1 //===- InstCombineAndOrXor.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitAnd, visitOr, and visitXor functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/CmpInstAnalysis.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/IR/ConstantRange.h" 17 #include "llvm/IR/Intrinsics.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Transforms/InstCombine/InstCombiner.h" 20 #include "llvm/Transforms/Utils/Local.h" 21 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into 28 /// a four bit mask. 29 static unsigned getFCmpCode(FCmpInst::Predicate CC) { 30 assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE && 31 "Unexpected FCmp predicate!"); 32 // Take advantage of the bit pattern of FCmpInst::Predicate here. 33 // U L G E 34 static_assert(FCmpInst::FCMP_FALSE == 0, ""); // 0 0 0 0 35 static_assert(FCmpInst::FCMP_OEQ == 1, ""); // 0 0 0 1 36 static_assert(FCmpInst::FCMP_OGT == 2, ""); // 0 0 1 0 37 static_assert(FCmpInst::FCMP_OGE == 3, ""); // 0 0 1 1 38 static_assert(FCmpInst::FCMP_OLT == 4, ""); // 0 1 0 0 39 static_assert(FCmpInst::FCMP_OLE == 5, ""); // 0 1 0 1 40 static_assert(FCmpInst::FCMP_ONE == 6, ""); // 0 1 1 0 41 static_assert(FCmpInst::FCMP_ORD == 7, ""); // 0 1 1 1 42 static_assert(FCmpInst::FCMP_UNO == 8, ""); // 1 0 0 0 43 static_assert(FCmpInst::FCMP_UEQ == 9, ""); // 1 0 0 1 44 static_assert(FCmpInst::FCMP_UGT == 10, ""); // 1 0 1 0 45 static_assert(FCmpInst::FCMP_UGE == 11, ""); // 1 0 1 1 46 static_assert(FCmpInst::FCMP_ULT == 12, ""); // 1 1 0 0 47 static_assert(FCmpInst::FCMP_ULE == 13, ""); // 1 1 0 1 48 static_assert(FCmpInst::FCMP_UNE == 14, ""); // 1 1 1 0 49 static_assert(FCmpInst::FCMP_TRUE == 15, ""); // 1 1 1 1 50 return CC; 51 } 52 53 /// This is the complement of getICmpCode, which turns an opcode and two 54 /// operands into either a constant true or false, or a brand new ICmp 55 /// instruction. The sign is passed in to determine which kind of predicate to 56 /// use in the new icmp instruction. 57 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS, 58 InstCombiner::BuilderTy &Builder) { 59 ICmpInst::Predicate NewPred; 60 if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred)) 61 return TorF; 62 return Builder.CreateICmp(NewPred, LHS, RHS); 63 } 64 65 /// This is the complement of getFCmpCode, which turns an opcode and two 66 /// operands into either a FCmp instruction, or a true/false constant. 67 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS, 68 InstCombiner::BuilderTy &Builder) { 69 const auto Pred = static_cast<FCmpInst::Predicate>(Code); 70 assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE && 71 "Unexpected FCmp predicate!"); 72 if (Pred == FCmpInst::FCMP_FALSE) 73 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 74 if (Pred == FCmpInst::FCMP_TRUE) 75 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1); 76 return Builder.CreateFCmp(Pred, LHS, RHS); 77 } 78 79 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or 80 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B)) 81 /// \param I Binary operator to transform. 82 /// \return Pointer to node that must replace the original binary operator, or 83 /// null pointer if no transformation was made. 84 static Value *SimplifyBSwap(BinaryOperator &I, 85 InstCombiner::BuilderTy &Builder) { 86 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying"); 87 88 Value *OldLHS = I.getOperand(0); 89 Value *OldRHS = I.getOperand(1); 90 91 Value *NewLHS; 92 if (!match(OldLHS, m_BSwap(m_Value(NewLHS)))) 93 return nullptr; 94 95 Value *NewRHS; 96 const APInt *C; 97 98 if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) { 99 // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) ) 100 if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse()) 101 return nullptr; 102 // NewRHS initialized by the matcher. 103 } else if (match(OldRHS, m_APInt(C))) { 104 // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) ) 105 if (!OldLHS->hasOneUse()) 106 return nullptr; 107 NewRHS = ConstantInt::get(I.getType(), C->byteSwap()); 108 } else 109 return nullptr; 110 111 Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS); 112 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, 113 I.getType()); 114 return Builder.CreateCall(F, BinOp); 115 } 116 117 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise 118 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates 119 /// whether to treat V, Lo, and Hi as signed or not. 120 Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo, 121 const APInt &Hi, bool isSigned, 122 bool Inside) { 123 assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) && 124 "Lo is not < Hi in range emission code!"); 125 126 Type *Ty = V->getType(); 127 128 // V >= Min && V < Hi --> V < Hi 129 // V < Min || V >= Hi --> V >= Hi 130 ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 131 if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) { 132 Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred; 133 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi)); 134 } 135 136 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo 137 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo 138 Value *VMinusLo = 139 Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off"); 140 Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo); 141 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo); 142 } 143 144 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns 145 /// that can be simplified. 146 /// One of A and B is considered the mask. The other is the value. This is 147 /// described as the "AMask" or "BMask" part of the enum. If the enum contains 148 /// only "Mask", then both A and B can be considered masks. If A is the mask, 149 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0. 150 /// If both A and C are constants, this proof is also easy. 151 /// For the following explanations, we assume that A is the mask. 152 /// 153 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all 154 /// bits of A are set in B. 155 /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes 156 /// 157 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all 158 /// bits of A are cleared in B. 159 /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes 160 /// 161 /// "Mixed" declares that (A & B) == C and C might or might not contain any 162 /// number of one bits and zero bits. 163 /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed 164 /// 165 /// "Not" means that in above descriptions "==" should be replaced by "!=". 166 /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes 167 /// 168 /// If the mask A contains a single bit, then the following is equivalent: 169 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0) 170 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0) 171 enum MaskedICmpType { 172 AMask_AllOnes = 1, 173 AMask_NotAllOnes = 2, 174 BMask_AllOnes = 4, 175 BMask_NotAllOnes = 8, 176 Mask_AllZeros = 16, 177 Mask_NotAllZeros = 32, 178 AMask_Mixed = 64, 179 AMask_NotMixed = 128, 180 BMask_Mixed = 256, 181 BMask_NotMixed = 512 182 }; 183 184 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) 185 /// satisfies. 186 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, 187 ICmpInst::Predicate Pred) { 188 ConstantInt *ACst = dyn_cast<ConstantInt>(A); 189 ConstantInt *BCst = dyn_cast<ConstantInt>(B); 190 ConstantInt *CCst = dyn_cast<ConstantInt>(C); 191 bool IsEq = (Pred == ICmpInst::ICMP_EQ); 192 bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2()); 193 bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2()); 194 unsigned MaskVal = 0; 195 if (CCst && CCst->isZero()) { 196 // if C is zero, then both A and B qualify as mask 197 MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed) 198 : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed)); 199 if (IsAPow2) 200 MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed) 201 : (AMask_AllOnes | AMask_Mixed)); 202 if (IsBPow2) 203 MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed) 204 : (BMask_AllOnes | BMask_Mixed)); 205 return MaskVal; 206 } 207 208 if (A == C) { 209 MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed) 210 : (AMask_NotAllOnes | AMask_NotMixed)); 211 if (IsAPow2) 212 MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed) 213 : (Mask_AllZeros | AMask_Mixed)); 214 } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) { 215 MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed); 216 } 217 218 if (B == C) { 219 MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed) 220 : (BMask_NotAllOnes | BMask_NotMixed)); 221 if (IsBPow2) 222 MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed) 223 : (Mask_AllZeros | BMask_Mixed)); 224 } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) { 225 MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed); 226 } 227 228 return MaskVal; 229 } 230 231 /// Convert an analysis of a masked ICmp into its equivalent if all boolean 232 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=) 233 /// is adjacent to the corresponding normal flag (recording ==), this just 234 /// involves swapping those bits over. 235 static unsigned conjugateICmpMask(unsigned Mask) { 236 unsigned NewMask; 237 NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros | 238 AMask_Mixed | BMask_Mixed)) 239 << 1; 240 241 NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros | 242 AMask_NotMixed | BMask_NotMixed)) 243 >> 1; 244 245 return NewMask; 246 } 247 248 // Adapts the external decomposeBitTestICmp for local use. 249 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred, 250 Value *&X, Value *&Y, Value *&Z) { 251 APInt Mask; 252 if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask)) 253 return false; 254 255 Y = ConstantInt::get(X->getType(), Mask); 256 Z = ConstantInt::get(X->getType(), 0); 257 return true; 258 } 259 260 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E). 261 /// Return the pattern classes (from MaskedICmpType) for the left hand side and 262 /// the right hand side as a pair. 263 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL 264 /// and PredR are their predicates, respectively. 265 static 266 Optional<std::pair<unsigned, unsigned>> 267 getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C, 268 Value *&D, Value *&E, ICmpInst *LHS, 269 ICmpInst *RHS, 270 ICmpInst::Predicate &PredL, 271 ICmpInst::Predicate &PredR) { 272 // vectors are not (yet?) supported. Don't support pointers either. 273 if (!LHS->getOperand(0)->getType()->isIntegerTy() || 274 !RHS->getOperand(0)->getType()->isIntegerTy()) 275 return None; 276 277 // Here comes the tricky part: 278 // LHS might be of the form L11 & L12 == X, X == L21 & L22, 279 // and L11 & L12 == L21 & L22. The same goes for RHS. 280 // Now we must find those components L** and R**, that are equal, so 281 // that we can extract the parameters A, B, C, D, and E for the canonical 282 // above. 283 Value *L1 = LHS->getOperand(0); 284 Value *L2 = LHS->getOperand(1); 285 Value *L11, *L12, *L21, *L22; 286 // Check whether the icmp can be decomposed into a bit test. 287 if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) { 288 L21 = L22 = L1 = nullptr; 289 } else { 290 // Look for ANDs in the LHS icmp. 291 if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) { 292 // Any icmp can be viewed as being trivially masked; if it allows us to 293 // remove one, it's worth it. 294 L11 = L1; 295 L12 = Constant::getAllOnesValue(L1->getType()); 296 } 297 298 if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) { 299 L21 = L2; 300 L22 = Constant::getAllOnesValue(L2->getType()); 301 } 302 } 303 304 // Bail if LHS was a icmp that can't be decomposed into an equality. 305 if (!ICmpInst::isEquality(PredL)) 306 return None; 307 308 Value *R1 = RHS->getOperand(0); 309 Value *R2 = RHS->getOperand(1); 310 Value *R11, *R12; 311 bool Ok = false; 312 if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) { 313 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 314 A = R11; 315 D = R12; 316 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 317 A = R12; 318 D = R11; 319 } else { 320 return None; 321 } 322 E = R2; 323 R1 = nullptr; 324 Ok = true; 325 } else { 326 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) { 327 // As before, model no mask as a trivial mask if it'll let us do an 328 // optimization. 329 R11 = R1; 330 R12 = Constant::getAllOnesValue(R1->getType()); 331 } 332 333 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 334 A = R11; 335 D = R12; 336 E = R2; 337 Ok = true; 338 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 339 A = R12; 340 D = R11; 341 E = R2; 342 Ok = true; 343 } 344 } 345 346 // Bail if RHS was a icmp that can't be decomposed into an equality. 347 if (!ICmpInst::isEquality(PredR)) 348 return None; 349 350 // Look for ANDs on the right side of the RHS icmp. 351 if (!Ok) { 352 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) { 353 R11 = R2; 354 R12 = Constant::getAllOnesValue(R2->getType()); 355 } 356 357 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 358 A = R11; 359 D = R12; 360 E = R1; 361 Ok = true; 362 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 363 A = R12; 364 D = R11; 365 E = R1; 366 Ok = true; 367 } else { 368 return None; 369 } 370 } 371 if (!Ok) 372 return None; 373 374 if (L11 == A) { 375 B = L12; 376 C = L2; 377 } else if (L12 == A) { 378 B = L11; 379 C = L2; 380 } else if (L21 == A) { 381 B = L22; 382 C = L1; 383 } else if (L22 == A) { 384 B = L21; 385 C = L1; 386 } 387 388 unsigned LeftType = getMaskedICmpType(A, B, C, PredL); 389 unsigned RightType = getMaskedICmpType(A, D, E, PredR); 390 return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType)); 391 } 392 393 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single 394 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros 395 /// and the right hand side is of type BMask_Mixed. For example, 396 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8). 397 static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 398 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C, 399 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, 400 InstCombiner::BuilderTy &Builder) { 401 // We are given the canonical form: 402 // (icmp ne (A & B), 0) & (icmp eq (A & D), E). 403 // where D & E == E. 404 // 405 // If IsAnd is false, we get it in negated form: 406 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) -> 407 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)). 408 // 409 // We currently handle the case of B, C, D, E are constant. 410 // 411 ConstantInt *BCst, *CCst, *DCst, *ECst; 412 if (!match(B, m_ConstantInt(BCst)) || !match(C, m_ConstantInt(CCst)) || 413 !match(D, m_ConstantInt(DCst)) || !match(E, m_ConstantInt(ECst))) 414 return nullptr; 415 416 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 417 418 // Update E to the canonical form when D is a power of two and RHS is 419 // canonicalized as, 420 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or 421 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0). 422 if (PredR != NewCC) 423 ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst)); 424 425 // If B or D is zero, skip because if LHS or RHS can be trivially folded by 426 // other folding rules and this pattern won't apply any more. 427 if (BCst->getValue() == 0 || DCst->getValue() == 0) 428 return nullptr; 429 430 // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't 431 // deduce anything from it. 432 // For example, 433 // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding. 434 if ((BCst->getValue() & DCst->getValue()) == 0) 435 return nullptr; 436 437 // If the following two conditions are met: 438 // 439 // 1. mask B covers only a single bit that's not covered by mask D, that is, 440 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of 441 // B and D has only one bit set) and, 442 // 443 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other 444 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0 445 // 446 // then that single bit in B must be one and thus the whole expression can be 447 // folded to 448 // (A & (B | D)) == (B & (B ^ D)) | E. 449 // 450 // For example, 451 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9) 452 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8) 453 if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) && 454 (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) { 455 APInt BorD = BCst->getValue() | DCst->getValue(); 456 APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) | 457 ECst->getValue(); 458 Value *NewMask = ConstantInt::get(BCst->getType(), BorD); 459 Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE); 460 Value *NewAnd = Builder.CreateAnd(A, NewMask); 461 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue); 462 } 463 464 auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) { 465 return (C1->getValue() & C2->getValue()) == C1->getValue(); 466 }; 467 auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) { 468 return (C1->getValue() & C2->getValue()) == C2->getValue(); 469 }; 470 471 // In the following, we consider only the cases where B is a superset of D, B 472 // is a subset of D, or B == D because otherwise there's at least one bit 473 // covered by B but not D, in which case we can't deduce much from it, so 474 // no folding (aside from the single must-be-one bit case right above.) 475 // For example, 476 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding. 477 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst)) 478 return nullptr; 479 480 // At this point, either B is a superset of D, B is a subset of D or B == D. 481 482 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict 483 // and the whole expression becomes false (or true if negated), otherwise, no 484 // folding. 485 // For example, 486 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false. 487 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding. 488 if (ECst->isZero()) { 489 if (IsSubSetOrEqual(BCst, DCst)) 490 return ConstantInt::get(LHS->getType(), !IsAnd); 491 return nullptr; 492 } 493 494 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B == 495 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is 496 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes 497 // RHS. For example, 498 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 499 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 500 if (IsSuperSetOrEqual(BCst, DCst)) 501 return RHS; 502 // Otherwise, B is a subset of D. If B and E have a common bit set, 503 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example. 504 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 505 assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code"); 506 if ((BCst->getValue() & ECst->getValue()) != 0) 507 return RHS; 508 // Otherwise, LHS and RHS contradict and the whole expression becomes false 509 // (or true if negated.) For example, 510 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false. 511 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false. 512 return ConstantInt::get(LHS->getType(), !IsAnd); 513 } 514 515 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single 516 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side 517 /// aren't of the common mask pattern type. 518 static Value *foldLogOpOfMaskedICmpsAsymmetric( 519 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C, 520 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, 521 unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) { 522 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 523 "Expected equality predicates for masked type of icmps."); 524 // Handle Mask_NotAllZeros-BMask_Mixed cases. 525 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or 526 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E) 527 // which gets swapped to 528 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C). 529 if (!IsAnd) { 530 LHSMask = conjugateICmpMask(LHSMask); 531 RHSMask = conjugateICmpMask(RHSMask); 532 } 533 if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) { 534 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 535 LHS, RHS, IsAnd, A, B, C, D, E, 536 PredL, PredR, Builder)) { 537 return V; 538 } 539 } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) { 540 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 541 RHS, LHS, IsAnd, A, D, E, B, C, 542 PredR, PredL, Builder)) { 543 return V; 544 } 545 } 546 return nullptr; 547 } 548 549 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) 550 /// into a single (icmp(A & X) ==/!= Y). 551 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 552 InstCombiner::BuilderTy &Builder) { 553 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; 554 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 555 Optional<std::pair<unsigned, unsigned>> MaskPair = 556 getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR); 557 if (!MaskPair) 558 return nullptr; 559 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 560 "Expected equality predicates for masked type of icmps."); 561 unsigned LHSMask = MaskPair->first; 562 unsigned RHSMask = MaskPair->second; 563 unsigned Mask = LHSMask & RHSMask; 564 if (Mask == 0) { 565 // Even if the two sides don't share a common pattern, check if folding can 566 // still happen. 567 if (Value *V = foldLogOpOfMaskedICmpsAsymmetric( 568 LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask, 569 Builder)) 570 return V; 571 return nullptr; 572 } 573 574 // In full generality: 575 // (icmp (A & B) Op C) | (icmp (A & D) Op E) 576 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] 577 // 578 // If the latter can be converted into (icmp (A & X) Op Y) then the former is 579 // equivalent to (icmp (A & X) !Op Y). 580 // 581 // Therefore, we can pretend for the rest of this function that we're dealing 582 // with the conjunction, provided we flip the sense of any comparisons (both 583 // input and output). 584 585 // In most cases we're going to produce an EQ for the "&&" case. 586 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 587 if (!IsAnd) { 588 // Convert the masking analysis into its equivalent with negated 589 // comparisons. 590 Mask = conjugateICmpMask(Mask); 591 } 592 593 if (Mask & Mask_AllZeros) { 594 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) 595 // -> (icmp eq (A & (B|D)), 0) 596 Value *NewOr = Builder.CreateOr(B, D); 597 Value *NewAnd = Builder.CreateAnd(A, NewOr); 598 // We can't use C as zero because we might actually handle 599 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 600 // with B and D, having a single bit set. 601 Value *Zero = Constant::getNullValue(A->getType()); 602 return Builder.CreateICmp(NewCC, NewAnd, Zero); 603 } 604 if (Mask & BMask_AllOnes) { 605 // (icmp eq (A & B), B) & (icmp eq (A & D), D) 606 // -> (icmp eq (A & (B|D)), (B|D)) 607 Value *NewOr = Builder.CreateOr(B, D); 608 Value *NewAnd = Builder.CreateAnd(A, NewOr); 609 return Builder.CreateICmp(NewCC, NewAnd, NewOr); 610 } 611 if (Mask & AMask_AllOnes) { 612 // (icmp eq (A & B), A) & (icmp eq (A & D), A) 613 // -> (icmp eq (A & (B&D)), A) 614 Value *NewAnd1 = Builder.CreateAnd(B, D); 615 Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1); 616 return Builder.CreateICmp(NewCC, NewAnd2, A); 617 } 618 619 // Remaining cases assume at least that B and D are constant, and depend on 620 // their actual values. This isn't strictly necessary, just a "handle the 621 // easy cases for now" decision. 622 ConstantInt *BCst, *DCst; 623 if (!match(B, m_ConstantInt(BCst)) || !match(D, m_ConstantInt(DCst))) 624 return nullptr; 625 626 if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) { 627 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and 628 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 629 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) 630 // Only valid if one of the masks is a superset of the other (check "B&D" is 631 // the same as either B or D). 632 APInt NewMask = BCst->getValue() & DCst->getValue(); 633 634 if (NewMask == BCst->getValue()) 635 return LHS; 636 else if (NewMask == DCst->getValue()) 637 return RHS; 638 } 639 640 if (Mask & AMask_NotAllOnes) { 641 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 642 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A) 643 // Only valid if one of the masks is a superset of the other (check "B|D" is 644 // the same as either B or D). 645 APInt NewMask = BCst->getValue() | DCst->getValue(); 646 647 if (NewMask == BCst->getValue()) 648 return LHS; 649 else if (NewMask == DCst->getValue()) 650 return RHS; 651 } 652 653 if (Mask & BMask_Mixed) { 654 // (icmp eq (A & B), C) & (icmp eq (A & D), E) 655 // We already know that B & C == C && D & E == E. 656 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of 657 // C and E, which are shared by both the mask B and the mask D, don't 658 // contradict, then we can transform to 659 // -> (icmp eq (A & (B|D)), (C|E)) 660 // Currently, we only handle the case of B, C, D, and E being constant. 661 // We can't simply use C and E because we might actually handle 662 // (icmp ne (A & B), B) & (icmp eq (A & D), D) 663 // with B and D, having a single bit set. 664 ConstantInt *CCst, *ECst; 665 if (!match(C, m_ConstantInt(CCst)) || !match(E, m_ConstantInt(ECst))) 666 return nullptr; 667 if (PredL != NewCC) 668 CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst)); 669 if (PredR != NewCC) 670 ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst)); 671 672 // If there is a conflict, we should actually return a false for the 673 // whole construct. 674 if (((BCst->getValue() & DCst->getValue()) & 675 (CCst->getValue() ^ ECst->getValue())).getBoolValue()) 676 return ConstantInt::get(LHS->getType(), !IsAnd); 677 678 Value *NewOr1 = Builder.CreateOr(B, D); 679 Value *NewOr2 = ConstantExpr::getOr(CCst, ECst); 680 Value *NewAnd = Builder.CreateAnd(A, NewOr1); 681 return Builder.CreateICmp(NewCC, NewAnd, NewOr2); 682 } 683 684 return nullptr; 685 } 686 687 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp. 688 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 689 /// If \p Inverted is true then the check is for the inverted range, e.g. 690 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 691 Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, 692 bool Inverted) { 693 // Check the lower range comparison, e.g. x >= 0 694 // InstCombine already ensured that if there is a constant it's on the RHS. 695 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1)); 696 if (!RangeStart) 697 return nullptr; 698 699 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() : 700 Cmp0->getPredicate()); 701 702 // Accept x > -1 or x >= 0 (after potentially inverting the predicate). 703 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) || 704 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero()))) 705 return nullptr; 706 707 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() : 708 Cmp1->getPredicate()); 709 710 Value *Input = Cmp0->getOperand(0); 711 Value *RangeEnd; 712 if (Cmp1->getOperand(0) == Input) { 713 // For the upper range compare we have: icmp x, n 714 RangeEnd = Cmp1->getOperand(1); 715 } else if (Cmp1->getOperand(1) == Input) { 716 // For the upper range compare we have: icmp n, x 717 RangeEnd = Cmp1->getOperand(0); 718 Pred1 = ICmpInst::getSwappedPredicate(Pred1); 719 } else { 720 return nullptr; 721 } 722 723 // Check the upper range comparison, e.g. x < n 724 ICmpInst::Predicate NewPred; 725 switch (Pred1) { 726 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break; 727 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break; 728 default: return nullptr; 729 } 730 731 // This simplification is only valid if the upper range is not negative. 732 KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1); 733 if (!Known.isNonNegative()) 734 return nullptr; 735 736 if (Inverted) 737 NewPred = ICmpInst::getInversePredicate(NewPred); 738 739 return Builder.CreateICmp(NewPred, Input, RangeEnd); 740 } 741 742 static Value * 743 foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS, 744 bool JoinedByAnd, 745 InstCombiner::BuilderTy &Builder) { 746 Value *X = LHS->getOperand(0); 747 if (X != RHS->getOperand(0)) 748 return nullptr; 749 750 const APInt *C1, *C2; 751 if (!match(LHS->getOperand(1), m_APInt(C1)) || 752 !match(RHS->getOperand(1), m_APInt(C2))) 753 return nullptr; 754 755 // We only handle (X != C1 && X != C2) and (X == C1 || X == C2). 756 ICmpInst::Predicate Pred = LHS->getPredicate(); 757 if (Pred != RHS->getPredicate()) 758 return nullptr; 759 if (JoinedByAnd && Pred != ICmpInst::ICMP_NE) 760 return nullptr; 761 if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ) 762 return nullptr; 763 764 // The larger unsigned constant goes on the right. 765 if (C1->ugt(*C2)) 766 std::swap(C1, C2); 767 768 APInt Xor = *C1 ^ *C2; 769 if (Xor.isPowerOf2()) { 770 // If LHSC and RHSC differ by only one bit, then set that bit in X and 771 // compare against the larger constant: 772 // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2 773 // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2 774 // We choose an 'or' with a Pow2 constant rather than the inverse mask with 775 // 'and' because that may lead to smaller codegen from a smaller constant. 776 Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor)); 777 return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2)); 778 } 779 780 // Special case: get the ordering right when the values wrap around zero. 781 // Ie, we assumed the constants were unsigned when swapping earlier. 782 if (C1->isNullValue() && C2->isAllOnesValue()) 783 std::swap(C1, C2); 784 785 if (*C1 == *C2 - 1) { 786 // (X == 13 || X == 14) --> X - 13 <=u 1 787 // (X != 13 && X != 14) --> X - 13 >u 1 788 // An 'add' is the canonical IR form, so favor that over a 'sub'. 789 Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1))); 790 auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE; 791 return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1)); 792 } 793 794 return nullptr; 795 } 796 797 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 798 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) 799 Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, 800 ICmpInst *RHS, 801 Instruction *CxtI, 802 bool IsAnd, 803 bool IsLogical) { 804 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 805 if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred) 806 return nullptr; 807 808 if (!match(LHS->getOperand(1), m_Zero()) || 809 !match(RHS->getOperand(1), m_Zero())) 810 return nullptr; 811 812 Value *L1, *L2, *R1, *R2; 813 if (match(LHS->getOperand(0), m_And(m_Value(L1), m_Value(L2))) && 814 match(RHS->getOperand(0), m_And(m_Value(R1), m_Value(R2)))) { 815 if (L1 == R2 || L2 == R2) 816 std::swap(R1, R2); 817 if (L2 == R1) 818 std::swap(L1, L2); 819 820 if (L1 == R1 && 821 isKnownToBeAPowerOfTwo(L2, false, 0, CxtI) && 822 isKnownToBeAPowerOfTwo(R2, false, 0, CxtI)) { 823 // If this is a logical and/or, then we must prevent propagation of a 824 // poison value from the RHS by inserting freeze. 825 if (IsLogical) 826 R2 = Builder.CreateFreeze(R2); 827 Value *Mask = Builder.CreateOr(L2, R2); 828 Value *Masked = Builder.CreateAnd(L1, Mask); 829 auto NewPred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 830 return Builder.CreateICmp(NewPred, Masked, Mask); 831 } 832 } 833 834 return nullptr; 835 } 836 837 /// General pattern: 838 /// X & Y 839 /// 840 /// Where Y is checking that all the high bits (covered by a mask 4294967168) 841 /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0 842 /// Pattern can be one of: 843 /// %t = add i32 %arg, 128 844 /// %r = icmp ult i32 %t, 256 845 /// Or 846 /// %t0 = shl i32 %arg, 24 847 /// %t1 = ashr i32 %t0, 24 848 /// %r = icmp eq i32 %t1, %arg 849 /// Or 850 /// %t0 = trunc i32 %arg to i8 851 /// %t1 = sext i8 %t0 to i32 852 /// %r = icmp eq i32 %t1, %arg 853 /// This pattern is a signed truncation check. 854 /// 855 /// And X is checking that some bit in that same mask is zero. 856 /// I.e. can be one of: 857 /// %r = icmp sgt i32 %arg, -1 858 /// Or 859 /// %t = and i32 %arg, 2147483648 860 /// %r = icmp eq i32 %t, 0 861 /// 862 /// Since we are checking that all the bits in that mask are the same, 863 /// and a particular bit is zero, what we are really checking is that all the 864 /// masked bits are zero. 865 /// So this should be transformed to: 866 /// %r = icmp ult i32 %arg, 128 867 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1, 868 Instruction &CxtI, 869 InstCombiner::BuilderTy &Builder) { 870 assert(CxtI.getOpcode() == Instruction::And); 871 872 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two) 873 auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X, 874 APInt &SignBitMask) -> bool { 875 CmpInst::Predicate Pred; 876 const APInt *I01, *I1; // powers of two; I1 == I01 << 1 877 if (!(match(ICmp, 878 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) && 879 Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1)) 880 return false; 881 // Which bit is the new sign bit as per the 'signed truncation' pattern? 882 SignBitMask = *I01; 883 return true; 884 }; 885 886 // One icmp needs to be 'signed truncation check'. 887 // We need to match this first, else we will mismatch commutative cases. 888 Value *X1; 889 APInt HighestBit; 890 ICmpInst *OtherICmp; 891 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit)) 892 OtherICmp = ICmp0; 893 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit)) 894 OtherICmp = ICmp1; 895 else 896 return nullptr; 897 898 assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)"); 899 900 // Try to match/decompose into: icmp eq (X & Mask), 0 901 auto tryToDecompose = [](ICmpInst *ICmp, Value *&X, 902 APInt &UnsetBitsMask) -> bool { 903 CmpInst::Predicate Pred = ICmp->getPredicate(); 904 // Can it be decomposed into icmp eq (X & Mask), 0 ? 905 if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1), 906 Pred, X, UnsetBitsMask, 907 /*LookThroughTrunc=*/false) && 908 Pred == ICmpInst::ICMP_EQ) 909 return true; 910 // Is it icmp eq (X & Mask), 0 already? 911 const APInt *Mask; 912 if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) && 913 Pred == ICmpInst::ICMP_EQ) { 914 UnsetBitsMask = *Mask; 915 return true; 916 } 917 return false; 918 }; 919 920 // And the other icmp needs to be decomposable into a bit test. 921 Value *X0; 922 APInt UnsetBitsMask; 923 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask)) 924 return nullptr; 925 926 assert(!UnsetBitsMask.isNullValue() && "empty mask makes no sense."); 927 928 // Are they working on the same value? 929 Value *X; 930 if (X1 == X0) { 931 // Ok as is. 932 X = X1; 933 } else if (match(X0, m_Trunc(m_Specific(X1)))) { 934 UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits()); 935 X = X1; 936 } else 937 return nullptr; 938 939 // So which bits should be uniform as per the 'signed truncation check'? 940 // (all the bits starting with (i.e. including) HighestBit) 941 APInt SignBitsMask = ~(HighestBit - 1U); 942 943 // UnsetBitsMask must have some common bits with SignBitsMask, 944 if (!UnsetBitsMask.intersects(SignBitsMask)) 945 return nullptr; 946 947 // Does UnsetBitsMask contain any bits outside of SignBitsMask? 948 if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) { 949 APInt OtherHighestBit = (~UnsetBitsMask) + 1U; 950 if (!OtherHighestBit.isPowerOf2()) 951 return nullptr; 952 HighestBit = APIntOps::umin(HighestBit, OtherHighestBit); 953 } 954 // Else, if it does not, then all is ok as-is. 955 956 // %r = icmp ult %X, SignBit 957 return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit), 958 CxtI.getName() + ".simplified"); 959 } 960 961 /// Reduce a pair of compares that check if a value has exactly 1 bit set. 962 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, 963 InstCombiner::BuilderTy &Builder) { 964 // Handle 'and' / 'or' commutation: make the equality check the first operand. 965 if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE) 966 std::swap(Cmp0, Cmp1); 967 else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ) 968 std::swap(Cmp0, Cmp1); 969 970 // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1 971 CmpInst::Predicate Pred0, Pred1; 972 Value *X; 973 if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && 974 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), 975 m_SpecificInt(2))) && 976 Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) { 977 Value *CtPop = Cmp1->getOperand(0); 978 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1)); 979 } 980 // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1 981 if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && 982 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), 983 m_SpecificInt(1))) && 984 Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) { 985 Value *CtPop = Cmp1->getOperand(0); 986 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1)); 987 } 988 return nullptr; 989 } 990 991 /// Commuted variants are assumed to be handled by calling this function again 992 /// with the parameters swapped. 993 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp, 994 ICmpInst *UnsignedICmp, bool IsAnd, 995 const SimplifyQuery &Q, 996 InstCombiner::BuilderTy &Builder) { 997 Value *ZeroCmpOp; 998 ICmpInst::Predicate EqPred; 999 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) || 1000 !ICmpInst::isEquality(EqPred)) 1001 return nullptr; 1002 1003 auto IsKnownNonZero = [&](Value *V) { 1004 return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1005 }; 1006 1007 ICmpInst::Predicate UnsignedPred; 1008 1009 Value *A, *B; 1010 if (match(UnsignedICmp, 1011 m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) && 1012 match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) && 1013 (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) { 1014 auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) { 1015 if (!IsKnownNonZero(NonZero)) 1016 std::swap(NonZero, Other); 1017 return IsKnownNonZero(NonZero); 1018 }; 1019 1020 // Given ZeroCmpOp = (A + B) 1021 // ZeroCmpOp <= A && ZeroCmpOp != 0 --> (0-B) < A 1022 // ZeroCmpOp > A || ZeroCmpOp == 0 --> (0-B) >= A 1023 // 1024 // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff 1025 // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff 1026 // with X being the value (A/B) that is known to be non-zero, 1027 // and Y being remaining value. 1028 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1029 IsAnd) 1030 return Builder.CreateICmpULT(Builder.CreateNeg(B), A); 1031 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE && 1032 IsAnd && GetKnownNonZeroAndOther(B, A)) 1033 return Builder.CreateICmpULT(Builder.CreateNeg(B), A); 1034 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1035 !IsAnd) 1036 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A); 1037 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ && 1038 !IsAnd && GetKnownNonZeroAndOther(B, A)) 1039 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A); 1040 } 1041 1042 Value *Base, *Offset; 1043 if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset)))) 1044 return nullptr; 1045 1046 if (!match(UnsignedICmp, 1047 m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) || 1048 !ICmpInst::isUnsigned(UnsignedPred)) 1049 return nullptr; 1050 1051 // Base >=/> Offset && (Base - Offset) != 0 <--> Base > Offset 1052 // (no overflow and not null) 1053 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1054 UnsignedPred == ICmpInst::ICMP_UGT) && 1055 EqPred == ICmpInst::ICMP_NE && IsAnd) 1056 return Builder.CreateICmpUGT(Base, Offset); 1057 1058 // Base <=/< Offset || (Base - Offset) == 0 <--> Base <= Offset 1059 // (overflow or null) 1060 if ((UnsignedPred == ICmpInst::ICMP_ULE || 1061 UnsignedPred == ICmpInst::ICMP_ULT) && 1062 EqPred == ICmpInst::ICMP_EQ && !IsAnd) 1063 return Builder.CreateICmpULE(Base, Offset); 1064 1065 // Base <= Offset && (Base - Offset) != 0 --> Base < Offset 1066 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1067 IsAnd) 1068 return Builder.CreateICmpULT(Base, Offset); 1069 1070 // Base > Offset || (Base - Offset) == 0 --> Base >= Offset 1071 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1072 !IsAnd) 1073 return Builder.CreateICmpUGE(Base, Offset); 1074 1075 return nullptr; 1076 } 1077 1078 struct IntPart { 1079 Value *From; 1080 unsigned StartBit; 1081 unsigned NumBits; 1082 }; 1083 1084 /// Match an extraction of bits from an integer. 1085 static Optional<IntPart> matchIntPart(Value *V) { 1086 Value *X; 1087 if (!match(V, m_OneUse(m_Trunc(m_Value(X))))) 1088 return None; 1089 1090 unsigned NumOriginalBits = X->getType()->getScalarSizeInBits(); 1091 unsigned NumExtractedBits = V->getType()->getScalarSizeInBits(); 1092 Value *Y; 1093 const APInt *Shift; 1094 // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits 1095 // from Y, not any shifted-in zeroes. 1096 if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) && 1097 Shift->ule(NumOriginalBits - NumExtractedBits)) 1098 return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}}; 1099 return {{X, 0, NumExtractedBits}}; 1100 } 1101 1102 /// Materialize an extraction of bits from an integer in IR. 1103 static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) { 1104 Value *V = P.From; 1105 if (P.StartBit) 1106 V = Builder.CreateLShr(V, P.StartBit); 1107 Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits); 1108 if (TruncTy != V->getType()) 1109 V = Builder.CreateTrunc(V, TruncTy); 1110 return V; 1111 } 1112 1113 /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01 1114 /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01 1115 /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer. 1116 static Value *foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, 1117 InstCombiner::BuilderTy &Builder) { 1118 if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse()) 1119 return nullptr; 1120 1121 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1122 if (Cmp0->getPredicate() != Pred || Cmp1->getPredicate() != Pred) 1123 return nullptr; 1124 1125 Optional<IntPart> L0 = matchIntPart(Cmp0->getOperand(0)); 1126 Optional<IntPart> R0 = matchIntPart(Cmp0->getOperand(1)); 1127 Optional<IntPart> L1 = matchIntPart(Cmp1->getOperand(0)); 1128 Optional<IntPart> R1 = matchIntPart(Cmp1->getOperand(1)); 1129 if (!L0 || !R0 || !L1 || !R1) 1130 return nullptr; 1131 1132 // Make sure the LHS/RHS compare a part of the same value, possibly after 1133 // an operand swap. 1134 if (L0->From != L1->From || R0->From != R1->From) { 1135 if (L0->From != R1->From || R0->From != L1->From) 1136 return nullptr; 1137 std::swap(L1, R1); 1138 } 1139 1140 // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being 1141 // the low part and L1/R1 being the high part. 1142 if (L0->StartBit + L0->NumBits != L1->StartBit || 1143 R0->StartBit + R0->NumBits != R1->StartBit) { 1144 if (L1->StartBit + L1->NumBits != L0->StartBit || 1145 R1->StartBit + R1->NumBits != R0->StartBit) 1146 return nullptr; 1147 std::swap(L0, L1); 1148 std::swap(R0, R1); 1149 } 1150 1151 // We can simplify to a comparison of these larger parts of the integers. 1152 IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits}; 1153 IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits}; 1154 Value *LValue = extractIntPart(L, Builder); 1155 Value *RValue = extractIntPart(R, Builder); 1156 return Builder.CreateICmp(Pred, LValue, RValue); 1157 } 1158 1159 /// Reduce logic-of-compares with equality to a constant by substituting a 1160 /// common operand with the constant. Callers are expected to call this with 1161 /// Cmp0/Cmp1 switched to handle logic op commutativity. 1162 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1, 1163 BinaryOperator &Logic, 1164 InstCombiner::BuilderTy &Builder, 1165 const SimplifyQuery &Q) { 1166 bool IsAnd = Logic.getOpcode() == Instruction::And; 1167 assert((IsAnd || Logic.getOpcode() == Instruction::Or) && "Wrong logic op"); 1168 1169 // Match an equality compare with a non-poison constant as Cmp0. 1170 // Also, give up if the compare can be constant-folded to avoid looping. 1171 ICmpInst::Predicate Pred0; 1172 Value *X; 1173 Constant *C; 1174 if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) || 1175 !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X)) 1176 return nullptr; 1177 if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) || 1178 (!IsAnd && Pred0 != ICmpInst::ICMP_NE)) 1179 return nullptr; 1180 1181 // The other compare must include a common operand (X). Canonicalize the 1182 // common operand as operand 1 (Pred1 is swapped if the common operand was 1183 // operand 0). 1184 Value *Y; 1185 ICmpInst::Predicate Pred1; 1186 if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X)))) 1187 return nullptr; 1188 1189 // Replace variable with constant value equivalence to remove a variable use: 1190 // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C) 1191 // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C) 1192 // Can think of the 'or' substitution with the 'and' bool equivalent: 1193 // A || B --> A || (!A && B) 1194 Value *SubstituteCmp = SimplifyICmpInst(Pred1, Y, C, Q); 1195 if (!SubstituteCmp) { 1196 // If we need to create a new instruction, require that the old compare can 1197 // be removed. 1198 if (!Cmp1->hasOneUse()) 1199 return nullptr; 1200 SubstituteCmp = Builder.CreateICmp(Pred1, Y, C); 1201 } 1202 return Builder.CreateBinOp(Logic.getOpcode(), Cmp0, SubstituteCmp); 1203 } 1204 1205 /// Fold (icmp)&(icmp) if possible. 1206 Value *InstCombinerImpl::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, 1207 BinaryOperator &And) { 1208 const SimplifyQuery Q = SQ.getWithInstruction(&And); 1209 1210 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) 1211 // if K1 and K2 are a one-bit mask. 1212 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &And, 1213 /* IsAnd */ true)) 1214 return V; 1215 1216 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1217 1218 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) 1219 if (predicatesFoldable(PredL, PredR)) { 1220 if (LHS->getOperand(0) == RHS->getOperand(1) && 1221 LHS->getOperand(1) == RHS->getOperand(0)) 1222 LHS->swapOperands(); 1223 if (LHS->getOperand(0) == RHS->getOperand(0) && 1224 LHS->getOperand(1) == RHS->getOperand(1)) { 1225 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 1226 unsigned Code = getICmpCode(LHS) & getICmpCode(RHS); 1227 bool IsSigned = LHS->isSigned() || RHS->isSigned(); 1228 return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder); 1229 } 1230 } 1231 1232 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E) 1233 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder)) 1234 return V; 1235 1236 if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, And, Builder, Q)) 1237 return V; 1238 if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, And, Builder, Q)) 1239 return V; 1240 1241 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 1242 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false)) 1243 return V; 1244 1245 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n 1246 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false)) 1247 return V; 1248 1249 if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder)) 1250 return V; 1251 1252 if (Value *V = foldSignedTruncationCheck(LHS, RHS, And, Builder)) 1253 return V; 1254 1255 if (Value *V = foldIsPowerOf2(LHS, RHS, true /* JoinedByAnd */, Builder)) 1256 return V; 1257 1258 if (Value *X = 1259 foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/true, Q, Builder)) 1260 return X; 1261 if (Value *X = 1262 foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/true, Q, Builder)) 1263 return X; 1264 1265 if (Value *X = foldEqOfParts(LHS, RHS, /*IsAnd=*/true, Builder)) 1266 return X; 1267 1268 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). 1269 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); 1270 1271 ConstantInt *LHSC, *RHSC; 1272 if (!match(LHS->getOperand(1), m_ConstantInt(LHSC)) || 1273 !match(RHS->getOperand(1), m_ConstantInt(RHSC))) 1274 return nullptr; 1275 1276 if (LHSC == RHSC && PredL == PredR) { 1277 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) 1278 // where C is a power of 2 or 1279 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) 1280 if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) || 1281 (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) { 1282 Value *NewOr = Builder.CreateOr(LHS0, RHS0); 1283 return Builder.CreateICmp(PredL, NewOr, LHSC); 1284 } 1285 } 1286 1287 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2 1288 // where CMAX is the all ones value for the truncated type, 1289 // iff the lower bits of C2 and CA are zero. 1290 if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() && 1291 RHS->hasOneUse()) { 1292 Value *V; 1293 ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr; 1294 1295 // (trunc x) == C1 & (and x, CA) == C2 1296 // (and x, CA) == C2 & (trunc x) == C1 1297 if (match(RHS0, m_Trunc(m_Value(V))) && 1298 match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) { 1299 SmallC = RHSC; 1300 BigC = LHSC; 1301 } else if (match(LHS0, m_Trunc(m_Value(V))) && 1302 match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) { 1303 SmallC = LHSC; 1304 BigC = RHSC; 1305 } 1306 1307 if (SmallC && BigC) { 1308 unsigned BigBitSize = BigC->getType()->getBitWidth(); 1309 unsigned SmallBitSize = SmallC->getType()->getBitWidth(); 1310 1311 // Check that the low bits are zero. 1312 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize); 1313 if ((Low & AndC->getValue()).isNullValue() && 1314 (Low & BigC->getValue()).isNullValue()) { 1315 Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue()); 1316 APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue(); 1317 Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N); 1318 return Builder.CreateICmp(PredL, NewAnd, NewVal); 1319 } 1320 } 1321 } 1322 1323 // From here on, we only handle: 1324 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler. 1325 if (LHS0 != RHS0) 1326 return nullptr; 1327 1328 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere. 1329 if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE || 1330 PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE || 1331 PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE || 1332 PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE) 1333 return nullptr; 1334 1335 // We can't fold (ugt x, C) & (sgt x, C2). 1336 if (!predicatesFoldable(PredL, PredR)) 1337 return nullptr; 1338 1339 // Ensure that the larger constant is on the RHS. 1340 bool ShouldSwap; 1341 if (CmpInst::isSigned(PredL) || 1342 (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR))) 1343 ShouldSwap = LHSC->getValue().sgt(RHSC->getValue()); 1344 else 1345 ShouldSwap = LHSC->getValue().ugt(RHSC->getValue()); 1346 1347 if (ShouldSwap) { 1348 std::swap(LHS, RHS); 1349 std::swap(LHSC, RHSC); 1350 std::swap(PredL, PredR); 1351 } 1352 1353 // At this point, we know we have two icmp instructions 1354 // comparing a value against two constants and and'ing the result 1355 // together. Because of the above check, we know that we only have 1356 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know 1357 // (from the icmp folding check above), that the two constants 1358 // are not equal and that the larger constant is on the RHS 1359 assert(LHSC != RHSC && "Compares not folded above?"); 1360 1361 switch (PredL) { 1362 default: 1363 llvm_unreachable("Unknown integer condition code!"); 1364 case ICmpInst::ICMP_NE: 1365 switch (PredR) { 1366 default: 1367 llvm_unreachable("Unknown integer condition code!"); 1368 case ICmpInst::ICMP_ULT: 1369 // (X != 13 & X u< 14) -> X < 13 1370 if (LHSC->getValue() == (RHSC->getValue() - 1)) 1371 return Builder.CreateICmpULT(LHS0, LHSC); 1372 if (LHSC->isZero()) // (X != 0 & X u< C) -> X-1 u< C-1 1373 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1374 false, true); 1375 break; // (X != 13 & X u< 15) -> no change 1376 case ICmpInst::ICMP_SLT: 1377 // (X != 13 & X s< 14) -> X < 13 1378 if (LHSC->getValue() == (RHSC->getValue() - 1)) 1379 return Builder.CreateICmpSLT(LHS0, LHSC); 1380 // (X != INT_MIN & X s< C) -> X-(INT_MIN+1) u< (C-(INT_MIN+1)) 1381 if (LHSC->isMinValue(true)) 1382 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1383 true, true); 1384 break; // (X != 13 & X s< 15) -> no change 1385 case ICmpInst::ICMP_NE: 1386 // Potential folds for this case should already be handled. 1387 break; 1388 } 1389 break; 1390 case ICmpInst::ICMP_UGT: 1391 switch (PredR) { 1392 default: 1393 llvm_unreachable("Unknown integer condition code!"); 1394 case ICmpInst::ICMP_NE: 1395 // (X u> 13 & X != 14) -> X u> 14 1396 if (RHSC->getValue() == (LHSC->getValue() + 1)) 1397 return Builder.CreateICmp(PredL, LHS0, RHSC); 1398 // X u> C & X != UINT_MAX -> (X-(C+1)) u< UINT_MAX-(C+1) 1399 if (RHSC->isMaxValue(false)) 1400 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1401 false, true); 1402 break; // (X u> 13 & X != 15) -> no change 1403 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) u< 1 1404 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1405 false, true); 1406 } 1407 break; 1408 case ICmpInst::ICMP_SGT: 1409 switch (PredR) { 1410 default: 1411 llvm_unreachable("Unknown integer condition code!"); 1412 case ICmpInst::ICMP_NE: 1413 // (X s> 13 & X != 14) -> X s> 14 1414 if (RHSC->getValue() == (LHSC->getValue() + 1)) 1415 return Builder.CreateICmp(PredL, LHS0, RHSC); 1416 // X s> C & X != INT_MAX -> (X-(C+1)) u< INT_MAX-(C+1) 1417 if (RHSC->isMaxValue(true)) 1418 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1419 true, true); 1420 break; // (X s> 13 & X != 15) -> no change 1421 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) u< 1 1422 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true, 1423 true); 1424 } 1425 break; 1426 } 1427 1428 return nullptr; 1429 } 1430 1431 Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, 1432 bool IsAnd) { 1433 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1434 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1435 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1436 1437 if (LHS0 == RHS1 && RHS0 == LHS1) { 1438 // Swap RHS operands to match LHS. 1439 PredR = FCmpInst::getSwappedPredicate(PredR); 1440 std::swap(RHS0, RHS1); 1441 } 1442 1443 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). 1444 // Suppose the relation between x and y is R, where R is one of 1445 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for 1446 // testing the desired relations. 1447 // 1448 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 1449 // bool(R & CC0) && bool(R & CC1) 1450 // = bool((R & CC0) & (R & CC1)) 1451 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency 1452 // 1453 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 1454 // bool(R & CC0) || bool(R & CC1) 1455 // = bool((R & CC0) | (R & CC1)) 1456 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;) 1457 if (LHS0 == RHS0 && LHS1 == RHS1) { 1458 unsigned FCmpCodeL = getFCmpCode(PredL); 1459 unsigned FCmpCodeR = getFCmpCode(PredR); 1460 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR; 1461 return getFCmpValue(NewPred, LHS0, LHS1, Builder); 1462 } 1463 1464 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1465 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1466 if (LHS0->getType() != RHS0->getType()) 1467 return nullptr; 1468 1469 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and 1470 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0). 1471 if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP())) 1472 // Ignore the constants because they are obviously not NANs: 1473 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y) 1474 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y) 1475 return Builder.CreateFCmp(PredL, LHS0, RHS0); 1476 } 1477 1478 return nullptr; 1479 } 1480 1481 /// This a limited reassociation for a special case (see above) where we are 1482 /// checking if two values are either both NAN (unordered) or not-NAN (ordered). 1483 /// This could be handled more generally in '-reassociation', but it seems like 1484 /// an unlikely pattern for a large number of logic ops and fcmps. 1485 static Instruction *reassociateFCmps(BinaryOperator &BO, 1486 InstCombiner::BuilderTy &Builder) { 1487 Instruction::BinaryOps Opcode = BO.getOpcode(); 1488 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1489 "Expecting and/or op for fcmp transform"); 1490 1491 // There are 4 commuted variants of the pattern. Canonicalize operands of this 1492 // logic op so an fcmp is operand 0 and a matching logic op is operand 1. 1493 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X; 1494 FCmpInst::Predicate Pred; 1495 if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP()))) 1496 std::swap(Op0, Op1); 1497 1498 // Match inner binop and the predicate for combining 2 NAN checks into 1. 1499 BinaryOperator *BO1; 1500 FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD 1501 : FCmpInst::FCMP_UNO; 1502 if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred || 1503 !match(Op1, m_BinOp(BO1)) || BO1->getOpcode() != Opcode) 1504 return nullptr; 1505 1506 // The inner logic op must have a matching fcmp operand. 1507 Value *BO10 = BO1->getOperand(0), *BO11 = BO1->getOperand(1), *Y; 1508 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || 1509 Pred != NanPred || X->getType() != Y->getType()) 1510 std::swap(BO10, BO11); 1511 1512 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || 1513 Pred != NanPred || X->getType() != Y->getType()) 1514 return nullptr; 1515 1516 // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z 1517 // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z 1518 Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y); 1519 if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) { 1520 // Intersect FMF from the 2 source fcmps. 1521 NewFCmpInst->copyIRFlags(Op0); 1522 NewFCmpInst->andIRFlags(BO10); 1523 } 1524 return BinaryOperator::Create(Opcode, NewFCmp, BO11); 1525 } 1526 1527 /// Match De Morgan's Laws: 1528 /// (~A & ~B) == (~(A | B)) 1529 /// (~A | ~B) == (~(A & B)) 1530 static Instruction *matchDeMorgansLaws(BinaryOperator &I, 1531 InstCombiner::BuilderTy &Builder) { 1532 auto Opcode = I.getOpcode(); 1533 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1534 "Trying to match De Morgan's Laws with something other than and/or"); 1535 1536 // Flip the logic operation. 1537 Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; 1538 1539 Value *A, *B; 1540 if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) && 1541 match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) && 1542 !InstCombiner::isFreeToInvert(A, A->hasOneUse()) && 1543 !InstCombiner::isFreeToInvert(B, B->hasOneUse())) { 1544 Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan"); 1545 return BinaryOperator::CreateNot(AndOr); 1546 } 1547 1548 return nullptr; 1549 } 1550 1551 bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) { 1552 Value *CastSrc = CI->getOperand(0); 1553 1554 // Noop casts and casts of constants should be eliminated trivially. 1555 if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc)) 1556 return false; 1557 1558 // If this cast is paired with another cast that can be eliminated, we prefer 1559 // to have it eliminated. 1560 if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc)) 1561 if (isEliminableCastPair(PrecedingCI, CI)) 1562 return false; 1563 1564 return true; 1565 } 1566 1567 /// Fold {and,or,xor} (cast X), C. 1568 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, 1569 InstCombiner::BuilderTy &Builder) { 1570 Constant *C = dyn_cast<Constant>(Logic.getOperand(1)); 1571 if (!C) 1572 return nullptr; 1573 1574 auto LogicOpc = Logic.getOpcode(); 1575 Type *DestTy = Logic.getType(); 1576 Type *SrcTy = Cast->getSrcTy(); 1577 1578 // Move the logic operation ahead of a zext or sext if the constant is 1579 // unchanged in the smaller source type. Performing the logic in a smaller 1580 // type may provide more information to later folds, and the smaller logic 1581 // instruction may be cheaper (particularly in the case of vectors). 1582 Value *X; 1583 if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) { 1584 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy); 1585 Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy); 1586 if (ZextTruncC == C) { 1587 // LogicOpc (zext X), C --> zext (LogicOpc X, C) 1588 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC); 1589 return new ZExtInst(NewOp, DestTy); 1590 } 1591 } 1592 1593 if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) { 1594 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy); 1595 Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy); 1596 if (SextTruncC == C) { 1597 // LogicOpc (sext X), C --> sext (LogicOpc X, C) 1598 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC); 1599 return new SExtInst(NewOp, DestTy); 1600 } 1601 } 1602 1603 return nullptr; 1604 } 1605 1606 /// Fold {and,or,xor} (cast X), Y. 1607 Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) { 1608 auto LogicOpc = I.getOpcode(); 1609 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding"); 1610 1611 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1612 CastInst *Cast0 = dyn_cast<CastInst>(Op0); 1613 if (!Cast0) 1614 return nullptr; 1615 1616 // This must be a cast from an integer or integer vector source type to allow 1617 // transformation of the logic operation to the source type. 1618 Type *DestTy = I.getType(); 1619 Type *SrcTy = Cast0->getSrcTy(); 1620 if (!SrcTy->isIntOrIntVectorTy()) 1621 return nullptr; 1622 1623 if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder)) 1624 return Ret; 1625 1626 CastInst *Cast1 = dyn_cast<CastInst>(Op1); 1627 if (!Cast1) 1628 return nullptr; 1629 1630 // Both operands of the logic operation are casts. The casts must be of the 1631 // same type for reduction. 1632 auto CastOpcode = Cast0->getOpcode(); 1633 if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy()) 1634 return nullptr; 1635 1636 Value *Cast0Src = Cast0->getOperand(0); 1637 Value *Cast1Src = Cast1->getOperand(0); 1638 1639 // fold logic(cast(A), cast(B)) -> cast(logic(A, B)) 1640 if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) { 1641 Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src, 1642 I.getName()); 1643 return CastInst::Create(CastOpcode, NewOp, DestTy); 1644 } 1645 1646 // For now, only 'and'/'or' have optimizations after this. 1647 if (LogicOpc == Instruction::Xor) 1648 return nullptr; 1649 1650 // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the 1651 // cast is otherwise not optimizable. This happens for vector sexts. 1652 ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src); 1653 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src); 1654 if (ICmp0 && ICmp1) { 1655 Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I) 1656 : foldOrOfICmps(ICmp0, ICmp1, I); 1657 if (Res) 1658 return CastInst::Create(CastOpcode, Res, DestTy); 1659 return nullptr; 1660 } 1661 1662 // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the 1663 // cast is otherwise not optimizable. This happens for vector sexts. 1664 FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src); 1665 FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src); 1666 if (FCmp0 && FCmp1) 1667 if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And)) 1668 return CastInst::Create(CastOpcode, R, DestTy); 1669 1670 return nullptr; 1671 } 1672 1673 static Instruction *foldAndToXor(BinaryOperator &I, 1674 InstCombiner::BuilderTy &Builder) { 1675 assert(I.getOpcode() == Instruction::And); 1676 Value *Op0 = I.getOperand(0); 1677 Value *Op1 = I.getOperand(1); 1678 Value *A, *B; 1679 1680 // Operand complexity canonicalization guarantees that the 'or' is Op0. 1681 // (A | B) & ~(A & B) --> A ^ B 1682 // (A | B) & ~(B & A) --> A ^ B 1683 if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)), 1684 m_Not(m_c_And(m_Deferred(A), m_Deferred(B)))))) 1685 return BinaryOperator::CreateXor(A, B); 1686 1687 // (A | ~B) & (~A | B) --> ~(A ^ B) 1688 // (A | ~B) & (B | ~A) --> ~(A ^ B) 1689 // (~B | A) & (~A | B) --> ~(A ^ B) 1690 // (~B | A) & (B | ~A) --> ~(A ^ B) 1691 if (Op0->hasOneUse() || Op1->hasOneUse()) 1692 if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))), 1693 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) 1694 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 1695 1696 return nullptr; 1697 } 1698 1699 static Instruction *foldOrToXor(BinaryOperator &I, 1700 InstCombiner::BuilderTy &Builder) { 1701 assert(I.getOpcode() == Instruction::Or); 1702 Value *Op0 = I.getOperand(0); 1703 Value *Op1 = I.getOperand(1); 1704 Value *A, *B; 1705 1706 // Operand complexity canonicalization guarantees that the 'and' is Op0. 1707 // (A & B) | ~(A | B) --> ~(A ^ B) 1708 // (A & B) | ~(B | A) --> ~(A ^ B) 1709 if (Op0->hasOneUse() || Op1->hasOneUse()) 1710 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1711 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 1712 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 1713 1714 // Operand complexity canonicalization guarantees that the 'xor' is Op0. 1715 // (A ^ B) | ~(A | B) --> ~(A & B) 1716 // (A ^ B) | ~(B | A) --> ~(A & B) 1717 if (Op0->hasOneUse() || Op1->hasOneUse()) 1718 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1719 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 1720 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); 1721 1722 // (A & ~B) | (~A & B) --> A ^ B 1723 // (A & ~B) | (B & ~A) --> A ^ B 1724 // (~B & A) | (~A & B) --> A ^ B 1725 // (~B & A) | (B & ~A) --> A ^ B 1726 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 1727 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))) 1728 return BinaryOperator::CreateXor(A, B); 1729 1730 return nullptr; 1731 } 1732 1733 /// Return true if a constant shift amount is always less than the specified 1734 /// bit-width. If not, the shift could create poison in the narrower type. 1735 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) { 1736 APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth); 1737 return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold)); 1738 } 1739 1740 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and 1741 /// a common zext operand: and (binop (zext X), C), (zext X). 1742 Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) { 1743 // This transform could also apply to {or, and, xor}, but there are better 1744 // folds for those cases, so we don't expect those patterns here. AShr is not 1745 // handled because it should always be transformed to LShr in this sequence. 1746 // The subtract transform is different because it has a constant on the left. 1747 // Add/mul commute the constant to RHS; sub with constant RHS becomes add. 1748 Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1); 1749 Constant *C; 1750 if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) && 1751 !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) && 1752 !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) && 1753 !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) && 1754 !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1))))) 1755 return nullptr; 1756 1757 Value *X; 1758 if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3)) 1759 return nullptr; 1760 1761 Type *Ty = And.getType(); 1762 if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType())) 1763 return nullptr; 1764 1765 // If we're narrowing a shift, the shift amount must be safe (less than the 1766 // width) in the narrower type. If the shift amount is greater, instsimplify 1767 // usually handles that case, but we can't guarantee/assert it. 1768 Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode(); 1769 if (Opc == Instruction::LShr || Opc == Instruction::Shl) 1770 if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits())) 1771 return nullptr; 1772 1773 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X) 1774 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X) 1775 Value *NewC = ConstantExpr::getTrunc(C, X->getType()); 1776 Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X) 1777 : Builder.CreateBinOp(Opc, X, NewC); 1778 return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty); 1779 } 1780 1781 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 1782 // here. We should standardize that construct where it is needed or choose some 1783 // other way to ensure that commutated variants of patterns are not missed. 1784 Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) { 1785 Type *Ty = I.getType(); 1786 1787 if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1), 1788 SQ.getWithInstruction(&I))) 1789 return replaceInstUsesWith(I, V); 1790 1791 if (SimplifyAssociativeOrCommutative(I)) 1792 return &I; 1793 1794 if (Instruction *X = foldVectorBinop(I)) 1795 return X; 1796 1797 // See if we can simplify any instructions used by the instruction whose sole 1798 // purpose is to compute bits we don't care about. 1799 if (SimplifyDemandedInstructionBits(I)) 1800 return &I; 1801 1802 // Do this before using distributive laws to catch simple and/or/not patterns. 1803 if (Instruction *Xor = foldAndToXor(I, Builder)) 1804 return Xor; 1805 1806 // (A|B)&(A|C) -> A|(B&C) etc 1807 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1808 return replaceInstUsesWith(I, V); 1809 1810 if (Value *V = SimplifyBSwap(I, Builder)) 1811 return replaceInstUsesWith(I, V); 1812 1813 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1814 1815 Value *X, *Y; 1816 if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) && 1817 match(Op1, m_One())) { 1818 // (1 << X) & 1 --> zext(X == 0) 1819 // (1 >> X) & 1 --> zext(X == 0) 1820 Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0)); 1821 return new ZExtInst(IsZero, Ty); 1822 } 1823 1824 const APInt *C; 1825 if (match(Op1, m_APInt(C))) { 1826 const APInt *XorC; 1827 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) { 1828 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) 1829 Constant *NewC = ConstantInt::get(Ty, *C & *XorC); 1830 Value *And = Builder.CreateAnd(X, Op1); 1831 And->takeName(Op0); 1832 return BinaryOperator::CreateXor(And, NewC); 1833 } 1834 1835 const APInt *OrC; 1836 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) { 1837 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2) 1838 // NOTE: This reduces the number of bits set in the & mask, which 1839 // can expose opportunities for store narrowing for scalars. 1840 // NOTE: SimplifyDemandedBits should have already removed bits from C1 1841 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in 1842 // above, but this feels safer. 1843 APInt Together = *C & *OrC; 1844 Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C)); 1845 And->takeName(Op0); 1846 return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together)); 1847 } 1848 1849 // If the mask is only needed on one incoming arm, push the 'and' op up. 1850 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) || 1851 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 1852 APInt NotAndMask(~(*C)); 1853 BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode(); 1854 if (MaskedValueIsZero(X, NotAndMask, 0, &I)) { 1855 // Not masking anything out for the LHS, move mask to RHS. 1856 // and ({x}or X, Y), C --> {x}or X, (and Y, C) 1857 Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked"); 1858 return BinaryOperator::Create(BinOp, X, NewRHS); 1859 } 1860 if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) { 1861 // Not masking anything out for the RHS, move mask to LHS. 1862 // and ({x}or X, Y), C --> {x}or (and X, C), Y 1863 Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked"); 1864 return BinaryOperator::Create(BinOp, NewLHS, Y); 1865 } 1866 } 1867 1868 unsigned Width = Ty->getScalarSizeInBits(); 1869 const APInt *ShiftC; 1870 if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC)))))) { 1871 if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) { 1872 // We are clearing high bits that were potentially set by sext+ashr: 1873 // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC 1874 Value *Sext = Builder.CreateSExt(X, Ty); 1875 Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width)); 1876 return BinaryOperator::CreateLShr(Sext, ShAmtC); 1877 } 1878 } 1879 1880 const APInt *AddC; 1881 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) { 1882 // If we add zeros to every bit below a mask, the add has no effect: 1883 // (X + AddC) & LowMaskC --> X & LowMaskC 1884 unsigned Ctlz = C->countLeadingZeros(); 1885 APInt LowMask(APInt::getLowBitsSet(Width, Width - Ctlz)); 1886 if ((*AddC & LowMask).isNullValue()) 1887 return BinaryOperator::CreateAnd(X, Op1); 1888 1889 // If we are masking the result of the add down to exactly one bit and 1890 // the constant we are adding has no bits set below that bit, then the 1891 // add is flipping a single bit. Example: 1892 // (X + 4) & 4 --> (X & 4) ^ 4 1893 if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) { 1894 assert((*C & *AddC) != 0 && "Expected common bit"); 1895 Value *NewAnd = Builder.CreateAnd(X, Op1); 1896 return BinaryOperator::CreateXor(NewAnd, Op1); 1897 } 1898 } 1899 } 1900 1901 ConstantInt *AndRHS; 1902 if (match(Op1, m_ConstantInt(AndRHS))) { 1903 const APInt &AndRHSMask = AndRHS->getValue(); 1904 1905 // Optimize a variety of ((val OP C1) & C2) combinations... 1906 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { 1907 // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth 1908 // of X and OP behaves well when given trunc(C1) and X. 1909 // TODO: Do this for vectors by using m_APInt instead of m_ConstantInt. 1910 switch (Op0I->getOpcode()) { 1911 default: 1912 break; 1913 case Instruction::Xor: 1914 case Instruction::Or: 1915 case Instruction::Mul: 1916 case Instruction::Add: 1917 case Instruction::Sub: 1918 Value *X; 1919 ConstantInt *C1; 1920 // TODO: The one use restrictions could be relaxed a little if the AND 1921 // is going to be removed. 1922 if (match(Op0I, m_OneUse(m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), 1923 m_ConstantInt(C1))))) { 1924 if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) { 1925 auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType()); 1926 Value *BinOp; 1927 Value *Op0LHS = Op0I->getOperand(0); 1928 if (isa<ZExtInst>(Op0LHS)) 1929 BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1); 1930 else 1931 BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X); 1932 auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType()); 1933 auto *And = Builder.CreateAnd(BinOp, TruncC2); 1934 return new ZExtInst(And, Ty); 1935 } 1936 } 1937 } 1938 } 1939 } 1940 1941 if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))), 1942 m_SignMask())) && 1943 match(Y, m_SpecificInt_ICMP( 1944 ICmpInst::Predicate::ICMP_EQ, 1945 APInt(Ty->getScalarSizeInBits(), 1946 Ty->getScalarSizeInBits() - 1947 X->getType()->getScalarSizeInBits())))) { 1948 auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext"); 1949 auto *SanitizedSignMask = cast<Constant>(Op1); 1950 // We must be careful with the undef elements of the sign bit mask, however: 1951 // the mask elt can be undef iff the shift amount for that lane was undef, 1952 // otherwise we need to sanitize undef masks to zero. 1953 SanitizedSignMask = Constant::replaceUndefsWith( 1954 SanitizedSignMask, ConstantInt::getNullValue(Ty->getScalarType())); 1955 SanitizedSignMask = 1956 Constant::mergeUndefsWith(SanitizedSignMask, cast<Constant>(Y)); 1957 return BinaryOperator::CreateAnd(SExt, SanitizedSignMask); 1958 } 1959 1960 if (Instruction *Z = narrowMaskedBinOp(I)) 1961 return Z; 1962 1963 if (I.getType()->isIntOrIntVectorTy(1)) { 1964 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) { 1965 if (auto *I = 1966 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true)) 1967 return I; 1968 } 1969 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) { 1970 if (auto *I = 1971 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true)) 1972 return I; 1973 } 1974 } 1975 1976 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 1977 return FoldedLogic; 1978 1979 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) 1980 return DeMorgan; 1981 1982 { 1983 Value *A, *B, *C; 1984 // A & (A ^ B) --> A & ~B 1985 if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B))))) 1986 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B)); 1987 // (A ^ B) & A --> A & ~B 1988 if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B))))) 1989 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B)); 1990 1991 // A & ~(A ^ B) --> A & B 1992 if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B))))) 1993 return BinaryOperator::CreateAnd(Op0, B); 1994 // ~(A ^ B) & A --> A & B 1995 if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B))))) 1996 return BinaryOperator::CreateAnd(Op1, B); 1997 1998 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C 1999 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 2000 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 2001 if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse())) 2002 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C)); 2003 2004 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C 2005 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 2006 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 2007 if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse())) 2008 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C)); 2009 2010 // (A | B) & ((~A) ^ B) -> (A & B) 2011 // (A | B) & (B ^ (~A)) -> (A & B) 2012 // (B | A) & ((~A) ^ B) -> (A & B) 2013 // (B | A) & (B ^ (~A)) -> (A & B) 2014 if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2015 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2016 return BinaryOperator::CreateAnd(A, B); 2017 2018 // ((~A) ^ B) & (A | B) -> (A & B) 2019 // ((~A) ^ B) & (B | A) -> (A & B) 2020 // (B ^ (~A)) & (A | B) -> (A & B) 2021 // (B ^ (~A)) & (B | A) -> (A & B) 2022 if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2023 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 2024 return BinaryOperator::CreateAnd(A, B); 2025 } 2026 2027 { 2028 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 2029 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 2030 if (LHS && RHS) 2031 if (Value *Res = foldAndOfICmps(LHS, RHS, I)) 2032 return replaceInstUsesWith(I, Res); 2033 2034 // TODO: Make this recursive; it's a little tricky because an arbitrary 2035 // number of 'and' instructions might have to be created. 2036 if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { 2037 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2038 if (Value *Res = foldAndOfICmps(LHS, Cmp, I)) 2039 return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y)); 2040 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2041 if (Value *Res = foldAndOfICmps(LHS, Cmp, I)) 2042 return replaceInstUsesWith(I, Builder.CreateAnd(Res, X)); 2043 } 2044 if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { 2045 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2046 if (Value *Res = foldAndOfICmps(Cmp, RHS, I)) 2047 return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y)); 2048 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2049 if (Value *Res = foldAndOfICmps(Cmp, RHS, I)) 2050 return replaceInstUsesWith(I, Builder.CreateAnd(Res, X)); 2051 } 2052 } 2053 2054 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 2055 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 2056 if (Value *Res = foldLogicOfFCmps(LHS, RHS, true)) 2057 return replaceInstUsesWith(I, Res); 2058 2059 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) 2060 return FoldedFCmps; 2061 2062 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I)) 2063 return CastedAnd; 2064 2065 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>. 2066 Value *A; 2067 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) && 2068 A->getType()->isIntOrIntVectorTy(1)) 2069 return SelectInst::Create(A, Op1, Constant::getNullValue(Ty)); 2070 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) && 2071 A->getType()->isIntOrIntVectorTy(1)) 2072 return SelectInst::Create(A, Op0, Constant::getNullValue(Ty)); 2073 2074 // and(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? X : 0. 2075 if (match(&I, m_c_And(m_OneUse(m_AShr( 2076 m_NSWSub(m_Value(Y), m_Value(X)), 2077 m_SpecificInt(Ty->getScalarSizeInBits() - 1))), 2078 m_Deferred(X)))) { 2079 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y); 2080 return SelectInst::Create(NewICmpInst, X, ConstantInt::getNullValue(Ty)); 2081 } 2082 2083 // (~x) & y --> ~(x | (~y)) iff that gets rid of inversions 2084 if (sinkNotIntoOtherHandOfAndOrOr(I)) 2085 return &I; 2086 2087 // An and recurrence w/loop invariant step is equivelent to (and start, step) 2088 PHINode *PN = nullptr; 2089 Value *Start = nullptr, *Step = nullptr; 2090 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN)) 2091 return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step)); 2092 2093 return nullptr; 2094 } 2095 2096 Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I, 2097 bool MatchBSwaps, 2098 bool MatchBitReversals) { 2099 SmallVector<Instruction *, 4> Insts; 2100 if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals, 2101 Insts)) 2102 return nullptr; 2103 Instruction *LastInst = Insts.pop_back_val(); 2104 LastInst->removeFromParent(); 2105 2106 for (auto *Inst : Insts) 2107 Worklist.push(Inst); 2108 return LastInst; 2109 } 2110 2111 /// Match UB-safe variants of the funnel shift intrinsic. 2112 static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) { 2113 // TODO: Can we reduce the code duplication between this and the related 2114 // rotate matching code under visitSelect and visitTrunc? 2115 unsigned Width = Or.getType()->getScalarSizeInBits(); 2116 2117 // First, find an or'd pair of opposite shifts: 2118 // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1) 2119 BinaryOperator *Or0, *Or1; 2120 if (!match(Or.getOperand(0), m_BinOp(Or0)) || 2121 !match(Or.getOperand(1), m_BinOp(Or1))) 2122 return nullptr; 2123 2124 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 2125 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 2126 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 2127 Or0->getOpcode() == Or1->getOpcode()) 2128 return nullptr; 2129 2130 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 2131 if (Or0->getOpcode() == BinaryOperator::LShr) { 2132 std::swap(Or0, Or1); 2133 std::swap(ShVal0, ShVal1); 2134 std::swap(ShAmt0, ShAmt1); 2135 } 2136 assert(Or0->getOpcode() == BinaryOperator::Shl && 2137 Or1->getOpcode() == BinaryOperator::LShr && 2138 "Illegal or(shift,shift) pair"); 2139 2140 // Match the shift amount operands for a funnel shift pattern. This always 2141 // matches a subtraction on the R operand. 2142 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 2143 // Check for constant shift amounts that sum to the bitwidth. 2144 const APInt *LI, *RI; 2145 if (match(L, m_APIntAllowUndef(LI)) && match(R, m_APIntAllowUndef(RI))) 2146 if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width) 2147 return ConstantInt::get(L->getType(), *LI); 2148 2149 Constant *LC, *RC; 2150 if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) && 2151 match(L, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) && 2152 match(R, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) && 2153 match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowUndef(Width))) 2154 return ConstantExpr::mergeUndefsWith(LC, RC); 2155 2156 // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width. 2157 // We limit this to X < Width in case the backend re-expands the intrinsic, 2158 // and has to reintroduce a shift modulo operation (InstCombine might remove 2159 // it after this fold). This still doesn't guarantee that the final codegen 2160 // will match this original pattern. 2161 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) { 2162 KnownBits KnownL = IC.computeKnownBits(L, /*Depth*/ 0, &Or); 2163 return KnownL.getMaxValue().ult(Width) ? L : nullptr; 2164 } 2165 2166 // For non-constant cases, the following patterns currently only work for 2167 // rotation patterns. 2168 // TODO: Add general funnel-shift compatible patterns. 2169 if (ShVal0 != ShVal1) 2170 return nullptr; 2171 2172 // For non-constant cases we don't support non-pow2 shift masks. 2173 // TODO: Is it worth matching urem as well? 2174 if (!isPowerOf2_32(Width)) 2175 return nullptr; 2176 2177 // The shift amount may be masked with negation: 2178 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) 2179 Value *X; 2180 unsigned Mask = Width - 1; 2181 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 2182 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 2183 return X; 2184 2185 // Similar to above, but the shift amount may be extended after masking, 2186 // so return the extended value as the parameter for the intrinsic. 2187 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 2188 match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))), 2189 m_SpecificInt(Mask)))) 2190 return L; 2191 2192 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 2193 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 2194 return L; 2195 2196 return nullptr; 2197 }; 2198 2199 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width); 2200 bool IsFshl = true; // Sub on LSHR. 2201 if (!ShAmt) { 2202 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width); 2203 IsFshl = false; // Sub on SHL. 2204 } 2205 if (!ShAmt) 2206 return nullptr; 2207 2208 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2209 Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType()); 2210 return CallInst::Create(F, {ShVal0, ShVal1, ShAmt}); 2211 } 2212 2213 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns. 2214 static Instruction *matchOrConcat(Instruction &Or, 2215 InstCombiner::BuilderTy &Builder) { 2216 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'"); 2217 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1); 2218 Type *Ty = Or.getType(); 2219 2220 unsigned Width = Ty->getScalarSizeInBits(); 2221 if ((Width & 1) != 0) 2222 return nullptr; 2223 unsigned HalfWidth = Width / 2; 2224 2225 // Canonicalize zext (lower half) to LHS. 2226 if (!isa<ZExtInst>(Op0)) 2227 std::swap(Op0, Op1); 2228 2229 // Find lower/upper half. 2230 Value *LowerSrc, *ShlVal, *UpperSrc; 2231 const APInt *C; 2232 if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) || 2233 !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) || 2234 !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc))))) 2235 return nullptr; 2236 if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() || 2237 LowerSrc->getType()->getScalarSizeInBits() != HalfWidth) 2238 return nullptr; 2239 2240 auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) { 2241 Value *NewLower = Builder.CreateZExt(Lo, Ty); 2242 Value *NewUpper = Builder.CreateZExt(Hi, Ty); 2243 NewUpper = Builder.CreateShl(NewUpper, HalfWidth); 2244 Value *BinOp = Builder.CreateOr(NewLower, NewUpper); 2245 Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty); 2246 return Builder.CreateCall(F, BinOp); 2247 }; 2248 2249 // BSWAP: Push the concat down, swapping the lower/upper sources. 2250 // concat(bswap(x),bswap(y)) -> bswap(concat(x,y)) 2251 Value *LowerBSwap, *UpperBSwap; 2252 if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) && 2253 match(UpperSrc, m_BSwap(m_Value(UpperBSwap)))) 2254 return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap); 2255 2256 // BITREVERSE: Push the concat down, swapping the lower/upper sources. 2257 // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y)) 2258 Value *LowerBRev, *UpperBRev; 2259 if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) && 2260 match(UpperSrc, m_BitReverse(m_Value(UpperBRev)))) 2261 return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev); 2262 2263 return nullptr; 2264 } 2265 2266 /// If all elements of two constant vectors are 0/-1 and inverses, return true. 2267 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) { 2268 unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements(); 2269 for (unsigned i = 0; i != NumElts; ++i) { 2270 Constant *EltC1 = C1->getAggregateElement(i); 2271 Constant *EltC2 = C2->getAggregateElement(i); 2272 if (!EltC1 || !EltC2) 2273 return false; 2274 2275 // One element must be all ones, and the other must be all zeros. 2276 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) || 2277 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes())))) 2278 return false; 2279 } 2280 return true; 2281 } 2282 2283 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or 2284 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of 2285 /// B, it can be used as the condition operand of a select instruction. 2286 Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B) { 2287 // Step 1: We may have peeked through bitcasts in the caller. 2288 // Exit immediately if we don't have (vector) integer types. 2289 Type *Ty = A->getType(); 2290 if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy()) 2291 return nullptr; 2292 2293 // Step 2: We need 0 or all-1's bitmasks. 2294 if (ComputeNumSignBits(A) != Ty->getScalarSizeInBits()) 2295 return nullptr; 2296 2297 // Step 3: If B is the 'not' value of A, we have our answer. 2298 if (match(A, m_Not(m_Specific(B)))) { 2299 // If these are scalars or vectors of i1, A can be used directly. 2300 if (Ty->isIntOrIntVectorTy(1)) 2301 return A; 2302 return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(Ty)); 2303 } 2304 2305 // If both operands are constants, see if the constants are inverse bitmasks. 2306 Constant *AConst, *BConst; 2307 if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst))) 2308 if (AConst == ConstantExpr::getNot(BConst)) 2309 return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty)); 2310 2311 // Look for more complex patterns. The 'not' op may be hidden behind various 2312 // casts. Look through sexts and bitcasts to find the booleans. 2313 Value *Cond; 2314 Value *NotB; 2315 if (match(A, m_SExt(m_Value(Cond))) && 2316 Cond->getType()->isIntOrIntVectorTy(1) && 2317 match(B, m_OneUse(m_Not(m_Value(NotB))))) { 2318 NotB = peekThroughBitcast(NotB, true); 2319 if (match(NotB, m_SExt(m_Specific(Cond)))) 2320 return Cond; 2321 } 2322 2323 // All scalar (and most vector) possibilities should be handled now. 2324 // Try more matches that only apply to non-splat constant vectors. 2325 if (!Ty->isVectorTy()) 2326 return nullptr; 2327 2328 // If both operands are xor'd with constants using the same sexted boolean 2329 // operand, see if the constants are inverse bitmasks. 2330 // TODO: Use ConstantExpr::getNot()? 2331 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) && 2332 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) && 2333 Cond->getType()->isIntOrIntVectorTy(1) && 2334 areInverseVectorBitmasks(AConst, BConst)) { 2335 AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty)); 2336 return Builder.CreateXor(Cond, AConst); 2337 } 2338 return nullptr; 2339 } 2340 2341 /// We have an expression of the form (A & C) | (B & D). Try to simplify this 2342 /// to "A' ? C : D", where A' is a boolean or vector of booleans. 2343 Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *C, Value *B, 2344 Value *D) { 2345 // The potential condition of the select may be bitcasted. In that case, look 2346 // through its bitcast and the corresponding bitcast of the 'not' condition. 2347 Type *OrigType = A->getType(); 2348 A = peekThroughBitcast(A, true); 2349 B = peekThroughBitcast(B, true); 2350 if (Value *Cond = getSelectCondition(A, B)) { 2351 // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D)) 2352 // The bitcasts will either all exist or all not exist. The builder will 2353 // not create unnecessary casts if the types already match. 2354 Value *BitcastC = Builder.CreateBitCast(C, A->getType()); 2355 Value *BitcastD = Builder.CreateBitCast(D, A->getType()); 2356 Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD); 2357 return Builder.CreateBitCast(Select, OrigType); 2358 } 2359 2360 return nullptr; 2361 } 2362 2363 /// Fold (icmp)|(icmp) if possible. 2364 Value *InstCombinerImpl::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, 2365 BinaryOperator &Or) { 2366 const SimplifyQuery Q = SQ.getWithInstruction(&Or); 2367 2368 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 2369 // if K1 and K2 are a one-bit mask. 2370 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &Or, 2371 /* IsAnd */ false)) 2372 return V; 2373 2374 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 2375 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); 2376 Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1); 2377 auto *LHSC = dyn_cast<ConstantInt>(LHS1); 2378 auto *RHSC = dyn_cast<ConstantInt>(RHS1); 2379 2380 // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3) 2381 // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3) 2382 // The original condition actually refers to the following two ranges: 2383 // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3] 2384 // We can fold these two ranges if: 2385 // 1) C1 and C2 is unsigned greater than C3. 2386 // 2) The two ranges are separated. 2387 // 3) C1 ^ C2 is one-bit mask. 2388 // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask. 2389 // This implies all values in the two ranges differ by exactly one bit. 2390 if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) && 2391 PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() && 2392 LHSC->getType() == RHSC->getType() && 2393 LHSC->getValue() == (RHSC->getValue())) { 2394 2395 Value *AddOpnd; 2396 ConstantInt *LAddC, *RAddC; 2397 if (match(LHS0, m_Add(m_Value(AddOpnd), m_ConstantInt(LAddC))) && 2398 match(RHS0, m_Add(m_Specific(AddOpnd), m_ConstantInt(RAddC))) && 2399 LAddC->getValue().ugt(LHSC->getValue()) && 2400 RAddC->getValue().ugt(LHSC->getValue())) { 2401 2402 APInt DiffC = LAddC->getValue() ^ RAddC->getValue(); 2403 if (DiffC.isPowerOf2()) { 2404 ConstantInt *MaxAddC = nullptr; 2405 if (LAddC->getValue().ult(RAddC->getValue())) 2406 MaxAddC = RAddC; 2407 else 2408 MaxAddC = LAddC; 2409 2410 APInt RRangeLow = -RAddC->getValue(); 2411 APInt RRangeHigh = RRangeLow + LHSC->getValue(); 2412 APInt LRangeLow = -LAddC->getValue(); 2413 APInt LRangeHigh = LRangeLow + LHSC->getValue(); 2414 APInt LowRangeDiff = RRangeLow ^ LRangeLow; 2415 APInt HighRangeDiff = RRangeHigh ^ LRangeHigh; 2416 APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow 2417 : RRangeLow - LRangeLow; 2418 2419 if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff && 2420 RangeDiff.ugt(LHSC->getValue())) { 2421 Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC); 2422 2423 Value *NewAnd = Builder.CreateAnd(AddOpnd, MaskC); 2424 Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC); 2425 return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC); 2426 } 2427 } 2428 } 2429 } 2430 2431 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) 2432 if (predicatesFoldable(PredL, PredR)) { 2433 if (LHS0 == RHS1 && LHS1 == RHS0) 2434 LHS->swapOperands(); 2435 if (LHS0 == RHS0 && LHS1 == RHS1) { 2436 unsigned Code = getICmpCode(LHS) | getICmpCode(RHS); 2437 bool IsSigned = LHS->isSigned() || RHS->isSigned(); 2438 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder); 2439 } 2440 } 2441 2442 // handle (roughly): 2443 // (icmp ne (A & B), C) | (icmp ne (A & D), E) 2444 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder)) 2445 return V; 2446 2447 if (LHS->hasOneUse() || RHS->hasOneUse()) { 2448 // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1) 2449 // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1) 2450 Value *A = nullptr, *B = nullptr; 2451 if (PredL == ICmpInst::ICMP_EQ && match(LHS1, m_Zero())) { 2452 B = LHS0; 2453 if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS1) 2454 A = RHS0; 2455 else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0) 2456 A = RHS1; 2457 } 2458 // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1) 2459 // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1) 2460 else if (PredR == ICmpInst::ICMP_EQ && match(RHS1, m_Zero())) { 2461 B = RHS0; 2462 if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS1) 2463 A = LHS0; 2464 else if (PredL == ICmpInst::ICMP_UGT && RHS0 == LHS0) 2465 A = LHS1; 2466 } 2467 if (A && B && B->getType()->isIntOrIntVectorTy()) 2468 return Builder.CreateICmp( 2469 ICmpInst::ICMP_UGE, 2470 Builder.CreateAdd(B, Constant::getAllOnesValue(B->getType())), A); 2471 } 2472 2473 if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, Or, Builder, Q)) 2474 return V; 2475 if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, Or, Builder, Q)) 2476 return V; 2477 2478 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 2479 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true)) 2480 return V; 2481 2482 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n 2483 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true)) 2484 return V; 2485 2486 if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder)) 2487 return V; 2488 2489 if (Value *V = foldIsPowerOf2(LHS, RHS, false /* JoinedByAnd */, Builder)) 2490 return V; 2491 2492 if (Value *X = 2493 foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/false, Q, Builder)) 2494 return X; 2495 if (Value *X = 2496 foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/false, Q, Builder)) 2497 return X; 2498 2499 if (Value *X = foldEqOfParts(LHS, RHS, /*IsAnd=*/false, Builder)) 2500 return X; 2501 2502 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) 2503 // TODO: Remove this when foldLogOpOfMaskedICmps can handle vectors. 2504 if (PredL == ICmpInst::ICMP_NE && match(LHS1, m_Zero()) && 2505 PredR == ICmpInst::ICMP_NE && match(RHS1, m_Zero()) && 2506 LHS0->getType()->isIntOrIntVectorTy() && 2507 LHS0->getType() == RHS0->getType()) { 2508 Value *NewOr = Builder.CreateOr(LHS0, RHS0); 2509 return Builder.CreateICmp(PredL, NewOr, 2510 Constant::getNullValue(NewOr->getType())); 2511 } 2512 2513 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). 2514 if (!LHSC || !RHSC) 2515 return nullptr; 2516 2517 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1) 2518 // iff C2 + CA == C1. 2519 if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) { 2520 ConstantInt *AddC; 2521 if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC)))) 2522 if (RHSC->getValue() + AddC->getValue() == LHSC->getValue()) 2523 return Builder.CreateICmpULE(LHS0, LHSC); 2524 } 2525 2526 // From here on, we only handle: 2527 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler. 2528 if (LHS0 != RHS0) 2529 return nullptr; 2530 2531 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere. 2532 if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE || 2533 PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE || 2534 PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE || 2535 PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE) 2536 return nullptr; 2537 2538 // We can't fold (ugt x, C) | (sgt x, C2). 2539 if (!predicatesFoldable(PredL, PredR)) 2540 return nullptr; 2541 2542 // Ensure that the larger constant is on the RHS. 2543 bool ShouldSwap; 2544 if (CmpInst::isSigned(PredL) || 2545 (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR))) 2546 ShouldSwap = LHSC->getValue().sgt(RHSC->getValue()); 2547 else 2548 ShouldSwap = LHSC->getValue().ugt(RHSC->getValue()); 2549 2550 if (ShouldSwap) { 2551 std::swap(LHS, RHS); 2552 std::swap(LHSC, RHSC); 2553 std::swap(PredL, PredR); 2554 } 2555 2556 // At this point, we know we have two icmp instructions 2557 // comparing a value against two constants and or'ing the result 2558 // together. Because of the above check, we know that we only have 2559 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the 2560 // icmp folding check above), that the two constants are not 2561 // equal. 2562 assert(LHSC != RHSC && "Compares not folded above?"); 2563 2564 switch (PredL) { 2565 default: 2566 llvm_unreachable("Unknown integer condition code!"); 2567 case ICmpInst::ICMP_EQ: 2568 switch (PredR) { 2569 default: 2570 llvm_unreachable("Unknown integer condition code!"); 2571 case ICmpInst::ICMP_EQ: 2572 // Potential folds for this case should already be handled. 2573 break; 2574 case ICmpInst::ICMP_UGT: 2575 // (X == 0 || X u> C) -> (X-1) u>= C 2576 if (LHSC->isMinValue(false)) 2577 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1, 2578 false, false); 2579 // (X == 13 | X u> 14) -> no change 2580 break; 2581 case ICmpInst::ICMP_SGT: 2582 // (X == INT_MIN || X s> C) -> (X-(INT_MIN+1)) u>= C-INT_MIN 2583 if (LHSC->isMinValue(true)) 2584 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1, 2585 true, false); 2586 // (X == 13 | X s> 14) -> no change 2587 break; 2588 } 2589 break; 2590 case ICmpInst::ICMP_ULT: 2591 switch (PredR) { 2592 default: 2593 llvm_unreachable("Unknown integer condition code!"); 2594 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change 2595 // (X u< C || X == UINT_MAX) => (X-C) u>= UINT_MAX-C 2596 if (RHSC->isMaxValue(false)) 2597 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(), 2598 false, false); 2599 break; 2600 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2 2601 assert(!RHSC->isMaxValue(false) && "Missed icmp simplification"); 2602 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, 2603 false, false); 2604 } 2605 break; 2606 case ICmpInst::ICMP_SLT: 2607 switch (PredR) { 2608 default: 2609 llvm_unreachable("Unknown integer condition code!"); 2610 case ICmpInst::ICMP_EQ: 2611 // (X s< C || X == INT_MAX) => (X-C) u>= INT_MAX-C 2612 if (RHSC->isMaxValue(true)) 2613 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(), 2614 true, false); 2615 // (X s< 13 | X == 14) -> no change 2616 break; 2617 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) u> 2 2618 assert(!RHSC->isMaxValue(true) && "Missed icmp simplification"); 2619 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true, 2620 false); 2621 } 2622 break; 2623 } 2624 return nullptr; 2625 } 2626 2627 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 2628 // here. We should standardize that construct where it is needed or choose some 2629 // other way to ensure that commutated variants of patterns are not missed. 2630 Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) { 2631 if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1), 2632 SQ.getWithInstruction(&I))) 2633 return replaceInstUsesWith(I, V); 2634 2635 if (SimplifyAssociativeOrCommutative(I)) 2636 return &I; 2637 2638 if (Instruction *X = foldVectorBinop(I)) 2639 return X; 2640 2641 // See if we can simplify any instructions used by the instruction whose sole 2642 // purpose is to compute bits we don't care about. 2643 if (SimplifyDemandedInstructionBits(I)) 2644 return &I; 2645 2646 // Do this before using distributive laws to catch simple and/or/not patterns. 2647 if (Instruction *Xor = foldOrToXor(I, Builder)) 2648 return Xor; 2649 2650 // (A&B)|(A&C) -> A&(B|C) etc 2651 if (Value *V = SimplifyUsingDistributiveLaws(I)) 2652 return replaceInstUsesWith(I, V); 2653 2654 if (Value *V = SimplifyBSwap(I, Builder)) 2655 return replaceInstUsesWith(I, V); 2656 2657 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2658 if (I.getType()->isIntOrIntVectorTy(1)) { 2659 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) { 2660 if (auto *I = 2661 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false)) 2662 return I; 2663 } 2664 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) { 2665 if (auto *I = 2666 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false)) 2667 return I; 2668 } 2669 } 2670 2671 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 2672 return FoldedLogic; 2673 2674 if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true, 2675 /*MatchBitReversals*/ true)) 2676 return BitOp; 2677 2678 if (Instruction *Funnel = matchFunnelShift(I, *this)) 2679 return Funnel; 2680 2681 if (Instruction *Concat = matchOrConcat(I, Builder)) 2682 return replaceInstUsesWith(I, Concat); 2683 2684 Value *X, *Y; 2685 const APInt *CV; 2686 if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) && 2687 !CV->isAllOnesValue() && MaskedValueIsZero(Y, *CV, 0, &I)) { 2688 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0 2689 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X). 2690 Value *Or = Builder.CreateOr(X, Y); 2691 return BinaryOperator::CreateXor(Or, ConstantInt::get(I.getType(), *CV)); 2692 } 2693 2694 // (A & C)|(B & D) 2695 Value *A, *B, *C, *D; 2696 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 2697 match(Op1, m_And(m_Value(B), m_Value(D)))) { 2698 // (A & C1)|(B & C2) 2699 ConstantInt *C1, *C2; 2700 if (match(C, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2))) { 2701 Value *V1 = nullptr, *V2 = nullptr; 2702 if ((C1->getValue() & C2->getValue()).isNullValue()) { 2703 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2) 2704 // iff (C1&C2) == 0 and (N&~C1) == 0 2705 if (match(A, m_Or(m_Value(V1), m_Value(V2))) && 2706 ((V1 == B && 2707 MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N) 2708 (V2 == B && 2709 MaskedValueIsZero(V1, ~C1->getValue(), 0, &I)))) // (N|V) 2710 return BinaryOperator::CreateAnd(A, 2711 Builder.getInt(C1->getValue()|C2->getValue())); 2712 // Or commutes, try both ways. 2713 if (match(B, m_Or(m_Value(V1), m_Value(V2))) && 2714 ((V1 == A && 2715 MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N) 2716 (V2 == A && 2717 MaskedValueIsZero(V1, ~C2->getValue(), 0, &I)))) // (N|V) 2718 return BinaryOperator::CreateAnd(B, 2719 Builder.getInt(C1->getValue()|C2->getValue())); 2720 2721 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2) 2722 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0. 2723 ConstantInt *C3 = nullptr, *C4 = nullptr; 2724 if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) && 2725 (C3->getValue() & ~C1->getValue()).isNullValue() && 2726 match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) && 2727 (C4->getValue() & ~C2->getValue()).isNullValue()) { 2728 V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield"); 2729 return BinaryOperator::CreateAnd(V2, 2730 Builder.getInt(C1->getValue()|C2->getValue())); 2731 } 2732 } 2733 2734 if (C1->getValue() == ~C2->getValue()) { 2735 Value *X; 2736 2737 // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2 2738 if (match(A, m_c_Or(m_Value(X), m_Specific(B)))) 2739 return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B); 2740 // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2 2741 if (match(B, m_c_Or(m_Specific(A), m_Value(X)))) 2742 return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A); 2743 2744 // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2 2745 if (match(A, m_c_Xor(m_Value(X), m_Specific(B)))) 2746 return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B); 2747 // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2 2748 if (match(B, m_c_Xor(m_Specific(A), m_Value(X)))) 2749 return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A); 2750 } 2751 } 2752 2753 // Don't try to form a select if it's unlikely that we'll get rid of at 2754 // least one of the operands. A select is generally more expensive than the 2755 // 'or' that it is replacing. 2756 if (Op0->hasOneUse() || Op1->hasOneUse()) { 2757 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants. 2758 if (Value *V = matchSelectFromAndOr(A, C, B, D)) 2759 return replaceInstUsesWith(I, V); 2760 if (Value *V = matchSelectFromAndOr(A, C, D, B)) 2761 return replaceInstUsesWith(I, V); 2762 if (Value *V = matchSelectFromAndOr(C, A, B, D)) 2763 return replaceInstUsesWith(I, V); 2764 if (Value *V = matchSelectFromAndOr(C, A, D, B)) 2765 return replaceInstUsesWith(I, V); 2766 if (Value *V = matchSelectFromAndOr(B, D, A, C)) 2767 return replaceInstUsesWith(I, V); 2768 if (Value *V = matchSelectFromAndOr(B, D, C, A)) 2769 return replaceInstUsesWith(I, V); 2770 if (Value *V = matchSelectFromAndOr(D, B, A, C)) 2771 return replaceInstUsesWith(I, V); 2772 if (Value *V = matchSelectFromAndOr(D, B, C, A)) 2773 return replaceInstUsesWith(I, V); 2774 } 2775 } 2776 2777 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C 2778 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 2779 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 2780 return BinaryOperator::CreateOr(Op0, C); 2781 2782 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C 2783 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 2784 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 2785 return BinaryOperator::CreateOr(Op1, C); 2786 2787 // ((B | C) & A) | B -> B | (A & C) 2788 if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A)))) 2789 return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C)); 2790 2791 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) 2792 return DeMorgan; 2793 2794 // Canonicalize xor to the RHS. 2795 bool SwappedForXor = false; 2796 if (match(Op0, m_Xor(m_Value(), m_Value()))) { 2797 std::swap(Op0, Op1); 2798 SwappedForXor = true; 2799 } 2800 2801 // A | ( A ^ B) -> A | B 2802 // A | (~A ^ B) -> A | ~B 2803 // (A & B) | (A ^ B) 2804 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) { 2805 if (Op0 == A || Op0 == B) 2806 return BinaryOperator::CreateOr(A, B); 2807 2808 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) || 2809 match(Op0, m_And(m_Specific(B), m_Specific(A)))) 2810 return BinaryOperator::CreateOr(A, B); 2811 2812 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) { 2813 Value *Not = Builder.CreateNot(B, B->getName() + ".not"); 2814 return BinaryOperator::CreateOr(Not, Op0); 2815 } 2816 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) { 2817 Value *Not = Builder.CreateNot(A, A->getName() + ".not"); 2818 return BinaryOperator::CreateOr(Not, Op0); 2819 } 2820 } 2821 2822 // A | ~(A | B) -> A | ~B 2823 // A | ~(A ^ B) -> A | ~B 2824 if (match(Op1, m_Not(m_Value(A)))) 2825 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A)) 2826 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) && 2827 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or || 2828 B->getOpcode() == Instruction::Xor)) { 2829 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) : 2830 B->getOperand(0); 2831 Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not"); 2832 return BinaryOperator::CreateOr(Not, Op0); 2833 } 2834 2835 if (SwappedForXor) 2836 std::swap(Op0, Op1); 2837 2838 { 2839 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 2840 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 2841 if (LHS && RHS) 2842 if (Value *Res = foldOrOfICmps(LHS, RHS, I)) 2843 return replaceInstUsesWith(I, Res); 2844 2845 // TODO: Make this recursive; it's a little tricky because an arbitrary 2846 // number of 'or' instructions might have to be created. 2847 Value *X, *Y; 2848 if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 2849 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2850 if (Value *Res = foldOrOfICmps(LHS, Cmp, I)) 2851 return replaceInstUsesWith(I, Builder.CreateOr(Res, Y)); 2852 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2853 if (Value *Res = foldOrOfICmps(LHS, Cmp, I)) 2854 return replaceInstUsesWith(I, Builder.CreateOr(Res, X)); 2855 } 2856 if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 2857 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2858 if (Value *Res = foldOrOfICmps(Cmp, RHS, I)) 2859 return replaceInstUsesWith(I, Builder.CreateOr(Res, Y)); 2860 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2861 if (Value *Res = foldOrOfICmps(Cmp, RHS, I)) 2862 return replaceInstUsesWith(I, Builder.CreateOr(Res, X)); 2863 } 2864 } 2865 2866 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 2867 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 2868 if (Value *Res = foldLogicOfFCmps(LHS, RHS, false)) 2869 return replaceInstUsesWith(I, Res); 2870 2871 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) 2872 return FoldedFCmps; 2873 2874 if (Instruction *CastedOr = foldCastedBitwiseLogic(I)) 2875 return CastedOr; 2876 2877 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>. 2878 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) && 2879 A->getType()->isIntOrIntVectorTy(1)) 2880 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1); 2881 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) && 2882 A->getType()->isIntOrIntVectorTy(1)) 2883 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0); 2884 2885 // Note: If we've gotten to the point of visiting the outer OR, then the 2886 // inner one couldn't be simplified. If it was a constant, then it won't 2887 // be simplified by a later pass either, so we try swapping the inner/outer 2888 // ORs in the hopes that we'll be able to simplify it this way. 2889 // (X|C) | V --> (X|V) | C 2890 ConstantInt *CI; 2891 if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) && 2892 match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) { 2893 Value *Inner = Builder.CreateOr(A, Op1); 2894 Inner->takeName(Op0); 2895 return BinaryOperator::CreateOr(Inner, CI); 2896 } 2897 2898 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D)) 2899 // Since this OR statement hasn't been optimized further yet, we hope 2900 // that this transformation will allow the new ORs to be optimized. 2901 { 2902 Value *X = nullptr, *Y = nullptr; 2903 if (Op0->hasOneUse() && Op1->hasOneUse() && 2904 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) && 2905 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) { 2906 Value *orTrue = Builder.CreateOr(A, C); 2907 Value *orFalse = Builder.CreateOr(B, D); 2908 return SelectInst::Create(X, orTrue, orFalse); 2909 } 2910 } 2911 2912 // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X. 2913 { 2914 Value *X, *Y; 2915 Type *Ty = I.getType(); 2916 if (match(&I, m_c_Or(m_OneUse(m_AShr( 2917 m_NSWSub(m_Value(Y), m_Value(X)), 2918 m_SpecificInt(Ty->getScalarSizeInBits() - 1))), 2919 m_Deferred(X)))) { 2920 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y); 2921 Value *AllOnes = ConstantInt::getAllOnesValue(Ty); 2922 return SelectInst::Create(NewICmpInst, AllOnes, X); 2923 } 2924 } 2925 2926 if (Instruction *V = 2927 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2928 return V; 2929 2930 CmpInst::Predicate Pred; 2931 Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv; 2932 // Check if the OR weakens the overflow condition for umul.with.overflow by 2933 // treating any non-zero result as overflow. In that case, we overflow if both 2934 // umul.with.overflow operands are != 0, as in that case the result can only 2935 // be 0, iff the multiplication overflows. 2936 if (match(&I, 2937 m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)), 2938 m_Value(Ov)), 2939 m_CombineAnd(m_ICmp(Pred, 2940 m_CombineAnd(m_ExtractValue<0>( 2941 m_Deferred(UMulWithOv)), 2942 m_Value(Mul)), 2943 m_ZeroInt()), 2944 m_Value(MulIsNotZero)))) && 2945 (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) && 2946 Pred == CmpInst::ICMP_NE) { 2947 Value *A, *B; 2948 if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>( 2949 m_Value(A), m_Value(B)))) { 2950 Value *NotNullA = Builder.CreateIsNotNull(A); 2951 Value *NotNullB = Builder.CreateIsNotNull(B); 2952 return BinaryOperator::CreateAnd(NotNullA, NotNullB); 2953 } 2954 } 2955 2956 // (~x) | y --> ~(x & (~y)) iff that gets rid of inversions 2957 if (sinkNotIntoOtherHandOfAndOrOr(I)) 2958 return &I; 2959 2960 // Improve "get low bit mask up to and including bit X" pattern: 2961 // (1 << X) | ((1 << X) + -1) --> -1 l>> (bitwidth(x) - 1 - X) 2962 if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()), 2963 m_Shl(m_One(), m_Deferred(X)))) && 2964 match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) { 2965 Type *Ty = X->getType(); 2966 Value *Sub = Builder.CreateSub( 2967 ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X); 2968 return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub); 2969 } 2970 2971 // An or recurrence w/loop invariant step is equivelent to (or start, step) 2972 PHINode *PN = nullptr; 2973 Value *Start = nullptr, *Step = nullptr; 2974 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN)) 2975 return replaceInstUsesWith(I, Builder.CreateOr(Start, Step)); 2976 2977 return nullptr; 2978 } 2979 2980 /// A ^ B can be specified using other logic ops in a variety of patterns. We 2981 /// can fold these early and efficiently by morphing an existing instruction. 2982 static Instruction *foldXorToXor(BinaryOperator &I, 2983 InstCombiner::BuilderTy &Builder) { 2984 assert(I.getOpcode() == Instruction::Xor); 2985 Value *Op0 = I.getOperand(0); 2986 Value *Op1 = I.getOperand(1); 2987 Value *A, *B; 2988 2989 // There are 4 commuted variants for each of the basic patterns. 2990 2991 // (A & B) ^ (A | B) -> A ^ B 2992 // (A & B) ^ (B | A) -> A ^ B 2993 // (A | B) ^ (A & B) -> A ^ B 2994 // (A | B) ^ (B & A) -> A ^ B 2995 if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)), 2996 m_c_Or(m_Deferred(A), m_Deferred(B))))) 2997 return BinaryOperator::CreateXor(A, B); 2998 2999 // (A | ~B) ^ (~A | B) -> A ^ B 3000 // (~B | A) ^ (~A | B) -> A ^ B 3001 // (~A | B) ^ (A | ~B) -> A ^ B 3002 // (B | ~A) ^ (A | ~B) -> A ^ B 3003 if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))), 3004 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) 3005 return BinaryOperator::CreateXor(A, B); 3006 3007 // (A & ~B) ^ (~A & B) -> A ^ B 3008 // (~B & A) ^ (~A & B) -> A ^ B 3009 // (~A & B) ^ (A & ~B) -> A ^ B 3010 // (B & ~A) ^ (A & ~B) -> A ^ B 3011 if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))), 3012 m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) 3013 return BinaryOperator::CreateXor(A, B); 3014 3015 // For the remaining cases we need to get rid of one of the operands. 3016 if (!Op0->hasOneUse() && !Op1->hasOneUse()) 3017 return nullptr; 3018 3019 // (A | B) ^ ~(A & B) -> ~(A ^ B) 3020 // (A | B) ^ ~(B & A) -> ~(A ^ B) 3021 // (A & B) ^ ~(A | B) -> ~(A ^ B) 3022 // (A & B) ^ ~(B | A) -> ~(A ^ B) 3023 // Complexity sorting ensures the not will be on the right side. 3024 if ((match(Op0, m_Or(m_Value(A), m_Value(B))) && 3025 match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) || 3026 (match(Op0, m_And(m_Value(A), m_Value(B))) && 3027 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))) 3028 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 3029 3030 return nullptr; 3031 } 3032 3033 Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, 3034 BinaryOperator &I) { 3035 assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS && 3036 I.getOperand(1) == RHS && "Should be 'xor' with these operands"); 3037 3038 if (predicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) { 3039 if (LHS->getOperand(0) == RHS->getOperand(1) && 3040 LHS->getOperand(1) == RHS->getOperand(0)) 3041 LHS->swapOperands(); 3042 if (LHS->getOperand(0) == RHS->getOperand(0) && 3043 LHS->getOperand(1) == RHS->getOperand(1)) { 3044 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) 3045 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 3046 unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS); 3047 bool IsSigned = LHS->isSigned() || RHS->isSigned(); 3048 return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder); 3049 } 3050 } 3051 3052 // TODO: This can be generalized to compares of non-signbits using 3053 // decomposeBitTestICmp(). It could be enhanced more by using (something like) 3054 // foldLogOpOfMaskedICmps(). 3055 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 3056 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 3057 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 3058 if ((LHS->hasOneUse() || RHS->hasOneUse()) && 3059 LHS0->getType() == RHS0->getType() && 3060 LHS0->getType()->isIntOrIntVectorTy()) { 3061 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0 3062 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0 3063 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) && 3064 PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) || 3065 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) && 3066 PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) { 3067 Value *Zero = ConstantInt::getNullValue(LHS0->getType()); 3068 return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero); 3069 } 3070 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1 3071 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1 3072 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) && 3073 PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) || 3074 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) && 3075 PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) { 3076 Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType()); 3077 return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne); 3078 } 3079 } 3080 3081 // Instead of trying to imitate the folds for and/or, decompose this 'xor' 3082 // into those logic ops. That is, try to turn this into an and-of-icmps 3083 // because we have many folds for that pattern. 3084 // 3085 // This is based on a truth table definition of xor: 3086 // X ^ Y --> (X | Y) & !(X & Y) 3087 if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) { 3088 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y). 3089 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?). 3090 if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) { 3091 // TODO: Independently handle cases where the 'and' side is a constant. 3092 ICmpInst *X = nullptr, *Y = nullptr; 3093 if (OrICmp == LHS && AndICmp == RHS) { 3094 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y 3095 X = LHS; 3096 Y = RHS; 3097 } 3098 if (OrICmp == RHS && AndICmp == LHS) { 3099 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X 3100 X = RHS; 3101 Y = LHS; 3102 } 3103 if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) { 3104 // Invert the predicate of 'Y', thus inverting its output. 3105 Y->setPredicate(Y->getInversePredicate()); 3106 // So, are there other uses of Y? 3107 if (!Y->hasOneUse()) { 3108 // We need to adapt other uses of Y though. Get a value that matches 3109 // the original value of Y before inversion. While this increases 3110 // immediate instruction count, we have just ensured that all the 3111 // users are freely-invertible, so that 'not' *will* get folded away. 3112 BuilderTy::InsertPointGuard Guard(Builder); 3113 // Set insertion point to right after the Y. 3114 Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator())); 3115 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 3116 // Replace all uses of Y (excluding the one in NotY!) with NotY. 3117 Worklist.pushUsersToWorkList(*Y); 3118 Y->replaceUsesWithIf(NotY, 3119 [NotY](Use &U) { return U.getUser() != NotY; }); 3120 } 3121 // All done. 3122 return Builder.CreateAnd(LHS, RHS); 3123 } 3124 } 3125 } 3126 3127 return nullptr; 3128 } 3129 3130 /// If we have a masked merge, in the canonical form of: 3131 /// (assuming that A only has one use.) 3132 /// | A | |B| 3133 /// ((x ^ y) & M) ^ y 3134 /// | D | 3135 /// * If M is inverted: 3136 /// | D | 3137 /// ((x ^ y) & ~M) ^ y 3138 /// We can canonicalize by swapping the final xor operand 3139 /// to eliminate the 'not' of the mask. 3140 /// ((x ^ y) & M) ^ x 3141 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops 3142 /// because that shortens the dependency chain and improves analysis: 3143 /// (x & M) | (y & ~M) 3144 static Instruction *visitMaskedMerge(BinaryOperator &I, 3145 InstCombiner::BuilderTy &Builder) { 3146 Value *B, *X, *D; 3147 Value *M; 3148 if (!match(&I, m_c_Xor(m_Value(B), 3149 m_OneUse(m_c_And( 3150 m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)), 3151 m_Value(D)), 3152 m_Value(M)))))) 3153 return nullptr; 3154 3155 Value *NotM; 3156 if (match(M, m_Not(m_Value(NotM)))) { 3157 // De-invert the mask and swap the value in B part. 3158 Value *NewA = Builder.CreateAnd(D, NotM); 3159 return BinaryOperator::CreateXor(NewA, X); 3160 } 3161 3162 Constant *C; 3163 if (D->hasOneUse() && match(M, m_Constant(C))) { 3164 // Propagating undef is unsafe. Clamp undef elements to -1. 3165 Type *EltTy = C->getType()->getScalarType(); 3166 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy)); 3167 // Unfold. 3168 Value *LHS = Builder.CreateAnd(X, C); 3169 Value *NotC = Builder.CreateNot(C); 3170 Value *RHS = Builder.CreateAnd(B, NotC); 3171 return BinaryOperator::CreateOr(LHS, RHS); 3172 } 3173 3174 return nullptr; 3175 } 3176 3177 // Transform 3178 // ~(x ^ y) 3179 // into: 3180 // (~x) ^ y 3181 // or into 3182 // x ^ (~y) 3183 static Instruction *sinkNotIntoXor(BinaryOperator &I, 3184 InstCombiner::BuilderTy &Builder) { 3185 Value *X, *Y; 3186 // FIXME: one-use check is not needed in general, but currently we are unable 3187 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182) 3188 if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y)))))) 3189 return nullptr; 3190 3191 // We only want to do the transform if it is free to do. 3192 if (InstCombiner::isFreeToInvert(X, X->hasOneUse())) { 3193 // Ok, good. 3194 } else if (InstCombiner::isFreeToInvert(Y, Y->hasOneUse())) { 3195 std::swap(X, Y); 3196 } else 3197 return nullptr; 3198 3199 Value *NotX = Builder.CreateNot(X, X->getName() + ".not"); 3200 return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan"); 3201 } 3202 3203 /// Canonicalize a shifty way to code absolute value to the more common pattern 3204 /// that uses negation and select. 3205 static Instruction *canonicalizeAbs(BinaryOperator &Xor, 3206 InstCombiner::BuilderTy &Builder) { 3207 assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction."); 3208 3209 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1. 3210 // We're relying on the fact that we only do this transform when the shift has 3211 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase 3212 // instructions). 3213 Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1); 3214 if (Op0->hasNUses(2)) 3215 std::swap(Op0, Op1); 3216 3217 Type *Ty = Xor.getType(); 3218 Value *A; 3219 const APInt *ShAmt; 3220 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 3221 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 3222 match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) { 3223 // Op1 = ashr i32 A, 31 ; smear the sign bit 3224 // xor (add A, Op1), Op1 ; add -1 and flip bits if negative 3225 // --> (A < 0) ? -A : A 3226 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); 3227 // Copy the nuw/nsw flags from the add to the negate. 3228 auto *Add = cast<BinaryOperator>(Op0); 3229 Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(), 3230 Add->hasNoSignedWrap()); 3231 return SelectInst::Create(Cmp, Neg, A); 3232 } 3233 return nullptr; 3234 } 3235 3236 // Transform 3237 // z = (~x) &/| y 3238 // into: 3239 // z = ~(x |/& (~y)) 3240 // iff y is free to invert and all uses of z can be freely updated. 3241 bool InstCombinerImpl::sinkNotIntoOtherHandOfAndOrOr(BinaryOperator &I) { 3242 Instruction::BinaryOps NewOpc; 3243 switch (I.getOpcode()) { 3244 case Instruction::And: 3245 NewOpc = Instruction::Or; 3246 break; 3247 case Instruction::Or: 3248 NewOpc = Instruction::And; 3249 break; 3250 default: 3251 return false; 3252 }; 3253 3254 Value *X, *Y; 3255 if (!match(&I, m_c_BinOp(m_Not(m_Value(X)), m_Value(Y)))) 3256 return false; 3257 3258 // Will we be able to fold the `not` into Y eventually? 3259 if (!InstCombiner::isFreeToInvert(Y, Y->hasOneUse())) 3260 return false; 3261 3262 // And can our users be adapted? 3263 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 3264 return false; 3265 3266 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 3267 Value *NewBinOp = 3268 BinaryOperator::Create(NewOpc, X, NotY, I.getName() + ".not"); 3269 Builder.Insert(NewBinOp); 3270 replaceInstUsesWith(I, NewBinOp); 3271 // We can not just create an outer `not`, it will most likely be immediately 3272 // folded back, reconstructing our initial pattern, and causing an 3273 // infinite combine loop, so immediately manually fold it away. 3274 freelyInvertAllUsersOf(NewBinOp); 3275 return true; 3276 } 3277 3278 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 3279 // here. We should standardize that construct where it is needed or choose some 3280 // other way to ensure that commutated variants of patterns are not missed. 3281 Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) { 3282 if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1), 3283 SQ.getWithInstruction(&I))) 3284 return replaceInstUsesWith(I, V); 3285 3286 if (SimplifyAssociativeOrCommutative(I)) 3287 return &I; 3288 3289 if (Instruction *X = foldVectorBinop(I)) 3290 return X; 3291 3292 if (Instruction *NewXor = foldXorToXor(I, Builder)) 3293 return NewXor; 3294 3295 // (A&B)^(A&C) -> A&(B^C) etc 3296 if (Value *V = SimplifyUsingDistributiveLaws(I)) 3297 return replaceInstUsesWith(I, V); 3298 3299 // See if we can simplify any instructions used by the instruction whose sole 3300 // purpose is to compute bits we don't care about. 3301 if (SimplifyDemandedInstructionBits(I)) 3302 return &I; 3303 3304 if (Value *V = SimplifyBSwap(I, Builder)) 3305 return replaceInstUsesWith(I, V); 3306 3307 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3308 Type *Ty = I.getType(); 3309 3310 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M) 3311 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits 3312 // calls in there are unnecessary as SimplifyDemandedInstructionBits should 3313 // have already taken care of those cases. 3314 Value *M; 3315 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()), 3316 m_c_And(m_Deferred(M), m_Value())))) 3317 return BinaryOperator::CreateOr(Op0, Op1); 3318 3319 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand. 3320 Value *X, *Y; 3321 3322 // We must eliminate the and/or (one-use) for these transforms to not increase 3323 // the instruction count. 3324 // ~(~X & Y) --> (X | ~Y) 3325 // ~(Y & ~X) --> (X | ~Y) 3326 if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) { 3327 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 3328 return BinaryOperator::CreateOr(X, NotY); 3329 } 3330 // ~(~X | Y) --> (X & ~Y) 3331 // ~(Y | ~X) --> (X & ~Y) 3332 if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) { 3333 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 3334 return BinaryOperator::CreateAnd(X, NotY); 3335 } 3336 3337 if (Instruction *Xor = visitMaskedMerge(I, Builder)) 3338 return Xor; 3339 3340 // Is this a 'not' (~) fed by a binary operator? 3341 BinaryOperator *NotVal; 3342 if (match(&I, m_Not(m_BinOp(NotVal)))) { 3343 if (NotVal->getOpcode() == Instruction::And || 3344 NotVal->getOpcode() == Instruction::Or) { 3345 // Apply DeMorgan's Law when inverts are free: 3346 // ~(X & Y) --> (~X | ~Y) 3347 // ~(X | Y) --> (~X & ~Y) 3348 if (isFreeToInvert(NotVal->getOperand(0), 3349 NotVal->getOperand(0)->hasOneUse()) && 3350 isFreeToInvert(NotVal->getOperand(1), 3351 NotVal->getOperand(1)->hasOneUse())) { 3352 Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs"); 3353 Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs"); 3354 if (NotVal->getOpcode() == Instruction::And) 3355 return BinaryOperator::CreateOr(NotX, NotY); 3356 return BinaryOperator::CreateAnd(NotX, NotY); 3357 } 3358 } 3359 3360 // ~((-X) | Y) --> (X - 1) & (~Y) 3361 if (match(NotVal, 3362 m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) { 3363 Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty)); 3364 Value *NotY = Builder.CreateNot(Y); 3365 return BinaryOperator::CreateAnd(DecX, NotY); 3366 } 3367 3368 // ~(~X >>s Y) --> (X >>s Y) 3369 if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y)))) 3370 return BinaryOperator::CreateAShr(X, Y); 3371 3372 // If we are inverting a right-shifted constant, we may be able to eliminate 3373 // the 'not' by inverting the constant and using the opposite shift type. 3374 // Canonicalization rules ensure that only a negative constant uses 'ashr', 3375 // but we must check that in case that transform has not fired yet. 3376 3377 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits) 3378 Constant *C; 3379 if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) && 3380 match(C, m_Negative())) { 3381 // We matched a negative constant, so propagating undef is unsafe. 3382 // Clamp undef elements to -1. 3383 Type *EltTy = Ty->getScalarType(); 3384 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy)); 3385 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y); 3386 } 3387 3388 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits) 3389 if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) && 3390 match(C, m_NonNegative())) { 3391 // We matched a non-negative constant, so propagating undef is unsafe. 3392 // Clamp undef elements to 0. 3393 Type *EltTy = Ty->getScalarType(); 3394 C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy)); 3395 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y); 3396 } 3397 3398 // ~(X + C) --> ~C - X 3399 if (match(NotVal, m_c_Add(m_Value(X), m_ImmConstant(C)))) 3400 return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X); 3401 3402 // ~(X - Y) --> ~X + Y 3403 // FIXME: is it really beneficial to sink the `not` here? 3404 if (match(NotVal, m_Sub(m_Value(X), m_Value(Y)))) 3405 if (isa<Constant>(X) || NotVal->hasOneUse()) 3406 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y); 3407 3408 // ~(~X + Y) --> X - Y 3409 if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y)))) 3410 return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y, 3411 NotVal); 3412 } 3413 3414 // Use DeMorgan and reassociation to eliminate a 'not' op. 3415 Constant *C1; 3416 if (match(Op1, m_Constant(C1))) { 3417 Constant *C2; 3418 if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) { 3419 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1 3420 Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2)); 3421 return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1)); 3422 } 3423 if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) { 3424 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1 3425 Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2)); 3426 return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1)); 3427 } 3428 } 3429 3430 // not (cmp A, B) = !cmp A, B 3431 CmpInst::Predicate Pred; 3432 if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) { 3433 cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred)); 3434 return replaceInstUsesWith(I, Op0); 3435 } 3436 3437 { 3438 const APInt *RHSC; 3439 if (match(Op1, m_APInt(RHSC))) { 3440 Value *X; 3441 const APInt *C; 3442 // (C - X) ^ signmaskC --> (C + signmaskC) - X 3443 if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X)))) 3444 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X); 3445 3446 // (X + C) ^ signmaskC --> X + (C + signmaskC) 3447 if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C)))) 3448 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC)); 3449 3450 // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0 3451 if (match(Op0, m_Or(m_Value(X), m_APInt(C))) && 3452 MaskedValueIsZero(X, *C, 0, &I)) 3453 return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC)); 3454 3455 // If RHSC is inverting the remaining bits of shifted X, 3456 // canonicalize to a 'not' before the shift to help SCEV and codegen: 3457 // (X << C) ^ RHSC --> ~X << C 3458 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) && 3459 *RHSC == APInt::getAllOnesValue(Ty->getScalarSizeInBits()).shl(*C)) { 3460 Value *NotX = Builder.CreateNot(X); 3461 return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C)); 3462 } 3463 // (X >>u C) ^ RHSC --> ~X >>u C 3464 if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) && 3465 *RHSC == APInt::getAllOnesValue(Ty->getScalarSizeInBits()).lshr(*C)) { 3466 Value *NotX = Builder.CreateNot(X); 3467 return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C)); 3468 } 3469 // TODO: We could handle 'ashr' here as well. That would be matching 3470 // a 'not' op and moving it before the shift. Doing that requires 3471 // preventing the inverse fold in canShiftBinOpWithConstantRHS(). 3472 } 3473 } 3474 3475 // FIXME: This should not be limited to scalar (pull into APInt match above). 3476 { 3477 Value *X; 3478 ConstantInt *C1, *C2, *C3; 3479 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3) 3480 if (match(Op1, m_ConstantInt(C3)) && 3481 match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)), 3482 m_ConstantInt(C2))) && 3483 Op0->hasOneUse()) { 3484 // fold (C1 >> C2) ^ C3 3485 APInt FoldConst = C1->getValue().lshr(C2->getValue()); 3486 FoldConst ^= C3->getValue(); 3487 // Prepare the two operands. 3488 auto *Opnd0 = cast<Instruction>(Builder.CreateLShr(X, C2)); 3489 Opnd0->takeName(cast<Instruction>(Op0)); 3490 Opnd0->setDebugLoc(I.getDebugLoc()); 3491 return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst)); 3492 } 3493 } 3494 3495 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 3496 return FoldedLogic; 3497 3498 // Y ^ (X | Y) --> X & ~Y 3499 // Y ^ (Y | X) --> X & ~Y 3500 if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0))))) 3501 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0)); 3502 // (X | Y) ^ Y --> X & ~Y 3503 // (Y | X) ^ Y --> X & ~Y 3504 if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1))))) 3505 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1)); 3506 3507 // Y ^ (X & Y) --> ~X & Y 3508 // Y ^ (Y & X) --> ~X & Y 3509 if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0))))) 3510 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X)); 3511 // (X & Y) ^ Y --> ~X & Y 3512 // (Y & X) ^ Y --> ~X & Y 3513 // Canonical form is (X & C) ^ C; don't touch that. 3514 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must 3515 // be fixed to prefer that (otherwise we get infinite looping). 3516 if (!match(Op1, m_Constant()) && 3517 match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1))))) 3518 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X)); 3519 3520 Value *A, *B, *C; 3521 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants. 3522 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), 3523 m_OneUse(m_c_Or(m_Deferred(A), m_Value(C)))))) 3524 return BinaryOperator::CreateXor( 3525 Builder.CreateAnd(Builder.CreateNot(A), C), B); 3526 3527 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants. 3528 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), 3529 m_OneUse(m_c_Or(m_Deferred(B), m_Value(C)))))) 3530 return BinaryOperator::CreateXor( 3531 Builder.CreateAnd(Builder.CreateNot(B), C), A); 3532 3533 // (A & B) ^ (A ^ B) -> (A | B) 3534 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 3535 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B)))) 3536 return BinaryOperator::CreateOr(A, B); 3537 // (A ^ B) ^ (A & B) -> (A | B) 3538 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 3539 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 3540 return BinaryOperator::CreateOr(A, B); 3541 3542 // (A & ~B) ^ ~A -> ~(A & B) 3543 // (~B & A) ^ ~A -> ~(A & B) 3544 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 3545 match(Op1, m_Not(m_Specific(A)))) 3546 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); 3547 3548 // (~A & B) ^ A --> A | B -- There are 4 commuted variants. 3549 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A)))) 3550 return BinaryOperator::CreateOr(A, B); 3551 3552 // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants. 3553 // TODO: Loosen one-use restriction if common operand is a constant. 3554 Value *D; 3555 if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) && 3556 match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) { 3557 if (B == C || B == D) 3558 std::swap(A, B); 3559 if (A == C) 3560 std::swap(C, D); 3561 if (A == D) { 3562 Value *NotA = Builder.CreateNot(A); 3563 return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA); 3564 } 3565 } 3566 3567 if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) 3568 if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) 3569 if (Value *V = foldXorOfICmps(LHS, RHS, I)) 3570 return replaceInstUsesWith(I, V); 3571 3572 if (Instruction *CastedXor = foldCastedBitwiseLogic(I)) 3573 return CastedXor; 3574 3575 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max: 3576 // ~min(~X, ~Y) --> max(X, Y) 3577 // ~max(~X, Y) --> min(X, ~Y) 3578 auto *II = dyn_cast<IntrinsicInst>(Op0); 3579 if (II && match(Op1, m_AllOnes())) { 3580 if (match(Op0, m_MaxOrMin(m_Not(m_Value(X)), m_Not(m_Value(Y))))) { 3581 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 3582 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y); 3583 return replaceInstUsesWith(I, InvMaxMin); 3584 } 3585 if (match(Op0, m_OneUse(m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y))))) { 3586 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 3587 Value *NotY = Builder.CreateNot(Y); 3588 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY); 3589 return replaceInstUsesWith(I, InvMaxMin); 3590 } 3591 } 3592 3593 // TODO: Remove folds if we canonicalize to intrinsics (see above). 3594 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max: 3595 // 3596 // %notx = xor i32 %x, -1 3597 // %cmp1 = icmp sgt i32 %notx, %y 3598 // %smax = select i1 %cmp1, i32 %notx, i32 %y 3599 // %res = xor i32 %smax, -1 3600 // => 3601 // %noty = xor i32 %y, -1 3602 // %cmp2 = icmp slt %x, %noty 3603 // %res = select i1 %cmp2, i32 %x, i32 %noty 3604 // 3605 // Same is applicable for smin/umax/umin. 3606 if (match(Op1, m_AllOnes()) && Op0->hasOneUse()) { 3607 Value *LHS, *RHS; 3608 SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor; 3609 if (SelectPatternResult::isMinOrMax(SPF)) { 3610 // It's possible we get here before the not has been simplified, so make 3611 // sure the input to the not isn't freely invertible. 3612 if (match(LHS, m_Not(m_Value(X))) && !isFreeToInvert(X, X->hasOneUse())) { 3613 Value *NotY = Builder.CreateNot(RHS); 3614 return SelectInst::Create( 3615 Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY); 3616 } 3617 3618 // It's possible we get here before the not has been simplified, so make 3619 // sure the input to the not isn't freely invertible. 3620 if (match(RHS, m_Not(m_Value(Y))) && !isFreeToInvert(Y, Y->hasOneUse())) { 3621 Value *NotX = Builder.CreateNot(LHS); 3622 return SelectInst::Create( 3623 Builder.CreateICmp(getInverseMinMaxPred(SPF), NotX, Y), NotX, Y); 3624 } 3625 3626 // If both sides are freely invertible, then we can get rid of the xor 3627 // completely. 3628 if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) && 3629 isFreeToInvert(RHS, !RHS->hasNUsesOrMore(3))) { 3630 Value *NotLHS = Builder.CreateNot(LHS); 3631 Value *NotRHS = Builder.CreateNot(RHS); 3632 return SelectInst::Create( 3633 Builder.CreateICmp(getInverseMinMaxPred(SPF), NotLHS, NotRHS), 3634 NotLHS, NotRHS); 3635 } 3636 } 3637 3638 // Pull 'not' into operands of select if both operands are one-use compares 3639 // or one is one-use compare and the other one is a constant. 3640 // Inverting the predicates eliminates the 'not' operation. 3641 // Example: 3642 // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) --> 3643 // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?) 3644 // not (select ?, (cmp TPred, ?, ?), true --> 3645 // select ?, (cmp InvTPred, ?, ?), false 3646 if (auto *Sel = dyn_cast<SelectInst>(Op0)) { 3647 Value *TV = Sel->getTrueValue(); 3648 Value *FV = Sel->getFalseValue(); 3649 auto *CmpT = dyn_cast<CmpInst>(TV); 3650 auto *CmpF = dyn_cast<CmpInst>(FV); 3651 bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV); 3652 bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV); 3653 if (InvertibleT && InvertibleF) { 3654 if (CmpT) 3655 CmpT->setPredicate(CmpT->getInversePredicate()); 3656 else 3657 Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV))); 3658 if (CmpF) 3659 CmpF->setPredicate(CmpF->getInversePredicate()); 3660 else 3661 Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV))); 3662 return replaceInstUsesWith(I, Sel); 3663 } 3664 } 3665 } 3666 3667 if (Instruction *NewXor = sinkNotIntoXor(I, Builder)) 3668 return NewXor; 3669 3670 if (Instruction *Abs = canonicalizeAbs(I, Builder)) 3671 return Abs; 3672 3673 // Otherwise, if all else failed, try to hoist the xor-by-constant: 3674 // (X ^ C) ^ Y --> (X ^ Y) ^ C 3675 // Just like we do in other places, we completely avoid the fold 3676 // for constantexprs, at least to avoid endless combine loop. 3677 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X), 3678 m_Unless(m_ConstantExpr())), 3679 m_ImmConstant(C1))), 3680 m_Value(Y)))) 3681 return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1); 3682 3683 return nullptr; 3684 } 3685