1 //===- InstCombineAndOrXor.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitAnd, visitOr, and visitXor functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/CmpInstAnalysis.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/IR/ConstantRange.h" 17 #include "llvm/IR/Intrinsics.h" 18 #include "llvm/IR/PatternMatch.h" 19 #include "llvm/Transforms/InstCombine/InstCombiner.h" 20 #include "llvm/Transforms/Utils/Local.h" 21 22 using namespace llvm; 23 using namespace PatternMatch; 24 25 #define DEBUG_TYPE "instcombine" 26 27 /// This is the complement of getICmpCode, which turns an opcode and two 28 /// operands into either a constant true or false, or a brand new ICmp 29 /// instruction. The sign is passed in to determine which kind of predicate to 30 /// use in the new icmp instruction. 31 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS, 32 InstCombiner::BuilderTy &Builder) { 33 ICmpInst::Predicate NewPred; 34 if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred)) 35 return TorF; 36 return Builder.CreateICmp(NewPred, LHS, RHS); 37 } 38 39 /// This is the complement of getFCmpCode, which turns an opcode and two 40 /// operands into either a FCmp instruction, or a true/false constant. 41 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS, 42 InstCombiner::BuilderTy &Builder) { 43 FCmpInst::Predicate NewPred; 44 if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred)) 45 return TorF; 46 return Builder.CreateFCmp(NewPred, LHS, RHS); 47 } 48 49 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise 50 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates 51 /// whether to treat V, Lo, and Hi as signed or not. 52 Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo, 53 const APInt &Hi, bool isSigned, 54 bool Inside) { 55 assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) && 56 "Lo is not < Hi in range emission code!"); 57 58 Type *Ty = V->getType(); 59 60 // V >= Min && V < Hi --> V < Hi 61 // V < Min || V >= Hi --> V >= Hi 62 ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 63 if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) { 64 Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred; 65 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi)); 66 } 67 68 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo 69 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo 70 Value *VMinusLo = 71 Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off"); 72 Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo); 73 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo); 74 } 75 76 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns 77 /// that can be simplified. 78 /// One of A and B is considered the mask. The other is the value. This is 79 /// described as the "AMask" or "BMask" part of the enum. If the enum contains 80 /// only "Mask", then both A and B can be considered masks. If A is the mask, 81 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0. 82 /// If both A and C are constants, this proof is also easy. 83 /// For the following explanations, we assume that A is the mask. 84 /// 85 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all 86 /// bits of A are set in B. 87 /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes 88 /// 89 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all 90 /// bits of A are cleared in B. 91 /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes 92 /// 93 /// "Mixed" declares that (A & B) == C and C might or might not contain any 94 /// number of one bits and zero bits. 95 /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed 96 /// 97 /// "Not" means that in above descriptions "==" should be replaced by "!=". 98 /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes 99 /// 100 /// If the mask A contains a single bit, then the following is equivalent: 101 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0) 102 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0) 103 enum MaskedICmpType { 104 AMask_AllOnes = 1, 105 AMask_NotAllOnes = 2, 106 BMask_AllOnes = 4, 107 BMask_NotAllOnes = 8, 108 Mask_AllZeros = 16, 109 Mask_NotAllZeros = 32, 110 AMask_Mixed = 64, 111 AMask_NotMixed = 128, 112 BMask_Mixed = 256, 113 BMask_NotMixed = 512 114 }; 115 116 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) 117 /// satisfies. 118 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, 119 ICmpInst::Predicate Pred) { 120 const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr; 121 match(A, m_APInt(ConstA)); 122 match(B, m_APInt(ConstB)); 123 match(C, m_APInt(ConstC)); 124 bool IsEq = (Pred == ICmpInst::ICMP_EQ); 125 bool IsAPow2 = ConstA && ConstA->isPowerOf2(); 126 bool IsBPow2 = ConstB && ConstB->isPowerOf2(); 127 unsigned MaskVal = 0; 128 if (ConstC && ConstC->isZero()) { 129 // if C is zero, then both A and B qualify as mask 130 MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed) 131 : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed)); 132 if (IsAPow2) 133 MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed) 134 : (AMask_AllOnes | AMask_Mixed)); 135 if (IsBPow2) 136 MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed) 137 : (BMask_AllOnes | BMask_Mixed)); 138 return MaskVal; 139 } 140 141 if (A == C) { 142 MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed) 143 : (AMask_NotAllOnes | AMask_NotMixed)); 144 if (IsAPow2) 145 MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed) 146 : (Mask_AllZeros | AMask_Mixed)); 147 } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) { 148 MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed); 149 } 150 151 if (B == C) { 152 MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed) 153 : (BMask_NotAllOnes | BMask_NotMixed)); 154 if (IsBPow2) 155 MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed) 156 : (Mask_AllZeros | BMask_Mixed)); 157 } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) { 158 MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed); 159 } 160 161 return MaskVal; 162 } 163 164 /// Convert an analysis of a masked ICmp into its equivalent if all boolean 165 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=) 166 /// is adjacent to the corresponding normal flag (recording ==), this just 167 /// involves swapping those bits over. 168 static unsigned conjugateICmpMask(unsigned Mask) { 169 unsigned NewMask; 170 NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros | 171 AMask_Mixed | BMask_Mixed)) 172 << 1; 173 174 NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros | 175 AMask_NotMixed | BMask_NotMixed)) 176 >> 1; 177 178 return NewMask; 179 } 180 181 // Adapts the external decomposeBitTestICmp for local use. 182 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred, 183 Value *&X, Value *&Y, Value *&Z) { 184 APInt Mask; 185 if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask)) 186 return false; 187 188 Y = ConstantInt::get(X->getType(), Mask); 189 Z = ConstantInt::get(X->getType(), 0); 190 return true; 191 } 192 193 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E). 194 /// Return the pattern classes (from MaskedICmpType) for the left hand side and 195 /// the right hand side as a pair. 196 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL 197 /// and PredR are their predicates, respectively. 198 static std::optional<std::pair<unsigned, unsigned>> getMaskedTypeForICmpPair( 199 Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, ICmpInst *LHS, 200 ICmpInst *RHS, ICmpInst::Predicate &PredL, ICmpInst::Predicate &PredR) { 201 // Don't allow pointers. Splat vectors are fine. 202 if (!LHS->getOperand(0)->getType()->isIntOrIntVectorTy() || 203 !RHS->getOperand(0)->getType()->isIntOrIntVectorTy()) 204 return std::nullopt; 205 206 // Here comes the tricky part: 207 // LHS might be of the form L11 & L12 == X, X == L21 & L22, 208 // and L11 & L12 == L21 & L22. The same goes for RHS. 209 // Now we must find those components L** and R**, that are equal, so 210 // that we can extract the parameters A, B, C, D, and E for the canonical 211 // above. 212 Value *L1 = LHS->getOperand(0); 213 Value *L2 = LHS->getOperand(1); 214 Value *L11, *L12, *L21, *L22; 215 // Check whether the icmp can be decomposed into a bit test. 216 if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) { 217 L21 = L22 = L1 = nullptr; 218 } else { 219 // Look for ANDs in the LHS icmp. 220 if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) { 221 // Any icmp can be viewed as being trivially masked; if it allows us to 222 // remove one, it's worth it. 223 L11 = L1; 224 L12 = Constant::getAllOnesValue(L1->getType()); 225 } 226 227 if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) { 228 L21 = L2; 229 L22 = Constant::getAllOnesValue(L2->getType()); 230 } 231 } 232 233 // Bail if LHS was a icmp that can't be decomposed into an equality. 234 if (!ICmpInst::isEquality(PredL)) 235 return std::nullopt; 236 237 Value *R1 = RHS->getOperand(0); 238 Value *R2 = RHS->getOperand(1); 239 Value *R11, *R12; 240 bool Ok = false; 241 if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) { 242 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 243 A = R11; 244 D = R12; 245 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 246 A = R12; 247 D = R11; 248 } else { 249 return std::nullopt; 250 } 251 E = R2; 252 R1 = nullptr; 253 Ok = true; 254 } else { 255 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) { 256 // As before, model no mask as a trivial mask if it'll let us do an 257 // optimization. 258 R11 = R1; 259 R12 = Constant::getAllOnesValue(R1->getType()); 260 } 261 262 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 263 A = R11; 264 D = R12; 265 E = R2; 266 Ok = true; 267 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 268 A = R12; 269 D = R11; 270 E = R2; 271 Ok = true; 272 } 273 } 274 275 // Bail if RHS was a icmp that can't be decomposed into an equality. 276 if (!ICmpInst::isEquality(PredR)) 277 return std::nullopt; 278 279 // Look for ANDs on the right side of the RHS icmp. 280 if (!Ok) { 281 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) { 282 R11 = R2; 283 R12 = Constant::getAllOnesValue(R2->getType()); 284 } 285 286 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 287 A = R11; 288 D = R12; 289 E = R1; 290 Ok = true; 291 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 292 A = R12; 293 D = R11; 294 E = R1; 295 Ok = true; 296 } else { 297 return std::nullopt; 298 } 299 300 assert(Ok && "Failed to find AND on the right side of the RHS icmp."); 301 } 302 303 if (L11 == A) { 304 B = L12; 305 C = L2; 306 } else if (L12 == A) { 307 B = L11; 308 C = L2; 309 } else if (L21 == A) { 310 B = L22; 311 C = L1; 312 } else if (L22 == A) { 313 B = L21; 314 C = L1; 315 } 316 317 unsigned LeftType = getMaskedICmpType(A, B, C, PredL); 318 unsigned RightType = getMaskedICmpType(A, D, E, PredR); 319 return std::optional<std::pair<unsigned, unsigned>>( 320 std::make_pair(LeftType, RightType)); 321 } 322 323 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single 324 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros 325 /// and the right hand side is of type BMask_Mixed. For example, 326 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8). 327 /// Also used for logical and/or, must be poison safe. 328 static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 329 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C, 330 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, 331 InstCombiner::BuilderTy &Builder) { 332 // We are given the canonical form: 333 // (icmp ne (A & B), 0) & (icmp eq (A & D), E). 334 // where D & E == E. 335 // 336 // If IsAnd is false, we get it in negated form: 337 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) -> 338 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)). 339 // 340 // We currently handle the case of B, C, D, E are constant. 341 // 342 const APInt *BCst, *CCst, *DCst, *OrigECst; 343 if (!match(B, m_APInt(BCst)) || !match(C, m_APInt(CCst)) || 344 !match(D, m_APInt(DCst)) || !match(E, m_APInt(OrigECst))) 345 return nullptr; 346 347 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 348 349 // Update E to the canonical form when D is a power of two and RHS is 350 // canonicalized as, 351 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or 352 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0). 353 APInt ECst = *OrigECst; 354 if (PredR != NewCC) 355 ECst ^= *DCst; 356 357 // If B or D is zero, skip because if LHS or RHS can be trivially folded by 358 // other folding rules and this pattern won't apply any more. 359 if (*BCst == 0 || *DCst == 0) 360 return nullptr; 361 362 // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't 363 // deduce anything from it. 364 // For example, 365 // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding. 366 if ((*BCst & *DCst) == 0) 367 return nullptr; 368 369 // If the following two conditions are met: 370 // 371 // 1. mask B covers only a single bit that's not covered by mask D, that is, 372 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of 373 // B and D has only one bit set) and, 374 // 375 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other 376 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0 377 // 378 // then that single bit in B must be one and thus the whole expression can be 379 // folded to 380 // (A & (B | D)) == (B & (B ^ D)) | E. 381 // 382 // For example, 383 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9) 384 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8) 385 if ((((*BCst & *DCst) & ECst) == 0) && 386 (*BCst & (*BCst ^ *DCst)).isPowerOf2()) { 387 APInt BorD = *BCst | *DCst; 388 APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst; 389 Value *NewMask = ConstantInt::get(A->getType(), BorD); 390 Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE); 391 Value *NewAnd = Builder.CreateAnd(A, NewMask); 392 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue); 393 } 394 395 auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) { 396 return (*C1 & *C2) == *C1; 397 }; 398 auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) { 399 return (*C1 & *C2) == *C2; 400 }; 401 402 // In the following, we consider only the cases where B is a superset of D, B 403 // is a subset of D, or B == D because otherwise there's at least one bit 404 // covered by B but not D, in which case we can't deduce much from it, so 405 // no folding (aside from the single must-be-one bit case right above.) 406 // For example, 407 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding. 408 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst)) 409 return nullptr; 410 411 // At this point, either B is a superset of D, B is a subset of D or B == D. 412 413 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict 414 // and the whole expression becomes false (or true if negated), otherwise, no 415 // folding. 416 // For example, 417 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false. 418 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding. 419 if (ECst.isZero()) { 420 if (IsSubSetOrEqual(BCst, DCst)) 421 return ConstantInt::get(LHS->getType(), !IsAnd); 422 return nullptr; 423 } 424 425 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B == 426 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is 427 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes 428 // RHS. For example, 429 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 430 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 431 if (IsSuperSetOrEqual(BCst, DCst)) 432 return RHS; 433 // Otherwise, B is a subset of D. If B and E have a common bit set, 434 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example. 435 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 436 assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code"); 437 if ((*BCst & ECst) != 0) 438 return RHS; 439 // Otherwise, LHS and RHS contradict and the whole expression becomes false 440 // (or true if negated.) For example, 441 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false. 442 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false. 443 return ConstantInt::get(LHS->getType(), !IsAnd); 444 } 445 446 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single 447 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side 448 /// aren't of the common mask pattern type. 449 /// Also used for logical and/or, must be poison safe. 450 static Value *foldLogOpOfMaskedICmpsAsymmetric( 451 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C, 452 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, 453 unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) { 454 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 455 "Expected equality predicates for masked type of icmps."); 456 // Handle Mask_NotAllZeros-BMask_Mixed cases. 457 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or 458 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E) 459 // which gets swapped to 460 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C). 461 if (!IsAnd) { 462 LHSMask = conjugateICmpMask(LHSMask); 463 RHSMask = conjugateICmpMask(RHSMask); 464 } 465 if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) { 466 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 467 LHS, RHS, IsAnd, A, B, C, D, E, 468 PredL, PredR, Builder)) { 469 return V; 470 } 471 } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) { 472 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 473 RHS, LHS, IsAnd, A, D, E, B, C, 474 PredR, PredL, Builder)) { 475 return V; 476 } 477 } 478 return nullptr; 479 } 480 481 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) 482 /// into a single (icmp(A & X) ==/!= Y). 483 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 484 bool IsLogical, 485 InstCombiner::BuilderTy &Builder) { 486 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; 487 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 488 std::optional<std::pair<unsigned, unsigned>> MaskPair = 489 getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR); 490 if (!MaskPair) 491 return nullptr; 492 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 493 "Expected equality predicates for masked type of icmps."); 494 unsigned LHSMask = MaskPair->first; 495 unsigned RHSMask = MaskPair->second; 496 unsigned Mask = LHSMask & RHSMask; 497 if (Mask == 0) { 498 // Even if the two sides don't share a common pattern, check if folding can 499 // still happen. 500 if (Value *V = foldLogOpOfMaskedICmpsAsymmetric( 501 LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask, 502 Builder)) 503 return V; 504 return nullptr; 505 } 506 507 // In full generality: 508 // (icmp (A & B) Op C) | (icmp (A & D) Op E) 509 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] 510 // 511 // If the latter can be converted into (icmp (A & X) Op Y) then the former is 512 // equivalent to (icmp (A & X) !Op Y). 513 // 514 // Therefore, we can pretend for the rest of this function that we're dealing 515 // with the conjunction, provided we flip the sense of any comparisons (both 516 // input and output). 517 518 // In most cases we're going to produce an EQ for the "&&" case. 519 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 520 if (!IsAnd) { 521 // Convert the masking analysis into its equivalent with negated 522 // comparisons. 523 Mask = conjugateICmpMask(Mask); 524 } 525 526 if (Mask & Mask_AllZeros) { 527 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) 528 // -> (icmp eq (A & (B|D)), 0) 529 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D)) 530 return nullptr; // TODO: Use freeze? 531 Value *NewOr = Builder.CreateOr(B, D); 532 Value *NewAnd = Builder.CreateAnd(A, NewOr); 533 // We can't use C as zero because we might actually handle 534 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 535 // with B and D, having a single bit set. 536 Value *Zero = Constant::getNullValue(A->getType()); 537 return Builder.CreateICmp(NewCC, NewAnd, Zero); 538 } 539 if (Mask & BMask_AllOnes) { 540 // (icmp eq (A & B), B) & (icmp eq (A & D), D) 541 // -> (icmp eq (A & (B|D)), (B|D)) 542 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D)) 543 return nullptr; // TODO: Use freeze? 544 Value *NewOr = Builder.CreateOr(B, D); 545 Value *NewAnd = Builder.CreateAnd(A, NewOr); 546 return Builder.CreateICmp(NewCC, NewAnd, NewOr); 547 } 548 if (Mask & AMask_AllOnes) { 549 // (icmp eq (A & B), A) & (icmp eq (A & D), A) 550 // -> (icmp eq (A & (B&D)), A) 551 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D)) 552 return nullptr; // TODO: Use freeze? 553 Value *NewAnd1 = Builder.CreateAnd(B, D); 554 Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1); 555 return Builder.CreateICmp(NewCC, NewAnd2, A); 556 } 557 558 // Remaining cases assume at least that B and D are constant, and depend on 559 // their actual values. This isn't strictly necessary, just a "handle the 560 // easy cases for now" decision. 561 const APInt *ConstB, *ConstD; 562 if (!match(B, m_APInt(ConstB)) || !match(D, m_APInt(ConstD))) 563 return nullptr; 564 565 if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) { 566 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and 567 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 568 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) 569 // Only valid if one of the masks is a superset of the other (check "B&D" is 570 // the same as either B or D). 571 APInt NewMask = *ConstB & *ConstD; 572 if (NewMask == *ConstB) 573 return LHS; 574 else if (NewMask == *ConstD) 575 return RHS; 576 } 577 578 if (Mask & AMask_NotAllOnes) { 579 // (icmp ne (A & B), B) & (icmp ne (A & D), D) 580 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A) 581 // Only valid if one of the masks is a superset of the other (check "B|D" is 582 // the same as either B or D). 583 APInt NewMask = *ConstB | *ConstD; 584 if (NewMask == *ConstB) 585 return LHS; 586 else if (NewMask == *ConstD) 587 return RHS; 588 } 589 590 if (Mask & (BMask_Mixed | BMask_NotMixed)) { 591 // Mixed: 592 // (icmp eq (A & B), C) & (icmp eq (A & D), E) 593 // We already know that B & C == C && D & E == E. 594 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of 595 // C and E, which are shared by both the mask B and the mask D, don't 596 // contradict, then we can transform to 597 // -> (icmp eq (A & (B|D)), (C|E)) 598 // Currently, we only handle the case of B, C, D, and E being constant. 599 // We can't simply use C and E because we might actually handle 600 // (icmp ne (A & B), B) & (icmp eq (A & D), D) 601 // with B and D, having a single bit set. 602 603 // NotMixed: 604 // (icmp ne (A & B), C) & (icmp ne (A & D), E) 605 // -> (icmp ne (A & (B & D)), (C & E)) 606 // Check the intersection (B & D) for inequality. 607 // Assume that (B & D) == B || (B & D) == D, i.e B/D is a subset of D/B 608 // and (B & D) & (C ^ E) == 0, bits of C and E, which are shared by both the 609 // B and the D, don't contradict. 610 // Note that we can assume (~B & C) == 0 && (~D & E) == 0, previous 611 // operation should delete these icmps if it hadn't been met. 612 613 const APInt *OldConstC, *OldConstE; 614 if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE))) 615 return nullptr; 616 617 auto FoldBMixed = [&](ICmpInst::Predicate CC, bool IsNot) -> Value * { 618 CC = IsNot ? CmpInst::getInversePredicate(CC) : CC; 619 const APInt ConstC = PredL != CC ? *ConstB ^ *OldConstC : *OldConstC; 620 const APInt ConstE = PredR != CC ? *ConstD ^ *OldConstE : *OldConstE; 621 622 if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue()) 623 return IsNot ? nullptr : ConstantInt::get(LHS->getType(), !IsAnd); 624 625 if (IsNot && !ConstB->isSubsetOf(*ConstD) && !ConstD->isSubsetOf(*ConstB)) 626 return nullptr; 627 628 APInt BD, CE; 629 if (IsNot) { 630 BD = *ConstB & *ConstD; 631 CE = ConstC & ConstE; 632 } else { 633 BD = *ConstB | *ConstD; 634 CE = ConstC | ConstE; 635 } 636 Value *NewAnd = Builder.CreateAnd(A, BD); 637 Value *CEVal = ConstantInt::get(A->getType(), CE); 638 return Builder.CreateICmp(CC, CEVal, NewAnd); 639 }; 640 641 if (Mask & BMask_Mixed) 642 return FoldBMixed(NewCC, false); 643 if (Mask & BMask_NotMixed) // can be else also 644 return FoldBMixed(NewCC, true); 645 } 646 return nullptr; 647 } 648 649 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp. 650 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 651 /// If \p Inverted is true then the check is for the inverted range, e.g. 652 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 653 Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, 654 bool Inverted) { 655 // Check the lower range comparison, e.g. x >= 0 656 // InstCombine already ensured that if there is a constant it's on the RHS. 657 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1)); 658 if (!RangeStart) 659 return nullptr; 660 661 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() : 662 Cmp0->getPredicate()); 663 664 // Accept x > -1 or x >= 0 (after potentially inverting the predicate). 665 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) || 666 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero()))) 667 return nullptr; 668 669 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() : 670 Cmp1->getPredicate()); 671 672 Value *Input = Cmp0->getOperand(0); 673 Value *RangeEnd; 674 if (Cmp1->getOperand(0) == Input) { 675 // For the upper range compare we have: icmp x, n 676 RangeEnd = Cmp1->getOperand(1); 677 } else if (Cmp1->getOperand(1) == Input) { 678 // For the upper range compare we have: icmp n, x 679 RangeEnd = Cmp1->getOperand(0); 680 Pred1 = ICmpInst::getSwappedPredicate(Pred1); 681 } else { 682 return nullptr; 683 } 684 685 // Check the upper range comparison, e.g. x < n 686 ICmpInst::Predicate NewPred; 687 switch (Pred1) { 688 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break; 689 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break; 690 default: return nullptr; 691 } 692 693 // This simplification is only valid if the upper range is not negative. 694 KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1); 695 if (!Known.isNonNegative()) 696 return nullptr; 697 698 if (Inverted) 699 NewPred = ICmpInst::getInversePredicate(NewPred); 700 701 return Builder.CreateICmp(NewPred, Input, RangeEnd); 702 } 703 704 // (or (icmp eq X, 0), (icmp eq X, Pow2OrZero)) 705 // -> (icmp eq (and X, Pow2OrZero), X) 706 // (and (icmp ne X, 0), (icmp ne X, Pow2OrZero)) 707 // -> (icmp ne (and X, Pow2OrZero), X) 708 static Value * 709 foldAndOrOfICmpsWithPow2AndWithZero(InstCombiner::BuilderTy &Builder, 710 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 711 const SimplifyQuery &Q) { 712 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 713 // Make sure we have right compares for our op. 714 if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred) 715 return nullptr; 716 717 // Make it so we can match LHS against the (icmp eq/ne X, 0) just for 718 // simplicity. 719 if (match(RHS->getOperand(1), m_Zero())) 720 std::swap(LHS, RHS); 721 722 Value *Pow2, *Op; 723 // Match the desired pattern: 724 // LHS: (icmp eq/ne X, 0) 725 // RHS: (icmp eq/ne X, Pow2OrZero) 726 // Skip if Pow2OrZero is 1. Either way it gets folded to (icmp ugt X, 1) but 727 // this form ends up slightly less canonical. 728 // We could potentially be more sophisticated than requiring LHS/RHS 729 // be one-use. We don't create additional instructions if only one 730 // of them is one-use. So cases where one is one-use and the other 731 // is two-use might be profitable. 732 if (!match(LHS, m_OneUse(m_ICmp(Pred, m_Value(Op), m_Zero()))) || 733 !match(RHS, m_OneUse(m_c_ICmp(Pred, m_Specific(Op), m_Value(Pow2)))) || 734 match(Pow2, m_One()) || 735 !isKnownToBeAPowerOfTwo(Pow2, Q.DL, /*OrZero=*/true, /*Depth=*/0, Q.AC, 736 Q.CxtI, Q.DT)) 737 return nullptr; 738 739 Value *And = Builder.CreateAnd(Op, Pow2); 740 return Builder.CreateICmp(Pred, And, Op); 741 } 742 743 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 744 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) 745 Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, 746 ICmpInst *RHS, 747 Instruction *CxtI, 748 bool IsAnd, 749 bool IsLogical) { 750 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 751 if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred) 752 return nullptr; 753 754 if (!match(LHS->getOperand(1), m_Zero()) || 755 !match(RHS->getOperand(1), m_Zero())) 756 return nullptr; 757 758 Value *L1, *L2, *R1, *R2; 759 if (match(LHS->getOperand(0), m_And(m_Value(L1), m_Value(L2))) && 760 match(RHS->getOperand(0), m_And(m_Value(R1), m_Value(R2)))) { 761 if (L1 == R2 || L2 == R2) 762 std::swap(R1, R2); 763 if (L2 == R1) 764 std::swap(L1, L2); 765 766 if (L1 == R1 && 767 isKnownToBeAPowerOfTwo(L2, false, 0, CxtI) && 768 isKnownToBeAPowerOfTwo(R2, false, 0, CxtI)) { 769 // If this is a logical and/or, then we must prevent propagation of a 770 // poison value from the RHS by inserting freeze. 771 if (IsLogical) 772 R2 = Builder.CreateFreeze(R2); 773 Value *Mask = Builder.CreateOr(L2, R2); 774 Value *Masked = Builder.CreateAnd(L1, Mask); 775 auto NewPred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 776 return Builder.CreateICmp(NewPred, Masked, Mask); 777 } 778 } 779 780 return nullptr; 781 } 782 783 /// General pattern: 784 /// X & Y 785 /// 786 /// Where Y is checking that all the high bits (covered by a mask 4294967168) 787 /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0 788 /// Pattern can be one of: 789 /// %t = add i32 %arg, 128 790 /// %r = icmp ult i32 %t, 256 791 /// Or 792 /// %t0 = shl i32 %arg, 24 793 /// %t1 = ashr i32 %t0, 24 794 /// %r = icmp eq i32 %t1, %arg 795 /// Or 796 /// %t0 = trunc i32 %arg to i8 797 /// %t1 = sext i8 %t0 to i32 798 /// %r = icmp eq i32 %t1, %arg 799 /// This pattern is a signed truncation check. 800 /// 801 /// And X is checking that some bit in that same mask is zero. 802 /// I.e. can be one of: 803 /// %r = icmp sgt i32 %arg, -1 804 /// Or 805 /// %t = and i32 %arg, 2147483648 806 /// %r = icmp eq i32 %t, 0 807 /// 808 /// Since we are checking that all the bits in that mask are the same, 809 /// and a particular bit is zero, what we are really checking is that all the 810 /// masked bits are zero. 811 /// So this should be transformed to: 812 /// %r = icmp ult i32 %arg, 128 813 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1, 814 Instruction &CxtI, 815 InstCombiner::BuilderTy &Builder) { 816 assert(CxtI.getOpcode() == Instruction::And); 817 818 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two) 819 auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X, 820 APInt &SignBitMask) -> bool { 821 CmpInst::Predicate Pred; 822 const APInt *I01, *I1; // powers of two; I1 == I01 << 1 823 if (!(match(ICmp, 824 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) && 825 Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1)) 826 return false; 827 // Which bit is the new sign bit as per the 'signed truncation' pattern? 828 SignBitMask = *I01; 829 return true; 830 }; 831 832 // One icmp needs to be 'signed truncation check'. 833 // We need to match this first, else we will mismatch commutative cases. 834 Value *X1; 835 APInt HighestBit; 836 ICmpInst *OtherICmp; 837 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit)) 838 OtherICmp = ICmp0; 839 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit)) 840 OtherICmp = ICmp1; 841 else 842 return nullptr; 843 844 assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)"); 845 846 // Try to match/decompose into: icmp eq (X & Mask), 0 847 auto tryToDecompose = [](ICmpInst *ICmp, Value *&X, 848 APInt &UnsetBitsMask) -> bool { 849 CmpInst::Predicate Pred = ICmp->getPredicate(); 850 // Can it be decomposed into icmp eq (X & Mask), 0 ? 851 if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1), 852 Pred, X, UnsetBitsMask, 853 /*LookThroughTrunc=*/false) && 854 Pred == ICmpInst::ICMP_EQ) 855 return true; 856 // Is it icmp eq (X & Mask), 0 already? 857 const APInt *Mask; 858 if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) && 859 Pred == ICmpInst::ICMP_EQ) { 860 UnsetBitsMask = *Mask; 861 return true; 862 } 863 return false; 864 }; 865 866 // And the other icmp needs to be decomposable into a bit test. 867 Value *X0; 868 APInt UnsetBitsMask; 869 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask)) 870 return nullptr; 871 872 assert(!UnsetBitsMask.isZero() && "empty mask makes no sense."); 873 874 // Are they working on the same value? 875 Value *X; 876 if (X1 == X0) { 877 // Ok as is. 878 X = X1; 879 } else if (match(X0, m_Trunc(m_Specific(X1)))) { 880 UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits()); 881 X = X1; 882 } else 883 return nullptr; 884 885 // So which bits should be uniform as per the 'signed truncation check'? 886 // (all the bits starting with (i.e. including) HighestBit) 887 APInt SignBitsMask = ~(HighestBit - 1U); 888 889 // UnsetBitsMask must have some common bits with SignBitsMask, 890 if (!UnsetBitsMask.intersects(SignBitsMask)) 891 return nullptr; 892 893 // Does UnsetBitsMask contain any bits outside of SignBitsMask? 894 if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) { 895 APInt OtherHighestBit = (~UnsetBitsMask) + 1U; 896 if (!OtherHighestBit.isPowerOf2()) 897 return nullptr; 898 HighestBit = APIntOps::umin(HighestBit, OtherHighestBit); 899 } 900 // Else, if it does not, then all is ok as-is. 901 902 // %r = icmp ult %X, SignBit 903 return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit), 904 CxtI.getName() + ".simplified"); 905 } 906 907 /// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and 908 /// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1). 909 /// Also used for logical and/or, must be poison safe. 910 static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, 911 InstCombiner::BuilderTy &Builder) { 912 CmpInst::Predicate Pred0, Pred1; 913 Value *X; 914 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), 915 m_SpecificInt(1))) || 916 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt()))) 917 return nullptr; 918 919 Value *CtPop = Cmp0->getOperand(0); 920 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE) 921 return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1)); 922 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ) 923 return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2)); 924 925 return nullptr; 926 } 927 928 /// Reduce a pair of compares that check if a value has exactly 1 bit set. 929 /// Also used for logical and/or, must be poison safe if range attributes are 930 /// dropped. 931 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, 932 InstCombiner::BuilderTy &Builder, 933 InstCombinerImpl &IC) { 934 // Handle 'and' / 'or' commutation: make the equality check the first operand. 935 if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE) 936 std::swap(Cmp0, Cmp1); 937 else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ) 938 std::swap(Cmp0, Cmp1); 939 940 // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1 941 CmpInst::Predicate Pred0, Pred1; 942 Value *X; 943 if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && 944 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), 945 m_SpecificInt(2))) && 946 Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) { 947 auto *CtPop = cast<Instruction>(Cmp1->getOperand(0)); 948 // Drop range attributes and re-infer them in the next iteration. 949 CtPop->dropPoisonGeneratingAnnotations(); 950 IC.addToWorklist(CtPop); 951 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1)); 952 } 953 // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1 954 if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && 955 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), 956 m_SpecificInt(1))) && 957 Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) { 958 auto *CtPop = cast<Instruction>(Cmp1->getOperand(0)); 959 // Drop range attributes and re-infer them in the next iteration. 960 CtPop->dropPoisonGeneratingAnnotations(); 961 IC.addToWorklist(CtPop); 962 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1)); 963 } 964 return nullptr; 965 } 966 967 /// Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff 968 /// B is a contiguous set of ones starting from the most significant bit 969 /// (negative power of 2), D and E are equal, and D is a contiguous set of ones 970 /// starting at the most significant zero bit in B. Parameter B supports masking 971 /// using undef/poison in either scalar or vector values. 972 static Value *foldNegativePower2AndShiftedMask( 973 Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL, 974 ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder) { 975 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 976 "Expected equality predicates for masked type of icmps."); 977 if (PredL != ICmpInst::ICMP_EQ || PredR != ICmpInst::ICMP_NE) 978 return nullptr; 979 980 if (!match(B, m_NegatedPower2()) || !match(D, m_ShiftedMask()) || 981 !match(E, m_ShiftedMask())) 982 return nullptr; 983 984 // Test scalar arguments for conversion. B has been validated earlier to be a 985 // negative power of two and thus is guaranteed to have one or more contiguous 986 // ones starting from the MSB followed by zero or more contiguous zeros. D has 987 // been validated earlier to be a shifted set of one or more contiguous ones. 988 // In order to match, B leading ones and D leading zeros should be equal. The 989 // predicate that B be a negative power of 2 prevents the condition of there 990 // ever being zero leading ones. Thus 0 == 0 cannot occur. The predicate that 991 // D always be a shifted mask prevents the condition of D equaling 0. This 992 // prevents matching the condition where B contains the maximum number of 993 // leading one bits (-1) and D contains the maximum number of leading zero 994 // bits (0). 995 auto isReducible = [](const Value *B, const Value *D, const Value *E) { 996 const APInt *BCst, *DCst, *ECst; 997 return match(B, m_APIntAllowPoison(BCst)) && match(D, m_APInt(DCst)) && 998 match(E, m_APInt(ECst)) && *DCst == *ECst && 999 (isa<PoisonValue>(B) || 1000 (BCst->countLeadingOnes() == DCst->countLeadingZeros())); 1001 }; 1002 1003 // Test vector type arguments for conversion. 1004 if (const auto *BVTy = dyn_cast<VectorType>(B->getType())) { 1005 const auto *BFVTy = dyn_cast<FixedVectorType>(BVTy); 1006 const auto *BConst = dyn_cast<Constant>(B); 1007 const auto *DConst = dyn_cast<Constant>(D); 1008 const auto *EConst = dyn_cast<Constant>(E); 1009 1010 if (!BFVTy || !BConst || !DConst || !EConst) 1011 return nullptr; 1012 1013 for (unsigned I = 0; I != BFVTy->getNumElements(); ++I) { 1014 const auto *BElt = BConst->getAggregateElement(I); 1015 const auto *DElt = DConst->getAggregateElement(I); 1016 const auto *EElt = EConst->getAggregateElement(I); 1017 1018 if (!BElt || !DElt || !EElt) 1019 return nullptr; 1020 if (!isReducible(BElt, DElt, EElt)) 1021 return nullptr; 1022 } 1023 } else { 1024 // Test scalar type arguments for conversion. 1025 if (!isReducible(B, D, E)) 1026 return nullptr; 1027 } 1028 return Builder.CreateICmp(ICmpInst::ICMP_ULT, A, D); 1029 } 1030 1031 /// Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) & 1032 /// (icmp(X & M) != M)) into (icmp X u< M). Where P is a power of 2, M < P, and 1033 /// M is a contiguous shifted mask starting at the right most significant zero 1034 /// bit in P. SGT is supported as when P is the largest representable power of 1035 /// 2, an earlier optimization converts the expression into (icmp X s> -1). 1036 /// Parameter P supports masking using undef/poison in either scalar or vector 1037 /// values. 1038 static Value *foldPowerOf2AndShiftedMask(ICmpInst *Cmp0, ICmpInst *Cmp1, 1039 bool JoinedByAnd, 1040 InstCombiner::BuilderTy &Builder) { 1041 if (!JoinedByAnd) 1042 return nullptr; 1043 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; 1044 ICmpInst::Predicate CmpPred0 = Cmp0->getPredicate(), 1045 CmpPred1 = Cmp1->getPredicate(); 1046 // Assuming P is a 2^n, getMaskedTypeForICmpPair will normalize (icmp X u< 1047 // 2^n) into (icmp (X & ~(2^n-1)) == 0) and (icmp X s> -1) into (icmp (X & 1048 // SignMask) == 0). 1049 std::optional<std::pair<unsigned, unsigned>> MaskPair = 1050 getMaskedTypeForICmpPair(A, B, C, D, E, Cmp0, Cmp1, CmpPred0, CmpPred1); 1051 if (!MaskPair) 1052 return nullptr; 1053 1054 const auto compareBMask = BMask_NotMixed | BMask_NotAllOnes; 1055 unsigned CmpMask0 = MaskPair->first; 1056 unsigned CmpMask1 = MaskPair->second; 1057 if ((CmpMask0 & Mask_AllZeros) && (CmpMask1 == compareBMask)) { 1058 if (Value *V = foldNegativePower2AndShiftedMask(A, B, D, E, CmpPred0, 1059 CmpPred1, Builder)) 1060 return V; 1061 } else if ((CmpMask0 == compareBMask) && (CmpMask1 & Mask_AllZeros)) { 1062 if (Value *V = foldNegativePower2AndShiftedMask(A, D, B, C, CmpPred1, 1063 CmpPred0, Builder)) 1064 return V; 1065 } 1066 return nullptr; 1067 } 1068 1069 /// Commuted variants are assumed to be handled by calling this function again 1070 /// with the parameters swapped. 1071 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp, 1072 ICmpInst *UnsignedICmp, bool IsAnd, 1073 const SimplifyQuery &Q, 1074 InstCombiner::BuilderTy &Builder) { 1075 Value *ZeroCmpOp; 1076 ICmpInst::Predicate EqPred; 1077 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) || 1078 !ICmpInst::isEquality(EqPred)) 1079 return nullptr; 1080 1081 ICmpInst::Predicate UnsignedPred; 1082 1083 Value *A, *B; 1084 if (match(UnsignedICmp, 1085 m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) && 1086 match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) && 1087 (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) { 1088 auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) { 1089 if (!isKnownNonZero(NonZero, Q)) 1090 std::swap(NonZero, Other); 1091 return isKnownNonZero(NonZero, Q); 1092 }; 1093 1094 // Given ZeroCmpOp = (A + B) 1095 // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff 1096 // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff 1097 // with X being the value (A/B) that is known to be non-zero, 1098 // and Y being remaining value. 1099 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE && 1100 IsAnd && GetKnownNonZeroAndOther(B, A)) 1101 return Builder.CreateICmpULT(Builder.CreateNeg(B), A); 1102 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ && 1103 !IsAnd && GetKnownNonZeroAndOther(B, A)) 1104 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A); 1105 } 1106 1107 return nullptr; 1108 } 1109 1110 struct IntPart { 1111 Value *From; 1112 unsigned StartBit; 1113 unsigned NumBits; 1114 }; 1115 1116 /// Match an extraction of bits from an integer. 1117 static std::optional<IntPart> matchIntPart(Value *V) { 1118 Value *X; 1119 if (!match(V, m_OneUse(m_Trunc(m_Value(X))))) 1120 return std::nullopt; 1121 1122 unsigned NumOriginalBits = X->getType()->getScalarSizeInBits(); 1123 unsigned NumExtractedBits = V->getType()->getScalarSizeInBits(); 1124 Value *Y; 1125 const APInt *Shift; 1126 // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits 1127 // from Y, not any shifted-in zeroes. 1128 if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) && 1129 Shift->ule(NumOriginalBits - NumExtractedBits)) 1130 return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}}; 1131 return {{X, 0, NumExtractedBits}}; 1132 } 1133 1134 /// Materialize an extraction of bits from an integer in IR. 1135 static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) { 1136 Value *V = P.From; 1137 if (P.StartBit) 1138 V = Builder.CreateLShr(V, P.StartBit); 1139 Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits); 1140 if (TruncTy != V->getType()) 1141 V = Builder.CreateTrunc(V, TruncTy); 1142 return V; 1143 } 1144 1145 /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01 1146 /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01 1147 /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer. 1148 Value *InstCombinerImpl::foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1, 1149 bool IsAnd) { 1150 if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse()) 1151 return nullptr; 1152 1153 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 1154 auto GetMatchPart = [&](ICmpInst *Cmp, 1155 unsigned OpNo) -> std::optional<IntPart> { 1156 if (Pred == Cmp->getPredicate()) 1157 return matchIntPart(Cmp->getOperand(OpNo)); 1158 1159 const APInt *C; 1160 // (icmp eq (lshr x, C), (lshr y, C)) gets optimized to: 1161 // (icmp ult (xor x, y), 1 << C) so also look for that. 1162 if (Pred == CmpInst::ICMP_EQ && Cmp->getPredicate() == CmpInst::ICMP_ULT) { 1163 if (!match(Cmp->getOperand(1), m_Power2(C)) || 1164 !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value()))) 1165 return std::nullopt; 1166 } 1167 1168 // (icmp ne (lshr x, C), (lshr y, C)) gets optimized to: 1169 // (icmp ugt (xor x, y), (1 << C) - 1) so also look for that. 1170 else if (Pred == CmpInst::ICMP_NE && 1171 Cmp->getPredicate() == CmpInst::ICMP_UGT) { 1172 if (!match(Cmp->getOperand(1), m_LowBitMask(C)) || 1173 !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value()))) 1174 return std::nullopt; 1175 } else { 1176 return std::nullopt; 1177 } 1178 1179 unsigned From = Pred == CmpInst::ICMP_NE ? C->popcount() : C->countr_zero(); 1180 Instruction *I = cast<Instruction>(Cmp->getOperand(0)); 1181 return {{I->getOperand(OpNo), From, C->getBitWidth() - From}}; 1182 }; 1183 1184 std::optional<IntPart> L0 = GetMatchPart(Cmp0, 0); 1185 std::optional<IntPart> R0 = GetMatchPart(Cmp0, 1); 1186 std::optional<IntPart> L1 = GetMatchPart(Cmp1, 0); 1187 std::optional<IntPart> R1 = GetMatchPart(Cmp1, 1); 1188 if (!L0 || !R0 || !L1 || !R1) 1189 return nullptr; 1190 1191 // Make sure the LHS/RHS compare a part of the same value, possibly after 1192 // an operand swap. 1193 if (L0->From != L1->From || R0->From != R1->From) { 1194 if (L0->From != R1->From || R0->From != L1->From) 1195 return nullptr; 1196 std::swap(L1, R1); 1197 } 1198 1199 // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being 1200 // the low part and L1/R1 being the high part. 1201 if (L0->StartBit + L0->NumBits != L1->StartBit || 1202 R0->StartBit + R0->NumBits != R1->StartBit) { 1203 if (L1->StartBit + L1->NumBits != L0->StartBit || 1204 R1->StartBit + R1->NumBits != R0->StartBit) 1205 return nullptr; 1206 std::swap(L0, L1); 1207 std::swap(R0, R1); 1208 } 1209 1210 // We can simplify to a comparison of these larger parts of the integers. 1211 IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits}; 1212 IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits}; 1213 Value *LValue = extractIntPart(L, Builder); 1214 Value *RValue = extractIntPart(R, Builder); 1215 return Builder.CreateICmp(Pred, LValue, RValue); 1216 } 1217 1218 /// Reduce logic-of-compares with equality to a constant by substituting a 1219 /// common operand with the constant. Callers are expected to call this with 1220 /// Cmp0/Cmp1 switched to handle logic op commutativity. 1221 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1, 1222 bool IsAnd, bool IsLogical, 1223 InstCombiner::BuilderTy &Builder, 1224 const SimplifyQuery &Q) { 1225 // Match an equality compare with a non-poison constant as Cmp0. 1226 // Also, give up if the compare can be constant-folded to avoid looping. 1227 ICmpInst::Predicate Pred0; 1228 Value *X; 1229 Constant *C; 1230 if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) || 1231 !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X)) 1232 return nullptr; 1233 if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) || 1234 (!IsAnd && Pred0 != ICmpInst::ICMP_NE)) 1235 return nullptr; 1236 1237 // The other compare must include a common operand (X). Canonicalize the 1238 // common operand as operand 1 (Pred1 is swapped if the common operand was 1239 // operand 0). 1240 Value *Y; 1241 ICmpInst::Predicate Pred1; 1242 if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Specific(X)))) 1243 return nullptr; 1244 1245 // Replace variable with constant value equivalence to remove a variable use: 1246 // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C) 1247 // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C) 1248 // Can think of the 'or' substitution with the 'and' bool equivalent: 1249 // A || B --> A || (!A && B) 1250 Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q); 1251 if (!SubstituteCmp) { 1252 // If we need to create a new instruction, require that the old compare can 1253 // be removed. 1254 if (!Cmp1->hasOneUse()) 1255 return nullptr; 1256 SubstituteCmp = Builder.CreateICmp(Pred1, Y, C); 1257 } 1258 if (IsLogical) 1259 return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp) 1260 : Builder.CreateLogicalOr(Cmp0, SubstituteCmp); 1261 return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0, 1262 SubstituteCmp); 1263 } 1264 1265 /// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2) 1266 /// or (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2) 1267 /// into a single comparison using range-based reasoning. 1268 /// NOTE: This is also used for logical and/or, must be poison-safe! 1269 Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1, 1270 ICmpInst *ICmp2, 1271 bool IsAnd) { 1272 ICmpInst::Predicate Pred1, Pred2; 1273 Value *V1, *V2; 1274 const APInt *C1, *C2; 1275 if (!match(ICmp1, m_ICmp(Pred1, m_Value(V1), m_APInt(C1))) || 1276 !match(ICmp2, m_ICmp(Pred2, m_Value(V2), m_APInt(C2)))) 1277 return nullptr; 1278 1279 // Look through add of a constant offset on V1, V2, or both operands. This 1280 // allows us to interpret the V + C' < C'' range idiom into a proper range. 1281 const APInt *Offset1 = nullptr, *Offset2 = nullptr; 1282 if (V1 != V2) { 1283 Value *X; 1284 if (match(V1, m_Add(m_Value(X), m_APInt(Offset1)))) 1285 V1 = X; 1286 if (match(V2, m_Add(m_Value(X), m_APInt(Offset2)))) 1287 V2 = X; 1288 } 1289 1290 if (V1 != V2) 1291 return nullptr; 1292 1293 ConstantRange CR1 = ConstantRange::makeExactICmpRegion( 1294 IsAnd ? ICmpInst::getInversePredicate(Pred1) : Pred1, *C1); 1295 if (Offset1) 1296 CR1 = CR1.subtract(*Offset1); 1297 1298 ConstantRange CR2 = ConstantRange::makeExactICmpRegion( 1299 IsAnd ? ICmpInst::getInversePredicate(Pred2) : Pred2, *C2); 1300 if (Offset2) 1301 CR2 = CR2.subtract(*Offset2); 1302 1303 Type *Ty = V1->getType(); 1304 Value *NewV = V1; 1305 std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2); 1306 if (!CR) { 1307 if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() || 1308 CR2.isWrappedSet()) 1309 return nullptr; 1310 1311 // Check whether we have equal-size ranges that only differ by one bit. 1312 // In that case we can apply a mask to map one range onto the other. 1313 APInt LowerDiff = CR1.getLower() ^ CR2.getLower(); 1314 APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1); 1315 APInt CR1Size = CR1.getUpper() - CR1.getLower(); 1316 if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff || 1317 CR1Size != CR2.getUpper() - CR2.getLower()) 1318 return nullptr; 1319 1320 CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2; 1321 NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff)); 1322 } 1323 1324 if (IsAnd) 1325 CR = CR->inverse(); 1326 1327 CmpInst::Predicate NewPred; 1328 APInt NewC, Offset; 1329 CR->getEquivalentICmp(NewPred, NewC, Offset); 1330 1331 if (Offset != 0) 1332 NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset)); 1333 return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC)); 1334 } 1335 1336 /// Ignore all operations which only change the sign of a value, returning the 1337 /// underlying magnitude value. 1338 static Value *stripSignOnlyFPOps(Value *Val) { 1339 match(Val, m_FNeg(m_Value(Val))); 1340 match(Val, m_FAbs(m_Value(Val))); 1341 match(Val, m_CopySign(m_Value(Val), m_Value())); 1342 return Val; 1343 } 1344 1345 /// Matches canonical form of isnan, fcmp ord x, 0 1346 static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS) { 1347 return P == FCmpInst::FCMP_ORD && match(RHS, m_AnyZeroFP()); 1348 } 1349 1350 /// Matches fcmp u__ x, +/-inf 1351 static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS, 1352 Value *RHS) { 1353 return FCmpInst::isUnordered(P) && match(RHS, m_Inf()); 1354 } 1355 1356 /// and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf 1357 /// 1358 /// Clang emits this pattern for doing an isfinite check in __builtin_isnormal. 1359 static Value *matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS, 1360 FCmpInst *RHS) { 1361 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1362 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1363 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1364 1365 if (!matchIsNotNaN(PredL, LHS0, LHS1) || 1366 !matchUnorderedInfCompare(PredR, RHS0, RHS1)) 1367 return nullptr; 1368 1369 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1370 FastMathFlags FMF = LHS->getFastMathFlags(); 1371 FMF &= RHS->getFastMathFlags(); 1372 Builder.setFastMathFlags(FMF); 1373 1374 return Builder.CreateFCmp(FCmpInst::getOrderedPredicate(PredR), RHS0, RHS1); 1375 } 1376 1377 Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, 1378 bool IsAnd, bool IsLogicalSelect) { 1379 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1380 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1381 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1382 1383 if (LHS0 == RHS1 && RHS0 == LHS1) { 1384 // Swap RHS operands to match LHS. 1385 PredR = FCmpInst::getSwappedPredicate(PredR); 1386 std::swap(RHS0, RHS1); 1387 } 1388 1389 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). 1390 // Suppose the relation between x and y is R, where R is one of 1391 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for 1392 // testing the desired relations. 1393 // 1394 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 1395 // bool(R & CC0) && bool(R & CC1) 1396 // = bool((R & CC0) & (R & CC1)) 1397 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency 1398 // 1399 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 1400 // bool(R & CC0) || bool(R & CC1) 1401 // = bool((R & CC0) | (R & CC1)) 1402 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;) 1403 if (LHS0 == RHS0 && LHS1 == RHS1) { 1404 unsigned FCmpCodeL = getFCmpCode(PredL); 1405 unsigned FCmpCodeR = getFCmpCode(PredR); 1406 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR; 1407 1408 // Intersect the fast math flags. 1409 // TODO: We can union the fast math flags unless this is a logical select. 1410 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1411 FastMathFlags FMF = LHS->getFastMathFlags(); 1412 FMF &= RHS->getFastMathFlags(); 1413 Builder.setFastMathFlags(FMF); 1414 1415 return getFCmpValue(NewPred, LHS0, LHS1, Builder); 1416 } 1417 1418 // This transform is not valid for a logical select. 1419 if (!IsLogicalSelect && 1420 ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1421 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && 1422 !IsAnd))) { 1423 if (LHS0->getType() != RHS0->getType()) 1424 return nullptr; 1425 1426 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and 1427 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0). 1428 if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP())) 1429 // Ignore the constants because they are obviously not NANs: 1430 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y) 1431 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y) 1432 return Builder.CreateFCmp(PredL, LHS0, RHS0); 1433 } 1434 1435 if (IsAnd && stripSignOnlyFPOps(LHS0) == stripSignOnlyFPOps(RHS0)) { 1436 // and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf 1437 // and (fcmp ord x, 0), (fcmp u* fabs(x), inf) -> fcmp o* x, inf 1438 if (Value *Left = matchIsFiniteTest(Builder, LHS, RHS)) 1439 return Left; 1440 if (Value *Right = matchIsFiniteTest(Builder, RHS, LHS)) 1441 return Right; 1442 } 1443 1444 // Turn at least two fcmps with constants into llvm.is.fpclass. 1445 // 1446 // If we can represent a combined value test with one class call, we can 1447 // potentially eliminate 4-6 instructions. If we can represent a test with a 1448 // single fcmp with fneg and fabs, that's likely a better canonical form. 1449 if (LHS->hasOneUse() && RHS->hasOneUse()) { 1450 auto [ClassValRHS, ClassMaskRHS] = 1451 fcmpToClassTest(PredR, *RHS->getFunction(), RHS0, RHS1); 1452 if (ClassValRHS) { 1453 auto [ClassValLHS, ClassMaskLHS] = 1454 fcmpToClassTest(PredL, *LHS->getFunction(), LHS0, LHS1); 1455 if (ClassValLHS == ClassValRHS) { 1456 unsigned CombinedMask = IsAnd ? (ClassMaskLHS & ClassMaskRHS) 1457 : (ClassMaskLHS | ClassMaskRHS); 1458 return Builder.CreateIntrinsic( 1459 Intrinsic::is_fpclass, {ClassValLHS->getType()}, 1460 {ClassValLHS, Builder.getInt32(CombinedMask)}); 1461 } 1462 } 1463 } 1464 1465 // Canonicalize the range check idiom: 1466 // and (fcmp olt/ole/ult/ule x, C), (fcmp ogt/oge/ugt/uge x, -C) 1467 // --> fabs(x) olt/ole/ult/ule C 1468 // or (fcmp ogt/oge/ugt/uge x, C), (fcmp olt/ole/ult/ule x, -C) 1469 // --> fabs(x) ogt/oge/ugt/uge C 1470 // TODO: Generalize to handle a negated variable operand? 1471 const APFloat *LHSC, *RHSC; 1472 if (LHS0 == RHS0 && LHS->hasOneUse() && RHS->hasOneUse() && 1473 FCmpInst::getSwappedPredicate(PredL) == PredR && 1474 match(LHS1, m_APFloatAllowPoison(LHSC)) && 1475 match(RHS1, m_APFloatAllowPoison(RHSC)) && 1476 LHSC->bitwiseIsEqual(neg(*RHSC))) { 1477 auto IsLessThanOrLessEqual = [](FCmpInst::Predicate Pred) { 1478 switch (Pred) { 1479 case FCmpInst::FCMP_OLT: 1480 case FCmpInst::FCMP_OLE: 1481 case FCmpInst::FCMP_ULT: 1482 case FCmpInst::FCMP_ULE: 1483 return true; 1484 default: 1485 return false; 1486 } 1487 }; 1488 if (IsLessThanOrLessEqual(IsAnd ? PredR : PredL)) { 1489 std::swap(LHSC, RHSC); 1490 std::swap(PredL, PredR); 1491 } 1492 if (IsLessThanOrLessEqual(IsAnd ? PredL : PredR)) { 1493 BuilderTy::FastMathFlagGuard Guard(Builder); 1494 Builder.setFastMathFlags(LHS->getFastMathFlags() | 1495 RHS->getFastMathFlags()); 1496 1497 Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, LHS0); 1498 return Builder.CreateFCmp(PredL, FAbs, 1499 ConstantFP::get(LHS0->getType(), *LHSC)); 1500 } 1501 } 1502 1503 return nullptr; 1504 } 1505 1506 /// Match an fcmp against a special value that performs a test possible by 1507 /// llvm.is.fpclass. 1508 static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal, 1509 uint64_t &ClassMask) { 1510 auto *FCmp = dyn_cast<FCmpInst>(Op); 1511 if (!FCmp || !FCmp->hasOneUse()) 1512 return false; 1513 1514 std::tie(ClassVal, ClassMask) = 1515 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(), 1516 FCmp->getOperand(0), FCmp->getOperand(1)); 1517 return ClassVal != nullptr; 1518 } 1519 1520 /// or (is_fpclass x, mask0), (is_fpclass x, mask1) 1521 /// -> is_fpclass x, (mask0 | mask1) 1522 /// and (is_fpclass x, mask0), (is_fpclass x, mask1) 1523 /// -> is_fpclass x, (mask0 & mask1) 1524 /// xor (is_fpclass x, mask0), (is_fpclass x, mask1) 1525 /// -> is_fpclass x, (mask0 ^ mask1) 1526 Instruction *InstCombinerImpl::foldLogicOfIsFPClass(BinaryOperator &BO, 1527 Value *Op0, Value *Op1) { 1528 Value *ClassVal0 = nullptr; 1529 Value *ClassVal1 = nullptr; 1530 uint64_t ClassMask0, ClassMask1; 1531 1532 // Restrict to folding one fcmp into one is.fpclass for now, don't introduce a 1533 // new class. 1534 // 1535 // TODO: Support forming is.fpclass out of 2 separate fcmps when codegen is 1536 // better. 1537 1538 bool IsLHSClass = 1539 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>( 1540 m_Value(ClassVal0), m_ConstantInt(ClassMask0)))); 1541 bool IsRHSClass = 1542 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>( 1543 m_Value(ClassVal1), m_ConstantInt(ClassMask1)))); 1544 if ((((IsLHSClass || matchIsFPClassLikeFCmp(Op0, ClassVal0, ClassMask0)) && 1545 (IsRHSClass || matchIsFPClassLikeFCmp(Op1, ClassVal1, ClassMask1)))) && 1546 ClassVal0 == ClassVal1) { 1547 unsigned NewClassMask; 1548 switch (BO.getOpcode()) { 1549 case Instruction::And: 1550 NewClassMask = ClassMask0 & ClassMask1; 1551 break; 1552 case Instruction::Or: 1553 NewClassMask = ClassMask0 | ClassMask1; 1554 break; 1555 case Instruction::Xor: 1556 NewClassMask = ClassMask0 ^ ClassMask1; 1557 break; 1558 default: 1559 llvm_unreachable("not a binary logic operator"); 1560 } 1561 1562 if (IsLHSClass) { 1563 auto *II = cast<IntrinsicInst>(Op0); 1564 II->setArgOperand( 1565 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask)); 1566 return replaceInstUsesWith(BO, II); 1567 } 1568 1569 if (IsRHSClass) { 1570 auto *II = cast<IntrinsicInst>(Op1); 1571 II->setArgOperand( 1572 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask)); 1573 return replaceInstUsesWith(BO, II); 1574 } 1575 1576 CallInst *NewClass = 1577 Builder.CreateIntrinsic(Intrinsic::is_fpclass, {ClassVal0->getType()}, 1578 {ClassVal0, Builder.getInt32(NewClassMask)}); 1579 return replaceInstUsesWith(BO, NewClass); 1580 } 1581 1582 return nullptr; 1583 } 1584 1585 /// Look for the pattern that conditionally negates a value via math operations: 1586 /// cond.splat = sext i1 cond 1587 /// sub = add cond.splat, x 1588 /// xor = xor sub, cond.splat 1589 /// and rewrite it to do the same, but via logical operations: 1590 /// value.neg = sub 0, value 1591 /// cond = select i1 neg, value.neg, value 1592 Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect( 1593 BinaryOperator &I) { 1594 assert(I.getOpcode() == BinaryOperator::Xor && "Only for xor!"); 1595 Value *Cond, *X; 1596 // As per complexity ordering, `xor` is not commutative here. 1597 if (!match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())) || 1598 !match(I.getOperand(1), m_SExt(m_Value(Cond))) || 1599 !Cond->getType()->isIntOrIntVectorTy(1) || 1600 !match(I.getOperand(0), m_c_Add(m_SExt(m_Specific(Cond)), m_Value(X)))) 1601 return nullptr; 1602 return SelectInst::Create(Cond, Builder.CreateNeg(X, X->getName() + ".neg"), 1603 X); 1604 } 1605 1606 /// This a limited reassociation for a special case (see above) where we are 1607 /// checking if two values are either both NAN (unordered) or not-NAN (ordered). 1608 /// This could be handled more generally in '-reassociation', but it seems like 1609 /// an unlikely pattern for a large number of logic ops and fcmps. 1610 static Instruction *reassociateFCmps(BinaryOperator &BO, 1611 InstCombiner::BuilderTy &Builder) { 1612 Instruction::BinaryOps Opcode = BO.getOpcode(); 1613 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1614 "Expecting and/or op for fcmp transform"); 1615 1616 // There are 4 commuted variants of the pattern. Canonicalize operands of this 1617 // logic op so an fcmp is operand 0 and a matching logic op is operand 1. 1618 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X; 1619 FCmpInst::Predicate Pred; 1620 if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP()))) 1621 std::swap(Op0, Op1); 1622 1623 // Match inner binop and the predicate for combining 2 NAN checks into 1. 1624 Value *BO10, *BO11; 1625 FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD 1626 : FCmpInst::FCMP_UNO; 1627 if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred || 1628 !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11)))) 1629 return nullptr; 1630 1631 // The inner logic op must have a matching fcmp operand. 1632 Value *Y; 1633 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || 1634 Pred != NanPred || X->getType() != Y->getType()) 1635 std::swap(BO10, BO11); 1636 1637 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || 1638 Pred != NanPred || X->getType() != Y->getType()) 1639 return nullptr; 1640 1641 // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z 1642 // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z 1643 Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y); 1644 if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) { 1645 // Intersect FMF from the 2 source fcmps. 1646 NewFCmpInst->copyIRFlags(Op0); 1647 NewFCmpInst->andIRFlags(BO10); 1648 } 1649 return BinaryOperator::Create(Opcode, NewFCmp, BO11); 1650 } 1651 1652 /// Match variations of De Morgan's Laws: 1653 /// (~A & ~B) == (~(A | B)) 1654 /// (~A | ~B) == (~(A & B)) 1655 static Instruction *matchDeMorgansLaws(BinaryOperator &I, 1656 InstCombiner &IC) { 1657 const Instruction::BinaryOps Opcode = I.getOpcode(); 1658 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1659 "Trying to match De Morgan's Laws with something other than and/or"); 1660 1661 // Flip the logic operation. 1662 const Instruction::BinaryOps FlippedOpcode = 1663 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; 1664 1665 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1666 Value *A, *B; 1667 if (match(Op0, m_OneUse(m_Not(m_Value(A)))) && 1668 match(Op1, m_OneUse(m_Not(m_Value(B)))) && 1669 !IC.isFreeToInvert(A, A->hasOneUse()) && 1670 !IC.isFreeToInvert(B, B->hasOneUse())) { 1671 Value *AndOr = 1672 IC.Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan"); 1673 return BinaryOperator::CreateNot(AndOr); 1674 } 1675 1676 // The 'not' ops may require reassociation. 1677 // (A & ~B) & ~C --> A & ~(B | C) 1678 // (~B & A) & ~C --> A & ~(B | C) 1679 // (A | ~B) | ~C --> A | ~(B & C) 1680 // (~B | A) | ~C --> A | ~(B & C) 1681 Value *C; 1682 if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) && 1683 match(Op1, m_Not(m_Value(C)))) { 1684 Value *FlippedBO = IC.Builder.CreateBinOp(FlippedOpcode, B, C); 1685 return BinaryOperator::Create(Opcode, A, IC.Builder.CreateNot(FlippedBO)); 1686 } 1687 1688 return nullptr; 1689 } 1690 1691 bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) { 1692 Value *CastSrc = CI->getOperand(0); 1693 1694 // Noop casts and casts of constants should be eliminated trivially. 1695 if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc)) 1696 return false; 1697 1698 // If this cast is paired with another cast that can be eliminated, we prefer 1699 // to have it eliminated. 1700 if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc)) 1701 if (isEliminableCastPair(PrecedingCI, CI)) 1702 return false; 1703 1704 return true; 1705 } 1706 1707 /// Fold {and,or,xor} (cast X), C. 1708 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, 1709 InstCombinerImpl &IC) { 1710 Constant *C = dyn_cast<Constant>(Logic.getOperand(1)); 1711 if (!C) 1712 return nullptr; 1713 1714 auto LogicOpc = Logic.getOpcode(); 1715 Type *DestTy = Logic.getType(); 1716 Type *SrcTy = Cast->getSrcTy(); 1717 1718 // Move the logic operation ahead of a zext or sext if the constant is 1719 // unchanged in the smaller source type. Performing the logic in a smaller 1720 // type may provide more information to later folds, and the smaller logic 1721 // instruction may be cheaper (particularly in the case of vectors). 1722 Value *X; 1723 if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) { 1724 if (Constant *TruncC = IC.getLosslessUnsignedTrunc(C, SrcTy)) { 1725 // LogicOpc (zext X), C --> zext (LogicOpc X, C) 1726 Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC); 1727 return new ZExtInst(NewOp, DestTy); 1728 } 1729 } 1730 1731 if (match(Cast, m_OneUse(m_SExtLike(m_Value(X))))) { 1732 if (Constant *TruncC = IC.getLosslessSignedTrunc(C, SrcTy)) { 1733 // LogicOpc (sext X), C --> sext (LogicOpc X, C) 1734 Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC); 1735 return new SExtInst(NewOp, DestTy); 1736 } 1737 } 1738 1739 return nullptr; 1740 } 1741 1742 /// Fold {and,or,xor} (cast X), Y. 1743 Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) { 1744 auto LogicOpc = I.getOpcode(); 1745 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding"); 1746 1747 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1748 1749 // fold bitwise(A >> BW - 1, zext(icmp)) (BW is the scalar bits of the 1750 // type of A) 1751 // -> bitwise(zext(A < 0), zext(icmp)) 1752 // -> zext(bitwise(A < 0, icmp)) 1753 auto FoldBitwiseICmpZeroWithICmp = [&](Value *Op0, 1754 Value *Op1) -> Instruction * { 1755 ICmpInst::Predicate Pred; 1756 Value *A; 1757 bool IsMatched = 1758 match(Op0, 1759 m_OneUse(m_LShr( 1760 m_Value(A), 1761 m_SpecificInt(Op0->getType()->getScalarSizeInBits() - 1)))) && 1762 match(Op1, m_OneUse(m_ZExt(m_ICmp(Pred, m_Value(), m_Value())))); 1763 1764 if (!IsMatched) 1765 return nullptr; 1766 1767 auto *ICmpL = 1768 Builder.CreateICmpSLT(A, Constant::getNullValue(A->getType())); 1769 auto *ICmpR = cast<ZExtInst>(Op1)->getOperand(0); 1770 auto *BitwiseOp = Builder.CreateBinOp(LogicOpc, ICmpL, ICmpR); 1771 1772 return new ZExtInst(BitwiseOp, Op0->getType()); 1773 }; 1774 1775 if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op0, Op1)) 1776 return Ret; 1777 1778 if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op1, Op0)) 1779 return Ret; 1780 1781 CastInst *Cast0 = dyn_cast<CastInst>(Op0); 1782 if (!Cast0) 1783 return nullptr; 1784 1785 // This must be a cast from an integer or integer vector source type to allow 1786 // transformation of the logic operation to the source type. 1787 Type *DestTy = I.getType(); 1788 Type *SrcTy = Cast0->getSrcTy(); 1789 if (!SrcTy->isIntOrIntVectorTy()) 1790 return nullptr; 1791 1792 if (Instruction *Ret = foldLogicCastConstant(I, Cast0, *this)) 1793 return Ret; 1794 1795 CastInst *Cast1 = dyn_cast<CastInst>(Op1); 1796 if (!Cast1) 1797 return nullptr; 1798 1799 // Both operands of the logic operation are casts. The casts must be the 1800 // same kind for reduction. 1801 Instruction::CastOps CastOpcode = Cast0->getOpcode(); 1802 if (CastOpcode != Cast1->getOpcode()) 1803 return nullptr; 1804 1805 // If the source types do not match, but the casts are matching extends, we 1806 // can still narrow the logic op. 1807 if (SrcTy != Cast1->getSrcTy()) { 1808 Value *X, *Y; 1809 if (match(Cast0, m_OneUse(m_ZExtOrSExt(m_Value(X)))) && 1810 match(Cast1, m_OneUse(m_ZExtOrSExt(m_Value(Y))))) { 1811 // Cast the narrower source to the wider source type. 1812 unsigned XNumBits = X->getType()->getScalarSizeInBits(); 1813 unsigned YNumBits = Y->getType()->getScalarSizeInBits(); 1814 if (XNumBits < YNumBits) 1815 X = Builder.CreateCast(CastOpcode, X, Y->getType()); 1816 else 1817 Y = Builder.CreateCast(CastOpcode, Y, X->getType()); 1818 // Do the logic op in the intermediate width, then widen more. 1819 Value *NarrowLogic = Builder.CreateBinOp(LogicOpc, X, Y); 1820 return CastInst::Create(CastOpcode, NarrowLogic, DestTy); 1821 } 1822 1823 // Give up for other cast opcodes. 1824 return nullptr; 1825 } 1826 1827 Value *Cast0Src = Cast0->getOperand(0); 1828 Value *Cast1Src = Cast1->getOperand(0); 1829 1830 // fold logic(cast(A), cast(B)) -> cast(logic(A, B)) 1831 if ((Cast0->hasOneUse() || Cast1->hasOneUse()) && 1832 shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) { 1833 Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src, 1834 I.getName()); 1835 return CastInst::Create(CastOpcode, NewOp, DestTy); 1836 } 1837 1838 return nullptr; 1839 } 1840 1841 static Instruction *foldAndToXor(BinaryOperator &I, 1842 InstCombiner::BuilderTy &Builder) { 1843 assert(I.getOpcode() == Instruction::And); 1844 Value *Op0 = I.getOperand(0); 1845 Value *Op1 = I.getOperand(1); 1846 Value *A, *B; 1847 1848 // Operand complexity canonicalization guarantees that the 'or' is Op0. 1849 // (A | B) & ~(A & B) --> A ^ B 1850 // (A | B) & ~(B & A) --> A ^ B 1851 if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)), 1852 m_Not(m_c_And(m_Deferred(A), m_Deferred(B)))))) 1853 return BinaryOperator::CreateXor(A, B); 1854 1855 // (A | ~B) & (~A | B) --> ~(A ^ B) 1856 // (A | ~B) & (B | ~A) --> ~(A ^ B) 1857 // (~B | A) & (~A | B) --> ~(A ^ B) 1858 // (~B | A) & (B | ~A) --> ~(A ^ B) 1859 if (Op0->hasOneUse() || Op1->hasOneUse()) 1860 if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))), 1861 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) 1862 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 1863 1864 return nullptr; 1865 } 1866 1867 static Instruction *foldOrToXor(BinaryOperator &I, 1868 InstCombiner::BuilderTy &Builder) { 1869 assert(I.getOpcode() == Instruction::Or); 1870 Value *Op0 = I.getOperand(0); 1871 Value *Op1 = I.getOperand(1); 1872 Value *A, *B; 1873 1874 // Operand complexity canonicalization guarantees that the 'and' is Op0. 1875 // (A & B) | ~(A | B) --> ~(A ^ B) 1876 // (A & B) | ~(B | A) --> ~(A ^ B) 1877 if (Op0->hasOneUse() || Op1->hasOneUse()) 1878 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1879 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 1880 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 1881 1882 // Operand complexity canonicalization guarantees that the 'xor' is Op0. 1883 // (A ^ B) | ~(A | B) --> ~(A & B) 1884 // (A ^ B) | ~(B | A) --> ~(A & B) 1885 if (Op0->hasOneUse() || Op1->hasOneUse()) 1886 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1887 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 1888 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); 1889 1890 // (A & ~B) | (~A & B) --> A ^ B 1891 // (A & ~B) | (B & ~A) --> A ^ B 1892 // (~B & A) | (~A & B) --> A ^ B 1893 // (~B & A) | (B & ~A) --> A ^ B 1894 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 1895 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))) 1896 return BinaryOperator::CreateXor(A, B); 1897 1898 return nullptr; 1899 } 1900 1901 /// Return true if a constant shift amount is always less than the specified 1902 /// bit-width. If not, the shift could create poison in the narrower type. 1903 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) { 1904 APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth); 1905 return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold)); 1906 } 1907 1908 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and 1909 /// a common zext operand: and (binop (zext X), C), (zext X). 1910 Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) { 1911 // This transform could also apply to {or, and, xor}, but there are better 1912 // folds for those cases, so we don't expect those patterns here. AShr is not 1913 // handled because it should always be transformed to LShr in this sequence. 1914 // The subtract transform is different because it has a constant on the left. 1915 // Add/mul commute the constant to RHS; sub with constant RHS becomes add. 1916 Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1); 1917 Constant *C; 1918 if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) && 1919 !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) && 1920 !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) && 1921 !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) && 1922 !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1))))) 1923 return nullptr; 1924 1925 Value *X; 1926 if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3)) 1927 return nullptr; 1928 1929 Type *Ty = And.getType(); 1930 if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType())) 1931 return nullptr; 1932 1933 // If we're narrowing a shift, the shift amount must be safe (less than the 1934 // width) in the narrower type. If the shift amount is greater, instsimplify 1935 // usually handles that case, but we can't guarantee/assert it. 1936 Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode(); 1937 if (Opc == Instruction::LShr || Opc == Instruction::Shl) 1938 if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits())) 1939 return nullptr; 1940 1941 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X) 1942 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X) 1943 Value *NewC = ConstantExpr::getTrunc(C, X->getType()); 1944 Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X) 1945 : Builder.CreateBinOp(Opc, X, NewC); 1946 return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty); 1947 } 1948 1949 /// Try folding relatively complex patterns for both And and Or operations 1950 /// with all And and Or swapped. 1951 static Instruction *foldComplexAndOrPatterns(BinaryOperator &I, 1952 InstCombiner::BuilderTy &Builder) { 1953 const Instruction::BinaryOps Opcode = I.getOpcode(); 1954 assert(Opcode == Instruction::And || Opcode == Instruction::Or); 1955 1956 // Flip the logic operation. 1957 const Instruction::BinaryOps FlippedOpcode = 1958 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; 1959 1960 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1961 Value *A, *B, *C, *X, *Y, *Dummy; 1962 1963 // Match following expressions: 1964 // (~(A | B) & C) 1965 // (~(A & B) | C) 1966 // Captures X = ~(A | B) or ~(A & B) 1967 const auto matchNotOrAnd = 1968 [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C, 1969 Value *&X, bool CountUses = false) -> bool { 1970 if (CountUses && !Op->hasOneUse()) 1971 return false; 1972 1973 if (match(Op, m_c_BinOp(FlippedOpcode, 1974 m_CombineAnd(m_Value(X), 1975 m_Not(m_c_BinOp(Opcode, m_A, m_B))), 1976 m_C))) 1977 return !CountUses || X->hasOneUse(); 1978 1979 return false; 1980 }; 1981 1982 // (~(A | B) & C) | ... --> ... 1983 // (~(A & B) | C) & ... --> ... 1984 // TODO: One use checks are conservative. We just need to check that a total 1985 // number of multiple used values does not exceed reduction 1986 // in operations. 1987 if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) { 1988 // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A 1989 // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A) 1990 if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy, 1991 true)) { 1992 Value *Xor = Builder.CreateXor(B, C); 1993 return (Opcode == Instruction::Or) 1994 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A)) 1995 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A)); 1996 } 1997 1998 // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B 1999 // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B) 2000 if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy, 2001 true)) { 2002 Value *Xor = Builder.CreateXor(A, C); 2003 return (Opcode == Instruction::Or) 2004 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B)) 2005 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B)); 2006 } 2007 2008 // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A) 2009 // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A) 2010 if (match(Op1, m_OneUse(m_Not(m_OneUse( 2011 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C))))))) 2012 return BinaryOperator::CreateNot(Builder.CreateBinOp( 2013 Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A)); 2014 2015 // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B) 2016 // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B) 2017 if (match(Op1, m_OneUse(m_Not(m_OneUse( 2018 m_c_BinOp(Opcode, m_Specific(B), m_Specific(C))))))) 2019 return BinaryOperator::CreateNot(Builder.CreateBinOp( 2020 Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B)); 2021 2022 // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B))) 2023 // Note, the pattern with swapped and/or is not handled because the 2024 // result is more undefined than a source: 2025 // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid. 2026 if (Opcode == Instruction::Or && Op0->hasOneUse() && 2027 match(Op1, m_OneUse(m_Not(m_CombineAnd( 2028 m_Value(Y), 2029 m_c_BinOp(Opcode, m_Specific(C), 2030 m_c_Xor(m_Specific(A), m_Specific(B)))))))) { 2031 // X = ~(A | B) 2032 // Y = (C | (A ^ B) 2033 Value *Or = cast<BinaryOperator>(X)->getOperand(0); 2034 return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y)); 2035 } 2036 } 2037 2038 // (~A & B & C) | ... --> ... 2039 // (~A | B | C) | ... --> ... 2040 // TODO: One use checks are conservative. We just need to check that a total 2041 // number of multiple used values does not exceed reduction 2042 // in operations. 2043 if (match(Op0, 2044 m_OneUse(m_c_BinOp(FlippedOpcode, 2045 m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)), 2046 m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) || 2047 match(Op0, m_OneUse(m_c_BinOp( 2048 FlippedOpcode, 2049 m_c_BinOp(FlippedOpcode, m_Value(C), 2050 m_CombineAnd(m_Value(X), m_Not(m_Value(A)))), 2051 m_Value(B))))) { 2052 // X = ~A 2053 // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C)) 2054 // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C)) 2055 if (match(Op1, m_OneUse(m_Not(m_c_BinOp( 2056 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)), 2057 m_Specific(C))))) || 2058 match(Op1, m_OneUse(m_Not(m_c_BinOp( 2059 Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)), 2060 m_Specific(A))))) || 2061 match(Op1, m_OneUse(m_Not(m_c_BinOp( 2062 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)), 2063 m_Specific(B)))))) { 2064 Value *Xor = Builder.CreateXor(B, C); 2065 return (Opcode == Instruction::Or) 2066 ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A)) 2067 : BinaryOperator::CreateOr(Xor, X); 2068 } 2069 2070 // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A 2071 // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A 2072 if (match(Op1, m_OneUse(m_Not(m_OneUse( 2073 m_c_BinOp(Opcode, m_Specific(A), m_Specific(B))))))) 2074 return BinaryOperator::Create( 2075 FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)), 2076 X); 2077 2078 // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A 2079 // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A 2080 if (match(Op1, m_OneUse(m_Not(m_OneUse( 2081 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C))))))) 2082 return BinaryOperator::Create( 2083 FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)), 2084 X); 2085 } 2086 2087 return nullptr; 2088 } 2089 2090 /// Try to reassociate a pair of binops so that values with one use only are 2091 /// part of the same instruction. This may enable folds that are limited with 2092 /// multi-use restrictions and makes it more likely to match other patterns that 2093 /// are looking for a common operand. 2094 static Instruction *reassociateForUses(BinaryOperator &BO, 2095 InstCombinerImpl::BuilderTy &Builder) { 2096 Instruction::BinaryOps Opcode = BO.getOpcode(); 2097 Value *X, *Y, *Z; 2098 if (match(&BO, 2099 m_c_BinOp(Opcode, m_OneUse(m_BinOp(Opcode, m_Value(X), m_Value(Y))), 2100 m_OneUse(m_Value(Z))))) { 2101 if (!isa<Constant>(X) && !isa<Constant>(Y) && !isa<Constant>(Z)) { 2102 // (X op Y) op Z --> (Y op Z) op X 2103 if (!X->hasOneUse()) { 2104 Value *YZ = Builder.CreateBinOp(Opcode, Y, Z); 2105 return BinaryOperator::Create(Opcode, YZ, X); 2106 } 2107 // (X op Y) op Z --> (X op Z) op Y 2108 if (!Y->hasOneUse()) { 2109 Value *XZ = Builder.CreateBinOp(Opcode, X, Z); 2110 return BinaryOperator::Create(Opcode, XZ, Y); 2111 } 2112 } 2113 } 2114 2115 return nullptr; 2116 } 2117 2118 // Match 2119 // (X + C2) | C 2120 // (X + C2) ^ C 2121 // (X + C2) & C 2122 // and convert to do the bitwise logic first: 2123 // (X | C) + C2 2124 // (X ^ C) + C2 2125 // (X & C) + C2 2126 // iff bits affected by logic op are lower than last bit affected by math op 2127 static Instruction *canonicalizeLogicFirst(BinaryOperator &I, 2128 InstCombiner::BuilderTy &Builder) { 2129 Type *Ty = I.getType(); 2130 Instruction::BinaryOps OpC = I.getOpcode(); 2131 Value *Op0 = I.getOperand(0); 2132 Value *Op1 = I.getOperand(1); 2133 Value *X; 2134 const APInt *C, *C2; 2135 2136 if (!(match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C2)))) && 2137 match(Op1, m_APInt(C)))) 2138 return nullptr; 2139 2140 unsigned Width = Ty->getScalarSizeInBits(); 2141 unsigned LastOneMath = Width - C2->countr_zero(); 2142 2143 switch (OpC) { 2144 case Instruction::And: 2145 if (C->countl_one() < LastOneMath) 2146 return nullptr; 2147 break; 2148 case Instruction::Xor: 2149 case Instruction::Or: 2150 if (C->countl_zero() < LastOneMath) 2151 return nullptr; 2152 break; 2153 default: 2154 llvm_unreachable("Unexpected BinaryOp!"); 2155 } 2156 2157 Value *NewBinOp = Builder.CreateBinOp(OpC, X, ConstantInt::get(Ty, *C)); 2158 return BinaryOperator::CreateWithCopiedFlags(Instruction::Add, NewBinOp, 2159 ConstantInt::get(Ty, *C2), Op0); 2160 } 2161 2162 // binop(shift(ShiftedC1, ShAmt), shift(ShiftedC2, add(ShAmt, AddC))) -> 2163 // shift(binop(ShiftedC1, shift(ShiftedC2, AddC)), ShAmt) 2164 // where both shifts are the same and AddC is a valid shift amount. 2165 Instruction *InstCombinerImpl::foldBinOpOfDisplacedShifts(BinaryOperator &I) { 2166 assert((I.isBitwiseLogicOp() || I.getOpcode() == Instruction::Add) && 2167 "Unexpected opcode"); 2168 2169 Value *ShAmt; 2170 Constant *ShiftedC1, *ShiftedC2, *AddC; 2171 Type *Ty = I.getType(); 2172 unsigned BitWidth = Ty->getScalarSizeInBits(); 2173 if (!match(&I, m_c_BinOp(m_Shift(m_ImmConstant(ShiftedC1), m_Value(ShAmt)), 2174 m_Shift(m_ImmConstant(ShiftedC2), 2175 m_AddLike(m_Deferred(ShAmt), 2176 m_ImmConstant(AddC)))))) 2177 return nullptr; 2178 2179 // Make sure the add constant is a valid shift amount. 2180 if (!match(AddC, 2181 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(BitWidth, BitWidth)))) 2182 return nullptr; 2183 2184 // Avoid constant expressions. 2185 auto *Op0Inst = dyn_cast<Instruction>(I.getOperand(0)); 2186 auto *Op1Inst = dyn_cast<Instruction>(I.getOperand(1)); 2187 if (!Op0Inst || !Op1Inst) 2188 return nullptr; 2189 2190 // Both shifts must be the same. 2191 Instruction::BinaryOps ShiftOp = 2192 static_cast<Instruction::BinaryOps>(Op0Inst->getOpcode()); 2193 if (ShiftOp != Op1Inst->getOpcode()) 2194 return nullptr; 2195 2196 // For adds, only left shifts are supported. 2197 if (I.getOpcode() == Instruction::Add && ShiftOp != Instruction::Shl) 2198 return nullptr; 2199 2200 Value *NewC = Builder.CreateBinOp( 2201 I.getOpcode(), ShiftedC1, Builder.CreateBinOp(ShiftOp, ShiftedC2, AddC)); 2202 return BinaryOperator::Create(ShiftOp, NewC, ShAmt); 2203 } 2204 2205 // Fold and/or/xor with two equal intrinsic IDs: 2206 // bitwise(fshl (A, B, ShAmt), fshl(C, D, ShAmt)) 2207 // -> fshl(bitwise(A, C), bitwise(B, D), ShAmt) 2208 // bitwise(fshr (A, B, ShAmt), fshr(C, D, ShAmt)) 2209 // -> fshr(bitwise(A, C), bitwise(B, D), ShAmt) 2210 // bitwise(bswap(A), bswap(B)) -> bswap(bitwise(A, B)) 2211 // bitwise(bswap(A), C) -> bswap(bitwise(A, bswap(C))) 2212 // bitwise(bitreverse(A), bitreverse(B)) -> bitreverse(bitwise(A, B)) 2213 // bitwise(bitreverse(A), C) -> bitreverse(bitwise(A, bitreverse(C))) 2214 static Instruction * 2215 foldBitwiseLogicWithIntrinsics(BinaryOperator &I, 2216 InstCombiner::BuilderTy &Builder) { 2217 assert(I.isBitwiseLogicOp() && "Should and/or/xor"); 2218 if (!I.getOperand(0)->hasOneUse()) 2219 return nullptr; 2220 IntrinsicInst *X = dyn_cast<IntrinsicInst>(I.getOperand(0)); 2221 if (!X) 2222 return nullptr; 2223 2224 IntrinsicInst *Y = dyn_cast<IntrinsicInst>(I.getOperand(1)); 2225 if (Y && (!Y->hasOneUse() || X->getIntrinsicID() != Y->getIntrinsicID())) 2226 return nullptr; 2227 2228 Intrinsic::ID IID = X->getIntrinsicID(); 2229 const APInt *RHSC; 2230 // Try to match constant RHS. 2231 if (!Y && (!(IID == Intrinsic::bswap || IID == Intrinsic::bitreverse) || 2232 !match(I.getOperand(1), m_APInt(RHSC)))) 2233 return nullptr; 2234 2235 switch (IID) { 2236 case Intrinsic::fshl: 2237 case Intrinsic::fshr: { 2238 if (X->getOperand(2) != Y->getOperand(2)) 2239 return nullptr; 2240 Value *NewOp0 = 2241 Builder.CreateBinOp(I.getOpcode(), X->getOperand(0), Y->getOperand(0)); 2242 Value *NewOp1 = 2243 Builder.CreateBinOp(I.getOpcode(), X->getOperand(1), Y->getOperand(1)); 2244 Function *F = Intrinsic::getDeclaration(I.getModule(), IID, I.getType()); 2245 return CallInst::Create(F, {NewOp0, NewOp1, X->getOperand(2)}); 2246 } 2247 case Intrinsic::bswap: 2248 case Intrinsic::bitreverse: { 2249 Value *NewOp0 = Builder.CreateBinOp( 2250 I.getOpcode(), X->getOperand(0), 2251 Y ? Y->getOperand(0) 2252 : ConstantInt::get(I.getType(), IID == Intrinsic::bswap 2253 ? RHSC->byteSwap() 2254 : RHSC->reverseBits())); 2255 Function *F = Intrinsic::getDeclaration(I.getModule(), IID, I.getType()); 2256 return CallInst::Create(F, {NewOp0}); 2257 } 2258 default: 2259 return nullptr; 2260 } 2261 } 2262 2263 // Try to simplify V by replacing occurrences of Op with RepOp, but only look 2264 // through bitwise operations. In particular, for X | Y we try to replace Y with 2265 // 0 inside X and for X & Y we try to replace Y with -1 inside X. 2266 // Return the simplified result of X if successful, and nullptr otherwise. 2267 // If SimplifyOnly is true, no new instructions will be created. 2268 static Value *simplifyAndOrWithOpReplaced(Value *V, Value *Op, Value *RepOp, 2269 bool SimplifyOnly, 2270 InstCombinerImpl &IC, 2271 unsigned Depth = 0) { 2272 if (Op == RepOp) 2273 return nullptr; 2274 2275 if (V == Op) 2276 return RepOp; 2277 2278 auto *I = dyn_cast<BinaryOperator>(V); 2279 if (!I || !I->isBitwiseLogicOp() || Depth >= 3) 2280 return nullptr; 2281 2282 if (!I->hasOneUse()) 2283 SimplifyOnly = true; 2284 2285 Value *NewOp0 = simplifyAndOrWithOpReplaced(I->getOperand(0), Op, RepOp, 2286 SimplifyOnly, IC, Depth + 1); 2287 Value *NewOp1 = simplifyAndOrWithOpReplaced(I->getOperand(1), Op, RepOp, 2288 SimplifyOnly, IC, Depth + 1); 2289 if (!NewOp0 && !NewOp1) 2290 return nullptr; 2291 2292 if (!NewOp0) 2293 NewOp0 = I->getOperand(0); 2294 if (!NewOp1) 2295 NewOp1 = I->getOperand(1); 2296 2297 if (Value *Res = simplifyBinOp(I->getOpcode(), NewOp0, NewOp1, 2298 IC.getSimplifyQuery().getWithInstruction(I))) 2299 return Res; 2300 2301 if (SimplifyOnly) 2302 return nullptr; 2303 return IC.Builder.CreateBinOp(I->getOpcode(), NewOp0, NewOp1); 2304 } 2305 2306 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 2307 // here. We should standardize that construct where it is needed or choose some 2308 // other way to ensure that commutated variants of patterns are not missed. 2309 Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) { 2310 Type *Ty = I.getType(); 2311 2312 if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1), 2313 SQ.getWithInstruction(&I))) 2314 return replaceInstUsesWith(I, V); 2315 2316 if (SimplifyAssociativeOrCommutative(I)) 2317 return &I; 2318 2319 if (Instruction *X = foldVectorBinop(I)) 2320 return X; 2321 2322 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2323 return Phi; 2324 2325 // See if we can simplify any instructions used by the instruction whose sole 2326 // purpose is to compute bits we don't care about. 2327 if (SimplifyDemandedInstructionBits(I)) 2328 return &I; 2329 2330 // Do this before using distributive laws to catch simple and/or/not patterns. 2331 if (Instruction *Xor = foldAndToXor(I, Builder)) 2332 return Xor; 2333 2334 if (Instruction *X = foldComplexAndOrPatterns(I, Builder)) 2335 return X; 2336 2337 // (A|B)&(A|C) -> A|(B&C) etc 2338 if (Value *V = foldUsingDistributiveLaws(I)) 2339 return replaceInstUsesWith(I, V); 2340 2341 if (Instruction *R = foldBinOpShiftWithShift(I)) 2342 return R; 2343 2344 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2345 2346 Value *X, *Y; 2347 const APInt *C; 2348 if ((match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) || 2349 (match(Op0, m_OneUse(m_Shl(m_APInt(C), m_Value(X)))) && (*C)[0])) && 2350 match(Op1, m_One())) { 2351 // (1 >> X) & 1 --> zext(X == 0) 2352 // (C << X) & 1 --> zext(X == 0), when C is odd 2353 Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0)); 2354 return new ZExtInst(IsZero, Ty); 2355 } 2356 2357 // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y 2358 Value *Neg; 2359 if (match(&I, 2360 m_c_And(m_CombineAnd(m_Value(Neg), 2361 m_OneUse(m_Neg(m_And(m_Value(), m_One())))), 2362 m_Value(Y)))) { 2363 Value *Cmp = Builder.CreateIsNull(Neg); 2364 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Y); 2365 } 2366 2367 // Canonicalize: 2368 // (X +/- Y) & Y --> ~X & Y when Y is a power of 2. 2369 if (match(&I, m_c_And(m_Value(Y), m_OneUse(m_CombineOr( 2370 m_c_Add(m_Value(X), m_Deferred(Y)), 2371 m_Sub(m_Value(X), m_Deferred(Y)))))) && 2372 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, /*Depth*/ 0, &I)) 2373 return BinaryOperator::CreateAnd(Builder.CreateNot(X), Y); 2374 2375 if (match(Op1, m_APInt(C))) { 2376 const APInt *XorC; 2377 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) { 2378 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) 2379 Constant *NewC = ConstantInt::get(Ty, *C & *XorC); 2380 Value *And = Builder.CreateAnd(X, Op1); 2381 And->takeName(Op0); 2382 return BinaryOperator::CreateXor(And, NewC); 2383 } 2384 2385 const APInt *OrC; 2386 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) { 2387 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2) 2388 // NOTE: This reduces the number of bits set in the & mask, which 2389 // can expose opportunities for store narrowing for scalars. 2390 // NOTE: SimplifyDemandedBits should have already removed bits from C1 2391 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in 2392 // above, but this feels safer. 2393 APInt Together = *C & *OrC; 2394 Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C)); 2395 And->takeName(Op0); 2396 return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together)); 2397 } 2398 2399 unsigned Width = Ty->getScalarSizeInBits(); 2400 const APInt *ShiftC; 2401 if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) && 2402 ShiftC->ult(Width)) { 2403 if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) { 2404 // We are clearing high bits that were potentially set by sext+ashr: 2405 // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC 2406 Value *Sext = Builder.CreateSExt(X, Ty); 2407 Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width)); 2408 return BinaryOperator::CreateLShr(Sext, ShAmtC); 2409 } 2410 } 2411 2412 // If this 'and' clears the sign-bits added by ashr, replace with lshr: 2413 // and (ashr X, ShiftC), C --> lshr X, ShiftC 2414 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) && 2415 C->isMask(Width - ShiftC->getZExtValue())) 2416 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC)); 2417 2418 const APInt *AddC; 2419 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) { 2420 // If we are masking the result of the add down to exactly one bit and 2421 // the constant we are adding has no bits set below that bit, then the 2422 // add is flipping a single bit. Example: 2423 // (X + 4) & 4 --> (X & 4) ^ 4 2424 if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) { 2425 assert((*C & *AddC) != 0 && "Expected common bit"); 2426 Value *NewAnd = Builder.CreateAnd(X, Op1); 2427 return BinaryOperator::CreateXor(NewAnd, Op1); 2428 } 2429 } 2430 2431 // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the 2432 // bitwidth of X and OP behaves well when given trunc(C1) and X. 2433 auto isNarrowableBinOpcode = [](BinaryOperator *B) { 2434 switch (B->getOpcode()) { 2435 case Instruction::Xor: 2436 case Instruction::Or: 2437 case Instruction::Mul: 2438 case Instruction::Add: 2439 case Instruction::Sub: 2440 return true; 2441 default: 2442 return false; 2443 } 2444 }; 2445 BinaryOperator *BO; 2446 if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) { 2447 Instruction::BinaryOps BOpcode = BO->getOpcode(); 2448 Value *X; 2449 const APInt *C1; 2450 // TODO: The one-use restrictions could be relaxed a little if the AND 2451 // is going to be removed. 2452 // Try to narrow the 'and' and a binop with constant operand: 2453 // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC) 2454 if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) && 2455 C->isIntN(X->getType()->getScalarSizeInBits())) { 2456 unsigned XWidth = X->getType()->getScalarSizeInBits(); 2457 Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth)); 2458 Value *BinOp = isa<ZExtInst>(BO->getOperand(0)) 2459 ? Builder.CreateBinOp(BOpcode, X, TruncC1) 2460 : Builder.CreateBinOp(BOpcode, TruncC1, X); 2461 Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth)); 2462 Value *And = Builder.CreateAnd(BinOp, TruncC); 2463 return new ZExtInst(And, Ty); 2464 } 2465 2466 // Similar to above: if the mask matches the zext input width, then the 2467 // 'and' can be eliminated, so we can truncate the other variable op: 2468 // and (bo (zext X), Y), C --> zext (bo X, (trunc Y)) 2469 if (isa<Instruction>(BO->getOperand(0)) && 2470 match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) && 2471 C->isMask(X->getType()->getScalarSizeInBits())) { 2472 Y = BO->getOperand(1); 2473 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr"); 2474 Value *NewBO = 2475 Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow"); 2476 return new ZExtInst(NewBO, Ty); 2477 } 2478 // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X) 2479 if (isa<Instruction>(BO->getOperand(1)) && 2480 match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) && 2481 C->isMask(X->getType()->getScalarSizeInBits())) { 2482 Y = BO->getOperand(0); 2483 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr"); 2484 Value *NewBO = 2485 Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow"); 2486 return new ZExtInst(NewBO, Ty); 2487 } 2488 } 2489 2490 // This is intentionally placed after the narrowing transforms for 2491 // efficiency (transform directly to the narrow logic op if possible). 2492 // If the mask is only needed on one incoming arm, push the 'and' op up. 2493 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) || 2494 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 2495 APInt NotAndMask(~(*C)); 2496 BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode(); 2497 if (MaskedValueIsZero(X, NotAndMask, 0, &I)) { 2498 // Not masking anything out for the LHS, move mask to RHS. 2499 // and ({x}or X, Y), C --> {x}or X, (and Y, C) 2500 Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked"); 2501 return BinaryOperator::Create(BinOp, X, NewRHS); 2502 } 2503 if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) { 2504 // Not masking anything out for the RHS, move mask to LHS. 2505 // and ({x}or X, Y), C --> {x}or (and X, C), Y 2506 Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked"); 2507 return BinaryOperator::Create(BinOp, NewLHS, Y); 2508 } 2509 } 2510 2511 // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2 2512 // constant, test if the shift amount equals the offset bit index: 2513 // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0 2514 // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0 2515 if (C->isPowerOf2() && 2516 match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) { 2517 int Log2ShiftC = ShiftC->exactLogBase2(); 2518 int Log2C = C->exactLogBase2(); 2519 bool IsShiftLeft = 2520 cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl; 2521 int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C; 2522 assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask"); 2523 Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum)); 2524 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C), 2525 ConstantInt::getNullValue(Ty)); 2526 } 2527 2528 Constant *C1, *C2; 2529 const APInt *C3 = C; 2530 Value *X; 2531 if (C3->isPowerOf2()) { 2532 Constant *Log2C3 = ConstantInt::get(Ty, C3->countr_zero()); 2533 if (match(Op0, m_OneUse(m_LShr(m_Shl(m_ImmConstant(C1), m_Value(X)), 2534 m_ImmConstant(C2)))) && 2535 match(C1, m_Power2())) { 2536 Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1); 2537 Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3); 2538 KnownBits KnownLShrc = computeKnownBits(LshrC, 0, nullptr); 2539 if (KnownLShrc.getMaxValue().ult(Width)) { 2540 // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth: 2541 // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0 2542 Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1); 2543 Value *Cmp = Builder.CreateICmpEQ(X, CmpC); 2544 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3), 2545 ConstantInt::getNullValue(Ty)); 2546 } 2547 } 2548 2549 if (match(Op0, m_OneUse(m_Shl(m_LShr(m_ImmConstant(C1), m_Value(X)), 2550 m_ImmConstant(C2)))) && 2551 match(C1, m_Power2())) { 2552 Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1); 2553 Constant *Cmp = 2554 ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, Log2C3, C2, DL); 2555 if (Cmp && Cmp->isZeroValue()) { 2556 // iff C1,C3 is pow2 and Log2(C3) >= C2: 2557 // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0 2558 Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1); 2559 Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3); 2560 Value *Cmp = Builder.CreateICmpEQ(X, CmpC); 2561 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3), 2562 ConstantInt::getNullValue(Ty)); 2563 } 2564 } 2565 } 2566 } 2567 2568 // If we are clearing the sign bit of a floating-point value, convert this to 2569 // fabs, then cast back to integer. 2570 // 2571 // This is a generous interpretation for noimplicitfloat, this is not a true 2572 // floating-point operation. 2573 // 2574 // Assumes any IEEE-represented type has the sign bit in the high bit. 2575 // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt 2576 Value *CastOp; 2577 if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) && 2578 match(Op1, m_MaxSignedValue()) && 2579 !Builder.GetInsertBlock()->getParent()->hasFnAttribute( 2580 Attribute::NoImplicitFloat)) { 2581 Type *EltTy = CastOp->getType()->getScalarType(); 2582 if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) { 2583 Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp); 2584 return new BitCastInst(FAbs, I.getType()); 2585 } 2586 } 2587 2588 // and(shl(zext(X), Y), SignMask) -> and(sext(X), SignMask) 2589 // where Y is a valid shift amount. 2590 if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))), 2591 m_SignMask())) && 2592 match(Y, m_SpecificInt_ICMP( 2593 ICmpInst::Predicate::ICMP_EQ, 2594 APInt(Ty->getScalarSizeInBits(), 2595 Ty->getScalarSizeInBits() - 2596 X->getType()->getScalarSizeInBits())))) { 2597 auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext"); 2598 return BinaryOperator::CreateAnd(SExt, Op1); 2599 } 2600 2601 if (Instruction *Z = narrowMaskedBinOp(I)) 2602 return Z; 2603 2604 if (I.getType()->isIntOrIntVectorTy(1)) { 2605 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) { 2606 if (auto *R = 2607 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true)) 2608 return R; 2609 } 2610 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) { 2611 if (auto *R = 2612 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true)) 2613 return R; 2614 } 2615 } 2616 2617 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 2618 return FoldedLogic; 2619 2620 if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this)) 2621 return DeMorgan; 2622 2623 { 2624 Value *A, *B, *C; 2625 // A & ~(A ^ B) --> A & B 2626 if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B))))) 2627 return BinaryOperator::CreateAnd(Op0, B); 2628 // ~(A ^ B) & A --> A & B 2629 if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B))))) 2630 return BinaryOperator::CreateAnd(Op1, B); 2631 2632 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C 2633 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2634 match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) { 2635 Value *NotC = Op1->hasOneUse() 2636 ? Builder.CreateNot(C) 2637 : getFreelyInverted(C, C->hasOneUse(), &Builder); 2638 if (NotC != nullptr) 2639 return BinaryOperator::CreateAnd(Op0, NotC); 2640 } 2641 2642 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C 2643 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))) && 2644 match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) { 2645 Value *NotC = Op0->hasOneUse() 2646 ? Builder.CreateNot(C) 2647 : getFreelyInverted(C, C->hasOneUse(), &Builder); 2648 if (NotC != nullptr) 2649 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C)); 2650 } 2651 2652 // (A | B) & (~A ^ B) -> A & B 2653 // (A | B) & (B ^ ~A) -> A & B 2654 // (B | A) & (~A ^ B) -> A & B 2655 // (B | A) & (B ^ ~A) -> A & B 2656 if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2657 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2658 return BinaryOperator::CreateAnd(A, B); 2659 2660 // (~A ^ B) & (A | B) -> A & B 2661 // (~A ^ B) & (B | A) -> A & B 2662 // (B ^ ~A) & (A | B) -> A & B 2663 // (B ^ ~A) & (B | A) -> A & B 2664 if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2665 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 2666 return BinaryOperator::CreateAnd(A, B); 2667 2668 // (~A | B) & (A ^ B) -> ~A & B 2669 // (~A | B) & (B ^ A) -> ~A & B 2670 // (B | ~A) & (A ^ B) -> ~A & B 2671 // (B | ~A) & (B ^ A) -> ~A & B 2672 if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2673 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B)))) 2674 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 2675 2676 // (A ^ B) & (~A | B) -> ~A & B 2677 // (B ^ A) & (~A | B) -> ~A & B 2678 // (A ^ B) & (B | ~A) -> ~A & B 2679 // (B ^ A) & (B | ~A) -> ~A & B 2680 if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2681 match(Op0, m_c_Xor(m_Specific(A), m_Specific(B)))) 2682 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 2683 } 2684 2685 { 2686 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 2687 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 2688 if (LHS && RHS) 2689 if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ true)) 2690 return replaceInstUsesWith(I, Res); 2691 2692 // TODO: Make this recursive; it's a little tricky because an arbitrary 2693 // number of 'and' instructions might have to be created. 2694 if (LHS && match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) { 2695 bool IsLogical = isa<SelectInst>(Op1); 2696 // LHS & (X && Y) --> (LHS && X) && Y 2697 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2698 if (Value *Res = 2699 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true, IsLogical)) 2700 return replaceInstUsesWith(I, IsLogical 2701 ? Builder.CreateLogicalAnd(Res, Y) 2702 : Builder.CreateAnd(Res, Y)); 2703 // LHS & (X && Y) --> X && (LHS & Y) 2704 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2705 if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true, 2706 /* IsLogical */ false)) 2707 return replaceInstUsesWith(I, IsLogical 2708 ? Builder.CreateLogicalAnd(X, Res) 2709 : Builder.CreateAnd(X, Res)); 2710 } 2711 if (RHS && match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) { 2712 bool IsLogical = isa<SelectInst>(Op0); 2713 // (X && Y) & RHS --> (X && RHS) && Y 2714 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 2715 if (Value *Res = 2716 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true, IsLogical)) 2717 return replaceInstUsesWith(I, IsLogical 2718 ? Builder.CreateLogicalAnd(Res, Y) 2719 : Builder.CreateAnd(Res, Y)); 2720 // (X && Y) & RHS --> X && (Y & RHS) 2721 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 2722 if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true, 2723 /* IsLogical */ false)) 2724 return replaceInstUsesWith(I, IsLogical 2725 ? Builder.CreateLogicalAnd(X, Res) 2726 : Builder.CreateAnd(X, Res)); 2727 } 2728 } 2729 2730 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 2731 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 2732 if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true)) 2733 return replaceInstUsesWith(I, Res); 2734 2735 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) 2736 return FoldedFCmps; 2737 2738 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I)) 2739 return CastedAnd; 2740 2741 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I)) 2742 return Sel; 2743 2744 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>. 2745 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold 2746 // with binop identity constant. But creating a select with non-constant 2747 // arm may not be reversible due to poison semantics. Is that a good 2748 // canonicalization? 2749 Value *A, *B; 2750 if (match(&I, m_c_And(m_SExt(m_Value(A)), m_Value(B))) && 2751 A->getType()->isIntOrIntVectorTy(1)) 2752 return SelectInst::Create(A, B, Constant::getNullValue(Ty)); 2753 2754 // Similarly, a 'not' of the bool translates to a swap of the select arms: 2755 // ~sext(A) & B / B & ~sext(A) --> A ? 0 : B 2756 if (match(&I, m_c_And(m_Not(m_SExt(m_Value(A))), m_Value(B))) && 2757 A->getType()->isIntOrIntVectorTy(1)) 2758 return SelectInst::Create(A, Constant::getNullValue(Ty), B); 2759 2760 // and(zext(A), B) -> A ? (B & 1) : 0 2761 if (match(&I, m_c_And(m_OneUse(m_ZExt(m_Value(A))), m_Value(B))) && 2762 A->getType()->isIntOrIntVectorTy(1)) 2763 return SelectInst::Create(A, Builder.CreateAnd(B, ConstantInt::get(Ty, 1)), 2764 Constant::getNullValue(Ty)); 2765 2766 // (-1 + A) & B --> A ? 0 : B where A is 0/1. 2767 if (match(&I, m_c_And(m_OneUse(m_Add(m_ZExtOrSelf(m_Value(A)), m_AllOnes())), 2768 m_Value(B)))) { 2769 if (A->getType()->isIntOrIntVectorTy(1)) 2770 return SelectInst::Create(A, Constant::getNullValue(Ty), B); 2771 if (computeKnownBits(A, /* Depth */ 0, &I).countMaxActiveBits() <= 1) { 2772 return SelectInst::Create( 2773 Builder.CreateICmpEQ(A, Constant::getNullValue(A->getType())), B, 2774 Constant::getNullValue(Ty)); 2775 } 2776 } 2777 2778 // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0 -- with optional sext 2779 if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf( 2780 m_AShr(m_Value(X), m_APIntAllowPoison(C)))), 2781 m_Value(Y))) && 2782 *C == X->getType()->getScalarSizeInBits() - 1) { 2783 Value *IsNeg = Builder.CreateIsNeg(X, "isneg"); 2784 return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty)); 2785 } 2786 // If there's a 'not' of the shifted value, swap the select operands: 2787 // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y -- with optional sext 2788 if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf( 2789 m_Not(m_AShr(m_Value(X), m_APIntAllowPoison(C))))), 2790 m_Value(Y))) && 2791 *C == X->getType()->getScalarSizeInBits() - 1) { 2792 Value *IsNeg = Builder.CreateIsNeg(X, "isneg"); 2793 return SelectInst::Create(IsNeg, ConstantInt::getNullValue(Ty), Y); 2794 } 2795 2796 // (~x) & y --> ~(x | (~y)) iff that gets rid of inversions 2797 if (sinkNotIntoOtherHandOfLogicalOp(I)) 2798 return &I; 2799 2800 // An and recurrence w/loop invariant step is equivelent to (and start, step) 2801 PHINode *PN = nullptr; 2802 Value *Start = nullptr, *Step = nullptr; 2803 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN)) 2804 return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step)); 2805 2806 if (Instruction *R = reassociateForUses(I, Builder)) 2807 return R; 2808 2809 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) 2810 return Canonicalized; 2811 2812 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1)) 2813 return Folded; 2814 2815 if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 2816 return Res; 2817 2818 if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder)) 2819 return Res; 2820 2821 if (Value *V = 2822 simplifyAndOrWithOpReplaced(Op0, Op1, Constant::getAllOnesValue(Ty), 2823 /*SimplifyOnly*/ false, *this)) 2824 return BinaryOperator::CreateAnd(V, Op1); 2825 if (Value *V = 2826 simplifyAndOrWithOpReplaced(Op1, Op0, Constant::getAllOnesValue(Ty), 2827 /*SimplifyOnly*/ false, *this)) 2828 return BinaryOperator::CreateAnd(Op0, V); 2829 2830 return nullptr; 2831 } 2832 2833 Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I, 2834 bool MatchBSwaps, 2835 bool MatchBitReversals) { 2836 SmallVector<Instruction *, 4> Insts; 2837 if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals, 2838 Insts)) 2839 return nullptr; 2840 Instruction *LastInst = Insts.pop_back_val(); 2841 LastInst->removeFromParent(); 2842 2843 for (auto *Inst : Insts) 2844 Worklist.push(Inst); 2845 return LastInst; 2846 } 2847 2848 std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>> 2849 InstCombinerImpl::convertOrOfShiftsToFunnelShift(Instruction &Or) { 2850 // TODO: Can we reduce the code duplication between this and the related 2851 // rotate matching code under visitSelect and visitTrunc? 2852 assert(Or.getOpcode() == BinaryOperator::Or && "Expecting or instruction"); 2853 2854 unsigned Width = Or.getType()->getScalarSizeInBits(); 2855 2856 Instruction *Or0, *Or1; 2857 if (!match(Or.getOperand(0), m_Instruction(Or0)) || 2858 !match(Or.getOperand(1), m_Instruction(Or1))) 2859 return std::nullopt; 2860 2861 bool IsFshl = true; // Sub on LSHR. 2862 SmallVector<Value *, 3> FShiftArgs; 2863 2864 // First, find an or'd pair of opposite shifts: 2865 // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1) 2866 if (isa<BinaryOperator>(Or0) && isa<BinaryOperator>(Or1)) { 2867 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 2868 if (!match(Or0, 2869 m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 2870 !match(Or1, 2871 m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 2872 Or0->getOpcode() == Or1->getOpcode()) 2873 return std::nullopt; 2874 2875 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 2876 if (Or0->getOpcode() == BinaryOperator::LShr) { 2877 std::swap(Or0, Or1); 2878 std::swap(ShVal0, ShVal1); 2879 std::swap(ShAmt0, ShAmt1); 2880 } 2881 assert(Or0->getOpcode() == BinaryOperator::Shl && 2882 Or1->getOpcode() == BinaryOperator::LShr && 2883 "Illegal or(shift,shift) pair"); 2884 2885 // Match the shift amount operands for a funnel shift pattern. This always 2886 // matches a subtraction on the R operand. 2887 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 2888 // Check for constant shift amounts that sum to the bitwidth. 2889 const APInt *LI, *RI; 2890 if (match(L, m_APIntAllowPoison(LI)) && match(R, m_APIntAllowPoison(RI))) 2891 if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width) 2892 return ConstantInt::get(L->getType(), *LI); 2893 2894 Constant *LC, *RC; 2895 if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) && 2896 match(L, 2897 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) && 2898 match(R, 2899 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) && 2900 match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowPoison(Width))) 2901 return ConstantExpr::mergeUndefsWith(LC, RC); 2902 2903 // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width. 2904 // We limit this to X < Width in case the backend re-expands the 2905 // intrinsic, and has to reintroduce a shift modulo operation (InstCombine 2906 // might remove it after this fold). This still doesn't guarantee that the 2907 // final codegen will match this original pattern. 2908 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) { 2909 KnownBits KnownL = computeKnownBits(L, /*Depth*/ 0, &Or); 2910 return KnownL.getMaxValue().ult(Width) ? L : nullptr; 2911 } 2912 2913 // For non-constant cases, the following patterns currently only work for 2914 // rotation patterns. 2915 // TODO: Add general funnel-shift compatible patterns. 2916 if (ShVal0 != ShVal1) 2917 return nullptr; 2918 2919 // For non-constant cases we don't support non-pow2 shift masks. 2920 // TODO: Is it worth matching urem as well? 2921 if (!isPowerOf2_32(Width)) 2922 return nullptr; 2923 2924 // The shift amount may be masked with negation: 2925 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) 2926 Value *X; 2927 unsigned Mask = Width - 1; 2928 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 2929 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 2930 return X; 2931 2932 // (shl ShVal, X) | (lshr ShVal, ((-X) & (Width - 1))) 2933 if (match(R, m_And(m_Neg(m_Specific(L)), m_SpecificInt(Mask)))) 2934 return L; 2935 2936 // Similar to above, but the shift amount may be extended after masking, 2937 // so return the extended value as the parameter for the intrinsic. 2938 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 2939 match(R, 2940 m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))), 2941 m_SpecificInt(Mask)))) 2942 return L; 2943 2944 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 2945 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 2946 return L; 2947 2948 return nullptr; 2949 }; 2950 2951 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width); 2952 if (!ShAmt) { 2953 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width); 2954 IsFshl = false; // Sub on SHL. 2955 } 2956 if (!ShAmt) 2957 return std::nullopt; 2958 2959 FShiftArgs = {ShVal0, ShVal1, ShAmt}; 2960 } else if (isa<ZExtInst>(Or0) || isa<ZExtInst>(Or1)) { 2961 // If there are two 'or' instructions concat variables in opposite order: 2962 // 2963 // Slot1 and Slot2 are all zero bits. 2964 // | Slot1 | Low | Slot2 | High | 2965 // LowHigh = or (shl (zext Low), ZextLowShlAmt), (zext High) 2966 // | Slot2 | High | Slot1 | Low | 2967 // HighLow = or (shl (zext High), ZextHighShlAmt), (zext Low) 2968 // 2969 // the latter 'or' can be safely convert to 2970 // -> HighLow = fshl LowHigh, LowHigh, ZextHighShlAmt 2971 // if ZextLowShlAmt + ZextHighShlAmt == Width. 2972 if (!isa<ZExtInst>(Or1)) 2973 std::swap(Or0, Or1); 2974 2975 Value *High, *ZextHigh, *Low; 2976 const APInt *ZextHighShlAmt; 2977 if (!match(Or0, 2978 m_OneUse(m_Shl(m_Value(ZextHigh), m_APInt(ZextHighShlAmt))))) 2979 return std::nullopt; 2980 2981 if (!match(Or1, m_ZExt(m_Value(Low))) || 2982 !match(ZextHigh, m_ZExt(m_Value(High)))) 2983 return std::nullopt; 2984 2985 unsigned HighSize = High->getType()->getScalarSizeInBits(); 2986 unsigned LowSize = Low->getType()->getScalarSizeInBits(); 2987 // Make sure High does not overlap with Low and most significant bits of 2988 // High aren't shifted out. 2989 if (ZextHighShlAmt->ult(LowSize) || ZextHighShlAmt->ugt(Width - HighSize)) 2990 return std::nullopt; 2991 2992 for (User *U : ZextHigh->users()) { 2993 Value *X, *Y; 2994 if (!match(U, m_Or(m_Value(X), m_Value(Y)))) 2995 continue; 2996 2997 if (!isa<ZExtInst>(Y)) 2998 std::swap(X, Y); 2999 3000 const APInt *ZextLowShlAmt; 3001 if (!match(X, m_Shl(m_Specific(Or1), m_APInt(ZextLowShlAmt))) || 3002 !match(Y, m_Specific(ZextHigh)) || !DT.dominates(U, &Or)) 3003 continue; 3004 3005 // HighLow is good concat. If sum of two shifts amount equals to Width, 3006 // LowHigh must also be a good concat. 3007 if (*ZextLowShlAmt + *ZextHighShlAmt != Width) 3008 continue; 3009 3010 // Low must not overlap with High and most significant bits of Low must 3011 // not be shifted out. 3012 assert(ZextLowShlAmt->uge(HighSize) && 3013 ZextLowShlAmt->ule(Width - LowSize) && "Invalid concat"); 3014 3015 FShiftArgs = {U, U, ConstantInt::get(Or0->getType(), *ZextHighShlAmt)}; 3016 break; 3017 } 3018 } 3019 3020 if (FShiftArgs.empty()) 3021 return std::nullopt; 3022 3023 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 3024 return std::make_pair(IID, FShiftArgs); 3025 } 3026 3027 /// Match UB-safe variants of the funnel shift intrinsic. 3028 static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) { 3029 if (auto Opt = IC.convertOrOfShiftsToFunnelShift(Or)) { 3030 auto [IID, FShiftArgs] = *Opt; 3031 Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType()); 3032 return CallInst::Create(F, FShiftArgs); 3033 } 3034 3035 return nullptr; 3036 } 3037 3038 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns. 3039 static Instruction *matchOrConcat(Instruction &Or, 3040 InstCombiner::BuilderTy &Builder) { 3041 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'"); 3042 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1); 3043 Type *Ty = Or.getType(); 3044 3045 unsigned Width = Ty->getScalarSizeInBits(); 3046 if ((Width & 1) != 0) 3047 return nullptr; 3048 unsigned HalfWidth = Width / 2; 3049 3050 // Canonicalize zext (lower half) to LHS. 3051 if (!isa<ZExtInst>(Op0)) 3052 std::swap(Op0, Op1); 3053 3054 // Find lower/upper half. 3055 Value *LowerSrc, *ShlVal, *UpperSrc; 3056 const APInt *C; 3057 if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) || 3058 !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) || 3059 !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc))))) 3060 return nullptr; 3061 if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() || 3062 LowerSrc->getType()->getScalarSizeInBits() != HalfWidth) 3063 return nullptr; 3064 3065 auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) { 3066 Value *NewLower = Builder.CreateZExt(Lo, Ty); 3067 Value *NewUpper = Builder.CreateZExt(Hi, Ty); 3068 NewUpper = Builder.CreateShl(NewUpper, HalfWidth); 3069 Value *BinOp = Builder.CreateOr(NewLower, NewUpper); 3070 Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty); 3071 return Builder.CreateCall(F, BinOp); 3072 }; 3073 3074 // BSWAP: Push the concat down, swapping the lower/upper sources. 3075 // concat(bswap(x),bswap(y)) -> bswap(concat(x,y)) 3076 Value *LowerBSwap, *UpperBSwap; 3077 if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) && 3078 match(UpperSrc, m_BSwap(m_Value(UpperBSwap)))) 3079 return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap); 3080 3081 // BITREVERSE: Push the concat down, swapping the lower/upper sources. 3082 // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y)) 3083 Value *LowerBRev, *UpperBRev; 3084 if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) && 3085 match(UpperSrc, m_BitReverse(m_Value(UpperBRev)))) 3086 return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev); 3087 3088 return nullptr; 3089 } 3090 3091 /// If all elements of two constant vectors are 0/-1 and inverses, return true. 3092 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) { 3093 unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements(); 3094 for (unsigned i = 0; i != NumElts; ++i) { 3095 Constant *EltC1 = C1->getAggregateElement(i); 3096 Constant *EltC2 = C2->getAggregateElement(i); 3097 if (!EltC1 || !EltC2) 3098 return false; 3099 3100 // One element must be all ones, and the other must be all zeros. 3101 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) || 3102 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes())))) 3103 return false; 3104 } 3105 return true; 3106 } 3107 3108 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or 3109 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of 3110 /// B, it can be used as the condition operand of a select instruction. 3111 /// We will detect (A & C) | ~(B | D) when the flag ABIsTheSame enabled. 3112 Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B, 3113 bool ABIsTheSame) { 3114 // We may have peeked through bitcasts in the caller. 3115 // Exit immediately if we don't have (vector) integer types. 3116 Type *Ty = A->getType(); 3117 if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy()) 3118 return nullptr; 3119 3120 // If A is the 'not' operand of B and has enough signbits, we have our answer. 3121 if (ABIsTheSame ? (A == B) : match(B, m_Not(m_Specific(A)))) { 3122 // If these are scalars or vectors of i1, A can be used directly. 3123 if (Ty->isIntOrIntVectorTy(1)) 3124 return A; 3125 3126 // If we look through a vector bitcast, the caller will bitcast the operands 3127 // to match the condition's number of bits (N x i1). 3128 // To make this poison-safe, disallow bitcast from wide element to narrow 3129 // element. That could allow poison in lanes where it was not present in the 3130 // original code. 3131 A = peekThroughBitcast(A); 3132 if (A->getType()->isIntOrIntVectorTy()) { 3133 unsigned NumSignBits = ComputeNumSignBits(A); 3134 if (NumSignBits == A->getType()->getScalarSizeInBits() && 3135 NumSignBits <= Ty->getScalarSizeInBits()) 3136 return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType())); 3137 } 3138 return nullptr; 3139 } 3140 3141 // TODO: add support for sext and constant case 3142 if (ABIsTheSame) 3143 return nullptr; 3144 3145 // If both operands are constants, see if the constants are inverse bitmasks. 3146 Constant *AConst, *BConst; 3147 if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst))) 3148 if (AConst == ConstantExpr::getNot(BConst) && 3149 ComputeNumSignBits(A) == Ty->getScalarSizeInBits()) 3150 return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty)); 3151 3152 // Look for more complex patterns. The 'not' op may be hidden behind various 3153 // casts. Look through sexts and bitcasts to find the booleans. 3154 Value *Cond; 3155 Value *NotB; 3156 if (match(A, m_SExt(m_Value(Cond))) && 3157 Cond->getType()->isIntOrIntVectorTy(1)) { 3158 // A = sext i1 Cond; B = sext (not (i1 Cond)) 3159 if (match(B, m_SExt(m_Not(m_Specific(Cond))))) 3160 return Cond; 3161 3162 // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond))) 3163 // TODO: The one-use checks are unnecessary or misplaced. If the caller 3164 // checked for uses on logic ops/casts, that should be enough to 3165 // make this transform worthwhile. 3166 if (match(B, m_OneUse(m_Not(m_Value(NotB))))) { 3167 NotB = peekThroughBitcast(NotB, true); 3168 if (match(NotB, m_SExt(m_Specific(Cond)))) 3169 return Cond; 3170 } 3171 } 3172 3173 // All scalar (and most vector) possibilities should be handled now. 3174 // Try more matches that only apply to non-splat constant vectors. 3175 if (!Ty->isVectorTy()) 3176 return nullptr; 3177 3178 // If both operands are xor'd with constants using the same sexted boolean 3179 // operand, see if the constants are inverse bitmasks. 3180 // TODO: Use ConstantExpr::getNot()? 3181 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) && 3182 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) && 3183 Cond->getType()->isIntOrIntVectorTy(1) && 3184 areInverseVectorBitmasks(AConst, BConst)) { 3185 AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty)); 3186 return Builder.CreateXor(Cond, AConst); 3187 } 3188 return nullptr; 3189 } 3190 3191 /// We have an expression of the form (A & B) | (C & D). Try to simplify this 3192 /// to "A' ? B : D", where A' is a boolean or vector of booleans. 3193 /// When InvertFalseVal is set to true, we try to match the pattern 3194 /// where we have peeked through a 'not' op and A and C are the same: 3195 /// (A & B) | ~(A | D) --> (A & B) | (~A & ~D) --> A' ? B : ~D 3196 Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *B, Value *C, 3197 Value *D, bool InvertFalseVal) { 3198 // The potential condition of the select may be bitcasted. In that case, look 3199 // through its bitcast and the corresponding bitcast of the 'not' condition. 3200 Type *OrigType = A->getType(); 3201 A = peekThroughBitcast(A, true); 3202 C = peekThroughBitcast(C, true); 3203 if (Value *Cond = getSelectCondition(A, C, InvertFalseVal)) { 3204 // ((bc Cond) & B) | ((bc ~Cond) & D) --> bc (select Cond, (bc B), (bc D)) 3205 // If this is a vector, we may need to cast to match the condition's length. 3206 // The bitcasts will either all exist or all not exist. The builder will 3207 // not create unnecessary casts if the types already match. 3208 Type *SelTy = A->getType(); 3209 if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) { 3210 // For a fixed or scalable vector get N from <{vscale x} N x iM> 3211 unsigned Elts = VecTy->getElementCount().getKnownMinValue(); 3212 // For a fixed or scalable vector, get the size in bits of N x iM; for a 3213 // scalar this is just M. 3214 unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinValue(); 3215 Type *EltTy = Builder.getIntNTy(SelEltSize / Elts); 3216 SelTy = VectorType::get(EltTy, VecTy->getElementCount()); 3217 } 3218 Value *BitcastB = Builder.CreateBitCast(B, SelTy); 3219 if (InvertFalseVal) 3220 D = Builder.CreateNot(D); 3221 Value *BitcastD = Builder.CreateBitCast(D, SelTy); 3222 Value *Select = Builder.CreateSelect(Cond, BitcastB, BitcastD); 3223 return Builder.CreateBitCast(Select, OrigType); 3224 } 3225 3226 return nullptr; 3227 } 3228 3229 // (icmp eq X, C) | (icmp ult Other, (X - C)) -> (icmp ule Other, (X - (C + 1))) 3230 // (icmp ne X, C) & (icmp uge Other, (X - C)) -> (icmp ugt Other, (X - (C + 1))) 3231 static Value *foldAndOrOfICmpEqConstantAndICmp(ICmpInst *LHS, ICmpInst *RHS, 3232 bool IsAnd, bool IsLogical, 3233 IRBuilderBase &Builder) { 3234 Value *LHS0 = LHS->getOperand(0); 3235 Value *RHS0 = RHS->getOperand(0); 3236 Value *RHS1 = RHS->getOperand(1); 3237 3238 ICmpInst::Predicate LPred = 3239 IsAnd ? LHS->getInversePredicate() : LHS->getPredicate(); 3240 ICmpInst::Predicate RPred = 3241 IsAnd ? RHS->getInversePredicate() : RHS->getPredicate(); 3242 3243 const APInt *CInt; 3244 if (LPred != ICmpInst::ICMP_EQ || 3245 !match(LHS->getOperand(1), m_APIntAllowPoison(CInt)) || 3246 !LHS0->getType()->isIntOrIntVectorTy() || 3247 !(LHS->hasOneUse() || RHS->hasOneUse())) 3248 return nullptr; 3249 3250 auto MatchRHSOp = [LHS0, CInt](const Value *RHSOp) { 3251 return match(RHSOp, 3252 m_Add(m_Specific(LHS0), m_SpecificIntAllowPoison(-*CInt))) || 3253 (CInt->isZero() && RHSOp == LHS0); 3254 }; 3255 3256 Value *Other; 3257 if (RPred == ICmpInst::ICMP_ULT && MatchRHSOp(RHS1)) 3258 Other = RHS0; 3259 else if (RPred == ICmpInst::ICMP_UGT && MatchRHSOp(RHS0)) 3260 Other = RHS1; 3261 else 3262 return nullptr; 3263 3264 if (IsLogical) 3265 Other = Builder.CreateFreeze(Other); 3266 3267 return Builder.CreateICmp( 3268 IsAnd ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE, 3269 Builder.CreateSub(LHS0, ConstantInt::get(LHS0->getType(), *CInt + 1)), 3270 Other); 3271 } 3272 3273 /// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible. 3274 /// If IsLogical is true, then the and/or is in select form and the transform 3275 /// must be poison-safe. 3276 Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, 3277 Instruction &I, bool IsAnd, 3278 bool IsLogical) { 3279 const SimplifyQuery Q = SQ.getWithInstruction(&I); 3280 3281 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 3282 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) 3283 // if K1 and K2 are a one-bit mask. 3284 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &I, IsAnd, IsLogical)) 3285 return V; 3286 3287 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 3288 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); 3289 Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1); 3290 3291 const APInt *LHSC = nullptr, *RHSC = nullptr; 3292 match(LHS1, m_APInt(LHSC)); 3293 match(RHS1, m_APInt(RHSC)); 3294 3295 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) 3296 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) 3297 if (predicatesFoldable(PredL, PredR)) { 3298 if (LHS0 == RHS1 && LHS1 == RHS0) { 3299 PredL = ICmpInst::getSwappedPredicate(PredL); 3300 std::swap(LHS0, LHS1); 3301 } 3302 if (LHS0 == RHS0 && LHS1 == RHS1) { 3303 unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR) 3304 : getICmpCode(PredL) | getICmpCode(PredR); 3305 bool IsSigned = LHS->isSigned() || RHS->isSigned(); 3306 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder); 3307 } 3308 } 3309 3310 // handle (roughly): 3311 // (icmp ne (A & B), C) | (icmp ne (A & D), E) 3312 // (icmp eq (A & B), C) & (icmp eq (A & D), E) 3313 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder)) 3314 return V; 3315 3316 if (Value *V = 3317 foldAndOrOfICmpEqConstantAndICmp(LHS, RHS, IsAnd, IsLogical, Builder)) 3318 return V; 3319 // We can treat logical like bitwise here, because both operands are used on 3320 // the LHS, and as such poison from both will propagate. 3321 if (Value *V = foldAndOrOfICmpEqConstantAndICmp(RHS, LHS, IsAnd, 3322 /*IsLogical*/ false, Builder)) 3323 return V; 3324 3325 if (Value *V = 3326 foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, IsLogical, Builder, Q)) 3327 return V; 3328 // We can convert this case to bitwise and, because both operands are used 3329 // on the LHS, and as such poison from both will propagate. 3330 if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, IsAnd, 3331 /*IsLogical*/ false, Builder, Q)) 3332 return V; 3333 3334 if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder)) 3335 return V; 3336 if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder)) 3337 return V; 3338 3339 // TODO: One of these directions is fine with logical and/or, the other could 3340 // be supported by inserting freeze. 3341 if (!IsLogical) { 3342 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 3343 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 3344 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/!IsAnd)) 3345 return V; 3346 3347 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n 3348 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n 3349 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/!IsAnd)) 3350 return V; 3351 } 3352 3353 // TODO: Add conjugated or fold, check whether it is safe for logical and/or. 3354 if (IsAnd && !IsLogical) 3355 if (Value *V = foldSignedTruncationCheck(LHS, RHS, I, Builder)) 3356 return V; 3357 3358 if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder, *this)) 3359 return V; 3360 3361 if (Value *V = foldPowerOf2AndShiftedMask(LHS, RHS, IsAnd, Builder)) 3362 return V; 3363 3364 // TODO: Verify whether this is safe for logical and/or. 3365 if (!IsLogical) { 3366 if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder)) 3367 return X; 3368 if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder)) 3369 return X; 3370 } 3371 3372 if (Value *X = foldEqOfParts(LHS, RHS, IsAnd)) 3373 return X; 3374 3375 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) 3376 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) 3377 // TODO: Remove this and below when foldLogOpOfMaskedICmps can handle undefs. 3378 if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && 3379 PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) && 3380 LHS0->getType() == RHS0->getType()) { 3381 Value *NewOr = Builder.CreateOr(LHS0, RHS0); 3382 return Builder.CreateICmp(PredL, NewOr, 3383 Constant::getNullValue(NewOr->getType())); 3384 } 3385 3386 // (icmp ne A, -1) | (icmp ne B, -1) --> (icmp ne (A&B), -1) 3387 // (icmp eq A, -1) & (icmp eq B, -1) --> (icmp eq (A&B), -1) 3388 if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && 3389 PredL == PredR && match(LHS1, m_AllOnes()) && match(RHS1, m_AllOnes()) && 3390 LHS0->getType() == RHS0->getType()) { 3391 Value *NewAnd = Builder.CreateAnd(LHS0, RHS0); 3392 return Builder.CreateICmp(PredL, NewAnd, 3393 Constant::getAllOnesValue(LHS0->getType())); 3394 } 3395 3396 if (!IsLogical) 3397 if (Value *V = 3398 foldAndOrOfICmpsWithPow2AndWithZero(Builder, LHS, RHS, IsAnd, Q)) 3399 return V; 3400 3401 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). 3402 if (!LHSC || !RHSC) 3403 return nullptr; 3404 3405 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2 3406 // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2 3407 // where CMAX is the all ones value for the truncated type, 3408 // iff the lower bits of C2 and CA are zero. 3409 if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && 3410 PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) { 3411 Value *V; 3412 const APInt *AndC, *SmallC = nullptr, *BigC = nullptr; 3413 3414 // (trunc x) == C1 & (and x, CA) == C2 3415 // (and x, CA) == C2 & (trunc x) == C1 3416 if (match(RHS0, m_Trunc(m_Value(V))) && 3417 match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) { 3418 SmallC = RHSC; 3419 BigC = LHSC; 3420 } else if (match(LHS0, m_Trunc(m_Value(V))) && 3421 match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) { 3422 SmallC = LHSC; 3423 BigC = RHSC; 3424 } 3425 3426 if (SmallC && BigC) { 3427 unsigned BigBitSize = BigC->getBitWidth(); 3428 unsigned SmallBitSize = SmallC->getBitWidth(); 3429 3430 // Check that the low bits are zero. 3431 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize); 3432 if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) { 3433 Value *NewAnd = Builder.CreateAnd(V, Low | *AndC); 3434 APInt N = SmallC->zext(BigBitSize) | *BigC; 3435 Value *NewVal = ConstantInt::get(NewAnd->getType(), N); 3436 return Builder.CreateICmp(PredL, NewAnd, NewVal); 3437 } 3438 } 3439 } 3440 3441 // Match naive pattern (and its inverted form) for checking if two values 3442 // share same sign. An example of the pattern: 3443 // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1) 3444 // Inverted form (example): 3445 // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0) 3446 bool TrueIfSignedL, TrueIfSignedR; 3447 if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) && 3448 isSignBitCheck(PredR, *RHSC, TrueIfSignedR) && 3449 (RHS->hasOneUse() || LHS->hasOneUse())) { 3450 Value *X, *Y; 3451 if (IsAnd) { 3452 if ((TrueIfSignedL && !TrueIfSignedR && 3453 match(LHS0, m_Or(m_Value(X), m_Value(Y))) && 3454 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) || 3455 (!TrueIfSignedL && TrueIfSignedR && 3456 match(LHS0, m_And(m_Value(X), m_Value(Y))) && 3457 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) { 3458 Value *NewXor = Builder.CreateXor(X, Y); 3459 return Builder.CreateIsNeg(NewXor); 3460 } 3461 } else { 3462 if ((TrueIfSignedL && !TrueIfSignedR && 3463 match(LHS0, m_And(m_Value(X), m_Value(Y))) && 3464 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) || 3465 (!TrueIfSignedL && TrueIfSignedR && 3466 match(LHS0, m_Or(m_Value(X), m_Value(Y))) && 3467 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) { 3468 Value *NewXor = Builder.CreateXor(X, Y); 3469 return Builder.CreateIsNotNeg(NewXor); 3470 } 3471 } 3472 } 3473 3474 return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd); 3475 } 3476 3477 static Value *foldOrOfInversions(BinaryOperator &I, 3478 InstCombiner::BuilderTy &Builder) { 3479 assert(I.getOpcode() == Instruction::Or && 3480 "Simplification only supports or at the moment."); 3481 3482 Value *Cmp1, *Cmp2, *Cmp3, *Cmp4; 3483 if (!match(I.getOperand(0), m_And(m_Value(Cmp1), m_Value(Cmp2))) || 3484 !match(I.getOperand(1), m_And(m_Value(Cmp3), m_Value(Cmp4)))) 3485 return nullptr; 3486 3487 // Check if any two pairs of the and operations are inversions of each other. 3488 if (isKnownInversion(Cmp1, Cmp3) && isKnownInversion(Cmp2, Cmp4)) 3489 return Builder.CreateXor(Cmp1, Cmp4); 3490 if (isKnownInversion(Cmp1, Cmp4) && isKnownInversion(Cmp2, Cmp3)) 3491 return Builder.CreateXor(Cmp1, Cmp3); 3492 3493 return nullptr; 3494 } 3495 3496 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 3497 // here. We should standardize that construct where it is needed or choose some 3498 // other way to ensure that commutated variants of patterns are not missed. 3499 Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) { 3500 if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1), 3501 SQ.getWithInstruction(&I))) 3502 return replaceInstUsesWith(I, V); 3503 3504 if (SimplifyAssociativeOrCommutative(I)) 3505 return &I; 3506 3507 if (Instruction *X = foldVectorBinop(I)) 3508 return X; 3509 3510 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 3511 return Phi; 3512 3513 // See if we can simplify any instructions used by the instruction whose sole 3514 // purpose is to compute bits we don't care about. 3515 if (SimplifyDemandedInstructionBits(I)) 3516 return &I; 3517 3518 // Do this before using distributive laws to catch simple and/or/not patterns. 3519 if (Instruction *Xor = foldOrToXor(I, Builder)) 3520 return Xor; 3521 3522 if (Instruction *X = foldComplexAndOrPatterns(I, Builder)) 3523 return X; 3524 3525 // (A & B) | (C & D) -> A ^ D where A == ~C && B == ~D 3526 // (A & B) | (C & D) -> A ^ C where A == ~D && B == ~C 3527 if (Value *V = foldOrOfInversions(I, Builder)) 3528 return replaceInstUsesWith(I, V); 3529 3530 // (A&B)|(A&C) -> A&(B|C) etc 3531 if (Value *V = foldUsingDistributiveLaws(I)) 3532 return replaceInstUsesWith(I, V); 3533 3534 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3535 Type *Ty = I.getType(); 3536 if (Ty->isIntOrIntVectorTy(1)) { 3537 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) { 3538 if (auto *R = 3539 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false)) 3540 return R; 3541 } 3542 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) { 3543 if (auto *R = 3544 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false)) 3545 return R; 3546 } 3547 } 3548 3549 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 3550 return FoldedLogic; 3551 3552 if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true, 3553 /*MatchBitReversals*/ true)) 3554 return BitOp; 3555 3556 if (Instruction *Funnel = matchFunnelShift(I, *this)) 3557 return Funnel; 3558 3559 if (Instruction *Concat = matchOrConcat(I, Builder)) 3560 return replaceInstUsesWith(I, Concat); 3561 3562 if (Instruction *R = foldBinOpShiftWithShift(I)) 3563 return R; 3564 3565 if (Instruction *R = tryFoldInstWithCtpopWithNot(&I)) 3566 return R; 3567 3568 Value *X, *Y; 3569 const APInt *CV; 3570 if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) && 3571 !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) { 3572 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0 3573 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X). 3574 Value *Or = Builder.CreateOr(X, Y); 3575 return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV)); 3576 } 3577 3578 // If the operands have no common bits set: 3579 // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1) 3580 if (match(&I, m_c_DisjointOr(m_OneUse(m_Mul(m_Value(X), m_Value(Y))), 3581 m_Deferred(X)))) { 3582 Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1)); 3583 return BinaryOperator::CreateMul(X, IncrementY); 3584 } 3585 3586 // (A & C) | (B & D) 3587 Value *A, *B, *C, *D; 3588 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 3589 match(Op1, m_And(m_Value(B), m_Value(D)))) { 3590 3591 // (A & C0) | (B & C1) 3592 const APInt *C0, *C1; 3593 if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) { 3594 Value *X; 3595 if (*C0 == ~*C1) { 3596 // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B 3597 if (match(A, m_c_Or(m_Value(X), m_Specific(B)))) 3598 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B); 3599 // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A 3600 if (match(B, m_c_Or(m_Specific(A), m_Value(X)))) 3601 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A); 3602 3603 // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B 3604 if (match(A, m_c_Xor(m_Value(X), m_Specific(B)))) 3605 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B); 3606 // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A 3607 if (match(B, m_c_Xor(m_Specific(A), m_Value(X)))) 3608 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A); 3609 } 3610 3611 if ((*C0 & *C1).isZero()) { 3612 // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1) 3613 // iff (C0 & C1) == 0 and (X & ~C0) == 0 3614 if (match(A, m_c_Or(m_Value(X), m_Specific(B))) && 3615 MaskedValueIsZero(X, ~*C0, 0, &I)) { 3616 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1); 3617 return BinaryOperator::CreateAnd(A, C01); 3618 } 3619 // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1) 3620 // iff (C0 & C1) == 0 and (X & ~C1) == 0 3621 if (match(B, m_c_Or(m_Value(X), m_Specific(A))) && 3622 MaskedValueIsZero(X, ~*C1, 0, &I)) { 3623 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1); 3624 return BinaryOperator::CreateAnd(B, C01); 3625 } 3626 // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1) 3627 // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0. 3628 const APInt *C2, *C3; 3629 if (match(A, m_Or(m_Value(X), m_APInt(C2))) && 3630 match(B, m_Or(m_Specific(X), m_APInt(C3))) && 3631 (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) { 3632 Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield"); 3633 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1); 3634 return BinaryOperator::CreateAnd(Or, C01); 3635 } 3636 } 3637 } 3638 3639 // Don't try to form a select if it's unlikely that we'll get rid of at 3640 // least one of the operands. A select is generally more expensive than the 3641 // 'or' that it is replacing. 3642 if (Op0->hasOneUse() || Op1->hasOneUse()) { 3643 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants. 3644 if (Value *V = matchSelectFromAndOr(A, C, B, D)) 3645 return replaceInstUsesWith(I, V); 3646 if (Value *V = matchSelectFromAndOr(A, C, D, B)) 3647 return replaceInstUsesWith(I, V); 3648 if (Value *V = matchSelectFromAndOr(C, A, B, D)) 3649 return replaceInstUsesWith(I, V); 3650 if (Value *V = matchSelectFromAndOr(C, A, D, B)) 3651 return replaceInstUsesWith(I, V); 3652 if (Value *V = matchSelectFromAndOr(B, D, A, C)) 3653 return replaceInstUsesWith(I, V); 3654 if (Value *V = matchSelectFromAndOr(B, D, C, A)) 3655 return replaceInstUsesWith(I, V); 3656 if (Value *V = matchSelectFromAndOr(D, B, A, C)) 3657 return replaceInstUsesWith(I, V); 3658 if (Value *V = matchSelectFromAndOr(D, B, C, A)) 3659 return replaceInstUsesWith(I, V); 3660 } 3661 } 3662 3663 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 3664 match(Op1, m_Not(m_Or(m_Value(B), m_Value(D)))) && 3665 (Op0->hasOneUse() || Op1->hasOneUse())) { 3666 // (Cond & C) | ~(Cond | D) -> Cond ? C : ~D 3667 if (Value *V = matchSelectFromAndOr(A, C, B, D, true)) 3668 return replaceInstUsesWith(I, V); 3669 if (Value *V = matchSelectFromAndOr(A, C, D, B, true)) 3670 return replaceInstUsesWith(I, V); 3671 if (Value *V = matchSelectFromAndOr(C, A, B, D, true)) 3672 return replaceInstUsesWith(I, V); 3673 if (Value *V = matchSelectFromAndOr(C, A, D, B, true)) 3674 return replaceInstUsesWith(I, V); 3675 } 3676 3677 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C 3678 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 3679 if (match(Op1, 3680 m_c_Xor(m_c_Xor(m_Specific(B), m_Value(C)), m_Specific(A))) || 3681 match(Op1, m_c_Xor(m_c_Xor(m_Specific(A), m_Value(C)), m_Specific(B)))) 3682 return BinaryOperator::CreateOr(Op0, C); 3683 3684 // ((B ^ C) ^ A) | (A ^ B) -> (A ^ B) | C 3685 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) 3686 if (match(Op0, 3687 m_c_Xor(m_c_Xor(m_Specific(B), m_Value(C)), m_Specific(A))) || 3688 match(Op0, m_c_Xor(m_c_Xor(m_Specific(A), m_Value(C)), m_Specific(B)))) 3689 return BinaryOperator::CreateOr(Op1, C); 3690 3691 if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this)) 3692 return DeMorgan; 3693 3694 // Canonicalize xor to the RHS. 3695 bool SwappedForXor = false; 3696 if (match(Op0, m_Xor(m_Value(), m_Value()))) { 3697 std::swap(Op0, Op1); 3698 SwappedForXor = true; 3699 } 3700 3701 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) { 3702 // (A | ?) | (A ^ B) --> (A | ?) | B 3703 // (B | ?) | (A ^ B) --> (B | ?) | A 3704 if (match(Op0, m_c_Or(m_Specific(A), m_Value()))) 3705 return BinaryOperator::CreateOr(Op0, B); 3706 if (match(Op0, m_c_Or(m_Specific(B), m_Value()))) 3707 return BinaryOperator::CreateOr(Op0, A); 3708 3709 // (A & B) | (A ^ B) --> A | B 3710 // (B & A) | (A ^ B) --> A | B 3711 if (match(Op0, m_c_And(m_Specific(A), m_Specific(B)))) 3712 return BinaryOperator::CreateOr(A, B); 3713 3714 // ~A | (A ^ B) --> ~(A & B) 3715 // ~B | (A ^ B) --> ~(A & B) 3716 // The swap above should always make Op0 the 'not'. 3717 if ((Op0->hasOneUse() || Op1->hasOneUse()) && 3718 (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B))))) 3719 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); 3720 3721 // Same as above, but peek through an 'and' to the common operand: 3722 // ~(A & ?) | (A ^ B) --> ~((A & ?) & B) 3723 // ~(B & ?) | (A ^ B) --> ~((B & ?) & A) 3724 Instruction *And; 3725 if ((Op0->hasOneUse() || Op1->hasOneUse()) && 3726 match(Op0, m_Not(m_CombineAnd(m_Instruction(And), 3727 m_c_And(m_Specific(A), m_Value()))))) 3728 return BinaryOperator::CreateNot(Builder.CreateAnd(And, B)); 3729 if ((Op0->hasOneUse() || Op1->hasOneUse()) && 3730 match(Op0, m_Not(m_CombineAnd(m_Instruction(And), 3731 m_c_And(m_Specific(B), m_Value()))))) 3732 return BinaryOperator::CreateNot(Builder.CreateAnd(And, A)); 3733 3734 // (~A | C) | (A ^ B) --> ~(A & B) | C 3735 // (~B | C) | (A ^ B) --> ~(A & B) | C 3736 if (Op0->hasOneUse() && Op1->hasOneUse() && 3737 (match(Op0, m_c_Or(m_Not(m_Specific(A)), m_Value(C))) || 3738 match(Op0, m_c_Or(m_Not(m_Specific(B)), m_Value(C))))) { 3739 Value *Nand = Builder.CreateNot(Builder.CreateAnd(A, B), "nand"); 3740 return BinaryOperator::CreateOr(Nand, C); 3741 } 3742 } 3743 3744 if (SwappedForXor) 3745 std::swap(Op0, Op1); 3746 3747 { 3748 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 3749 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 3750 if (LHS && RHS) 3751 if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ false)) 3752 return replaceInstUsesWith(I, Res); 3753 3754 // TODO: Make this recursive; it's a little tricky because an arbitrary 3755 // number of 'or' instructions might have to be created. 3756 Value *X, *Y; 3757 if (LHS && match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) { 3758 bool IsLogical = isa<SelectInst>(Op1); 3759 // LHS | (X || Y) --> (LHS || X) || Y 3760 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 3761 if (Value *Res = 3762 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false, IsLogical)) 3763 return replaceInstUsesWith(I, IsLogical 3764 ? Builder.CreateLogicalOr(Res, Y) 3765 : Builder.CreateOr(Res, Y)); 3766 // LHS | (X || Y) --> X || (LHS | Y) 3767 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 3768 if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false, 3769 /* IsLogical */ false)) 3770 return replaceInstUsesWith(I, IsLogical 3771 ? Builder.CreateLogicalOr(X, Res) 3772 : Builder.CreateOr(X, Res)); 3773 } 3774 if (RHS && match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) { 3775 bool IsLogical = isa<SelectInst>(Op0); 3776 // (X || Y) | RHS --> (X || RHS) || Y 3777 if (auto *Cmp = dyn_cast<ICmpInst>(X)) 3778 if (Value *Res = 3779 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false, IsLogical)) 3780 return replaceInstUsesWith(I, IsLogical 3781 ? Builder.CreateLogicalOr(Res, Y) 3782 : Builder.CreateOr(Res, Y)); 3783 // (X || Y) | RHS --> X || (Y | RHS) 3784 if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 3785 if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false, 3786 /* IsLogical */ false)) 3787 return replaceInstUsesWith(I, IsLogical 3788 ? Builder.CreateLogicalOr(X, Res) 3789 : Builder.CreateOr(X, Res)); 3790 } 3791 } 3792 3793 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 3794 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 3795 if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false)) 3796 return replaceInstUsesWith(I, Res); 3797 3798 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) 3799 return FoldedFCmps; 3800 3801 if (Instruction *CastedOr = foldCastedBitwiseLogic(I)) 3802 return CastedOr; 3803 3804 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I)) 3805 return Sel; 3806 3807 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>. 3808 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold 3809 // with binop identity constant. But creating a select with non-constant 3810 // arm may not be reversible due to poison semantics. Is that a good 3811 // canonicalization? 3812 if (match(&I, m_c_Or(m_OneUse(m_SExt(m_Value(A))), m_Value(B))) && 3813 A->getType()->isIntOrIntVectorTy(1)) 3814 return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), B); 3815 3816 // Note: If we've gotten to the point of visiting the outer OR, then the 3817 // inner one couldn't be simplified. If it was a constant, then it won't 3818 // be simplified by a later pass either, so we try swapping the inner/outer 3819 // ORs in the hopes that we'll be able to simplify it this way. 3820 // (X|C) | V --> (X|V) | C 3821 ConstantInt *CI; 3822 if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) && 3823 match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) { 3824 Value *Inner = Builder.CreateOr(A, Op1); 3825 Inner->takeName(Op0); 3826 return BinaryOperator::CreateOr(Inner, CI); 3827 } 3828 3829 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D)) 3830 // Since this OR statement hasn't been optimized further yet, we hope 3831 // that this transformation will allow the new ORs to be optimized. 3832 { 3833 Value *X = nullptr, *Y = nullptr; 3834 if (Op0->hasOneUse() && Op1->hasOneUse() && 3835 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) && 3836 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) { 3837 Value *orTrue = Builder.CreateOr(A, C); 3838 Value *orFalse = Builder.CreateOr(B, D); 3839 return SelectInst::Create(X, orTrue, orFalse); 3840 } 3841 } 3842 3843 // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X. 3844 { 3845 Value *X, *Y; 3846 if (match(&I, m_c_Or(m_OneUse(m_AShr( 3847 m_NSWSub(m_Value(Y), m_Value(X)), 3848 m_SpecificInt(Ty->getScalarSizeInBits() - 1))), 3849 m_Deferred(X)))) { 3850 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y); 3851 Value *AllOnes = ConstantInt::getAllOnesValue(Ty); 3852 return SelectInst::Create(NewICmpInst, AllOnes, X); 3853 } 3854 } 3855 3856 { 3857 // ((A & B) ^ A) | ((A & B) ^ B) -> A ^ B 3858 // (A ^ (A & B)) | (B ^ (A & B)) -> A ^ B 3859 // ((A & B) ^ B) | ((A & B) ^ A) -> A ^ B 3860 // (B ^ (A & B)) | (A ^ (A & B)) -> A ^ B 3861 const auto TryXorOpt = [&](Value *Lhs, Value *Rhs) -> Instruction * { 3862 if (match(Lhs, m_c_Xor(m_And(m_Value(A), m_Value(B)), m_Deferred(A))) && 3863 match(Rhs, 3864 m_c_Xor(m_And(m_Specific(A), m_Specific(B)), m_Specific(B)))) { 3865 return BinaryOperator::CreateXor(A, B); 3866 } 3867 return nullptr; 3868 }; 3869 3870 if (Instruction *Result = TryXorOpt(Op0, Op1)) 3871 return Result; 3872 if (Instruction *Result = TryXorOpt(Op1, Op0)) 3873 return Result; 3874 } 3875 3876 if (Instruction *V = 3877 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 3878 return V; 3879 3880 CmpInst::Predicate Pred; 3881 Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv; 3882 // Check if the OR weakens the overflow condition for umul.with.overflow by 3883 // treating any non-zero result as overflow. In that case, we overflow if both 3884 // umul.with.overflow operands are != 0, as in that case the result can only 3885 // be 0, iff the multiplication overflows. 3886 if (match(&I, 3887 m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)), 3888 m_Value(Ov)), 3889 m_CombineAnd(m_ICmp(Pred, 3890 m_CombineAnd(m_ExtractValue<0>( 3891 m_Deferred(UMulWithOv)), 3892 m_Value(Mul)), 3893 m_ZeroInt()), 3894 m_Value(MulIsNotZero)))) && 3895 (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) && 3896 Pred == CmpInst::ICMP_NE) { 3897 Value *A, *B; 3898 if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>( 3899 m_Value(A), m_Value(B)))) { 3900 Value *NotNullA = Builder.CreateIsNotNull(A); 3901 Value *NotNullB = Builder.CreateIsNotNull(B); 3902 return BinaryOperator::CreateAnd(NotNullA, NotNullB); 3903 } 3904 } 3905 3906 /// Res, Overflow = xxx_with_overflow X, C1 3907 /// Try to canonicalize the pattern "Overflow | icmp pred Res, C2" into 3908 /// "Overflow | icmp pred X, C2 +/- C1". 3909 const WithOverflowInst *WO; 3910 const Value *WOV; 3911 const APInt *C1, *C2; 3912 if (match(&I, m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_CombineAnd( 3913 m_WithOverflowInst(WO), m_Value(WOV))), 3914 m_Value(Ov)), 3915 m_OneUse(m_ICmp(Pred, m_ExtractValue<0>(m_Deferred(WOV)), 3916 m_APInt(C2))))) && 3917 (WO->getBinaryOp() == Instruction::Add || 3918 WO->getBinaryOp() == Instruction::Sub) && 3919 (ICmpInst::isEquality(Pred) || 3920 WO->isSigned() == ICmpInst::isSigned(Pred)) && 3921 match(WO->getRHS(), m_APInt(C1))) { 3922 bool Overflow; 3923 APInt NewC = WO->getBinaryOp() == Instruction::Add 3924 ? (ICmpInst::isSigned(Pred) ? C2->ssub_ov(*C1, Overflow) 3925 : C2->usub_ov(*C1, Overflow)) 3926 : (ICmpInst::isSigned(Pred) ? C2->sadd_ov(*C1, Overflow) 3927 : C2->uadd_ov(*C1, Overflow)); 3928 if (!Overflow || ICmpInst::isEquality(Pred)) { 3929 Value *NewCmp = Builder.CreateICmp( 3930 Pred, WO->getLHS(), ConstantInt::get(WO->getLHS()->getType(), NewC)); 3931 return BinaryOperator::CreateOr(Ov, NewCmp); 3932 } 3933 } 3934 3935 // (~x) | y --> ~(x & (~y)) iff that gets rid of inversions 3936 if (sinkNotIntoOtherHandOfLogicalOp(I)) 3937 return &I; 3938 3939 // Improve "get low bit mask up to and including bit X" pattern: 3940 // (1 << X) | ((1 << X) + -1) --> -1 l>> (bitwidth(x) - 1 - X) 3941 if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()), 3942 m_Shl(m_One(), m_Deferred(X)))) && 3943 match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) { 3944 Value *Sub = Builder.CreateSub( 3945 ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X); 3946 return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub); 3947 } 3948 3949 // An or recurrence w/loop invariant step is equivelent to (or start, step) 3950 PHINode *PN = nullptr; 3951 Value *Start = nullptr, *Step = nullptr; 3952 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN)) 3953 return replaceInstUsesWith(I, Builder.CreateOr(Start, Step)); 3954 3955 // (A & B) | (C | D) or (C | D) | (A & B) 3956 // Can be combined if C or D is of type (A/B & X) 3957 if (match(&I, m_c_Or(m_OneUse(m_And(m_Value(A), m_Value(B))), 3958 m_OneUse(m_Or(m_Value(C), m_Value(D)))))) { 3959 // (A & B) | (C | ?) -> C | (? | (A & B)) 3960 // (A & B) | (C | ?) -> C | (? | (A & B)) 3961 // (A & B) | (C | ?) -> C | (? | (A & B)) 3962 // (A & B) | (C | ?) -> C | (? | (A & B)) 3963 // (C | ?) | (A & B) -> C | (? | (A & B)) 3964 // (C | ?) | (A & B) -> C | (? | (A & B)) 3965 // (C | ?) | (A & B) -> C | (? | (A & B)) 3966 // (C | ?) | (A & B) -> C | (? | (A & B)) 3967 if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) || 3968 match(D, m_OneUse(m_c_And(m_Specific(B), m_Value())))) 3969 return BinaryOperator::CreateOr( 3970 C, Builder.CreateOr(D, Builder.CreateAnd(A, B))); 3971 // (A & B) | (? | D) -> (? | (A & B)) | D 3972 // (A & B) | (? | D) -> (? | (A & B)) | D 3973 // (A & B) | (? | D) -> (? | (A & B)) | D 3974 // (A & B) | (? | D) -> (? | (A & B)) | D 3975 // (? | D) | (A & B) -> (? | (A & B)) | D 3976 // (? | D) | (A & B) -> (? | (A & B)) | D 3977 // (? | D) | (A & B) -> (? | (A & B)) | D 3978 // (? | D) | (A & B) -> (? | (A & B)) | D 3979 if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) || 3980 match(C, m_OneUse(m_c_And(m_Specific(B), m_Value())))) 3981 return BinaryOperator::CreateOr( 3982 Builder.CreateOr(C, Builder.CreateAnd(A, B)), D); 3983 } 3984 3985 if (Instruction *R = reassociateForUses(I, Builder)) 3986 return R; 3987 3988 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) 3989 return Canonicalized; 3990 3991 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1)) 3992 return Folded; 3993 3994 if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 3995 return Res; 3996 3997 // If we are setting the sign bit of a floating-point value, convert 3998 // this to fneg(fabs), then cast back to integer. 3999 // 4000 // If the result isn't immediately cast back to a float, this will increase 4001 // the number of instructions. This is still probably a better canonical form 4002 // as it enables FP value tracking. 4003 // 4004 // Assumes any IEEE-represented type has the sign bit in the high bit. 4005 // 4006 // This is generous interpretation of noimplicitfloat, this is not a true 4007 // floating-point operation. 4008 Value *CastOp; 4009 if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) && 4010 match(Op1, m_SignMask()) && 4011 !Builder.GetInsertBlock()->getParent()->hasFnAttribute( 4012 Attribute::NoImplicitFloat)) { 4013 Type *EltTy = CastOp->getType()->getScalarType(); 4014 if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) { 4015 Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp); 4016 Value *FNegFAbs = Builder.CreateFNeg(FAbs); 4017 return new BitCastInst(FNegFAbs, I.getType()); 4018 } 4019 } 4020 4021 // (X & C1) | C2 -> X & (C1 | C2) iff (X & C2) == C2 4022 if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C1)))) && 4023 match(Op1, m_APInt(C2))) { 4024 KnownBits KnownX = computeKnownBits(X, /*Depth*/ 0, &I); 4025 if ((KnownX.One & *C2) == *C2) 4026 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *C1 | *C2)); 4027 } 4028 4029 if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder)) 4030 return Res; 4031 4032 if (Value *V = 4033 simplifyAndOrWithOpReplaced(Op0, Op1, Constant::getNullValue(Ty), 4034 /*SimplifyOnly*/ false, *this)) 4035 return BinaryOperator::CreateOr(V, Op1); 4036 if (Value *V = 4037 simplifyAndOrWithOpReplaced(Op1, Op0, Constant::getNullValue(Ty), 4038 /*SimplifyOnly*/ false, *this)) 4039 return BinaryOperator::CreateOr(Op0, V); 4040 4041 if (cast<PossiblyDisjointInst>(I).isDisjoint()) 4042 if (Value *V = SimplifyAddWithRemainder(I)) 4043 return replaceInstUsesWith(I, V); 4044 4045 return nullptr; 4046 } 4047 4048 /// A ^ B can be specified using other logic ops in a variety of patterns. We 4049 /// can fold these early and efficiently by morphing an existing instruction. 4050 static Instruction *foldXorToXor(BinaryOperator &I, 4051 InstCombiner::BuilderTy &Builder) { 4052 assert(I.getOpcode() == Instruction::Xor); 4053 Value *Op0 = I.getOperand(0); 4054 Value *Op1 = I.getOperand(1); 4055 Value *A, *B; 4056 4057 // There are 4 commuted variants for each of the basic patterns. 4058 4059 // (A & B) ^ (A | B) -> A ^ B 4060 // (A & B) ^ (B | A) -> A ^ B 4061 // (A | B) ^ (A & B) -> A ^ B 4062 // (A | B) ^ (B & A) -> A ^ B 4063 if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)), 4064 m_c_Or(m_Deferred(A), m_Deferred(B))))) 4065 return BinaryOperator::CreateXor(A, B); 4066 4067 // (A | ~B) ^ (~A | B) -> A ^ B 4068 // (~B | A) ^ (~A | B) -> A ^ B 4069 // (~A | B) ^ (A | ~B) -> A ^ B 4070 // (B | ~A) ^ (A | ~B) -> A ^ B 4071 if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))), 4072 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) 4073 return BinaryOperator::CreateXor(A, B); 4074 4075 // (A & ~B) ^ (~A & B) -> A ^ B 4076 // (~B & A) ^ (~A & B) -> A ^ B 4077 // (~A & B) ^ (A & ~B) -> A ^ B 4078 // (B & ~A) ^ (A & ~B) -> A ^ B 4079 if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))), 4080 m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) 4081 return BinaryOperator::CreateXor(A, B); 4082 4083 // For the remaining cases we need to get rid of one of the operands. 4084 if (!Op0->hasOneUse() && !Op1->hasOneUse()) 4085 return nullptr; 4086 4087 // (A | B) ^ ~(A & B) -> ~(A ^ B) 4088 // (A | B) ^ ~(B & A) -> ~(A ^ B) 4089 // (A & B) ^ ~(A | B) -> ~(A ^ B) 4090 // (A & B) ^ ~(B | A) -> ~(A ^ B) 4091 // Complexity sorting ensures the not will be on the right side. 4092 if ((match(Op0, m_Or(m_Value(A), m_Value(B))) && 4093 match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) || 4094 (match(Op0, m_And(m_Value(A), m_Value(B))) && 4095 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))) 4096 return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 4097 4098 return nullptr; 4099 } 4100 4101 Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, 4102 BinaryOperator &I) { 4103 assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS && 4104 I.getOperand(1) == RHS && "Should be 'xor' with these operands"); 4105 4106 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 4107 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 4108 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 4109 4110 if (predicatesFoldable(PredL, PredR)) { 4111 if (LHS0 == RHS1 && LHS1 == RHS0) { 4112 std::swap(LHS0, LHS1); 4113 PredL = ICmpInst::getSwappedPredicate(PredL); 4114 } 4115 if (LHS0 == RHS0 && LHS1 == RHS1) { 4116 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) 4117 unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR); 4118 bool IsSigned = LHS->isSigned() || RHS->isSigned(); 4119 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder); 4120 } 4121 } 4122 4123 // TODO: This can be generalized to compares of non-signbits using 4124 // decomposeBitTestICmp(). It could be enhanced more by using (something like) 4125 // foldLogOpOfMaskedICmps(). 4126 const APInt *LC, *RC; 4127 if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) && 4128 LHS0->getType() == RHS0->getType() && 4129 LHS0->getType()->isIntOrIntVectorTy()) { 4130 // Convert xor of signbit tests to signbit test of xor'd values: 4131 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0 4132 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0 4133 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1 4134 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1 4135 bool TrueIfSignedL, TrueIfSignedR; 4136 if ((LHS->hasOneUse() || RHS->hasOneUse()) && 4137 isSignBitCheck(PredL, *LC, TrueIfSignedL) && 4138 isSignBitCheck(PredR, *RC, TrueIfSignedR)) { 4139 Value *XorLR = Builder.CreateXor(LHS0, RHS0); 4140 return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) : 4141 Builder.CreateIsNotNeg(XorLR); 4142 } 4143 4144 // Fold (icmp pred1 X, C1) ^ (icmp pred2 X, C2) 4145 // into a single comparison using range-based reasoning. 4146 if (LHS0 == RHS0) { 4147 ConstantRange CR1 = ConstantRange::makeExactICmpRegion(PredL, *LC); 4148 ConstantRange CR2 = ConstantRange::makeExactICmpRegion(PredR, *RC); 4149 auto CRUnion = CR1.exactUnionWith(CR2); 4150 auto CRIntersect = CR1.exactIntersectWith(CR2); 4151 if (CRUnion && CRIntersect) 4152 if (auto CR = CRUnion->exactIntersectWith(CRIntersect->inverse())) { 4153 if (CR->isFullSet()) 4154 return ConstantInt::getTrue(I.getType()); 4155 if (CR->isEmptySet()) 4156 return ConstantInt::getFalse(I.getType()); 4157 4158 CmpInst::Predicate NewPred; 4159 APInt NewC, Offset; 4160 CR->getEquivalentICmp(NewPred, NewC, Offset); 4161 4162 if ((Offset.isZero() && (LHS->hasOneUse() || RHS->hasOneUse())) || 4163 (LHS->hasOneUse() && RHS->hasOneUse())) { 4164 Value *NewV = LHS0; 4165 Type *Ty = LHS0->getType(); 4166 if (!Offset.isZero()) 4167 NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset)); 4168 return Builder.CreateICmp(NewPred, NewV, 4169 ConstantInt::get(Ty, NewC)); 4170 } 4171 } 4172 } 4173 } 4174 4175 // Instead of trying to imitate the folds for and/or, decompose this 'xor' 4176 // into those logic ops. That is, try to turn this into an and-of-icmps 4177 // because we have many folds for that pattern. 4178 // 4179 // This is based on a truth table definition of xor: 4180 // X ^ Y --> (X | Y) & !(X & Y) 4181 if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) { 4182 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y). 4183 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?). 4184 if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) { 4185 // TODO: Independently handle cases where the 'and' side is a constant. 4186 ICmpInst *X = nullptr, *Y = nullptr; 4187 if (OrICmp == LHS && AndICmp == RHS) { 4188 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y 4189 X = LHS; 4190 Y = RHS; 4191 } 4192 if (OrICmp == RHS && AndICmp == LHS) { 4193 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X 4194 X = RHS; 4195 Y = LHS; 4196 } 4197 if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) { 4198 // Invert the predicate of 'Y', thus inverting its output. 4199 Y->setPredicate(Y->getInversePredicate()); 4200 // So, are there other uses of Y? 4201 if (!Y->hasOneUse()) { 4202 // We need to adapt other uses of Y though. Get a value that matches 4203 // the original value of Y before inversion. While this increases 4204 // immediate instruction count, we have just ensured that all the 4205 // users are freely-invertible, so that 'not' *will* get folded away. 4206 BuilderTy::InsertPointGuard Guard(Builder); 4207 // Set insertion point to right after the Y. 4208 Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator())); 4209 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 4210 // Replace all uses of Y (excluding the one in NotY!) with NotY. 4211 Worklist.pushUsersToWorkList(*Y); 4212 Y->replaceUsesWithIf(NotY, 4213 [NotY](Use &U) { return U.getUser() != NotY; }); 4214 } 4215 // All done. 4216 return Builder.CreateAnd(LHS, RHS); 4217 } 4218 } 4219 } 4220 4221 return nullptr; 4222 } 4223 4224 /// If we have a masked merge, in the canonical form of: 4225 /// (assuming that A only has one use.) 4226 /// | A | |B| 4227 /// ((x ^ y) & M) ^ y 4228 /// | D | 4229 /// * If M is inverted: 4230 /// | D | 4231 /// ((x ^ y) & ~M) ^ y 4232 /// We can canonicalize by swapping the final xor operand 4233 /// to eliminate the 'not' of the mask. 4234 /// ((x ^ y) & M) ^ x 4235 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops 4236 /// because that shortens the dependency chain and improves analysis: 4237 /// (x & M) | (y & ~M) 4238 static Instruction *visitMaskedMerge(BinaryOperator &I, 4239 InstCombiner::BuilderTy &Builder) { 4240 Value *B, *X, *D; 4241 Value *M; 4242 if (!match(&I, m_c_Xor(m_Value(B), 4243 m_OneUse(m_c_And( 4244 m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)), 4245 m_Value(D)), 4246 m_Value(M)))))) 4247 return nullptr; 4248 4249 Value *NotM; 4250 if (match(M, m_Not(m_Value(NotM)))) { 4251 // De-invert the mask and swap the value in B part. 4252 Value *NewA = Builder.CreateAnd(D, NotM); 4253 return BinaryOperator::CreateXor(NewA, X); 4254 } 4255 4256 Constant *C; 4257 if (D->hasOneUse() && match(M, m_Constant(C))) { 4258 // Propagating undef is unsafe. Clamp undef elements to -1. 4259 Type *EltTy = C->getType()->getScalarType(); 4260 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy)); 4261 // Unfold. 4262 Value *LHS = Builder.CreateAnd(X, C); 4263 Value *NotC = Builder.CreateNot(C); 4264 Value *RHS = Builder.CreateAnd(B, NotC); 4265 return BinaryOperator::CreateOr(LHS, RHS); 4266 } 4267 4268 return nullptr; 4269 } 4270 4271 static Instruction *foldNotXor(BinaryOperator &I, 4272 InstCombiner::BuilderTy &Builder) { 4273 Value *X, *Y; 4274 // FIXME: one-use check is not needed in general, but currently we are unable 4275 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182) 4276 if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y)))))) 4277 return nullptr; 4278 4279 auto hasCommonOperand = [](Value *A, Value *B, Value *C, Value *D) { 4280 return A == C || A == D || B == C || B == D; 4281 }; 4282 4283 Value *A, *B, *C, *D; 4284 // Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?) 4285 // 4 commuted variants 4286 if (match(X, m_And(m_Value(A), m_Value(B))) && 4287 match(Y, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) { 4288 Value *NotY = Builder.CreateNot(Y); 4289 return BinaryOperator::CreateOr(X, NotY); 4290 }; 4291 4292 // Canonicalize ~((A | ?) ^ (A & B)) -> (A & B) | ~(A | ?) 4293 // 4 commuted variants 4294 if (match(Y, m_And(m_Value(A), m_Value(B))) && 4295 match(X, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) { 4296 Value *NotX = Builder.CreateNot(X); 4297 return BinaryOperator::CreateOr(Y, NotX); 4298 }; 4299 4300 return nullptr; 4301 } 4302 4303 /// Canonicalize a shifty way to code absolute value to the more common pattern 4304 /// that uses negation and select. 4305 static Instruction *canonicalizeAbs(BinaryOperator &Xor, 4306 InstCombiner::BuilderTy &Builder) { 4307 assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction."); 4308 4309 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1. 4310 // We're relying on the fact that we only do this transform when the shift has 4311 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase 4312 // instructions). 4313 Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1); 4314 if (Op0->hasNUses(2)) 4315 std::swap(Op0, Op1); 4316 4317 Type *Ty = Xor.getType(); 4318 Value *A; 4319 const APInt *ShAmt; 4320 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 4321 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 4322 match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) { 4323 // Op1 = ashr i32 A, 31 ; smear the sign bit 4324 // xor (add A, Op1), Op1 ; add -1 and flip bits if negative 4325 // --> (A < 0) ? -A : A 4326 Value *IsNeg = Builder.CreateIsNeg(A); 4327 // Copy the nsw flags from the add to the negate. 4328 auto *Add = cast<BinaryOperator>(Op0); 4329 Value *NegA = Add->hasNoUnsignedWrap() 4330 ? Constant::getNullValue(A->getType()) 4331 : Builder.CreateNeg(A, "", Add->hasNoSignedWrap()); 4332 return SelectInst::Create(IsNeg, NegA, A); 4333 } 4334 return nullptr; 4335 } 4336 4337 static bool canFreelyInvert(InstCombiner &IC, Value *Op, 4338 Instruction *IgnoredUser) { 4339 auto *I = dyn_cast<Instruction>(Op); 4340 return I && IC.isFreeToInvert(I, /*WillInvertAllUses=*/true) && 4341 IC.canFreelyInvertAllUsersOf(I, IgnoredUser); 4342 } 4343 4344 static Value *freelyInvert(InstCombinerImpl &IC, Value *Op, 4345 Instruction *IgnoredUser) { 4346 auto *I = cast<Instruction>(Op); 4347 IC.Builder.SetInsertPoint(*I->getInsertionPointAfterDef()); 4348 Value *NotOp = IC.Builder.CreateNot(Op, Op->getName() + ".not"); 4349 Op->replaceUsesWithIf(NotOp, 4350 [NotOp](Use &U) { return U.getUser() != NotOp; }); 4351 IC.freelyInvertAllUsersOf(NotOp, IgnoredUser); 4352 return NotOp; 4353 } 4354 4355 // Transform 4356 // z = ~(x &/| y) 4357 // into: 4358 // z = ((~x) |/& (~y)) 4359 // iff both x and y are free to invert and all uses of z can be freely updated. 4360 bool InstCombinerImpl::sinkNotIntoLogicalOp(Instruction &I) { 4361 Value *Op0, *Op1; 4362 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1)))) 4363 return false; 4364 4365 // If this logic op has not been simplified yet, just bail out and let that 4366 // happen first. Otherwise, the code below may wrongly invert. 4367 if (Op0 == Op1) 4368 return false; 4369 4370 Instruction::BinaryOps NewOpc = 4371 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And; 4372 bool IsBinaryOp = isa<BinaryOperator>(I); 4373 4374 // Can our users be adapted? 4375 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 4376 return false; 4377 4378 // And can the operands be adapted? 4379 if (!canFreelyInvert(*this, Op0, &I) || !canFreelyInvert(*this, Op1, &I)) 4380 return false; 4381 4382 Op0 = freelyInvert(*this, Op0, &I); 4383 Op1 = freelyInvert(*this, Op1, &I); 4384 4385 Builder.SetInsertPoint(*I.getInsertionPointAfterDef()); 4386 Value *NewLogicOp; 4387 if (IsBinaryOp) 4388 NewLogicOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not"); 4389 else 4390 NewLogicOp = 4391 Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not"); 4392 4393 replaceInstUsesWith(I, NewLogicOp); 4394 // We can not just create an outer `not`, it will most likely be immediately 4395 // folded back, reconstructing our initial pattern, and causing an 4396 // infinite combine loop, so immediately manually fold it away. 4397 freelyInvertAllUsersOf(NewLogicOp); 4398 return true; 4399 } 4400 4401 // Transform 4402 // z = (~x) &/| y 4403 // into: 4404 // z = ~(x |/& (~y)) 4405 // iff y is free to invert and all uses of z can be freely updated. 4406 bool InstCombinerImpl::sinkNotIntoOtherHandOfLogicalOp(Instruction &I) { 4407 Value *Op0, *Op1; 4408 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1)))) 4409 return false; 4410 Instruction::BinaryOps NewOpc = 4411 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And; 4412 bool IsBinaryOp = isa<BinaryOperator>(I); 4413 4414 Value *NotOp0 = nullptr; 4415 Value *NotOp1 = nullptr; 4416 Value **OpToInvert = nullptr; 4417 if (match(Op0, m_Not(m_Value(NotOp0))) && canFreelyInvert(*this, Op1, &I)) { 4418 Op0 = NotOp0; 4419 OpToInvert = &Op1; 4420 } else if (match(Op1, m_Not(m_Value(NotOp1))) && 4421 canFreelyInvert(*this, Op0, &I)) { 4422 Op1 = NotOp1; 4423 OpToInvert = &Op0; 4424 } else 4425 return false; 4426 4427 // And can our users be adapted? 4428 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 4429 return false; 4430 4431 *OpToInvert = freelyInvert(*this, *OpToInvert, &I); 4432 4433 Builder.SetInsertPoint(*I.getInsertionPointAfterDef()); 4434 Value *NewBinOp; 4435 if (IsBinaryOp) 4436 NewBinOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not"); 4437 else 4438 NewBinOp = Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not"); 4439 replaceInstUsesWith(I, NewBinOp); 4440 // We can not just create an outer `not`, it will most likely be immediately 4441 // folded back, reconstructing our initial pattern, and causing an 4442 // infinite combine loop, so immediately manually fold it away. 4443 freelyInvertAllUsersOf(NewBinOp); 4444 return true; 4445 } 4446 4447 Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) { 4448 Value *NotOp; 4449 if (!match(&I, m_Not(m_Value(NotOp)))) 4450 return nullptr; 4451 4452 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand. 4453 // We must eliminate the and/or (one-use) for these transforms to not increase 4454 // the instruction count. 4455 // 4456 // ~(~X & Y) --> (X | ~Y) 4457 // ~(Y & ~X) --> (X | ~Y) 4458 // 4459 // Note: The logical matches do not check for the commuted patterns because 4460 // those are handled via SimplifySelectsFeedingBinaryOp(). 4461 Type *Ty = I.getType(); 4462 Value *X, *Y; 4463 if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) { 4464 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 4465 return BinaryOperator::CreateOr(X, NotY); 4466 } 4467 if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) { 4468 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 4469 return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY); 4470 } 4471 4472 // ~(~X | Y) --> (X & ~Y) 4473 // ~(Y | ~X) --> (X & ~Y) 4474 if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) { 4475 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 4476 return BinaryOperator::CreateAnd(X, NotY); 4477 } 4478 if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) { 4479 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 4480 return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty)); 4481 } 4482 4483 // Is this a 'not' (~) fed by a binary operator? 4484 BinaryOperator *NotVal; 4485 if (match(NotOp, m_BinOp(NotVal))) { 4486 // ~((-X) | Y) --> (X - 1) & (~Y) 4487 if (match(NotVal, 4488 m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) { 4489 Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty)); 4490 Value *NotY = Builder.CreateNot(Y); 4491 return BinaryOperator::CreateAnd(DecX, NotY); 4492 } 4493 4494 // ~(~X >>s Y) --> (X >>s Y) 4495 if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y)))) 4496 return BinaryOperator::CreateAShr(X, Y); 4497 4498 // Treat lshr with non-negative operand as ashr. 4499 // ~(~X >>u Y) --> (X >>s Y) iff X is known negative 4500 if (match(NotVal, m_LShr(m_Not(m_Value(X)), m_Value(Y))) && 4501 isKnownNegative(X, SQ.getWithInstruction(NotVal))) 4502 return BinaryOperator::CreateAShr(X, Y); 4503 4504 // Bit-hack form of a signbit test for iN type: 4505 // ~(X >>s (N - 1)) --> sext i1 (X > -1) to iN 4506 unsigned FullShift = Ty->getScalarSizeInBits() - 1; 4507 if (match(NotVal, m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))))) { 4508 Value *IsNotNeg = Builder.CreateIsNotNeg(X, "isnotneg"); 4509 return new SExtInst(IsNotNeg, Ty); 4510 } 4511 4512 // If we are inverting a right-shifted constant, we may be able to eliminate 4513 // the 'not' by inverting the constant and using the opposite shift type. 4514 // Canonicalization rules ensure that only a negative constant uses 'ashr', 4515 // but we must check that in case that transform has not fired yet. 4516 4517 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits) 4518 Constant *C; 4519 if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) && 4520 match(C, m_Negative())) 4521 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y); 4522 4523 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits) 4524 if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) && 4525 match(C, m_NonNegative())) 4526 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y); 4527 4528 // ~(X + C) --> ~C - X 4529 if (match(NotVal, m_Add(m_Value(X), m_ImmConstant(C)))) 4530 return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X); 4531 4532 // ~(X - Y) --> ~X + Y 4533 // FIXME: is it really beneficial to sink the `not` here? 4534 if (match(NotVal, m_Sub(m_Value(X), m_Value(Y)))) 4535 if (isa<Constant>(X) || NotVal->hasOneUse()) 4536 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y); 4537 4538 // ~(~X + Y) --> X - Y 4539 if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y)))) 4540 return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y, 4541 NotVal); 4542 } 4543 4544 // not (cmp A, B) = !cmp A, B 4545 CmpInst::Predicate Pred; 4546 if (match(NotOp, m_Cmp(Pred, m_Value(), m_Value())) && 4547 (NotOp->hasOneUse() || 4548 InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(NotOp), 4549 /*IgnoredUser=*/nullptr))) { 4550 cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred)); 4551 freelyInvertAllUsersOf(NotOp); 4552 return &I; 4553 } 4554 4555 // Move a 'not' ahead of casts of a bool to enable logic reduction: 4556 // not (bitcast (sext i1 X)) --> bitcast (sext (not i1 X)) 4557 if (match(NotOp, m_OneUse(m_BitCast(m_OneUse(m_SExt(m_Value(X)))))) && X->getType()->isIntOrIntVectorTy(1)) { 4558 Type *SextTy = cast<BitCastOperator>(NotOp)->getSrcTy(); 4559 Value *NotX = Builder.CreateNot(X); 4560 Value *Sext = Builder.CreateSExt(NotX, SextTy); 4561 return CastInst::CreateBitOrPointerCast(Sext, Ty); 4562 } 4563 4564 if (auto *NotOpI = dyn_cast<Instruction>(NotOp)) 4565 if (sinkNotIntoLogicalOp(*NotOpI)) 4566 return &I; 4567 4568 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max: 4569 // ~min(~X, ~Y) --> max(X, Y) 4570 // ~max(~X, Y) --> min(X, ~Y) 4571 auto *II = dyn_cast<IntrinsicInst>(NotOp); 4572 if (II && II->hasOneUse()) { 4573 if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) { 4574 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 4575 Value *NotY = Builder.CreateNot(Y); 4576 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY); 4577 return replaceInstUsesWith(I, InvMaxMin); 4578 } 4579 4580 if (II->getIntrinsicID() == Intrinsic::is_fpclass) { 4581 ConstantInt *ClassMask = cast<ConstantInt>(II->getArgOperand(1)); 4582 II->setArgOperand( 4583 1, ConstantInt::get(ClassMask->getType(), 4584 ~ClassMask->getZExtValue() & fcAllFlags)); 4585 return replaceInstUsesWith(I, II); 4586 } 4587 } 4588 4589 if (NotOp->hasOneUse()) { 4590 // Pull 'not' into operands of select if both operands are one-use compares 4591 // or one is one-use compare and the other one is a constant. 4592 // Inverting the predicates eliminates the 'not' operation. 4593 // Example: 4594 // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) --> 4595 // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?) 4596 // not (select ?, (cmp TPred, ?, ?), true --> 4597 // select ?, (cmp InvTPred, ?, ?), false 4598 if (auto *Sel = dyn_cast<SelectInst>(NotOp)) { 4599 Value *TV = Sel->getTrueValue(); 4600 Value *FV = Sel->getFalseValue(); 4601 auto *CmpT = dyn_cast<CmpInst>(TV); 4602 auto *CmpF = dyn_cast<CmpInst>(FV); 4603 bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV); 4604 bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV); 4605 if (InvertibleT && InvertibleF) { 4606 if (CmpT) 4607 CmpT->setPredicate(CmpT->getInversePredicate()); 4608 else 4609 Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV))); 4610 if (CmpF) 4611 CmpF->setPredicate(CmpF->getInversePredicate()); 4612 else 4613 Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV))); 4614 return replaceInstUsesWith(I, Sel); 4615 } 4616 } 4617 } 4618 4619 if (Instruction *NewXor = foldNotXor(I, Builder)) 4620 return NewXor; 4621 4622 // TODO: Could handle multi-use better by checking if all uses of NotOp (other 4623 // than I) can be inverted. 4624 if (Value *R = getFreelyInverted(NotOp, NotOp->hasOneUse(), &Builder)) 4625 return replaceInstUsesWith(I, R); 4626 4627 return nullptr; 4628 } 4629 4630 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 4631 // here. We should standardize that construct where it is needed or choose some 4632 // other way to ensure that commutated variants of patterns are not missed. 4633 Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) { 4634 if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1), 4635 SQ.getWithInstruction(&I))) 4636 return replaceInstUsesWith(I, V); 4637 4638 if (SimplifyAssociativeOrCommutative(I)) 4639 return &I; 4640 4641 if (Instruction *X = foldVectorBinop(I)) 4642 return X; 4643 4644 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 4645 return Phi; 4646 4647 if (Instruction *NewXor = foldXorToXor(I, Builder)) 4648 return NewXor; 4649 4650 // (A&B)^(A&C) -> A&(B^C) etc 4651 if (Value *V = foldUsingDistributiveLaws(I)) 4652 return replaceInstUsesWith(I, V); 4653 4654 // See if we can simplify any instructions used by the instruction whose sole 4655 // purpose is to compute bits we don't care about. 4656 if (SimplifyDemandedInstructionBits(I)) 4657 return &I; 4658 4659 if (Instruction *R = foldNot(I)) 4660 return R; 4661 4662 if (Instruction *R = foldBinOpShiftWithShift(I)) 4663 return R; 4664 4665 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M) 4666 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits 4667 // calls in there are unnecessary as SimplifyDemandedInstructionBits should 4668 // have already taken care of those cases. 4669 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4670 Value *M; 4671 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()), 4672 m_c_And(m_Deferred(M), m_Value())))) { 4673 if (isGuaranteedNotToBeUndef(M)) 4674 return BinaryOperator::CreateDisjointOr(Op0, Op1); 4675 else 4676 return BinaryOperator::CreateOr(Op0, Op1); 4677 } 4678 4679 if (Instruction *Xor = visitMaskedMerge(I, Builder)) 4680 return Xor; 4681 4682 Value *X, *Y; 4683 Constant *C1; 4684 if (match(Op1, m_Constant(C1))) { 4685 Constant *C2; 4686 4687 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) && 4688 match(C1, m_ImmConstant())) { 4689 // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2) 4690 C2 = Constant::replaceUndefsWith( 4691 C2, Constant::getAllOnesValue(C2->getType()->getScalarType())); 4692 Value *And = Builder.CreateAnd( 4693 X, Constant::mergeUndefsWith(ConstantExpr::getNot(C2), C1)); 4694 return BinaryOperator::CreateXor( 4695 And, Constant::mergeUndefsWith(ConstantExpr::getXor(C1, C2), C1)); 4696 } 4697 4698 // Use DeMorgan and reassociation to eliminate a 'not' op. 4699 if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) { 4700 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1 4701 Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2)); 4702 return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1)); 4703 } 4704 if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) { 4705 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1 4706 Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2)); 4707 return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1)); 4708 } 4709 4710 // Convert xor ([trunc] (ashr X, BW-1)), C => 4711 // select(X >s -1, C, ~C) 4712 // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the 4713 // constant depending on whether this input is less than 0. 4714 const APInt *CA; 4715 if (match(Op0, m_OneUse(m_TruncOrSelf( 4716 m_AShr(m_Value(X), m_APIntAllowPoison(CA))))) && 4717 *CA == X->getType()->getScalarSizeInBits() - 1 && 4718 !match(C1, m_AllOnes())) { 4719 assert(!C1->isZeroValue() && "Unexpected xor with 0"); 4720 Value *IsNotNeg = Builder.CreateIsNotNeg(X); 4721 return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1)); 4722 } 4723 } 4724 4725 Type *Ty = I.getType(); 4726 { 4727 const APInt *RHSC; 4728 if (match(Op1, m_APInt(RHSC))) { 4729 Value *X; 4730 const APInt *C; 4731 // (C - X) ^ signmaskC --> (C + signmaskC) - X 4732 if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X)))) 4733 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X); 4734 4735 // (X + C) ^ signmaskC --> X + (C + signmaskC) 4736 if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C)))) 4737 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC)); 4738 4739 // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0 4740 if (match(Op0, m_Or(m_Value(X), m_APInt(C))) && 4741 MaskedValueIsZero(X, *C, 0, &I)) 4742 return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC)); 4743 4744 // When X is a power-of-two or zero and zero input is poison: 4745 // ctlz(i32 X) ^ 31 --> cttz(X) 4746 // cttz(i32 X) ^ 31 --> ctlz(X) 4747 auto *II = dyn_cast<IntrinsicInst>(Op0); 4748 if (II && II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) { 4749 Intrinsic::ID IID = II->getIntrinsicID(); 4750 if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) && 4751 match(II->getArgOperand(1), m_One()) && 4752 isKnownToBeAPowerOfTwo(II->getArgOperand(0), /*OrZero */ true)) { 4753 IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz; 4754 Function *F = Intrinsic::getDeclaration(II->getModule(), IID, Ty); 4755 return CallInst::Create(F, {II->getArgOperand(0), Builder.getTrue()}); 4756 } 4757 } 4758 4759 // If RHSC is inverting the remaining bits of shifted X, 4760 // canonicalize to a 'not' before the shift to help SCEV and codegen: 4761 // (X << C) ^ RHSC --> ~X << C 4762 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) && 4763 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) { 4764 Value *NotX = Builder.CreateNot(X); 4765 return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C)); 4766 } 4767 // (X >>u C) ^ RHSC --> ~X >>u C 4768 if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) && 4769 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) { 4770 Value *NotX = Builder.CreateNot(X); 4771 return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C)); 4772 } 4773 // TODO: We could handle 'ashr' here as well. That would be matching 4774 // a 'not' op and moving it before the shift. Doing that requires 4775 // preventing the inverse fold in canShiftBinOpWithConstantRHS(). 4776 } 4777 4778 // If we are XORing the sign bit of a floating-point value, convert 4779 // this to fneg, then cast back to integer. 4780 // 4781 // This is generous interpretation of noimplicitfloat, this is not a true 4782 // floating-point operation. 4783 // 4784 // Assumes any IEEE-represented type has the sign bit in the high bit. 4785 // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt 4786 Value *CastOp; 4787 if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) && 4788 match(Op1, m_SignMask()) && 4789 !Builder.GetInsertBlock()->getParent()->hasFnAttribute( 4790 Attribute::NoImplicitFloat)) { 4791 Type *EltTy = CastOp->getType()->getScalarType(); 4792 if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) { 4793 Value *FNeg = Builder.CreateFNeg(CastOp); 4794 return new BitCastInst(FNeg, I.getType()); 4795 } 4796 } 4797 } 4798 4799 // FIXME: This should not be limited to scalar (pull into APInt match above). 4800 { 4801 Value *X; 4802 ConstantInt *C1, *C2, *C3; 4803 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3) 4804 if (match(Op1, m_ConstantInt(C3)) && 4805 match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)), 4806 m_ConstantInt(C2))) && 4807 Op0->hasOneUse()) { 4808 // fold (C1 >> C2) ^ C3 4809 APInt FoldConst = C1->getValue().lshr(C2->getValue()); 4810 FoldConst ^= C3->getValue(); 4811 // Prepare the two operands. 4812 auto *Opnd0 = Builder.CreateLShr(X, C2); 4813 Opnd0->takeName(Op0); 4814 return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst)); 4815 } 4816 } 4817 4818 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 4819 return FoldedLogic; 4820 4821 // Y ^ (X | Y) --> X & ~Y 4822 // Y ^ (Y | X) --> X & ~Y 4823 if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0))))) 4824 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0)); 4825 // (X | Y) ^ Y --> X & ~Y 4826 // (Y | X) ^ Y --> X & ~Y 4827 if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1))))) 4828 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1)); 4829 4830 // Y ^ (X & Y) --> ~X & Y 4831 // Y ^ (Y & X) --> ~X & Y 4832 if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0))))) 4833 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X)); 4834 // (X & Y) ^ Y --> ~X & Y 4835 // (Y & X) ^ Y --> ~X & Y 4836 // Canonical form is (X & C) ^ C; don't touch that. 4837 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must 4838 // be fixed to prefer that (otherwise we get infinite looping). 4839 if (!match(Op1, m_Constant()) && 4840 match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1))))) 4841 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X)); 4842 4843 Value *A, *B, *C; 4844 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants. 4845 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), 4846 m_OneUse(m_c_Or(m_Deferred(A), m_Value(C)))))) 4847 return BinaryOperator::CreateXor( 4848 Builder.CreateAnd(Builder.CreateNot(A), C), B); 4849 4850 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants. 4851 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), 4852 m_OneUse(m_c_Or(m_Deferred(B), m_Value(C)))))) 4853 return BinaryOperator::CreateXor( 4854 Builder.CreateAnd(Builder.CreateNot(B), C), A); 4855 4856 // (A & B) ^ (A ^ B) -> (A | B) 4857 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 4858 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B)))) 4859 return BinaryOperator::CreateOr(A, B); 4860 // (A ^ B) ^ (A & B) -> (A | B) 4861 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 4862 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 4863 return BinaryOperator::CreateOr(A, B); 4864 4865 // (A & ~B) ^ ~A -> ~(A & B) 4866 // (~B & A) ^ ~A -> ~(A & B) 4867 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 4868 match(Op1, m_Not(m_Specific(A)))) 4869 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); 4870 4871 // (~A & B) ^ A --> A | B -- There are 4 commuted variants. 4872 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A)))) 4873 return BinaryOperator::CreateOr(A, B); 4874 4875 // (~A | B) ^ A --> ~(A & B) 4876 if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B))))) 4877 return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B)); 4878 4879 // A ^ (~A | B) --> ~(A & B) 4880 if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B))))) 4881 return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B)); 4882 4883 // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants. 4884 // TODO: Loosen one-use restriction if common operand is a constant. 4885 Value *D; 4886 if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) && 4887 match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) { 4888 if (B == C || B == D) 4889 std::swap(A, B); 4890 if (A == C) 4891 std::swap(C, D); 4892 if (A == D) { 4893 Value *NotA = Builder.CreateNot(A); 4894 return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA); 4895 } 4896 } 4897 4898 // (A & B) ^ (A | C) --> A ? ~B : C -- There are 4 commuted variants. 4899 if (I.getType()->isIntOrIntVectorTy(1) && 4900 match(Op0, m_OneUse(m_LogicalAnd(m_Value(A), m_Value(B)))) && 4901 match(Op1, m_OneUse(m_LogicalOr(m_Value(C), m_Value(D))))) { 4902 bool NeedFreeze = isa<SelectInst>(Op0) && isa<SelectInst>(Op1) && B == D; 4903 if (B == C || B == D) 4904 std::swap(A, B); 4905 if (A == C) 4906 std::swap(C, D); 4907 if (A == D) { 4908 if (NeedFreeze) 4909 A = Builder.CreateFreeze(A); 4910 Value *NotB = Builder.CreateNot(B); 4911 return SelectInst::Create(A, NotB, C); 4912 } 4913 } 4914 4915 if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) 4916 if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) 4917 if (Value *V = foldXorOfICmps(LHS, RHS, I)) 4918 return replaceInstUsesWith(I, V); 4919 4920 if (Instruction *CastedXor = foldCastedBitwiseLogic(I)) 4921 return CastedXor; 4922 4923 if (Instruction *Abs = canonicalizeAbs(I, Builder)) 4924 return Abs; 4925 4926 // Otherwise, if all else failed, try to hoist the xor-by-constant: 4927 // (X ^ C) ^ Y --> (X ^ Y) ^ C 4928 // Just like we do in other places, we completely avoid the fold 4929 // for constantexprs, at least to avoid endless combine loop. 4930 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X), 4931 m_Unless(m_ConstantExpr())), 4932 m_ImmConstant(C1))), 4933 m_Value(Y)))) 4934 return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1); 4935 4936 if (Instruction *R = reassociateForUses(I, Builder)) 4937 return R; 4938 4939 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) 4940 return Canonicalized; 4941 4942 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1)) 4943 return Folded; 4944 4945 if (Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(I)) 4946 return Folded; 4947 4948 if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 4949 return Res; 4950 4951 if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder)) 4952 return Res; 4953 4954 return nullptr; 4955 } 4956