D, B, C, A)) 3398 return replaceInstUsesWith(I, V); 3399 } 3400 } 3401 3402 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 3403 match(Op1, m_Not(m_Or(m_Value(B), m_Value(D)))) && 3404 (Op0->hasOneUse() || Op1->hasOneUse())) { 3405 // (Cond & C) | ~(Cond | D) -> Cond ? C : ~D 3406 if (Value *V = matchSelectFromAndOr(A, C, B, D, true)) 3407 return replaceInstUsesWith(I, V); 3408 if (Value *V = matchSelectFromAndOr(A, C, D, B, true)) 3409 return replaceInstUsesWith(I, V); 3410 if (Value *V = matchSelectFromAndOr(C, A, B, D, true)) 3411 return replaceInstUsesWith(I, V); 3412 if (Value *V = matchSelectFromAndOr(C, A, D, B, true)) 3413 return replaceInstUsesWith(I, V); 3414 } 3415 3416 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C 3417 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 3418 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 3419 return BinaryOperator::CreateOr(Op0, C); 3420 3421 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C 3422 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 3423 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 3424 return BinaryOperator::CreateOr(Op1, C); 3425 3426 // ((A & B) ^ C) | B -> C | B 3427 if (match(Op0, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op1)), m_Value(C)))) 3428 return BinaryOperator::CreateOr(C, Op1); 3429 3430 // B | ((A & B) ^ C) -> B | C 3431 if (match(Op1, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op0)), m_Value(C)))) 3432 return BinaryOperator::CreateOr(Op0, C); 3433 3434 // ((B | C) & A) | B -> B | (A & C) 3435 if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A)))) 3436 return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C)); 3437 3438 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) 3439 return DeMorgan; 3440 3441 // Canonicalize xor to the RHS. 3442 bool SwappedForXor = false; 3443 if (match(Op0, m_Xor(m_Value(), m_Value()))) { 3444 std::swap(Op0, Op1); 3445 SwappedForXor = true; 3446 } 3447 3448 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) { 3449 // (A | ?) | (A ^ B) --> (A | ?) | B 3450 // (B | ?) | (A ^ B) --> (B | ?) | A 3451 if (match(Op0, m_c_Or(m_Specific(A), m_Value()))) 3452 return BinaryOperator::CreateOr(Op0, B); 3453 if (match(Op0, m_c_Or(m_Specific(B), m_Value()))) 3454 return BinaryOperator::CreateOr(Op0, A); 3455 3456 // (A & B) | (A ^ B) --> A | B 3457 // (B & A) | (A ^ B) --> A | B 3458 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) || 3459 match(Op0, m_And(m_Specific(B), m_Specific(A)))) 3460 return BinaryOperator::CreateOr(A, B); 3461 3462 // ~A | (A ^ B) --> ~(A & B) 3463 // ~B | (A ^ B) --> ~(A & B) 3464 // The swap above should always make Op0 the 'not'. 3465 if ((Op0->hasOneUse() || Op1->hasOneUse()) && 3466 (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B))))) 3467 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); 3468 3469 // Same as above, but peek through an 'and' to the common operand: 3470 // ~(A & ?) | (A ^ B) --> ~((A & ?) & B) 3471 // ~(B & ?) | (A ^ B) --> ~((B & ?) & A) 3472 Instruction *And; 3473 if ((Op0->hasOneUse() || Op1->hasOneUse()) && 3474 match(Op0, m_Not(m_CombineAnd(m_Instruction(And), 3475 m_c_And(m_Specific(A), m_Value()))))) 3476 return BinaryOperator::CreateNot(Builder.CreateAnd(And, B)); 3477 if ((Op0->hasOneUse() || Op1->hasOneUse()) && 3478 match(Op0, m_Not(m_CombineAnd(m_Instruction(And), 3479 m_c_And(m_Specific(B), m_Value()))))) 3480 return BinaryOperator::CreateNot(Builder.CreateAnd(And, A)); 3481 3482 // (~A | C) | (A ^ B) --> ~(A & B) | C 3483 // (~B | C) | (A ^ B) --> ~(A & B) | C 3484 if (Op0->hasOneUse() && Op1->hasOneUse() && 3485 (match(Op0, m_c_Or(m_Not(m_Specific(A)), m_Value(C))) || 3486 match(Op0, m_c_Or(m_Not(m_Specific(B)), m_Value(C))))) { 3487 Value *Nand = Builder.CreateNot(Builder.CreateAnd(A, B), "nand"); 3488 return BinaryOperator::CreateOr(Nand, C); 3489 } 3490 3491 // A | (~A ^ B) --> ~B | A 3492 // B | (A ^ ~B) --> ~A | B 3493 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) { 3494 Value *NotB = Builder.CreateNot(B, B->getName() + ".not"); 3495 return BinaryOperator::CreateOr(NotB, Op0); 3496 } 3497 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) { 3498 Value *NotA = Builder.CreateNot(A, A->getName() + ".not"); 3499 return BinaryOperator::CreateOr(NotA, Op0); 3500 } 3501 } 3502 3503 // A | ~(A | B) -> A | ~B 3504 // A | ~(A ^ B) -> A | ~B 3505 if (match(Op1, m_Not(m_Value(A)))) 3506 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A)) 3507 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) && 3508 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or || 3509 B->getOpcode() == Instruction::Xor)) { 3510 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) : 3511 B->getOperand(0); 3512 Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not"); 3513 return BinaryOperator::CreateOr(Not, Op0); 3514 } 3515 3516 if (SwappedForXor) 3517 std::swap(Op0, Op1); 3518 3519 { 3520 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 3521 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 3522 if (LHS && RHS) 3523 if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ false)) 3524 return replaceInstUsesWith(I, Res); 3525 3526 // TODO: Make this recursive; it's a little tricky because an arbitrary 3527 // number of 'or' instructions might have to be created. 3528 Value *X, *Y; 3529 if (LHS && match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) { 3530 bool IsLogical = isa<SelectInst>(Op1); 3531 // LHS | (X || Y) --> (LHS || X) || Y 3532 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 3533 if (Value *Res = 3534 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false, IsLogical)) 3535 return replaceInstUsesWith(I, IsLogical 3536 ? Builder.CreateLogicalOr(Res, Y) 3537 : Builder.CreateOr(Res, Y)); 3538 // LHS | (X || Y) --> X || (LHS | Y) 3539 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 3540 if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false, 3541 /* IsLogical */ false)) 3542 return replaceInstUsesWith(I, IsLogical 3543 ? Builder.CreateLogicalOr(X, Res) 3544 : Builder.CreateOr(X, Res)); 3545 } 3546 if (RHS && match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) { 3547 bool IsLogical = isa<SelectInst>(Op0); 3548 // (X || Y) | RHS --> (X || RHS) || Y 3549 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 3550 if (Value *Res = 3551 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false, IsLogical)) 3552 return replaceInstUsesWith(I, IsLogical 3553 ? Builder.CreateLogicalOr(Res, Y) 3554 : Builder.CreateOr(Res, Y)); 3555 // (X || Y) | RHS --> X || (Y | RHS) 3556 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 3557 if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false, 3558 /* IsLogical */ false)) 3559 return replaceInstUsesWith(I, IsLogical 3560 ? Builder.CreateLogicalOr(X, Res) 3561 : Builder.CreateOr(X, Res)); 3562 } 3563 } 3564 3565 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 3566 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 3567 if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false)) 3568 return replaceInstUsesWith(I, Res); 3569 3570 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) 3571 return FoldedFCmps; 3572 3573 if (Instruction *CastedOr = foldCastedBitwiseLogic(I)) 3574 return CastedOr; 3575 3576 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I)) 3577 return Sel; 3578 3579 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>. 3580 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold 3581 // with binop identity constant. But creating a select with non-constant 3582 // arm may not be reversible due to poison semantics. Is that a good 3583 // canonicalization? 3584 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) && 3585 A->getType()->isIntOrIntVectorTy(1)) 3586 return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op1); 3587 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) && 3588 A->getType()->isIntOrIntVectorTy(1)) 3589 return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op0); 3590 3591 // Note: If we've gotten to the point of visiting the outer OR, then the 3592 // inner one couldn't be simplified. If it was a constant, then it won't 3593 // be simplified by a later pass either, so we try swapping the inner/outer 3594 // ORs in the hopes that we'll be able to simplify it this way. 3595 // (X|C) | V --> (X|V) | C 3596 ConstantInt *CI; 3597 if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) && 3598 match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) { 3599 Value *Inner = Builder.CreateOr(A, Op1); 3600 Inner->takeName(Op0); 3601 return BinaryOperator::CreateOr(Inner, CI); 3602 } 3603 3604 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D)) 3605 // Since this OR statement hasn't been optimized further yet, we hope 3606 // that this transformation will allow the new ORs to be optimized. 3607 { 3608 Value *X = nullptr, *Y = nullptr; 3609 if (Op0->hasOneUse() && Op1->hasOneUse() && 3610 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) && 3611 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) { 3612 Value *orTrue = Builder.CreateOr(A, C); 3613 Value *orFalse = Builder.CreateOr(B, D); 3614 return SelectInst::Create(X, orTrue, orFalse); 3615 } 3616 } 3617 3618 // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X. 3619 { 3620 Value *X, *Y; 3621 if (match(&I, m_c_Or(m_OneUse(m_AShr( 3622 m_NSWSub(m_Value(Y), m_Value(X)), 3623 m_SpecificInt(Ty->getScalarSizeInBits() - 1))), 3624 m_Deferred(X)))) { 3625 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y); 3626 Value *AllOnes = ConstantInt::getAllOnesValue(Ty); 3627 return SelectInst::Create(NewICmpInst, AllOnes, X); 3628 } 3629 } 3630 3631 if (Instruction *V = 3632 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 3633 return V; 3634 3635 CmpInst::Predicate Pred; 3636 Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv; 3637 // Check if the OR weakens the overflow condition for umul.with.overflow by 3638 // treating any non-zero result as overflow. In that case, we overflow if both 3639 // umul.with.overflow operands are != 0, as in that case the result can only 3640 // be 0, iff the multiplication overflows. 3641 if (match(&I, 3642 m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)), 3643 m_Value(Ov)), 3644 m_CombineAnd(m_ICmp(Pred, 3645 m_CombineAnd(m_ExtractValue<0>( 3646 m_Deferred(UMulWithOv)), 3647 m_Value(Mul)), 3648 m_ZeroInt()), 3649 m_Value(MulIsNotZero)))) && 3650 (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) && 3651 Pred == CmpInst::ICMP_NE) { 3652 Value *A, *B; 3653 if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>( 3654 m_Value(A), m_Value(B)))) { 3655 Value *NotNullA = Builder.CreateIsNotNull(A); 3656 Value *NotNullB = Builder.CreateIsNotNull(B); 3657 return BinaryOperator::CreateAnd(NotNullA, NotNullB); 3658 } 3659 } 3660 3661 // (~x) | y --> ~(x & (~y)) iff that gets rid of inversions 3662 if (sinkNotIntoOtherHandOfLogicalOp(I)) 3663 return &I; 3664 3665 // Improve "get low bit mask up to and including bit X" pattern: 3666 // (1 << X) | ((1 << X) + -1) --> -1 l>> (bitwidth(x) - 1 - X) 3667 if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()), 3668 m_Shl(m_One(), m_Deferred(X)))) && 3669 match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) { 3670 Value *Sub = Builder.CreateSub( 3671 ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X); 3672 return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub); 3673 } 3674 3675 // An or recurrence w/loop invariant step is equivelent to (or start, step) 3676 PHINode *PN = nullptr; 3677 Value *Start = nullptr, *Step = nullptr; 3678 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN)) 3679 return replaceInstUsesWith(I, Builder.CreateOr(Start, Step)); 3680 3681 // (A & B) | (C | D) or (C | D) | (A & B) 3682 // Can be combined if C or D is of type (A/B & X) 3683 if (match(&I, m_c_Or(m_OneUse(m_And(m_Value(A), m_Value(B))), 3684 m_OneUse(m_Or(m_Value(C), m_Value(D)))))) { 3685 // (A & B) | (C | ?) -> C | (? | (A & B)) 3686 // (A & B) | (C | ?) -> C | (? | (A & B)) 3687 // (A & B) | (C | ?) -> C | (? | (A & B)) 3688 // (A & B) | (C | ?) -> C | (? | (A & B)) 3689 // (C | ?) | (A & B) -> C | (? | (A & B)) 3690 // (C | ?) | (A & B) -> C | (? | (A & B)) 3691 // (C | ?) | (A & B) -> C | (? | (A & B)) 3692 // (C | ?) | (A & B) -> C | (? | (A & B)) 3693 if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) || 3694 match(D, m_OneUse(m_c_And(m_Specific(B), m_Value())))) 3695 return BinaryOperator::CreateOr( 3696 C, Builder.CreateOr(D, Builder.CreateAnd(A, B))); 3697 // (A & B) | (? | D) -> (? | (A & B)) | D 3698 // (A & B) | (? | D) -> (? | (A & B)) | D 3699 // (A & B) | (? | D) -> (? | (A & B)) | D 3700 // (A & B) | (? | D) -> (? | (A & B)) | D 3701 // (? | D) | (A & B) -> (? | (A & B)) | D 3702 // (? | D) | (A & B) -> (? | (A & B)) | D 3703 // (? | D) | (A & B) -> (? | (A & B)) | D 3704 // (? | D) | (A & B) -> (? | (A & B)) | D 3705 if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) || 3706 match(C, m_OneUse(m_c_And(m_Specific(B), m_Value())))) 3707 return BinaryOperator::CreateOr( 3708 Builder.CreateOr(C, Builder.CreateAnd(A, B)), D); 3709 } 3710 3711 if (Instruction *R = reassociateForUses(I, Builder)) 3712 return R; 3713 3714 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) 3715 return Canonicalized; 3716 3717 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1)) 3718 return Folded; 3719 3720 if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 3721 return Res; 3722 3723 return nullptr; 3724 } 3725 3726 /// A ^ B can be specified using other logic ops in a variety of patterns. We 3727 /// can fold these early and efficiently by morphing an existing instruction. 3728 static Instruction *foldXorToXor(BinaryOperator &I, 3729 InstCombiner::BuilderTy &Builder) { 3730 assert(I.getOpcode() == Instruction::Xor); 3731 Value *Op0 = I.getOperand(0); 3732 Value *Op1 = I.getOperand(1); 3733 Value *A, *B; 3734 3735 // There are 4 commuted variants for each of the basic patterns. 3736 3737 // (A & B) ^ (A | B) -> A ^ B 3738 // (A & B) ^ (B | A) -> A ^ B 3739 // (A | B) ^ (A & B) -> A ^ B 3740 // (A | B) ^ (B & A) -> A ^ B 3741 if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)), 3742 m_c_Or(m_Deferred(A), m_Deferred(B))))) 3743 return BinaryOperator::CreateXor(A, B); 3744 3745 // (A | ~B) ^ (~A | B) -> A ^ B 3746 // (~B | A) ^ (~A | B) -> A ^ B 3747 // (~A | B) ^ (A | ~B) -> A ^ B 3748 // (B | ~A) ^ (A | ~B) -> A ^ B 3749 if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))), 3750 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) 3751 return BinaryOperator::CreateXor(A, B); 3752 3753 // (A & ~B) ^ (~A & B) -> A ^ B 3754 // (~B & A) ^ (~A & B) -> A ^ B 3755 // (~A & B) ^ (A & ~B) -> A ^ B 3756 // (B & ~A) ^ (A & ~B) -> A ^ B 3757 if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))), 3758 m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) 3759 return BinaryOperator::CreateXor(A, B); 3760 3761 // For the remaining cases we need to get rid of one of the operands. 3762 if (!Op0->hasOneUse() && !Op1->hasOneUse()) 3763 return nullptr; 3764 3765 // (A | B) ^ ~(A & B) -> ~(A ^ B) 3766 // (A | B) ^ ~(B & A) -> ~(A ^ B) 3767 // (A & B) ^ ~(A | B) -> ~(A ^ B) 3768 // (A & B) ^ ~(B | A) -> ~(A ^ B) 3769 // Complexity sorting ensures the not will be on the right side. 3770 if ((match(Op0, m_Or(m_Value(A), m_Value(B))) && 3771 match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) || 3772 (match(Op0, m_And(m_Value(A), m_Value(B))) && 3773 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))) 3774 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 3775 3776 return nullptr; 3777 } 3778 3779 Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, 3780 BinaryOperator &I) { 3781 assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS && 3782 I.getOperand(1) == RHS && "Should be 'xor' with these operands"); 3783 3784 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 3785 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 3786 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 3787 3788 if (predicatesFoldable(PredL, PredR)) { 3789 if (LHS0 == RHS1 && LHS1 == RHS0) { 3790 std::swap(LHS0, LHS1); 3791 PredL = ICmpInst::getSwappedPredicate(PredL); 3792 } 3793 if (LHS0 == RHS0 && LHS1 == RHS1) { 3794 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) 3795 unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR); 3796 bool IsSigned = LHS->isSigned() || RHS->isSigned(); 3797 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder); 3798 } 3799 } 3800 3801 // TODO: This can be generalized to compares of non-signbits using 3802 // decomposeBitTestICmp(). It could be enhanced more by using (something like) 3803 // foldLogOpOfMaskedICmps(). 3804 const APInt *LC, *RC; 3805 if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) && 3806 LHS0->getType() == RHS0->getType() && 3807 LHS0->getType()->isIntOrIntVectorTy() && 3808 (LHS->hasOneUse() || RHS->hasOneUse())) { 3809 // Convert xor of signbit tests to signbit test of xor'd values: 3810 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0 3811 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0 3812 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1 3813 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1 3814 bool TrueIfSignedL, TrueIfSignedR; 3815 if (isSignBitCheck(PredL, *LC, TrueIfSignedL) && 3816 isSignBitCheck(PredR, *RC, TrueIfSignedR)) { 3817 Value *XorLR = Builder.CreateXor(LHS0, RHS0); 3818 return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) : 3819 Builder.CreateIsNotNeg(XorLR); 3820 } 3821 3822 // (X > C) ^ (X < C + 2) --> X != C + 1 3823 // (X < C + 2) ^ (X > C) --> X != C + 1 3824 // Considering the correctness of this pattern, we should avoid that C is 3825 // non-negative and C + 2 is negative, although it will be matched by other 3826 // patterns. 3827 const APInt *C1, *C2; 3828 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_APInt(C1)) && 3829 PredR == CmpInst::ICMP_SLT && match(RHS1, m_APInt(C2))) || 3830 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_APInt(C2)) && 3831 PredR == CmpInst::ICMP_SGT && match(RHS1, m_APInt(C1)))) 3832 if (LHS0 == RHS0 && *C1 + 2 == *C2 && 3833 (C1->isNegative() || C2->isNonNegative())) 3834 return Builder.CreateICmpNE(LHS0, 3835 ConstantInt::get(LHS0->getType(), *C1 + 1)); 3836 } 3837 3838 // Instead of trying to imitate the folds for and/or, decompose this 'xor' 3839 // into those logic ops. That is, try to turn this into an and-of-icmps 3840 // because we have many folds for that pattern. 3841 // 3842 // This is based on a truth table definition of xor: 3843 // X ^ Y --> (X | Y) & !(X & Y) 3844 if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) { 3845 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y). 3846 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?). 3847 if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) { 3848 // TODO: Independently handle cases where the 'and' side is a constant. 3849 ICmpInst *X = nullptr, *Y = nullptr; 3850 if (OrICmp == LHS && AndICmp == RHS) { 3851 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y 3852 X = LHS; 3853 Y = RHS; 3854 } 3855 if (OrICmp == RHS && AndICmp == LHS) { 3856 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X 3857 X = RHS; 3858 Y = LHS; 3859 } 3860 if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) { 3861 // Invert the predicate of 'Y', thus inverting its output. 3862 Y->setPredicate(Y->getInversePredicate()); 3863 // So, are there other uses of Y? 3864 if (!Y->hasOneUse()) { 3865 // We need to adapt other uses of Y though. Get a value that matches 3866 // the original value of Y before inversion. While this increases 3867 // immediate instruction count, we have just ensured that all the 3868 // users are freely-invertible, so that 'not' *will* get folded away. 3869 BuilderTy::InsertPointGuard Guard(Builder); 3870 // Set insertion point to right after the Y. 3871 Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator())); 3872 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 3873 // Replace all uses of Y (excluding the one in NotY!) with NotY. 3874 Worklist.pushUsersToWorkList(*Y); 3875 Y->replaceUsesWithIf(NotY, 3876 [NotY](Use &U) { return U.getUser() != NotY; }); 3877 } 3878 // All done. 3879 return Builder.CreateAnd(LHS, RHS); 3880 } 3881 } 3882 } 3883 3884 return nullptr; 3885 } 3886 3887 /// If we have a masked merge, in the canonical form of: 3888 /// (assuming that A only has one use.) 3889 /// | A | |B| 3890 /// ((x ^ y) & M) ^ y 3891 /// | D | 3892 /// * If M is inverted: 3893 /// | D | 3894 /// ((x ^ y) & ~M) ^ y 3895 /// We can canonicalize by swapping the final xor operand 3896 /// to eliminate the 'not' of the mask. 3897 /// ((x ^ y) & M) ^ x 3898 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops 3899 /// because that shortens the dependency chain and improves analysis: 3900 /// (x & M) | (y & ~M) 3901 static Instruction *visitMaskedMerge(BinaryOperator &I, 3902 InstCombiner::BuilderTy &Builder) { 3903 Value *B, *X, *D; 3904 Value *M; 3905 if (!match(&I, m_c_Xor(m_Value(B), 3906 m_OneUse(m_c_And( 3907 m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)), 3908 m_Value(D)), 3909 m_Value(M)))))) 3910 return nullptr; 3911 3912 Value *NotM; 3913 if (match(M, m_Not(m_Value(NotM)))) { 3914 // De-invert the mask and swap the value in B part. 3915 Value *NewA = Builder.CreateAnd(D, NotM); 3916 return BinaryOperator::CreateXor(NewA, X); 3917 } 3918 3919 Constant *C; 3920 if (D->hasOneUse() && match(M, m_Constant(C))) { 3921 // Propagating undef is unsafe. Clamp undef elements to -1. 3922 Type *EltTy = C->getType()->getScalarType(); 3923 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy)); 3924 // Unfold. 3925 Value *LHS = Builder.CreateAnd(X, C); 3926 Value *NotC = Builder.CreateNot(C); 3927 Value *RHS = Builder.CreateAnd(B, NotC); 3928 return BinaryOperator::CreateOr(LHS, RHS); 3929 } 3930 3931 return nullptr; 3932 } 3933 3934 // Transform 3935 // ~(x ^ y) 3936 // into: 3937 // (~x) ^ y 3938 // or into 3939 // x ^ (~y) 3940 static Instruction *sinkNotIntoXor(BinaryOperator &I, Value *X, Value *Y, 3941 InstCombiner::BuilderTy &Builder) { 3942 // We only want to do the transform if it is free to do. 3943 if (InstCombiner::isFreeToInvert(X, X->hasOneUse())) { 3944 // Ok, good. 3945 } else if (InstCombiner::isFreeToInvert(Y, Y->hasOneUse())) { 3946 std::swap(X, Y); 3947 } else 3948 return nullptr; 3949 3950 Value *NotX = Builder.CreateNot(X, X->getName() + ".not"); 3951 return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan"); 3952 } 3953 3954 static Instruction *foldNotXor(BinaryOperator &I, 3955 InstCombiner::BuilderTy &Builder) { 3956 Value *X, *Y; 3957 // FIXME: one-use check is not needed in general, but currently we are unable 3958 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182) 3959 if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y)))))) 3960 return nullptr; 3961 3962 if (Instruction *NewXor = sinkNotIntoXor(I, X, Y, Builder)) 3963 return NewXor; 3964 3965 auto hasCommonOperand = [](Value *A, Value *B, Value *C, Value *D) { 3966 return A == C || A == D || B == C || B == D; 3967 }; 3968 3969 Value *A, *B, *C, *D; 3970 // Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?) 3971 // 4 commuted variants 3972 if (match(X, m_And(m_Value(A), m_Value(B))) && 3973 match(Y, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) { 3974 Value *NotY = Builder.CreateNot(Y); 3975 return BinaryOperator::CreateOr(X, NotY); 3976 }; 3977 3978 // Canonicalize ~((A | ?) ^ (A & B)) -> (A & B) | ~(A | ?) 3979 // 4 commuted variants 3980 if (match(Y, m_And(m_Value(A), m_Value(B))) && 3981 match(X, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) { 3982 Value *NotX = Builder.CreateNot(X); 3983 return BinaryOperator::CreateOr(Y, NotX); 3984 }; 3985 3986 return nullptr; 3987 } 3988 3989 /// Canonicalize a shifty way to code absolute value to the more common pattern 3990 /// that uses negation and select. 3991 static Instruction *canonicalizeAbs(BinaryOperator &Xor, 3992 InstCombiner::BuilderTy &Builder) { 3993 assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction."); 3994 3995 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1. 3996 // We're relying on the fact that we only do this transform when the shift has 3997 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase 3998 // instructions). 3999 Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1); 4000 if (Op0->hasNUses(2)) 4001 std::swap(Op0, Op1); 4002 4003 Type *Ty = Xor.getType(); 4004 Value *A; 4005 const APInt *ShAmt; 4006 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 4007 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 4008 match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) { 4009 // Op1 = ashr i32 A, 31 ; smear the sign bit 4010 // xor (add A, Op1), Op1 ; add -1 and flip bits if negative 4011 // --> (A < 0) ? -A : A 4012 Value *IsNeg = Builder.CreateIsNeg(A); 4013 // Copy the nuw/nsw flags from the add to the negate. 4014 auto *Add = cast<BinaryOperator>(Op0); 4015 Value *NegA = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(), 4016 Add->hasNoSignedWrap()); 4017 return SelectInst::Create(IsNeg, NegA, A); 4018 } 4019 return nullptr; 4020 } 4021 4022 static bool canFreelyInvert(InstCombiner &IC, Value *Op, 4023 Instruction *IgnoredUser) { 4024 auto *I = dyn_cast<Instruction>(Op); 4025 return I && IC.isFreeToInvert(I, /*WillInvertAllUses=*/true) && 4026 InstCombiner::canFreelyInvertAllUsersOf(I, IgnoredUser); 4027 } 4028 4029 static Value *freelyInvert(InstCombinerImpl &IC, Value *Op, 4030 Instruction *IgnoredUser) { 4031 auto *I = cast<Instruction>(Op); 4032 IC.Builder.SetInsertPoint(&*I->getInsertionPointAfterDef()); 4033 Value *NotOp = IC.Builder.CreateNot(Op, Op->getName() + ".not"); 4034 Op->replaceUsesWithIf(NotOp, 4035 [NotOp](Use &U) { return U.getUser() != NotOp; }); 4036 IC.freelyInvertAllUsersOf(NotOp, IgnoredUser); 4037 return NotOp; 4038 } 4039 4040 // Transform 4041 // z = ~(x &/| y) 4042 // into: 4043 // z = ((~x) |/& (~y)) 4044 // iff both x and y are free to invert and all uses of z can be freely updated. 4045 bool InstCombinerImpl::sinkNotIntoLogicalOp(Instruction &I) { 4046 Value *Op0, *Op1; 4047 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1)))) 4048 return false; 4049 4050 // If this logic op has not been simplified yet, just bail out and let that 4051 // happen first. Otherwise, the code below may wrongly invert. 4052 if (Op0 == Op1) 4053 return false; 4054 4055 Instruction::BinaryOps NewOpc = 4056 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And; 4057 bool IsBinaryOp = isa<BinaryOperator>(I); 4058 4059 // Can our users be adapted? 4060 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 4061 return false; 4062 4063 // And can the operands be adapted? 4064 if (!canFreelyInvert(*this, Op0, &I) || !canFreelyInvert(*this, Op1, &I)) 4065 return false; 4066 4067 Op0 = freelyInvert(*this, Op0, &I); 4068 Op1 = freelyInvert(*this, Op1, &I); 4069 4070 Builder.SetInsertPoint(I.getInsertionPointAfterDef()); 4071 Value *NewLogicOp; 4072 if (IsBinaryOp) 4073 NewLogicOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not"); 4074 else 4075 NewLogicOp = 4076 Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not"); 4077 4078 replaceInstUsesWith(I, NewLogicOp); 4079 // We can not just create an outer `not`, it will most likely be immediately 4080 // folded back, reconstructing our initial pattern, and causing an 4081 // infinite combine loop, so immediately manually fold it away. 4082 freelyInvertAllUsersOf(NewLogicOp); 4083 return true; 4084 } 4085 4086 // Transform 4087 // z = (~x) &/| y 4088 // into: 4089 // z = ~(x |/& (~y)) 4090 // iff y is free to invert and all uses of z can be freely updated. 4091 bool InstCombinerImpl::sinkNotIntoOtherHandOfLogicalOp(Instruction &I) { 4092 Value *Op0, *Op1; 4093 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1)))) 4094 return false; 4095 Instruction::BinaryOps NewOpc = 4096 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And; 4097 bool IsBinaryOp = isa<BinaryOperator>(I); 4098 4099 Value *NotOp0 = nullptr; 4100 Value *NotOp1 = nullptr; 4101 Value **OpToInvert = nullptr; 4102 if (match(Op0, m_Not(m_Value(NotOp0))) && canFreelyInvert(*this, Op1, &I)) { 4103 Op0 = NotOp0; 4104 OpToInvert = &Op1; 4105 } else if (match(Op1, m_Not(m_Value(NotOp1))) && 4106 canFreelyInvert(*this, Op0, &I)) { 4107 Op1 = NotOp1; 4108 OpToInvert = &Op0; 4109 } else 4110 return false; 4111 4112 // And can our users be adapted? 4113 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 4114 return false; 4115 4116 *OpToInvert = freelyInvert(*this, *OpToInvert, &I); 4117 4118 Builder.SetInsertPoint(&*I.getInsertionPointAfterDef()); 4119 Value *NewBinOp; 4120 if (IsBinaryOp) 4121 NewBinOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not"); 4122 else 4123 NewBinOp = Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not"); 4124 replaceInstUsesWith(I, NewBinOp); 4125 // We can not just create an outer `not`, it will most likely be immediately 4126 // folded back, reconstructing our initial pattern, and causing an 4127 // infinite combine loop, so immediately manually fold it away. 4128 freelyInvertAllUsersOf(NewBinOp); 4129 return true; 4130 } 4131 4132 Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) { 4133 Value *NotOp; 4134 if (!match(&I, m_Not(m_Value(NotOp)))) 4135 return nullptr; 4136 4137 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand. 4138 // We must eliminate the and/or (one-use) for these transforms to not increase 4139 // the instruction count. 4140 // 4141 // ~(~X & Y) --> (X | ~Y) 4142 // ~(Y & ~X) --> (X | ~Y) 4143 // 4144 // Note: The logical matches do not check for the commuted patterns because 4145 // those are handled via SimplifySelectsFeedingBinaryOp(). 4146 Type *Ty = I.getType(); 4147 Value *X, *Y; 4148 if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) { 4149 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 4150 return BinaryOperator::CreateOr(X, NotY); 4151 } 4152 if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) { 4153 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 4154 return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY); 4155 } 4156 4157 // ~(~X | Y) --> (X & ~Y) 4158 // ~(Y | ~X) --> (X & ~Y) 4159 if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) { 4160 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 4161 return BinaryOperator::CreateAnd(X, NotY); 4162 } 4163 if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) { 4164 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 4165 return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty)); 4166 } 4167 4168 // Is this a 'not' (~) fed by a binary operator? 4169 BinaryOperator *NotVal; 4170 if (match(NotOp, m_BinOp(NotVal))) { 4171 // ~((-X) | Y) --> (X - 1) & (~Y) 4172 if (match(NotVal, 4173 m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) { 4174 Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty)); 4175 Value *NotY = Builder.CreateNot(Y); 4176 return BinaryOperator::CreateAnd(DecX, NotY); 4177 } 4178 4179 // ~(~X >>s Y) --> (X >>s Y) 4180 if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y)))) 4181 return BinaryOperator::CreateAShr(X, Y); 4182 4183 // Bit-hack form of a signbit test for iN type: 4184 // ~(X >>s (N - 1)) --> sext i1 (X > -1) to iN 4185 unsigned FullShift = Ty->getScalarSizeInBits() - 1; 4186 if (match(NotVal, m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))))) { 4187 Value *IsNotNeg = Builder.CreateIsNotNeg(X, "isnotneg"); 4188 return new SExtInst(IsNotNeg, Ty); 4189 } 4190 4191 // If we are inverting a right-shifted constant, we may be able to eliminate 4192 // the 'not' by inverting the constant and using the opposite shift type. 4193 // Canonicalization rules ensure that only a negative constant uses 'ashr', 4194 // but we must check that in case that transform has not fired yet. 4195 4196 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits) 4197 Constant *C; 4198 if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) && 4199 match(C, m_Negative())) { 4200 // We matched a negative constant, so propagating undef is unsafe. 4201 // Clamp undef elements to -1. 4202 Type *EltTy = Ty->getScalarType(); 4203 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy)); 4204 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y); 4205 } 4206 4207 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits) 4208 if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) && 4209 match(C, m_NonNegative())) { 4210 // We matched a non-negative constant, so propagating undef is unsafe. 4211 // Clamp undef elements to 0. 4212 Type *EltTy = Ty->getScalarType(); 4213 C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy)); 4214 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y); 4215 } 4216 4217 // ~(X + C) --> ~C - X 4218 if (match(NotVal, m_c_Add(m_Value(X), m_ImmConstant(C)))) 4219 return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X); 4220 4221 // ~(X - Y) --> ~X + Y 4222 // FIXME: is it really beneficial to sink the `not` here? 4223 if (match(NotVal, m_Sub(m_Value(X), m_Value(Y)))) 4224 if (isa<Constant>(X) || NotVal->hasOneUse()) 4225 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y); 4226 4227 // ~(~X + Y) --> X - Y 4228 if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y)))) 4229 return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y, 4230 NotVal); 4231 } 4232 4233 // not (cmp A, B) = !cmp A, B 4234 CmpInst::Predicate Pred; 4235 if (match(NotOp, m_Cmp(Pred, m_Value(), m_Value())) && 4236 (NotOp->hasOneUse() || 4237 InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(NotOp), 4238 /*IgnoredUser=*/nullptr))) { 4239 cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred)); 4240 freelyInvertAllUsersOf(NotOp); 4241 return &I; 4242 } 4243 4244 // Move a 'not' ahead of casts of a bool to enable logic reduction: 4245 // not (bitcast (sext i1 X)) --> bitcast (sext (not i1 X)) 4246 if (match(NotOp, m_OneUse(m_BitCast(m_OneUse(m_SExt(m_Value(X)))))) && X->getType()->isIntOrIntVectorTy(1)) { 4247 Type *SextTy = cast<BitCastOperator>(NotOp)->getSrcTy(); 4248 Value *NotX = Builder.CreateNot(X); 4249 Value *Sext = Builder.CreateSExt(NotX, SextTy); 4250 return CastInst::CreateBitOrPointerCast(Sext, Ty); 4251 } 4252 4253 if (auto *NotOpI = dyn_cast<Instruction>(NotOp)) 4254 if (sinkNotIntoLogicalOp(*NotOpI)) 4255 return &I; 4256 4257 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max: 4258 // ~min(~X, ~Y) --> max(X, Y) 4259 // ~max(~X, Y) --> min(X, ~Y) 4260 auto *II = dyn_cast<IntrinsicInst>(NotOp); 4261 if (II && II->hasOneUse()) { 4262 if (match(NotOp, m_MaxOrMin(m_Value(X), m_Value(Y))) && 4263 isFreeToInvert(X, X->hasOneUse()) && 4264 isFreeToInvert(Y, Y->hasOneUse())) { 4265 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 4266 Value *NotX = Builder.CreateNot(X); 4267 Value *NotY = Builder.CreateNot(Y); 4268 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, NotX, NotY); 4269 return replaceInstUsesWith(I, InvMaxMin); 4270 } 4271 if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) { 4272 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 4273 Value *NotY = Builder.CreateNot(Y); 4274 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY); 4275 return replaceInstUsesWith(I, InvMaxMin); 4276 } 4277 4278 if (II->getIntrinsicID() == Intrinsic::is_fpclass) { 4279 ConstantInt *ClassMask = cast<ConstantInt>(II->getArgOperand(1)); 4280 II->setArgOperand( 4281 1, ConstantInt::get(ClassMask->getType(), 4282 ~ClassMask->getZExtValue() & fcAllFlags)); 4283 return replaceInstUsesWith(I, II); 4284 } 4285 } 4286 4287 if (NotOp->hasOneUse()) { 4288 // Pull 'not' into operands of select if both operands are one-use compares 4289 // or one is one-use compare and the other one is a constant. 4290 // Inverting the predicates eliminates the 'not' operation. 4291 // Example: 4292 // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) --> 4293 // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?) 4294 // not (select ?, (cmp TPred, ?, ?), true --> 4295 // select ?, (cmp InvTPred, ?, ?), false 4296 if (auto *Sel = dyn_cast<SelectInst>(NotOp)) { 4297 Value *TV = Sel->getTrueValue(); 4298 Value *FV = Sel->getFalseValue(); 4299 auto *CmpT = dyn_cast<CmpInst>(TV); 4300 auto *CmpF = dyn_cast<CmpInst>(FV); 4301 bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV); 4302 bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV); 4303 if (InvertibleT && InvertibleF) { 4304 if (CmpT) 4305 CmpT->setPredicate(CmpT->getInversePredicate()); 4306 else 4307 Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV))); 4308 if (CmpF) 4309 CmpF->setPredicate(CmpF->getInversePredicate()); 4310 else 4311 Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV))); 4312 return replaceInstUsesWith(I, Sel); 4313 } 4314 } 4315 } 4316 4317 if (Instruction *NewXor = foldNotXor(I, Builder)) 4318 return NewXor; 4319 4320 return nullptr; 4321 } 4322 4323 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 4324 // here. We should standardize that construct where it is needed or choose some 4325 // other way to ensure that commutated variants of patterns are not missed. 4326 Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) { 4327 if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1), 4328 SQ.getWithInstruction(&I))) 4329 return replaceInstUsesWith(I, V); 4330 4331 if (SimplifyAssociativeOrCommutative(I)) 4332 return &I; 4333 4334 if (Instruction *X = foldVectorBinop(I)) 4335 return X; 4336 4337 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 4338 return Phi; 4339 4340 if (Instruction *NewXor = foldXorToXor(I, Builder)) 4341 return NewXor; 4342 4343 // (A&B)^(A&C) -> A&(B^C) etc 4344 if (Value *V = foldUsingDistributiveLaws(I)) 4345 return replaceInstUsesWith(I, V); 4346 4347 // See if we can simplify any instructions used by the instruction whose sole 4348 // purpose is to compute bits we don't care about. 4349 if (SimplifyDemandedInstructionBits(I)) 4350 return &I; 4351 4352 if (Value *V = SimplifyBSwap(I, Builder)) 4353 return replaceInstUsesWith(I, V); 4354 4355 if (Instruction *R = foldNot(I)) 4356 return R; 4357 4358 if (Instruction *R = foldBinOpShiftWithShift(I)) 4359 return R; 4360 4361 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M) 4362 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits 4363 // calls in there are unnecessary as SimplifyDemandedInstructionBits should 4364 // have already taken care of those cases. 4365 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4366 Value *M; 4367 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()), 4368 m_c_And(m_Deferred(M), m_Value())))) 4369 return BinaryOperator::CreateOr(Op0, Op1); 4370 4371 if (Instruction *Xor = visitMaskedMerge(I, Builder)) 4372 return Xor; 4373 4374 Value *X, *Y; 4375 Constant *C1; 4376 if (match(Op1, m_Constant(C1))) { 4377 Constant *C2; 4378 4379 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) && 4380 match(C1, m_ImmConstant())) { 4381 // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2) 4382 C2 = Constant::replaceUndefsWith( 4383 C2, Constant::getAllOnesValue(C2->getType()->getScalarType())); 4384 Value *And = Builder.CreateAnd( 4385 X, Constant::mergeUndefsWith(ConstantExpr::getNot(C2), C1)); 4386 return BinaryOperator::CreateXor( 4387 And, Constant::mergeUndefsWith(ConstantExpr::getXor(C1, C2), C1)); 4388 } 4389 4390 // Use DeMorgan and reassociation to eliminate a 'not' op. 4391 if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) { 4392 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1 4393 Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2)); 4394 return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1)); 4395 } 4396 if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) { 4397 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1 4398 Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2)); 4399 return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1)); 4400 } 4401 4402 // Convert xor ([trunc] (ashr X, BW-1)), C => 4403 // select(X >s -1, C, ~C) 4404 // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the 4405 // constant depending on whether this input is less than 0. 4406 const APInt *CA; 4407 if (match(Op0, m_OneUse(m_TruncOrSelf( 4408 m_AShr(m_Value(X), m_APIntAllowUndef(CA))))) && 4409 *CA == X->getType()->getScalarSizeInBits() - 1 && 4410 !match(C1, m_AllOnes())) { 4411 assert(!C1->isZeroValue() && "Unexpected xor with 0"); 4412 Value *IsNotNeg = Builder.CreateIsNotNeg(X); 4413 return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1)); 4414 } 4415 } 4416 4417 Type *Ty = I.getType(); 4418 { 4419 const APInt *RHSC; 4420 if (match(Op1, m_APInt(RHSC))) { 4421 Value *X; 4422 const APInt *C; 4423 // (C - X) ^ signmaskC --> (C + signmaskC) - X 4424 if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X)))) 4425 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X); 4426 4427 // (X + C) ^ signmaskC --> X + (C + signmaskC) 4428 if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C)))) 4429 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC)); 4430 4431 // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0 4432 if (match(Op0, m_Or(m_Value(X), m_APInt(C))) && 4433 MaskedValueIsZero(X, *C, 0, &I)) 4434 return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC)); 4435 4436 // When X is a power-of-two or zero and zero input is poison: 4437 // ctlz(i32 X) ^ 31 --> cttz(X) 4438 // cttz(i32 X) ^ 31 --> ctlz(X) 4439 auto *II = dyn_cast<IntrinsicInst>(Op0); 4440 if (II && II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) { 4441 Intrinsic::ID IID = II->getIntrinsicID(); 4442 if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) && 4443 match(II->getArgOperand(1), m_One()) && 4444 isKnownToBeAPowerOfTwo(II->getArgOperand(0), /*OrZero */ true)) { 4445 IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz; 4446 Function *F = Intrinsic::getDeclaration(II->getModule(), IID, Ty); 4447 return CallInst::Create(F, {II->getArgOperand(0), Builder.getTrue()}); 4448 } 4449 } 4450 4451 // If RHSC is inverting the remaining bits of shifted X, 4452 // canonicalize to a 'not' before the shift to help SCEV and codegen: 4453 // (X << C) ^ RHSC --> ~X << C 4454 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) && 4455 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) { 4456 Value *NotX = Builder.CreateNot(X); 4457 return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C)); 4458 } 4459 // (X >>u C) ^ RHSC --> ~X >>u C 4460 if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) && 4461 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) { 4462 Value *NotX = Builder.CreateNot(X); 4463 return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C)); 4464 } 4465 // TODO: We could handle 'ashr' here as well. That would be matching 4466 // a 'not' op and moving it before the shift. Doing that requires 4467 // preventing the inverse fold in canShiftBinOpWithConstantRHS(). 4468 } 4469 } 4470 4471 // FIXME: This should not be limited to scalar (pull into APInt match above). 4472 { 4473 Value *X; 4474 ConstantInt *C1, *C2, *C3; 4475 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3) 4476 if (match(Op1, m_ConstantInt(C3)) && 4477 match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)), 4478 m_ConstantInt(C2))) && 4479 Op0->hasOneUse()) { 4480 // fold (C1 >> C2) ^ C3 4481 APInt FoldConst = C1->getValue().lshr(C2->getValue()); 4482 FoldConst ^= C3->getValue(); 4483 // Prepare the two operands. 4484 auto *Opnd0 = Builder.CreateLShr(X, C2); 4485 Opnd0->takeName(Op0); 4486 return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst)); 4487 } 4488 } 4489 4490 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 4491 return FoldedLogic; 4492 4493 // Y ^ (X | Y) --> X & ~Y 4494 // Y ^ (Y | X) --> X & ~Y 4495 if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0))))) 4496 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0)); 4497 // (X | Y) ^ Y --> X & ~Y 4498 // (Y | X) ^ Y --> X & ~Y 4499 if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1))))) 4500 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1)); 4501 4502 // Y ^ (X & Y) --> ~X & Y 4503 // Y ^ (Y & X) --> ~X & Y 4504 if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0))))) 4505 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X)); 4506 // (X & Y) ^ Y --> ~X & Y 4507 // (Y & X) ^ Y --> ~X & Y 4508 // Canonical form is (X & C) ^ C; don't touch that. 4509 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must 4510 // be fixed to prefer that (otherwise we get infinite looping). 4511 if (!match(Op1, m_Constant()) && 4512 match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1))))) 4513 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X)); 4514 4515 Value *A, *B, *C; 4516 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants. 4517 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), 4518 m_OneUse(m_c_Or(m_Deferred(A), m_Value(C)))))) 4519 return BinaryOperator::CreateXor( 4520 Builder.CreateAnd(Builder.CreateNot(A), C), B); 4521 4522 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants. 4523 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), 4524 m_OneUse(m_c_Or(m_Deferred(B), m_Value(C)))))) 4525 return BinaryOperator::CreateXor( 4526 Builder.CreateAnd(Builder.CreateNot(B), C), A); 4527 4528 // (A & B) ^ (A ^ B) -> (A | B) 4529 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 4530 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B)))) 4531 return BinaryOperator::CreateOr(A, B); 4532 // (A ^ B) ^ (A & B) -> (A | B) 4533 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 4534 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 4535 return BinaryOperator::CreateOr(A, B); 4536 4537 // (A & ~B) ^ ~A -> ~(A & B) 4538 // (~B & A) ^ ~A -> ~(A & B) 4539 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 4540 match(Op1, m_Not(m_Specific(A)))) 4541 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); 4542 4543 // (~A & B) ^ A --> A | B -- There are 4 commuted variants. 4544 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A)))) 4545 return BinaryOperator::CreateOr(A, B); 4546 4547 // (~A | B) ^ A --> ~(A & B) 4548 if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B))))) 4549 return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B)); 4550 4551 // A ^ (~A | B) --> ~(A & B) 4552 if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B))))) 4553 return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B)); 4554 4555 // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants. 4556 // TODO: Loosen one-use restriction if common operand is a constant. 4557 Value *D; 4558 if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) && 4559 match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) { 4560 if (B == C || B == D) 4561 std::swap(A, B); 4562 if (A == C) 4563 std::swap(C, D); 4564 if (A == D) { 4565 Value *NotA = Builder.CreateNot(A); 4566 return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA); 4567 } 4568 } 4569 4570 // (A & B) ^ (A | C) --> A ? ~B : C -- There are 4 commuted variants. 4571 if (I.getType()->isIntOrIntVectorTy(1) && 4572 match(Op0, m_OneUse(m_LogicalAnd(m_Value(A), m_Value(B)))) && 4573 match(Op1, m_OneUse(m_LogicalOr(m_Value(C), m_Value(D))))) { 4574 bool NeedFreeze = isa<SelectInst>(Op0) && isa<SelectInst>(Op1) && B == D; 4575 if (B == C || B == D) 4576 std::swap(A, B); 4577 if (A == C) 4578 std::swap(C, D); 4579 if (A == D) { 4580 if (NeedFreeze) 4581 A = Builder.CreateFreeze(A); 4582 Value *NotB = Builder.CreateNot(B); 4583 return SelectInst::Create(A, NotB, C); 4584 } 4585 } 4586 4587 if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) 4588 if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) 4589 if (Value *V = foldXorOfICmps(LHS, RHS, I)) 4590 return replaceInstUsesWith(I, V); 4591 4592 if (Instruction *CastedXor = foldCastedBitwiseLogic(I)) 4593 return CastedXor; 4594 4595 if (Instruction *Abs = canonicalizeAbs(I, Builder)) 4596 return Abs; 4597 4598 // Otherwise, if all else failed, try to hoist the xor-by-constant: 4599 // (X ^ C) ^ Y --> (X ^ Y) ^ C 4600 // Just like we do in other places, we completely avoid the fold 4601 // for constantexprs, at least to avoid endless combine loop. 4602 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X), 4603 m_Unless(m_ConstantExpr())), 4604 m_ImmConstant(C1))), 4605 m_Value(Y)))) 4606 return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1); 4607 4608 if (Instruction *R = reassociateForUses(I, Builder)) 4609 return R; 4610 4611 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) 4612 return Canonicalized; 4613 4614 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1)) 4615 return Folded; 4616 4617 if (Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(I)) 4618 return Folded; 4619 4620 if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 4621 return Res; 4622 4623 return nullptr; 4624 } 4625