1 //===- InstCombineAndOrXor.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitAnd, visitOr, and visitXor functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/CmpInstAnalysis.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/Transforms/Utils/Local.h" 17 #include "llvm/IR/ConstantRange.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/PatternMatch.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into 26 /// a four bit mask. 27 static unsigned getFCmpCode(FCmpInst::Predicate CC) { 28 assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE && 29 "Unexpected FCmp predicate!"); 30 // Take advantage of the bit pattern of FCmpInst::Predicate here. 31 // U L G E 32 static_assert(FCmpInst::FCMP_FALSE == 0, ""); // 0 0 0 0 33 static_assert(FCmpInst::FCMP_OEQ == 1, ""); // 0 0 0 1 34 static_assert(FCmpInst::FCMP_OGT == 2, ""); // 0 0 1 0 35 static_assert(FCmpInst::FCMP_OGE == 3, ""); // 0 0 1 1 36 static_assert(FCmpInst::FCMP_OLT == 4, ""); // 0 1 0 0 37 static_assert(FCmpInst::FCMP_OLE == 5, ""); // 0 1 0 1 38 static_assert(FCmpInst::FCMP_ONE == 6, ""); // 0 1 1 0 39 static_assert(FCmpInst::FCMP_ORD == 7, ""); // 0 1 1 1 40 static_assert(FCmpInst::FCMP_UNO == 8, ""); // 1 0 0 0 41 static_assert(FCmpInst::FCMP_UEQ == 9, ""); // 1 0 0 1 42 static_assert(FCmpInst::FCMP_UGT == 10, ""); // 1 0 1 0 43 static_assert(FCmpInst::FCMP_UGE == 11, ""); // 1 0 1 1 44 static_assert(FCmpInst::FCMP_ULT == 12, ""); // 1 1 0 0 45 static_assert(FCmpInst::FCMP_ULE == 13, ""); // 1 1 0 1 46 static_assert(FCmpInst::FCMP_UNE == 14, ""); // 1 1 1 0 47 static_assert(FCmpInst::FCMP_TRUE == 15, ""); // 1 1 1 1 48 return CC; 49 } 50 51 /// This is the complement of getICmpCode, which turns an opcode and two 52 /// operands into either a constant true or false, or a brand new ICmp 53 /// instruction. The sign is passed in to determine which kind of predicate to 54 /// use in the new icmp instruction. 55 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS, 56 InstCombiner::BuilderTy &Builder) { 57 ICmpInst::Predicate NewPred; 58 if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred)) 59 return TorF; 60 return Builder.CreateICmp(NewPred, LHS, RHS); 61 } 62 63 /// This is the complement of getFCmpCode, which turns an opcode and two 64 /// operands into either a FCmp instruction, or a true/false constant. 65 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS, 66 InstCombiner::BuilderTy &Builder) { 67 const auto Pred = static_cast<FCmpInst::Predicate>(Code); 68 assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE && 69 "Unexpected FCmp predicate!"); 70 if (Pred == FCmpInst::FCMP_FALSE) 71 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0); 72 if (Pred == FCmpInst::FCMP_TRUE) 73 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1); 74 return Builder.CreateFCmp(Pred, LHS, RHS); 75 } 76 77 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or 78 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B)) 79 /// \param I Binary operator to transform. 80 /// \return Pointer to node that must replace the original binary operator, or 81 /// null pointer if no transformation was made. 82 static Value *SimplifyBSwap(BinaryOperator &I, 83 InstCombiner::BuilderTy &Builder) { 84 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying"); 85 86 Value *OldLHS = I.getOperand(0); 87 Value *OldRHS = I.getOperand(1); 88 89 Value *NewLHS; 90 if (!match(OldLHS, m_BSwap(m_Value(NewLHS)))) 91 return nullptr; 92 93 Value *NewRHS; 94 const APInt *C; 95 96 if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) { 97 // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) ) 98 if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse()) 99 return nullptr; 100 // NewRHS initialized by the matcher. 101 } else if (match(OldRHS, m_APInt(C))) { 102 // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) ) 103 if (!OldLHS->hasOneUse()) 104 return nullptr; 105 NewRHS = ConstantInt::get(I.getType(), C->byteSwap()); 106 } else 107 return nullptr; 108 109 Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS); 110 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, 111 I.getType()); 112 return Builder.CreateCall(F, BinOp); 113 } 114 115 /// This handles expressions of the form ((val OP C1) & C2). Where 116 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. 117 Instruction *InstCombiner::OptAndOp(BinaryOperator *Op, 118 ConstantInt *OpRHS, 119 ConstantInt *AndRHS, 120 BinaryOperator &TheAnd) { 121 Value *X = Op->getOperand(0); 122 123 switch (Op->getOpcode()) { 124 default: break; 125 case Instruction::Add: 126 if (Op->hasOneUse()) { 127 // Adding a one to a single bit bit-field should be turned into an XOR 128 // of the bit. First thing to check is to see if this AND is with a 129 // single bit constant. 130 const APInt &AndRHSV = AndRHS->getValue(); 131 132 // If there is only one bit set. 133 if (AndRHSV.isPowerOf2()) { 134 // Ok, at this point, we know that we are masking the result of the 135 // ADD down to exactly one bit. If the constant we are adding has 136 // no bits set below this bit, then we can eliminate the ADD. 137 const APInt& AddRHS = OpRHS->getValue(); 138 139 // Check to see if any bits below the one bit set in AndRHSV are set. 140 if ((AddRHS & (AndRHSV - 1)).isNullValue()) { 141 // If not, the only thing that can effect the output of the AND is 142 // the bit specified by AndRHSV. If that bit is set, the effect of 143 // the XOR is to toggle the bit. If it is clear, then the ADD has 144 // no effect. 145 if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop 146 TheAnd.setOperand(0, X); 147 return &TheAnd; 148 } else { 149 // Pull the XOR out of the AND. 150 Value *NewAnd = Builder.CreateAnd(X, AndRHS); 151 NewAnd->takeName(Op); 152 return BinaryOperator::CreateXor(NewAnd, AndRHS); 153 } 154 } 155 } 156 } 157 break; 158 } 159 return nullptr; 160 } 161 162 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise 163 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates 164 /// whether to treat V, Lo, and Hi as signed or not. 165 Value *InstCombiner::insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi, 166 bool isSigned, bool Inside) { 167 assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) && 168 "Lo is not < Hi in range emission code!"); 169 170 Type *Ty = V->getType(); 171 172 // V >= Min && V < Hi --> V < Hi 173 // V < Min || V >= Hi --> V >= Hi 174 ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 175 if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) { 176 Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred; 177 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi)); 178 } 179 180 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo 181 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo 182 Value *VMinusLo = 183 Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off"); 184 Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo); 185 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo); 186 } 187 188 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns 189 /// that can be simplified. 190 /// One of A and B is considered the mask. The other is the value. This is 191 /// described as the "AMask" or "BMask" part of the enum. If the enum contains 192 /// only "Mask", then both A and B can be considered masks. If A is the mask, 193 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0. 194 /// If both A and C are constants, this proof is also easy. 195 /// For the following explanations, we assume that A is the mask. 196 /// 197 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all 198 /// bits of A are set in B. 199 /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes 200 /// 201 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all 202 /// bits of A are cleared in B. 203 /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes 204 /// 205 /// "Mixed" declares that (A & B) == C and C might or might not contain any 206 /// number of one bits and zero bits. 207 /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed 208 /// 209 /// "Not" means that in above descriptions "==" should be replaced by "!=". 210 /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes 211 /// 212 /// If the mask A contains a single bit, then the following is equivalent: 213 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0) 214 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0) 215 enum MaskedICmpType { 216 AMask_AllOnes = 1, 217 AMask_NotAllOnes = 2, 218 BMask_AllOnes = 4, 219 BMask_NotAllOnes = 8, 220 Mask_AllZeros = 16, 221 Mask_NotAllZeros = 32, 222 AMask_Mixed = 64, 223 AMask_NotMixed = 128, 224 BMask_Mixed = 256, 225 BMask_NotMixed = 512 226 }; 227 228 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) 229 /// satisfies. 230 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, 231 ICmpInst::Predicate Pred) { 232 ConstantInt *ACst = dyn_cast<ConstantInt>(A); 233 ConstantInt *BCst = dyn_cast<ConstantInt>(B); 234 ConstantInt *CCst = dyn_cast<ConstantInt>(C); 235 bool IsEq = (Pred == ICmpInst::ICMP_EQ); 236 bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2()); 237 bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2()); 238 unsigned MaskVal = 0; 239 if (CCst && CCst->isZero()) { 240 // if C is zero, then both A and B qualify as mask 241 MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed) 242 : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed)); 243 if (IsAPow2) 244 MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed) 245 : (AMask_AllOnes | AMask_Mixed)); 246 if (IsBPow2) 247 MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed) 248 : (BMask_AllOnes | BMask_Mixed)); 249 return MaskVal; 250 } 251 252 if (A == C) { 253 MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed) 254 : (AMask_NotAllOnes | AMask_NotMixed)); 255 if (IsAPow2) 256 MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed) 257 : (Mask_AllZeros | AMask_Mixed)); 258 } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) { 259 MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed); 260 } 261 262 if (B == C) { 263 MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed) 264 : (BMask_NotAllOnes | BMask_NotMixed)); 265 if (IsBPow2) 266 MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed) 267 : (Mask_AllZeros | BMask_Mixed)); 268 } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) { 269 MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed); 270 } 271 272 return MaskVal; 273 } 274 275 /// Convert an analysis of a masked ICmp into its equivalent if all boolean 276 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=) 277 /// is adjacent to the corresponding normal flag (recording ==), this just 278 /// involves swapping those bits over. 279 static unsigned conjugateICmpMask(unsigned Mask) { 280 unsigned NewMask; 281 NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros | 282 AMask_Mixed | BMask_Mixed)) 283 << 1; 284 285 NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros | 286 AMask_NotMixed | BMask_NotMixed)) 287 >> 1; 288 289 return NewMask; 290 } 291 292 // Adapts the external decomposeBitTestICmp for local use. 293 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred, 294 Value *&X, Value *&Y, Value *&Z) { 295 APInt Mask; 296 if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask)) 297 return false; 298 299 Y = ConstantInt::get(X->getType(), Mask); 300 Z = ConstantInt::get(X->getType(), 0); 301 return true; 302 } 303 304 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E). 305 /// Return the pattern classes (from MaskedICmpType) for the left hand side and 306 /// the right hand side as a pair. 307 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL 308 /// and PredR are their predicates, respectively. 309 static 310 Optional<std::pair<unsigned, unsigned>> 311 getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C, 312 Value *&D, Value *&E, ICmpInst *LHS, 313 ICmpInst *RHS, 314 ICmpInst::Predicate &PredL, 315 ICmpInst::Predicate &PredR) { 316 // vectors are not (yet?) supported. Don't support pointers either. 317 if (!LHS->getOperand(0)->getType()->isIntegerTy() || 318 !RHS->getOperand(0)->getType()->isIntegerTy()) 319 return None; 320 321 // Here comes the tricky part: 322 // LHS might be of the form L11 & L12 == X, X == L21 & L22, 323 // and L11 & L12 == L21 & L22. The same goes for RHS. 324 // Now we must find those components L** and R**, that are equal, so 325 // that we can extract the parameters A, B, C, D, and E for the canonical 326 // above. 327 Value *L1 = LHS->getOperand(0); 328 Value *L2 = LHS->getOperand(1); 329 Value *L11, *L12, *L21, *L22; 330 // Check whether the icmp can be decomposed into a bit test. 331 if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) { 332 L21 = L22 = L1 = nullptr; 333 } else { 334 // Look for ANDs in the LHS icmp. 335 if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) { 336 // Any icmp can be viewed as being trivially masked; if it allows us to 337 // remove one, it's worth it. 338 L11 = L1; 339 L12 = Constant::getAllOnesValue(L1->getType()); 340 } 341 342 if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) { 343 L21 = L2; 344 L22 = Constant::getAllOnesValue(L2->getType()); 345 } 346 } 347 348 // Bail if LHS was a icmp that can't be decomposed into an equality. 349 if (!ICmpInst::isEquality(PredL)) 350 return None; 351 352 Value *R1 = RHS->getOperand(0); 353 Value *R2 = RHS->getOperand(1); 354 Value *R11, *R12; 355 bool Ok = false; 356 if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) { 357 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 358 A = R11; 359 D = R12; 360 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 361 A = R12; 362 D = R11; 363 } else { 364 return None; 365 } 366 E = R2; 367 R1 = nullptr; 368 Ok = true; 369 } else { 370 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) { 371 // As before, model no mask as a trivial mask if it'll let us do an 372 // optimization. 373 R11 = R1; 374 R12 = Constant::getAllOnesValue(R1->getType()); 375 } 376 377 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 378 A = R11; 379 D = R12; 380 E = R2; 381 Ok = true; 382 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 383 A = R12; 384 D = R11; 385 E = R2; 386 Ok = true; 387 } 388 } 389 390 // Bail if RHS was a icmp that can't be decomposed into an equality. 391 if (!ICmpInst::isEquality(PredR)) 392 return None; 393 394 // Look for ANDs on the right side of the RHS icmp. 395 if (!Ok) { 396 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) { 397 R11 = R2; 398 R12 = Constant::getAllOnesValue(R2->getType()); 399 } 400 401 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 402 A = R11; 403 D = R12; 404 E = R1; 405 Ok = true; 406 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 407 A = R12; 408 D = R11; 409 E = R1; 410 Ok = true; 411 } else { 412 return None; 413 } 414 } 415 if (!Ok) 416 return None; 417 418 if (L11 == A) { 419 B = L12; 420 C = L2; 421 } else if (L12 == A) { 422 B = L11; 423 C = L2; 424 } else if (L21 == A) { 425 B = L22; 426 C = L1; 427 } else if (L22 == A) { 428 B = L21; 429 C = L1; 430 } 431 432 unsigned LeftType = getMaskedICmpType(A, B, C, PredL); 433 unsigned RightType = getMaskedICmpType(A, D, E, PredR); 434 return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType)); 435 } 436 437 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single 438 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros 439 /// and the right hand side is of type BMask_Mixed. For example, 440 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8). 441 static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 442 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 443 Value *A, Value *B, Value *C, Value *D, Value *E, 444 ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, 445 llvm::InstCombiner::BuilderTy &Builder) { 446 // We are given the canonical form: 447 // (icmp ne (A & B), 0) & (icmp eq (A & D), E). 448 // where D & E == E. 449 // 450 // If IsAnd is false, we get it in negated form: 451 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) -> 452 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)). 453 // 454 // We currently handle the case of B, C, D, E are constant. 455 // 456 ConstantInt *BCst = dyn_cast<ConstantInt>(B); 457 if (!BCst) 458 return nullptr; 459 ConstantInt *CCst = dyn_cast<ConstantInt>(C); 460 if (!CCst) 461 return nullptr; 462 ConstantInt *DCst = dyn_cast<ConstantInt>(D); 463 if (!DCst) 464 return nullptr; 465 ConstantInt *ECst = dyn_cast<ConstantInt>(E); 466 if (!ECst) 467 return nullptr; 468 469 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 470 471 // Update E to the canonical form when D is a power of two and RHS is 472 // canonicalized as, 473 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or 474 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0). 475 if (PredR != NewCC) 476 ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst)); 477 478 // If B or D is zero, skip because if LHS or RHS can be trivially folded by 479 // other folding rules and this pattern won't apply any more. 480 if (BCst->getValue() == 0 || DCst->getValue() == 0) 481 return nullptr; 482 483 // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't 484 // deduce anything from it. 485 // For example, 486 // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding. 487 if ((BCst->getValue() & DCst->getValue()) == 0) 488 return nullptr; 489 490 // If the following two conditions are met: 491 // 492 // 1. mask B covers only a single bit that's not covered by mask D, that is, 493 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of 494 // B and D has only one bit set) and, 495 // 496 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other 497 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0 498 // 499 // then that single bit in B must be one and thus the whole expression can be 500 // folded to 501 // (A & (B | D)) == (B & (B ^ D)) | E. 502 // 503 // For example, 504 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9) 505 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8) 506 if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) && 507 (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) { 508 APInt BorD = BCst->getValue() | DCst->getValue(); 509 APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) | 510 ECst->getValue(); 511 Value *NewMask = ConstantInt::get(BCst->getType(), BorD); 512 Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE); 513 Value *NewAnd = Builder.CreateAnd(A, NewMask); 514 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue); 515 } 516 517 auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) { 518 return (C1->getValue() & C2->getValue()) == C1->getValue(); 519 }; 520 auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) { 521 return (C1->getValue() & C2->getValue()) == C2->getValue(); 522 }; 523 524 // In the following, we consider only the cases where B is a superset of D, B 525 // is a subset of D, or B == D because otherwise there's at least one bit 526 // covered by B but not D, in which case we can't deduce much from it, so 527 // no folding (aside from the single must-be-one bit case right above.) 528 // For example, 529 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding. 530 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst)) 531 return nullptr; 532 533 // At this point, either B is a superset of D, B is a subset of D or B == D. 534 535 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict 536 // and the whole expression becomes false (or true if negated), otherwise, no 537 // folding. 538 // For example, 539 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false. 540 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding. 541 if (ECst->isZero()) { 542 if (IsSubSetOrEqual(BCst, DCst)) 543 return ConstantInt::get(LHS->getType(), !IsAnd); 544 return nullptr; 545 } 546 547 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B == 548 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is 549 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes 550 // RHS. For example, 551 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 552 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 553 if (IsSuperSetOrEqual(BCst, DCst)) 554 return RHS; 555 // Otherwise, B is a subset of D. If B and E have a common bit set, 556 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example. 557 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 558 assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code"); 559 if ((BCst->getValue() & ECst->getValue()) != 0) 560 return RHS; 561 // Otherwise, LHS and RHS contradict and the whole expression becomes false 562 // (or true if negated.) For example, 563 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false. 564 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false. 565 return ConstantInt::get(LHS->getType(), !IsAnd); 566 } 567 568 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single 569 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side 570 /// aren't of the common mask pattern type. 571 static Value *foldLogOpOfMaskedICmpsAsymmetric( 572 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 573 Value *A, Value *B, Value *C, Value *D, Value *E, 574 ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, 575 unsigned LHSMask, unsigned RHSMask, 576 llvm::InstCombiner::BuilderTy &Builder) { 577 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 578 "Expected equality predicates for masked type of icmps."); 579 // Handle Mask_NotAllZeros-BMask_Mixed cases. 580 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or 581 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E) 582 // which gets swapped to 583 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C). 584 if (!IsAnd) { 585 LHSMask = conjugateICmpMask(LHSMask); 586 RHSMask = conjugateICmpMask(RHSMask); 587 } 588 if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) { 589 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 590 LHS, RHS, IsAnd, A, B, C, D, E, 591 PredL, PredR, Builder)) { 592 return V; 593 } 594 } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) { 595 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 596 RHS, LHS, IsAnd, A, D, E, B, C, 597 PredR, PredL, Builder)) { 598 return V; 599 } 600 } 601 return nullptr; 602 } 603 604 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) 605 /// into a single (icmp(A & X) ==/!= Y). 606 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 607 llvm::InstCombiner::BuilderTy &Builder) { 608 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; 609 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 610 Optional<std::pair<unsigned, unsigned>> MaskPair = 611 getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR); 612 if (!MaskPair) 613 return nullptr; 614 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 615 "Expected equality predicates for masked type of icmps."); 616 unsigned LHSMask = MaskPair->first; 617 unsigned RHSMask = MaskPair->second; 618 unsigned Mask = LHSMask & RHSMask; 619 if (Mask == 0) { 620 // Even if the two sides don't share a common pattern, check if folding can 621 // still happen. 622 if (Value *V = foldLogOpOfMaskedICmpsAsymmetric( 623 LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask, 624 Builder)) 625 return V; 626 return nullptr; 627 } 628 629 // In full generality: 630 // (icmp (A & B) Op C) | (icmp (A & D) Op E) 631 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] 632 // 633 // If the latter can be converted into (icmp (A & X) Op Y) then the former is 634 // equivalent to (icmp (A & X) !Op Y). 635 // 636 // Therefore, we can pretend for the rest of this function that we're dealing 637 // with the conjunction, provided we flip the sense of any comparisons (both 638 // input and output). 639 640 // In most cases we're going to produce an EQ for the "&&" case. 641 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 642 if (!IsAnd) { 643 // Convert the masking analysis into its equivalent with negated 644 // comparisons. 645 Mask = conjugateICmpMask(Mask); 646 } 647 648 if (Mask & Mask_AllZeros) { 649 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) 650 // -> (icmp eq (A & (B|D)), 0) 651 Value *NewOr = Builder.CreateOr(B, D); 652 Value *NewAnd = Builder.CreateAnd(A, NewOr); 653 // We can't use C as zero because we might actually handle 654 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 655 // with B and D, having a single bit set. 656 Value *Zero = Constant::getNullValue(A->getType()); 657 return Builder.CreateICmp(NewCC, NewAnd, Zero); 658 } 659 if (Mask & BMask_AllOnes) { 660 // (icmp eq (A & B), B) & (icmp eq (A & D), D) 661 // -> (icmp eq (A & (B|D)), (B|D)) 662 Value *NewOr = Builder.CreateOr(B, D); 663 Value *NewAnd = Builder.CreateAnd(A, NewOr); 664 return Builder.CreateICmp(NewCC, NewAnd, NewOr); 665 } 666 if (Mask & AMask_AllOnes) { 667 // (icmp eq (A & B), A) & (icmp eq (A & D), A) 668 // -> (icmp eq (A & (B&D)), A) 669 Value *NewAnd1 = Builder.CreateAnd(B, D); 670 Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1); 671 return Builder.CreateICmp(NewCC, NewAnd2, A); 672 } 673 674 // Remaining cases assume at least that B and D are constant, and depend on 675 // their actual values. This isn't strictly necessary, just a "handle the 676 // easy cases for now" decision. 677 ConstantInt *BCst = dyn_cast<ConstantInt>(B); 678 if (!BCst) 679 return nullptr; 680 ConstantInt *DCst = dyn_cast<ConstantInt>(D); 681 if (!DCst) 682 return nullptr; 683 684 if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) { 685 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and 686 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 687 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) 688 // Only valid if one of the masks is a superset of the other (check "B&D" is 689 // the same as either B or D). 690 APInt NewMask = BCst->getValue() & DCst->getValue(); 691 692 if (NewMask == BCst->getValue()) 693 return LHS; 694 else if (NewMask == DCst->getValue()) 695 return RHS; 696 } 697 698 if (Mask & AMask_NotAllOnes) { 699 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 700 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A) 701 // Only valid if one of the masks is a superset of the other (check "B|D" is 702 // the same as either B or D). 703 APInt NewMask = BCst->getValue() | DCst->getValue(); 704 705 if (NewMask == BCst->getValue()) 706 return LHS; 707 else if (NewMask == DCst->getValue()) 708 return RHS; 709 } 710 711 if (Mask & BMask_Mixed) { 712 // (icmp eq (A & B), C) & (icmp eq (A & D), E) 713 // We already know that B & C == C && D & E == E. 714 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of 715 // C and E, which are shared by both the mask B and the mask D, don't 716 // contradict, then we can transform to 717 // -> (icmp eq (A & (B|D)), (C|E)) 718 // Currently, we only handle the case of B, C, D, and E being constant. 719 // We can't simply use C and E because we might actually handle 720 // (icmp ne (A & B), B) & (icmp eq (A & D), D) 721 // with B and D, having a single bit set. 722 ConstantInt *CCst = dyn_cast<ConstantInt>(C); 723 if (!CCst) 724 return nullptr; 725 ConstantInt *ECst = dyn_cast<ConstantInt>(E); 726 if (!ECst) 727 return nullptr; 728 if (PredL != NewCC) 729 CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst)); 730 if (PredR != NewCC) 731 ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst)); 732 733 // If there is a conflict, we should actually return a false for the 734 // whole construct. 735 if (((BCst->getValue() & DCst->getValue()) & 736 (CCst->getValue() ^ ECst->getValue())).getBoolValue()) 737 return ConstantInt::get(LHS->getType(), !IsAnd); 738 739 Value *NewOr1 = Builder.CreateOr(B, D); 740 Value *NewOr2 = ConstantExpr::getOr(CCst, ECst); 741 Value *NewAnd = Builder.CreateAnd(A, NewOr1); 742 return Builder.CreateICmp(NewCC, NewAnd, NewOr2); 743 } 744 745 return nullptr; 746 } 747 748 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp. 749 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 750 /// If \p Inverted is true then the check is for the inverted range, e.g. 751 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 752 Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, 753 bool Inverted) { 754 // Check the lower range comparison, e.g. x >= 0 755 // InstCombine already ensured that if there is a constant it's on the RHS. 756 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1)); 757 if (!RangeStart) 758 return nullptr; 759 760 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() : 761 Cmp0->getPredicate()); 762 763 // Accept x > -1 or x >= 0 (after potentially inverting the predicate). 764 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) || 765 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero()))) 766 return nullptr; 767 768 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() : 769 Cmp1->getPredicate()); 770 771 Value *Input = Cmp0->getOperand(0); 772 Value *RangeEnd; 773 if (Cmp1->getOperand(0) == Input) { 774 // For the upper range compare we have: icmp x, n 775 RangeEnd = Cmp1->getOperand(1); 776 } else if (Cmp1->getOperand(1) == Input) { 777 // For the upper range compare we have: icmp n, x 778 RangeEnd = Cmp1->getOperand(0); 779 Pred1 = ICmpInst::getSwappedPredicate(Pred1); 780 } else { 781 return nullptr; 782 } 783 784 // Check the upper range comparison, e.g. x < n 785 ICmpInst::Predicate NewPred; 786 switch (Pred1) { 787 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break; 788 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break; 789 default: return nullptr; 790 } 791 792 // This simplification is only valid if the upper range is not negative. 793 KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1); 794 if (!Known.isNonNegative()) 795 return nullptr; 796 797 if (Inverted) 798 NewPred = ICmpInst::getInversePredicate(NewPred); 799 800 return Builder.CreateICmp(NewPred, Input, RangeEnd); 801 } 802 803 static Value * 804 foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS, 805 bool JoinedByAnd, 806 InstCombiner::BuilderTy &Builder) { 807 Value *X = LHS->getOperand(0); 808 if (X != RHS->getOperand(0)) 809 return nullptr; 810 811 const APInt *C1, *C2; 812 if (!match(LHS->getOperand(1), m_APInt(C1)) || 813 !match(RHS->getOperand(1), m_APInt(C2))) 814 return nullptr; 815 816 // We only handle (X != C1 && X != C2) and (X == C1 || X == C2). 817 ICmpInst::Predicate Pred = LHS->getPredicate(); 818 if (Pred != RHS->getPredicate()) 819 return nullptr; 820 if (JoinedByAnd && Pred != ICmpInst::ICMP_NE) 821 return nullptr; 822 if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ) 823 return nullptr; 824 825 // The larger unsigned constant goes on the right. 826 if (C1->ugt(*C2)) 827 std::swap(C1, C2); 828 829 APInt Xor = *C1 ^ *C2; 830 if (Xor.isPowerOf2()) { 831 // If LHSC and RHSC differ by only one bit, then set that bit in X and 832 // compare against the larger constant: 833 // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2 834 // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2 835 // We choose an 'or' with a Pow2 constant rather than the inverse mask with 836 // 'and' because that may lead to smaller codegen from a smaller constant. 837 Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor)); 838 return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2)); 839 } 840 841 // Special case: get the ordering right when the values wrap around zero. 842 // Ie, we assumed the constants were unsigned when swapping earlier. 843 if (C1->isNullValue() && C2->isAllOnesValue()) 844 std::swap(C1, C2); 845 846 if (*C1 == *C2 - 1) { 847 // (X == 13 || X == 14) --> X - 13 <=u 1 848 // (X != 13 && X != 14) --> X - 13 >u 1 849 // An 'add' is the canonical IR form, so favor that over a 'sub'. 850 Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1))); 851 auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE; 852 return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1)); 853 } 854 855 return nullptr; 856 } 857 858 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 859 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) 860 Value *InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS, 861 bool JoinedByAnd, 862 Instruction &CxtI) { 863 ICmpInst::Predicate Pred = LHS->getPredicate(); 864 if (Pred != RHS->getPredicate()) 865 return nullptr; 866 if (JoinedByAnd && Pred != ICmpInst::ICMP_NE) 867 return nullptr; 868 if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ) 869 return nullptr; 870 871 // TODO support vector splats 872 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1)); 873 ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1)); 874 if (!LHSC || !RHSC || !LHSC->isZero() || !RHSC->isZero()) 875 return nullptr; 876 877 Value *A, *B, *C, *D; 878 if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) && 879 match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) { 880 if (A == D || B == D) 881 std::swap(C, D); 882 if (B == C) 883 std::swap(A, B); 884 885 if (A == C && 886 isKnownToBeAPowerOfTwo(B, false, 0, &CxtI) && 887 isKnownToBeAPowerOfTwo(D, false, 0, &CxtI)) { 888 Value *Mask = Builder.CreateOr(B, D); 889 Value *Masked = Builder.CreateAnd(A, Mask); 890 auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 891 return Builder.CreateICmp(NewPred, Masked, Mask); 892 } 893 } 894 895 return nullptr; 896 } 897 898 /// General pattern: 899 /// X & Y 900 /// 901 /// Where Y is checking that all the high bits (covered by a mask 4294967168) 902 /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0 903 /// Pattern can be one of: 904 /// %t = add i32 %arg, 128 905 /// %r = icmp ult i32 %t, 256 906 /// Or 907 /// %t0 = shl i32 %arg, 24 908 /// %t1 = ashr i32 %t0, 24 909 /// %r = icmp eq i32 %t1, %arg 910 /// Or 911 /// %t0 = trunc i32 %arg to i8 912 /// %t1 = sext i8 %t0 to i32 913 /// %r = icmp eq i32 %t1, %arg 914 /// This pattern is a signed truncation check. 915 /// 916 /// And X is checking that some bit in that same mask is zero. 917 /// I.e. can be one of: 918 /// %r = icmp sgt i32 %arg, -1 919 /// Or 920 /// %t = and i32 %arg, 2147483648 921 /// %r = icmp eq i32 %t, 0 922 /// 923 /// Since we are checking that all the bits in that mask are the same, 924 /// and a particular bit is zero, what we are really checking is that all the 925 /// masked bits are zero. 926 /// So this should be transformed to: 927 /// %r = icmp ult i32 %arg, 128 928 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1, 929 Instruction &CxtI, 930 InstCombiner::BuilderTy &Builder) { 931 assert(CxtI.getOpcode() == Instruction::And); 932 933 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two) 934 auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X, 935 APInt &SignBitMask) -> bool { 936 CmpInst::Predicate Pred; 937 const APInt *I01, *I1; // powers of two; I1 == I01 << 1 938 if (!(match(ICmp, 939 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) && 940 Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1)) 941 return false; 942 // Which bit is the new sign bit as per the 'signed truncation' pattern? 943 SignBitMask = *I01; 944 return true; 945 }; 946 947 // One icmp needs to be 'signed truncation check'. 948 // We need to match this first, else we will mismatch commutative cases. 949 Value *X1; 950 APInt HighestBit; 951 ICmpInst *OtherICmp; 952 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit)) 953 OtherICmp = ICmp0; 954 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit)) 955 OtherICmp = ICmp1; 956 else 957 return nullptr; 958 959 assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)"); 960 961 // Try to match/decompose into: icmp eq (X & Mask), 0 962 auto tryToDecompose = [](ICmpInst *ICmp, Value *&X, 963 APInt &UnsetBitsMask) -> bool { 964 CmpInst::Predicate Pred = ICmp->getPredicate(); 965 // Can it be decomposed into icmp eq (X & Mask), 0 ? 966 if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1), 967 Pred, X, UnsetBitsMask, 968 /*LookThroughTrunc=*/false) && 969 Pred == ICmpInst::ICMP_EQ) 970 return true; 971 // Is it icmp eq (X & Mask), 0 already? 972 const APInt *Mask; 973 if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) && 974 Pred == ICmpInst::ICMP_EQ) { 975 UnsetBitsMask = *Mask; 976 return true; 977 } 978 return false; 979 }; 980 981 // And the other icmp needs to be decomposable into a bit test. 982 Value *X0; 983 APInt UnsetBitsMask; 984 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask)) 985 return nullptr; 986 987 assert(!UnsetBitsMask.isNullValue() && "empty mask makes no sense."); 988 989 // Are they working on the same value? 990 Value *X; 991 if (X1 == X0) { 992 // Ok as is. 993 X = X1; 994 } else if (match(X0, m_Trunc(m_Specific(X1)))) { 995 UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits()); 996 X = X1; 997 } else 998 return nullptr; 999 1000 // So which bits should be uniform as per the 'signed truncation check'? 1001 // (all the bits starting with (i.e. including) HighestBit) 1002 APInt SignBitsMask = ~(HighestBit - 1U); 1003 1004 // UnsetBitsMask must have some common bits with SignBitsMask, 1005 if (!UnsetBitsMask.intersects(SignBitsMask)) 1006 return nullptr; 1007 1008 // Does UnsetBitsMask contain any bits outside of SignBitsMask? 1009 if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) { 1010 APInt OtherHighestBit = (~UnsetBitsMask) + 1U; 1011 if (!OtherHighestBit.isPowerOf2()) 1012 return nullptr; 1013 HighestBit = APIntOps::umin(HighestBit, OtherHighestBit); 1014 } 1015 // Else, if it does not, then all is ok as-is. 1016 1017 // %r = icmp ult %X, SignBit 1018 return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit), 1019 CxtI.getName() + ".simplified"); 1020 } 1021 1022 /// Reduce a pair of compares that check if a value has exactly 1 bit set. 1023 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, 1024 InstCombiner::BuilderTy &Builder) { 1025 // Handle 'and' / 'or' commutation: make the equality check the first operand. 1026 if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE) 1027 std::swap(Cmp0, Cmp1); 1028 else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ) 1029 std::swap(Cmp0, Cmp1); 1030 1031 // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1 1032 CmpInst::Predicate Pred0, Pred1; 1033 Value *X; 1034 if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && 1035 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), 1036 m_SpecificInt(2))) && 1037 Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) { 1038 Value *CtPop = Cmp1->getOperand(0); 1039 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1)); 1040 } 1041 // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1 1042 if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && 1043 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), 1044 m_SpecificInt(1))) && 1045 Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) { 1046 Value *CtPop = Cmp1->getOperand(0); 1047 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1)); 1048 } 1049 return nullptr; 1050 } 1051 1052 /// Commuted variants are assumed to be handled by calling this function again 1053 /// with the parameters swapped. 1054 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp, 1055 ICmpInst *UnsignedICmp, bool IsAnd, 1056 const SimplifyQuery &Q, 1057 InstCombiner::BuilderTy &Builder) { 1058 Value *ZeroCmpOp; 1059 ICmpInst::Predicate EqPred; 1060 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) || 1061 !ICmpInst::isEquality(EqPred)) 1062 return nullptr; 1063 1064 auto IsKnownNonZero = [&](Value *V) { 1065 return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1066 }; 1067 1068 ICmpInst::Predicate UnsignedPred; 1069 1070 Value *A, *B; 1071 if (match(UnsignedICmp, 1072 m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) && 1073 match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) && 1074 (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) { 1075 if (UnsignedICmp->getOperand(0) != ZeroCmpOp) 1076 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1077 1078 auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) { 1079 if (!IsKnownNonZero(NonZero)) 1080 std::swap(NonZero, Other); 1081 return IsKnownNonZero(NonZero); 1082 }; 1083 1084 // Given ZeroCmpOp = (A + B) 1085 // ZeroCmpOp <= A && ZeroCmpOp != 0 --> (0-B) < A 1086 // ZeroCmpOp > A || ZeroCmpOp == 0 --> (0-B) >= A 1087 // 1088 // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff 1089 // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff 1090 // with X being the value (A/B) that is known to be non-zero, 1091 // and Y being remaining value. 1092 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1093 IsAnd) 1094 return Builder.CreateICmpULT(Builder.CreateNeg(B), A); 1095 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE && 1096 IsAnd && GetKnownNonZeroAndOther(B, A)) 1097 return Builder.CreateICmpULT(Builder.CreateNeg(B), A); 1098 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1099 !IsAnd) 1100 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A); 1101 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ && 1102 !IsAnd && GetKnownNonZeroAndOther(B, A)) 1103 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A); 1104 } 1105 1106 Value *Base, *Offset; 1107 if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset)))) 1108 return nullptr; 1109 1110 if (!match(UnsignedICmp, 1111 m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) || 1112 !ICmpInst::isUnsigned(UnsignedPred)) 1113 return nullptr; 1114 if (UnsignedICmp->getOperand(0) != Base) 1115 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1116 1117 // Base >=/> Offset && (Base - Offset) != 0 <--> Base > Offset 1118 // (no overflow and not null) 1119 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1120 UnsignedPred == ICmpInst::ICMP_UGT) && 1121 EqPred == ICmpInst::ICMP_NE && IsAnd) 1122 return Builder.CreateICmpUGT(Base, Offset); 1123 1124 // Base <=/< Offset || (Base - Offset) == 0 <--> Base <= Offset 1125 // (overflow or null) 1126 if ((UnsignedPred == ICmpInst::ICMP_ULE || 1127 UnsignedPred == ICmpInst::ICMP_ULT) && 1128 EqPred == ICmpInst::ICMP_EQ && !IsAnd) 1129 return Builder.CreateICmpULE(Base, Offset); 1130 1131 // Base <= Offset && (Base - Offset) != 0 --> Base < Offset 1132 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1133 IsAnd) 1134 return Builder.CreateICmpULT(Base, Offset); 1135 1136 // Base > Offset || (Base - Offset) == 0 --> Base >= Offset 1137 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1138 !IsAnd) 1139 return Builder.CreateICmpUGE(Base, Offset); 1140 1141 return nullptr; 1142 } 1143 1144 /// Fold (icmp)&(icmp) if possible. 1145 Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, 1146 Instruction &CxtI) { 1147 const SimplifyQuery Q = SQ.getWithInstruction(&CxtI); 1148 1149 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) 1150 // if K1 and K2 are a one-bit mask. 1151 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, true, CxtI)) 1152 return V; 1153 1154 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1155 1156 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) 1157 if (predicatesFoldable(PredL, PredR)) { 1158 if (LHS->getOperand(0) == RHS->getOperand(1) && 1159 LHS->getOperand(1) == RHS->getOperand(0)) 1160 LHS->swapOperands(); 1161 if (LHS->getOperand(0) == RHS->getOperand(0) && 1162 LHS->getOperand(1) == RHS->getOperand(1)) { 1163 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 1164 unsigned Code = getICmpCode(LHS) & getICmpCode(RHS); 1165 bool IsSigned = LHS->isSigned() || RHS->isSigned(); 1166 return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder); 1167 } 1168 } 1169 1170 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E) 1171 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder)) 1172 return V; 1173 1174 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 1175 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false)) 1176 return V; 1177 1178 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n 1179 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false)) 1180 return V; 1181 1182 if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder)) 1183 return V; 1184 1185 if (Value *V = foldSignedTruncationCheck(LHS, RHS, CxtI, Builder)) 1186 return V; 1187 1188 if (Value *V = foldIsPowerOf2(LHS, RHS, true /* JoinedByAnd */, Builder)) 1189 return V; 1190 1191 if (Value *X = 1192 foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/true, Q, Builder)) 1193 return X; 1194 if (Value *X = 1195 foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/true, Q, Builder)) 1196 return X; 1197 1198 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2). 1199 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); 1200 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1)); 1201 ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1)); 1202 if (!LHSC || !RHSC) 1203 return nullptr; 1204 1205 if (LHSC == RHSC && PredL == PredR) { 1206 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C) 1207 // where C is a power of 2 or 1208 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) 1209 if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) || 1210 (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) { 1211 Value *NewOr = Builder.CreateOr(LHS0, RHS0); 1212 return Builder.CreateICmp(PredL, NewOr, LHSC); 1213 } 1214 } 1215 1216 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2 1217 // where CMAX is the all ones value for the truncated type, 1218 // iff the lower bits of C2 and CA are zero. 1219 if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() && 1220 RHS->hasOneUse()) { 1221 Value *V; 1222 ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr; 1223 1224 // (trunc x) == C1 & (and x, CA) == C2 1225 // (and x, CA) == C2 & (trunc x) == C1 1226 if (match(RHS0, m_Trunc(m_Value(V))) && 1227 match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) { 1228 SmallC = RHSC; 1229 BigC = LHSC; 1230 } else if (match(LHS0, m_Trunc(m_Value(V))) && 1231 match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) { 1232 SmallC = LHSC; 1233 BigC = RHSC; 1234 } 1235 1236 if (SmallC && BigC) { 1237 unsigned BigBitSize = BigC->getType()->getBitWidth(); 1238 unsigned SmallBitSize = SmallC->getType()->getBitWidth(); 1239 1240 // Check that the low bits are zero. 1241 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize); 1242 if ((Low & AndC->getValue()).isNullValue() && 1243 (Low & BigC->getValue()).isNullValue()) { 1244 Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue()); 1245 APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue(); 1246 Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N); 1247 return Builder.CreateICmp(PredL, NewAnd, NewVal); 1248 } 1249 } 1250 } 1251 1252 // From here on, we only handle: 1253 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler. 1254 if (LHS0 != RHS0) 1255 return nullptr; 1256 1257 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere. 1258 if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE || 1259 PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE || 1260 PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE || 1261 PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE) 1262 return nullptr; 1263 1264 // We can't fold (ugt x, C) & (sgt x, C2). 1265 if (!predicatesFoldable(PredL, PredR)) 1266 return nullptr; 1267 1268 // Ensure that the larger constant is on the RHS. 1269 bool ShouldSwap; 1270 if (CmpInst::isSigned(PredL) || 1271 (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR))) 1272 ShouldSwap = LHSC->getValue().sgt(RHSC->getValue()); 1273 else 1274 ShouldSwap = LHSC->getValue().ugt(RHSC->getValue()); 1275 1276 if (ShouldSwap) { 1277 std::swap(LHS, RHS); 1278 std::swap(LHSC, RHSC); 1279 std::swap(PredL, PredR); 1280 } 1281 1282 // At this point, we know we have two icmp instructions 1283 // comparing a value against two constants and and'ing the result 1284 // together. Because of the above check, we know that we only have 1285 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know 1286 // (from the icmp folding check above), that the two constants 1287 // are not equal and that the larger constant is on the RHS 1288 assert(LHSC != RHSC && "Compares not folded above?"); 1289 1290 switch (PredL) { 1291 default: 1292 llvm_unreachable("Unknown integer condition code!"); 1293 case ICmpInst::ICMP_NE: 1294 switch (PredR) { 1295 default: 1296 llvm_unreachable("Unknown integer condition code!"); 1297 case ICmpInst::ICMP_ULT: 1298 // (X != 13 & X u< 14) -> X < 13 1299 if (LHSC->getValue() == (RHSC->getValue() - 1)) 1300 return Builder.CreateICmpULT(LHS0, LHSC); 1301 if (LHSC->isZero()) // (X != 0 & X u< C) -> X-1 u< C-1 1302 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1303 false, true); 1304 break; // (X != 13 & X u< 15) -> no change 1305 case ICmpInst::ICMP_SLT: 1306 // (X != 13 & X s< 14) -> X < 13 1307 if (LHSC->getValue() == (RHSC->getValue() - 1)) 1308 return Builder.CreateICmpSLT(LHS0, LHSC); 1309 // (X != INT_MIN & X s< C) -> X-(INT_MIN+1) u< (C-(INT_MIN+1)) 1310 if (LHSC->isMinValue(true)) 1311 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1312 true, true); 1313 break; // (X != 13 & X s< 15) -> no change 1314 case ICmpInst::ICMP_NE: 1315 // Potential folds for this case should already be handled. 1316 break; 1317 } 1318 break; 1319 case ICmpInst::ICMP_UGT: 1320 switch (PredR) { 1321 default: 1322 llvm_unreachable("Unknown integer condition code!"); 1323 case ICmpInst::ICMP_NE: 1324 // (X u> 13 & X != 14) -> X u> 14 1325 if (RHSC->getValue() == (LHSC->getValue() + 1)) 1326 return Builder.CreateICmp(PredL, LHS0, RHSC); 1327 // X u> C & X != UINT_MAX -> (X-(C+1)) u< UINT_MAX-(C+1) 1328 if (RHSC->isMaxValue(false)) 1329 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1330 false, true); 1331 break; // (X u> 13 & X != 15) -> no change 1332 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) u< 1 1333 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1334 false, true); 1335 } 1336 break; 1337 case ICmpInst::ICMP_SGT: 1338 switch (PredR) { 1339 default: 1340 llvm_unreachable("Unknown integer condition code!"); 1341 case ICmpInst::ICMP_NE: 1342 // (X s> 13 & X != 14) -> X s> 14 1343 if (RHSC->getValue() == (LHSC->getValue() + 1)) 1344 return Builder.CreateICmp(PredL, LHS0, RHSC); 1345 // X s> C & X != INT_MAX -> (X-(C+1)) u< INT_MAX-(C+1) 1346 if (RHSC->isMaxValue(true)) 1347 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), 1348 true, true); 1349 break; // (X s> 13 & X != 15) -> no change 1350 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) u< 1 1351 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true, 1352 true); 1353 } 1354 break; 1355 } 1356 1357 return nullptr; 1358 } 1359 1360 Value *InstCombiner::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1361 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1362 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1363 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1364 1365 if (LHS0 == RHS1 && RHS0 == LHS1) { 1366 // Swap RHS operands to match LHS. 1367 PredR = FCmpInst::getSwappedPredicate(PredR); 1368 std::swap(RHS0, RHS1); 1369 } 1370 1371 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). 1372 // Suppose the relation between x and y is R, where R is one of 1373 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for 1374 // testing the desired relations. 1375 // 1376 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 1377 // bool(R & CC0) && bool(R & CC1) 1378 // = bool((R & CC0) & (R & CC1)) 1379 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency 1380 // 1381 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 1382 // bool(R & CC0) || bool(R & CC1) 1383 // = bool((R & CC0) | (R & CC1)) 1384 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;) 1385 if (LHS0 == RHS0 && LHS1 == RHS1) { 1386 unsigned FCmpCodeL = getFCmpCode(PredL); 1387 unsigned FCmpCodeR = getFCmpCode(PredR); 1388 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR; 1389 return getFCmpValue(NewPred, LHS0, LHS1, Builder); 1390 } 1391 1392 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1393 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1394 if (LHS0->getType() != RHS0->getType()) 1395 return nullptr; 1396 1397 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and 1398 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0). 1399 if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP())) 1400 // Ignore the constants because they are obviously not NANs: 1401 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y) 1402 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y) 1403 return Builder.CreateFCmp(PredL, LHS0, RHS0); 1404 } 1405 1406 return nullptr; 1407 } 1408 1409 /// This a limited reassociation for a special case (see above) where we are 1410 /// checking if two values are either both NAN (unordered) or not-NAN (ordered). 1411 /// This could be handled more generally in '-reassociation', but it seems like 1412 /// an unlikely pattern for a large number of logic ops and fcmps. 1413 static Instruction *reassociateFCmps(BinaryOperator &BO, 1414 InstCombiner::BuilderTy &Builder) { 1415 Instruction::BinaryOps Opcode = BO.getOpcode(); 1416 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1417 "Expecting and/or op for fcmp transform"); 1418 1419 // There are 4 commuted variants of the pattern. Canonicalize operands of this 1420 // logic op so an fcmp is operand 0 and a matching logic op is operand 1. 1421 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X; 1422 FCmpInst::Predicate Pred; 1423 if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP()))) 1424 std::swap(Op0, Op1); 1425 1426 // Match inner binop and the predicate for combining 2 NAN checks into 1. 1427 BinaryOperator *BO1; 1428 FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD 1429 : FCmpInst::FCMP_UNO; 1430 if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred || 1431 !match(Op1, m_BinOp(BO1)) || BO1->getOpcode() != Opcode) 1432 return nullptr; 1433 1434 // The inner logic op must have a matching fcmp operand. 1435 Value *BO10 = BO1->getOperand(0), *BO11 = BO1->getOperand(1), *Y; 1436 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || 1437 Pred != NanPred || X->getType() != Y->getType()) 1438 std::swap(BO10, BO11); 1439 1440 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || 1441 Pred != NanPred || X->getType() != Y->getType()) 1442 return nullptr; 1443 1444 // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z 1445 // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z 1446 Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y); 1447 if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) { 1448 // Intersect FMF from the 2 source fcmps. 1449 NewFCmpInst->copyIRFlags(Op0); 1450 NewFCmpInst->andIRFlags(BO10); 1451 } 1452 return BinaryOperator::Create(Opcode, NewFCmp, BO11); 1453 } 1454 1455 /// Match De Morgan's Laws: 1456 /// (~A & ~B) == (~(A | B)) 1457 /// (~A | ~B) == (~(A & B)) 1458 static Instruction *matchDeMorgansLaws(BinaryOperator &I, 1459 InstCombiner::BuilderTy &Builder) { 1460 auto Opcode = I.getOpcode(); 1461 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1462 "Trying to match De Morgan's Laws with something other than and/or"); 1463 1464 // Flip the logic operation. 1465 Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; 1466 1467 Value *A, *B; 1468 if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) && 1469 match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) && 1470 !isFreeToInvert(A, A->hasOneUse()) && 1471 !isFreeToInvert(B, B->hasOneUse())) { 1472 Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan"); 1473 return BinaryOperator::CreateNot(AndOr); 1474 } 1475 1476 return nullptr; 1477 } 1478 1479 bool InstCombiner::shouldOptimizeCast(CastInst *CI) { 1480 Value *CastSrc = CI->getOperand(0); 1481 1482 // Noop casts and casts of constants should be eliminated trivially. 1483 if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc)) 1484 return false; 1485 1486 // If this cast is paired with another cast that can be eliminated, we prefer 1487 // to have it eliminated. 1488 if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc)) 1489 if (isEliminableCastPair(PrecedingCI, CI)) 1490 return false; 1491 1492 return true; 1493 } 1494 1495 /// Fold {and,or,xor} (cast X), C. 1496 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, 1497 InstCombiner::BuilderTy &Builder) { 1498 Constant *C = dyn_cast<Constant>(Logic.getOperand(1)); 1499 if (!C) 1500 return nullptr; 1501 1502 auto LogicOpc = Logic.getOpcode(); 1503 Type *DestTy = Logic.getType(); 1504 Type *SrcTy = Cast->getSrcTy(); 1505 1506 // Move the logic operation ahead of a zext or sext if the constant is 1507 // unchanged in the smaller source type. Performing the logic in a smaller 1508 // type may provide more information to later folds, and the smaller logic 1509 // instruction may be cheaper (particularly in the case of vectors). 1510 Value *X; 1511 if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) { 1512 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy); 1513 Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy); 1514 if (ZextTruncC == C) { 1515 // LogicOpc (zext X), C --> zext (LogicOpc X, C) 1516 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC); 1517 return new ZExtInst(NewOp, DestTy); 1518 } 1519 } 1520 1521 if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) { 1522 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy); 1523 Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy); 1524 if (SextTruncC == C) { 1525 // LogicOpc (sext X), C --> sext (LogicOpc X, C) 1526 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC); 1527 return new SExtInst(NewOp, DestTy); 1528 } 1529 } 1530 1531 return nullptr; 1532 } 1533 1534 /// Fold {and,or,xor} (cast X), Y. 1535 Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) { 1536 auto LogicOpc = I.getOpcode(); 1537 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding"); 1538 1539 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1540 CastInst *Cast0 = dyn_cast<CastInst>(Op0); 1541 if (!Cast0) 1542 return nullptr; 1543 1544 // This must be a cast from an integer or integer vector source type to allow 1545 // transformation of the logic operation to the source type. 1546 Type *DestTy = I.getType(); 1547 Type *SrcTy = Cast0->getSrcTy(); 1548 if (!SrcTy->isIntOrIntVectorTy()) 1549 return nullptr; 1550 1551 if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder)) 1552 return Ret; 1553 1554 CastInst *Cast1 = dyn_cast<CastInst>(Op1); 1555 if (!Cast1) 1556 return nullptr; 1557 1558 // Both operands of the logic operation are casts. The casts must be of the 1559 // same type for reduction. 1560 auto CastOpcode = Cast0->getOpcode(); 1561 if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy()) 1562 return nullptr; 1563 1564 Value *Cast0Src = Cast0->getOperand(0); 1565 Value *Cast1Src = Cast1->getOperand(0); 1566 1567 // fold logic(cast(A), cast(B)) -> cast(logic(A, B)) 1568 if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) { 1569 Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src, 1570 I.getName()); 1571 return CastInst::Create(CastOpcode, NewOp, DestTy); 1572 } 1573 1574 // For now, only 'and'/'or' have optimizations after this. 1575 if (LogicOpc == Instruction::Xor) 1576 return nullptr; 1577 1578 // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the 1579 // cast is otherwise not optimizable. This happens for vector sexts. 1580 ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src); 1581 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src); 1582 if (ICmp0 && ICmp1) { 1583 Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I) 1584 : foldOrOfICmps(ICmp0, ICmp1, I); 1585 if (Res) 1586 return CastInst::Create(CastOpcode, Res, DestTy); 1587 return nullptr; 1588 } 1589 1590 // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the 1591 // cast is otherwise not optimizable. This happens for vector sexts. 1592 FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src); 1593 FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src); 1594 if (FCmp0 && FCmp1) 1595 if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And)) 1596 return CastInst::Create(CastOpcode, R, DestTy); 1597 1598 return nullptr; 1599 } 1600 1601 static Instruction *foldAndToXor(BinaryOperator &I, 1602 InstCombiner::BuilderTy &Builder) { 1603 assert(I.getOpcode() == Instruction::And); 1604 Value *Op0 = I.getOperand(0); 1605 Value *Op1 = I.getOperand(1); 1606 Value *A, *B; 1607 1608 // Operand complexity canonicalization guarantees that the 'or' is Op0. 1609 // (A | B) & ~(A & B) --> A ^ B 1610 // (A | B) & ~(B & A) --> A ^ B 1611 if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)), 1612 m_Not(m_c_And(m_Deferred(A), m_Deferred(B)))))) 1613 return BinaryOperator::CreateXor(A, B); 1614 1615 // (A | ~B) & (~A | B) --> ~(A ^ B) 1616 // (A | ~B) & (B | ~A) --> ~(A ^ B) 1617 // (~B | A) & (~A | B) --> ~(A ^ B) 1618 // (~B | A) & (B | ~A) --> ~(A ^ B) 1619 if (Op0->hasOneUse() || Op1->hasOneUse()) 1620 if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))), 1621 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) 1622 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 1623 1624 return nullptr; 1625 } 1626 1627 static Instruction *foldOrToXor(BinaryOperator &I, 1628 InstCombiner::BuilderTy &Builder) { 1629 assert(I.getOpcode() == Instruction::Or); 1630 Value *Op0 = I.getOperand(0); 1631 Value *Op1 = I.getOperand(1); 1632 Value *A, *B; 1633 1634 // Operand complexity canonicalization guarantees that the 'and' is Op0. 1635 // (A & B) | ~(A | B) --> ~(A ^ B) 1636 // (A & B) | ~(B | A) --> ~(A ^ B) 1637 if (Op0->hasOneUse() || Op1->hasOneUse()) 1638 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1639 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 1640 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 1641 1642 // (A & ~B) | (~A & B) --> A ^ B 1643 // (A & ~B) | (B & ~A) --> A ^ B 1644 // (~B & A) | (~A & B) --> A ^ B 1645 // (~B & A) | (B & ~A) --> A ^ B 1646 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 1647 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))) 1648 return BinaryOperator::CreateXor(A, B); 1649 1650 return nullptr; 1651 } 1652 1653 /// Return true if a constant shift amount is always less than the specified 1654 /// bit-width. If not, the shift could create poison in the narrower type. 1655 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) { 1656 if (auto *ScalarC = dyn_cast<ConstantInt>(C)) 1657 return ScalarC->getZExtValue() < BitWidth; 1658 1659 if (C->getType()->isVectorTy()) { 1660 // Check each element of a constant vector. 1661 unsigned NumElts = C->getType()->getVectorNumElements(); 1662 for (unsigned i = 0; i != NumElts; ++i) { 1663 Constant *Elt = C->getAggregateElement(i); 1664 if (!Elt) 1665 return false; 1666 if (isa<UndefValue>(Elt)) 1667 continue; 1668 auto *CI = dyn_cast<ConstantInt>(Elt); 1669 if (!CI || CI->getZExtValue() >= BitWidth) 1670 return false; 1671 } 1672 return true; 1673 } 1674 1675 // The constant is a constant expression or unknown. 1676 return false; 1677 } 1678 1679 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and 1680 /// a common zext operand: and (binop (zext X), C), (zext X). 1681 Instruction *InstCombiner::narrowMaskedBinOp(BinaryOperator &And) { 1682 // This transform could also apply to {or, and, xor}, but there are better 1683 // folds for those cases, so we don't expect those patterns here. AShr is not 1684 // handled because it should always be transformed to LShr in this sequence. 1685 // The subtract transform is different because it has a constant on the left. 1686 // Add/mul commute the constant to RHS; sub with constant RHS becomes add. 1687 Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1); 1688 Constant *C; 1689 if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) && 1690 !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) && 1691 !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) && 1692 !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) && 1693 !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1))))) 1694 return nullptr; 1695 1696 Value *X; 1697 if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3)) 1698 return nullptr; 1699 1700 Type *Ty = And.getType(); 1701 if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType())) 1702 return nullptr; 1703 1704 // If we're narrowing a shift, the shift amount must be safe (less than the 1705 // width) in the narrower type. If the shift amount is greater, instsimplify 1706 // usually handles that case, but we can't guarantee/assert it. 1707 Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode(); 1708 if (Opc == Instruction::LShr || Opc == Instruction::Shl) 1709 if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits())) 1710 return nullptr; 1711 1712 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X) 1713 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X) 1714 Value *NewC = ConstantExpr::getTrunc(C, X->getType()); 1715 Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X) 1716 : Builder.CreateBinOp(Opc, X, NewC); 1717 return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty); 1718 } 1719 1720 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 1721 // here. We should standardize that construct where it is needed or choose some 1722 // other way to ensure that commutated variants of patterns are not missed. 1723 Instruction *InstCombiner::visitAnd(BinaryOperator &I) { 1724 if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1), 1725 SQ.getWithInstruction(&I))) 1726 return replaceInstUsesWith(I, V); 1727 1728 if (SimplifyAssociativeOrCommutative(I)) 1729 return &I; 1730 1731 if (Instruction *X = foldVectorBinop(I)) 1732 return X; 1733 1734 // See if we can simplify any instructions used by the instruction whose sole 1735 // purpose is to compute bits we don't care about. 1736 if (SimplifyDemandedInstructionBits(I)) 1737 return &I; 1738 1739 // Do this before using distributive laws to catch simple and/or/not patterns. 1740 if (Instruction *Xor = foldAndToXor(I, Builder)) 1741 return Xor; 1742 1743 // (A|B)&(A|C) -> A|(B&C) etc 1744 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1745 return replaceInstUsesWith(I, V); 1746 1747 if (Value *V = SimplifyBSwap(I, Builder)) 1748 return replaceInstUsesWith(I, V); 1749 1750 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1751 const APInt *C; 1752 if (match(Op1, m_APInt(C))) { 1753 Value *X, *Y; 1754 if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) && 1755 C->isOneValue()) { 1756 // (1 << X) & 1 --> zext(X == 0) 1757 // (1 >> X) & 1 --> zext(X == 0) 1758 Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(I.getType(), 0)); 1759 return new ZExtInst(IsZero, I.getType()); 1760 } 1761 1762 const APInt *XorC; 1763 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) { 1764 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) 1765 Constant *NewC = ConstantInt::get(I.getType(), *C & *XorC); 1766 Value *And = Builder.CreateAnd(X, Op1); 1767 And->takeName(Op0); 1768 return BinaryOperator::CreateXor(And, NewC); 1769 } 1770 1771 const APInt *OrC; 1772 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) { 1773 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2) 1774 // NOTE: This reduces the number of bits set in the & mask, which 1775 // can expose opportunities for store narrowing for scalars. 1776 // NOTE: SimplifyDemandedBits should have already removed bits from C1 1777 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in 1778 // above, but this feels safer. 1779 APInt Together = *C & *OrC; 1780 Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), 1781 Together ^ *C)); 1782 And->takeName(Op0); 1783 return BinaryOperator::CreateOr(And, ConstantInt::get(I.getType(), 1784 Together)); 1785 } 1786 1787 // If the mask is only needed on one incoming arm, push the 'and' op up. 1788 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) || 1789 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 1790 APInt NotAndMask(~(*C)); 1791 BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode(); 1792 if (MaskedValueIsZero(X, NotAndMask, 0, &I)) { 1793 // Not masking anything out for the LHS, move mask to RHS. 1794 // and ({x}or X, Y), C --> {x}or X, (and Y, C) 1795 Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked"); 1796 return BinaryOperator::Create(BinOp, X, NewRHS); 1797 } 1798 if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) { 1799 // Not masking anything out for the RHS, move mask to LHS. 1800 // and ({x}or X, Y), C --> {x}or (and X, C), Y 1801 Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked"); 1802 return BinaryOperator::Create(BinOp, NewLHS, Y); 1803 } 1804 } 1805 1806 } 1807 1808 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) { 1809 const APInt &AndRHSMask = AndRHS->getValue(); 1810 1811 // Optimize a variety of ((val OP C1) & C2) combinations... 1812 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { 1813 // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth 1814 // of X and OP behaves well when given trunc(C1) and X. 1815 // TODO: Do this for vectors by using m_APInt isntead of m_ConstantInt. 1816 switch (Op0I->getOpcode()) { 1817 default: 1818 break; 1819 case Instruction::Xor: 1820 case Instruction::Or: 1821 case Instruction::Mul: 1822 case Instruction::Add: 1823 case Instruction::Sub: 1824 Value *X; 1825 ConstantInt *C1; 1826 // TODO: The one use restrictions could be relaxed a little if the AND 1827 // is going to be removed. 1828 if (match(Op0I, m_OneUse(m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), 1829 m_ConstantInt(C1))))) { 1830 if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) { 1831 auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType()); 1832 Value *BinOp; 1833 Value *Op0LHS = Op0I->getOperand(0); 1834 if (isa<ZExtInst>(Op0LHS)) 1835 BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1); 1836 else 1837 BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X); 1838 auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType()); 1839 auto *And = Builder.CreateAnd(BinOp, TruncC2); 1840 return new ZExtInst(And, I.getType()); 1841 } 1842 } 1843 } 1844 1845 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) 1846 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) 1847 return Res; 1848 } 1849 1850 // If this is an integer truncation, and if the source is an 'and' with 1851 // immediate, transform it. This frequently occurs for bitfield accesses. 1852 { 1853 Value *X = nullptr; ConstantInt *YC = nullptr; 1854 if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) { 1855 // Change: and (trunc (and X, YC) to T), C2 1856 // into : and (trunc X to T), trunc(YC) & C2 1857 // This will fold the two constants together, which may allow 1858 // other simplifications. 1859 Value *NewCast = Builder.CreateTrunc(X, I.getType(), "and.shrunk"); 1860 Constant *C3 = ConstantExpr::getTrunc(YC, I.getType()); 1861 C3 = ConstantExpr::getAnd(C3, AndRHS); 1862 return BinaryOperator::CreateAnd(NewCast, C3); 1863 } 1864 } 1865 } 1866 1867 if (Instruction *Z = narrowMaskedBinOp(I)) 1868 return Z; 1869 1870 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 1871 return FoldedLogic; 1872 1873 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) 1874 return DeMorgan; 1875 1876 { 1877 Value *A, *B, *C; 1878 // A & (A ^ B) --> A & ~B 1879 if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B))))) 1880 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B)); 1881 // (A ^ B) & A --> A & ~B 1882 if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B))))) 1883 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B)); 1884 1885 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C 1886 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 1887 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 1888 if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse())) 1889 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C)); 1890 1891 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C 1892 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 1893 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 1894 if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse())) 1895 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C)); 1896 1897 // (A | B) & ((~A) ^ B) -> (A & B) 1898 // (A | B) & (B ^ (~A)) -> (A & B) 1899 // (B | A) & ((~A) ^ B) -> (A & B) 1900 // (B | A) & (B ^ (~A)) -> (A & B) 1901 if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 1902 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1903 return BinaryOperator::CreateAnd(A, B); 1904 1905 // ((~A) ^ B) & (A | B) -> (A & B) 1906 // ((~A) ^ B) & (B | A) -> (A & B) 1907 // (B ^ (~A)) & (A | B) -> (A & B) 1908 // (B ^ (~A)) & (B | A) -> (A & B) 1909 if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 1910 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 1911 return BinaryOperator::CreateAnd(A, B); 1912 } 1913 1914 { 1915 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 1916 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 1917 if (LHS && RHS) 1918 if (Value *Res = foldAndOfICmps(LHS, RHS, I)) 1919 return replaceInstUsesWith(I, Res); 1920 1921 // TODO: Make this recursive; it's a little tricky because an arbitrary 1922 // number of 'and' instructions might have to be created. 1923 Value *X, *Y; 1924 if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { 1925 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 1926 if (Value *Res = foldAndOfICmps(LHS, Cmp, I)) 1927 return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y)); 1928 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 1929 if (Value *Res = foldAndOfICmps(LHS, Cmp, I)) 1930 return replaceInstUsesWith(I, Builder.CreateAnd(Res, X)); 1931 } 1932 if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) { 1933 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 1934 if (Value *Res = foldAndOfICmps(Cmp, RHS, I)) 1935 return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y)); 1936 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 1937 if (Value *Res = foldAndOfICmps(Cmp, RHS, I)) 1938 return replaceInstUsesWith(I, Builder.CreateAnd(Res, X)); 1939 } 1940 } 1941 1942 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 1943 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 1944 if (Value *Res = foldLogicOfFCmps(LHS, RHS, true)) 1945 return replaceInstUsesWith(I, Res); 1946 1947 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) 1948 return FoldedFCmps; 1949 1950 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I)) 1951 return CastedAnd; 1952 1953 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>. 1954 Value *A; 1955 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) && 1956 A->getType()->isIntOrIntVectorTy(1)) 1957 return SelectInst::Create(A, Op1, Constant::getNullValue(I.getType())); 1958 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) && 1959 A->getType()->isIntOrIntVectorTy(1)) 1960 return SelectInst::Create(A, Op0, Constant::getNullValue(I.getType())); 1961 1962 // and(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? X : 0. 1963 { 1964 Value *X, *Y; 1965 const APInt *ShAmt; 1966 Type *Ty = I.getType(); 1967 if (match(&I, m_c_And(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)), 1968 m_APInt(ShAmt))), 1969 m_Deferred(X))) && 1970 *ShAmt == Ty->getScalarSizeInBits() - 1) { 1971 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y); 1972 return SelectInst::Create(NewICmpInst, X, ConstantInt::getNullValue(Ty)); 1973 } 1974 } 1975 1976 return nullptr; 1977 } 1978 1979 Instruction *InstCombiner::matchBSwap(BinaryOperator &Or) { 1980 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'"); 1981 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1); 1982 1983 // Look through zero extends. 1984 if (Instruction *Ext = dyn_cast<ZExtInst>(Op0)) 1985 Op0 = Ext->getOperand(0); 1986 1987 if (Instruction *Ext = dyn_cast<ZExtInst>(Op1)) 1988 Op1 = Ext->getOperand(0); 1989 1990 // (A | B) | C and A | (B | C) -> bswap if possible. 1991 bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) || 1992 match(Op1, m_Or(m_Value(), m_Value())); 1993 1994 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible. 1995 bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) && 1996 match(Op1, m_LogicalShift(m_Value(), m_Value())); 1997 1998 // (A & B) | (C & D) -> bswap if possible. 1999 bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) && 2000 match(Op1, m_And(m_Value(), m_Value())); 2001 2002 // (A << B) | (C & D) -> bswap if possible. 2003 // The bigger pattern here is ((A & C1) << C2) | ((B >> C2) & C1), which is a 2004 // part of the bswap idiom for specific values of C1, C2 (e.g. C1 = 16711935, 2005 // C2 = 8 for i32). 2006 // This pattern can occur when the operands of the 'or' are not canonicalized 2007 // for some reason (not having only one use, for example). 2008 bool OrOfAndAndSh = (match(Op0, m_LogicalShift(m_Value(), m_Value())) && 2009 match(Op1, m_And(m_Value(), m_Value()))) || 2010 (match(Op0, m_And(m_Value(), m_Value())) && 2011 match(Op1, m_LogicalShift(m_Value(), m_Value()))); 2012 2013 if (!OrOfOrs && !OrOfShifts && !OrOfAnds && !OrOfAndAndSh) 2014 return nullptr; 2015 2016 SmallVector<Instruction*, 4> Insts; 2017 if (!recognizeBSwapOrBitReverseIdiom(&Or, true, false, Insts)) 2018 return nullptr; 2019 Instruction *LastInst = Insts.pop_back_val(); 2020 LastInst->removeFromParent(); 2021 2022 for (auto *Inst : Insts) 2023 Worklist.Add(Inst); 2024 return LastInst; 2025 } 2026 2027 /// Transform UB-safe variants of bitwise rotate to the funnel shift intrinsic. 2028 static Instruction *matchRotate(Instruction &Or) { 2029 // TODO: Can we reduce the code duplication between this and the related 2030 // rotate matching code under visitSelect and visitTrunc? 2031 unsigned Width = Or.getType()->getScalarSizeInBits(); 2032 if (!isPowerOf2_32(Width)) 2033 return nullptr; 2034 2035 // First, find an or'd pair of opposite shifts with the same shifted operand: 2036 // or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1) 2037 BinaryOperator *Or0, *Or1; 2038 if (!match(Or.getOperand(0), m_BinOp(Or0)) || 2039 !match(Or.getOperand(1), m_BinOp(Or1))) 2040 return nullptr; 2041 2042 Value *ShVal, *ShAmt0, *ShAmt1; 2043 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || 2044 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) 2045 return nullptr; 2046 2047 BinaryOperator::BinaryOps ShiftOpcode0 = Or0->getOpcode(); 2048 BinaryOperator::BinaryOps ShiftOpcode1 = Or1->getOpcode(); 2049 if (ShiftOpcode0 == ShiftOpcode1) 2050 return nullptr; 2051 2052 // Match the shift amount operands for a rotate pattern. This always matches 2053 // a subtraction on the R operand. 2054 auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * { 2055 // The shift amount may be masked with negation: 2056 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) 2057 Value *X; 2058 unsigned Mask = Width - 1; 2059 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 2060 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 2061 return X; 2062 2063 // Similar to above, but the shift amount may be extended after masking, 2064 // so return the extended value as the parameter for the intrinsic. 2065 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 2066 match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))), 2067 m_SpecificInt(Mask)))) 2068 return L; 2069 2070 return nullptr; 2071 }; 2072 2073 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width); 2074 bool SubIsOnLHS = false; 2075 if (!ShAmt) { 2076 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width); 2077 SubIsOnLHS = true; 2078 } 2079 if (!ShAmt) 2080 return nullptr; 2081 2082 bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) || 2083 (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl); 2084 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2085 Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType()); 2086 return IntrinsicInst::Create(F, { ShVal, ShVal, ShAmt }); 2087 } 2088 2089 /// If all elements of two constant vectors are 0/-1 and inverses, return true. 2090 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) { 2091 unsigned NumElts = C1->getType()->getVectorNumElements(); 2092 for (unsigned i = 0; i != NumElts; ++i) { 2093 Constant *EltC1 = C1->getAggregateElement(i); 2094 Constant *EltC2 = C2->getAggregateElement(i); 2095 if (!EltC1 || !EltC2) 2096 return false; 2097 2098 // One element must be all ones, and the other must be all zeros. 2099 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) || 2100 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes())))) 2101 return false; 2102 } 2103 return true; 2104 } 2105 2106 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or 2107 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of 2108 /// B, it can be used as the condition operand of a select instruction. 2109 Value *InstCombiner::getSelectCondition(Value *A, Value *B) { 2110 // Step 1: We may have peeked through bitcasts in the caller. 2111 // Exit immediately if we don't have (vector) integer types. 2112 Type *Ty = A->getType(); 2113 if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy()) 2114 return nullptr; 2115 2116 // Step 2: We need 0 or all-1's bitmasks. 2117 if (ComputeNumSignBits(A) != Ty->getScalarSizeInBits()) 2118 return nullptr; 2119 2120 // Step 3: If B is the 'not' value of A, we have our answer. 2121 if (match(A, m_Not(m_Specific(B)))) { 2122 // If these are scalars or vectors of i1, A can be used directly. 2123 if (Ty->isIntOrIntVectorTy(1)) 2124 return A; 2125 return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(Ty)); 2126 } 2127 2128 // If both operands are constants, see if the constants are inverse bitmasks. 2129 Constant *AConst, *BConst; 2130 if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst))) 2131 if (AConst == ConstantExpr::getNot(BConst)) 2132 return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty)); 2133 2134 // Look for more complex patterns. The 'not' op may be hidden behind various 2135 // casts. Look through sexts and bitcasts to find the booleans. 2136 Value *Cond; 2137 Value *NotB; 2138 if (match(A, m_SExt(m_Value(Cond))) && 2139 Cond->getType()->isIntOrIntVectorTy(1) && 2140 match(B, m_OneUse(m_Not(m_Value(NotB))))) { 2141 NotB = peekThroughBitcast(NotB, true); 2142 if (match(NotB, m_SExt(m_Specific(Cond)))) 2143 return Cond; 2144 } 2145 2146 // All scalar (and most vector) possibilities should be handled now. 2147 // Try more matches that only apply to non-splat constant vectors. 2148 if (!Ty->isVectorTy()) 2149 return nullptr; 2150 2151 // If both operands are xor'd with constants using the same sexted boolean 2152 // operand, see if the constants are inverse bitmasks. 2153 // TODO: Use ConstantExpr::getNot()? 2154 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) && 2155 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) && 2156 Cond->getType()->isIntOrIntVectorTy(1) && 2157 areInverseVectorBitmasks(AConst, BConst)) { 2158 AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty)); 2159 return Builder.CreateXor(Cond, AConst); 2160 } 2161 return nullptr; 2162 } 2163 2164 /// We have an expression of the form (A & C) | (B & D). Try to simplify this 2165 /// to "A' ? C : D", where A' is a boolean or vector of booleans. 2166 Value *InstCombiner::matchSelectFromAndOr(Value *A, Value *C, Value *B, 2167 Value *D) { 2168 // The potential condition of the select may be bitcasted. In that case, look 2169 // through its bitcast and the corresponding bitcast of the 'not' condition. 2170 Type *OrigType = A->getType(); 2171 A = peekThroughBitcast(A, true); 2172 B = peekThroughBitcast(B, true); 2173 if (Value *Cond = getSelectCondition(A, B)) { 2174 // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D)) 2175 // The bitcasts will either all exist or all not exist. The builder will 2176 // not create unnecessary casts if the types already match. 2177 Value *BitcastC = Builder.CreateBitCast(C, A->getType()); 2178 Value *BitcastD = Builder.CreateBitCast(D, A->getType()); 2179 Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD); 2180 return Builder.CreateBitCast(Select, OrigType); 2181 } 2182 2183 return nullptr; 2184 } 2185 2186 /// Fold (icmp)|(icmp) if possible. 2187 Value *InstCombiner::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, 2188 Instruction &CxtI) { 2189 const SimplifyQuery Q = SQ.getWithInstruction(&CxtI); 2190 2191 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 2192 // if K1 and K2 are a one-bit mask. 2193 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, false, CxtI)) 2194 return V; 2195 2196 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 2197 2198 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1)); 2199 ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1)); 2200 2201 // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3) 2202 // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3) 2203 // The original condition actually refers to the following two ranges: 2204 // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3] 2205 // We can fold these two ranges if: 2206 // 1) C1 and C2 is unsigned greater than C3. 2207 // 2) The two ranges are separated. 2208 // 3) C1 ^ C2 is one-bit mask. 2209 // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask. 2210 // This implies all values in the two ranges differ by exactly one bit. 2211 2212 if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) && 2213 PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() && 2214 LHSC->getType() == RHSC->getType() && 2215 LHSC->getValue() == (RHSC->getValue())) { 2216 2217 Value *LAdd = LHS->getOperand(0); 2218 Value *RAdd = RHS->getOperand(0); 2219 2220 Value *LAddOpnd, *RAddOpnd; 2221 ConstantInt *LAddC, *RAddC; 2222 if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddC))) && 2223 match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddC))) && 2224 LAddC->getValue().ugt(LHSC->getValue()) && 2225 RAddC->getValue().ugt(LHSC->getValue())) { 2226 2227 APInt DiffC = LAddC->getValue() ^ RAddC->getValue(); 2228 if (LAddOpnd == RAddOpnd && DiffC.isPowerOf2()) { 2229 ConstantInt *MaxAddC = nullptr; 2230 if (LAddC->getValue().ult(RAddC->getValue())) 2231 MaxAddC = RAddC; 2232 else 2233 MaxAddC = LAddC; 2234 2235 APInt RRangeLow = -RAddC->getValue(); 2236 APInt RRangeHigh = RRangeLow + LHSC->getValue(); 2237 APInt LRangeLow = -LAddC->getValue(); 2238 APInt LRangeHigh = LRangeLow + LHSC->getValue(); 2239 APInt LowRangeDiff = RRangeLow ^ LRangeLow; 2240 APInt HighRangeDiff = RRangeHigh ^ LRangeHigh; 2241 APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow 2242 : RRangeLow - LRangeLow; 2243 2244 if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff && 2245 RangeDiff.ugt(LHSC->getValue())) { 2246 Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC); 2247 2248 Value *NewAnd = Builder.CreateAnd(LAddOpnd, MaskC); 2249 Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC); 2250 return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC); 2251 } 2252 } 2253 } 2254 } 2255 2256 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) 2257 if (predicatesFoldable(PredL, PredR)) { 2258 if (LHS->getOperand(0) == RHS->getOperand(1) && 2259 LHS->getOperand(1) == RHS->getOperand(0)) 2260 LHS->swapOperands(); 2261 if (LHS->getOperand(0) == RHS->getOperand(0) && 2262 LHS->getOperand(1) == RHS->getOperand(1)) { 2263 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 2264 unsigned Code = getICmpCode(LHS) | getICmpCode(RHS); 2265 bool IsSigned = LHS->isSigned() || RHS->isSigned(); 2266 return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder); 2267 } 2268 } 2269 2270 // handle (roughly): 2271 // (icmp ne (A & B), C) | (icmp ne (A & D), E) 2272 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder)) 2273 return V; 2274 2275 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); 2276 if (LHS->hasOneUse() || RHS->hasOneUse()) { 2277 // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1) 2278 // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1) 2279 Value *A = nullptr, *B = nullptr; 2280 if (PredL == ICmpInst::ICMP_EQ && LHSC && LHSC->isZero()) { 2281 B = LHS0; 2282 if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS->getOperand(1)) 2283 A = RHS0; 2284 else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0) 2285 A = RHS->getOperand(1); 2286 } 2287 // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1) 2288 // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1) 2289 else if (PredR == ICmpInst::ICMP_EQ && RHSC && RHSC->isZero()) { 2290 B = RHS0; 2291 if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS->getOperand(1)) 2292 A = LHS0; 2293 else if (PredL == ICmpInst::ICMP_UGT && LHS0 == RHS0) 2294 A = LHS->getOperand(1); 2295 } 2296 if (A && B) 2297 return Builder.CreateICmp( 2298 ICmpInst::ICMP_UGE, 2299 Builder.CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A); 2300 } 2301 2302 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 2303 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true)) 2304 return V; 2305 2306 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n 2307 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true)) 2308 return V; 2309 2310 if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder)) 2311 return V; 2312 2313 if (Value *V = foldIsPowerOf2(LHS, RHS, false /* JoinedByAnd */, Builder)) 2314 return V; 2315 2316 if (Value *X = 2317 foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/false, Q, Builder)) 2318 return X; 2319 if (Value *X = 2320 foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/false, Q, Builder)) 2321 return X; 2322 2323 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). 2324 if (!LHSC || !RHSC) 2325 return nullptr; 2326 2327 if (LHSC == RHSC && PredL == PredR) { 2328 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) 2329 if (PredL == ICmpInst::ICMP_NE && LHSC->isZero()) { 2330 Value *NewOr = Builder.CreateOr(LHS0, RHS0); 2331 return Builder.CreateICmp(PredL, NewOr, LHSC); 2332 } 2333 } 2334 2335 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1) 2336 // iff C2 + CA == C1. 2337 if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) { 2338 ConstantInt *AddC; 2339 if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC)))) 2340 if (RHSC->getValue() + AddC->getValue() == LHSC->getValue()) 2341 return Builder.CreateICmpULE(LHS0, LHSC); 2342 } 2343 2344 // From here on, we only handle: 2345 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler. 2346 if (LHS0 != RHS0) 2347 return nullptr; 2348 2349 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere. 2350 if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE || 2351 PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE || 2352 PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE || 2353 PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE) 2354 return nullptr; 2355 2356 // We can't fold (ugt x, C) | (sgt x, C2). 2357 if (!predicatesFoldable(PredL, PredR)) 2358 return nullptr; 2359 2360 // Ensure that the larger constant is on the RHS. 2361 bool ShouldSwap; 2362 if (CmpInst::isSigned(PredL) || 2363 (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR))) 2364 ShouldSwap = LHSC->getValue().sgt(RHSC->getValue()); 2365 else 2366 ShouldSwap = LHSC->getValue().ugt(RHSC->getValue()); 2367 2368 if (ShouldSwap) { 2369 std::swap(LHS, RHS); 2370 std::swap(LHSC, RHSC); 2371 std::swap(PredL, PredR); 2372 } 2373 2374 // At this point, we know we have two icmp instructions 2375 // comparing a value against two constants and or'ing the result 2376 // together. Because of the above check, we know that we only have 2377 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the 2378 // icmp folding check above), that the two constants are not 2379 // equal. 2380 assert(LHSC != RHSC && "Compares not folded above?"); 2381 2382 switch (PredL) { 2383 default: 2384 llvm_unreachable("Unknown integer condition code!"); 2385 case ICmpInst::ICMP_EQ: 2386 switch (PredR) { 2387 default: 2388 llvm_unreachable("Unknown integer condition code!"); 2389 case ICmpInst::ICMP_EQ: 2390 // Potential folds for this case should already be handled. 2391 break; 2392 case ICmpInst::ICMP_UGT: 2393 // (X == 0 || X u> C) -> (X-1) u>= C 2394 if (LHSC->isMinValue(false)) 2395 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1, 2396 false, false); 2397 // (X == 13 | X u> 14) -> no change 2398 break; 2399 case ICmpInst::ICMP_SGT: 2400 // (X == INT_MIN || X s> C) -> (X-(INT_MIN+1)) u>= C-INT_MIN 2401 if (LHSC->isMinValue(true)) 2402 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1, 2403 true, false); 2404 // (X == 13 | X s> 14) -> no change 2405 break; 2406 } 2407 break; 2408 case ICmpInst::ICMP_ULT: 2409 switch (PredR) { 2410 default: 2411 llvm_unreachable("Unknown integer condition code!"); 2412 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change 2413 // (X u< C || X == UINT_MAX) => (X-C) u>= UINT_MAX-C 2414 if (RHSC->isMaxValue(false)) 2415 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(), 2416 false, false); 2417 break; 2418 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2 2419 assert(!RHSC->isMaxValue(false) && "Missed icmp simplification"); 2420 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, 2421 false, false); 2422 } 2423 break; 2424 case ICmpInst::ICMP_SLT: 2425 switch (PredR) { 2426 default: 2427 llvm_unreachable("Unknown integer condition code!"); 2428 case ICmpInst::ICMP_EQ: 2429 // (X s< C || X == INT_MAX) => (X-C) u>= INT_MAX-C 2430 if (RHSC->isMaxValue(true)) 2431 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(), 2432 true, false); 2433 // (X s< 13 | X == 14) -> no change 2434 break; 2435 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) u> 2 2436 assert(!RHSC->isMaxValue(true) && "Missed icmp simplification"); 2437 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true, 2438 false); 2439 } 2440 break; 2441 } 2442 return nullptr; 2443 } 2444 2445 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 2446 // here. We should standardize that construct where it is needed or choose some 2447 // other way to ensure that commutated variants of patterns are not missed. 2448 Instruction *InstCombiner::visitOr(BinaryOperator &I) { 2449 if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1), 2450 SQ.getWithInstruction(&I))) 2451 return replaceInstUsesWith(I, V); 2452 2453 if (SimplifyAssociativeOrCommutative(I)) 2454 return &I; 2455 2456 if (Instruction *X = foldVectorBinop(I)) 2457 return X; 2458 2459 // See if we can simplify any instructions used by the instruction whose sole 2460 // purpose is to compute bits we don't care about. 2461 if (SimplifyDemandedInstructionBits(I)) 2462 return &I; 2463 2464 // Do this before using distributive laws to catch simple and/or/not patterns. 2465 if (Instruction *Xor = foldOrToXor(I, Builder)) 2466 return Xor; 2467 2468 // (A&B)|(A&C) -> A&(B|C) etc 2469 if (Value *V = SimplifyUsingDistributiveLaws(I)) 2470 return replaceInstUsesWith(I, V); 2471 2472 if (Value *V = SimplifyBSwap(I, Builder)) 2473 return replaceInstUsesWith(I, V); 2474 2475 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 2476 return FoldedLogic; 2477 2478 if (Instruction *BSwap = matchBSwap(I)) 2479 return BSwap; 2480 2481 if (Instruction *Rotate = matchRotate(I)) 2482 return Rotate; 2483 2484 Value *X, *Y; 2485 const APInt *CV; 2486 if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) && 2487 !CV->isAllOnesValue() && MaskedValueIsZero(Y, *CV, 0, &I)) { 2488 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0 2489 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X). 2490 Value *Or = Builder.CreateOr(X, Y); 2491 return BinaryOperator::CreateXor(Or, ConstantInt::get(I.getType(), *CV)); 2492 } 2493 2494 // (A & C)|(B & D) 2495 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2496 Value *A, *B, *C, *D; 2497 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 2498 match(Op1, m_And(m_Value(B), m_Value(D)))) { 2499 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 2500 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 2501 if (C1 && C2) { // (A & C1)|(B & C2) 2502 Value *V1 = nullptr, *V2 = nullptr; 2503 if ((C1->getValue() & C2->getValue()).isNullValue()) { 2504 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2) 2505 // iff (C1&C2) == 0 and (N&~C1) == 0 2506 if (match(A, m_Or(m_Value(V1), m_Value(V2))) && 2507 ((V1 == B && 2508 MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N) 2509 (V2 == B && 2510 MaskedValueIsZero(V1, ~C1->getValue(), 0, &I)))) // (N|V) 2511 return BinaryOperator::CreateAnd(A, 2512 Builder.getInt(C1->getValue()|C2->getValue())); 2513 // Or commutes, try both ways. 2514 if (match(B, m_Or(m_Value(V1), m_Value(V2))) && 2515 ((V1 == A && 2516 MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N) 2517 (V2 == A && 2518 MaskedValueIsZero(V1, ~C2->getValue(), 0, &I)))) // (N|V) 2519 return BinaryOperator::CreateAnd(B, 2520 Builder.getInt(C1->getValue()|C2->getValue())); 2521 2522 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2) 2523 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0. 2524 ConstantInt *C3 = nullptr, *C4 = nullptr; 2525 if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) && 2526 (C3->getValue() & ~C1->getValue()).isNullValue() && 2527 match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) && 2528 (C4->getValue() & ~C2->getValue()).isNullValue()) { 2529 V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield"); 2530 return BinaryOperator::CreateAnd(V2, 2531 Builder.getInt(C1->getValue()|C2->getValue())); 2532 } 2533 } 2534 2535 if (C1->getValue() == ~C2->getValue()) { 2536 Value *X; 2537 2538 // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2 2539 if (match(A, m_c_Or(m_Value(X), m_Specific(B)))) 2540 return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B); 2541 // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2 2542 if (match(B, m_c_Or(m_Specific(A), m_Value(X)))) 2543 return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A); 2544 2545 // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2 2546 if (match(A, m_c_Xor(m_Value(X), m_Specific(B)))) 2547 return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B); 2548 // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2 2549 if (match(B, m_c_Xor(m_Specific(A), m_Value(X)))) 2550 return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A); 2551 } 2552 } 2553 2554 // Don't try to form a select if it's unlikely that we'll get rid of at 2555 // least one of the operands. A select is generally more expensive than the 2556 // 'or' that it is replacing. 2557 if (Op0->hasOneUse() || Op1->hasOneUse()) { 2558 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants. 2559 if (Value *V = matchSelectFromAndOr(A, C, B, D)) 2560 return replaceInstUsesWith(I, V); 2561 if (Value *V = matchSelectFromAndOr(A, C, D, B)) 2562 return replaceInstUsesWith(I, V); 2563 if (Value *V = matchSelectFromAndOr(C, A, B, D)) 2564 return replaceInstUsesWith(I, V); 2565 if (Value *V = matchSelectFromAndOr(C, A, D, B)) 2566 return replaceInstUsesWith(I, V); 2567 if (Value *V = matchSelectFromAndOr(B, D, A, C)) 2568 return replaceInstUsesWith(I, V); 2569 if (Value *V = matchSelectFromAndOr(B, D, C, A)) 2570 return replaceInstUsesWith(I, V); 2571 if (Value *V = matchSelectFromAndOr(D, B, A, C)) 2572 return replaceInstUsesWith(I, V); 2573 if (Value *V = matchSelectFromAndOr(D, B, C, A)) 2574 return replaceInstUsesWith(I, V); 2575 } 2576 } 2577 2578 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C 2579 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 2580 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) 2581 return BinaryOperator::CreateOr(Op0, C); 2582 2583 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C 2584 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B)))) 2585 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) 2586 return BinaryOperator::CreateOr(Op1, C); 2587 2588 // ((B | C) & A) | B -> B | (A & C) 2589 if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A)))) 2590 return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C)); 2591 2592 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder)) 2593 return DeMorgan; 2594 2595 // Canonicalize xor to the RHS. 2596 bool SwappedForXor = false; 2597 if (match(Op0, m_Xor(m_Value(), m_Value()))) { 2598 std::swap(Op0, Op1); 2599 SwappedForXor = true; 2600 } 2601 2602 // A | ( A ^ B) -> A | B 2603 // A | (~A ^ B) -> A | ~B 2604 // (A & B) | (A ^ B) 2605 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) { 2606 if (Op0 == A || Op0 == B) 2607 return BinaryOperator::CreateOr(A, B); 2608 2609 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) || 2610 match(Op0, m_And(m_Specific(B), m_Specific(A)))) 2611 return BinaryOperator::CreateOr(A, B); 2612 2613 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) { 2614 Value *Not = Builder.CreateNot(B, B->getName() + ".not"); 2615 return BinaryOperator::CreateOr(Not, Op0); 2616 } 2617 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) { 2618 Value *Not = Builder.CreateNot(A, A->getName() + ".not"); 2619 return BinaryOperator::CreateOr(Not, Op0); 2620 } 2621 } 2622 2623 // A | ~(A | B) -> A | ~B 2624 // A | ~(A ^ B) -> A | ~B 2625 if (match(Op1, m_Not(m_Value(A)))) 2626 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A)) 2627 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) && 2628 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or || 2629 B->getOpcode() == Instruction::Xor)) { 2630 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) : 2631 B->getOperand(0); 2632 Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not"); 2633 return BinaryOperator::CreateOr(Not, Op0); 2634 } 2635 2636 if (SwappedForXor) 2637 std::swap(Op0, Op1); 2638 2639 { 2640 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 2641 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 2642 if (LHS && RHS) 2643 if (Value *Res = foldOrOfICmps(LHS, RHS, I)) 2644 return replaceInstUsesWith(I, Res); 2645 2646 // TODO: Make this recursive; it's a little tricky because an arbitrary 2647 // number of 'or' instructions might have to be created. 2648 Value *X, *Y; 2649 if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 2650 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2651 if (Value *Res = foldOrOfICmps(LHS, Cmp, I)) 2652 return replaceInstUsesWith(I, Builder.CreateOr(Res, Y)); 2653 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2654 if (Value *Res = foldOrOfICmps(LHS, Cmp, I)) 2655 return replaceInstUsesWith(I, Builder.CreateOr(Res, X)); 2656 } 2657 if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 2658 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2659 if (Value *Res = foldOrOfICmps(Cmp, RHS, I)) 2660 return replaceInstUsesWith(I, Builder.CreateOr(Res, Y)); 2661 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2662 if (Value *Res = foldOrOfICmps(Cmp, RHS, I)) 2663 return replaceInstUsesWith(I, Builder.CreateOr(Res, X)); 2664 } 2665 } 2666 2667 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 2668 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 2669 if (Value *Res = foldLogicOfFCmps(LHS, RHS, false)) 2670 return replaceInstUsesWith(I, Res); 2671 2672 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) 2673 return FoldedFCmps; 2674 2675 if (Instruction *CastedOr = foldCastedBitwiseLogic(I)) 2676 return CastedOr; 2677 2678 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>. 2679 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) && 2680 A->getType()->isIntOrIntVectorTy(1)) 2681 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1); 2682 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) && 2683 A->getType()->isIntOrIntVectorTy(1)) 2684 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0); 2685 2686 // Note: If we've gotten to the point of visiting the outer OR, then the 2687 // inner one couldn't be simplified. If it was a constant, then it won't 2688 // be simplified by a later pass either, so we try swapping the inner/outer 2689 // ORs in the hopes that we'll be able to simplify it this way. 2690 // (X|C) | V --> (X|V) | C 2691 ConstantInt *CI; 2692 if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) && 2693 match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) { 2694 Value *Inner = Builder.CreateOr(A, Op1); 2695 Inner->takeName(Op0); 2696 return BinaryOperator::CreateOr(Inner, CI); 2697 } 2698 2699 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D)) 2700 // Since this OR statement hasn't been optimized further yet, we hope 2701 // that this transformation will allow the new ORs to be optimized. 2702 { 2703 Value *X = nullptr, *Y = nullptr; 2704 if (Op0->hasOneUse() && Op1->hasOneUse() && 2705 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) && 2706 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) { 2707 Value *orTrue = Builder.CreateOr(A, C); 2708 Value *orFalse = Builder.CreateOr(B, D); 2709 return SelectInst::Create(X, orTrue, orFalse); 2710 } 2711 } 2712 2713 // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? -1 : X. 2714 { 2715 Value *X, *Y; 2716 const APInt *ShAmt; 2717 Type *Ty = I.getType(); 2718 if (match(&I, m_c_Or(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)), 2719 m_APInt(ShAmt))), 2720 m_Deferred(X))) && 2721 *ShAmt == Ty->getScalarSizeInBits() - 1) { 2722 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y); 2723 return SelectInst::Create(NewICmpInst, ConstantInt::getAllOnesValue(Ty), 2724 X); 2725 } 2726 } 2727 2728 if (Instruction *V = 2729 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2730 return V; 2731 2732 return nullptr; 2733 } 2734 2735 /// A ^ B can be specified using other logic ops in a variety of patterns. We 2736 /// can fold these early and efficiently by morphing an existing instruction. 2737 static Instruction *foldXorToXor(BinaryOperator &I, 2738 InstCombiner::BuilderTy &Builder) { 2739 assert(I.getOpcode() == Instruction::Xor); 2740 Value *Op0 = I.getOperand(0); 2741 Value *Op1 = I.getOperand(1); 2742 Value *A, *B; 2743 2744 // There are 4 commuted variants for each of the basic patterns. 2745 2746 // (A & B) ^ (A | B) -> A ^ B 2747 // (A & B) ^ (B | A) -> A ^ B 2748 // (A | B) ^ (A & B) -> A ^ B 2749 // (A | B) ^ (B & A) -> A ^ B 2750 if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)), 2751 m_c_Or(m_Deferred(A), m_Deferred(B))))) { 2752 I.setOperand(0, A); 2753 I.setOperand(1, B); 2754 return &I; 2755 } 2756 2757 // (A | ~B) ^ (~A | B) -> A ^ B 2758 // (~B | A) ^ (~A | B) -> A ^ B 2759 // (~A | B) ^ (A | ~B) -> A ^ B 2760 // (B | ~A) ^ (A | ~B) -> A ^ B 2761 if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))), 2762 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) { 2763 I.setOperand(0, A); 2764 I.setOperand(1, B); 2765 return &I; 2766 } 2767 2768 // (A & ~B) ^ (~A & B) -> A ^ B 2769 // (~B & A) ^ (~A & B) -> A ^ B 2770 // (~A & B) ^ (A & ~B) -> A ^ B 2771 // (B & ~A) ^ (A & ~B) -> A ^ B 2772 if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))), 2773 m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) { 2774 I.setOperand(0, A); 2775 I.setOperand(1, B); 2776 return &I; 2777 } 2778 2779 // For the remaining cases we need to get rid of one of the operands. 2780 if (!Op0->hasOneUse() && !Op1->hasOneUse()) 2781 return nullptr; 2782 2783 // (A | B) ^ ~(A & B) -> ~(A ^ B) 2784 // (A | B) ^ ~(B & A) -> ~(A ^ B) 2785 // (A & B) ^ ~(A | B) -> ~(A ^ B) 2786 // (A & B) ^ ~(B | A) -> ~(A ^ B) 2787 // Complexity sorting ensures the not will be on the right side. 2788 if ((match(Op0, m_Or(m_Value(A), m_Value(B))) && 2789 match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) || 2790 (match(Op0, m_And(m_Value(A), m_Value(B))) && 2791 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))) 2792 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 2793 2794 return nullptr; 2795 } 2796 2797 Value *InstCombiner::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, 2798 BinaryOperator &I) { 2799 assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS && 2800 I.getOperand(1) == RHS && "Should be 'xor' with these operands"); 2801 2802 if (predicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) { 2803 if (LHS->getOperand(0) == RHS->getOperand(1) && 2804 LHS->getOperand(1) == RHS->getOperand(0)) 2805 LHS->swapOperands(); 2806 if (LHS->getOperand(0) == RHS->getOperand(0) && 2807 LHS->getOperand(1) == RHS->getOperand(1)) { 2808 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) 2809 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1); 2810 unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS); 2811 bool IsSigned = LHS->isSigned() || RHS->isSigned(); 2812 return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder); 2813 } 2814 } 2815 2816 // TODO: This can be generalized to compares of non-signbits using 2817 // decomposeBitTestICmp(). It could be enhanced more by using (something like) 2818 // foldLogOpOfMaskedICmps(). 2819 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 2820 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 2821 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 2822 if ((LHS->hasOneUse() || RHS->hasOneUse()) && 2823 LHS0->getType() == RHS0->getType() && 2824 LHS0->getType()->isIntOrIntVectorTy()) { 2825 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0 2826 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0 2827 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) && 2828 PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) || 2829 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) && 2830 PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) { 2831 Value *Zero = ConstantInt::getNullValue(LHS0->getType()); 2832 return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero); 2833 } 2834 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1 2835 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1 2836 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) && 2837 PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) || 2838 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) && 2839 PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) { 2840 Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType()); 2841 return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne); 2842 } 2843 } 2844 2845 // Instead of trying to imitate the folds for and/or, decompose this 'xor' 2846 // into those logic ops. That is, try to turn this into an and-of-icmps 2847 // because we have many folds for that pattern. 2848 // 2849 // This is based on a truth table definition of xor: 2850 // X ^ Y --> (X | Y) & !(X & Y) 2851 if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) { 2852 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y). 2853 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?). 2854 if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) { 2855 // TODO: Independently handle cases where the 'and' side is a constant. 2856 ICmpInst *X = nullptr, *Y = nullptr; 2857 if (OrICmp == LHS && AndICmp == RHS) { 2858 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y 2859 X = LHS; 2860 Y = RHS; 2861 } 2862 if (OrICmp == RHS && AndICmp == LHS) { 2863 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X 2864 X = RHS; 2865 Y = LHS; 2866 } 2867 if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) { 2868 // Invert the predicate of 'Y', thus inverting its output. 2869 Y->setPredicate(Y->getInversePredicate()); 2870 // So, are there other uses of Y? 2871 if (!Y->hasOneUse()) { 2872 // We need to adapt other uses of Y though. Get a value that matches 2873 // the original value of Y before inversion. While this increases 2874 // immediate instruction count, we have just ensured that all the 2875 // users are freely-invertible, so that 'not' *will* get folded away. 2876 BuilderTy::InsertPointGuard Guard(Builder); 2877 // Set insertion point to right after the Y. 2878 Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator())); 2879 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 2880 // Replace all uses of Y (excluding the one in NotY!) with NotY. 2881 Y->replaceUsesWithIf(NotY, 2882 [NotY](Use &U) { return U.getUser() != NotY; }); 2883 } 2884 // All done. 2885 return Builder.CreateAnd(LHS, RHS); 2886 } 2887 } 2888 } 2889 2890 return nullptr; 2891 } 2892 2893 /// If we have a masked merge, in the canonical form of: 2894 /// (assuming that A only has one use.) 2895 /// | A | |B| 2896 /// ((x ^ y) & M) ^ y 2897 /// | D | 2898 /// * If M is inverted: 2899 /// | D | 2900 /// ((x ^ y) & ~M) ^ y 2901 /// We can canonicalize by swapping the final xor operand 2902 /// to eliminate the 'not' of the mask. 2903 /// ((x ^ y) & M) ^ x 2904 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops 2905 /// because that shortens the dependency chain and improves analysis: 2906 /// (x & M) | (y & ~M) 2907 static Instruction *visitMaskedMerge(BinaryOperator &I, 2908 InstCombiner::BuilderTy &Builder) { 2909 Value *B, *X, *D; 2910 Value *M; 2911 if (!match(&I, m_c_Xor(m_Value(B), 2912 m_OneUse(m_c_And( 2913 m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)), 2914 m_Value(D)), 2915 m_Value(M)))))) 2916 return nullptr; 2917 2918 Value *NotM; 2919 if (match(M, m_Not(m_Value(NotM)))) { 2920 // De-invert the mask and swap the value in B part. 2921 Value *NewA = Builder.CreateAnd(D, NotM); 2922 return BinaryOperator::CreateXor(NewA, X); 2923 } 2924 2925 Constant *C; 2926 if (D->hasOneUse() && match(M, m_Constant(C))) { 2927 // Unfold. 2928 Value *LHS = Builder.CreateAnd(X, C); 2929 Value *NotC = Builder.CreateNot(C); 2930 Value *RHS = Builder.CreateAnd(B, NotC); 2931 return BinaryOperator::CreateOr(LHS, RHS); 2932 } 2933 2934 return nullptr; 2935 } 2936 2937 // Transform 2938 // ~(x ^ y) 2939 // into: 2940 // (~x) ^ y 2941 // or into 2942 // x ^ (~y) 2943 static Instruction *sinkNotIntoXor(BinaryOperator &I, 2944 InstCombiner::BuilderTy &Builder) { 2945 Value *X, *Y; 2946 // FIXME: one-use check is not needed in general, but currently we are unable 2947 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182) 2948 if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y)))))) 2949 return nullptr; 2950 2951 // We only want to do the transform if it is free to do. 2952 if (isFreeToInvert(X, X->hasOneUse())) { 2953 // Ok, good. 2954 } else if (isFreeToInvert(Y, Y->hasOneUse())) { 2955 std::swap(X, Y); 2956 } else 2957 return nullptr; 2958 2959 Value *NotX = Builder.CreateNot(X, X->getName() + ".not"); 2960 return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan"); 2961 } 2962 2963 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 2964 // here. We should standardize that construct where it is needed or choose some 2965 // other way to ensure that commutated variants of patterns are not missed. 2966 Instruction *InstCombiner::visitXor(BinaryOperator &I) { 2967 if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1), 2968 SQ.getWithInstruction(&I))) 2969 return replaceInstUsesWith(I, V); 2970 2971 if (SimplifyAssociativeOrCommutative(I)) 2972 return &I; 2973 2974 if (Instruction *X = foldVectorBinop(I)) 2975 return X; 2976 2977 if (Instruction *NewXor = foldXorToXor(I, Builder)) 2978 return NewXor; 2979 2980 // (A&B)^(A&C) -> A&(B^C) etc 2981 if (Value *V = SimplifyUsingDistributiveLaws(I)) 2982 return replaceInstUsesWith(I, V); 2983 2984 // See if we can simplify any instructions used by the instruction whose sole 2985 // purpose is to compute bits we don't care about. 2986 if (SimplifyDemandedInstructionBits(I)) 2987 return &I; 2988 2989 if (Value *V = SimplifyBSwap(I, Builder)) 2990 return replaceInstUsesWith(I, V); 2991 2992 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2993 2994 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M) 2995 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits 2996 // calls in there are unnecessary as SimplifyDemandedInstructionBits should 2997 // have already taken care of those cases. 2998 Value *M; 2999 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()), 3000 m_c_And(m_Deferred(M), m_Value())))) 3001 return BinaryOperator::CreateOr(Op0, Op1); 3002 3003 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand. 3004 Value *X, *Y; 3005 3006 // We must eliminate the and/or (one-use) for these transforms to not increase 3007 // the instruction count. 3008 // ~(~X & Y) --> (X | ~Y) 3009 // ~(Y & ~X) --> (X | ~Y) 3010 if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) { 3011 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 3012 return BinaryOperator::CreateOr(X, NotY); 3013 } 3014 // ~(~X | Y) --> (X & ~Y) 3015 // ~(Y | ~X) --> (X & ~Y) 3016 if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) { 3017 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 3018 return BinaryOperator::CreateAnd(X, NotY); 3019 } 3020 3021 if (Instruction *Xor = visitMaskedMerge(I, Builder)) 3022 return Xor; 3023 3024 // Is this a 'not' (~) fed by a binary operator? 3025 BinaryOperator *NotVal; 3026 if (match(&I, m_Not(m_BinOp(NotVal)))) { 3027 if (NotVal->getOpcode() == Instruction::And || 3028 NotVal->getOpcode() == Instruction::Or) { 3029 // Apply DeMorgan's Law when inverts are free: 3030 // ~(X & Y) --> (~X | ~Y) 3031 // ~(X | Y) --> (~X & ~Y) 3032 if (isFreeToInvert(NotVal->getOperand(0), 3033 NotVal->getOperand(0)->hasOneUse()) && 3034 isFreeToInvert(NotVal->getOperand(1), 3035 NotVal->getOperand(1)->hasOneUse())) { 3036 Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs"); 3037 Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs"); 3038 if (NotVal->getOpcode() == Instruction::And) 3039 return BinaryOperator::CreateOr(NotX, NotY); 3040 return BinaryOperator::CreateAnd(NotX, NotY); 3041 } 3042 } 3043 3044 // ~(X - Y) --> ~X + Y 3045 if (match(NotVal, m_Sub(m_Value(X), m_Value(Y)))) 3046 if (isa<Constant>(X) || NotVal->hasOneUse()) 3047 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y); 3048 3049 // ~(~X >>s Y) --> (X >>s Y) 3050 if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y)))) 3051 return BinaryOperator::CreateAShr(X, Y); 3052 3053 // If we are inverting a right-shifted constant, we may be able to eliminate 3054 // the 'not' by inverting the constant and using the opposite shift type. 3055 // Canonicalization rules ensure that only a negative constant uses 'ashr', 3056 // but we must check that in case that transform has not fired yet. 3057 3058 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits) 3059 Constant *C; 3060 if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) && 3061 match(C, m_Negative())) 3062 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y); 3063 3064 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits) 3065 if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) && 3066 match(C, m_NonNegative())) 3067 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y); 3068 3069 // ~(X + C) --> -(C + 1) - X 3070 if (match(Op0, m_Add(m_Value(X), m_Constant(C)))) 3071 return BinaryOperator::CreateSub(ConstantExpr::getNeg(AddOne(C)), X); 3072 } 3073 3074 // Use DeMorgan and reassociation to eliminate a 'not' op. 3075 Constant *C1; 3076 if (match(Op1, m_Constant(C1))) { 3077 Constant *C2; 3078 if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) { 3079 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1 3080 Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2)); 3081 return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1)); 3082 } 3083 if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) { 3084 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1 3085 Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2)); 3086 return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1)); 3087 } 3088 } 3089 3090 // not (cmp A, B) = !cmp A, B 3091 CmpInst::Predicate Pred; 3092 if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) { 3093 cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred)); 3094 return replaceInstUsesWith(I, Op0); 3095 } 3096 3097 { 3098 const APInt *RHSC; 3099 if (match(Op1, m_APInt(RHSC))) { 3100 Value *X; 3101 const APInt *C; 3102 if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X)))) { 3103 // (C - X) ^ signmask -> (C + signmask - X) 3104 Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC); 3105 return BinaryOperator::CreateSub(NewC, X); 3106 } 3107 if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C)))) { 3108 // (X + C) ^ signmask -> (X + C + signmask) 3109 Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC); 3110 return BinaryOperator::CreateAdd(X, NewC); 3111 } 3112 3113 // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0 3114 if (match(Op0, m_Or(m_Value(X), m_APInt(C))) && 3115 MaskedValueIsZero(X, *C, 0, &I)) { 3116 Constant *NewC = ConstantInt::get(I.getType(), *C ^ *RHSC); 3117 Worklist.Add(cast<Instruction>(Op0)); 3118 I.setOperand(0, X); 3119 I.setOperand(1, NewC); 3120 return &I; 3121 } 3122 } 3123 } 3124 3125 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) { 3126 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) { 3127 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) { 3128 if (Op0I->getOpcode() == Instruction::LShr) { 3129 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3) 3130 // E1 = "X ^ C1" 3131 BinaryOperator *E1; 3132 ConstantInt *C1; 3133 if (Op0I->hasOneUse() && 3134 (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) && 3135 E1->getOpcode() == Instruction::Xor && 3136 (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) { 3137 // fold (C1 >> C2) ^ C3 3138 ConstantInt *C2 = Op0CI, *C3 = RHSC; 3139 APInt FoldConst = C1->getValue().lshr(C2->getValue()); 3140 FoldConst ^= C3->getValue(); 3141 // Prepare the two operands. 3142 Value *Opnd0 = Builder.CreateLShr(E1->getOperand(0), C2); 3143 Opnd0->takeName(Op0I); 3144 cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc()); 3145 Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst); 3146 3147 return BinaryOperator::CreateXor(Opnd0, FoldVal); 3148 } 3149 } 3150 } 3151 } 3152 } 3153 3154 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 3155 return FoldedLogic; 3156 3157 // Y ^ (X | Y) --> X & ~Y 3158 // Y ^ (Y | X) --> X & ~Y 3159 if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0))))) 3160 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0)); 3161 // (X | Y) ^ Y --> X & ~Y 3162 // (Y | X) ^ Y --> X & ~Y 3163 if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1))))) 3164 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1)); 3165 3166 // Y ^ (X & Y) --> ~X & Y 3167 // Y ^ (Y & X) --> ~X & Y 3168 if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0))))) 3169 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X)); 3170 // (X & Y) ^ Y --> ~X & Y 3171 // (Y & X) ^ Y --> ~X & Y 3172 // Canonical form is (X & C) ^ C; don't touch that. 3173 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must 3174 // be fixed to prefer that (otherwise we get infinite looping). 3175 if (!match(Op1, m_Constant()) && 3176 match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1))))) 3177 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X)); 3178 3179 Value *A, *B, *C; 3180 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants. 3181 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), 3182 m_OneUse(m_c_Or(m_Deferred(A), m_Value(C)))))) 3183 return BinaryOperator::CreateXor( 3184 Builder.CreateAnd(Builder.CreateNot(A), C), B); 3185 3186 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants. 3187 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), 3188 m_OneUse(m_c_Or(m_Deferred(B), m_Value(C)))))) 3189 return BinaryOperator::CreateXor( 3190 Builder.CreateAnd(Builder.CreateNot(B), C), A); 3191 3192 // (A & B) ^ (A ^ B) -> (A | B) 3193 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 3194 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B)))) 3195 return BinaryOperator::CreateOr(A, B); 3196 // (A ^ B) ^ (A & B) -> (A | B) 3197 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 3198 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 3199 return BinaryOperator::CreateOr(A, B); 3200 3201 // (A & ~B) ^ ~A -> ~(A & B) 3202 // (~B & A) ^ ~A -> ~(A & B) 3203 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 3204 match(Op1, m_Not(m_Specific(A)))) 3205 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); 3206 3207 if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) 3208 if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) 3209 if (Value *V = foldXorOfICmps(LHS, RHS, I)) 3210 return replaceInstUsesWith(I, V); 3211 3212 if (Instruction *CastedXor = foldCastedBitwiseLogic(I)) 3213 return CastedXor; 3214 3215 // Canonicalize a shifty way to code absolute value to the common pattern. 3216 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1. 3217 // We're relying on the fact that we only do this transform when the shift has 3218 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase 3219 // instructions). 3220 if (Op0->hasNUses(2)) 3221 std::swap(Op0, Op1); 3222 3223 const APInt *ShAmt; 3224 Type *Ty = I.getType(); 3225 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 3226 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 3227 match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) { 3228 // B = ashr i32 A, 31 ; smear the sign bit 3229 // xor (add A, B), B ; add -1 and flip bits if negative 3230 // --> (A < 0) ? -A : A 3231 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); 3232 // Copy the nuw/nsw flags from the add to the negate. 3233 auto *Add = cast<BinaryOperator>(Op0); 3234 Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(), 3235 Add->hasNoSignedWrap()); 3236 return SelectInst::Create(Cmp, Neg, A); 3237 } 3238 3239 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max: 3240 // 3241 // %notx = xor i32 %x, -1 3242 // %cmp1 = icmp sgt i32 %notx, %y 3243 // %smax = select i1 %cmp1, i32 %notx, i32 %y 3244 // %res = xor i32 %smax, -1 3245 // => 3246 // %noty = xor i32 %y, -1 3247 // %cmp2 = icmp slt %x, %noty 3248 // %res = select i1 %cmp2, i32 %x, i32 %noty 3249 // 3250 // Same is applicable for smin/umax/umin. 3251 if (match(Op1, m_AllOnes()) && Op0->hasOneUse()) { 3252 Value *LHS, *RHS; 3253 SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor; 3254 if (SelectPatternResult::isMinOrMax(SPF)) { 3255 // It's possible we get here before the not has been simplified, so make 3256 // sure the input to the not isn't freely invertible. 3257 if (match(LHS, m_Not(m_Value(X))) && !isFreeToInvert(X, X->hasOneUse())) { 3258 Value *NotY = Builder.CreateNot(RHS); 3259 return SelectInst::Create( 3260 Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY); 3261 } 3262 3263 // It's possible we get here before the not has been simplified, so make 3264 // sure the input to the not isn't freely invertible. 3265 if (match(RHS, m_Not(m_Value(Y))) && !isFreeToInvert(Y, Y->hasOneUse())) { 3266 Value *NotX = Builder.CreateNot(LHS); 3267 return SelectInst::Create( 3268 Builder.CreateICmp(getInverseMinMaxPred(SPF), NotX, Y), NotX, Y); 3269 } 3270 3271 // If both sides are freely invertible, then we can get rid of the xor 3272 // completely. 3273 if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) && 3274 isFreeToInvert(RHS, !RHS->hasNUsesOrMore(3))) { 3275 Value *NotLHS = Builder.CreateNot(LHS); 3276 Value *NotRHS = Builder.CreateNot(RHS); 3277 return SelectInst::Create( 3278 Builder.CreateICmp(getInverseMinMaxPred(SPF), NotLHS, NotRHS), 3279 NotLHS, NotRHS); 3280 } 3281 } 3282 3283 // Pull 'not' into operands of select if both operands are one-use compares. 3284 // Inverting the predicates eliminates the 'not' operation. 3285 // Example: 3286 // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) --> 3287 // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?) 3288 // TODO: Canonicalize by hoisting 'not' into an arm of the select if only 3289 // 1 select operand is a cmp? 3290 if (auto *Sel = dyn_cast<SelectInst>(Op0)) { 3291 auto *CmpT = dyn_cast<CmpInst>(Sel->getTrueValue()); 3292 auto *CmpF = dyn_cast<CmpInst>(Sel->getFalseValue()); 3293 if (CmpT && CmpF && CmpT->hasOneUse() && CmpF->hasOneUse()) { 3294 CmpT->setPredicate(CmpT->getInversePredicate()); 3295 CmpF->setPredicate(CmpF->getInversePredicate()); 3296 return replaceInstUsesWith(I, Sel); 3297 } 3298 } 3299 } 3300 3301 if (Instruction *NewXor = sinkNotIntoXor(I, Builder)) 3302 return NewXor; 3303 3304 return nullptr; 3305 } 3306