xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp (revision c203bd70b5957f85616424b6fa374479372d06e3)
1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitAnd, visitOr, and visitXor functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/CmpInstAnalysis.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Transforms/Utils/Local.h"
17 #include "llvm/IR/ConstantRange.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/PatternMatch.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22 
23 #define DEBUG_TYPE "instcombine"
24 
25 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
26 /// a four bit mask.
27 static unsigned getFCmpCode(FCmpInst::Predicate CC) {
28   assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE &&
29          "Unexpected FCmp predicate!");
30   // Take advantage of the bit pattern of FCmpInst::Predicate here.
31   //                                                 U L G E
32   static_assert(FCmpInst::FCMP_FALSE ==  0, "");  // 0 0 0 0
33   static_assert(FCmpInst::FCMP_OEQ   ==  1, "");  // 0 0 0 1
34   static_assert(FCmpInst::FCMP_OGT   ==  2, "");  // 0 0 1 0
35   static_assert(FCmpInst::FCMP_OGE   ==  3, "");  // 0 0 1 1
36   static_assert(FCmpInst::FCMP_OLT   ==  4, "");  // 0 1 0 0
37   static_assert(FCmpInst::FCMP_OLE   ==  5, "");  // 0 1 0 1
38   static_assert(FCmpInst::FCMP_ONE   ==  6, "");  // 0 1 1 0
39   static_assert(FCmpInst::FCMP_ORD   ==  7, "");  // 0 1 1 1
40   static_assert(FCmpInst::FCMP_UNO   ==  8, "");  // 1 0 0 0
41   static_assert(FCmpInst::FCMP_UEQ   ==  9, "");  // 1 0 0 1
42   static_assert(FCmpInst::FCMP_UGT   == 10, "");  // 1 0 1 0
43   static_assert(FCmpInst::FCMP_UGE   == 11, "");  // 1 0 1 1
44   static_assert(FCmpInst::FCMP_ULT   == 12, "");  // 1 1 0 0
45   static_assert(FCmpInst::FCMP_ULE   == 13, "");  // 1 1 0 1
46   static_assert(FCmpInst::FCMP_UNE   == 14, "");  // 1 1 1 0
47   static_assert(FCmpInst::FCMP_TRUE  == 15, "");  // 1 1 1 1
48   return CC;
49 }
50 
51 /// This is the complement of getICmpCode, which turns an opcode and two
52 /// operands into either a constant true or false, or a brand new ICmp
53 /// instruction. The sign is passed in to determine which kind of predicate to
54 /// use in the new icmp instruction.
55 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
56                               InstCombiner::BuilderTy &Builder) {
57   ICmpInst::Predicate NewPred;
58   if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
59     return TorF;
60   return Builder.CreateICmp(NewPred, LHS, RHS);
61 }
62 
63 /// This is the complement of getFCmpCode, which turns an opcode and two
64 /// operands into either a FCmp instruction, or a true/false constant.
65 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
66                            InstCombiner::BuilderTy &Builder) {
67   const auto Pred = static_cast<FCmpInst::Predicate>(Code);
68   assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
69          "Unexpected FCmp predicate!");
70   if (Pred == FCmpInst::FCMP_FALSE)
71     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
72   if (Pred == FCmpInst::FCMP_TRUE)
73     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
74   return Builder.CreateFCmp(Pred, LHS, RHS);
75 }
76 
77 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
78 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
79 /// \param I Binary operator to transform.
80 /// \return Pointer to node that must replace the original binary operator, or
81 ///         null pointer if no transformation was made.
82 static Value *SimplifyBSwap(BinaryOperator &I,
83                             InstCombiner::BuilderTy &Builder) {
84   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
85 
86   Value *OldLHS = I.getOperand(0);
87   Value *OldRHS = I.getOperand(1);
88 
89   Value *NewLHS;
90   if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
91     return nullptr;
92 
93   Value *NewRHS;
94   const APInt *C;
95 
96   if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
97     // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
98     if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
99       return nullptr;
100     // NewRHS initialized by the matcher.
101   } else if (match(OldRHS, m_APInt(C))) {
102     // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
103     if (!OldLHS->hasOneUse())
104       return nullptr;
105     NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
106   } else
107     return nullptr;
108 
109   Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
110   Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
111                                           I.getType());
112   return Builder.CreateCall(F, BinOp);
113 }
114 
115 /// This handles expressions of the form ((val OP C1) & C2).  Where
116 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.
117 Instruction *InstCombiner::OptAndOp(BinaryOperator *Op,
118                                     ConstantInt *OpRHS,
119                                     ConstantInt *AndRHS,
120                                     BinaryOperator &TheAnd) {
121   Value *X = Op->getOperand(0);
122 
123   switch (Op->getOpcode()) {
124   default: break;
125   case Instruction::Add:
126     if (Op->hasOneUse()) {
127       // Adding a one to a single bit bit-field should be turned into an XOR
128       // of the bit.  First thing to check is to see if this AND is with a
129       // single bit constant.
130       const APInt &AndRHSV = AndRHS->getValue();
131 
132       // If there is only one bit set.
133       if (AndRHSV.isPowerOf2()) {
134         // Ok, at this point, we know that we are masking the result of the
135         // ADD down to exactly one bit.  If the constant we are adding has
136         // no bits set below this bit, then we can eliminate the ADD.
137         const APInt& AddRHS = OpRHS->getValue();
138 
139         // Check to see if any bits below the one bit set in AndRHSV are set.
140         if ((AddRHS & (AndRHSV - 1)).isNullValue()) {
141           // If not, the only thing that can effect the output of the AND is
142           // the bit specified by AndRHSV.  If that bit is set, the effect of
143           // the XOR is to toggle the bit.  If it is clear, then the ADD has
144           // no effect.
145           if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop
146             return replaceOperand(TheAnd, 0, X);
147           } else {
148             // Pull the XOR out of the AND.
149             Value *NewAnd = Builder.CreateAnd(X, AndRHS);
150             NewAnd->takeName(Op);
151             return BinaryOperator::CreateXor(NewAnd, AndRHS);
152           }
153         }
154       }
155     }
156     break;
157   }
158   return nullptr;
159 }
160 
161 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
162 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
163 /// whether to treat V, Lo, and Hi as signed or not.
164 Value *InstCombiner::insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
165                                      bool isSigned, bool Inside) {
166   assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
167          "Lo is not < Hi in range emission code!");
168 
169   Type *Ty = V->getType();
170 
171   // V >= Min && V <  Hi --> V <  Hi
172   // V <  Min || V >= Hi --> V >= Hi
173   ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
174   if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
175     Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
176     return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
177   }
178 
179   // V >= Lo && V <  Hi --> V - Lo u<  Hi - Lo
180   // V <  Lo || V >= Hi --> V - Lo u>= Hi - Lo
181   Value *VMinusLo =
182       Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
183   Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
184   return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
185 }
186 
187 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
188 /// that can be simplified.
189 /// One of A and B is considered the mask. The other is the value. This is
190 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
191 /// only "Mask", then both A and B can be considered masks. If A is the mask,
192 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
193 /// If both A and C are constants, this proof is also easy.
194 /// For the following explanations, we assume that A is the mask.
195 ///
196 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
197 /// bits of A are set in B.
198 ///   Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
199 ///
200 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
201 /// bits of A are cleared in B.
202 ///   Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
203 ///
204 /// "Mixed" declares that (A & B) == C and C might or might not contain any
205 /// number of one bits and zero bits.
206 ///   Example: (icmp eq (A & 3), 1) -> AMask_Mixed
207 ///
208 /// "Not" means that in above descriptions "==" should be replaced by "!=".
209 ///   Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
210 ///
211 /// If the mask A contains a single bit, then the following is equivalent:
212 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
213 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
214 enum MaskedICmpType {
215   AMask_AllOnes           =     1,
216   AMask_NotAllOnes        =     2,
217   BMask_AllOnes           =     4,
218   BMask_NotAllOnes        =     8,
219   Mask_AllZeros           =    16,
220   Mask_NotAllZeros        =    32,
221   AMask_Mixed             =    64,
222   AMask_NotMixed          =   128,
223   BMask_Mixed             =   256,
224   BMask_NotMixed          =   512
225 };
226 
227 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
228 /// satisfies.
229 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
230                                   ICmpInst::Predicate Pred) {
231   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
232   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
233   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
234   bool IsEq = (Pred == ICmpInst::ICMP_EQ);
235   bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2());
236   bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2());
237   unsigned MaskVal = 0;
238   if (CCst && CCst->isZero()) {
239     // if C is zero, then both A and B qualify as mask
240     MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
241                      : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
242     if (IsAPow2)
243       MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
244                        : (AMask_AllOnes | AMask_Mixed));
245     if (IsBPow2)
246       MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
247                        : (BMask_AllOnes | BMask_Mixed));
248     return MaskVal;
249   }
250 
251   if (A == C) {
252     MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
253                      : (AMask_NotAllOnes | AMask_NotMixed));
254     if (IsAPow2)
255       MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
256                        : (Mask_AllZeros | AMask_Mixed));
257   } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) {
258     MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
259   }
260 
261   if (B == C) {
262     MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
263                      : (BMask_NotAllOnes | BMask_NotMixed));
264     if (IsBPow2)
265       MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
266                        : (Mask_AllZeros | BMask_Mixed));
267   } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) {
268     MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
269   }
270 
271   return MaskVal;
272 }
273 
274 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
275 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
276 /// is adjacent to the corresponding normal flag (recording ==), this just
277 /// involves swapping those bits over.
278 static unsigned conjugateICmpMask(unsigned Mask) {
279   unsigned NewMask;
280   NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
281                      AMask_Mixed | BMask_Mixed))
282             << 1;
283 
284   NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
285                       AMask_NotMixed | BMask_NotMixed))
286              >> 1;
287 
288   return NewMask;
289 }
290 
291 // Adapts the external decomposeBitTestICmp for local use.
292 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
293                                  Value *&X, Value *&Y, Value *&Z) {
294   APInt Mask;
295   if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
296     return false;
297 
298   Y = ConstantInt::get(X->getType(), Mask);
299   Z = ConstantInt::get(X->getType(), 0);
300   return true;
301 }
302 
303 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
304 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
305 /// the right hand side as a pair.
306 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
307 /// and PredR are their predicates, respectively.
308 static
309 Optional<std::pair<unsigned, unsigned>>
310 getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
311                          Value *&D, Value *&E, ICmpInst *LHS,
312                          ICmpInst *RHS,
313                          ICmpInst::Predicate &PredL,
314                          ICmpInst::Predicate &PredR) {
315   // vectors are not (yet?) supported. Don't support pointers either.
316   if (!LHS->getOperand(0)->getType()->isIntegerTy() ||
317       !RHS->getOperand(0)->getType()->isIntegerTy())
318     return None;
319 
320   // Here comes the tricky part:
321   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
322   // and L11 & L12 == L21 & L22. The same goes for RHS.
323   // Now we must find those components L** and R**, that are equal, so
324   // that we can extract the parameters A, B, C, D, and E for the canonical
325   // above.
326   Value *L1 = LHS->getOperand(0);
327   Value *L2 = LHS->getOperand(1);
328   Value *L11, *L12, *L21, *L22;
329   // Check whether the icmp can be decomposed into a bit test.
330   if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
331     L21 = L22 = L1 = nullptr;
332   } else {
333     // Look for ANDs in the LHS icmp.
334     if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
335       // Any icmp can be viewed as being trivially masked; if it allows us to
336       // remove one, it's worth it.
337       L11 = L1;
338       L12 = Constant::getAllOnesValue(L1->getType());
339     }
340 
341     if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
342       L21 = L2;
343       L22 = Constant::getAllOnesValue(L2->getType());
344     }
345   }
346 
347   // Bail if LHS was a icmp that can't be decomposed into an equality.
348   if (!ICmpInst::isEquality(PredL))
349     return None;
350 
351   Value *R1 = RHS->getOperand(0);
352   Value *R2 = RHS->getOperand(1);
353   Value *R11, *R12;
354   bool Ok = false;
355   if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
356     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
357       A = R11;
358       D = R12;
359     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
360       A = R12;
361       D = R11;
362     } else {
363       return None;
364     }
365     E = R2;
366     R1 = nullptr;
367     Ok = true;
368   } else {
369     if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
370       // As before, model no mask as a trivial mask if it'll let us do an
371       // optimization.
372       R11 = R1;
373       R12 = Constant::getAllOnesValue(R1->getType());
374     }
375 
376     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
377       A = R11;
378       D = R12;
379       E = R2;
380       Ok = true;
381     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
382       A = R12;
383       D = R11;
384       E = R2;
385       Ok = true;
386     }
387   }
388 
389   // Bail if RHS was a icmp that can't be decomposed into an equality.
390   if (!ICmpInst::isEquality(PredR))
391     return None;
392 
393   // Look for ANDs on the right side of the RHS icmp.
394   if (!Ok) {
395     if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
396       R11 = R2;
397       R12 = Constant::getAllOnesValue(R2->getType());
398     }
399 
400     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
401       A = R11;
402       D = R12;
403       E = R1;
404       Ok = true;
405     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
406       A = R12;
407       D = R11;
408       E = R1;
409       Ok = true;
410     } else {
411       return None;
412     }
413   }
414   if (!Ok)
415     return None;
416 
417   if (L11 == A) {
418     B = L12;
419     C = L2;
420   } else if (L12 == A) {
421     B = L11;
422     C = L2;
423   } else if (L21 == A) {
424     B = L22;
425     C = L1;
426   } else if (L22 == A) {
427     B = L21;
428     C = L1;
429   }
430 
431   unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
432   unsigned RightType = getMaskedICmpType(A, D, E, PredR);
433   return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
434 }
435 
436 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
437 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
438 /// and the right hand side is of type BMask_Mixed. For example,
439 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
440 static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
441     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
442     Value *A, Value *B, Value *C, Value *D, Value *E,
443     ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
444     llvm::InstCombiner::BuilderTy &Builder) {
445   // We are given the canonical form:
446   //   (icmp ne (A & B), 0) & (icmp eq (A & D), E).
447   // where D & E == E.
448   //
449   // If IsAnd is false, we get it in negated form:
450   //   (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
451   //      !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
452   //
453   // We currently handle the case of B, C, D, E are constant.
454   //
455   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
456   if (!BCst)
457     return nullptr;
458   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
459   if (!CCst)
460     return nullptr;
461   ConstantInt *DCst = dyn_cast<ConstantInt>(D);
462   if (!DCst)
463     return nullptr;
464   ConstantInt *ECst = dyn_cast<ConstantInt>(E);
465   if (!ECst)
466     return nullptr;
467 
468   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
469 
470   // Update E to the canonical form when D is a power of two and RHS is
471   // canonicalized as,
472   // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
473   // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
474   if (PredR != NewCC)
475     ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
476 
477   // If B or D is zero, skip because if LHS or RHS can be trivially folded by
478   // other folding rules and this pattern won't apply any more.
479   if (BCst->getValue() == 0 || DCst->getValue() == 0)
480     return nullptr;
481 
482   // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
483   // deduce anything from it.
484   // For example,
485   // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
486   if ((BCst->getValue() & DCst->getValue()) == 0)
487     return nullptr;
488 
489   // If the following two conditions are met:
490   //
491   // 1. mask B covers only a single bit that's not covered by mask D, that is,
492   // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
493   // B and D has only one bit set) and,
494   //
495   // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
496   // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
497   //
498   // then that single bit in B must be one and thus the whole expression can be
499   // folded to
500   //   (A & (B | D)) == (B & (B ^ D)) | E.
501   //
502   // For example,
503   // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
504   // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
505   if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) &&
506       (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) {
507     APInt BorD = BCst->getValue() | DCst->getValue();
508     APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) |
509         ECst->getValue();
510     Value *NewMask = ConstantInt::get(BCst->getType(), BorD);
511     Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE);
512     Value *NewAnd = Builder.CreateAnd(A, NewMask);
513     return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
514   }
515 
516   auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
517     return (C1->getValue() & C2->getValue()) == C1->getValue();
518   };
519   auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
520     return (C1->getValue() & C2->getValue()) == C2->getValue();
521   };
522 
523   // In the following, we consider only the cases where B is a superset of D, B
524   // is a subset of D, or B == D because otherwise there's at least one bit
525   // covered by B but not D, in which case we can't deduce much from it, so
526   // no folding (aside from the single must-be-one bit case right above.)
527   // For example,
528   // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
529   if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
530     return nullptr;
531 
532   // At this point, either B is a superset of D, B is a subset of D or B == D.
533 
534   // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
535   // and the whole expression becomes false (or true if negated), otherwise, no
536   // folding.
537   // For example,
538   // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
539   // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
540   if (ECst->isZero()) {
541     if (IsSubSetOrEqual(BCst, DCst))
542       return ConstantInt::get(LHS->getType(), !IsAnd);
543     return nullptr;
544   }
545 
546   // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
547   // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
548   // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
549   // RHS. For example,
550   // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
551   // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
552   if (IsSuperSetOrEqual(BCst, DCst))
553     return RHS;
554   // Otherwise, B is a subset of D. If B and E have a common bit set,
555   // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
556   // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
557   assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
558   if ((BCst->getValue() & ECst->getValue()) != 0)
559     return RHS;
560   // Otherwise, LHS and RHS contradict and the whole expression becomes false
561   // (or true if negated.) For example,
562   // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
563   // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
564   return ConstantInt::get(LHS->getType(), !IsAnd);
565 }
566 
567 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
568 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
569 /// aren't of the common mask pattern type.
570 static Value *foldLogOpOfMaskedICmpsAsymmetric(
571     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
572     Value *A, Value *B, Value *C, Value *D, Value *E,
573     ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
574     unsigned LHSMask, unsigned RHSMask,
575     llvm::InstCombiner::BuilderTy &Builder) {
576   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
577          "Expected equality predicates for masked type of icmps.");
578   // Handle Mask_NotAllZeros-BMask_Mixed cases.
579   // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
580   // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
581   //    which gets swapped to
582   //    (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
583   if (!IsAnd) {
584     LHSMask = conjugateICmpMask(LHSMask);
585     RHSMask = conjugateICmpMask(RHSMask);
586   }
587   if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
588     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
589             LHS, RHS, IsAnd, A, B, C, D, E,
590             PredL, PredR, Builder)) {
591       return V;
592     }
593   } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
594     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
595             RHS, LHS, IsAnd, A, D, E, B, C,
596             PredR, PredL, Builder)) {
597       return V;
598     }
599   }
600   return nullptr;
601 }
602 
603 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
604 /// into a single (icmp(A & X) ==/!= Y).
605 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
606                                      llvm::InstCombiner::BuilderTy &Builder) {
607   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
608   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
609   Optional<std::pair<unsigned, unsigned>> MaskPair =
610       getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
611   if (!MaskPair)
612     return nullptr;
613   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
614          "Expected equality predicates for masked type of icmps.");
615   unsigned LHSMask = MaskPair->first;
616   unsigned RHSMask = MaskPair->second;
617   unsigned Mask = LHSMask & RHSMask;
618   if (Mask == 0) {
619     // Even if the two sides don't share a common pattern, check if folding can
620     // still happen.
621     if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
622             LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
623             Builder))
624       return V;
625     return nullptr;
626   }
627 
628   // In full generality:
629   //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
630   // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
631   //
632   // If the latter can be converted into (icmp (A & X) Op Y) then the former is
633   // equivalent to (icmp (A & X) !Op Y).
634   //
635   // Therefore, we can pretend for the rest of this function that we're dealing
636   // with the conjunction, provided we flip the sense of any comparisons (both
637   // input and output).
638 
639   // In most cases we're going to produce an EQ for the "&&" case.
640   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
641   if (!IsAnd) {
642     // Convert the masking analysis into its equivalent with negated
643     // comparisons.
644     Mask = conjugateICmpMask(Mask);
645   }
646 
647   if (Mask & Mask_AllZeros) {
648     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
649     // -> (icmp eq (A & (B|D)), 0)
650     Value *NewOr = Builder.CreateOr(B, D);
651     Value *NewAnd = Builder.CreateAnd(A, NewOr);
652     // We can't use C as zero because we might actually handle
653     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
654     // with B and D, having a single bit set.
655     Value *Zero = Constant::getNullValue(A->getType());
656     return Builder.CreateICmp(NewCC, NewAnd, Zero);
657   }
658   if (Mask & BMask_AllOnes) {
659     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
660     // -> (icmp eq (A & (B|D)), (B|D))
661     Value *NewOr = Builder.CreateOr(B, D);
662     Value *NewAnd = Builder.CreateAnd(A, NewOr);
663     return Builder.CreateICmp(NewCC, NewAnd, NewOr);
664   }
665   if (Mask & AMask_AllOnes) {
666     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
667     // -> (icmp eq (A & (B&D)), A)
668     Value *NewAnd1 = Builder.CreateAnd(B, D);
669     Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
670     return Builder.CreateICmp(NewCC, NewAnd2, A);
671   }
672 
673   // Remaining cases assume at least that B and D are constant, and depend on
674   // their actual values. This isn't strictly necessary, just a "handle the
675   // easy cases for now" decision.
676   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
677   if (!BCst)
678     return nullptr;
679   ConstantInt *DCst = dyn_cast<ConstantInt>(D);
680   if (!DCst)
681     return nullptr;
682 
683   if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
684     // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
685     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
686     //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
687     // Only valid if one of the masks is a superset of the other (check "B&D" is
688     // the same as either B or D).
689     APInt NewMask = BCst->getValue() & DCst->getValue();
690 
691     if (NewMask == BCst->getValue())
692       return LHS;
693     else if (NewMask == DCst->getValue())
694       return RHS;
695   }
696 
697   if (Mask & AMask_NotAllOnes) {
698     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
699     //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
700     // Only valid if one of the masks is a superset of the other (check "B|D" is
701     // the same as either B or D).
702     APInt NewMask = BCst->getValue() | DCst->getValue();
703 
704     if (NewMask == BCst->getValue())
705       return LHS;
706     else if (NewMask == DCst->getValue())
707       return RHS;
708   }
709 
710   if (Mask & BMask_Mixed) {
711     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
712     // We already know that B & C == C && D & E == E.
713     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
714     // C and E, which are shared by both the mask B and the mask D, don't
715     // contradict, then we can transform to
716     // -> (icmp eq (A & (B|D)), (C|E))
717     // Currently, we only handle the case of B, C, D, and E being constant.
718     // We can't simply use C and E because we might actually handle
719     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
720     // with B and D, having a single bit set.
721     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
722     if (!CCst)
723       return nullptr;
724     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
725     if (!ECst)
726       return nullptr;
727     if (PredL != NewCC)
728       CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
729     if (PredR != NewCC)
730       ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
731 
732     // If there is a conflict, we should actually return a false for the
733     // whole construct.
734     if (((BCst->getValue() & DCst->getValue()) &
735          (CCst->getValue() ^ ECst->getValue())).getBoolValue())
736       return ConstantInt::get(LHS->getType(), !IsAnd);
737 
738     Value *NewOr1 = Builder.CreateOr(B, D);
739     Value *NewOr2 = ConstantExpr::getOr(CCst, ECst);
740     Value *NewAnd = Builder.CreateAnd(A, NewOr1);
741     return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
742   }
743 
744   return nullptr;
745 }
746 
747 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
748 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
749 /// If \p Inverted is true then the check is for the inverted range, e.g.
750 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
751 Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
752                                         bool Inverted) {
753   // Check the lower range comparison, e.g. x >= 0
754   // InstCombine already ensured that if there is a constant it's on the RHS.
755   ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
756   if (!RangeStart)
757     return nullptr;
758 
759   ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
760                                Cmp0->getPredicate());
761 
762   // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
763   if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
764         (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
765     return nullptr;
766 
767   ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
768                                Cmp1->getPredicate());
769 
770   Value *Input = Cmp0->getOperand(0);
771   Value *RangeEnd;
772   if (Cmp1->getOperand(0) == Input) {
773     // For the upper range compare we have: icmp x, n
774     RangeEnd = Cmp1->getOperand(1);
775   } else if (Cmp1->getOperand(1) == Input) {
776     // For the upper range compare we have: icmp n, x
777     RangeEnd = Cmp1->getOperand(0);
778     Pred1 = ICmpInst::getSwappedPredicate(Pred1);
779   } else {
780     return nullptr;
781   }
782 
783   // Check the upper range comparison, e.g. x < n
784   ICmpInst::Predicate NewPred;
785   switch (Pred1) {
786     case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
787     case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
788     default: return nullptr;
789   }
790 
791   // This simplification is only valid if the upper range is not negative.
792   KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
793   if (!Known.isNonNegative())
794     return nullptr;
795 
796   if (Inverted)
797     NewPred = ICmpInst::getInversePredicate(NewPred);
798 
799   return Builder.CreateICmp(NewPred, Input, RangeEnd);
800 }
801 
802 static Value *
803 foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS,
804                                      bool JoinedByAnd,
805                                      InstCombiner::BuilderTy &Builder) {
806   Value *X = LHS->getOperand(0);
807   if (X != RHS->getOperand(0))
808     return nullptr;
809 
810   const APInt *C1, *C2;
811   if (!match(LHS->getOperand(1), m_APInt(C1)) ||
812       !match(RHS->getOperand(1), m_APInt(C2)))
813     return nullptr;
814 
815   // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
816   ICmpInst::Predicate Pred = LHS->getPredicate();
817   if (Pred !=  RHS->getPredicate())
818     return nullptr;
819   if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
820     return nullptr;
821   if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
822     return nullptr;
823 
824   // The larger unsigned constant goes on the right.
825   if (C1->ugt(*C2))
826     std::swap(C1, C2);
827 
828   APInt Xor = *C1 ^ *C2;
829   if (Xor.isPowerOf2()) {
830     // If LHSC and RHSC differ by only one bit, then set that bit in X and
831     // compare against the larger constant:
832     // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
833     // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
834     // We choose an 'or' with a Pow2 constant rather than the inverse mask with
835     // 'and' because that may lead to smaller codegen from a smaller constant.
836     Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor));
837     return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2));
838   }
839 
840   // Special case: get the ordering right when the values wrap around zero.
841   // Ie, we assumed the constants were unsigned when swapping earlier.
842   if (C1->isNullValue() && C2->isAllOnesValue())
843     std::swap(C1, C2);
844 
845   if (*C1 == *C2 - 1) {
846     // (X == 13 || X == 14) --> X - 13 <=u 1
847     // (X != 13 && X != 14) --> X - 13  >u 1
848     // An 'add' is the canonical IR form, so favor that over a 'sub'.
849     Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1)));
850     auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE;
851     return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1));
852   }
853 
854   return nullptr;
855 }
856 
857 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
858 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
859 Value *InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
860                                                    BinaryOperator &Logic) {
861   bool JoinedByAnd = Logic.getOpcode() == Instruction::And;
862   assert((JoinedByAnd || Logic.getOpcode() == Instruction::Or) &&
863          "Wrong opcode");
864   ICmpInst::Predicate Pred = LHS->getPredicate();
865   if (Pred != RHS->getPredicate())
866     return nullptr;
867   if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
868     return nullptr;
869   if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
870     return nullptr;
871 
872   // TODO support vector splats
873   ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
874   ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
875   if (!LHSC || !RHSC || !LHSC->isZero() || !RHSC->isZero())
876     return nullptr;
877 
878   Value *A, *B, *C, *D;
879   if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) &&
880       match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) {
881     if (A == D || B == D)
882       std::swap(C, D);
883     if (B == C)
884       std::swap(A, B);
885 
886     if (A == C &&
887         isKnownToBeAPowerOfTwo(B, false, 0, &Logic) &&
888         isKnownToBeAPowerOfTwo(D, false, 0, &Logic)) {
889       Value *Mask = Builder.CreateOr(B, D);
890       Value *Masked = Builder.CreateAnd(A, Mask);
891       auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
892       return Builder.CreateICmp(NewPred, Masked, Mask);
893     }
894   }
895 
896   return nullptr;
897 }
898 
899 /// General pattern:
900 ///   X & Y
901 ///
902 /// Where Y is checking that all the high bits (covered by a mask 4294967168)
903 /// are uniform, i.e.  %arg & 4294967168  can be either  4294967168  or  0
904 /// Pattern can be one of:
905 ///   %t = add        i32 %arg,    128
906 ///   %r = icmp   ult i32 %t,      256
907 /// Or
908 ///   %t0 = shl       i32 %arg,    24
909 ///   %t1 = ashr      i32 %t0,     24
910 ///   %r  = icmp  eq  i32 %t1,     %arg
911 /// Or
912 ///   %t0 = trunc     i32 %arg  to i8
913 ///   %t1 = sext      i8  %t0   to i32
914 ///   %r  = icmp  eq  i32 %t1,     %arg
915 /// This pattern is a signed truncation check.
916 ///
917 /// And X is checking that some bit in that same mask is zero.
918 /// I.e. can be one of:
919 ///   %r = icmp sgt i32   %arg,    -1
920 /// Or
921 ///   %t = and      i32   %arg,    2147483648
922 ///   %r = icmp eq  i32   %t,      0
923 ///
924 /// Since we are checking that all the bits in that mask are the same,
925 /// and a particular bit is zero, what we are really checking is that all the
926 /// masked bits are zero.
927 /// So this should be transformed to:
928 ///   %r = icmp ult i32 %arg, 128
929 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
930                                         Instruction &CxtI,
931                                         InstCombiner::BuilderTy &Builder) {
932   assert(CxtI.getOpcode() == Instruction::And);
933 
934   // Match  icmp ult (add %arg, C01), C1   (C1 == C01 << 1; powers of two)
935   auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
936                                             APInt &SignBitMask) -> bool {
937     CmpInst::Predicate Pred;
938     const APInt *I01, *I1; // powers of two; I1 == I01 << 1
939     if (!(match(ICmp,
940                 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
941           Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
942       return false;
943     // Which bit is the new sign bit as per the 'signed truncation' pattern?
944     SignBitMask = *I01;
945     return true;
946   };
947 
948   // One icmp needs to be 'signed truncation check'.
949   // We need to match this first, else we will mismatch commutative cases.
950   Value *X1;
951   APInt HighestBit;
952   ICmpInst *OtherICmp;
953   if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
954     OtherICmp = ICmp0;
955   else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
956     OtherICmp = ICmp1;
957   else
958     return nullptr;
959 
960   assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
961 
962   // Try to match/decompose into:  icmp eq (X & Mask), 0
963   auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
964                            APInt &UnsetBitsMask) -> bool {
965     CmpInst::Predicate Pred = ICmp->getPredicate();
966     // Can it be decomposed into  icmp eq (X & Mask), 0  ?
967     if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
968                                    Pred, X, UnsetBitsMask,
969                                    /*LookThroughTrunc=*/false) &&
970         Pred == ICmpInst::ICMP_EQ)
971       return true;
972     // Is it  icmp eq (X & Mask), 0  already?
973     const APInt *Mask;
974     if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
975         Pred == ICmpInst::ICMP_EQ) {
976       UnsetBitsMask = *Mask;
977       return true;
978     }
979     return false;
980   };
981 
982   // And the other icmp needs to be decomposable into a bit test.
983   Value *X0;
984   APInt UnsetBitsMask;
985   if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
986     return nullptr;
987 
988   assert(!UnsetBitsMask.isNullValue() && "empty mask makes no sense.");
989 
990   // Are they working on the same value?
991   Value *X;
992   if (X1 == X0) {
993     // Ok as is.
994     X = X1;
995   } else if (match(X0, m_Trunc(m_Specific(X1)))) {
996     UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
997     X = X1;
998   } else
999     return nullptr;
1000 
1001   // So which bits should be uniform as per the 'signed truncation check'?
1002   // (all the bits starting with (i.e. including) HighestBit)
1003   APInt SignBitsMask = ~(HighestBit - 1U);
1004 
1005   // UnsetBitsMask must have some common bits with SignBitsMask,
1006   if (!UnsetBitsMask.intersects(SignBitsMask))
1007     return nullptr;
1008 
1009   // Does UnsetBitsMask contain any bits outside of SignBitsMask?
1010   if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
1011     APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
1012     if (!OtherHighestBit.isPowerOf2())
1013       return nullptr;
1014     HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
1015   }
1016   // Else, if it does not, then all is ok as-is.
1017 
1018   // %r = icmp ult %X, SignBit
1019   return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
1020                                CxtI.getName() + ".simplified");
1021 }
1022 
1023 /// Reduce a pair of compares that check if a value has exactly 1 bit set.
1024 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
1025                              InstCombiner::BuilderTy &Builder) {
1026   // Handle 'and' / 'or' commutation: make the equality check the first operand.
1027   if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
1028     std::swap(Cmp0, Cmp1);
1029   else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
1030     std::swap(Cmp0, Cmp1);
1031 
1032   // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
1033   CmpInst::Predicate Pred0, Pred1;
1034   Value *X;
1035   if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
1036       match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
1037                          m_SpecificInt(2))) &&
1038       Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
1039     Value *CtPop = Cmp1->getOperand(0);
1040     return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
1041   }
1042   // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
1043   if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
1044       match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
1045                          m_SpecificInt(1))) &&
1046       Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
1047     Value *CtPop = Cmp1->getOperand(0);
1048     return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
1049   }
1050   return nullptr;
1051 }
1052 
1053 /// Commuted variants are assumed to be handled by calling this function again
1054 /// with the parameters swapped.
1055 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
1056                                          ICmpInst *UnsignedICmp, bool IsAnd,
1057                                          const SimplifyQuery &Q,
1058                                          InstCombiner::BuilderTy &Builder) {
1059   Value *ZeroCmpOp;
1060   ICmpInst::Predicate EqPred;
1061   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
1062       !ICmpInst::isEquality(EqPred))
1063     return nullptr;
1064 
1065   auto IsKnownNonZero = [&](Value *V) {
1066     return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1067   };
1068 
1069   ICmpInst::Predicate UnsignedPred;
1070 
1071   Value *A, *B;
1072   if (match(UnsignedICmp,
1073             m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
1074       match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
1075       (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
1076     auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
1077       if (!IsKnownNonZero(NonZero))
1078         std::swap(NonZero, Other);
1079       return IsKnownNonZero(NonZero);
1080     };
1081 
1082     // Given  ZeroCmpOp = (A + B)
1083     //   ZeroCmpOp <= A && ZeroCmpOp != 0  -->  (0-B) <  A
1084     //   ZeroCmpOp >  A || ZeroCmpOp == 0  -->  (0-B) >= A
1085     //
1086     //   ZeroCmpOp <  A && ZeroCmpOp != 0  -->  (0-X) <  Y  iff
1087     //   ZeroCmpOp >= A || ZeroCmpOp == 0  -->  (0-X) >= Y  iff
1088     //     with X being the value (A/B) that is known to be non-zero,
1089     //     and Y being remaining value.
1090     if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1091         IsAnd)
1092       return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1093     if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
1094         IsAnd && GetKnownNonZeroAndOther(B, A))
1095       return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1096     if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1097         !IsAnd)
1098       return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1099     if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
1100         !IsAnd && GetKnownNonZeroAndOther(B, A))
1101       return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1102   }
1103 
1104   Value *Base, *Offset;
1105   if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset))))
1106     return nullptr;
1107 
1108   if (!match(UnsignedICmp,
1109              m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) ||
1110       !ICmpInst::isUnsigned(UnsignedPred))
1111     return nullptr;
1112 
1113   // Base >=/> Offset && (Base - Offset) != 0  <-->  Base > Offset
1114   // (no overflow and not null)
1115   if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1116        UnsignedPred == ICmpInst::ICMP_UGT) &&
1117       EqPred == ICmpInst::ICMP_NE && IsAnd)
1118     return Builder.CreateICmpUGT(Base, Offset);
1119 
1120   // Base <=/< Offset || (Base - Offset) == 0  <-->  Base <= Offset
1121   // (overflow or null)
1122   if ((UnsignedPred == ICmpInst::ICMP_ULE ||
1123        UnsignedPred == ICmpInst::ICMP_ULT) &&
1124       EqPred == ICmpInst::ICMP_EQ && !IsAnd)
1125     return Builder.CreateICmpULE(Base, Offset);
1126 
1127   // Base <= Offset && (Base - Offset) != 0  -->  Base < Offset
1128   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1129       IsAnd)
1130     return Builder.CreateICmpULT(Base, Offset);
1131 
1132   // Base > Offset || (Base - Offset) == 0  -->  Base >= Offset
1133   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1134       !IsAnd)
1135     return Builder.CreateICmpUGE(Base, Offset);
1136 
1137   return nullptr;
1138 }
1139 
1140 /// Reduce logic-of-compares with equality to a constant by substituting a
1141 /// common operand with the constant. Callers are expected to call this with
1142 /// Cmp0/Cmp1 switched to handle logic op commutativity.
1143 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1,
1144                                           BinaryOperator &Logic,
1145                                           InstCombiner::BuilderTy &Builder,
1146                                           const SimplifyQuery &Q) {
1147   bool IsAnd = Logic.getOpcode() == Instruction::And;
1148   assert((IsAnd || Logic.getOpcode() == Instruction::Or) && "Wrong logic op");
1149 
1150   // Match an equality compare with a non-poison constant as Cmp0.
1151   // Also, give up if the compare can be constant-folded to avoid looping.
1152   ICmpInst::Predicate Pred0;
1153   Value *X;
1154   Constant *C;
1155   if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
1156       !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X))
1157     return nullptr;
1158   if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
1159       (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
1160     return nullptr;
1161 
1162   // The other compare must include a common operand (X). Canonicalize the
1163   // common operand as operand 1 (Pred1 is swapped if the common operand was
1164   // operand 0).
1165   Value *Y;
1166   ICmpInst::Predicate Pred1;
1167   if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X))))
1168     return nullptr;
1169 
1170   // Replace variable with constant value equivalence to remove a variable use:
1171   // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
1172   // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
1173   // Can think of the 'or' substitution with the 'and' bool equivalent:
1174   // A || B --> A || (!A && B)
1175   Value *SubstituteCmp = SimplifyICmpInst(Pred1, Y, C, Q);
1176   if (!SubstituteCmp) {
1177     // If we need to create a new instruction, require that the old compare can
1178     // be removed.
1179     if (!Cmp1->hasOneUse())
1180       return nullptr;
1181     SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
1182   }
1183   return Builder.CreateBinOp(Logic.getOpcode(), Cmp0, SubstituteCmp);
1184 }
1185 
1186 /// Fold (icmp)&(icmp) if possible.
1187 Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS,
1188                                     BinaryOperator &And) {
1189   const SimplifyQuery Q = SQ.getWithInstruction(&And);
1190 
1191   // Fold (!iszero(A & K1) & !iszero(A & K2)) ->  (A & (K1 | K2)) == (K1 | K2)
1192   // if K1 and K2 are a one-bit mask.
1193   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, And))
1194     return V;
1195 
1196   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1197 
1198   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
1199   if (predicatesFoldable(PredL, PredR)) {
1200     if (LHS->getOperand(0) == RHS->getOperand(1) &&
1201         LHS->getOperand(1) == RHS->getOperand(0))
1202       LHS->swapOperands();
1203     if (LHS->getOperand(0) == RHS->getOperand(0) &&
1204         LHS->getOperand(1) == RHS->getOperand(1)) {
1205       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1206       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
1207       bool IsSigned = LHS->isSigned() || RHS->isSigned();
1208       return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
1209     }
1210   }
1211 
1212   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
1213   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
1214     return V;
1215 
1216   if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, And, Builder, Q))
1217     return V;
1218   if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, And, Builder, Q))
1219     return V;
1220 
1221   // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
1222   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
1223     return V;
1224 
1225   // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
1226   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
1227     return V;
1228 
1229   if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder))
1230     return V;
1231 
1232   if (Value *V = foldSignedTruncationCheck(LHS, RHS, And, Builder))
1233     return V;
1234 
1235   if (Value *V = foldIsPowerOf2(LHS, RHS, true /* JoinedByAnd */, Builder))
1236     return V;
1237 
1238   if (Value *X =
1239           foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/true, Q, Builder))
1240     return X;
1241   if (Value *X =
1242           foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/true, Q, Builder))
1243     return X;
1244 
1245   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
1246   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
1247   ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
1248   ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
1249   if (!LHSC || !RHSC)
1250     return nullptr;
1251 
1252   if (LHSC == RHSC && PredL == PredR) {
1253     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
1254     // where C is a power of 2 or
1255     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
1256     if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) ||
1257         (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) {
1258       Value *NewOr = Builder.CreateOr(LHS0, RHS0);
1259       return Builder.CreateICmp(PredL, NewOr, LHSC);
1260     }
1261   }
1262 
1263   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
1264   // where CMAX is the all ones value for the truncated type,
1265   // iff the lower bits of C2 and CA are zero.
1266   if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() &&
1267       RHS->hasOneUse()) {
1268     Value *V;
1269     ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr;
1270 
1271     // (trunc x) == C1 & (and x, CA) == C2
1272     // (and x, CA) == C2 & (trunc x) == C1
1273     if (match(RHS0, m_Trunc(m_Value(V))) &&
1274         match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
1275       SmallC = RHSC;
1276       BigC = LHSC;
1277     } else if (match(LHS0, m_Trunc(m_Value(V))) &&
1278                match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
1279       SmallC = LHSC;
1280       BigC = RHSC;
1281     }
1282 
1283     if (SmallC && BigC) {
1284       unsigned BigBitSize = BigC->getType()->getBitWidth();
1285       unsigned SmallBitSize = SmallC->getType()->getBitWidth();
1286 
1287       // Check that the low bits are zero.
1288       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
1289       if ((Low & AndC->getValue()).isNullValue() &&
1290           (Low & BigC->getValue()).isNullValue()) {
1291         Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue());
1292         APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue();
1293         Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N);
1294         return Builder.CreateICmp(PredL, NewAnd, NewVal);
1295       }
1296     }
1297   }
1298 
1299   // From here on, we only handle:
1300   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
1301   if (LHS0 != RHS0)
1302     return nullptr;
1303 
1304   // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
1305   if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
1306       PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
1307       PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
1308       PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
1309     return nullptr;
1310 
1311   // We can't fold (ugt x, C) & (sgt x, C2).
1312   if (!predicatesFoldable(PredL, PredR))
1313     return nullptr;
1314 
1315   // Ensure that the larger constant is on the RHS.
1316   bool ShouldSwap;
1317   if (CmpInst::isSigned(PredL) ||
1318       (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
1319     ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
1320   else
1321     ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
1322 
1323   if (ShouldSwap) {
1324     std::swap(LHS, RHS);
1325     std::swap(LHSC, RHSC);
1326     std::swap(PredL, PredR);
1327   }
1328 
1329   // At this point, we know we have two icmp instructions
1330   // comparing a value against two constants and and'ing the result
1331   // together.  Because of the above check, we know that we only have
1332   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
1333   // (from the icmp folding check above), that the two constants
1334   // are not equal and that the larger constant is on the RHS
1335   assert(LHSC != RHSC && "Compares not folded above?");
1336 
1337   switch (PredL) {
1338   default:
1339     llvm_unreachable("Unknown integer condition code!");
1340   case ICmpInst::ICMP_NE:
1341     switch (PredR) {
1342     default:
1343       llvm_unreachable("Unknown integer condition code!");
1344     case ICmpInst::ICMP_ULT:
1345       // (X != 13 & X u< 14) -> X < 13
1346       if (LHSC->getValue() == (RHSC->getValue() - 1))
1347         return Builder.CreateICmpULT(LHS0, LHSC);
1348       if (LHSC->isZero()) // (X != 0 & X u< C) -> X-1 u< C-1
1349         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1350                                false, true);
1351       break; // (X != 13 & X u< 15) -> no change
1352     case ICmpInst::ICMP_SLT:
1353       // (X != 13 & X s< 14) -> X < 13
1354       if (LHSC->getValue() == (RHSC->getValue() - 1))
1355         return Builder.CreateICmpSLT(LHS0, LHSC);
1356       // (X != INT_MIN & X s< C) -> X-(INT_MIN+1) u< (C-(INT_MIN+1))
1357       if (LHSC->isMinValue(true))
1358         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1359                                true, true);
1360       break; // (X != 13 & X s< 15) -> no change
1361     case ICmpInst::ICMP_NE:
1362       // Potential folds for this case should already be handled.
1363       break;
1364     }
1365     break;
1366   case ICmpInst::ICMP_UGT:
1367     switch (PredR) {
1368     default:
1369       llvm_unreachable("Unknown integer condition code!");
1370     case ICmpInst::ICMP_NE:
1371       // (X u> 13 & X != 14) -> X u> 14
1372       if (RHSC->getValue() == (LHSC->getValue() + 1))
1373         return Builder.CreateICmp(PredL, LHS0, RHSC);
1374       // X u> C & X != UINT_MAX -> (X-(C+1)) u< UINT_MAX-(C+1)
1375       if (RHSC->isMaxValue(false))
1376         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1377                                false, true);
1378       break;                 // (X u> 13 & X != 15) -> no change
1379     case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) u< 1
1380       return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1381                              false, true);
1382     }
1383     break;
1384   case ICmpInst::ICMP_SGT:
1385     switch (PredR) {
1386     default:
1387       llvm_unreachable("Unknown integer condition code!");
1388     case ICmpInst::ICMP_NE:
1389       // (X s> 13 & X != 14) -> X s> 14
1390       if (RHSC->getValue() == (LHSC->getValue() + 1))
1391         return Builder.CreateICmp(PredL, LHS0, RHSC);
1392       // X s> C & X != INT_MAX -> (X-(C+1)) u< INT_MAX-(C+1)
1393       if (RHSC->isMaxValue(true))
1394         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1395                                true, true);
1396       break;                 // (X s> 13 & X != 15) -> no change
1397     case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) u< 1
1398       return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true,
1399                              true);
1400     }
1401     break;
1402   }
1403 
1404   return nullptr;
1405 }
1406 
1407 Value *InstCombiner::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1408   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1409   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1410   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1411 
1412   if (LHS0 == RHS1 && RHS0 == LHS1) {
1413     // Swap RHS operands to match LHS.
1414     PredR = FCmpInst::getSwappedPredicate(PredR);
1415     std::swap(RHS0, RHS1);
1416   }
1417 
1418   // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1419   // Suppose the relation between x and y is R, where R is one of
1420   // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1421   // testing the desired relations.
1422   //
1423   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1424   //    bool(R & CC0) && bool(R & CC1)
1425   //  = bool((R & CC0) & (R & CC1))
1426   //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1427   //
1428   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1429   //    bool(R & CC0) || bool(R & CC1)
1430   //  = bool((R & CC0) | (R & CC1))
1431   //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1432   if (LHS0 == RHS0 && LHS1 == RHS1) {
1433     unsigned FCmpCodeL = getFCmpCode(PredL);
1434     unsigned FCmpCodeR = getFCmpCode(PredR);
1435     unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1436     return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1437   }
1438 
1439   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1440       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1441     if (LHS0->getType() != RHS0->getType())
1442       return nullptr;
1443 
1444     // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1445     // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1446     if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1447       // Ignore the constants because they are obviously not NANs:
1448       // (fcmp ord x, 0.0) & (fcmp ord y, 0.0)  -> (fcmp ord x, y)
1449       // (fcmp uno x, 0.0) | (fcmp uno y, 0.0)  -> (fcmp uno x, y)
1450       return Builder.CreateFCmp(PredL, LHS0, RHS0);
1451   }
1452 
1453   return nullptr;
1454 }
1455 
1456 /// This a limited reassociation for a special case (see above) where we are
1457 /// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1458 /// This could be handled more generally in '-reassociation', but it seems like
1459 /// an unlikely pattern for a large number of logic ops and fcmps.
1460 static Instruction *reassociateFCmps(BinaryOperator &BO,
1461                                      InstCombiner::BuilderTy &Builder) {
1462   Instruction::BinaryOps Opcode = BO.getOpcode();
1463   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1464          "Expecting and/or op for fcmp transform");
1465 
1466   // There are 4 commuted variants of the pattern. Canonicalize operands of this
1467   // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1468   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1469   FCmpInst::Predicate Pred;
1470   if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
1471     std::swap(Op0, Op1);
1472 
1473   // Match inner binop and the predicate for combining 2 NAN checks into 1.
1474   BinaryOperator *BO1;
1475   FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1476                                                            : FCmpInst::FCMP_UNO;
1477   if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
1478       !match(Op1, m_BinOp(BO1)) || BO1->getOpcode() != Opcode)
1479     return nullptr;
1480 
1481   // The inner logic op must have a matching fcmp operand.
1482   Value *BO10 = BO1->getOperand(0), *BO11 = BO1->getOperand(1), *Y;
1483   if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1484       Pred != NanPred || X->getType() != Y->getType())
1485     std::swap(BO10, BO11);
1486 
1487   if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1488       Pred != NanPred || X->getType() != Y->getType())
1489     return nullptr;
1490 
1491   // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1492   // or  (fcmp uno X, 0), (or  (fcmp uno Y, 0), Z) --> or  (fcmp uno X, Y), Z
1493   Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
1494   if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
1495     // Intersect FMF from the 2 source fcmps.
1496     NewFCmpInst->copyIRFlags(Op0);
1497     NewFCmpInst->andIRFlags(BO10);
1498   }
1499   return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1500 }
1501 
1502 /// Match De Morgan's Laws:
1503 /// (~A & ~B) == (~(A | B))
1504 /// (~A | ~B) == (~(A & B))
1505 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1506                                        InstCombiner::BuilderTy &Builder) {
1507   auto Opcode = I.getOpcode();
1508   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1509          "Trying to match De Morgan's Laws with something other than and/or");
1510 
1511   // Flip the logic operation.
1512   Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1513 
1514   Value *A, *B;
1515   if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) &&
1516       match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) &&
1517       !isFreeToInvert(A, A->hasOneUse()) &&
1518       !isFreeToInvert(B, B->hasOneUse())) {
1519     Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan");
1520     return BinaryOperator::CreateNot(AndOr);
1521   }
1522 
1523   return nullptr;
1524 }
1525 
1526 bool InstCombiner::shouldOptimizeCast(CastInst *CI) {
1527   Value *CastSrc = CI->getOperand(0);
1528 
1529   // Noop casts and casts of constants should be eliminated trivially.
1530   if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1531     return false;
1532 
1533   // If this cast is paired with another cast that can be eliminated, we prefer
1534   // to have it eliminated.
1535   if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1536     if (isEliminableCastPair(PrecedingCI, CI))
1537       return false;
1538 
1539   return true;
1540 }
1541 
1542 /// Fold {and,or,xor} (cast X), C.
1543 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1544                                           InstCombiner::BuilderTy &Builder) {
1545   Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1546   if (!C)
1547     return nullptr;
1548 
1549   auto LogicOpc = Logic.getOpcode();
1550   Type *DestTy = Logic.getType();
1551   Type *SrcTy = Cast->getSrcTy();
1552 
1553   // Move the logic operation ahead of a zext or sext if the constant is
1554   // unchanged in the smaller source type. Performing the logic in a smaller
1555   // type may provide more information to later folds, and the smaller logic
1556   // instruction may be cheaper (particularly in the case of vectors).
1557   Value *X;
1558   if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1559     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1560     Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
1561     if (ZextTruncC == C) {
1562       // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1563       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1564       return new ZExtInst(NewOp, DestTy);
1565     }
1566   }
1567 
1568   if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
1569     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1570     Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
1571     if (SextTruncC == C) {
1572       // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1573       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1574       return new SExtInst(NewOp, DestTy);
1575     }
1576   }
1577 
1578   return nullptr;
1579 }
1580 
1581 /// Fold {and,or,xor} (cast X), Y.
1582 Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) {
1583   auto LogicOpc = I.getOpcode();
1584   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1585 
1586   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1587   CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1588   if (!Cast0)
1589     return nullptr;
1590 
1591   // This must be a cast from an integer or integer vector source type to allow
1592   // transformation of the logic operation to the source type.
1593   Type *DestTy = I.getType();
1594   Type *SrcTy = Cast0->getSrcTy();
1595   if (!SrcTy->isIntOrIntVectorTy())
1596     return nullptr;
1597 
1598   if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
1599     return Ret;
1600 
1601   CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1602   if (!Cast1)
1603     return nullptr;
1604 
1605   // Both operands of the logic operation are casts. The casts must be of the
1606   // same type for reduction.
1607   auto CastOpcode = Cast0->getOpcode();
1608   if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
1609     return nullptr;
1610 
1611   Value *Cast0Src = Cast0->getOperand(0);
1612   Value *Cast1Src = Cast1->getOperand(0);
1613 
1614   // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1615   if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1616     Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1617                                         I.getName());
1618     return CastInst::Create(CastOpcode, NewOp, DestTy);
1619   }
1620 
1621   // For now, only 'and'/'or' have optimizations after this.
1622   if (LogicOpc == Instruction::Xor)
1623     return nullptr;
1624 
1625   // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1626   // cast is otherwise not optimizable.  This happens for vector sexts.
1627   ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
1628   ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
1629   if (ICmp0 && ICmp1) {
1630     Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I)
1631                                               : foldOrOfICmps(ICmp0, ICmp1, I);
1632     if (Res)
1633       return CastInst::Create(CastOpcode, Res, DestTy);
1634     return nullptr;
1635   }
1636 
1637   // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1638   // cast is otherwise not optimizable.  This happens for vector sexts.
1639   FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
1640   FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
1641   if (FCmp0 && FCmp1)
1642     if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
1643       return CastInst::Create(CastOpcode, R, DestTy);
1644 
1645   return nullptr;
1646 }
1647 
1648 static Instruction *foldAndToXor(BinaryOperator &I,
1649                                  InstCombiner::BuilderTy &Builder) {
1650   assert(I.getOpcode() == Instruction::And);
1651   Value *Op0 = I.getOperand(0);
1652   Value *Op1 = I.getOperand(1);
1653   Value *A, *B;
1654 
1655   // Operand complexity canonicalization guarantees that the 'or' is Op0.
1656   // (A | B) & ~(A & B) --> A ^ B
1657   // (A | B) & ~(B & A) --> A ^ B
1658   if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1659                         m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1660     return BinaryOperator::CreateXor(A, B);
1661 
1662   // (A | ~B) & (~A | B) --> ~(A ^ B)
1663   // (A | ~B) & (B | ~A) --> ~(A ^ B)
1664   // (~B | A) & (~A | B) --> ~(A ^ B)
1665   // (~B | A) & (B | ~A) --> ~(A ^ B)
1666   if (Op0->hasOneUse() || Op1->hasOneUse())
1667     if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1668                           m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1669       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1670 
1671   return nullptr;
1672 }
1673 
1674 static Instruction *foldOrToXor(BinaryOperator &I,
1675                                 InstCombiner::BuilderTy &Builder) {
1676   assert(I.getOpcode() == Instruction::Or);
1677   Value *Op0 = I.getOperand(0);
1678   Value *Op1 = I.getOperand(1);
1679   Value *A, *B;
1680 
1681   // Operand complexity canonicalization guarantees that the 'and' is Op0.
1682   // (A & B) | ~(A | B) --> ~(A ^ B)
1683   // (A & B) | ~(B | A) --> ~(A ^ B)
1684   if (Op0->hasOneUse() || Op1->hasOneUse())
1685     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1686         match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1687       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1688 
1689   // (A & ~B) | (~A & B) --> A ^ B
1690   // (A & ~B) | (B & ~A) --> A ^ B
1691   // (~B & A) | (~A & B) --> A ^ B
1692   // (~B & A) | (B & ~A) --> A ^ B
1693   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1694       match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1695     return BinaryOperator::CreateXor(A, B);
1696 
1697   return nullptr;
1698 }
1699 
1700 /// Return true if a constant shift amount is always less than the specified
1701 /// bit-width. If not, the shift could create poison in the narrower type.
1702 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1703   if (auto *ScalarC = dyn_cast<ConstantInt>(C))
1704     return ScalarC->getZExtValue() < BitWidth;
1705 
1706   if (C->getType()->isVectorTy()) {
1707     // Check each element of a constant vector.
1708     unsigned NumElts = cast<VectorType>(C->getType())->getNumElements();
1709     for (unsigned i = 0; i != NumElts; ++i) {
1710       Constant *Elt = C->getAggregateElement(i);
1711       if (!Elt)
1712         return false;
1713       if (isa<UndefValue>(Elt))
1714         continue;
1715       auto *CI = dyn_cast<ConstantInt>(Elt);
1716       if (!CI || CI->getZExtValue() >= BitWidth)
1717         return false;
1718     }
1719     return true;
1720   }
1721 
1722   // The constant is a constant expression or unknown.
1723   return false;
1724 }
1725 
1726 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1727 /// a common zext operand: and (binop (zext X), C), (zext X).
1728 Instruction *InstCombiner::narrowMaskedBinOp(BinaryOperator &And) {
1729   // This transform could also apply to {or, and, xor}, but there are better
1730   // folds for those cases, so we don't expect those patterns here. AShr is not
1731   // handled because it should always be transformed to LShr in this sequence.
1732   // The subtract transform is different because it has a constant on the left.
1733   // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1734   Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1735   Constant *C;
1736   if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1737       !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1738       !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1739       !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1740       !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1741     return nullptr;
1742 
1743   Value *X;
1744   if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1745     return nullptr;
1746 
1747   Type *Ty = And.getType();
1748   if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1749     return nullptr;
1750 
1751   // If we're narrowing a shift, the shift amount must be safe (less than the
1752   // width) in the narrower type. If the shift amount is greater, instsimplify
1753   // usually handles that case, but we can't guarantee/assert it.
1754   Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1755   if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1756     if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1757       return nullptr;
1758 
1759   // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1760   // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1761   Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1762   Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1763                                          : Builder.CreateBinOp(Opc, X, NewC);
1764   return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1765 }
1766 
1767 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
1768 // here. We should standardize that construct where it is needed or choose some
1769 // other way to ensure that commutated variants of patterns are not missed.
1770 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1771   if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1),
1772                                  SQ.getWithInstruction(&I)))
1773     return replaceInstUsesWith(I, V);
1774 
1775   if (SimplifyAssociativeOrCommutative(I))
1776     return &I;
1777 
1778   if (Instruction *X = foldVectorBinop(I))
1779     return X;
1780 
1781   // See if we can simplify any instructions used by the instruction whose sole
1782   // purpose is to compute bits we don't care about.
1783   if (SimplifyDemandedInstructionBits(I))
1784     return &I;
1785 
1786   // Do this before using distributive laws to catch simple and/or/not patterns.
1787   if (Instruction *Xor = foldAndToXor(I, Builder))
1788     return Xor;
1789 
1790   // (A|B)&(A|C) -> A|(B&C) etc
1791   if (Value *V = SimplifyUsingDistributiveLaws(I))
1792     return replaceInstUsesWith(I, V);
1793 
1794   if (Value *V = SimplifyBSwap(I, Builder))
1795     return replaceInstUsesWith(I, V);
1796 
1797   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1798   const APInt *C;
1799   if (match(Op1, m_APInt(C))) {
1800     Value *X, *Y;
1801     if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
1802         C->isOneValue()) {
1803       // (1 << X) & 1 --> zext(X == 0)
1804       // (1 >> X) & 1 --> zext(X == 0)
1805       Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(I.getType(), 0));
1806       return new ZExtInst(IsZero, I.getType());
1807     }
1808 
1809     const APInt *XorC;
1810     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
1811       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1812       Constant *NewC = ConstantInt::get(I.getType(), *C & *XorC);
1813       Value *And = Builder.CreateAnd(X, Op1);
1814       And->takeName(Op0);
1815       return BinaryOperator::CreateXor(And, NewC);
1816     }
1817 
1818     const APInt *OrC;
1819     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
1820       // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
1821       // NOTE: This reduces the number of bits set in the & mask, which
1822       // can expose opportunities for store narrowing for scalars.
1823       // NOTE: SimplifyDemandedBits should have already removed bits from C1
1824       // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
1825       // above, but this feels safer.
1826       APInt Together = *C & *OrC;
1827       Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(),
1828                                                          Together ^ *C));
1829       And->takeName(Op0);
1830       return BinaryOperator::CreateOr(And, ConstantInt::get(I.getType(),
1831                                                             Together));
1832     }
1833 
1834     // If the mask is only needed on one incoming arm, push the 'and' op up.
1835     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
1836         match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
1837       APInt NotAndMask(~(*C));
1838       BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
1839       if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
1840         // Not masking anything out for the LHS, move mask to RHS.
1841         // and ({x}or X, Y), C --> {x}or X, (and Y, C)
1842         Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
1843         return BinaryOperator::Create(BinOp, X, NewRHS);
1844       }
1845       if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
1846         // Not masking anything out for the RHS, move mask to LHS.
1847         // and ({x}or X, Y), C --> {x}or (and X, C), Y
1848         Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
1849         return BinaryOperator::Create(BinOp, NewLHS, Y);
1850       }
1851     }
1852     const APInt *ShiftC;
1853     if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC)))))) {
1854       unsigned Width = I.getType()->getScalarSizeInBits();
1855       if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
1856         // We are clearing high bits that were potentially set by sext+ashr:
1857         // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
1858         Value *Sext = Builder.CreateSExt(X, I.getType());
1859         Constant *ShAmtC = ConstantInt::get(I.getType(), ShiftC->zext(Width));
1860         return BinaryOperator::CreateLShr(Sext, ShAmtC);
1861       }
1862     }
1863   }
1864 
1865   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1866     const APInt &AndRHSMask = AndRHS->getValue();
1867 
1868     // Optimize a variety of ((val OP C1) & C2) combinations...
1869     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1870       // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth
1871       // of X and OP behaves well when given trunc(C1) and X.
1872       // TODO: Do this for vectors by using m_APInt isntead of m_ConstantInt.
1873       switch (Op0I->getOpcode()) {
1874       default:
1875         break;
1876       case Instruction::Xor:
1877       case Instruction::Or:
1878       case Instruction::Mul:
1879       case Instruction::Add:
1880       case Instruction::Sub:
1881         Value *X;
1882         ConstantInt *C1;
1883         // TODO: The one use restrictions could be relaxed a little if the AND
1884         // is going to be removed.
1885         if (match(Op0I, m_OneUse(m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))),
1886                                            m_ConstantInt(C1))))) {
1887           if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) {
1888             auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType());
1889             Value *BinOp;
1890             Value *Op0LHS = Op0I->getOperand(0);
1891             if (isa<ZExtInst>(Op0LHS))
1892               BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1);
1893             else
1894               BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X);
1895             auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType());
1896             auto *And = Builder.CreateAnd(BinOp, TruncC2);
1897             return new ZExtInst(And, I.getType());
1898           }
1899         }
1900       }
1901 
1902       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1903         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1904           return Res;
1905     }
1906 
1907     // If this is an integer truncation, and if the source is an 'and' with
1908     // immediate, transform it.  This frequently occurs for bitfield accesses.
1909     {
1910       Value *X = nullptr; ConstantInt *YC = nullptr;
1911       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1912         // Change: and (trunc (and X, YC) to T), C2
1913         // into  : and (trunc X to T), trunc(YC) & C2
1914         // This will fold the two constants together, which may allow
1915         // other simplifications.
1916         Value *NewCast = Builder.CreateTrunc(X, I.getType(), "and.shrunk");
1917         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1918         C3 = ConstantExpr::getAnd(C3, AndRHS);
1919         return BinaryOperator::CreateAnd(NewCast, C3);
1920       }
1921     }
1922   }
1923 
1924   if (Instruction *Z = narrowMaskedBinOp(I))
1925     return Z;
1926 
1927   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
1928     return FoldedLogic;
1929 
1930   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
1931     return DeMorgan;
1932 
1933   {
1934     Value *A, *B, *C;
1935     // A & (A ^ B) --> A & ~B
1936     if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
1937       return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
1938     // (A ^ B) & A --> A & ~B
1939     if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
1940       return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
1941 
1942     // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
1943     if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
1944       if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
1945         if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
1946           return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
1947 
1948     // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
1949     if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
1950       if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
1951         if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
1952           return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
1953 
1954     // (A | B) & ((~A) ^ B) -> (A & B)
1955     // (A | B) & (B ^ (~A)) -> (A & B)
1956     // (B | A) & ((~A) ^ B) -> (A & B)
1957     // (B | A) & (B ^ (~A)) -> (A & B)
1958     if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1959         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1960       return BinaryOperator::CreateAnd(A, B);
1961 
1962     // ((~A) ^ B) & (A | B) -> (A & B)
1963     // ((~A) ^ B) & (B | A) -> (A & B)
1964     // (B ^ (~A)) & (A | B) -> (A & B)
1965     // (B ^ (~A)) & (B | A) -> (A & B)
1966     if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1967         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
1968       return BinaryOperator::CreateAnd(A, B);
1969   }
1970 
1971   {
1972     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
1973     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
1974     if (LHS && RHS)
1975       if (Value *Res = foldAndOfICmps(LHS, RHS, I))
1976         return replaceInstUsesWith(I, Res);
1977 
1978     // TODO: Make this recursive; it's a little tricky because an arbitrary
1979     // number of 'and' instructions might have to be created.
1980     Value *X, *Y;
1981     if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1982       if (auto *Cmp = dyn_cast<ICmpInst>(X))
1983         if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1984           return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1985       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1986         if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1987           return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1988     }
1989     if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1990       if (auto *Cmp = dyn_cast<ICmpInst>(X))
1991         if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1992           return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1993       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1994         if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1995           return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1996     }
1997   }
1998 
1999   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2000     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2001       if (Value *Res = foldLogicOfFCmps(LHS, RHS, true))
2002         return replaceInstUsesWith(I, Res);
2003 
2004   if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2005     return FoldedFCmps;
2006 
2007   if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
2008     return CastedAnd;
2009 
2010   // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
2011   Value *A;
2012   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2013       A->getType()->isIntOrIntVectorTy(1))
2014     return SelectInst::Create(A, Op1, Constant::getNullValue(I.getType()));
2015   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2016       A->getType()->isIntOrIntVectorTy(1))
2017     return SelectInst::Create(A, Op0, Constant::getNullValue(I.getType()));
2018 
2019   // and(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? X : 0.
2020   {
2021     Value *X, *Y;
2022     const APInt *ShAmt;
2023     Type *Ty = I.getType();
2024     if (match(&I, m_c_And(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)),
2025                                           m_APInt(ShAmt))),
2026                           m_Deferred(X))) &&
2027         *ShAmt == Ty->getScalarSizeInBits() - 1) {
2028       Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
2029       return SelectInst::Create(NewICmpInst, X, ConstantInt::getNullValue(Ty));
2030     }
2031   }
2032 
2033   return nullptr;
2034 }
2035 
2036 Instruction *InstCombiner::matchBSwap(BinaryOperator &Or) {
2037   assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
2038   Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
2039 
2040   // Look through zero extends.
2041   if (Instruction *Ext = dyn_cast<ZExtInst>(Op0))
2042     Op0 = Ext->getOperand(0);
2043 
2044   if (Instruction *Ext = dyn_cast<ZExtInst>(Op1))
2045     Op1 = Ext->getOperand(0);
2046 
2047   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
2048   bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
2049                  match(Op1, m_Or(m_Value(), m_Value()));
2050 
2051   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
2052   bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
2053                     match(Op1, m_LogicalShift(m_Value(), m_Value()));
2054 
2055   // (A & B) | (C & D)                              -> bswap if possible.
2056   bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) &&
2057                   match(Op1, m_And(m_Value(), m_Value()));
2058 
2059   // (A << B) | (C & D)                              -> bswap if possible.
2060   // The bigger pattern here is ((A & C1) << C2) | ((B >> C2) & C1), which is a
2061   // part of the bswap idiom for specific values of C1, C2 (e.g. C1 = 16711935,
2062   // C2 = 8 for i32).
2063   // This pattern can occur when the operands of the 'or' are not canonicalized
2064   // for some reason (not having only one use, for example).
2065   bool OrOfAndAndSh = (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
2066                        match(Op1, m_And(m_Value(), m_Value()))) ||
2067                       (match(Op0, m_And(m_Value(), m_Value())) &&
2068                        match(Op1, m_LogicalShift(m_Value(), m_Value())));
2069 
2070   if (!OrOfOrs && !OrOfShifts && !OrOfAnds && !OrOfAndAndSh)
2071     return nullptr;
2072 
2073   SmallVector<Instruction*, 4> Insts;
2074   if (!recognizeBSwapOrBitReverseIdiom(&Or, true, false, Insts))
2075     return nullptr;
2076   Instruction *LastInst = Insts.pop_back_val();
2077   LastInst->removeFromParent();
2078 
2079   for (auto *Inst : Insts)
2080     Worklist.push(Inst);
2081   return LastInst;
2082 }
2083 
2084 /// Transform UB-safe variants of bitwise rotate to the funnel shift intrinsic.
2085 static Instruction *matchRotate(Instruction &Or) {
2086   // TODO: Can we reduce the code duplication between this and the related
2087   // rotate matching code under visitSelect and visitTrunc?
2088   unsigned Width = Or.getType()->getScalarSizeInBits();
2089   if (!isPowerOf2_32(Width))
2090     return nullptr;
2091 
2092   // First, find an or'd pair of opposite shifts with the same shifted operand:
2093   // or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)
2094   BinaryOperator *Or0, *Or1;
2095   if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
2096       !match(Or.getOperand(1), m_BinOp(Or1)))
2097     return nullptr;
2098 
2099   Value *ShVal, *ShAmt0, *ShAmt1;
2100   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
2101       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
2102     return nullptr;
2103 
2104   BinaryOperator::BinaryOps ShiftOpcode0 = Or0->getOpcode();
2105   BinaryOperator::BinaryOps ShiftOpcode1 = Or1->getOpcode();
2106   if (ShiftOpcode0 == ShiftOpcode1)
2107     return nullptr;
2108 
2109   // Match the shift amount operands for a rotate pattern. This always matches
2110   // a subtraction on the R operand.
2111   auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
2112     // The shift amount may be masked with negation:
2113     // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
2114     Value *X;
2115     unsigned Mask = Width - 1;
2116     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
2117         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
2118       return X;
2119 
2120     // Similar to above, but the shift amount may be extended after masking,
2121     // so return the extended value as the parameter for the intrinsic.
2122     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2123         match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
2124                        m_SpecificInt(Mask))))
2125       return L;
2126 
2127     return nullptr;
2128   };
2129 
2130   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
2131   bool SubIsOnLHS = false;
2132   if (!ShAmt) {
2133     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
2134     SubIsOnLHS = true;
2135   }
2136   if (!ShAmt)
2137     return nullptr;
2138 
2139   bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) ||
2140                 (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl);
2141   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2142   Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
2143   return IntrinsicInst::Create(F, { ShVal, ShVal, ShAmt });
2144 }
2145 
2146 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
2147 static Instruction *matchOrConcat(Instruction &Or,
2148                                   InstCombiner::BuilderTy &Builder) {
2149   assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
2150   Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
2151   Type *Ty = Or.getType();
2152 
2153   unsigned Width = Ty->getScalarSizeInBits();
2154   if ((Width & 1) != 0)
2155     return nullptr;
2156   unsigned HalfWidth = Width / 2;
2157 
2158   // Canonicalize zext (lower half) to LHS.
2159   if (!isa<ZExtInst>(Op0))
2160     std::swap(Op0, Op1);
2161 
2162   // Find lower/upper half.
2163   Value *LowerSrc, *ShlVal, *UpperSrc;
2164   const APInt *C;
2165   if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
2166       !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
2167       !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
2168     return nullptr;
2169   if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
2170       LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
2171     return nullptr;
2172 
2173   auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
2174     Value *NewLower = Builder.CreateZExt(Lo, Ty);
2175     Value *NewUpper = Builder.CreateZExt(Hi, Ty);
2176     NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
2177     Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
2178     Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty);
2179     return Builder.CreateCall(F, BinOp);
2180   };
2181 
2182   // BSWAP: Push the concat down, swapping the lower/upper sources.
2183   // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
2184   Value *LowerBSwap, *UpperBSwap;
2185   if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
2186       match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
2187     return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
2188 
2189   // BITREVERSE: Push the concat down, swapping the lower/upper sources.
2190   // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
2191   Value *LowerBRev, *UpperBRev;
2192   if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
2193       match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
2194     return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
2195 
2196   return nullptr;
2197 }
2198 
2199 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
2200 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
2201   unsigned NumElts = cast<VectorType>(C1->getType())->getNumElements();
2202   for (unsigned i = 0; i != NumElts; ++i) {
2203     Constant *EltC1 = C1->getAggregateElement(i);
2204     Constant *EltC2 = C2->getAggregateElement(i);
2205     if (!EltC1 || !EltC2)
2206       return false;
2207 
2208     // One element must be all ones, and the other must be all zeros.
2209     if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
2210           (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
2211       return false;
2212   }
2213   return true;
2214 }
2215 
2216 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
2217 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
2218 /// B, it can be used as the condition operand of a select instruction.
2219 Value *InstCombiner::getSelectCondition(Value *A, Value *B) {
2220   // Step 1: We may have peeked through bitcasts in the caller.
2221   // Exit immediately if we don't have (vector) integer types.
2222   Type *Ty = A->getType();
2223   if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
2224     return nullptr;
2225 
2226   // Step 2: We need 0 or all-1's bitmasks.
2227   if (ComputeNumSignBits(A) != Ty->getScalarSizeInBits())
2228     return nullptr;
2229 
2230   // Step 3: If B is the 'not' value of A, we have our answer.
2231   if (match(A, m_Not(m_Specific(B)))) {
2232     // If these are scalars or vectors of i1, A can be used directly.
2233     if (Ty->isIntOrIntVectorTy(1))
2234       return A;
2235     return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(Ty));
2236   }
2237 
2238   // If both operands are constants, see if the constants are inverse bitmasks.
2239   Constant *AConst, *BConst;
2240   if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
2241     if (AConst == ConstantExpr::getNot(BConst))
2242       return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
2243 
2244   // Look for more complex patterns. The 'not' op may be hidden behind various
2245   // casts. Look through sexts and bitcasts to find the booleans.
2246   Value *Cond;
2247   Value *NotB;
2248   if (match(A, m_SExt(m_Value(Cond))) &&
2249       Cond->getType()->isIntOrIntVectorTy(1) &&
2250       match(B, m_OneUse(m_Not(m_Value(NotB))))) {
2251     NotB = peekThroughBitcast(NotB, true);
2252     if (match(NotB, m_SExt(m_Specific(Cond))))
2253       return Cond;
2254   }
2255 
2256   // All scalar (and most vector) possibilities should be handled now.
2257   // Try more matches that only apply to non-splat constant vectors.
2258   if (!Ty->isVectorTy())
2259     return nullptr;
2260 
2261   // If both operands are xor'd with constants using the same sexted boolean
2262   // operand, see if the constants are inverse bitmasks.
2263   // TODO: Use ConstantExpr::getNot()?
2264   if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
2265       match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
2266       Cond->getType()->isIntOrIntVectorTy(1) &&
2267       areInverseVectorBitmasks(AConst, BConst)) {
2268     AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
2269     return Builder.CreateXor(Cond, AConst);
2270   }
2271   return nullptr;
2272 }
2273 
2274 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
2275 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
2276 Value *InstCombiner::matchSelectFromAndOr(Value *A, Value *C, Value *B,
2277                                           Value *D) {
2278   // The potential condition of the select may be bitcasted. In that case, look
2279   // through its bitcast and the corresponding bitcast of the 'not' condition.
2280   Type *OrigType = A->getType();
2281   A = peekThroughBitcast(A, true);
2282   B = peekThroughBitcast(B, true);
2283   if (Value *Cond = getSelectCondition(A, B)) {
2284     // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
2285     // The bitcasts will either all exist or all not exist. The builder will
2286     // not create unnecessary casts if the types already match.
2287     Value *BitcastC = Builder.CreateBitCast(C, A->getType());
2288     Value *BitcastD = Builder.CreateBitCast(D, A->getType());
2289     Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
2290     return Builder.CreateBitCast(Select, OrigType);
2291   }
2292 
2293   return nullptr;
2294 }
2295 
2296 /// Fold (icmp)|(icmp) if possible.
2297 Value *InstCombiner::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
2298                                    BinaryOperator &Or) {
2299   const SimplifyQuery Q = SQ.getWithInstruction(&Or);
2300 
2301   // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
2302   // if K1 and K2 are a one-bit mask.
2303   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, Or))
2304     return V;
2305 
2306   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2307 
2308   ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
2309   ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
2310 
2311   // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
2312   //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
2313   // The original condition actually refers to the following two ranges:
2314   // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
2315   // We can fold these two ranges if:
2316   // 1) C1 and C2 is unsigned greater than C3.
2317   // 2) The two ranges are separated.
2318   // 3) C1 ^ C2 is one-bit mask.
2319   // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
2320   // This implies all values in the two ranges differ by exactly one bit.
2321 
2322   if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) &&
2323       PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() &&
2324       LHSC->getType() == RHSC->getType() &&
2325       LHSC->getValue() == (RHSC->getValue())) {
2326 
2327     Value *LAdd = LHS->getOperand(0);
2328     Value *RAdd = RHS->getOperand(0);
2329 
2330     Value *LAddOpnd, *RAddOpnd;
2331     ConstantInt *LAddC, *RAddC;
2332     if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddC))) &&
2333         match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddC))) &&
2334         LAddC->getValue().ugt(LHSC->getValue()) &&
2335         RAddC->getValue().ugt(LHSC->getValue())) {
2336 
2337       APInt DiffC = LAddC->getValue() ^ RAddC->getValue();
2338       if (LAddOpnd == RAddOpnd && DiffC.isPowerOf2()) {
2339         ConstantInt *MaxAddC = nullptr;
2340         if (LAddC->getValue().ult(RAddC->getValue()))
2341           MaxAddC = RAddC;
2342         else
2343           MaxAddC = LAddC;
2344 
2345         APInt RRangeLow = -RAddC->getValue();
2346         APInt RRangeHigh = RRangeLow + LHSC->getValue();
2347         APInt LRangeLow = -LAddC->getValue();
2348         APInt LRangeHigh = LRangeLow + LHSC->getValue();
2349         APInt LowRangeDiff = RRangeLow ^ LRangeLow;
2350         APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
2351         APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
2352                                                    : RRangeLow - LRangeLow;
2353 
2354         if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
2355             RangeDiff.ugt(LHSC->getValue())) {
2356           Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC);
2357 
2358           Value *NewAnd = Builder.CreateAnd(LAddOpnd, MaskC);
2359           Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC);
2360           return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC);
2361         }
2362       }
2363     }
2364   }
2365 
2366   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
2367   if (predicatesFoldable(PredL, PredR)) {
2368     if (LHS->getOperand(0) == RHS->getOperand(1) &&
2369         LHS->getOperand(1) == RHS->getOperand(0))
2370       LHS->swapOperands();
2371     if (LHS->getOperand(0) == RHS->getOperand(0) &&
2372         LHS->getOperand(1) == RHS->getOperand(1)) {
2373       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2374       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
2375       bool IsSigned = LHS->isSigned() || RHS->isSigned();
2376       return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
2377     }
2378   }
2379 
2380   // handle (roughly):
2381   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
2382   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
2383     return V;
2384 
2385   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
2386   if (LHS->hasOneUse() || RHS->hasOneUse()) {
2387     // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
2388     // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
2389     Value *A = nullptr, *B = nullptr;
2390     if (PredL == ICmpInst::ICMP_EQ && LHSC && LHSC->isZero()) {
2391       B = LHS0;
2392       if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS->getOperand(1))
2393         A = RHS0;
2394       else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0)
2395         A = RHS->getOperand(1);
2396     }
2397     // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
2398     // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
2399     else if (PredR == ICmpInst::ICMP_EQ && RHSC && RHSC->isZero()) {
2400       B = RHS0;
2401       if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS->getOperand(1))
2402         A = LHS0;
2403       else if (PredL == ICmpInst::ICMP_UGT && LHS0 == RHS0)
2404         A = LHS->getOperand(1);
2405     }
2406     if (A && B)
2407       return Builder.CreateICmp(
2408           ICmpInst::ICMP_UGE,
2409           Builder.CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
2410   }
2411 
2412   if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, Or, Builder, Q))
2413     return V;
2414   if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, Or, Builder, Q))
2415     return V;
2416 
2417   // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
2418   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
2419     return V;
2420 
2421   // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
2422   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
2423     return V;
2424 
2425   if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder))
2426     return V;
2427 
2428   if (Value *V = foldIsPowerOf2(LHS, RHS, false /* JoinedByAnd */, Builder))
2429     return V;
2430 
2431   if (Value *X =
2432           foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/false, Q, Builder))
2433     return X;
2434   if (Value *X =
2435           foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/false, Q, Builder))
2436     return X;
2437 
2438   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
2439   if (!LHSC || !RHSC)
2440     return nullptr;
2441 
2442   if (LHSC == RHSC && PredL == PredR) {
2443     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
2444     if (PredL == ICmpInst::ICMP_NE && LHSC->isZero()) {
2445       Value *NewOr = Builder.CreateOr(LHS0, RHS0);
2446       return Builder.CreateICmp(PredL, NewOr, LHSC);
2447     }
2448   }
2449 
2450   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
2451   //   iff C2 + CA == C1.
2452   if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) {
2453     ConstantInt *AddC;
2454     if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC))))
2455       if (RHSC->getValue() + AddC->getValue() == LHSC->getValue())
2456         return Builder.CreateICmpULE(LHS0, LHSC);
2457   }
2458 
2459   // From here on, we only handle:
2460   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
2461   if (LHS0 != RHS0)
2462     return nullptr;
2463 
2464   // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
2465   if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
2466       PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
2467       PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
2468       PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
2469     return nullptr;
2470 
2471   // We can't fold (ugt x, C) | (sgt x, C2).
2472   if (!predicatesFoldable(PredL, PredR))
2473     return nullptr;
2474 
2475   // Ensure that the larger constant is on the RHS.
2476   bool ShouldSwap;
2477   if (CmpInst::isSigned(PredL) ||
2478       (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
2479     ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
2480   else
2481     ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
2482 
2483   if (ShouldSwap) {
2484     std::swap(LHS, RHS);
2485     std::swap(LHSC, RHSC);
2486     std::swap(PredL, PredR);
2487   }
2488 
2489   // At this point, we know we have two icmp instructions
2490   // comparing a value against two constants and or'ing the result
2491   // together.  Because of the above check, we know that we only have
2492   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
2493   // icmp folding check above), that the two constants are not
2494   // equal.
2495   assert(LHSC != RHSC && "Compares not folded above?");
2496 
2497   switch (PredL) {
2498   default:
2499     llvm_unreachable("Unknown integer condition code!");
2500   case ICmpInst::ICMP_EQ:
2501     switch (PredR) {
2502     default:
2503       llvm_unreachable("Unknown integer condition code!");
2504     case ICmpInst::ICMP_EQ:
2505       // Potential folds for this case should already be handled.
2506       break;
2507     case ICmpInst::ICMP_UGT:
2508       // (X == 0 || X u> C) -> (X-1) u>= C
2509       if (LHSC->isMinValue(false))
2510         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1,
2511                                false, false);
2512       // (X == 13 | X u> 14) -> no change
2513       break;
2514     case ICmpInst::ICMP_SGT:
2515       // (X == INT_MIN || X s> C) -> (X-(INT_MIN+1)) u>= C-INT_MIN
2516       if (LHSC->isMinValue(true))
2517         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1,
2518                                true, false);
2519       // (X == 13 | X s> 14) -> no change
2520       break;
2521     }
2522     break;
2523   case ICmpInst::ICMP_ULT:
2524     switch (PredR) {
2525     default:
2526       llvm_unreachable("Unknown integer condition code!");
2527     case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
2528       // (X u< C || X == UINT_MAX) => (X-C) u>= UINT_MAX-C
2529       if (RHSC->isMaxValue(false))
2530         return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(),
2531                                false, false);
2532       break;
2533     case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
2534       assert(!RHSC->isMaxValue(false) && "Missed icmp simplification");
2535       return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1,
2536                              false, false);
2537     }
2538     break;
2539   case ICmpInst::ICMP_SLT:
2540     switch (PredR) {
2541     default:
2542       llvm_unreachable("Unknown integer condition code!");
2543     case ICmpInst::ICMP_EQ:
2544       // (X s< C || X == INT_MAX) => (X-C) u>= INT_MAX-C
2545       if (RHSC->isMaxValue(true))
2546         return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(),
2547                                true, false);
2548       // (X s< 13 | X == 14) -> no change
2549       break;
2550     case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) u> 2
2551       assert(!RHSC->isMaxValue(true) && "Missed icmp simplification");
2552       return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true,
2553                              false);
2554     }
2555     break;
2556   }
2557   return nullptr;
2558 }
2559 
2560 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2561 // here. We should standardize that construct where it is needed or choose some
2562 // other way to ensure that commutated variants of patterns are not missed.
2563 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
2564   if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1),
2565                                 SQ.getWithInstruction(&I)))
2566     return replaceInstUsesWith(I, V);
2567 
2568   if (SimplifyAssociativeOrCommutative(I))
2569     return &I;
2570 
2571   if (Instruction *X = foldVectorBinop(I))
2572     return X;
2573 
2574   // See if we can simplify any instructions used by the instruction whose sole
2575   // purpose is to compute bits we don't care about.
2576   if (SimplifyDemandedInstructionBits(I))
2577     return &I;
2578 
2579   // Do this before using distributive laws to catch simple and/or/not patterns.
2580   if (Instruction *Xor = foldOrToXor(I, Builder))
2581     return Xor;
2582 
2583   // (A&B)|(A&C) -> A&(B|C) etc
2584   if (Value *V = SimplifyUsingDistributiveLaws(I))
2585     return replaceInstUsesWith(I, V);
2586 
2587   if (Value *V = SimplifyBSwap(I, Builder))
2588     return replaceInstUsesWith(I, V);
2589 
2590   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2591     return FoldedLogic;
2592 
2593   if (Instruction *BSwap = matchBSwap(I))
2594     return BSwap;
2595 
2596   if (Instruction *Rotate = matchRotate(I))
2597     return Rotate;
2598 
2599   if (Instruction *Concat = matchOrConcat(I, Builder))
2600     return replaceInstUsesWith(I, Concat);
2601 
2602   Value *X, *Y;
2603   const APInt *CV;
2604   if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
2605       !CV->isAllOnesValue() && MaskedValueIsZero(Y, *CV, 0, &I)) {
2606     // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
2607     // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
2608     Value *Or = Builder.CreateOr(X, Y);
2609     return BinaryOperator::CreateXor(Or, ConstantInt::get(I.getType(), *CV));
2610   }
2611 
2612   // (A & C)|(B & D)
2613   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2614   Value *A, *B, *C, *D;
2615   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
2616       match(Op1, m_And(m_Value(B), m_Value(D)))) {
2617     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
2618     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
2619     if (C1 && C2) {  // (A & C1)|(B & C2)
2620       Value *V1 = nullptr, *V2 = nullptr;
2621       if ((C1->getValue() & C2->getValue()).isNullValue()) {
2622         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2623         // iff (C1&C2) == 0 and (N&~C1) == 0
2624         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2625             ((V1 == B &&
2626               MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
2627              (V2 == B &&
2628               MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V)
2629           return BinaryOperator::CreateAnd(A,
2630                                 Builder.getInt(C1->getValue()|C2->getValue()));
2631         // Or commutes, try both ways.
2632         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2633             ((V1 == A &&
2634               MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
2635              (V2 == A &&
2636               MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V)
2637           return BinaryOperator::CreateAnd(B,
2638                                  Builder.getInt(C1->getValue()|C2->getValue()));
2639 
2640         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2641         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2642         ConstantInt *C3 = nullptr, *C4 = nullptr;
2643         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2644             (C3->getValue() & ~C1->getValue()).isNullValue() &&
2645             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2646             (C4->getValue() & ~C2->getValue()).isNullValue()) {
2647           V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2648           return BinaryOperator::CreateAnd(V2,
2649                                  Builder.getInt(C1->getValue()|C2->getValue()));
2650         }
2651       }
2652 
2653       if (C1->getValue() == ~C2->getValue()) {
2654         Value *X;
2655 
2656         // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2
2657         if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
2658           return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B);
2659         // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2
2660         if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
2661           return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A);
2662 
2663         // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2
2664         if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
2665           return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B);
2666         // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2
2667         if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
2668           return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A);
2669       }
2670     }
2671 
2672     // Don't try to form a select if it's unlikely that we'll get rid of at
2673     // least one of the operands. A select is generally more expensive than the
2674     // 'or' that it is replacing.
2675     if (Op0->hasOneUse() || Op1->hasOneUse()) {
2676       // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
2677       if (Value *V = matchSelectFromAndOr(A, C, B, D))
2678         return replaceInstUsesWith(I, V);
2679       if (Value *V = matchSelectFromAndOr(A, C, D, B))
2680         return replaceInstUsesWith(I, V);
2681       if (Value *V = matchSelectFromAndOr(C, A, B, D))
2682         return replaceInstUsesWith(I, V);
2683       if (Value *V = matchSelectFromAndOr(C, A, D, B))
2684         return replaceInstUsesWith(I, V);
2685       if (Value *V = matchSelectFromAndOr(B, D, A, C))
2686         return replaceInstUsesWith(I, V);
2687       if (Value *V = matchSelectFromAndOr(B, D, C, A))
2688         return replaceInstUsesWith(I, V);
2689       if (Value *V = matchSelectFromAndOr(D, B, A, C))
2690         return replaceInstUsesWith(I, V);
2691       if (Value *V = matchSelectFromAndOr(D, B, C, A))
2692         return replaceInstUsesWith(I, V);
2693     }
2694   }
2695 
2696   // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2697   if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2698     if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2699       return BinaryOperator::CreateOr(Op0, C);
2700 
2701   // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2702   if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2703     if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2704       return BinaryOperator::CreateOr(Op1, C);
2705 
2706   // ((B | C) & A) | B -> B | (A & C)
2707   if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
2708     return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
2709 
2710   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2711     return DeMorgan;
2712 
2713   // Canonicalize xor to the RHS.
2714   bool SwappedForXor = false;
2715   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2716     std::swap(Op0, Op1);
2717     SwappedForXor = true;
2718   }
2719 
2720   // A | ( A ^ B) -> A |  B
2721   // A | (~A ^ B) -> A | ~B
2722   // (A & B) | (A ^ B)
2723   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2724     if (Op0 == A || Op0 == B)
2725       return BinaryOperator::CreateOr(A, B);
2726 
2727     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2728         match(Op0, m_And(m_Specific(B), m_Specific(A))))
2729       return BinaryOperator::CreateOr(A, B);
2730 
2731     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2732       Value *Not = Builder.CreateNot(B, B->getName() + ".not");
2733       return BinaryOperator::CreateOr(Not, Op0);
2734     }
2735     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2736       Value *Not = Builder.CreateNot(A, A->getName() + ".not");
2737       return BinaryOperator::CreateOr(Not, Op0);
2738     }
2739   }
2740 
2741   // A | ~(A | B) -> A | ~B
2742   // A | ~(A ^ B) -> A | ~B
2743   if (match(Op1, m_Not(m_Value(A))))
2744     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2745       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2746           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2747                                B->getOpcode() == Instruction::Xor)) {
2748         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2749                                                  B->getOperand(0);
2750         Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
2751         return BinaryOperator::CreateOr(Not, Op0);
2752       }
2753 
2754   if (SwappedForXor)
2755     std::swap(Op0, Op1);
2756 
2757   {
2758     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2759     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2760     if (LHS && RHS)
2761       if (Value *Res = foldOrOfICmps(LHS, RHS, I))
2762         return replaceInstUsesWith(I, Res);
2763 
2764     // TODO: Make this recursive; it's a little tricky because an arbitrary
2765     // number of 'or' instructions might have to be created.
2766     Value *X, *Y;
2767     if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2768       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2769         if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2770           return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2771       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2772         if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2773           return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2774     }
2775     if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2776       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2777         if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2778           return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2779       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2780         if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2781           return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2782     }
2783   }
2784 
2785   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2786     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2787       if (Value *Res = foldLogicOfFCmps(LHS, RHS, false))
2788         return replaceInstUsesWith(I, Res);
2789 
2790   if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2791     return FoldedFCmps;
2792 
2793   if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
2794     return CastedOr;
2795 
2796   // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
2797   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2798       A->getType()->isIntOrIntVectorTy(1))
2799     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2800   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2801       A->getType()->isIntOrIntVectorTy(1))
2802     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2803 
2804   // Note: If we've gotten to the point of visiting the outer OR, then the
2805   // inner one couldn't be simplified.  If it was a constant, then it won't
2806   // be simplified by a later pass either, so we try swapping the inner/outer
2807   // ORs in the hopes that we'll be able to simplify it this way.
2808   // (X|C) | V --> (X|V) | C
2809   ConstantInt *CI;
2810   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2811       match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
2812     Value *Inner = Builder.CreateOr(A, Op1);
2813     Inner->takeName(Op0);
2814     return BinaryOperator::CreateOr(Inner, CI);
2815   }
2816 
2817   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2818   // Since this OR statement hasn't been optimized further yet, we hope
2819   // that this transformation will allow the new ORs to be optimized.
2820   {
2821     Value *X = nullptr, *Y = nullptr;
2822     if (Op0->hasOneUse() && Op1->hasOneUse() &&
2823         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2824         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2825       Value *orTrue = Builder.CreateOr(A, C);
2826       Value *orFalse = Builder.CreateOr(B, D);
2827       return SelectInst::Create(X, orTrue, orFalse);
2828     }
2829   }
2830 
2831   // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X)  --> X s> Y ? -1 : X.
2832   {
2833     Value *X, *Y;
2834     const APInt *ShAmt;
2835     Type *Ty = I.getType();
2836     if (match(&I, m_c_Or(m_OneUse(m_AShr(m_NSWSub(m_Value(Y), m_Value(X)),
2837                                          m_APInt(ShAmt))),
2838                          m_Deferred(X))) &&
2839         *ShAmt == Ty->getScalarSizeInBits() - 1) {
2840       Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
2841       return SelectInst::Create(NewICmpInst, ConstantInt::getAllOnesValue(Ty),
2842                                 X);
2843     }
2844   }
2845 
2846   if (Instruction *V =
2847           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2848     return V;
2849 
2850   CmpInst::Predicate Pred;
2851   Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
2852   // Check if the OR weakens the overflow condition for umul.with.overflow by
2853   // treating any non-zero result as overflow. In that case, we overflow if both
2854   // umul.with.overflow operands are != 0, as in that case the result can only
2855   // be 0, iff the multiplication overflows.
2856   if (match(&I,
2857             m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)),
2858                                 m_Value(Ov)),
2859                    m_CombineAnd(m_ICmp(Pred,
2860                                        m_CombineAnd(m_ExtractValue<0>(
2861                                                         m_Deferred(UMulWithOv)),
2862                                                     m_Value(Mul)),
2863                                        m_ZeroInt()),
2864                                 m_Value(MulIsNotZero)))) &&
2865       (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) &&
2866       Pred == CmpInst::ICMP_NE) {
2867     Value *A, *B;
2868     if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>(
2869                               m_Value(A), m_Value(B)))) {
2870       Value *NotNullA = Builder.CreateIsNotNull(A);
2871       Value *NotNullB = Builder.CreateIsNotNull(B);
2872       return BinaryOperator::CreateAnd(NotNullA, NotNullB);
2873     }
2874   }
2875 
2876   return nullptr;
2877 }
2878 
2879 /// A ^ B can be specified using other logic ops in a variety of patterns. We
2880 /// can fold these early and efficiently by morphing an existing instruction.
2881 static Instruction *foldXorToXor(BinaryOperator &I,
2882                                  InstCombiner::BuilderTy &Builder) {
2883   assert(I.getOpcode() == Instruction::Xor);
2884   Value *Op0 = I.getOperand(0);
2885   Value *Op1 = I.getOperand(1);
2886   Value *A, *B;
2887 
2888   // There are 4 commuted variants for each of the basic patterns.
2889 
2890   // (A & B) ^ (A | B) -> A ^ B
2891   // (A & B) ^ (B | A) -> A ^ B
2892   // (A | B) ^ (A & B) -> A ^ B
2893   // (A | B) ^ (B & A) -> A ^ B
2894   if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
2895                         m_c_Or(m_Deferred(A), m_Deferred(B)))))
2896     return BinaryOperator::CreateXor(A, B);
2897 
2898   // (A | ~B) ^ (~A | B) -> A ^ B
2899   // (~B | A) ^ (~A | B) -> A ^ B
2900   // (~A | B) ^ (A | ~B) -> A ^ B
2901   // (B | ~A) ^ (A | ~B) -> A ^ B
2902   if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
2903                       m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
2904     return BinaryOperator::CreateXor(A, B);
2905 
2906   // (A & ~B) ^ (~A & B) -> A ^ B
2907   // (~B & A) ^ (~A & B) -> A ^ B
2908   // (~A & B) ^ (A & ~B) -> A ^ B
2909   // (B & ~A) ^ (A & ~B) -> A ^ B
2910   if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
2911                       m_c_And(m_Not(m_Deferred(A)), m_Deferred(B)))))
2912     return BinaryOperator::CreateXor(A, B);
2913 
2914   // For the remaining cases we need to get rid of one of the operands.
2915   if (!Op0->hasOneUse() && !Op1->hasOneUse())
2916     return nullptr;
2917 
2918   // (A | B) ^ ~(A & B) -> ~(A ^ B)
2919   // (A | B) ^ ~(B & A) -> ~(A ^ B)
2920   // (A & B) ^ ~(A | B) -> ~(A ^ B)
2921   // (A & B) ^ ~(B | A) -> ~(A ^ B)
2922   // Complexity sorting ensures the not will be on the right side.
2923   if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
2924        match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
2925       (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2926        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
2927     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
2928 
2929   return nullptr;
2930 }
2931 
2932 Value *InstCombiner::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
2933                                     BinaryOperator &I) {
2934   assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
2935          I.getOperand(1) == RHS && "Should be 'xor' with these operands");
2936 
2937   if (predicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2938     if (LHS->getOperand(0) == RHS->getOperand(1) &&
2939         LHS->getOperand(1) == RHS->getOperand(0))
2940       LHS->swapOperands();
2941     if (LHS->getOperand(0) == RHS->getOperand(0) &&
2942         LHS->getOperand(1) == RHS->getOperand(1)) {
2943       // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2944       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2945       unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2946       bool IsSigned = LHS->isSigned() || RHS->isSigned();
2947       return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
2948     }
2949   }
2950 
2951   // TODO: This can be generalized to compares of non-signbits using
2952   // decomposeBitTestICmp(). It could be enhanced more by using (something like)
2953   // foldLogOpOfMaskedICmps().
2954   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2955   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
2956   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
2957   if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
2958       LHS0->getType() == RHS0->getType() &&
2959       LHS0->getType()->isIntOrIntVectorTy()) {
2960     // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
2961     // (X <  0) ^ (Y <  0) --> (X ^ Y) < 0
2962     if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2963          PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) ||
2964         (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2965          PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) {
2966       Value *Zero = ConstantInt::getNullValue(LHS0->getType());
2967       return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero);
2968     }
2969     // (X > -1) ^ (Y <  0) --> (X ^ Y) > -1
2970     // (X <  0) ^ (Y > -1) --> (X ^ Y) > -1
2971     if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2972          PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) ||
2973         (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2974          PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) {
2975       Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType());
2976       return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne);
2977     }
2978   }
2979 
2980   // Instead of trying to imitate the folds for and/or, decompose this 'xor'
2981   // into those logic ops. That is, try to turn this into an and-of-icmps
2982   // because we have many folds for that pattern.
2983   //
2984   // This is based on a truth table definition of xor:
2985   // X ^ Y --> (X | Y) & !(X & Y)
2986   if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
2987     // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
2988     // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
2989     if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
2990       // TODO: Independently handle cases where the 'and' side is a constant.
2991       ICmpInst *X = nullptr, *Y = nullptr;
2992       if (OrICmp == LHS && AndICmp == RHS) {
2993         // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS  --> X & !Y
2994         X = LHS;
2995         Y = RHS;
2996       }
2997       if (OrICmp == RHS && AndICmp == LHS) {
2998         // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS  --> !Y & X
2999         X = RHS;
3000         Y = LHS;
3001       }
3002       if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
3003         // Invert the predicate of 'Y', thus inverting its output.
3004         Y->setPredicate(Y->getInversePredicate());
3005         // So, are there other uses of Y?
3006         if (!Y->hasOneUse()) {
3007           // We need to adapt other uses of Y though. Get a value that matches
3008           // the original value of Y before inversion. While this increases
3009           // immediate instruction count, we have just ensured that all the
3010           // users are freely-invertible, so that 'not' *will* get folded away.
3011           BuilderTy::InsertPointGuard Guard(Builder);
3012           // Set insertion point to right after the Y.
3013           Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
3014           Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3015           // Replace all uses of Y (excluding the one in NotY!) with NotY.
3016           Worklist.pushUsersToWorkList(*Y);
3017           Y->replaceUsesWithIf(NotY,
3018                                [NotY](Use &U) { return U.getUser() != NotY; });
3019         }
3020         // All done.
3021         return Builder.CreateAnd(LHS, RHS);
3022       }
3023     }
3024   }
3025 
3026   return nullptr;
3027 }
3028 
3029 /// If we have a masked merge, in the canonical form of:
3030 /// (assuming that A only has one use.)
3031 ///   |        A  |  |B|
3032 ///   ((x ^ y) & M) ^ y
3033 ///    |  D  |
3034 /// * If M is inverted:
3035 ///      |  D  |
3036 ///     ((x ^ y) & ~M) ^ y
3037 ///   We can canonicalize by swapping the final xor operand
3038 ///   to eliminate the 'not' of the mask.
3039 ///     ((x ^ y) & M) ^ x
3040 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
3041 ///   because that shortens the dependency chain and improves analysis:
3042 ///     (x & M) | (y & ~M)
3043 static Instruction *visitMaskedMerge(BinaryOperator &I,
3044                                      InstCombiner::BuilderTy &Builder) {
3045   Value *B, *X, *D;
3046   Value *M;
3047   if (!match(&I, m_c_Xor(m_Value(B),
3048                          m_OneUse(m_c_And(
3049                              m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
3050                                           m_Value(D)),
3051                              m_Value(M))))))
3052     return nullptr;
3053 
3054   Value *NotM;
3055   if (match(M, m_Not(m_Value(NotM)))) {
3056     // De-invert the mask and swap the value in B part.
3057     Value *NewA = Builder.CreateAnd(D, NotM);
3058     return BinaryOperator::CreateXor(NewA, X);
3059   }
3060 
3061   Constant *C;
3062   if (D->hasOneUse() && match(M, m_Constant(C))) {
3063     // Propagating undef is unsafe. Clamp undef elements to -1.
3064     Type *EltTy = C->getType()->getScalarType();
3065     C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3066     // Unfold.
3067     Value *LHS = Builder.CreateAnd(X, C);
3068     Value *NotC = Builder.CreateNot(C);
3069     Value *RHS = Builder.CreateAnd(B, NotC);
3070     return BinaryOperator::CreateOr(LHS, RHS);
3071   }
3072 
3073   return nullptr;
3074 }
3075 
3076 // Transform
3077 //   ~(x ^ y)
3078 // into:
3079 //   (~x) ^ y
3080 // or into
3081 //   x ^ (~y)
3082 static Instruction *sinkNotIntoXor(BinaryOperator &I,
3083                                    InstCombiner::BuilderTy &Builder) {
3084   Value *X, *Y;
3085   // FIXME: one-use check is not needed in general, but currently we are unable
3086   // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
3087   if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
3088     return nullptr;
3089 
3090   // We only want to do the transform if it is free to do.
3091   if (isFreeToInvert(X, X->hasOneUse())) {
3092     // Ok, good.
3093   } else if (isFreeToInvert(Y, Y->hasOneUse())) {
3094     std::swap(X, Y);
3095   } else
3096     return nullptr;
3097 
3098   Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
3099   return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
3100 }
3101 
3102 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
3103 // here. We should standardize that construct where it is needed or choose some
3104 // other way to ensure that commutated variants of patterns are not missed.
3105 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
3106   if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1),
3107                                  SQ.getWithInstruction(&I)))
3108     return replaceInstUsesWith(I, V);
3109 
3110   if (SimplifyAssociativeOrCommutative(I))
3111     return &I;
3112 
3113   if (Instruction *X = foldVectorBinop(I))
3114     return X;
3115 
3116   if (Instruction *NewXor = foldXorToXor(I, Builder))
3117     return NewXor;
3118 
3119   // (A&B)^(A&C) -> A&(B^C) etc
3120   if (Value *V = SimplifyUsingDistributiveLaws(I))
3121     return replaceInstUsesWith(I, V);
3122 
3123   // See if we can simplify any instructions used by the instruction whose sole
3124   // purpose is to compute bits we don't care about.
3125   if (SimplifyDemandedInstructionBits(I))
3126     return &I;
3127 
3128   if (Value *V = SimplifyBSwap(I, Builder))
3129     return replaceInstUsesWith(I, V);
3130 
3131   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3132 
3133   // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
3134   // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
3135   // calls in there are unnecessary as SimplifyDemandedInstructionBits should
3136   // have already taken care of those cases.
3137   Value *M;
3138   if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
3139                         m_c_And(m_Deferred(M), m_Value()))))
3140     return BinaryOperator::CreateOr(Op0, Op1);
3141 
3142   // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
3143   Value *X, *Y;
3144 
3145   // We must eliminate the and/or (one-use) for these transforms to not increase
3146   // the instruction count.
3147   // ~(~X & Y) --> (X | ~Y)
3148   // ~(Y & ~X) --> (X | ~Y)
3149   if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) {
3150     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3151     return BinaryOperator::CreateOr(X, NotY);
3152   }
3153   // ~(~X | Y) --> (X & ~Y)
3154   // ~(Y | ~X) --> (X & ~Y)
3155   if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) {
3156     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3157     return BinaryOperator::CreateAnd(X, NotY);
3158   }
3159 
3160   if (Instruction *Xor = visitMaskedMerge(I, Builder))
3161     return Xor;
3162 
3163   // Is this a 'not' (~) fed by a binary operator?
3164   BinaryOperator *NotVal;
3165   if (match(&I, m_Not(m_BinOp(NotVal)))) {
3166     if (NotVal->getOpcode() == Instruction::And ||
3167         NotVal->getOpcode() == Instruction::Or) {
3168       // Apply DeMorgan's Law when inverts are free:
3169       // ~(X & Y) --> (~X | ~Y)
3170       // ~(X | Y) --> (~X & ~Y)
3171       if (isFreeToInvert(NotVal->getOperand(0),
3172                          NotVal->getOperand(0)->hasOneUse()) &&
3173           isFreeToInvert(NotVal->getOperand(1),
3174                          NotVal->getOperand(1)->hasOneUse())) {
3175         Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
3176         Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
3177         if (NotVal->getOpcode() == Instruction::And)
3178           return BinaryOperator::CreateOr(NotX, NotY);
3179         return BinaryOperator::CreateAnd(NotX, NotY);
3180       }
3181     }
3182 
3183     // ~(X - Y) --> ~X + Y
3184     if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
3185       if (isa<Constant>(X) || NotVal->hasOneUse())
3186         return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
3187 
3188     // ~(~X >>s Y) --> (X >>s Y)
3189     if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
3190       return BinaryOperator::CreateAShr(X, Y);
3191 
3192     // If we are inverting a right-shifted constant, we may be able to eliminate
3193     // the 'not' by inverting the constant and using the opposite shift type.
3194     // Canonicalization rules ensure that only a negative constant uses 'ashr',
3195     // but we must check that in case that transform has not fired yet.
3196 
3197     // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
3198     Constant *C;
3199     if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
3200         match(C, m_Negative())) {
3201       // We matched a negative constant, so propagating undef is unsafe.
3202       // Clamp undef elements to -1.
3203       Type *EltTy = C->getType()->getScalarType();
3204       C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3205       return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
3206     }
3207 
3208     // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
3209     if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
3210         match(C, m_NonNegative())) {
3211       // We matched a non-negative constant, so propagating undef is unsafe.
3212       // Clamp undef elements to 0.
3213       Type *EltTy = C->getType()->getScalarType();
3214       C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy));
3215       return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
3216     }
3217 
3218     // ~(X + C) --> -(C + 1) - X
3219     if (match(Op0, m_Add(m_Value(X), m_Constant(C))))
3220       return BinaryOperator::CreateSub(ConstantExpr::getNeg(AddOne(C)), X);
3221   }
3222 
3223   // Use DeMorgan and reassociation to eliminate a 'not' op.
3224   Constant *C1;
3225   if (match(Op1, m_Constant(C1))) {
3226     Constant *C2;
3227     if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
3228       // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
3229       Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
3230       return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
3231     }
3232     if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
3233       // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
3234       Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
3235       return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
3236     }
3237   }
3238 
3239   // not (cmp A, B) = !cmp A, B
3240   CmpInst::Predicate Pred;
3241   if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) {
3242     cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred));
3243     return replaceInstUsesWith(I, Op0);
3244   }
3245 
3246   {
3247     const APInt *RHSC;
3248     if (match(Op1, m_APInt(RHSC))) {
3249       Value *X;
3250       const APInt *C;
3251       if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X)))) {
3252         // (C - X) ^ signmask -> (C + signmask - X)
3253         Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
3254         return BinaryOperator::CreateSub(NewC, X);
3255       }
3256       if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C)))) {
3257         // (X + C) ^ signmask -> (X + C + signmask)
3258         Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
3259         return BinaryOperator::CreateAdd(X, NewC);
3260       }
3261 
3262       // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0
3263       if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
3264           MaskedValueIsZero(X, *C, 0, &I)) {
3265         Constant *NewC = ConstantInt::get(I.getType(), *C ^ *RHSC);
3266         return BinaryOperator::CreateXor(X, NewC);
3267       }
3268     }
3269   }
3270 
3271   if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) {
3272     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
3273       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
3274         if (Op0I->getOpcode() == Instruction::LShr) {
3275           // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
3276           // E1 = "X ^ C1"
3277           BinaryOperator *E1;
3278           ConstantInt *C1;
3279           if (Op0I->hasOneUse() &&
3280               (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
3281               E1->getOpcode() == Instruction::Xor &&
3282               (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
3283             // fold (C1 >> C2) ^ C3
3284             ConstantInt *C2 = Op0CI, *C3 = RHSC;
3285             APInt FoldConst = C1->getValue().lshr(C2->getValue());
3286             FoldConst ^= C3->getValue();
3287             // Prepare the two operands.
3288             Value *Opnd0 = Builder.CreateLShr(E1->getOperand(0), C2);
3289             Opnd0->takeName(Op0I);
3290             cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
3291             Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
3292 
3293             return BinaryOperator::CreateXor(Opnd0, FoldVal);
3294           }
3295         }
3296       }
3297     }
3298   }
3299 
3300   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
3301     return FoldedLogic;
3302 
3303   // Y ^ (X | Y) --> X & ~Y
3304   // Y ^ (Y | X) --> X & ~Y
3305   if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
3306     return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
3307   // (X | Y) ^ Y --> X & ~Y
3308   // (Y | X) ^ Y --> X & ~Y
3309   if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
3310     return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
3311 
3312   // Y ^ (X & Y) --> ~X & Y
3313   // Y ^ (Y & X) --> ~X & Y
3314   if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
3315     return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
3316   // (X & Y) ^ Y --> ~X & Y
3317   // (Y & X) ^ Y --> ~X & Y
3318   // Canonical form is (X & C) ^ C; don't touch that.
3319   // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
3320   //       be fixed to prefer that (otherwise we get infinite looping).
3321   if (!match(Op1, m_Constant()) &&
3322       match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
3323     return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
3324 
3325   Value *A, *B, *C;
3326   // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
3327   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
3328                         m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
3329       return BinaryOperator::CreateXor(
3330           Builder.CreateAnd(Builder.CreateNot(A), C), B);
3331 
3332   // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
3333   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
3334                         m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
3335       return BinaryOperator::CreateXor(
3336           Builder.CreateAnd(Builder.CreateNot(B), C), A);
3337 
3338   // (A & B) ^ (A ^ B) -> (A | B)
3339   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
3340       match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
3341     return BinaryOperator::CreateOr(A, B);
3342   // (A ^ B) ^ (A & B) -> (A | B)
3343   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
3344       match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
3345     return BinaryOperator::CreateOr(A, B);
3346 
3347   // (A & ~B) ^ ~A -> ~(A & B)
3348   // (~B & A) ^ ~A -> ~(A & B)
3349   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
3350       match(Op1, m_Not(m_Specific(A))))
3351     return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
3352 
3353   if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
3354     if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
3355       if (Value *V = foldXorOfICmps(LHS, RHS, I))
3356         return replaceInstUsesWith(I, V);
3357 
3358   if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
3359     return CastedXor;
3360 
3361   // Canonicalize a shifty way to code absolute value to the common pattern.
3362   // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
3363   // We're relying on the fact that we only do this transform when the shift has
3364   // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
3365   // instructions).
3366   if (Op0->hasNUses(2))
3367     std::swap(Op0, Op1);
3368 
3369   const APInt *ShAmt;
3370   Type *Ty = I.getType();
3371   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
3372       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
3373       match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
3374     // B = ashr i32 A, 31 ; smear the sign bit
3375     // xor (add A, B), B  ; add -1 and flip bits if negative
3376     // --> (A < 0) ? -A : A
3377     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
3378     // Copy the nuw/nsw flags from the add to the negate.
3379     auto *Add = cast<BinaryOperator>(Op0);
3380     Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
3381                                    Add->hasNoSignedWrap());
3382     return SelectInst::Create(Cmp, Neg, A);
3383   }
3384 
3385   // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
3386   //
3387   //   %notx = xor i32 %x, -1
3388   //   %cmp1 = icmp sgt i32 %notx, %y
3389   //   %smax = select i1 %cmp1, i32 %notx, i32 %y
3390   //   %res = xor i32 %smax, -1
3391   // =>
3392   //   %noty = xor i32 %y, -1
3393   //   %cmp2 = icmp slt %x, %noty
3394   //   %res = select i1 %cmp2, i32 %x, i32 %noty
3395   //
3396   // Same is applicable for smin/umax/umin.
3397   if (match(Op1, m_AllOnes()) && Op0->hasOneUse()) {
3398     Value *LHS, *RHS;
3399     SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor;
3400     if (SelectPatternResult::isMinOrMax(SPF)) {
3401       // It's possible we get here before the not has been simplified, so make
3402       // sure the input to the not isn't freely invertible.
3403       if (match(LHS, m_Not(m_Value(X))) && !isFreeToInvert(X, X->hasOneUse())) {
3404         Value *NotY = Builder.CreateNot(RHS);
3405         return SelectInst::Create(
3406             Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY);
3407       }
3408 
3409       // It's possible we get here before the not has been simplified, so make
3410       // sure the input to the not isn't freely invertible.
3411       if (match(RHS, m_Not(m_Value(Y))) && !isFreeToInvert(Y, Y->hasOneUse())) {
3412         Value *NotX = Builder.CreateNot(LHS);
3413         return SelectInst::Create(
3414             Builder.CreateICmp(getInverseMinMaxPred(SPF), NotX, Y), NotX, Y);
3415       }
3416 
3417       // If both sides are freely invertible, then we can get rid of the xor
3418       // completely.
3419       if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
3420           isFreeToInvert(RHS, !RHS->hasNUsesOrMore(3))) {
3421         Value *NotLHS = Builder.CreateNot(LHS);
3422         Value *NotRHS = Builder.CreateNot(RHS);
3423         return SelectInst::Create(
3424             Builder.CreateICmp(getInverseMinMaxPred(SPF), NotLHS, NotRHS),
3425             NotLHS, NotRHS);
3426       }
3427     }
3428 
3429     // Pull 'not' into operands of select if both operands are one-use compares.
3430     // Inverting the predicates eliminates the 'not' operation.
3431     // Example:
3432     //     not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
3433     //     select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
3434     // TODO: Canonicalize by hoisting 'not' into an arm of the select if only
3435     //       1 select operand is a cmp?
3436     if (auto *Sel = dyn_cast<SelectInst>(Op0)) {
3437       auto *CmpT = dyn_cast<CmpInst>(Sel->getTrueValue());
3438       auto *CmpF = dyn_cast<CmpInst>(Sel->getFalseValue());
3439       if (CmpT && CmpF && CmpT->hasOneUse() && CmpF->hasOneUse()) {
3440         CmpT->setPredicate(CmpT->getInversePredicate());
3441         CmpF->setPredicate(CmpF->getInversePredicate());
3442         return replaceInstUsesWith(I, Sel);
3443       }
3444     }
3445   }
3446 
3447   if (Instruction *NewXor = sinkNotIntoXor(I, Builder))
3448     return NewXor;
3449 
3450   return nullptr;
3451 }
3452