xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitAnd, visitOr, and visitXor functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/CmpInstAnalysis.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/ConstantRange.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Transforms/InstCombine/InstCombiner.h"
20 #include "llvm/Transforms/Utils/Local.h"
21 
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// This is the complement of getICmpCode, which turns an opcode and two
28 /// operands into either a constant true or false, or a brand new ICmp
29 /// instruction. The sign is passed in to determine which kind of predicate to
30 /// use in the new icmp instruction.
31 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
32                               InstCombiner::BuilderTy &Builder) {
33   ICmpInst::Predicate NewPred;
34   if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
35     return TorF;
36   return Builder.CreateICmp(NewPred, LHS, RHS);
37 }
38 
39 /// This is the complement of getFCmpCode, which turns an opcode and two
40 /// operands into either a FCmp instruction, or a true/false constant.
41 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
42                            InstCombiner::BuilderTy &Builder) {
43   FCmpInst::Predicate NewPred;
44   if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred))
45     return TorF;
46   return Builder.CreateFCmp(NewPred, LHS, RHS);
47 }
48 
49 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
50 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
51 /// whether to treat V, Lo, and Hi as signed or not.
52 Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo,
53                                          const APInt &Hi, bool isSigned,
54                                          bool Inside) {
55   assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
56          "Lo is not < Hi in range emission code!");
57 
58   Type *Ty = V->getType();
59 
60   // V >= Min && V <  Hi --> V <  Hi
61   // V <  Min || V >= Hi --> V >= Hi
62   ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
63   if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
64     Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
65     return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
66   }
67 
68   // V >= Lo && V <  Hi --> V - Lo u<  Hi - Lo
69   // V <  Lo || V >= Hi --> V - Lo u>= Hi - Lo
70   Value *VMinusLo =
71       Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
72   Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
73   return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
74 }
75 
76 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
77 /// that can be simplified.
78 /// One of A and B is considered the mask. The other is the value. This is
79 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
80 /// only "Mask", then both A and B can be considered masks. If A is the mask,
81 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
82 /// If both A and C are constants, this proof is also easy.
83 /// For the following explanations, we assume that A is the mask.
84 ///
85 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
86 /// bits of A are set in B.
87 ///   Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
88 ///
89 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
90 /// bits of A are cleared in B.
91 ///   Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
92 ///
93 /// "Mixed" declares that (A & B) == C and C might or might not contain any
94 /// number of one bits and zero bits.
95 ///   Example: (icmp eq (A & 3), 1) -> AMask_Mixed
96 ///
97 /// "Not" means that in above descriptions "==" should be replaced by "!=".
98 ///   Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
99 ///
100 /// If the mask A contains a single bit, then the following is equivalent:
101 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
102 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
103 enum MaskedICmpType {
104   AMask_AllOnes           =     1,
105   AMask_NotAllOnes        =     2,
106   BMask_AllOnes           =     4,
107   BMask_NotAllOnes        =     8,
108   Mask_AllZeros           =    16,
109   Mask_NotAllZeros        =    32,
110   AMask_Mixed             =    64,
111   AMask_NotMixed          =   128,
112   BMask_Mixed             =   256,
113   BMask_NotMixed          =   512
114 };
115 
116 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
117 /// satisfies.
118 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
119                                   ICmpInst::Predicate Pred) {
120   const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr;
121   match(A, m_APInt(ConstA));
122   match(B, m_APInt(ConstB));
123   match(C, m_APInt(ConstC));
124   bool IsEq = (Pred == ICmpInst::ICMP_EQ);
125   bool IsAPow2 = ConstA && ConstA->isPowerOf2();
126   bool IsBPow2 = ConstB && ConstB->isPowerOf2();
127   unsigned MaskVal = 0;
128   if (ConstC && ConstC->isZero()) {
129     // if C is zero, then both A and B qualify as mask
130     MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
131                      : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
132     if (IsAPow2)
133       MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
134                        : (AMask_AllOnes | AMask_Mixed));
135     if (IsBPow2)
136       MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
137                        : (BMask_AllOnes | BMask_Mixed));
138     return MaskVal;
139   }
140 
141   if (A == C) {
142     MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
143                      : (AMask_NotAllOnes | AMask_NotMixed));
144     if (IsAPow2)
145       MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
146                        : (Mask_AllZeros | AMask_Mixed));
147   } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) {
148     MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
149   }
150 
151   if (B == C) {
152     MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
153                      : (BMask_NotAllOnes | BMask_NotMixed));
154     if (IsBPow2)
155       MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
156                        : (Mask_AllZeros | BMask_Mixed));
157   } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
158     MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
159   }
160 
161   return MaskVal;
162 }
163 
164 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
165 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
166 /// is adjacent to the corresponding normal flag (recording ==), this just
167 /// involves swapping those bits over.
168 static unsigned conjugateICmpMask(unsigned Mask) {
169   unsigned NewMask;
170   NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
171                      AMask_Mixed | BMask_Mixed))
172             << 1;
173 
174   NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
175                       AMask_NotMixed | BMask_NotMixed))
176              >> 1;
177 
178   return NewMask;
179 }
180 
181 // Adapts the external decomposeBitTestICmp for local use.
182 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
183                                  Value *&X, Value *&Y, Value *&Z) {
184   APInt Mask;
185   if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
186     return false;
187 
188   Y = ConstantInt::get(X->getType(), Mask);
189   Z = ConstantInt::get(X->getType(), 0);
190   return true;
191 }
192 
193 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
194 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
195 /// the right hand side as a pair.
196 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
197 /// and PredR are their predicates, respectively.
198 static std::optional<std::pair<unsigned, unsigned>> getMaskedTypeForICmpPair(
199     Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, ICmpInst *LHS,
200     ICmpInst *RHS, ICmpInst::Predicate &PredL, ICmpInst::Predicate &PredR) {
201   // Don't allow pointers. Splat vectors are fine.
202   if (!LHS->getOperand(0)->getType()->isIntOrIntVectorTy() ||
203       !RHS->getOperand(0)->getType()->isIntOrIntVectorTy())
204     return std::nullopt;
205 
206   // Here comes the tricky part:
207   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
208   // and L11 & L12 == L21 & L22. The same goes for RHS.
209   // Now we must find those components L** and R**, that are equal, so
210   // that we can extract the parameters A, B, C, D, and E for the canonical
211   // above.
212   Value *L1 = LHS->getOperand(0);
213   Value *L2 = LHS->getOperand(1);
214   Value *L11, *L12, *L21, *L22;
215   // Check whether the icmp can be decomposed into a bit test.
216   if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
217     L21 = L22 = L1 = nullptr;
218   } else {
219     // Look for ANDs in the LHS icmp.
220     if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
221       // Any icmp can be viewed as being trivially masked; if it allows us to
222       // remove one, it's worth it.
223       L11 = L1;
224       L12 = Constant::getAllOnesValue(L1->getType());
225     }
226 
227     if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
228       L21 = L2;
229       L22 = Constant::getAllOnesValue(L2->getType());
230     }
231   }
232 
233   // Bail if LHS was a icmp that can't be decomposed into an equality.
234   if (!ICmpInst::isEquality(PredL))
235     return std::nullopt;
236 
237   Value *R1 = RHS->getOperand(0);
238   Value *R2 = RHS->getOperand(1);
239   Value *R11, *R12;
240   bool Ok = false;
241   if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
242     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
243       A = R11;
244       D = R12;
245     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
246       A = R12;
247       D = R11;
248     } else {
249       return std::nullopt;
250     }
251     E = R2;
252     R1 = nullptr;
253     Ok = true;
254   } else {
255     if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
256       // As before, model no mask as a trivial mask if it'll let us do an
257       // optimization.
258       R11 = R1;
259       R12 = Constant::getAllOnesValue(R1->getType());
260     }
261 
262     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
263       A = R11;
264       D = R12;
265       E = R2;
266       Ok = true;
267     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
268       A = R12;
269       D = R11;
270       E = R2;
271       Ok = true;
272     }
273   }
274 
275   // Bail if RHS was a icmp that can't be decomposed into an equality.
276   if (!ICmpInst::isEquality(PredR))
277     return std::nullopt;
278 
279   // Look for ANDs on the right side of the RHS icmp.
280   if (!Ok) {
281     if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
282       R11 = R2;
283       R12 = Constant::getAllOnesValue(R2->getType());
284     }
285 
286     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
287       A = R11;
288       D = R12;
289       E = R1;
290       Ok = true;
291     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
292       A = R12;
293       D = R11;
294       E = R1;
295       Ok = true;
296     } else {
297       return std::nullopt;
298     }
299 
300     assert(Ok && "Failed to find AND on the right side of the RHS icmp.");
301   }
302 
303   if (L11 == A) {
304     B = L12;
305     C = L2;
306   } else if (L12 == A) {
307     B = L11;
308     C = L2;
309   } else if (L21 == A) {
310     B = L22;
311     C = L1;
312   } else if (L22 == A) {
313     B = L21;
314     C = L1;
315   }
316 
317   unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
318   unsigned RightType = getMaskedICmpType(A, D, E, PredR);
319   return std::optional<std::pair<unsigned, unsigned>>(
320       std::make_pair(LeftType, RightType));
321 }
322 
323 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
324 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
325 /// and the right hand side is of type BMask_Mixed. For example,
326 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
327 /// Also used for logical and/or, must be poison safe.
328 static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
329     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
330     Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
331     InstCombiner::BuilderTy &Builder) {
332   // We are given the canonical form:
333   //   (icmp ne (A & B), 0) & (icmp eq (A & D), E).
334   // where D & E == E.
335   //
336   // If IsAnd is false, we get it in negated form:
337   //   (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
338   //      !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
339   //
340   // We currently handle the case of B, C, D, E are constant.
341   //
342   const APInt *BCst, *CCst, *DCst, *OrigECst;
343   if (!match(B, m_APInt(BCst)) || !match(C, m_APInt(CCst)) ||
344       !match(D, m_APInt(DCst)) || !match(E, m_APInt(OrigECst)))
345     return nullptr;
346 
347   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
348 
349   // Update E to the canonical form when D is a power of two and RHS is
350   // canonicalized as,
351   // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
352   // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
353   APInt ECst = *OrigECst;
354   if (PredR != NewCC)
355     ECst ^= *DCst;
356 
357   // If B or D is zero, skip because if LHS or RHS can be trivially folded by
358   // other folding rules and this pattern won't apply any more.
359   if (*BCst == 0 || *DCst == 0)
360     return nullptr;
361 
362   // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
363   // deduce anything from it.
364   // For example,
365   // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
366   if ((*BCst & *DCst) == 0)
367     return nullptr;
368 
369   // If the following two conditions are met:
370   //
371   // 1. mask B covers only a single bit that's not covered by mask D, that is,
372   // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
373   // B and D has only one bit set) and,
374   //
375   // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
376   // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
377   //
378   // then that single bit in B must be one and thus the whole expression can be
379   // folded to
380   //   (A & (B | D)) == (B & (B ^ D)) | E.
381   //
382   // For example,
383   // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
384   // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
385   if ((((*BCst & *DCst) & ECst) == 0) &&
386       (*BCst & (*BCst ^ *DCst)).isPowerOf2()) {
387     APInt BorD = *BCst | *DCst;
388     APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst;
389     Value *NewMask = ConstantInt::get(A->getType(), BorD);
390     Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE);
391     Value *NewAnd = Builder.CreateAnd(A, NewMask);
392     return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
393   }
394 
395   auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) {
396     return (*C1 & *C2) == *C1;
397   };
398   auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) {
399     return (*C1 & *C2) == *C2;
400   };
401 
402   // In the following, we consider only the cases where B is a superset of D, B
403   // is a subset of D, or B == D because otherwise there's at least one bit
404   // covered by B but not D, in which case we can't deduce much from it, so
405   // no folding (aside from the single must-be-one bit case right above.)
406   // For example,
407   // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
408   if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
409     return nullptr;
410 
411   // At this point, either B is a superset of D, B is a subset of D or B == D.
412 
413   // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
414   // and the whole expression becomes false (or true if negated), otherwise, no
415   // folding.
416   // For example,
417   // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
418   // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
419   if (ECst.isZero()) {
420     if (IsSubSetOrEqual(BCst, DCst))
421       return ConstantInt::get(LHS->getType(), !IsAnd);
422     return nullptr;
423   }
424 
425   // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
426   // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
427   // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
428   // RHS. For example,
429   // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
430   // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
431   if (IsSuperSetOrEqual(BCst, DCst))
432     return RHS;
433   // Otherwise, B is a subset of D. If B and E have a common bit set,
434   // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
435   // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
436   assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
437   if ((*BCst & ECst) != 0)
438     return RHS;
439   // Otherwise, LHS and RHS contradict and the whole expression becomes false
440   // (or true if negated.) For example,
441   // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
442   // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
443   return ConstantInt::get(LHS->getType(), !IsAnd);
444 }
445 
446 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
447 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
448 /// aren't of the common mask pattern type.
449 /// Also used for logical and/or, must be poison safe.
450 static Value *foldLogOpOfMaskedICmpsAsymmetric(
451     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
452     Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
453     unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
454   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
455          "Expected equality predicates for masked type of icmps.");
456   // Handle Mask_NotAllZeros-BMask_Mixed cases.
457   // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
458   // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
459   //    which gets swapped to
460   //    (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
461   if (!IsAnd) {
462     LHSMask = conjugateICmpMask(LHSMask);
463     RHSMask = conjugateICmpMask(RHSMask);
464   }
465   if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
466     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
467             LHS, RHS, IsAnd, A, B, C, D, E,
468             PredL, PredR, Builder)) {
469       return V;
470     }
471   } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
472     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
473             RHS, LHS, IsAnd, A, D, E, B, C,
474             PredR, PredL, Builder)) {
475       return V;
476     }
477   }
478   return nullptr;
479 }
480 
481 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
482 /// into a single (icmp(A & X) ==/!= Y).
483 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
484                                      bool IsLogical,
485                                      InstCombiner::BuilderTy &Builder) {
486   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
487   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
488   std::optional<std::pair<unsigned, unsigned>> MaskPair =
489       getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
490   if (!MaskPair)
491     return nullptr;
492   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
493          "Expected equality predicates for masked type of icmps.");
494   unsigned LHSMask = MaskPair->first;
495   unsigned RHSMask = MaskPair->second;
496   unsigned Mask = LHSMask & RHSMask;
497   if (Mask == 0) {
498     // Even if the two sides don't share a common pattern, check if folding can
499     // still happen.
500     if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
501             LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
502             Builder))
503       return V;
504     return nullptr;
505   }
506 
507   // In full generality:
508   //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
509   // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
510   //
511   // If the latter can be converted into (icmp (A & X) Op Y) then the former is
512   // equivalent to (icmp (A & X) !Op Y).
513   //
514   // Therefore, we can pretend for the rest of this function that we're dealing
515   // with the conjunction, provided we flip the sense of any comparisons (both
516   // input and output).
517 
518   // In most cases we're going to produce an EQ for the "&&" case.
519   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
520   if (!IsAnd) {
521     // Convert the masking analysis into its equivalent with negated
522     // comparisons.
523     Mask = conjugateICmpMask(Mask);
524   }
525 
526   if (Mask & Mask_AllZeros) {
527     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
528     // -> (icmp eq (A & (B|D)), 0)
529     if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
530       return nullptr; // TODO: Use freeze?
531     Value *NewOr = Builder.CreateOr(B, D);
532     Value *NewAnd = Builder.CreateAnd(A, NewOr);
533     // We can't use C as zero because we might actually handle
534     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
535     // with B and D, having a single bit set.
536     Value *Zero = Constant::getNullValue(A->getType());
537     return Builder.CreateICmp(NewCC, NewAnd, Zero);
538   }
539   if (Mask & BMask_AllOnes) {
540     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
541     // -> (icmp eq (A & (B|D)), (B|D))
542     if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
543       return nullptr; // TODO: Use freeze?
544     Value *NewOr = Builder.CreateOr(B, D);
545     Value *NewAnd = Builder.CreateAnd(A, NewOr);
546     return Builder.CreateICmp(NewCC, NewAnd, NewOr);
547   }
548   if (Mask & AMask_AllOnes) {
549     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
550     // -> (icmp eq (A & (B&D)), A)
551     if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
552       return nullptr; // TODO: Use freeze?
553     Value *NewAnd1 = Builder.CreateAnd(B, D);
554     Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
555     return Builder.CreateICmp(NewCC, NewAnd2, A);
556   }
557 
558   // Remaining cases assume at least that B and D are constant, and depend on
559   // their actual values. This isn't strictly necessary, just a "handle the
560   // easy cases for now" decision.
561   const APInt *ConstB, *ConstD;
562   if (!match(B, m_APInt(ConstB)) || !match(D, m_APInt(ConstD)))
563     return nullptr;
564 
565   if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
566     // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
567     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
568     //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
569     // Only valid if one of the masks is a superset of the other (check "B&D" is
570     // the same as either B or D).
571     APInt NewMask = *ConstB & *ConstD;
572     if (NewMask == *ConstB)
573       return LHS;
574     else if (NewMask == *ConstD)
575       return RHS;
576   }
577 
578   if (Mask & AMask_NotAllOnes) {
579     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
580     //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
581     // Only valid if one of the masks is a superset of the other (check "B|D" is
582     // the same as either B or D).
583     APInt NewMask = *ConstB | *ConstD;
584     if (NewMask == *ConstB)
585       return LHS;
586     else if (NewMask == *ConstD)
587       return RHS;
588   }
589 
590   if (Mask & (BMask_Mixed | BMask_NotMixed)) {
591     // Mixed:
592     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
593     // We already know that B & C == C && D & E == E.
594     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
595     // C and E, which are shared by both the mask B and the mask D, don't
596     // contradict, then we can transform to
597     // -> (icmp eq (A & (B|D)), (C|E))
598     // Currently, we only handle the case of B, C, D, and E being constant.
599     // We can't simply use C and E because we might actually handle
600     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
601     // with B and D, having a single bit set.
602 
603     // NotMixed:
604     // (icmp ne (A & B), C) & (icmp ne (A & D), E)
605     // -> (icmp ne (A & (B & D)), (C & E))
606     // Check the intersection (B & D) for inequality.
607     // Assume that (B & D) == B || (B & D) == D, i.e B/D is a subset of D/B
608     // and (B & D) & (C ^ E) == 0, bits of C and E, which are shared by both the
609     // B and the D, don't contradict.
610     // Note that we can assume (~B & C) == 0 && (~D & E) == 0, previous
611     // operation should delete these icmps if it hadn't been met.
612 
613     const APInt *OldConstC, *OldConstE;
614     if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE)))
615       return nullptr;
616 
617     auto FoldBMixed = [&](ICmpInst::Predicate CC, bool IsNot) -> Value * {
618       CC = IsNot ? CmpInst::getInversePredicate(CC) : CC;
619       const APInt ConstC = PredL != CC ? *ConstB ^ *OldConstC : *OldConstC;
620       const APInt ConstE = PredR != CC ? *ConstD ^ *OldConstE : *OldConstE;
621 
622       if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
623         return IsNot ? nullptr : ConstantInt::get(LHS->getType(), !IsAnd);
624 
625       if (IsNot && !ConstB->isSubsetOf(*ConstD) && !ConstD->isSubsetOf(*ConstB))
626         return nullptr;
627 
628       APInt BD, CE;
629       if (IsNot) {
630         BD = *ConstB & *ConstD;
631         CE = ConstC & ConstE;
632       } else {
633         BD = *ConstB | *ConstD;
634         CE = ConstC | ConstE;
635       }
636       Value *NewAnd = Builder.CreateAnd(A, BD);
637       Value *CEVal = ConstantInt::get(A->getType(), CE);
638       return Builder.CreateICmp(CC, CEVal, NewAnd);
639     };
640 
641     if (Mask & BMask_Mixed)
642       return FoldBMixed(NewCC, false);
643     if (Mask & BMask_NotMixed) // can be else also
644       return FoldBMixed(NewCC, true);
645   }
646   return nullptr;
647 }
648 
649 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
650 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
651 /// If \p Inverted is true then the check is for the inverted range, e.g.
652 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
653 Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
654                                             bool Inverted) {
655   // Check the lower range comparison, e.g. x >= 0
656   // InstCombine already ensured that if there is a constant it's on the RHS.
657   ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
658   if (!RangeStart)
659     return nullptr;
660 
661   ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
662                                Cmp0->getPredicate());
663 
664   // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
665   if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
666         (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
667     return nullptr;
668 
669   ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
670                                Cmp1->getPredicate());
671 
672   Value *Input = Cmp0->getOperand(0);
673   Value *RangeEnd;
674   if (Cmp1->getOperand(0) == Input) {
675     // For the upper range compare we have: icmp x, n
676     RangeEnd = Cmp1->getOperand(1);
677   } else if (Cmp1->getOperand(1) == Input) {
678     // For the upper range compare we have: icmp n, x
679     RangeEnd = Cmp1->getOperand(0);
680     Pred1 = ICmpInst::getSwappedPredicate(Pred1);
681   } else {
682     return nullptr;
683   }
684 
685   // Check the upper range comparison, e.g. x < n
686   ICmpInst::Predicate NewPred;
687   switch (Pred1) {
688     case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
689     case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
690     default: return nullptr;
691   }
692 
693   // This simplification is only valid if the upper range is not negative.
694   KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
695   if (!Known.isNonNegative())
696     return nullptr;
697 
698   if (Inverted)
699     NewPred = ICmpInst::getInversePredicate(NewPred);
700 
701   return Builder.CreateICmp(NewPred, Input, RangeEnd);
702 }
703 
704 // (or (icmp eq X, 0), (icmp eq X, Pow2OrZero))
705 //      -> (icmp eq (and X, Pow2OrZero), X)
706 // (and (icmp ne X, 0), (icmp ne X, Pow2OrZero))
707 //      -> (icmp ne (and X, Pow2OrZero), X)
708 static Value *
709 foldAndOrOfICmpsWithPow2AndWithZero(InstCombiner::BuilderTy &Builder,
710                                     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
711                                     const SimplifyQuery &Q) {
712   CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
713   // Make sure we have right compares for our op.
714   if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred)
715     return nullptr;
716 
717   // Make it so we can match LHS against the (icmp eq/ne X, 0) just for
718   // simplicity.
719   if (match(RHS->getOperand(1), m_Zero()))
720     std::swap(LHS, RHS);
721 
722   Value *Pow2, *Op;
723   // Match the desired pattern:
724   // LHS: (icmp eq/ne X, 0)
725   // RHS: (icmp eq/ne X, Pow2OrZero)
726   // Skip if Pow2OrZero is 1. Either way it gets folded to (icmp ugt X, 1) but
727   // this form ends up slightly less canonical.
728   // We could potentially be more sophisticated than requiring LHS/RHS
729   // be one-use. We don't create additional instructions if only one
730   // of them is one-use. So cases where one is one-use and the other
731   // is two-use might be profitable.
732   if (!match(LHS, m_OneUse(m_ICmp(Pred, m_Value(Op), m_Zero()))) ||
733       !match(RHS, m_OneUse(m_c_ICmp(Pred, m_Specific(Op), m_Value(Pow2)))) ||
734       match(Pow2, m_One()) ||
735       !isKnownToBeAPowerOfTwo(Pow2, Q.DL, /*OrZero=*/true, /*Depth=*/0, Q.AC,
736                               Q.CxtI, Q.DT))
737     return nullptr;
738 
739   Value *And = Builder.CreateAnd(Op, Pow2);
740   return Builder.CreateICmp(Pred, And, Op);
741 }
742 
743 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
744 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
745 Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS,
746                                                        ICmpInst *RHS,
747                                                        Instruction *CxtI,
748                                                        bool IsAnd,
749                                                        bool IsLogical) {
750   CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
751   if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred)
752     return nullptr;
753 
754   if (!match(LHS->getOperand(1), m_Zero()) ||
755       !match(RHS->getOperand(1), m_Zero()))
756     return nullptr;
757 
758   Value *L1, *L2, *R1, *R2;
759   if (match(LHS->getOperand(0), m_And(m_Value(L1), m_Value(L2))) &&
760       match(RHS->getOperand(0), m_And(m_Value(R1), m_Value(R2)))) {
761     if (L1 == R2 || L2 == R2)
762       std::swap(R1, R2);
763     if (L2 == R1)
764       std::swap(L1, L2);
765 
766     if (L1 == R1 &&
767         isKnownToBeAPowerOfTwo(L2, false, 0, CxtI) &&
768         isKnownToBeAPowerOfTwo(R2, false, 0, CxtI)) {
769       // If this is a logical and/or, then we must prevent propagation of a
770       // poison value from the RHS by inserting freeze.
771       if (IsLogical)
772         R2 = Builder.CreateFreeze(R2);
773       Value *Mask = Builder.CreateOr(L2, R2);
774       Value *Masked = Builder.CreateAnd(L1, Mask);
775       auto NewPred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
776       return Builder.CreateICmp(NewPred, Masked, Mask);
777     }
778   }
779 
780   return nullptr;
781 }
782 
783 /// General pattern:
784 ///   X & Y
785 ///
786 /// Where Y is checking that all the high bits (covered by a mask 4294967168)
787 /// are uniform, i.e.  %arg & 4294967168  can be either  4294967168  or  0
788 /// Pattern can be one of:
789 ///   %t = add        i32 %arg,    128
790 ///   %r = icmp   ult i32 %t,      256
791 /// Or
792 ///   %t0 = shl       i32 %arg,    24
793 ///   %t1 = ashr      i32 %t0,     24
794 ///   %r  = icmp  eq  i32 %t1,     %arg
795 /// Or
796 ///   %t0 = trunc     i32 %arg  to i8
797 ///   %t1 = sext      i8  %t0   to i32
798 ///   %r  = icmp  eq  i32 %t1,     %arg
799 /// This pattern is a signed truncation check.
800 ///
801 /// And X is checking that some bit in that same mask is zero.
802 /// I.e. can be one of:
803 ///   %r = icmp sgt i32   %arg,    -1
804 /// Or
805 ///   %t = and      i32   %arg,    2147483648
806 ///   %r = icmp eq  i32   %t,      0
807 ///
808 /// Since we are checking that all the bits in that mask are the same,
809 /// and a particular bit is zero, what we are really checking is that all the
810 /// masked bits are zero.
811 /// So this should be transformed to:
812 ///   %r = icmp ult i32 %arg, 128
813 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
814                                         Instruction &CxtI,
815                                         InstCombiner::BuilderTy &Builder) {
816   assert(CxtI.getOpcode() == Instruction::And);
817 
818   // Match  icmp ult (add %arg, C01), C1   (C1 == C01 << 1; powers of two)
819   auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
820                                             APInt &SignBitMask) -> bool {
821     CmpInst::Predicate Pred;
822     const APInt *I01, *I1; // powers of two; I1 == I01 << 1
823     if (!(match(ICmp,
824                 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
825           Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
826       return false;
827     // Which bit is the new sign bit as per the 'signed truncation' pattern?
828     SignBitMask = *I01;
829     return true;
830   };
831 
832   // One icmp needs to be 'signed truncation check'.
833   // We need to match this first, else we will mismatch commutative cases.
834   Value *X1;
835   APInt HighestBit;
836   ICmpInst *OtherICmp;
837   if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
838     OtherICmp = ICmp0;
839   else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
840     OtherICmp = ICmp1;
841   else
842     return nullptr;
843 
844   assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
845 
846   // Try to match/decompose into:  icmp eq (X & Mask), 0
847   auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
848                            APInt &UnsetBitsMask) -> bool {
849     CmpInst::Predicate Pred = ICmp->getPredicate();
850     // Can it be decomposed into  icmp eq (X & Mask), 0  ?
851     if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
852                                    Pred, X, UnsetBitsMask,
853                                    /*LookThroughTrunc=*/false) &&
854         Pred == ICmpInst::ICMP_EQ)
855       return true;
856     // Is it  icmp eq (X & Mask), 0  already?
857     const APInt *Mask;
858     if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
859         Pred == ICmpInst::ICMP_EQ) {
860       UnsetBitsMask = *Mask;
861       return true;
862     }
863     return false;
864   };
865 
866   // And the other icmp needs to be decomposable into a bit test.
867   Value *X0;
868   APInt UnsetBitsMask;
869   if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
870     return nullptr;
871 
872   assert(!UnsetBitsMask.isZero() && "empty mask makes no sense.");
873 
874   // Are they working on the same value?
875   Value *X;
876   if (X1 == X0) {
877     // Ok as is.
878     X = X1;
879   } else if (match(X0, m_Trunc(m_Specific(X1)))) {
880     UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
881     X = X1;
882   } else
883     return nullptr;
884 
885   // So which bits should be uniform as per the 'signed truncation check'?
886   // (all the bits starting with (i.e. including) HighestBit)
887   APInt SignBitsMask = ~(HighestBit - 1U);
888 
889   // UnsetBitsMask must have some common bits with SignBitsMask,
890   if (!UnsetBitsMask.intersects(SignBitsMask))
891     return nullptr;
892 
893   // Does UnsetBitsMask contain any bits outside of SignBitsMask?
894   if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
895     APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
896     if (!OtherHighestBit.isPowerOf2())
897       return nullptr;
898     HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
899   }
900   // Else, if it does not, then all is ok as-is.
901 
902   // %r = icmp ult %X, SignBit
903   return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
904                                CxtI.getName() + ".simplified");
905 }
906 
907 /// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and
908 /// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1).
909 /// Also used for logical and/or, must be poison safe.
910 static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd,
911                                    InstCombiner::BuilderTy &Builder) {
912   CmpInst::Predicate Pred0, Pred1;
913   Value *X;
914   if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)),
915                           m_SpecificInt(1))) ||
916       !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())))
917     return nullptr;
918 
919   Value *CtPop = Cmp0->getOperand(0);
920   if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE)
921     return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1));
922   if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ)
923     return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2));
924 
925   return nullptr;
926 }
927 
928 /// Reduce a pair of compares that check if a value has exactly 1 bit set.
929 /// Also used for logical and/or, must be poison safe if range attributes are
930 /// dropped.
931 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
932                              InstCombiner::BuilderTy &Builder,
933                              InstCombinerImpl &IC) {
934   // Handle 'and' / 'or' commutation: make the equality check the first operand.
935   if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
936     std::swap(Cmp0, Cmp1);
937   else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
938     std::swap(Cmp0, Cmp1);
939 
940   // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
941   CmpInst::Predicate Pred0, Pred1;
942   Value *X;
943   if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
944       match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
945                          m_SpecificInt(2))) &&
946       Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
947     auto *CtPop = cast<Instruction>(Cmp1->getOperand(0));
948     // Drop range attributes and re-infer them in the next iteration.
949     CtPop->dropPoisonGeneratingAnnotations();
950     IC.addToWorklist(CtPop);
951     return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
952   }
953   // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
954   if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
955       match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
956                          m_SpecificInt(1))) &&
957       Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
958     auto *CtPop = cast<Instruction>(Cmp1->getOperand(0));
959     // Drop range attributes and re-infer them in the next iteration.
960     CtPop->dropPoisonGeneratingAnnotations();
961     IC.addToWorklist(CtPop);
962     return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
963   }
964   return nullptr;
965 }
966 
967 /// Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff
968 /// B is a contiguous set of ones starting from the most significant bit
969 /// (negative power of 2), D and E are equal, and D is a contiguous set of ones
970 /// starting at the most significant zero bit in B. Parameter B supports masking
971 /// using undef/poison in either scalar or vector values.
972 static Value *foldNegativePower2AndShiftedMask(
973     Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL,
974     ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder) {
975   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
976          "Expected equality predicates for masked type of icmps.");
977   if (PredL != ICmpInst::ICMP_EQ || PredR != ICmpInst::ICMP_NE)
978     return nullptr;
979 
980   if (!match(B, m_NegatedPower2()) || !match(D, m_ShiftedMask()) ||
981       !match(E, m_ShiftedMask()))
982     return nullptr;
983 
984   // Test scalar arguments for conversion. B has been validated earlier to be a
985   // negative power of two and thus is guaranteed to have one or more contiguous
986   // ones starting from the MSB followed by zero or more contiguous zeros. D has
987   // been validated earlier to be a shifted set of one or more contiguous ones.
988   // In order to match, B leading ones and D leading zeros should be equal. The
989   // predicate that B be a negative power of 2 prevents the condition of there
990   // ever being zero leading ones. Thus 0 == 0 cannot occur. The predicate that
991   // D always be a shifted mask prevents the condition of D equaling 0. This
992   // prevents matching the condition where B contains the maximum number of
993   // leading one bits (-1) and D contains the maximum number of leading zero
994   // bits (0).
995   auto isReducible = [](const Value *B, const Value *D, const Value *E) {
996     const APInt *BCst, *DCst, *ECst;
997     return match(B, m_APIntAllowPoison(BCst)) && match(D, m_APInt(DCst)) &&
998            match(E, m_APInt(ECst)) && *DCst == *ECst &&
999            (isa<PoisonValue>(B) ||
1000             (BCst->countLeadingOnes() == DCst->countLeadingZeros()));
1001   };
1002 
1003   // Test vector type arguments for conversion.
1004   if (const auto *BVTy = dyn_cast<VectorType>(B->getType())) {
1005     const auto *BFVTy = dyn_cast<FixedVectorType>(BVTy);
1006     const auto *BConst = dyn_cast<Constant>(B);
1007     const auto *DConst = dyn_cast<Constant>(D);
1008     const auto *EConst = dyn_cast<Constant>(E);
1009 
1010     if (!BFVTy || !BConst || !DConst || !EConst)
1011       return nullptr;
1012 
1013     for (unsigned I = 0; I != BFVTy->getNumElements(); ++I) {
1014       const auto *BElt = BConst->getAggregateElement(I);
1015       const auto *DElt = DConst->getAggregateElement(I);
1016       const auto *EElt = EConst->getAggregateElement(I);
1017 
1018       if (!BElt || !DElt || !EElt)
1019         return nullptr;
1020       if (!isReducible(BElt, DElt, EElt))
1021         return nullptr;
1022     }
1023   } else {
1024     // Test scalar type arguments for conversion.
1025     if (!isReducible(B, D, E))
1026       return nullptr;
1027   }
1028   return Builder.CreateICmp(ICmpInst::ICMP_ULT, A, D);
1029 }
1030 
1031 /// Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) &
1032 /// (icmp(X & M) != M)) into (icmp X u< M). Where P is a power of 2, M < P, and
1033 /// M is a contiguous shifted mask starting at the right most significant zero
1034 /// bit in P. SGT is supported as when P is the largest representable power of
1035 /// 2, an earlier optimization converts the expression into (icmp X s> -1).
1036 /// Parameter P supports masking using undef/poison in either scalar or vector
1037 /// values.
1038 static Value *foldPowerOf2AndShiftedMask(ICmpInst *Cmp0, ICmpInst *Cmp1,
1039                                          bool JoinedByAnd,
1040                                          InstCombiner::BuilderTy &Builder) {
1041   if (!JoinedByAnd)
1042     return nullptr;
1043   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
1044   ICmpInst::Predicate CmpPred0 = Cmp0->getPredicate(),
1045                       CmpPred1 = Cmp1->getPredicate();
1046   // Assuming P is a 2^n, getMaskedTypeForICmpPair will normalize (icmp X u<
1047   // 2^n) into (icmp (X & ~(2^n-1)) == 0) and (icmp X s> -1) into (icmp (X &
1048   // SignMask) == 0).
1049   std::optional<std::pair<unsigned, unsigned>> MaskPair =
1050       getMaskedTypeForICmpPair(A, B, C, D, E, Cmp0, Cmp1, CmpPred0, CmpPred1);
1051   if (!MaskPair)
1052     return nullptr;
1053 
1054   const auto compareBMask = BMask_NotMixed | BMask_NotAllOnes;
1055   unsigned CmpMask0 = MaskPair->first;
1056   unsigned CmpMask1 = MaskPair->second;
1057   if ((CmpMask0 & Mask_AllZeros) && (CmpMask1 == compareBMask)) {
1058     if (Value *V = foldNegativePower2AndShiftedMask(A, B, D, E, CmpPred0,
1059                                                     CmpPred1, Builder))
1060       return V;
1061   } else if ((CmpMask0 == compareBMask) && (CmpMask1 & Mask_AllZeros)) {
1062     if (Value *V = foldNegativePower2AndShiftedMask(A, D, B, C, CmpPred1,
1063                                                     CmpPred0, Builder))
1064       return V;
1065   }
1066   return nullptr;
1067 }
1068 
1069 /// Commuted variants are assumed to be handled by calling this function again
1070 /// with the parameters swapped.
1071 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
1072                                          ICmpInst *UnsignedICmp, bool IsAnd,
1073                                          const SimplifyQuery &Q,
1074                                          InstCombiner::BuilderTy &Builder) {
1075   Value *ZeroCmpOp;
1076   ICmpInst::Predicate EqPred;
1077   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
1078       !ICmpInst::isEquality(EqPred))
1079     return nullptr;
1080 
1081   ICmpInst::Predicate UnsignedPred;
1082 
1083   Value *A, *B;
1084   if (match(UnsignedICmp,
1085             m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
1086       match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
1087       (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
1088     auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
1089       if (!isKnownNonZero(NonZero, Q))
1090         std::swap(NonZero, Other);
1091       return isKnownNonZero(NonZero, Q);
1092     };
1093 
1094     // Given  ZeroCmpOp = (A + B)
1095     //   ZeroCmpOp <  A && ZeroCmpOp != 0  -->  (0-X) <  Y  iff
1096     //   ZeroCmpOp >= A || ZeroCmpOp == 0  -->  (0-X) >= Y  iff
1097     //     with X being the value (A/B) that is known to be non-zero,
1098     //     and Y being remaining value.
1099     if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
1100         IsAnd && GetKnownNonZeroAndOther(B, A))
1101       return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1102     if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
1103         !IsAnd && GetKnownNonZeroAndOther(B, A))
1104       return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1105   }
1106 
1107   return nullptr;
1108 }
1109 
1110 struct IntPart {
1111   Value *From;
1112   unsigned StartBit;
1113   unsigned NumBits;
1114 };
1115 
1116 /// Match an extraction of bits from an integer.
1117 static std::optional<IntPart> matchIntPart(Value *V) {
1118   Value *X;
1119   if (!match(V, m_OneUse(m_Trunc(m_Value(X)))))
1120     return std::nullopt;
1121 
1122   unsigned NumOriginalBits = X->getType()->getScalarSizeInBits();
1123   unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
1124   Value *Y;
1125   const APInt *Shift;
1126   // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits
1127   // from Y, not any shifted-in zeroes.
1128   if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) &&
1129       Shift->ule(NumOriginalBits - NumExtractedBits))
1130     return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}};
1131   return {{X, 0, NumExtractedBits}};
1132 }
1133 
1134 /// Materialize an extraction of bits from an integer in IR.
1135 static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) {
1136   Value *V = P.From;
1137   if (P.StartBit)
1138     V = Builder.CreateLShr(V, P.StartBit);
1139   Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits);
1140   if (TruncTy != V->getType())
1141     V = Builder.CreateTrunc(V, TruncTy);
1142   return V;
1143 }
1144 
1145 /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01
1146 /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01
1147 /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer.
1148 Value *InstCombinerImpl::foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1,
1149                                        bool IsAnd) {
1150   if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
1151     return nullptr;
1152 
1153   CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1154   auto GetMatchPart = [&](ICmpInst *Cmp,
1155                           unsigned OpNo) -> std::optional<IntPart> {
1156     if (Pred == Cmp->getPredicate())
1157       return matchIntPart(Cmp->getOperand(OpNo));
1158 
1159     const APInt *C;
1160     // (icmp eq (lshr x, C), (lshr y, C)) gets optimized to:
1161     // (icmp ult (xor x, y), 1 << C) so also look for that.
1162     if (Pred == CmpInst::ICMP_EQ && Cmp->getPredicate() == CmpInst::ICMP_ULT) {
1163       if (!match(Cmp->getOperand(1), m_Power2(C)) ||
1164           !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value())))
1165         return std::nullopt;
1166     }
1167 
1168     // (icmp ne (lshr x, C), (lshr y, C)) gets optimized to:
1169     // (icmp ugt (xor x, y), (1 << C) - 1) so also look for that.
1170     else if (Pred == CmpInst::ICMP_NE &&
1171              Cmp->getPredicate() == CmpInst::ICMP_UGT) {
1172       if (!match(Cmp->getOperand(1), m_LowBitMask(C)) ||
1173           !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value())))
1174         return std::nullopt;
1175     } else {
1176       return std::nullopt;
1177     }
1178 
1179     unsigned From = Pred == CmpInst::ICMP_NE ? C->popcount() : C->countr_zero();
1180     Instruction *I = cast<Instruction>(Cmp->getOperand(0));
1181     return {{I->getOperand(OpNo), From, C->getBitWidth() - From}};
1182   };
1183 
1184   std::optional<IntPart> L0 = GetMatchPart(Cmp0, 0);
1185   std::optional<IntPart> R0 = GetMatchPart(Cmp0, 1);
1186   std::optional<IntPart> L1 = GetMatchPart(Cmp1, 0);
1187   std::optional<IntPart> R1 = GetMatchPart(Cmp1, 1);
1188   if (!L0 || !R0 || !L1 || !R1)
1189     return nullptr;
1190 
1191   // Make sure the LHS/RHS compare a part of the same value, possibly after
1192   // an operand swap.
1193   if (L0->From != L1->From || R0->From != R1->From) {
1194     if (L0->From != R1->From || R0->From != L1->From)
1195       return nullptr;
1196     std::swap(L1, R1);
1197   }
1198 
1199   // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being
1200   // the low part and L1/R1 being the high part.
1201   if (L0->StartBit + L0->NumBits != L1->StartBit ||
1202       R0->StartBit + R0->NumBits != R1->StartBit) {
1203     if (L1->StartBit + L1->NumBits != L0->StartBit ||
1204         R1->StartBit + R1->NumBits != R0->StartBit)
1205       return nullptr;
1206     std::swap(L0, L1);
1207     std::swap(R0, R1);
1208   }
1209 
1210   // We can simplify to a comparison of these larger parts of the integers.
1211   IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
1212   IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
1213   Value *LValue = extractIntPart(L, Builder);
1214   Value *RValue = extractIntPart(R, Builder);
1215   return Builder.CreateICmp(Pred, LValue, RValue);
1216 }
1217 
1218 /// Reduce logic-of-compares with equality to a constant by substituting a
1219 /// common operand with the constant. Callers are expected to call this with
1220 /// Cmp0/Cmp1 switched to handle logic op commutativity.
1221 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1,
1222                                           bool IsAnd, bool IsLogical,
1223                                           InstCombiner::BuilderTy &Builder,
1224                                           const SimplifyQuery &Q) {
1225   // Match an equality compare with a non-poison constant as Cmp0.
1226   // Also, give up if the compare can be constant-folded to avoid looping.
1227   ICmpInst::Predicate Pred0;
1228   Value *X;
1229   Constant *C;
1230   if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
1231       !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X))
1232     return nullptr;
1233   if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
1234       (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
1235     return nullptr;
1236 
1237   // The other compare must include a common operand (X). Canonicalize the
1238   // common operand as operand 1 (Pred1 is swapped if the common operand was
1239   // operand 0).
1240   Value *Y;
1241   ICmpInst::Predicate Pred1;
1242   if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Specific(X))))
1243     return nullptr;
1244 
1245   // Replace variable with constant value equivalence to remove a variable use:
1246   // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
1247   // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
1248   // Can think of the 'or' substitution with the 'and' bool equivalent:
1249   // A || B --> A || (!A && B)
1250   Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q);
1251   if (!SubstituteCmp) {
1252     // If we need to create a new instruction, require that the old compare can
1253     // be removed.
1254     if (!Cmp1->hasOneUse())
1255       return nullptr;
1256     SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
1257   }
1258   if (IsLogical)
1259     return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp)
1260                  : Builder.CreateLogicalOr(Cmp0, SubstituteCmp);
1261   return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0,
1262                              SubstituteCmp);
1263 }
1264 
1265 /// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2)
1266 /// or   (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2)
1267 /// into a single comparison using range-based reasoning.
1268 /// NOTE: This is also used for logical and/or, must be poison-safe!
1269 Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1,
1270                                                      ICmpInst *ICmp2,
1271                                                      bool IsAnd) {
1272   ICmpInst::Predicate Pred1, Pred2;
1273   Value *V1, *V2;
1274   const APInt *C1, *C2;
1275   if (!match(ICmp1, m_ICmp(Pred1, m_Value(V1), m_APInt(C1))) ||
1276       !match(ICmp2, m_ICmp(Pred2, m_Value(V2), m_APInt(C2))))
1277     return nullptr;
1278 
1279   // Look through add of a constant offset on V1, V2, or both operands. This
1280   // allows us to interpret the V + C' < C'' range idiom into a proper range.
1281   const APInt *Offset1 = nullptr, *Offset2 = nullptr;
1282   if (V1 != V2) {
1283     Value *X;
1284     if (match(V1, m_Add(m_Value(X), m_APInt(Offset1))))
1285       V1 = X;
1286     if (match(V2, m_Add(m_Value(X), m_APInt(Offset2))))
1287       V2 = X;
1288   }
1289 
1290   if (V1 != V2)
1291     return nullptr;
1292 
1293   ConstantRange CR1 = ConstantRange::makeExactICmpRegion(
1294       IsAnd ? ICmpInst::getInversePredicate(Pred1) : Pred1, *C1);
1295   if (Offset1)
1296     CR1 = CR1.subtract(*Offset1);
1297 
1298   ConstantRange CR2 = ConstantRange::makeExactICmpRegion(
1299       IsAnd ? ICmpInst::getInversePredicate(Pred2) : Pred2, *C2);
1300   if (Offset2)
1301     CR2 = CR2.subtract(*Offset2);
1302 
1303   Type *Ty = V1->getType();
1304   Value *NewV = V1;
1305   std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2);
1306   if (!CR) {
1307     if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() ||
1308         CR2.isWrappedSet())
1309       return nullptr;
1310 
1311     // Check whether we have equal-size ranges that only differ by one bit.
1312     // In that case we can apply a mask to map one range onto the other.
1313     APInt LowerDiff = CR1.getLower() ^ CR2.getLower();
1314     APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1);
1315     APInt CR1Size = CR1.getUpper() - CR1.getLower();
1316     if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff ||
1317         CR1Size != CR2.getUpper() - CR2.getLower())
1318       return nullptr;
1319 
1320     CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2;
1321     NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff));
1322   }
1323 
1324   if (IsAnd)
1325     CR = CR->inverse();
1326 
1327   CmpInst::Predicate NewPred;
1328   APInt NewC, Offset;
1329   CR->getEquivalentICmp(NewPred, NewC, Offset);
1330 
1331   if (Offset != 0)
1332     NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
1333   return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
1334 }
1335 
1336 /// Ignore all operations which only change the sign of a value, returning the
1337 /// underlying magnitude value.
1338 static Value *stripSignOnlyFPOps(Value *Val) {
1339   match(Val, m_FNeg(m_Value(Val)));
1340   match(Val, m_FAbs(m_Value(Val)));
1341   match(Val, m_CopySign(m_Value(Val), m_Value()));
1342   return Val;
1343 }
1344 
1345 /// Matches canonical form of isnan, fcmp ord x, 0
1346 static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS) {
1347   return P == FCmpInst::FCMP_ORD && match(RHS, m_AnyZeroFP());
1348 }
1349 
1350 /// Matches fcmp u__ x, +/-inf
1351 static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS,
1352                                      Value *RHS) {
1353   return FCmpInst::isUnordered(P) && match(RHS, m_Inf());
1354 }
1355 
1356 /// and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1357 ///
1358 /// Clang emits this pattern for doing an isfinite check in __builtin_isnormal.
1359 static Value *matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS,
1360                                 FCmpInst *RHS) {
1361   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1362   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1363   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1364 
1365   if (!matchIsNotNaN(PredL, LHS0, LHS1) ||
1366       !matchUnorderedInfCompare(PredR, RHS0, RHS1))
1367     return nullptr;
1368 
1369   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1370   FastMathFlags FMF = LHS->getFastMathFlags();
1371   FMF &= RHS->getFastMathFlags();
1372   Builder.setFastMathFlags(FMF);
1373 
1374   return Builder.CreateFCmp(FCmpInst::getOrderedPredicate(PredR), RHS0, RHS1);
1375 }
1376 
1377 Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
1378                                           bool IsAnd, bool IsLogicalSelect) {
1379   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1380   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1381   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1382 
1383   if (LHS0 == RHS1 && RHS0 == LHS1) {
1384     // Swap RHS operands to match LHS.
1385     PredR = FCmpInst::getSwappedPredicate(PredR);
1386     std::swap(RHS0, RHS1);
1387   }
1388 
1389   // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1390   // Suppose the relation between x and y is R, where R is one of
1391   // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1392   // testing the desired relations.
1393   //
1394   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1395   //    bool(R & CC0) && bool(R & CC1)
1396   //  = bool((R & CC0) & (R & CC1))
1397   //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1398   //
1399   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1400   //    bool(R & CC0) || bool(R & CC1)
1401   //  = bool((R & CC0) | (R & CC1))
1402   //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1403   if (LHS0 == RHS0 && LHS1 == RHS1) {
1404     unsigned FCmpCodeL = getFCmpCode(PredL);
1405     unsigned FCmpCodeR = getFCmpCode(PredR);
1406     unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1407 
1408     // Intersect the fast math flags.
1409     // TODO: We can union the fast math flags unless this is a logical select.
1410     IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1411     FastMathFlags FMF = LHS->getFastMathFlags();
1412     FMF &= RHS->getFastMathFlags();
1413     Builder.setFastMathFlags(FMF);
1414 
1415     return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1416   }
1417 
1418   // This transform is not valid for a logical select.
1419   if (!IsLogicalSelect &&
1420       ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1421        (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO &&
1422         !IsAnd))) {
1423     if (LHS0->getType() != RHS0->getType())
1424       return nullptr;
1425 
1426     // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1427     // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1428     if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1429       // Ignore the constants because they are obviously not NANs:
1430       // (fcmp ord x, 0.0) & (fcmp ord y, 0.0)  -> (fcmp ord x, y)
1431       // (fcmp uno x, 0.0) | (fcmp uno y, 0.0)  -> (fcmp uno x, y)
1432       return Builder.CreateFCmp(PredL, LHS0, RHS0);
1433   }
1434 
1435   if (IsAnd && stripSignOnlyFPOps(LHS0) == stripSignOnlyFPOps(RHS0)) {
1436     // and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1437     // and (fcmp ord x, 0), (fcmp u* fabs(x), inf) -> fcmp o* x, inf
1438     if (Value *Left = matchIsFiniteTest(Builder, LHS, RHS))
1439       return Left;
1440     if (Value *Right = matchIsFiniteTest(Builder, RHS, LHS))
1441       return Right;
1442   }
1443 
1444   // Turn at least two fcmps with constants into llvm.is.fpclass.
1445   //
1446   // If we can represent a combined value test with one class call, we can
1447   // potentially eliminate 4-6 instructions. If we can represent a test with a
1448   // single fcmp with fneg and fabs, that's likely a better canonical form.
1449   if (LHS->hasOneUse() && RHS->hasOneUse()) {
1450     auto [ClassValRHS, ClassMaskRHS] =
1451         fcmpToClassTest(PredR, *RHS->getFunction(), RHS0, RHS1);
1452     if (ClassValRHS) {
1453       auto [ClassValLHS, ClassMaskLHS] =
1454           fcmpToClassTest(PredL, *LHS->getFunction(), LHS0, LHS1);
1455       if (ClassValLHS == ClassValRHS) {
1456         unsigned CombinedMask = IsAnd ? (ClassMaskLHS & ClassMaskRHS)
1457                                       : (ClassMaskLHS | ClassMaskRHS);
1458         return Builder.CreateIntrinsic(
1459             Intrinsic::is_fpclass, {ClassValLHS->getType()},
1460             {ClassValLHS, Builder.getInt32(CombinedMask)});
1461       }
1462     }
1463   }
1464 
1465   // Canonicalize the range check idiom:
1466   // and (fcmp olt/ole/ult/ule x, C), (fcmp ogt/oge/ugt/uge x, -C)
1467   // --> fabs(x) olt/ole/ult/ule C
1468   // or  (fcmp ogt/oge/ugt/uge x, C), (fcmp olt/ole/ult/ule x, -C)
1469   // --> fabs(x) ogt/oge/ugt/uge C
1470   // TODO: Generalize to handle a negated variable operand?
1471   const APFloat *LHSC, *RHSC;
1472   if (LHS0 == RHS0 && LHS->hasOneUse() && RHS->hasOneUse() &&
1473       FCmpInst::getSwappedPredicate(PredL) == PredR &&
1474       match(LHS1, m_APFloatAllowPoison(LHSC)) &&
1475       match(RHS1, m_APFloatAllowPoison(RHSC)) &&
1476       LHSC->bitwiseIsEqual(neg(*RHSC))) {
1477     auto IsLessThanOrLessEqual = [](FCmpInst::Predicate Pred) {
1478       switch (Pred) {
1479       case FCmpInst::FCMP_OLT:
1480       case FCmpInst::FCMP_OLE:
1481       case FCmpInst::FCMP_ULT:
1482       case FCmpInst::FCMP_ULE:
1483         return true;
1484       default:
1485         return false;
1486       }
1487     };
1488     if (IsLessThanOrLessEqual(IsAnd ? PredR : PredL)) {
1489       std::swap(LHSC, RHSC);
1490       std::swap(PredL, PredR);
1491     }
1492     if (IsLessThanOrLessEqual(IsAnd ? PredL : PredR)) {
1493       BuilderTy::FastMathFlagGuard Guard(Builder);
1494       Builder.setFastMathFlags(LHS->getFastMathFlags() |
1495                                RHS->getFastMathFlags());
1496 
1497       Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, LHS0);
1498       return Builder.CreateFCmp(PredL, FAbs,
1499                                 ConstantFP::get(LHS0->getType(), *LHSC));
1500     }
1501   }
1502 
1503   return nullptr;
1504 }
1505 
1506 /// Match an fcmp against a special value that performs a test possible by
1507 /// llvm.is.fpclass.
1508 static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal,
1509                                    uint64_t &ClassMask) {
1510   auto *FCmp = dyn_cast<FCmpInst>(Op);
1511   if (!FCmp || !FCmp->hasOneUse())
1512     return false;
1513 
1514   std::tie(ClassVal, ClassMask) =
1515       fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(),
1516                       FCmp->getOperand(0), FCmp->getOperand(1));
1517   return ClassVal != nullptr;
1518 }
1519 
1520 /// or (is_fpclass x, mask0), (is_fpclass x, mask1)
1521 ///     -> is_fpclass x, (mask0 | mask1)
1522 /// and (is_fpclass x, mask0), (is_fpclass x, mask1)
1523 ///     -> is_fpclass x, (mask0 & mask1)
1524 /// xor (is_fpclass x, mask0), (is_fpclass x, mask1)
1525 ///     -> is_fpclass x, (mask0 ^ mask1)
1526 Instruction *InstCombinerImpl::foldLogicOfIsFPClass(BinaryOperator &BO,
1527                                                     Value *Op0, Value *Op1) {
1528   Value *ClassVal0 = nullptr;
1529   Value *ClassVal1 = nullptr;
1530   uint64_t ClassMask0, ClassMask1;
1531 
1532   // Restrict to folding one fcmp into one is.fpclass for now, don't introduce a
1533   // new class.
1534   //
1535   // TODO: Support forming is.fpclass out of 2 separate fcmps when codegen is
1536   // better.
1537 
1538   bool IsLHSClass =
1539       match(Op0, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>(
1540                      m_Value(ClassVal0), m_ConstantInt(ClassMask0))));
1541   bool IsRHSClass =
1542       match(Op1, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>(
1543                      m_Value(ClassVal1), m_ConstantInt(ClassMask1))));
1544   if ((((IsLHSClass || matchIsFPClassLikeFCmp(Op0, ClassVal0, ClassMask0)) &&
1545         (IsRHSClass || matchIsFPClassLikeFCmp(Op1, ClassVal1, ClassMask1)))) &&
1546       ClassVal0 == ClassVal1) {
1547     unsigned NewClassMask;
1548     switch (BO.getOpcode()) {
1549     case Instruction::And:
1550       NewClassMask = ClassMask0 & ClassMask1;
1551       break;
1552     case Instruction::Or:
1553       NewClassMask = ClassMask0 | ClassMask1;
1554       break;
1555     case Instruction::Xor:
1556       NewClassMask = ClassMask0 ^ ClassMask1;
1557       break;
1558     default:
1559       llvm_unreachable("not a binary logic operator");
1560     }
1561 
1562     if (IsLHSClass) {
1563       auto *II = cast<IntrinsicInst>(Op0);
1564       II->setArgOperand(
1565           1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
1566       return replaceInstUsesWith(BO, II);
1567     }
1568 
1569     if (IsRHSClass) {
1570       auto *II = cast<IntrinsicInst>(Op1);
1571       II->setArgOperand(
1572           1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
1573       return replaceInstUsesWith(BO, II);
1574     }
1575 
1576     CallInst *NewClass =
1577         Builder.CreateIntrinsic(Intrinsic::is_fpclass, {ClassVal0->getType()},
1578                                 {ClassVal0, Builder.getInt32(NewClassMask)});
1579     return replaceInstUsesWith(BO, NewClass);
1580   }
1581 
1582   return nullptr;
1583 }
1584 
1585 /// Look for the pattern that conditionally negates a value via math operations:
1586 ///   cond.splat = sext i1 cond
1587 ///   sub = add cond.splat, x
1588 ///   xor = xor sub, cond.splat
1589 /// and rewrite it to do the same, but via logical operations:
1590 ///   value.neg = sub 0, value
1591 ///   cond = select i1 neg, value.neg, value
1592 Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect(
1593     BinaryOperator &I) {
1594   assert(I.getOpcode() == BinaryOperator::Xor && "Only for xor!");
1595   Value *Cond, *X;
1596   // As per complexity ordering, `xor` is not commutative here.
1597   if (!match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())) ||
1598       !match(I.getOperand(1), m_SExt(m_Value(Cond))) ||
1599       !Cond->getType()->isIntOrIntVectorTy(1) ||
1600       !match(I.getOperand(0), m_c_Add(m_SExt(m_Specific(Cond)), m_Value(X))))
1601     return nullptr;
1602   return SelectInst::Create(Cond, Builder.CreateNeg(X, X->getName() + ".neg"),
1603                             X);
1604 }
1605 
1606 /// This a limited reassociation for a special case (see above) where we are
1607 /// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1608 /// This could be handled more generally in '-reassociation', but it seems like
1609 /// an unlikely pattern for a large number of logic ops and fcmps.
1610 static Instruction *reassociateFCmps(BinaryOperator &BO,
1611                                      InstCombiner::BuilderTy &Builder) {
1612   Instruction::BinaryOps Opcode = BO.getOpcode();
1613   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1614          "Expecting and/or op for fcmp transform");
1615 
1616   // There are 4 commuted variants of the pattern. Canonicalize operands of this
1617   // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1618   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1619   FCmpInst::Predicate Pred;
1620   if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
1621     std::swap(Op0, Op1);
1622 
1623   // Match inner binop and the predicate for combining 2 NAN checks into 1.
1624   Value *BO10, *BO11;
1625   FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1626                                                            : FCmpInst::FCMP_UNO;
1627   if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
1628       !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11))))
1629     return nullptr;
1630 
1631   // The inner logic op must have a matching fcmp operand.
1632   Value *Y;
1633   if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1634       Pred != NanPred || X->getType() != Y->getType())
1635     std::swap(BO10, BO11);
1636 
1637   if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1638       Pred != NanPred || X->getType() != Y->getType())
1639     return nullptr;
1640 
1641   // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1642   // or  (fcmp uno X, 0), (or  (fcmp uno Y, 0), Z) --> or  (fcmp uno X, Y), Z
1643   Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
1644   if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
1645     // Intersect FMF from the 2 source fcmps.
1646     NewFCmpInst->copyIRFlags(Op0);
1647     NewFCmpInst->andIRFlags(BO10);
1648   }
1649   return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1650 }
1651 
1652 /// Match variations of De Morgan's Laws:
1653 /// (~A & ~B) == (~(A | B))
1654 /// (~A | ~B) == (~(A & B))
1655 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1656                                        InstCombiner &IC) {
1657   const Instruction::BinaryOps Opcode = I.getOpcode();
1658   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1659          "Trying to match De Morgan's Laws with something other than and/or");
1660 
1661   // Flip the logic operation.
1662   const Instruction::BinaryOps FlippedOpcode =
1663       (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1664 
1665   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1666   Value *A, *B;
1667   if (match(Op0, m_OneUse(m_Not(m_Value(A)))) &&
1668       match(Op1, m_OneUse(m_Not(m_Value(B)))) &&
1669       !IC.isFreeToInvert(A, A->hasOneUse()) &&
1670       !IC.isFreeToInvert(B, B->hasOneUse())) {
1671     Value *AndOr =
1672         IC.Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan");
1673     return BinaryOperator::CreateNot(AndOr);
1674   }
1675 
1676   // The 'not' ops may require reassociation.
1677   // (A & ~B) & ~C --> A & ~(B | C)
1678   // (~B & A) & ~C --> A & ~(B | C)
1679   // (A | ~B) | ~C --> A | ~(B & C)
1680   // (~B | A) | ~C --> A | ~(B & C)
1681   Value *C;
1682   if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) &&
1683       match(Op1, m_Not(m_Value(C)))) {
1684     Value *FlippedBO = IC.Builder.CreateBinOp(FlippedOpcode, B, C);
1685     return BinaryOperator::Create(Opcode, A, IC.Builder.CreateNot(FlippedBO));
1686   }
1687 
1688   return nullptr;
1689 }
1690 
1691 bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
1692   Value *CastSrc = CI->getOperand(0);
1693 
1694   // Noop casts and casts of constants should be eliminated trivially.
1695   if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1696     return false;
1697 
1698   // If this cast is paired with another cast that can be eliminated, we prefer
1699   // to have it eliminated.
1700   if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1701     if (isEliminableCastPair(PrecedingCI, CI))
1702       return false;
1703 
1704   return true;
1705 }
1706 
1707 /// Fold {and,or,xor} (cast X), C.
1708 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1709                                           InstCombinerImpl &IC) {
1710   Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1711   if (!C)
1712     return nullptr;
1713 
1714   auto LogicOpc = Logic.getOpcode();
1715   Type *DestTy = Logic.getType();
1716   Type *SrcTy = Cast->getSrcTy();
1717 
1718   // Move the logic operation ahead of a zext or sext if the constant is
1719   // unchanged in the smaller source type. Performing the logic in a smaller
1720   // type may provide more information to later folds, and the smaller logic
1721   // instruction may be cheaper (particularly in the case of vectors).
1722   Value *X;
1723   if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1724     if (Constant *TruncC = IC.getLosslessUnsignedTrunc(C, SrcTy)) {
1725       // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1726       Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC);
1727       return new ZExtInst(NewOp, DestTy);
1728     }
1729   }
1730 
1731   if (match(Cast, m_OneUse(m_SExtLike(m_Value(X))))) {
1732     if (Constant *TruncC = IC.getLosslessSignedTrunc(C, SrcTy)) {
1733       // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1734       Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC);
1735       return new SExtInst(NewOp, DestTy);
1736     }
1737   }
1738 
1739   return nullptr;
1740 }
1741 
1742 /// Fold {and,or,xor} (cast X), Y.
1743 Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
1744   auto LogicOpc = I.getOpcode();
1745   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1746 
1747   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1748 
1749   // fold bitwise(A >> BW - 1, zext(icmp))     (BW is the scalar bits of the
1750   // type of A)
1751   //   -> bitwise(zext(A < 0), zext(icmp))
1752   //   -> zext(bitwise(A < 0, icmp))
1753   auto FoldBitwiseICmpZeroWithICmp = [&](Value *Op0,
1754                                          Value *Op1) -> Instruction * {
1755     ICmpInst::Predicate Pred;
1756     Value *A;
1757     bool IsMatched =
1758         match(Op0,
1759               m_OneUse(m_LShr(
1760                   m_Value(A),
1761                   m_SpecificInt(Op0->getType()->getScalarSizeInBits() - 1)))) &&
1762         match(Op1, m_OneUse(m_ZExt(m_ICmp(Pred, m_Value(), m_Value()))));
1763 
1764     if (!IsMatched)
1765       return nullptr;
1766 
1767     auto *ICmpL =
1768         Builder.CreateICmpSLT(A, Constant::getNullValue(A->getType()));
1769     auto *ICmpR = cast<ZExtInst>(Op1)->getOperand(0);
1770     auto *BitwiseOp = Builder.CreateBinOp(LogicOpc, ICmpL, ICmpR);
1771 
1772     return new ZExtInst(BitwiseOp, Op0->getType());
1773   };
1774 
1775   if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op0, Op1))
1776     return Ret;
1777 
1778   if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op1, Op0))
1779     return Ret;
1780 
1781   CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1782   if (!Cast0)
1783     return nullptr;
1784 
1785   // This must be a cast from an integer or integer vector source type to allow
1786   // transformation of the logic operation to the source type.
1787   Type *DestTy = I.getType();
1788   Type *SrcTy = Cast0->getSrcTy();
1789   if (!SrcTy->isIntOrIntVectorTy())
1790     return nullptr;
1791 
1792   if (Instruction *Ret = foldLogicCastConstant(I, Cast0, *this))
1793     return Ret;
1794 
1795   CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1796   if (!Cast1)
1797     return nullptr;
1798 
1799   // Both operands of the logic operation are casts. The casts must be the
1800   // same kind for reduction.
1801   Instruction::CastOps CastOpcode = Cast0->getOpcode();
1802   if (CastOpcode != Cast1->getOpcode())
1803     return nullptr;
1804 
1805   // If the source types do not match, but the casts are matching extends, we
1806   // can still narrow the logic op.
1807   if (SrcTy != Cast1->getSrcTy()) {
1808     Value *X, *Y;
1809     if (match(Cast0, m_OneUse(m_ZExtOrSExt(m_Value(X)))) &&
1810         match(Cast1, m_OneUse(m_ZExtOrSExt(m_Value(Y))))) {
1811       // Cast the narrower source to the wider source type.
1812       unsigned XNumBits = X->getType()->getScalarSizeInBits();
1813       unsigned YNumBits = Y->getType()->getScalarSizeInBits();
1814       if (XNumBits < YNumBits)
1815         X = Builder.CreateCast(CastOpcode, X, Y->getType());
1816       else
1817         Y = Builder.CreateCast(CastOpcode, Y, X->getType());
1818       // Do the logic op in the intermediate width, then widen more.
1819       Value *NarrowLogic = Builder.CreateBinOp(LogicOpc, X, Y);
1820       return CastInst::Create(CastOpcode, NarrowLogic, DestTy);
1821     }
1822 
1823     // Give up for other cast opcodes.
1824     return nullptr;
1825   }
1826 
1827   Value *Cast0Src = Cast0->getOperand(0);
1828   Value *Cast1Src = Cast1->getOperand(0);
1829 
1830   // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1831   if ((Cast0->hasOneUse() || Cast1->hasOneUse()) &&
1832       shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1833     Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1834                                        I.getName());
1835     return CastInst::Create(CastOpcode, NewOp, DestTy);
1836   }
1837 
1838   return nullptr;
1839 }
1840 
1841 static Instruction *foldAndToXor(BinaryOperator &I,
1842                                  InstCombiner::BuilderTy &Builder) {
1843   assert(I.getOpcode() == Instruction::And);
1844   Value *Op0 = I.getOperand(0);
1845   Value *Op1 = I.getOperand(1);
1846   Value *A, *B;
1847 
1848   // Operand complexity canonicalization guarantees that the 'or' is Op0.
1849   // (A | B) & ~(A & B) --> A ^ B
1850   // (A | B) & ~(B & A) --> A ^ B
1851   if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1852                         m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1853     return BinaryOperator::CreateXor(A, B);
1854 
1855   // (A | ~B) & (~A | B) --> ~(A ^ B)
1856   // (A | ~B) & (B | ~A) --> ~(A ^ B)
1857   // (~B | A) & (~A | B) --> ~(A ^ B)
1858   // (~B | A) & (B | ~A) --> ~(A ^ B)
1859   if (Op0->hasOneUse() || Op1->hasOneUse())
1860     if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1861                           m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1862       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1863 
1864   return nullptr;
1865 }
1866 
1867 static Instruction *foldOrToXor(BinaryOperator &I,
1868                                 InstCombiner::BuilderTy &Builder) {
1869   assert(I.getOpcode() == Instruction::Or);
1870   Value *Op0 = I.getOperand(0);
1871   Value *Op1 = I.getOperand(1);
1872   Value *A, *B;
1873 
1874   // Operand complexity canonicalization guarantees that the 'and' is Op0.
1875   // (A & B) | ~(A | B) --> ~(A ^ B)
1876   // (A & B) | ~(B | A) --> ~(A ^ B)
1877   if (Op0->hasOneUse() || Op1->hasOneUse())
1878     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1879         match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1880       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1881 
1882   // Operand complexity canonicalization guarantees that the 'xor' is Op0.
1883   // (A ^ B) | ~(A | B) --> ~(A & B)
1884   // (A ^ B) | ~(B | A) --> ~(A & B)
1885   if (Op0->hasOneUse() || Op1->hasOneUse())
1886     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1887         match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1888       return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
1889 
1890   // (A & ~B) | (~A & B) --> A ^ B
1891   // (A & ~B) | (B & ~A) --> A ^ B
1892   // (~B & A) | (~A & B) --> A ^ B
1893   // (~B & A) | (B & ~A) --> A ^ B
1894   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1895       match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1896     return BinaryOperator::CreateXor(A, B);
1897 
1898   return nullptr;
1899 }
1900 
1901 /// Return true if a constant shift amount is always less than the specified
1902 /// bit-width. If not, the shift could create poison in the narrower type.
1903 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1904   APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
1905   return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
1906 }
1907 
1908 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1909 /// a common zext operand: and (binop (zext X), C), (zext X).
1910 Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
1911   // This transform could also apply to {or, and, xor}, but there are better
1912   // folds for those cases, so we don't expect those patterns here. AShr is not
1913   // handled because it should always be transformed to LShr in this sequence.
1914   // The subtract transform is different because it has a constant on the left.
1915   // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1916   Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1917   Constant *C;
1918   if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1919       !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1920       !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1921       !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1922       !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1923     return nullptr;
1924 
1925   Value *X;
1926   if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1927     return nullptr;
1928 
1929   Type *Ty = And.getType();
1930   if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1931     return nullptr;
1932 
1933   // If we're narrowing a shift, the shift amount must be safe (less than the
1934   // width) in the narrower type. If the shift amount is greater, instsimplify
1935   // usually handles that case, but we can't guarantee/assert it.
1936   Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1937   if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1938     if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1939       return nullptr;
1940 
1941   // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1942   // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1943   Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1944   Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1945                                          : Builder.CreateBinOp(Opc, X, NewC);
1946   return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1947 }
1948 
1949 /// Try folding relatively complex patterns for both And and Or operations
1950 /// with all And and Or swapped.
1951 static Instruction *foldComplexAndOrPatterns(BinaryOperator &I,
1952                                              InstCombiner::BuilderTy &Builder) {
1953   const Instruction::BinaryOps Opcode = I.getOpcode();
1954   assert(Opcode == Instruction::And || Opcode == Instruction::Or);
1955 
1956   // Flip the logic operation.
1957   const Instruction::BinaryOps FlippedOpcode =
1958       (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1959 
1960   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1961   Value *A, *B, *C, *X, *Y, *Dummy;
1962 
1963   // Match following expressions:
1964   // (~(A | B) & C)
1965   // (~(A & B) | C)
1966   // Captures X = ~(A | B) or ~(A & B)
1967   const auto matchNotOrAnd =
1968       [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C,
1969                               Value *&X, bool CountUses = false) -> bool {
1970     if (CountUses && !Op->hasOneUse())
1971       return false;
1972 
1973     if (match(Op, m_c_BinOp(FlippedOpcode,
1974                             m_CombineAnd(m_Value(X),
1975                                          m_Not(m_c_BinOp(Opcode, m_A, m_B))),
1976                             m_C)))
1977       return !CountUses || X->hasOneUse();
1978 
1979     return false;
1980   };
1981 
1982   // (~(A | B) & C) | ... --> ...
1983   // (~(A & B) | C) & ... --> ...
1984   // TODO: One use checks are conservative. We just need to check that a total
1985   //       number of multiple used values does not exceed reduction
1986   //       in operations.
1987   if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) {
1988     // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A
1989     // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A)
1990     if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy,
1991                       true)) {
1992       Value *Xor = Builder.CreateXor(B, C);
1993       return (Opcode == Instruction::Or)
1994                  ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A))
1995                  : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A));
1996     }
1997 
1998     // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B
1999     // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B)
2000     if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy,
2001                       true)) {
2002       Value *Xor = Builder.CreateXor(A, C);
2003       return (Opcode == Instruction::Or)
2004                  ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B))
2005                  : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B));
2006     }
2007 
2008     // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A)
2009     // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A)
2010     if (match(Op1, m_OneUse(m_Not(m_OneUse(
2011                        m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
2012       return BinaryOperator::CreateNot(Builder.CreateBinOp(
2013           Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A));
2014 
2015     // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B)
2016     // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B)
2017     if (match(Op1, m_OneUse(m_Not(m_OneUse(
2018                        m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)))))))
2019       return BinaryOperator::CreateNot(Builder.CreateBinOp(
2020           Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B));
2021 
2022     // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B)))
2023     // Note, the pattern with swapped and/or is not handled because the
2024     // result is more undefined than a source:
2025     // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid.
2026     if (Opcode == Instruction::Or && Op0->hasOneUse() &&
2027         match(Op1, m_OneUse(m_Not(m_CombineAnd(
2028                        m_Value(Y),
2029                        m_c_BinOp(Opcode, m_Specific(C),
2030                                  m_c_Xor(m_Specific(A), m_Specific(B)))))))) {
2031       // X = ~(A | B)
2032       // Y = (C | (A ^ B)
2033       Value *Or = cast<BinaryOperator>(X)->getOperand(0);
2034       return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y));
2035     }
2036   }
2037 
2038   // (~A & B & C) | ... --> ...
2039   // (~A | B | C) | ... --> ...
2040   // TODO: One use checks are conservative. We just need to check that a total
2041   //       number of multiple used values does not exceed reduction
2042   //       in operations.
2043   if (match(Op0,
2044             m_OneUse(m_c_BinOp(FlippedOpcode,
2045                                m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)),
2046                                m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) ||
2047       match(Op0, m_OneUse(m_c_BinOp(
2048                      FlippedOpcode,
2049                      m_c_BinOp(FlippedOpcode, m_Value(C),
2050                                m_CombineAnd(m_Value(X), m_Not(m_Value(A)))),
2051                      m_Value(B))))) {
2052     // X = ~A
2053     // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C))
2054     // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C))
2055     if (match(Op1, m_OneUse(m_Not(m_c_BinOp(
2056                        Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)),
2057                        m_Specific(C))))) ||
2058         match(Op1, m_OneUse(m_Not(m_c_BinOp(
2059                        Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)),
2060                        m_Specific(A))))) ||
2061         match(Op1, m_OneUse(m_Not(m_c_BinOp(
2062                        Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)),
2063                        m_Specific(B)))))) {
2064       Value *Xor = Builder.CreateXor(B, C);
2065       return (Opcode == Instruction::Or)
2066                  ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A))
2067                  : BinaryOperator::CreateOr(Xor, X);
2068     }
2069 
2070     // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A
2071     // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A
2072     if (match(Op1, m_OneUse(m_Not(m_OneUse(
2073                        m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)))))))
2074       return BinaryOperator::Create(
2075           FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)),
2076           X);
2077 
2078     // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A
2079     // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A
2080     if (match(Op1, m_OneUse(m_Not(m_OneUse(
2081                        m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
2082       return BinaryOperator::Create(
2083           FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)),
2084           X);
2085   }
2086 
2087   return nullptr;
2088 }
2089 
2090 /// Try to reassociate a pair of binops so that values with one use only are
2091 /// part of the same instruction. This may enable folds that are limited with
2092 /// multi-use restrictions and makes it more likely to match other patterns that
2093 /// are looking for a common operand.
2094 static Instruction *reassociateForUses(BinaryOperator &BO,
2095                                        InstCombinerImpl::BuilderTy &Builder) {
2096   Instruction::BinaryOps Opcode = BO.getOpcode();
2097   Value *X, *Y, *Z;
2098   if (match(&BO,
2099             m_c_BinOp(Opcode, m_OneUse(m_BinOp(Opcode, m_Value(X), m_Value(Y))),
2100                       m_OneUse(m_Value(Z))))) {
2101     if (!isa<Constant>(X) && !isa<Constant>(Y) && !isa<Constant>(Z)) {
2102       // (X op Y) op Z --> (Y op Z) op X
2103       if (!X->hasOneUse()) {
2104         Value *YZ = Builder.CreateBinOp(Opcode, Y, Z);
2105         return BinaryOperator::Create(Opcode, YZ, X);
2106       }
2107       // (X op Y) op Z --> (X op Z) op Y
2108       if (!Y->hasOneUse()) {
2109         Value *XZ = Builder.CreateBinOp(Opcode, X, Z);
2110         return BinaryOperator::Create(Opcode, XZ, Y);
2111       }
2112     }
2113   }
2114 
2115   return nullptr;
2116 }
2117 
2118 // Match
2119 // (X + C2) | C
2120 // (X + C2) ^ C
2121 // (X + C2) & C
2122 // and convert to do the bitwise logic first:
2123 // (X | C) + C2
2124 // (X ^ C) + C2
2125 // (X & C) + C2
2126 // iff bits affected by logic op are lower than last bit affected by math op
2127 static Instruction *canonicalizeLogicFirst(BinaryOperator &I,
2128                                            InstCombiner::BuilderTy &Builder) {
2129   Type *Ty = I.getType();
2130   Instruction::BinaryOps OpC = I.getOpcode();
2131   Value *Op0 = I.getOperand(0);
2132   Value *Op1 = I.getOperand(1);
2133   Value *X;
2134   const APInt *C, *C2;
2135 
2136   if (!(match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C2)))) &&
2137         match(Op1, m_APInt(C))))
2138     return nullptr;
2139 
2140   unsigned Width = Ty->getScalarSizeInBits();
2141   unsigned LastOneMath = Width - C2->countr_zero();
2142 
2143   switch (OpC) {
2144   case Instruction::And:
2145     if (C->countl_one() < LastOneMath)
2146       return nullptr;
2147     break;
2148   case Instruction::Xor:
2149   case Instruction::Or:
2150     if (C->countl_zero() < LastOneMath)
2151       return nullptr;
2152     break;
2153   default:
2154     llvm_unreachable("Unexpected BinaryOp!");
2155   }
2156 
2157   Value *NewBinOp = Builder.CreateBinOp(OpC, X, ConstantInt::get(Ty, *C));
2158   return BinaryOperator::CreateWithCopiedFlags(Instruction::Add, NewBinOp,
2159                                                ConstantInt::get(Ty, *C2), Op0);
2160 }
2161 
2162 // binop(shift(ShiftedC1, ShAmt), shift(ShiftedC2, add(ShAmt, AddC))) ->
2163 // shift(binop(ShiftedC1, shift(ShiftedC2, AddC)), ShAmt)
2164 // where both shifts are the same and AddC is a valid shift amount.
2165 Instruction *InstCombinerImpl::foldBinOpOfDisplacedShifts(BinaryOperator &I) {
2166   assert((I.isBitwiseLogicOp() || I.getOpcode() == Instruction::Add) &&
2167          "Unexpected opcode");
2168 
2169   Value *ShAmt;
2170   Constant *ShiftedC1, *ShiftedC2, *AddC;
2171   Type *Ty = I.getType();
2172   unsigned BitWidth = Ty->getScalarSizeInBits();
2173   if (!match(&I, m_c_BinOp(m_Shift(m_ImmConstant(ShiftedC1), m_Value(ShAmt)),
2174                            m_Shift(m_ImmConstant(ShiftedC2),
2175                                    m_AddLike(m_Deferred(ShAmt),
2176                                              m_ImmConstant(AddC))))))
2177     return nullptr;
2178 
2179   // Make sure the add constant is a valid shift amount.
2180   if (!match(AddC,
2181              m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(BitWidth, BitWidth))))
2182     return nullptr;
2183 
2184   // Avoid constant expressions.
2185   auto *Op0Inst = dyn_cast<Instruction>(I.getOperand(0));
2186   auto *Op1Inst = dyn_cast<Instruction>(I.getOperand(1));
2187   if (!Op0Inst || !Op1Inst)
2188     return nullptr;
2189 
2190   // Both shifts must be the same.
2191   Instruction::BinaryOps ShiftOp =
2192       static_cast<Instruction::BinaryOps>(Op0Inst->getOpcode());
2193   if (ShiftOp != Op1Inst->getOpcode())
2194     return nullptr;
2195 
2196   // For adds, only left shifts are supported.
2197   if (I.getOpcode() == Instruction::Add && ShiftOp != Instruction::Shl)
2198     return nullptr;
2199 
2200   Value *NewC = Builder.CreateBinOp(
2201       I.getOpcode(), ShiftedC1, Builder.CreateBinOp(ShiftOp, ShiftedC2, AddC));
2202   return BinaryOperator::Create(ShiftOp, NewC, ShAmt);
2203 }
2204 
2205 // Fold and/or/xor with two equal intrinsic IDs:
2206 // bitwise(fshl (A, B, ShAmt), fshl(C, D, ShAmt))
2207 // -> fshl(bitwise(A, C), bitwise(B, D), ShAmt)
2208 // bitwise(fshr (A, B, ShAmt), fshr(C, D, ShAmt))
2209 // -> fshr(bitwise(A, C), bitwise(B, D), ShAmt)
2210 // bitwise(bswap(A), bswap(B)) -> bswap(bitwise(A, B))
2211 // bitwise(bswap(A), C) -> bswap(bitwise(A, bswap(C)))
2212 // bitwise(bitreverse(A), bitreverse(B)) -> bitreverse(bitwise(A, B))
2213 // bitwise(bitreverse(A), C) -> bitreverse(bitwise(A, bitreverse(C)))
2214 static Instruction *
2215 foldBitwiseLogicWithIntrinsics(BinaryOperator &I,
2216                                InstCombiner::BuilderTy &Builder) {
2217   assert(I.isBitwiseLogicOp() && "Should and/or/xor");
2218   if (!I.getOperand(0)->hasOneUse())
2219     return nullptr;
2220   IntrinsicInst *X = dyn_cast<IntrinsicInst>(I.getOperand(0));
2221   if (!X)
2222     return nullptr;
2223 
2224   IntrinsicInst *Y = dyn_cast<IntrinsicInst>(I.getOperand(1));
2225   if (Y && (!Y->hasOneUse() || X->getIntrinsicID() != Y->getIntrinsicID()))
2226     return nullptr;
2227 
2228   Intrinsic::ID IID = X->getIntrinsicID();
2229   const APInt *RHSC;
2230   // Try to match constant RHS.
2231   if (!Y && (!(IID == Intrinsic::bswap || IID == Intrinsic::bitreverse) ||
2232              !match(I.getOperand(1), m_APInt(RHSC))))
2233     return nullptr;
2234 
2235   switch (IID) {
2236   case Intrinsic::fshl:
2237   case Intrinsic::fshr: {
2238     if (X->getOperand(2) != Y->getOperand(2))
2239       return nullptr;
2240     Value *NewOp0 =
2241         Builder.CreateBinOp(I.getOpcode(), X->getOperand(0), Y->getOperand(0));
2242     Value *NewOp1 =
2243         Builder.CreateBinOp(I.getOpcode(), X->getOperand(1), Y->getOperand(1));
2244     Function *F = Intrinsic::getDeclaration(I.getModule(), IID, I.getType());
2245     return CallInst::Create(F, {NewOp0, NewOp1, X->getOperand(2)});
2246   }
2247   case Intrinsic::bswap:
2248   case Intrinsic::bitreverse: {
2249     Value *NewOp0 = Builder.CreateBinOp(
2250         I.getOpcode(), X->getOperand(0),
2251         Y ? Y->getOperand(0)
2252           : ConstantInt::get(I.getType(), IID == Intrinsic::bswap
2253                                               ? RHSC->byteSwap()
2254                                               : RHSC->reverseBits()));
2255     Function *F = Intrinsic::getDeclaration(I.getModule(), IID, I.getType());
2256     return CallInst::Create(F, {NewOp0});
2257   }
2258   default:
2259     return nullptr;
2260   }
2261 }
2262 
2263 // Try to simplify V by replacing occurrences of Op with RepOp, but only look
2264 // through bitwise operations. In particular, for X | Y we try to replace Y with
2265 // 0 inside X and for X & Y we try to replace Y with -1 inside X.
2266 // Return the simplified result of X if successful, and nullptr otherwise.
2267 // If SimplifyOnly is true, no new instructions will be created.
2268 static Value *simplifyAndOrWithOpReplaced(Value *V, Value *Op, Value *RepOp,
2269                                           bool SimplifyOnly,
2270                                           InstCombinerImpl &IC,
2271                                           unsigned Depth = 0) {
2272   if (Op == RepOp)
2273     return nullptr;
2274 
2275   if (V == Op)
2276     return RepOp;
2277 
2278   auto *I = dyn_cast<BinaryOperator>(V);
2279   if (!I || !I->isBitwiseLogicOp() || Depth >= 3)
2280     return nullptr;
2281 
2282   if (!I->hasOneUse())
2283     SimplifyOnly = true;
2284 
2285   Value *NewOp0 = simplifyAndOrWithOpReplaced(I->getOperand(0), Op, RepOp,
2286                                               SimplifyOnly, IC, Depth + 1);
2287   Value *NewOp1 = simplifyAndOrWithOpReplaced(I->getOperand(1), Op, RepOp,
2288                                               SimplifyOnly, IC, Depth + 1);
2289   if (!NewOp0 && !NewOp1)
2290     return nullptr;
2291 
2292   if (!NewOp0)
2293     NewOp0 = I->getOperand(0);
2294   if (!NewOp1)
2295     NewOp1 = I->getOperand(1);
2296 
2297   if (Value *Res = simplifyBinOp(I->getOpcode(), NewOp0, NewOp1,
2298                                  IC.getSimplifyQuery().getWithInstruction(I)))
2299     return Res;
2300 
2301   if (SimplifyOnly)
2302     return nullptr;
2303   return IC.Builder.CreateBinOp(I->getOpcode(), NewOp0, NewOp1);
2304 }
2305 
2306 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2307 // here. We should standardize that construct where it is needed or choose some
2308 // other way to ensure that commutated variants of patterns are not missed.
2309 Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) {
2310   Type *Ty = I.getType();
2311 
2312   if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1),
2313                                  SQ.getWithInstruction(&I)))
2314     return replaceInstUsesWith(I, V);
2315 
2316   if (SimplifyAssociativeOrCommutative(I))
2317     return &I;
2318 
2319   if (Instruction *X = foldVectorBinop(I))
2320     return X;
2321 
2322   if (Instruction *Phi = foldBinopWithPhiOperands(I))
2323     return Phi;
2324 
2325   // See if we can simplify any instructions used by the instruction whose sole
2326   // purpose is to compute bits we don't care about.
2327   if (SimplifyDemandedInstructionBits(I))
2328     return &I;
2329 
2330   // Do this before using distributive laws to catch simple and/or/not patterns.
2331   if (Instruction *Xor = foldAndToXor(I, Builder))
2332     return Xor;
2333 
2334   if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
2335     return X;
2336 
2337   // (A|B)&(A|C) -> A|(B&C) etc
2338   if (Value *V = foldUsingDistributiveLaws(I))
2339     return replaceInstUsesWith(I, V);
2340 
2341   if (Instruction *R = foldBinOpShiftWithShift(I))
2342     return R;
2343 
2344   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2345 
2346   Value *X, *Y;
2347   const APInt *C;
2348   if ((match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) ||
2349        (match(Op0, m_OneUse(m_Shl(m_APInt(C), m_Value(X)))) && (*C)[0])) &&
2350       match(Op1, m_One())) {
2351     // (1 >> X) & 1 --> zext(X == 0)
2352     // (C << X) & 1 --> zext(X == 0), when C is odd
2353     Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
2354     return new ZExtInst(IsZero, Ty);
2355   }
2356 
2357   // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y
2358   Value *Neg;
2359   if (match(&I,
2360             m_c_And(m_CombineAnd(m_Value(Neg),
2361                                  m_OneUse(m_Neg(m_And(m_Value(), m_One())))),
2362                     m_Value(Y)))) {
2363     Value *Cmp = Builder.CreateIsNull(Neg);
2364     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Y);
2365   }
2366 
2367   // Canonicalize:
2368   // (X +/- Y) & Y --> ~X & Y when Y is a power of 2.
2369   if (match(&I, m_c_And(m_Value(Y), m_OneUse(m_CombineOr(
2370                                         m_c_Add(m_Value(X), m_Deferred(Y)),
2371                                         m_Sub(m_Value(X), m_Deferred(Y)))))) &&
2372       isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, /*Depth*/ 0, &I))
2373     return BinaryOperator::CreateAnd(Builder.CreateNot(X), Y);
2374 
2375   if (match(Op1, m_APInt(C))) {
2376     const APInt *XorC;
2377     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
2378       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
2379       Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
2380       Value *And = Builder.CreateAnd(X, Op1);
2381       And->takeName(Op0);
2382       return BinaryOperator::CreateXor(And, NewC);
2383     }
2384 
2385     const APInt *OrC;
2386     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
2387       // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
2388       // NOTE: This reduces the number of bits set in the & mask, which
2389       // can expose opportunities for store narrowing for scalars.
2390       // NOTE: SimplifyDemandedBits should have already removed bits from C1
2391       // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
2392       // above, but this feels safer.
2393       APInt Together = *C & *OrC;
2394       Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
2395       And->takeName(Op0);
2396       return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
2397     }
2398 
2399     unsigned Width = Ty->getScalarSizeInBits();
2400     const APInt *ShiftC;
2401     if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) &&
2402         ShiftC->ult(Width)) {
2403       if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
2404         // We are clearing high bits that were potentially set by sext+ashr:
2405         // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
2406         Value *Sext = Builder.CreateSExt(X, Ty);
2407         Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
2408         return BinaryOperator::CreateLShr(Sext, ShAmtC);
2409       }
2410     }
2411 
2412     // If this 'and' clears the sign-bits added by ashr, replace with lshr:
2413     // and (ashr X, ShiftC), C --> lshr X, ShiftC
2414     if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) &&
2415         C->isMask(Width - ShiftC->getZExtValue()))
2416       return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC));
2417 
2418     const APInt *AddC;
2419     if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
2420       // If we are masking the result of the add down to exactly one bit and
2421       // the constant we are adding has no bits set below that bit, then the
2422       // add is flipping a single bit. Example:
2423       // (X + 4) & 4 --> (X & 4) ^ 4
2424       if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
2425         assert((*C & *AddC) != 0 && "Expected common bit");
2426         Value *NewAnd = Builder.CreateAnd(X, Op1);
2427         return BinaryOperator::CreateXor(NewAnd, Op1);
2428       }
2429     }
2430 
2431     // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the
2432     // bitwidth of X and OP behaves well when given trunc(C1) and X.
2433     auto isNarrowableBinOpcode = [](BinaryOperator *B) {
2434       switch (B->getOpcode()) {
2435       case Instruction::Xor:
2436       case Instruction::Or:
2437       case Instruction::Mul:
2438       case Instruction::Add:
2439       case Instruction::Sub:
2440         return true;
2441       default:
2442         return false;
2443       }
2444     };
2445     BinaryOperator *BO;
2446     if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) {
2447       Instruction::BinaryOps BOpcode = BO->getOpcode();
2448       Value *X;
2449       const APInt *C1;
2450       // TODO: The one-use restrictions could be relaxed a little if the AND
2451       // is going to be removed.
2452       // Try to narrow the 'and' and a binop with constant operand:
2453       // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC)
2454       if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) &&
2455           C->isIntN(X->getType()->getScalarSizeInBits())) {
2456         unsigned XWidth = X->getType()->getScalarSizeInBits();
2457         Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth));
2458         Value *BinOp = isa<ZExtInst>(BO->getOperand(0))
2459                            ? Builder.CreateBinOp(BOpcode, X, TruncC1)
2460                            : Builder.CreateBinOp(BOpcode, TruncC1, X);
2461         Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth));
2462         Value *And = Builder.CreateAnd(BinOp, TruncC);
2463         return new ZExtInst(And, Ty);
2464       }
2465 
2466       // Similar to above: if the mask matches the zext input width, then the
2467       // 'and' can be eliminated, so we can truncate the other variable op:
2468       // and (bo (zext X), Y), C --> zext (bo X, (trunc Y))
2469       if (isa<Instruction>(BO->getOperand(0)) &&
2470           match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) &&
2471           C->isMask(X->getType()->getScalarSizeInBits())) {
2472         Y = BO->getOperand(1);
2473         Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2474         Value *NewBO =
2475             Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow");
2476         return new ZExtInst(NewBO, Ty);
2477       }
2478       // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X)
2479       if (isa<Instruction>(BO->getOperand(1)) &&
2480           match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) &&
2481           C->isMask(X->getType()->getScalarSizeInBits())) {
2482         Y = BO->getOperand(0);
2483         Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2484         Value *NewBO =
2485             Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow");
2486         return new ZExtInst(NewBO, Ty);
2487       }
2488     }
2489 
2490     // This is intentionally placed after the narrowing transforms for
2491     // efficiency (transform directly to the narrow logic op if possible).
2492     // If the mask is only needed on one incoming arm, push the 'and' op up.
2493     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
2494         match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2495       APInt NotAndMask(~(*C));
2496       BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
2497       if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
2498         // Not masking anything out for the LHS, move mask to RHS.
2499         // and ({x}or X, Y), C --> {x}or X, (and Y, C)
2500         Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
2501         return BinaryOperator::Create(BinOp, X, NewRHS);
2502       }
2503       if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
2504         // Not masking anything out for the RHS, move mask to LHS.
2505         // and ({x}or X, Y), C --> {x}or (and X, C), Y
2506         Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
2507         return BinaryOperator::Create(BinOp, NewLHS, Y);
2508       }
2509     }
2510 
2511     // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2
2512     // constant, test if the shift amount equals the offset bit index:
2513     // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0
2514     // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0
2515     if (C->isPowerOf2() &&
2516         match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) {
2517       int Log2ShiftC = ShiftC->exactLogBase2();
2518       int Log2C = C->exactLogBase2();
2519       bool IsShiftLeft =
2520          cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl;
2521       int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C;
2522       assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask");
2523       Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum));
2524       return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C),
2525                                 ConstantInt::getNullValue(Ty));
2526     }
2527 
2528     Constant *C1, *C2;
2529     const APInt *C3 = C;
2530     Value *X;
2531     if (C3->isPowerOf2()) {
2532       Constant *Log2C3 = ConstantInt::get(Ty, C3->countr_zero());
2533       if (match(Op0, m_OneUse(m_LShr(m_Shl(m_ImmConstant(C1), m_Value(X)),
2534                                      m_ImmConstant(C2)))) &&
2535           match(C1, m_Power2())) {
2536         Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
2537         Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3);
2538         KnownBits KnownLShrc = computeKnownBits(LshrC, 0, nullptr);
2539         if (KnownLShrc.getMaxValue().ult(Width)) {
2540           // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth:
2541           // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0
2542           Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1);
2543           Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2544           return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2545                                     ConstantInt::getNullValue(Ty));
2546         }
2547       }
2548 
2549       if (match(Op0, m_OneUse(m_Shl(m_LShr(m_ImmConstant(C1), m_Value(X)),
2550                                     m_ImmConstant(C2)))) &&
2551           match(C1, m_Power2())) {
2552         Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
2553         Constant *Cmp =
2554             ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, Log2C3, C2, DL);
2555         if (Cmp && Cmp->isZeroValue()) {
2556           // iff C1,C3 is pow2 and Log2(C3) >= C2:
2557           // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0
2558           Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1);
2559           Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3);
2560           Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2561           return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2562                                     ConstantInt::getNullValue(Ty));
2563         }
2564       }
2565     }
2566   }
2567 
2568   // If we are clearing the sign bit of a floating-point value, convert this to
2569   // fabs, then cast back to integer.
2570   //
2571   // This is a generous interpretation for noimplicitfloat, this is not a true
2572   // floating-point operation.
2573   //
2574   // Assumes any IEEE-represented type has the sign bit in the high bit.
2575   // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt
2576   Value *CastOp;
2577   if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) &&
2578       match(Op1, m_MaxSignedValue()) &&
2579       !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
2580           Attribute::NoImplicitFloat)) {
2581     Type *EltTy = CastOp->getType()->getScalarType();
2582     if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) {
2583       Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
2584       return new BitCastInst(FAbs, I.getType());
2585     }
2586   }
2587 
2588   // and(shl(zext(X), Y), SignMask) -> and(sext(X), SignMask)
2589   // where Y is a valid shift amount.
2590   if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))),
2591                       m_SignMask())) &&
2592       match(Y, m_SpecificInt_ICMP(
2593                    ICmpInst::Predicate::ICMP_EQ,
2594                    APInt(Ty->getScalarSizeInBits(),
2595                          Ty->getScalarSizeInBits() -
2596                              X->getType()->getScalarSizeInBits())))) {
2597     auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
2598     return BinaryOperator::CreateAnd(SExt, Op1);
2599   }
2600 
2601   if (Instruction *Z = narrowMaskedBinOp(I))
2602     return Z;
2603 
2604   if (I.getType()->isIntOrIntVectorTy(1)) {
2605     if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
2606       if (auto *R =
2607               foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true))
2608         return R;
2609     }
2610     if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
2611       if (auto *R =
2612               foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true))
2613         return R;
2614     }
2615   }
2616 
2617   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2618     return FoldedLogic;
2619 
2620   if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this))
2621     return DeMorgan;
2622 
2623   {
2624     Value *A, *B, *C;
2625     // A & ~(A ^ B) --> A & B
2626     if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2627       return BinaryOperator::CreateAnd(Op0, B);
2628     // ~(A ^ B) & A --> A & B
2629     if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2630       return BinaryOperator::CreateAnd(Op1, B);
2631 
2632     // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
2633     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2634         match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) {
2635       Value *NotC = Op1->hasOneUse()
2636                         ? Builder.CreateNot(C)
2637                         : getFreelyInverted(C, C->hasOneUse(), &Builder);
2638       if (NotC != nullptr)
2639         return BinaryOperator::CreateAnd(Op0, NotC);
2640     }
2641 
2642     // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
2643     if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))) &&
2644         match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) {
2645       Value *NotC = Op0->hasOneUse()
2646                         ? Builder.CreateNot(C)
2647                         : getFreelyInverted(C, C->hasOneUse(), &Builder);
2648       if (NotC != nullptr)
2649         return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
2650     }
2651 
2652     // (A | B) & (~A ^ B) -> A & B
2653     // (A | B) & (B ^ ~A) -> A & B
2654     // (B | A) & (~A ^ B) -> A & B
2655     // (B | A) & (B ^ ~A) -> A & B
2656     if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2657         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2658       return BinaryOperator::CreateAnd(A, B);
2659 
2660     // (~A ^ B) & (A | B) -> A & B
2661     // (~A ^ B) & (B | A) -> A & B
2662     // (B ^ ~A) & (A | B) -> A & B
2663     // (B ^ ~A) & (B | A) -> A & B
2664     if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2665         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2666       return BinaryOperator::CreateAnd(A, B);
2667 
2668     // (~A | B) & (A ^ B) -> ~A & B
2669     // (~A | B) & (B ^ A) -> ~A & B
2670     // (B | ~A) & (A ^ B) -> ~A & B
2671     // (B | ~A) & (B ^ A) -> ~A & B
2672     if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2673         match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
2674       return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2675 
2676     // (A ^ B) & (~A | B) -> ~A & B
2677     // (B ^ A) & (~A | B) -> ~A & B
2678     // (A ^ B) & (B | ~A) -> ~A & B
2679     // (B ^ A) & (B | ~A) -> ~A & B
2680     if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2681         match(Op0, m_c_Xor(m_Specific(A), m_Specific(B))))
2682       return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2683   }
2684 
2685   {
2686     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2687     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2688     if (LHS && RHS)
2689       if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ true))
2690         return replaceInstUsesWith(I, Res);
2691 
2692     // TODO: Make this recursive; it's a little tricky because an arbitrary
2693     // number of 'and' instructions might have to be created.
2694     if (LHS && match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2695       bool IsLogical = isa<SelectInst>(Op1);
2696       // LHS & (X && Y) --> (LHS && X) && Y
2697       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2698         if (Value *Res =
2699                 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true, IsLogical))
2700           return replaceInstUsesWith(I, IsLogical
2701                                             ? Builder.CreateLogicalAnd(Res, Y)
2702                                             : Builder.CreateAnd(Res, Y));
2703       // LHS & (X && Y) --> X && (LHS & Y)
2704       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2705         if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true,
2706                                           /* IsLogical */ false))
2707           return replaceInstUsesWith(I, IsLogical
2708                                             ? Builder.CreateLogicalAnd(X, Res)
2709                                             : Builder.CreateAnd(X, Res));
2710     }
2711     if (RHS && match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2712       bool IsLogical = isa<SelectInst>(Op0);
2713       // (X && Y) & RHS --> (X && RHS) && Y
2714       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2715         if (Value *Res =
2716                 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true, IsLogical))
2717           return replaceInstUsesWith(I, IsLogical
2718                                             ? Builder.CreateLogicalAnd(Res, Y)
2719                                             : Builder.CreateAnd(Res, Y));
2720       // (X && Y) & RHS --> X && (Y & RHS)
2721       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2722         if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true,
2723                                           /* IsLogical */ false))
2724           return replaceInstUsesWith(I, IsLogical
2725                                             ? Builder.CreateLogicalAnd(X, Res)
2726                                             : Builder.CreateAnd(X, Res));
2727     }
2728   }
2729 
2730   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2731     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2732       if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true))
2733         return replaceInstUsesWith(I, Res);
2734 
2735   if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2736     return FoldedFCmps;
2737 
2738   if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
2739     return CastedAnd;
2740 
2741   if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
2742     return Sel;
2743 
2744   // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
2745   // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
2746   //       with binop identity constant. But creating a select with non-constant
2747   //       arm may not be reversible due to poison semantics. Is that a good
2748   //       canonicalization?
2749   Value *A, *B;
2750   if (match(&I, m_c_And(m_SExt(m_Value(A)), m_Value(B))) &&
2751       A->getType()->isIntOrIntVectorTy(1))
2752     return SelectInst::Create(A, B, Constant::getNullValue(Ty));
2753 
2754   // Similarly, a 'not' of the bool translates to a swap of the select arms:
2755   // ~sext(A) & B / B & ~sext(A) --> A ? 0 : B
2756   if (match(&I, m_c_And(m_Not(m_SExt(m_Value(A))), m_Value(B))) &&
2757       A->getType()->isIntOrIntVectorTy(1))
2758     return SelectInst::Create(A, Constant::getNullValue(Ty), B);
2759 
2760   // and(zext(A), B) -> A ? (B & 1) : 0
2761   if (match(&I, m_c_And(m_OneUse(m_ZExt(m_Value(A))), m_Value(B))) &&
2762       A->getType()->isIntOrIntVectorTy(1))
2763     return SelectInst::Create(A, Builder.CreateAnd(B, ConstantInt::get(Ty, 1)),
2764                               Constant::getNullValue(Ty));
2765 
2766   // (-1 + A) & B --> A ? 0 : B where A is 0/1.
2767   if (match(&I, m_c_And(m_OneUse(m_Add(m_ZExtOrSelf(m_Value(A)), m_AllOnes())),
2768                         m_Value(B)))) {
2769     if (A->getType()->isIntOrIntVectorTy(1))
2770       return SelectInst::Create(A, Constant::getNullValue(Ty), B);
2771     if (computeKnownBits(A, /* Depth */ 0, &I).countMaxActiveBits() <= 1) {
2772       return SelectInst::Create(
2773           Builder.CreateICmpEQ(A, Constant::getNullValue(A->getType())), B,
2774           Constant::getNullValue(Ty));
2775     }
2776   }
2777 
2778   // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0 -- with optional sext
2779   if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf(
2780                             m_AShr(m_Value(X), m_APIntAllowPoison(C)))),
2781                         m_Value(Y))) &&
2782       *C == X->getType()->getScalarSizeInBits() - 1) {
2783     Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2784     return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
2785   }
2786   // If there's a 'not' of the shifted value, swap the select operands:
2787   // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y -- with optional sext
2788   if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf(
2789                             m_Not(m_AShr(m_Value(X), m_APIntAllowPoison(C))))),
2790                         m_Value(Y))) &&
2791       *C == X->getType()->getScalarSizeInBits() - 1) {
2792     Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2793     return SelectInst::Create(IsNeg, ConstantInt::getNullValue(Ty), Y);
2794   }
2795 
2796   // (~x) & y  -->  ~(x | (~y))  iff that gets rid of inversions
2797   if (sinkNotIntoOtherHandOfLogicalOp(I))
2798     return &I;
2799 
2800   // An and recurrence w/loop invariant step is equivelent to (and start, step)
2801   PHINode *PN = nullptr;
2802   Value *Start = nullptr, *Step = nullptr;
2803   if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
2804     return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step));
2805 
2806   if (Instruction *R = reassociateForUses(I, Builder))
2807     return R;
2808 
2809   if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
2810     return Canonicalized;
2811 
2812   if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
2813     return Folded;
2814 
2815   if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
2816     return Res;
2817 
2818   if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder))
2819     return Res;
2820 
2821   if (Value *V =
2822           simplifyAndOrWithOpReplaced(Op0, Op1, Constant::getAllOnesValue(Ty),
2823                                       /*SimplifyOnly*/ false, *this))
2824     return BinaryOperator::CreateAnd(V, Op1);
2825   if (Value *V =
2826           simplifyAndOrWithOpReplaced(Op1, Op0, Constant::getAllOnesValue(Ty),
2827                                       /*SimplifyOnly*/ false, *this))
2828     return BinaryOperator::CreateAnd(Op0, V);
2829 
2830   return nullptr;
2831 }
2832 
2833 Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I,
2834                                                       bool MatchBSwaps,
2835                                                       bool MatchBitReversals) {
2836   SmallVector<Instruction *, 4> Insts;
2837   if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals,
2838                                        Insts))
2839     return nullptr;
2840   Instruction *LastInst = Insts.pop_back_val();
2841   LastInst->removeFromParent();
2842 
2843   for (auto *Inst : Insts)
2844     Worklist.push(Inst);
2845   return LastInst;
2846 }
2847 
2848 std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>>
2849 InstCombinerImpl::convertOrOfShiftsToFunnelShift(Instruction &Or) {
2850   // TODO: Can we reduce the code duplication between this and the related
2851   // rotate matching code under visitSelect and visitTrunc?
2852   assert(Or.getOpcode() == BinaryOperator::Or && "Expecting or instruction");
2853 
2854   unsigned Width = Or.getType()->getScalarSizeInBits();
2855 
2856   Instruction *Or0, *Or1;
2857   if (!match(Or.getOperand(0), m_Instruction(Or0)) ||
2858       !match(Or.getOperand(1), m_Instruction(Or1)))
2859     return std::nullopt;
2860 
2861   bool IsFshl = true; // Sub on LSHR.
2862   SmallVector<Value *, 3> FShiftArgs;
2863 
2864   // First, find an or'd pair of opposite shifts:
2865   // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)
2866   if (isa<BinaryOperator>(Or0) && isa<BinaryOperator>(Or1)) {
2867     Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
2868     if (!match(Or0,
2869                m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
2870         !match(Or1,
2871                m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
2872         Or0->getOpcode() == Or1->getOpcode())
2873       return std::nullopt;
2874 
2875     // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
2876     if (Or0->getOpcode() == BinaryOperator::LShr) {
2877       std::swap(Or0, Or1);
2878       std::swap(ShVal0, ShVal1);
2879       std::swap(ShAmt0, ShAmt1);
2880     }
2881     assert(Or0->getOpcode() == BinaryOperator::Shl &&
2882            Or1->getOpcode() == BinaryOperator::LShr &&
2883            "Illegal or(shift,shift) pair");
2884 
2885     // Match the shift amount operands for a funnel shift pattern. This always
2886     // matches a subtraction on the R operand.
2887     auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
2888       // Check for constant shift amounts that sum to the bitwidth.
2889       const APInt *LI, *RI;
2890       if (match(L, m_APIntAllowPoison(LI)) && match(R, m_APIntAllowPoison(RI)))
2891         if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
2892           return ConstantInt::get(L->getType(), *LI);
2893 
2894       Constant *LC, *RC;
2895       if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
2896           match(L,
2897                 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2898           match(R,
2899                 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2900           match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowPoison(Width)))
2901         return ConstantExpr::mergeUndefsWith(LC, RC);
2902 
2903       // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width.
2904       // We limit this to X < Width in case the backend re-expands the
2905       // intrinsic, and has to reintroduce a shift modulo operation (InstCombine
2906       // might remove it after this fold). This still doesn't guarantee that the
2907       // final codegen will match this original pattern.
2908       if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
2909         KnownBits KnownL = computeKnownBits(L, /*Depth*/ 0, &Or);
2910         return KnownL.getMaxValue().ult(Width) ? L : nullptr;
2911       }
2912 
2913       // For non-constant cases, the following patterns currently only work for
2914       // rotation patterns.
2915       // TODO: Add general funnel-shift compatible patterns.
2916       if (ShVal0 != ShVal1)
2917         return nullptr;
2918 
2919       // For non-constant cases we don't support non-pow2 shift masks.
2920       // TODO: Is it worth matching urem as well?
2921       if (!isPowerOf2_32(Width))
2922         return nullptr;
2923 
2924       // The shift amount may be masked with negation:
2925       // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
2926       Value *X;
2927       unsigned Mask = Width - 1;
2928       if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
2929           match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
2930         return X;
2931 
2932       // (shl ShVal, X) | (lshr ShVal, ((-X) & (Width - 1)))
2933       if (match(R, m_And(m_Neg(m_Specific(L)), m_SpecificInt(Mask))))
2934         return L;
2935 
2936       // Similar to above, but the shift amount may be extended after masking,
2937       // so return the extended value as the parameter for the intrinsic.
2938       if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2939           match(R,
2940                 m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
2941                       m_SpecificInt(Mask))))
2942         return L;
2943 
2944       if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2945           match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
2946         return L;
2947 
2948       return nullptr;
2949     };
2950 
2951     Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
2952     if (!ShAmt) {
2953       ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
2954       IsFshl = false; // Sub on SHL.
2955     }
2956     if (!ShAmt)
2957       return std::nullopt;
2958 
2959     FShiftArgs = {ShVal0, ShVal1, ShAmt};
2960   } else if (isa<ZExtInst>(Or0) || isa<ZExtInst>(Or1)) {
2961     // If there are two 'or' instructions concat variables in opposite order:
2962     //
2963     // Slot1 and Slot2 are all zero bits.
2964     // | Slot1 | Low | Slot2 | High |
2965     // LowHigh = or (shl (zext Low), ZextLowShlAmt), (zext High)
2966     // | Slot2 | High | Slot1 | Low |
2967     // HighLow = or (shl (zext High), ZextHighShlAmt), (zext Low)
2968     //
2969     // the latter 'or' can be safely convert to
2970     // -> HighLow = fshl LowHigh, LowHigh, ZextHighShlAmt
2971     // if ZextLowShlAmt + ZextHighShlAmt == Width.
2972     if (!isa<ZExtInst>(Or1))
2973       std::swap(Or0, Or1);
2974 
2975     Value *High, *ZextHigh, *Low;
2976     const APInt *ZextHighShlAmt;
2977     if (!match(Or0,
2978                m_OneUse(m_Shl(m_Value(ZextHigh), m_APInt(ZextHighShlAmt)))))
2979       return std::nullopt;
2980 
2981     if (!match(Or1, m_ZExt(m_Value(Low))) ||
2982         !match(ZextHigh, m_ZExt(m_Value(High))))
2983       return std::nullopt;
2984 
2985     unsigned HighSize = High->getType()->getScalarSizeInBits();
2986     unsigned LowSize = Low->getType()->getScalarSizeInBits();
2987     // Make sure High does not overlap with Low and most significant bits of
2988     // High aren't shifted out.
2989     if (ZextHighShlAmt->ult(LowSize) || ZextHighShlAmt->ugt(Width - HighSize))
2990       return std::nullopt;
2991 
2992     for (User *U : ZextHigh->users()) {
2993       Value *X, *Y;
2994       if (!match(U, m_Or(m_Value(X), m_Value(Y))))
2995         continue;
2996 
2997       if (!isa<ZExtInst>(Y))
2998         std::swap(X, Y);
2999 
3000       const APInt *ZextLowShlAmt;
3001       if (!match(X, m_Shl(m_Specific(Or1), m_APInt(ZextLowShlAmt))) ||
3002           !match(Y, m_Specific(ZextHigh)) || !DT.dominates(U, &Or))
3003         continue;
3004 
3005       // HighLow is good concat. If sum of two shifts amount equals to Width,
3006       // LowHigh must also be a good concat.
3007       if (*ZextLowShlAmt + *ZextHighShlAmt != Width)
3008         continue;
3009 
3010       // Low must not overlap with High and most significant bits of Low must
3011       // not be shifted out.
3012       assert(ZextLowShlAmt->uge(HighSize) &&
3013              ZextLowShlAmt->ule(Width - LowSize) && "Invalid concat");
3014 
3015       FShiftArgs = {U, U, ConstantInt::get(Or0->getType(), *ZextHighShlAmt)};
3016       break;
3017     }
3018   }
3019 
3020   if (FShiftArgs.empty())
3021     return std::nullopt;
3022 
3023   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
3024   return std::make_pair(IID, FShiftArgs);
3025 }
3026 
3027 /// Match UB-safe variants of the funnel shift intrinsic.
3028 static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) {
3029   if (auto Opt = IC.convertOrOfShiftsToFunnelShift(Or)) {
3030     auto [IID, FShiftArgs] = *Opt;
3031     Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
3032     return CallInst::Create(F, FShiftArgs);
3033   }
3034 
3035   return nullptr;
3036 }
3037 
3038 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
3039 static Instruction *matchOrConcat(Instruction &Or,
3040                                   InstCombiner::BuilderTy &Builder) {
3041   assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
3042   Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
3043   Type *Ty = Or.getType();
3044 
3045   unsigned Width = Ty->getScalarSizeInBits();
3046   if ((Width & 1) != 0)
3047     return nullptr;
3048   unsigned HalfWidth = Width / 2;
3049 
3050   // Canonicalize zext (lower half) to LHS.
3051   if (!isa<ZExtInst>(Op0))
3052     std::swap(Op0, Op1);
3053 
3054   // Find lower/upper half.
3055   Value *LowerSrc, *ShlVal, *UpperSrc;
3056   const APInt *C;
3057   if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
3058       !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
3059       !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
3060     return nullptr;
3061   if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
3062       LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
3063     return nullptr;
3064 
3065   auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
3066     Value *NewLower = Builder.CreateZExt(Lo, Ty);
3067     Value *NewUpper = Builder.CreateZExt(Hi, Ty);
3068     NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
3069     Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
3070     Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty);
3071     return Builder.CreateCall(F, BinOp);
3072   };
3073 
3074   // BSWAP: Push the concat down, swapping the lower/upper sources.
3075   // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
3076   Value *LowerBSwap, *UpperBSwap;
3077   if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
3078       match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
3079     return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
3080 
3081   // BITREVERSE: Push the concat down, swapping the lower/upper sources.
3082   // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
3083   Value *LowerBRev, *UpperBRev;
3084   if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
3085       match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
3086     return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
3087 
3088   return nullptr;
3089 }
3090 
3091 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
3092 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
3093   unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
3094   for (unsigned i = 0; i != NumElts; ++i) {
3095     Constant *EltC1 = C1->getAggregateElement(i);
3096     Constant *EltC2 = C2->getAggregateElement(i);
3097     if (!EltC1 || !EltC2)
3098       return false;
3099 
3100     // One element must be all ones, and the other must be all zeros.
3101     if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
3102           (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
3103       return false;
3104   }
3105   return true;
3106 }
3107 
3108 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
3109 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
3110 /// B, it can be used as the condition operand of a select instruction.
3111 /// We will detect (A & C) | ~(B | D) when the flag ABIsTheSame enabled.
3112 Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B,
3113                                             bool ABIsTheSame) {
3114   // We may have peeked through bitcasts in the caller.
3115   // Exit immediately if we don't have (vector) integer types.
3116   Type *Ty = A->getType();
3117   if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
3118     return nullptr;
3119 
3120   // If A is the 'not' operand of B and has enough signbits, we have our answer.
3121   if (ABIsTheSame ? (A == B) : match(B, m_Not(m_Specific(A)))) {
3122     // If these are scalars or vectors of i1, A can be used directly.
3123     if (Ty->isIntOrIntVectorTy(1))
3124       return A;
3125 
3126     // If we look through a vector bitcast, the caller will bitcast the operands
3127     // to match the condition's number of bits (N x i1).
3128     // To make this poison-safe, disallow bitcast from wide element to narrow
3129     // element. That could allow poison in lanes where it was not present in the
3130     // original code.
3131     A = peekThroughBitcast(A);
3132     if (A->getType()->isIntOrIntVectorTy()) {
3133       unsigned NumSignBits = ComputeNumSignBits(A);
3134       if (NumSignBits == A->getType()->getScalarSizeInBits() &&
3135           NumSignBits <= Ty->getScalarSizeInBits())
3136         return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType()));
3137     }
3138     return nullptr;
3139   }
3140 
3141   // TODO: add support for sext and constant case
3142   if (ABIsTheSame)
3143     return nullptr;
3144 
3145   // If both operands are constants, see if the constants are inverse bitmasks.
3146   Constant *AConst, *BConst;
3147   if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
3148     if (AConst == ConstantExpr::getNot(BConst) &&
3149         ComputeNumSignBits(A) == Ty->getScalarSizeInBits())
3150       return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
3151 
3152   // Look for more complex patterns. The 'not' op may be hidden behind various
3153   // casts. Look through sexts and bitcasts to find the booleans.
3154   Value *Cond;
3155   Value *NotB;
3156   if (match(A, m_SExt(m_Value(Cond))) &&
3157       Cond->getType()->isIntOrIntVectorTy(1)) {
3158     // A = sext i1 Cond; B = sext (not (i1 Cond))
3159     if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
3160       return Cond;
3161 
3162     // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond)))
3163     // TODO: The one-use checks are unnecessary or misplaced. If the caller
3164     //       checked for uses on logic ops/casts, that should be enough to
3165     //       make this transform worthwhile.
3166     if (match(B, m_OneUse(m_Not(m_Value(NotB))))) {
3167       NotB = peekThroughBitcast(NotB, true);
3168       if (match(NotB, m_SExt(m_Specific(Cond))))
3169         return Cond;
3170     }
3171   }
3172 
3173   // All scalar (and most vector) possibilities should be handled now.
3174   // Try more matches that only apply to non-splat constant vectors.
3175   if (!Ty->isVectorTy())
3176     return nullptr;
3177 
3178   // If both operands are xor'd with constants using the same sexted boolean
3179   // operand, see if the constants are inverse bitmasks.
3180   // TODO: Use ConstantExpr::getNot()?
3181   if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
3182       match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
3183       Cond->getType()->isIntOrIntVectorTy(1) &&
3184       areInverseVectorBitmasks(AConst, BConst)) {
3185     AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
3186     return Builder.CreateXor(Cond, AConst);
3187   }
3188   return nullptr;
3189 }
3190 
3191 /// We have an expression of the form (A & B) | (C & D). Try to simplify this
3192 /// to "A' ? B : D", where A' is a boolean or vector of booleans.
3193 /// When InvertFalseVal is set to true, we try to match the pattern
3194 /// where we have peeked through a 'not' op and A and C are the same:
3195 /// (A & B) | ~(A | D) --> (A & B) | (~A & ~D) --> A' ? B : ~D
3196 Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *B, Value *C,
3197                                               Value *D, bool InvertFalseVal) {
3198   // The potential condition of the select may be bitcasted. In that case, look
3199   // through its bitcast and the corresponding bitcast of the 'not' condition.
3200   Type *OrigType = A->getType();
3201   A = peekThroughBitcast(A, true);
3202   C = peekThroughBitcast(C, true);
3203   if (Value *Cond = getSelectCondition(A, C, InvertFalseVal)) {
3204     // ((bc Cond) & B) | ((bc ~Cond) & D) --> bc (select Cond, (bc B), (bc D))
3205     // If this is a vector, we may need to cast to match the condition's length.
3206     // The bitcasts will either all exist or all not exist. The builder will
3207     // not create unnecessary casts if the types already match.
3208     Type *SelTy = A->getType();
3209     if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) {
3210       // For a fixed or scalable vector get N from <{vscale x} N x iM>
3211       unsigned Elts = VecTy->getElementCount().getKnownMinValue();
3212       // For a fixed or scalable vector, get the size in bits of N x iM; for a
3213       // scalar this is just M.
3214       unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinValue();
3215       Type *EltTy = Builder.getIntNTy(SelEltSize / Elts);
3216       SelTy = VectorType::get(EltTy, VecTy->getElementCount());
3217     }
3218     Value *BitcastB = Builder.CreateBitCast(B, SelTy);
3219     if (InvertFalseVal)
3220       D = Builder.CreateNot(D);
3221     Value *BitcastD = Builder.CreateBitCast(D, SelTy);
3222     Value *Select = Builder.CreateSelect(Cond, BitcastB, BitcastD);
3223     return Builder.CreateBitCast(Select, OrigType);
3224   }
3225 
3226   return nullptr;
3227 }
3228 
3229 // (icmp eq X, C) | (icmp ult Other, (X - C)) -> (icmp ule Other, (X - (C + 1)))
3230 // (icmp ne X, C) & (icmp uge Other, (X - C)) -> (icmp ugt Other, (X - (C + 1)))
3231 static Value *foldAndOrOfICmpEqConstantAndICmp(ICmpInst *LHS, ICmpInst *RHS,
3232                                                bool IsAnd, bool IsLogical,
3233                                                IRBuilderBase &Builder) {
3234   Value *LHS0 = LHS->getOperand(0);
3235   Value *RHS0 = RHS->getOperand(0);
3236   Value *RHS1 = RHS->getOperand(1);
3237 
3238   ICmpInst::Predicate LPred =
3239       IsAnd ? LHS->getInversePredicate() : LHS->getPredicate();
3240   ICmpInst::Predicate RPred =
3241       IsAnd ? RHS->getInversePredicate() : RHS->getPredicate();
3242 
3243   const APInt *CInt;
3244   if (LPred != ICmpInst::ICMP_EQ ||
3245       !match(LHS->getOperand(1), m_APIntAllowPoison(CInt)) ||
3246       !LHS0->getType()->isIntOrIntVectorTy() ||
3247       !(LHS->hasOneUse() || RHS->hasOneUse()))
3248     return nullptr;
3249 
3250   auto MatchRHSOp = [LHS0, CInt](const Value *RHSOp) {
3251     return match(RHSOp,
3252                  m_Add(m_Specific(LHS0), m_SpecificIntAllowPoison(-*CInt))) ||
3253            (CInt->isZero() && RHSOp == LHS0);
3254   };
3255 
3256   Value *Other;
3257   if (RPred == ICmpInst::ICMP_ULT && MatchRHSOp(RHS1))
3258     Other = RHS0;
3259   else if (RPred == ICmpInst::ICMP_UGT && MatchRHSOp(RHS0))
3260     Other = RHS1;
3261   else
3262     return nullptr;
3263 
3264   if (IsLogical)
3265     Other = Builder.CreateFreeze(Other);
3266 
3267   return Builder.CreateICmp(
3268       IsAnd ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE,
3269       Builder.CreateSub(LHS0, ConstantInt::get(LHS0->getType(), *CInt + 1)),
3270       Other);
3271 }
3272 
3273 /// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible.
3274 /// If IsLogical is true, then the and/or is in select form and the transform
3275 /// must be poison-safe.
3276 Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
3277                                           Instruction &I, bool IsAnd,
3278                                           bool IsLogical) {
3279   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3280 
3281   // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
3282   // Fold (!iszero(A & K1) & !iszero(A & K2)) ->  (A & (K1 | K2)) == (K1 | K2)
3283   // if K1 and K2 are a one-bit mask.
3284   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &I, IsAnd, IsLogical))
3285     return V;
3286 
3287   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
3288   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
3289   Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
3290 
3291   const APInt *LHSC = nullptr, *RHSC = nullptr;
3292   match(LHS1, m_APInt(LHSC));
3293   match(RHS1, m_APInt(RHSC));
3294 
3295   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
3296   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3297   if (predicatesFoldable(PredL, PredR)) {
3298     if (LHS0 == RHS1 && LHS1 == RHS0) {
3299       PredL = ICmpInst::getSwappedPredicate(PredL);
3300       std::swap(LHS0, LHS1);
3301     }
3302     if (LHS0 == RHS0 && LHS1 == RHS1) {
3303       unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR)
3304                             : getICmpCode(PredL) | getICmpCode(PredR);
3305       bool IsSigned = LHS->isSigned() || RHS->isSigned();
3306       return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
3307     }
3308   }
3309 
3310   // handle (roughly):
3311   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
3312   // (icmp eq (A & B), C) & (icmp eq (A & D), E)
3313   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder))
3314     return V;
3315 
3316   if (Value *V =
3317           foldAndOrOfICmpEqConstantAndICmp(LHS, RHS, IsAnd, IsLogical, Builder))
3318     return V;
3319   // We can treat logical like bitwise here, because both operands are used on
3320   // the LHS, and as such poison from both will propagate.
3321   if (Value *V = foldAndOrOfICmpEqConstantAndICmp(RHS, LHS, IsAnd,
3322                                                   /*IsLogical*/ false, Builder))
3323     return V;
3324 
3325   if (Value *V =
3326           foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, IsLogical, Builder, Q))
3327     return V;
3328   // We can convert this case to bitwise and, because both operands are used
3329   // on the LHS, and as such poison from both will propagate.
3330   if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, IsAnd,
3331                                              /*IsLogical*/ false, Builder, Q))
3332     return V;
3333 
3334   if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder))
3335     return V;
3336   if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder))
3337     return V;
3338 
3339   // TODO: One of these directions is fine with logical and/or, the other could
3340   // be supported by inserting freeze.
3341   if (!IsLogical) {
3342     // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
3343     // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
3344     if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/!IsAnd))
3345       return V;
3346 
3347     // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
3348     // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
3349     if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/!IsAnd))
3350       return V;
3351   }
3352 
3353   // TODO: Add conjugated or fold, check whether it is safe for logical and/or.
3354   if (IsAnd && !IsLogical)
3355     if (Value *V = foldSignedTruncationCheck(LHS, RHS, I, Builder))
3356       return V;
3357 
3358   if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder, *this))
3359     return V;
3360 
3361   if (Value *V = foldPowerOf2AndShiftedMask(LHS, RHS, IsAnd, Builder))
3362     return V;
3363 
3364   // TODO: Verify whether this is safe for logical and/or.
3365   if (!IsLogical) {
3366     if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder))
3367       return X;
3368     if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder))
3369       return X;
3370   }
3371 
3372   if (Value *X = foldEqOfParts(LHS, RHS, IsAnd))
3373     return X;
3374 
3375   // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
3376   // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
3377   // TODO: Remove this and below when foldLogOpOfMaskedICmps can handle undefs.
3378   if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3379       PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) &&
3380       LHS0->getType() == RHS0->getType()) {
3381     Value *NewOr = Builder.CreateOr(LHS0, RHS0);
3382     return Builder.CreateICmp(PredL, NewOr,
3383                               Constant::getNullValue(NewOr->getType()));
3384   }
3385 
3386   // (icmp ne A, -1) | (icmp ne B, -1) --> (icmp ne (A&B), -1)
3387   // (icmp eq A, -1) & (icmp eq B, -1) --> (icmp eq (A&B), -1)
3388   if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3389       PredL == PredR && match(LHS1, m_AllOnes()) && match(RHS1, m_AllOnes()) &&
3390       LHS0->getType() == RHS0->getType()) {
3391     Value *NewAnd = Builder.CreateAnd(LHS0, RHS0);
3392     return Builder.CreateICmp(PredL, NewAnd,
3393                               Constant::getAllOnesValue(LHS0->getType()));
3394   }
3395 
3396   if (!IsLogical)
3397     if (Value *V =
3398             foldAndOrOfICmpsWithPow2AndWithZero(Builder, LHS, RHS, IsAnd, Q))
3399       return V;
3400 
3401   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
3402   if (!LHSC || !RHSC)
3403     return nullptr;
3404 
3405   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
3406   // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2
3407   // where CMAX is the all ones value for the truncated type,
3408   // iff the lower bits of C2 and CA are zero.
3409   if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3410       PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) {
3411     Value *V;
3412     const APInt *AndC, *SmallC = nullptr, *BigC = nullptr;
3413 
3414     // (trunc x) == C1 & (and x, CA) == C2
3415     // (and x, CA) == C2 & (trunc x) == C1
3416     if (match(RHS0, m_Trunc(m_Value(V))) &&
3417         match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
3418       SmallC = RHSC;
3419       BigC = LHSC;
3420     } else if (match(LHS0, m_Trunc(m_Value(V))) &&
3421                match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
3422       SmallC = LHSC;
3423       BigC = RHSC;
3424     }
3425 
3426     if (SmallC && BigC) {
3427       unsigned BigBitSize = BigC->getBitWidth();
3428       unsigned SmallBitSize = SmallC->getBitWidth();
3429 
3430       // Check that the low bits are zero.
3431       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
3432       if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) {
3433         Value *NewAnd = Builder.CreateAnd(V, Low | *AndC);
3434         APInt N = SmallC->zext(BigBitSize) | *BigC;
3435         Value *NewVal = ConstantInt::get(NewAnd->getType(), N);
3436         return Builder.CreateICmp(PredL, NewAnd, NewVal);
3437       }
3438     }
3439   }
3440 
3441   // Match naive pattern (and its inverted form) for checking if two values
3442   // share same sign. An example of the pattern:
3443   // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1)
3444   // Inverted form (example):
3445   // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0)
3446   bool TrueIfSignedL, TrueIfSignedR;
3447   if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) &&
3448       isSignBitCheck(PredR, *RHSC, TrueIfSignedR) &&
3449       (RHS->hasOneUse() || LHS->hasOneUse())) {
3450     Value *X, *Y;
3451     if (IsAnd) {
3452       if ((TrueIfSignedL && !TrueIfSignedR &&
3453            match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
3454            match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) ||
3455           (!TrueIfSignedL && TrueIfSignedR &&
3456            match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
3457            match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) {
3458         Value *NewXor = Builder.CreateXor(X, Y);
3459         return Builder.CreateIsNeg(NewXor);
3460       }
3461     } else {
3462       if ((TrueIfSignedL && !TrueIfSignedR &&
3463             match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
3464             match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) ||
3465           (!TrueIfSignedL && TrueIfSignedR &&
3466            match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
3467            match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) {
3468         Value *NewXor = Builder.CreateXor(X, Y);
3469         return Builder.CreateIsNotNeg(NewXor);
3470       }
3471     }
3472   }
3473 
3474   return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd);
3475 }
3476 
3477 static Value *foldOrOfInversions(BinaryOperator &I,
3478                                  InstCombiner::BuilderTy &Builder) {
3479   assert(I.getOpcode() == Instruction::Or &&
3480          "Simplification only supports or at the moment.");
3481 
3482   Value *Cmp1, *Cmp2, *Cmp3, *Cmp4;
3483   if (!match(I.getOperand(0), m_And(m_Value(Cmp1), m_Value(Cmp2))) ||
3484       !match(I.getOperand(1), m_And(m_Value(Cmp3), m_Value(Cmp4))))
3485     return nullptr;
3486 
3487   // Check if any two pairs of the and operations are inversions of each other.
3488   if (isKnownInversion(Cmp1, Cmp3) && isKnownInversion(Cmp2, Cmp4))
3489     return Builder.CreateXor(Cmp1, Cmp4);
3490   if (isKnownInversion(Cmp1, Cmp4) && isKnownInversion(Cmp2, Cmp3))
3491     return Builder.CreateXor(Cmp1, Cmp3);
3492 
3493   return nullptr;
3494 }
3495 
3496 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
3497 // here. We should standardize that construct where it is needed or choose some
3498 // other way to ensure that commutated variants of patterns are not missed.
3499 Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) {
3500   if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1),
3501                                 SQ.getWithInstruction(&I)))
3502     return replaceInstUsesWith(I, V);
3503 
3504   if (SimplifyAssociativeOrCommutative(I))
3505     return &I;
3506 
3507   if (Instruction *X = foldVectorBinop(I))
3508     return X;
3509 
3510   if (Instruction *Phi = foldBinopWithPhiOperands(I))
3511     return Phi;
3512 
3513   // See if we can simplify any instructions used by the instruction whose sole
3514   // purpose is to compute bits we don't care about.
3515   if (SimplifyDemandedInstructionBits(I))
3516     return &I;
3517 
3518   // Do this before using distributive laws to catch simple and/or/not patterns.
3519   if (Instruction *Xor = foldOrToXor(I, Builder))
3520     return Xor;
3521 
3522   if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
3523     return X;
3524 
3525   // (A & B) | (C & D) -> A ^ D where A == ~C && B == ~D
3526   // (A & B) | (C & D) -> A ^ C where A == ~D && B == ~C
3527   if (Value *V = foldOrOfInversions(I, Builder))
3528     return replaceInstUsesWith(I, V);
3529 
3530   // (A&B)|(A&C) -> A&(B|C) etc
3531   if (Value *V = foldUsingDistributiveLaws(I))
3532     return replaceInstUsesWith(I, V);
3533 
3534   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3535   Type *Ty = I.getType();
3536   if (Ty->isIntOrIntVectorTy(1)) {
3537     if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
3538       if (auto *R =
3539               foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false))
3540         return R;
3541     }
3542     if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
3543       if (auto *R =
3544               foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false))
3545         return R;
3546     }
3547   }
3548 
3549   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
3550     return FoldedLogic;
3551 
3552   if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true,
3553                                                   /*MatchBitReversals*/ true))
3554     return BitOp;
3555 
3556   if (Instruction *Funnel = matchFunnelShift(I, *this))
3557     return Funnel;
3558 
3559   if (Instruction *Concat = matchOrConcat(I, Builder))
3560     return replaceInstUsesWith(I, Concat);
3561 
3562   if (Instruction *R = foldBinOpShiftWithShift(I))
3563     return R;
3564 
3565   if (Instruction *R = tryFoldInstWithCtpopWithNot(&I))
3566     return R;
3567 
3568   Value *X, *Y;
3569   const APInt *CV;
3570   if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
3571       !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) {
3572     // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
3573     // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
3574     Value *Or = Builder.CreateOr(X, Y);
3575     return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV));
3576   }
3577 
3578   // If the operands have no common bits set:
3579   // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1)
3580   if (match(&I, m_c_DisjointOr(m_OneUse(m_Mul(m_Value(X), m_Value(Y))),
3581                                m_Deferred(X)))) {
3582     Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1));
3583     return BinaryOperator::CreateMul(X, IncrementY);
3584   }
3585 
3586   // (A & C) | (B & D)
3587   Value *A, *B, *C, *D;
3588   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
3589       match(Op1, m_And(m_Value(B), m_Value(D)))) {
3590 
3591     // (A & C0) | (B & C1)
3592     const APInt *C0, *C1;
3593     if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) {
3594       Value *X;
3595       if (*C0 == ~*C1) {
3596         // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B
3597         if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
3598           return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B);
3599         // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A
3600         if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
3601           return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A);
3602 
3603         // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B
3604         if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
3605           return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B);
3606         // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A
3607         if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
3608           return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A);
3609       }
3610 
3611       if ((*C0 & *C1).isZero()) {
3612         // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1)
3613         // iff (C0 & C1) == 0 and (X & ~C0) == 0
3614         if (match(A, m_c_Or(m_Value(X), m_Specific(B))) &&
3615             MaskedValueIsZero(X, ~*C0, 0, &I)) {
3616           Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3617           return BinaryOperator::CreateAnd(A, C01);
3618         }
3619         // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1)
3620         // iff (C0 & C1) == 0 and (X & ~C1) == 0
3621         if (match(B, m_c_Or(m_Value(X), m_Specific(A))) &&
3622             MaskedValueIsZero(X, ~*C1, 0, &I)) {
3623           Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3624           return BinaryOperator::CreateAnd(B, C01);
3625         }
3626         // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1)
3627         // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0.
3628         const APInt *C2, *C3;
3629         if (match(A, m_Or(m_Value(X), m_APInt(C2))) &&
3630             match(B, m_Or(m_Specific(X), m_APInt(C3))) &&
3631             (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) {
3632           Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield");
3633           Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3634           return BinaryOperator::CreateAnd(Or, C01);
3635         }
3636       }
3637     }
3638 
3639     // Don't try to form a select if it's unlikely that we'll get rid of at
3640     // least one of the operands. A select is generally more expensive than the
3641     // 'or' that it is replacing.
3642     if (Op0->hasOneUse() || Op1->hasOneUse()) {
3643       // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
3644       if (Value *V = matchSelectFromAndOr(A, C, B, D))
3645         return replaceInstUsesWith(I, V);
3646       if (Value *V = matchSelectFromAndOr(A, C, D, B))
3647         return replaceInstUsesWith(I, V);
3648       if (Value *V = matchSelectFromAndOr(C, A, B, D))
3649         return replaceInstUsesWith(I, V);
3650       if (Value *V = matchSelectFromAndOr(C, A, D, B))
3651         return replaceInstUsesWith(I, V);
3652       if (Value *V = matchSelectFromAndOr(B, D, A, C))
3653         return replaceInstUsesWith(I, V);
3654       if (Value *V = matchSelectFromAndOr(B, D, C, A))
3655         return replaceInstUsesWith(I, V);
3656       if (Value *V = matchSelectFromAndOr(D, B, A, C))
3657         return replaceInstUsesWith(I, V);
3658       if (Value *V = matchSelectFromAndOr(D, B, C, A))
3659         return replaceInstUsesWith(I, V);
3660     }
3661   }
3662 
3663   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
3664       match(Op1, m_Not(m_Or(m_Value(B), m_Value(D)))) &&
3665       (Op0->hasOneUse() || Op1->hasOneUse())) {
3666     // (Cond & C) | ~(Cond | D) -> Cond ? C : ~D
3667     if (Value *V = matchSelectFromAndOr(A, C, B, D, true))
3668       return replaceInstUsesWith(I, V);
3669     if (Value *V = matchSelectFromAndOr(A, C, D, B, true))
3670       return replaceInstUsesWith(I, V);
3671     if (Value *V = matchSelectFromAndOr(C, A, B, D, true))
3672       return replaceInstUsesWith(I, V);
3673     if (Value *V = matchSelectFromAndOr(C, A, D, B, true))
3674       return replaceInstUsesWith(I, V);
3675   }
3676 
3677   // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
3678   if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
3679     if (match(Op1,
3680               m_c_Xor(m_c_Xor(m_Specific(B), m_Value(C)), m_Specific(A))) ||
3681         match(Op1, m_c_Xor(m_c_Xor(m_Specific(A), m_Value(C)), m_Specific(B))))
3682       return BinaryOperator::CreateOr(Op0, C);
3683 
3684   // ((B ^ C) ^ A) | (A ^ B) -> (A ^ B) | C
3685   if (match(Op1, m_Xor(m_Value(A), m_Value(B))))
3686     if (match(Op0,
3687               m_c_Xor(m_c_Xor(m_Specific(B), m_Value(C)), m_Specific(A))) ||
3688         match(Op0, m_c_Xor(m_c_Xor(m_Specific(A), m_Value(C)), m_Specific(B))))
3689       return BinaryOperator::CreateOr(Op1, C);
3690 
3691   if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this))
3692     return DeMorgan;
3693 
3694   // Canonicalize xor to the RHS.
3695   bool SwappedForXor = false;
3696   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
3697     std::swap(Op0, Op1);
3698     SwappedForXor = true;
3699   }
3700 
3701   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3702     // (A | ?) | (A ^ B) --> (A | ?) | B
3703     // (B | ?) | (A ^ B) --> (B | ?) | A
3704     if (match(Op0, m_c_Or(m_Specific(A), m_Value())))
3705       return BinaryOperator::CreateOr(Op0, B);
3706     if (match(Op0, m_c_Or(m_Specific(B), m_Value())))
3707       return BinaryOperator::CreateOr(Op0, A);
3708 
3709     // (A & B) | (A ^ B) --> A | B
3710     // (B & A) | (A ^ B) --> A | B
3711     if (match(Op0, m_c_And(m_Specific(A), m_Specific(B))))
3712       return BinaryOperator::CreateOr(A, B);
3713 
3714     // ~A | (A ^ B) --> ~(A & B)
3715     // ~B | (A ^ B) --> ~(A & B)
3716     // The swap above should always make Op0 the 'not'.
3717     if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3718         (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B)))))
3719       return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
3720 
3721     // Same as above, but peek through an 'and' to the common operand:
3722     // ~(A & ?) | (A ^ B) --> ~((A & ?) & B)
3723     // ~(B & ?) | (A ^ B) --> ~((B & ?) & A)
3724     Instruction *And;
3725     if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3726         match(Op0, m_Not(m_CombineAnd(m_Instruction(And),
3727                                       m_c_And(m_Specific(A), m_Value())))))
3728       return BinaryOperator::CreateNot(Builder.CreateAnd(And, B));
3729     if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3730         match(Op0, m_Not(m_CombineAnd(m_Instruction(And),
3731                                       m_c_And(m_Specific(B), m_Value())))))
3732       return BinaryOperator::CreateNot(Builder.CreateAnd(And, A));
3733 
3734     // (~A | C) | (A ^ B) --> ~(A & B) | C
3735     // (~B | C) | (A ^ B) --> ~(A & B) | C
3736     if (Op0->hasOneUse() && Op1->hasOneUse() &&
3737         (match(Op0, m_c_Or(m_Not(m_Specific(A)), m_Value(C))) ||
3738          match(Op0, m_c_Or(m_Not(m_Specific(B)), m_Value(C))))) {
3739       Value *Nand = Builder.CreateNot(Builder.CreateAnd(A, B), "nand");
3740       return BinaryOperator::CreateOr(Nand, C);
3741     }
3742   }
3743 
3744   if (SwappedForXor)
3745     std::swap(Op0, Op1);
3746 
3747   {
3748     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
3749     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
3750     if (LHS && RHS)
3751       if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ false))
3752         return replaceInstUsesWith(I, Res);
3753 
3754     // TODO: Make this recursive; it's a little tricky because an arbitrary
3755     // number of 'or' instructions might have to be created.
3756     Value *X, *Y;
3757     if (LHS && match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
3758       bool IsLogical = isa<SelectInst>(Op1);
3759       // LHS | (X || Y) --> (LHS || X) || Y
3760       if (auto *Cmp = dyn_cast<ICmpInst>(X))
3761         if (Value *Res =
3762                 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false, IsLogical))
3763           return replaceInstUsesWith(I, IsLogical
3764                                             ? Builder.CreateLogicalOr(Res, Y)
3765                                             : Builder.CreateOr(Res, Y));
3766       // LHS | (X || Y) --> X || (LHS | Y)
3767       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
3768         if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false,
3769                                           /* IsLogical */ false))
3770           return replaceInstUsesWith(I, IsLogical
3771                                             ? Builder.CreateLogicalOr(X, Res)
3772                                             : Builder.CreateOr(X, Res));
3773     }
3774     if (RHS && match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
3775       bool IsLogical = isa<SelectInst>(Op0);
3776       // (X || Y) | RHS --> (X || RHS) || Y
3777       if (auto *Cmp = dyn_cast<ICmpInst>(X))
3778         if (Value *Res =
3779                 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false, IsLogical))
3780           return replaceInstUsesWith(I, IsLogical
3781                                             ? Builder.CreateLogicalOr(Res, Y)
3782                                             : Builder.CreateOr(Res, Y));
3783       // (X || Y) | RHS --> X || (Y | RHS)
3784       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
3785         if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false,
3786                                           /* IsLogical */ false))
3787           return replaceInstUsesWith(I, IsLogical
3788                                             ? Builder.CreateLogicalOr(X, Res)
3789                                             : Builder.CreateOr(X, Res));
3790     }
3791   }
3792 
3793   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
3794     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
3795       if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false))
3796         return replaceInstUsesWith(I, Res);
3797 
3798   if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
3799     return FoldedFCmps;
3800 
3801   if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
3802     return CastedOr;
3803 
3804   if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
3805     return Sel;
3806 
3807   // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
3808   // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
3809   //       with binop identity constant. But creating a select with non-constant
3810   //       arm may not be reversible due to poison semantics. Is that a good
3811   //       canonicalization?
3812   if (match(&I, m_c_Or(m_OneUse(m_SExt(m_Value(A))), m_Value(B))) &&
3813       A->getType()->isIntOrIntVectorTy(1))
3814     return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), B);
3815 
3816   // Note: If we've gotten to the point of visiting the outer OR, then the
3817   // inner one couldn't be simplified.  If it was a constant, then it won't
3818   // be simplified by a later pass either, so we try swapping the inner/outer
3819   // ORs in the hopes that we'll be able to simplify it this way.
3820   // (X|C) | V --> (X|V) | C
3821   ConstantInt *CI;
3822   if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
3823       match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
3824     Value *Inner = Builder.CreateOr(A, Op1);
3825     Inner->takeName(Op0);
3826     return BinaryOperator::CreateOr(Inner, CI);
3827   }
3828 
3829   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
3830   // Since this OR statement hasn't been optimized further yet, we hope
3831   // that this transformation will allow the new ORs to be optimized.
3832   {
3833     Value *X = nullptr, *Y = nullptr;
3834     if (Op0->hasOneUse() && Op1->hasOneUse() &&
3835         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
3836         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
3837       Value *orTrue = Builder.CreateOr(A, C);
3838       Value *orFalse = Builder.CreateOr(B, D);
3839       return SelectInst::Create(X, orTrue, orFalse);
3840     }
3841   }
3842 
3843   // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X)  --> X s> Y ? -1 : X.
3844   {
3845     Value *X, *Y;
3846     if (match(&I, m_c_Or(m_OneUse(m_AShr(
3847                              m_NSWSub(m_Value(Y), m_Value(X)),
3848                              m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
3849                          m_Deferred(X)))) {
3850       Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
3851       Value *AllOnes = ConstantInt::getAllOnesValue(Ty);
3852       return SelectInst::Create(NewICmpInst, AllOnes, X);
3853     }
3854   }
3855 
3856   {
3857     // ((A & B) ^ A) | ((A & B) ^ B) -> A ^ B
3858     // (A ^ (A & B)) | (B ^ (A & B)) -> A ^ B
3859     // ((A & B) ^ B) | ((A & B) ^ A) -> A ^ B
3860     // (B ^ (A & B)) | (A ^ (A & B)) -> A ^ B
3861     const auto TryXorOpt = [&](Value *Lhs, Value *Rhs) -> Instruction * {
3862       if (match(Lhs, m_c_Xor(m_And(m_Value(A), m_Value(B)), m_Deferred(A))) &&
3863           match(Rhs,
3864                 m_c_Xor(m_And(m_Specific(A), m_Specific(B)), m_Specific(B)))) {
3865         return BinaryOperator::CreateXor(A, B);
3866       }
3867       return nullptr;
3868     };
3869 
3870     if (Instruction *Result = TryXorOpt(Op0, Op1))
3871       return Result;
3872     if (Instruction *Result = TryXorOpt(Op1, Op0))
3873       return Result;
3874   }
3875 
3876   if (Instruction *V =
3877           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
3878     return V;
3879 
3880   CmpInst::Predicate Pred;
3881   Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
3882   // Check if the OR weakens the overflow condition for umul.with.overflow by
3883   // treating any non-zero result as overflow. In that case, we overflow if both
3884   // umul.with.overflow operands are != 0, as in that case the result can only
3885   // be 0, iff the multiplication overflows.
3886   if (match(&I,
3887             m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)),
3888                                 m_Value(Ov)),
3889                    m_CombineAnd(m_ICmp(Pred,
3890                                        m_CombineAnd(m_ExtractValue<0>(
3891                                                         m_Deferred(UMulWithOv)),
3892                                                     m_Value(Mul)),
3893                                        m_ZeroInt()),
3894                                 m_Value(MulIsNotZero)))) &&
3895       (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) &&
3896       Pred == CmpInst::ICMP_NE) {
3897     Value *A, *B;
3898     if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>(
3899                               m_Value(A), m_Value(B)))) {
3900       Value *NotNullA = Builder.CreateIsNotNull(A);
3901       Value *NotNullB = Builder.CreateIsNotNull(B);
3902       return BinaryOperator::CreateAnd(NotNullA, NotNullB);
3903     }
3904   }
3905 
3906   /// Res, Overflow = xxx_with_overflow X, C1
3907   /// Try to canonicalize the pattern "Overflow | icmp pred Res, C2" into
3908   /// "Overflow | icmp pred X, C2 +/- C1".
3909   const WithOverflowInst *WO;
3910   const Value *WOV;
3911   const APInt *C1, *C2;
3912   if (match(&I, m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_CombineAnd(
3913                                         m_WithOverflowInst(WO), m_Value(WOV))),
3914                                     m_Value(Ov)),
3915                        m_OneUse(m_ICmp(Pred, m_ExtractValue<0>(m_Deferred(WOV)),
3916                                        m_APInt(C2))))) &&
3917       (WO->getBinaryOp() == Instruction::Add ||
3918        WO->getBinaryOp() == Instruction::Sub) &&
3919       (ICmpInst::isEquality(Pred) ||
3920        WO->isSigned() == ICmpInst::isSigned(Pred)) &&
3921       match(WO->getRHS(), m_APInt(C1))) {
3922     bool Overflow;
3923     APInt NewC = WO->getBinaryOp() == Instruction::Add
3924                      ? (ICmpInst::isSigned(Pred) ? C2->ssub_ov(*C1, Overflow)
3925                                                  : C2->usub_ov(*C1, Overflow))
3926                      : (ICmpInst::isSigned(Pred) ? C2->sadd_ov(*C1, Overflow)
3927                                                  : C2->uadd_ov(*C1, Overflow));
3928     if (!Overflow || ICmpInst::isEquality(Pred)) {
3929       Value *NewCmp = Builder.CreateICmp(
3930           Pred, WO->getLHS(), ConstantInt::get(WO->getLHS()->getType(), NewC));
3931       return BinaryOperator::CreateOr(Ov, NewCmp);
3932     }
3933   }
3934 
3935   // (~x) | y  -->  ~(x & (~y))  iff that gets rid of inversions
3936   if (sinkNotIntoOtherHandOfLogicalOp(I))
3937     return &I;
3938 
3939   // Improve "get low bit mask up to and including bit X" pattern:
3940   //   (1 << X) | ((1 << X) + -1)  -->  -1 l>> (bitwidth(x) - 1 - X)
3941   if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()),
3942                        m_Shl(m_One(), m_Deferred(X)))) &&
3943       match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) {
3944     Value *Sub = Builder.CreateSub(
3945         ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X);
3946     return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub);
3947   }
3948 
3949   // An or recurrence w/loop invariant step is equivelent to (or start, step)
3950   PHINode *PN = nullptr;
3951   Value *Start = nullptr, *Step = nullptr;
3952   if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
3953     return replaceInstUsesWith(I, Builder.CreateOr(Start, Step));
3954 
3955   // (A & B) | (C | D) or (C | D) | (A & B)
3956   // Can be combined if C or D is of type (A/B & X)
3957   if (match(&I, m_c_Or(m_OneUse(m_And(m_Value(A), m_Value(B))),
3958                        m_OneUse(m_Or(m_Value(C), m_Value(D)))))) {
3959     // (A & B) | (C | ?) -> C | (? | (A & B))
3960     // (A & B) | (C | ?) -> C | (? | (A & B))
3961     // (A & B) | (C | ?) -> C | (? | (A & B))
3962     // (A & B) | (C | ?) -> C | (? | (A & B))
3963     // (C | ?) | (A & B) -> C | (? | (A & B))
3964     // (C | ?) | (A & B) -> C | (? | (A & B))
3965     // (C | ?) | (A & B) -> C | (? | (A & B))
3966     // (C | ?) | (A & B) -> C | (? | (A & B))
3967     if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
3968         match(D, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
3969       return BinaryOperator::CreateOr(
3970           C, Builder.CreateOr(D, Builder.CreateAnd(A, B)));
3971     // (A & B) | (? | D) -> (? | (A & B)) | D
3972     // (A & B) | (? | D) -> (? | (A & B)) | D
3973     // (A & B) | (? | D) -> (? | (A & B)) | D
3974     // (A & B) | (? | D) -> (? | (A & B)) | D
3975     // (? | D) | (A & B) -> (? | (A & B)) | D
3976     // (? | D) | (A & B) -> (? | (A & B)) | D
3977     // (? | D) | (A & B) -> (? | (A & B)) | D
3978     // (? | D) | (A & B) -> (? | (A & B)) | D
3979     if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
3980         match(C, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
3981       return BinaryOperator::CreateOr(
3982           Builder.CreateOr(C, Builder.CreateAnd(A, B)), D);
3983   }
3984 
3985   if (Instruction *R = reassociateForUses(I, Builder))
3986     return R;
3987 
3988   if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
3989     return Canonicalized;
3990 
3991   if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
3992     return Folded;
3993 
3994   if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
3995     return Res;
3996 
3997   // If we are setting the sign bit of a floating-point value, convert
3998   // this to fneg(fabs), then cast back to integer.
3999   //
4000   // If the result isn't immediately cast back to a float, this will increase
4001   // the number of instructions. This is still probably a better canonical form
4002   // as it enables FP value tracking.
4003   //
4004   // Assumes any IEEE-represented type has the sign bit in the high bit.
4005   //
4006   // This is generous interpretation of noimplicitfloat, this is not a true
4007   // floating-point operation.
4008   Value *CastOp;
4009   if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) &&
4010       match(Op1, m_SignMask()) &&
4011       !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
4012           Attribute::NoImplicitFloat)) {
4013     Type *EltTy = CastOp->getType()->getScalarType();
4014     if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) {
4015       Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
4016       Value *FNegFAbs = Builder.CreateFNeg(FAbs);
4017       return new BitCastInst(FNegFAbs, I.getType());
4018     }
4019   }
4020 
4021   // (X & C1) | C2 -> X & (C1 | C2) iff (X & C2) == C2
4022   if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C1)))) &&
4023       match(Op1, m_APInt(C2))) {
4024     KnownBits KnownX = computeKnownBits(X, /*Depth*/ 0, &I);
4025     if ((KnownX.One & *C2) == *C2)
4026       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *C1 | *C2));
4027   }
4028 
4029   if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder))
4030     return Res;
4031 
4032   if (Value *V =
4033           simplifyAndOrWithOpReplaced(Op0, Op1, Constant::getNullValue(Ty),
4034                                       /*SimplifyOnly*/ false, *this))
4035     return BinaryOperator::CreateOr(V, Op1);
4036   if (Value *V =
4037           simplifyAndOrWithOpReplaced(Op1, Op0, Constant::getNullValue(Ty),
4038                                       /*SimplifyOnly*/ false, *this))
4039     return BinaryOperator::CreateOr(Op0, V);
4040 
4041   if (cast<PossiblyDisjointInst>(I).isDisjoint())
4042     if (Value *V = SimplifyAddWithRemainder(I))
4043       return replaceInstUsesWith(I, V);
4044 
4045   return nullptr;
4046 }
4047 
4048 /// A ^ B can be specified using other logic ops in a variety of patterns. We
4049 /// can fold these early and efficiently by morphing an existing instruction.
4050 static Instruction *foldXorToXor(BinaryOperator &I,
4051                                  InstCombiner::BuilderTy &Builder) {
4052   assert(I.getOpcode() == Instruction::Xor);
4053   Value *Op0 = I.getOperand(0);
4054   Value *Op1 = I.getOperand(1);
4055   Value *A, *B;
4056 
4057   // There are 4 commuted variants for each of the basic patterns.
4058 
4059   // (A & B) ^ (A | B) -> A ^ B
4060   // (A & B) ^ (B | A) -> A ^ B
4061   // (A | B) ^ (A & B) -> A ^ B
4062   // (A | B) ^ (B & A) -> A ^ B
4063   if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
4064                         m_c_Or(m_Deferred(A), m_Deferred(B)))))
4065     return BinaryOperator::CreateXor(A, B);
4066 
4067   // (A | ~B) ^ (~A | B) -> A ^ B
4068   // (~B | A) ^ (~A | B) -> A ^ B
4069   // (~A | B) ^ (A | ~B) -> A ^ B
4070   // (B | ~A) ^ (A | ~B) -> A ^ B
4071   if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
4072                       m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
4073     return BinaryOperator::CreateXor(A, B);
4074 
4075   // (A & ~B) ^ (~A & B) -> A ^ B
4076   // (~B & A) ^ (~A & B) -> A ^ B
4077   // (~A & B) ^ (A & ~B) -> A ^ B
4078   // (B & ~A) ^ (A & ~B) -> A ^ B
4079   if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
4080                       m_c_And(m_Not(m_Deferred(A)), m_Deferred(B)))))
4081     return BinaryOperator::CreateXor(A, B);
4082 
4083   // For the remaining cases we need to get rid of one of the operands.
4084   if (!Op0->hasOneUse() && !Op1->hasOneUse())
4085     return nullptr;
4086 
4087   // (A | B) ^ ~(A & B) -> ~(A ^ B)
4088   // (A | B) ^ ~(B & A) -> ~(A ^ B)
4089   // (A & B) ^ ~(A | B) -> ~(A ^ B)
4090   // (A & B) ^ ~(B | A) -> ~(A ^ B)
4091   // Complexity sorting ensures the not will be on the right side.
4092   if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
4093        match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
4094       (match(Op0, m_And(m_Value(A), m_Value(B))) &&
4095        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
4096     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
4097 
4098   return nullptr;
4099 }
4100 
4101 Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
4102                                         BinaryOperator &I) {
4103   assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
4104          I.getOperand(1) == RHS && "Should be 'xor' with these operands");
4105 
4106   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
4107   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
4108   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
4109 
4110   if (predicatesFoldable(PredL, PredR)) {
4111     if (LHS0 == RHS1 && LHS1 == RHS0) {
4112       std::swap(LHS0, LHS1);
4113       PredL = ICmpInst::getSwappedPredicate(PredL);
4114     }
4115     if (LHS0 == RHS0 && LHS1 == RHS1) {
4116       // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4117       unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR);
4118       bool IsSigned = LHS->isSigned() || RHS->isSigned();
4119       return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
4120     }
4121   }
4122 
4123   // TODO: This can be generalized to compares of non-signbits using
4124   // decomposeBitTestICmp(). It could be enhanced more by using (something like)
4125   // foldLogOpOfMaskedICmps().
4126   const APInt *LC, *RC;
4127   if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) &&
4128       LHS0->getType() == RHS0->getType() &&
4129       LHS0->getType()->isIntOrIntVectorTy()) {
4130     // Convert xor of signbit tests to signbit test of xor'd values:
4131     // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
4132     // (X <  0) ^ (Y <  0) --> (X ^ Y) < 0
4133     // (X > -1) ^ (Y <  0) --> (X ^ Y) > -1
4134     // (X <  0) ^ (Y > -1) --> (X ^ Y) > -1
4135     bool TrueIfSignedL, TrueIfSignedR;
4136     if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
4137         isSignBitCheck(PredL, *LC, TrueIfSignedL) &&
4138         isSignBitCheck(PredR, *RC, TrueIfSignedR)) {
4139       Value *XorLR = Builder.CreateXor(LHS0, RHS0);
4140       return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) :
4141                                               Builder.CreateIsNotNeg(XorLR);
4142     }
4143 
4144     // Fold (icmp pred1 X, C1) ^ (icmp pred2 X, C2)
4145     // into a single comparison using range-based reasoning.
4146     if (LHS0 == RHS0) {
4147       ConstantRange CR1 = ConstantRange::makeExactICmpRegion(PredL, *LC);
4148       ConstantRange CR2 = ConstantRange::makeExactICmpRegion(PredR, *RC);
4149       auto CRUnion = CR1.exactUnionWith(CR2);
4150       auto CRIntersect = CR1.exactIntersectWith(CR2);
4151       if (CRUnion && CRIntersect)
4152         if (auto CR = CRUnion->exactIntersectWith(CRIntersect->inverse())) {
4153           if (CR->isFullSet())
4154             return ConstantInt::getTrue(I.getType());
4155           if (CR->isEmptySet())
4156             return ConstantInt::getFalse(I.getType());
4157 
4158           CmpInst::Predicate NewPred;
4159           APInt NewC, Offset;
4160           CR->getEquivalentICmp(NewPred, NewC, Offset);
4161 
4162           if ((Offset.isZero() && (LHS->hasOneUse() || RHS->hasOneUse())) ||
4163               (LHS->hasOneUse() && RHS->hasOneUse())) {
4164             Value *NewV = LHS0;
4165             Type *Ty = LHS0->getType();
4166             if (!Offset.isZero())
4167               NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
4168             return Builder.CreateICmp(NewPred, NewV,
4169                                       ConstantInt::get(Ty, NewC));
4170           }
4171         }
4172     }
4173   }
4174 
4175   // Instead of trying to imitate the folds for and/or, decompose this 'xor'
4176   // into those logic ops. That is, try to turn this into an and-of-icmps
4177   // because we have many folds for that pattern.
4178   //
4179   // This is based on a truth table definition of xor:
4180   // X ^ Y --> (X | Y) & !(X & Y)
4181   if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
4182     // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
4183     // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
4184     if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
4185       // TODO: Independently handle cases where the 'and' side is a constant.
4186       ICmpInst *X = nullptr, *Y = nullptr;
4187       if (OrICmp == LHS && AndICmp == RHS) {
4188         // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS  --> X & !Y
4189         X = LHS;
4190         Y = RHS;
4191       }
4192       if (OrICmp == RHS && AndICmp == LHS) {
4193         // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS  --> !Y & X
4194         X = RHS;
4195         Y = LHS;
4196       }
4197       if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
4198         // Invert the predicate of 'Y', thus inverting its output.
4199         Y->setPredicate(Y->getInversePredicate());
4200         // So, are there other uses of Y?
4201         if (!Y->hasOneUse()) {
4202           // We need to adapt other uses of Y though. Get a value that matches
4203           // the original value of Y before inversion. While this increases
4204           // immediate instruction count, we have just ensured that all the
4205           // users are freely-invertible, so that 'not' *will* get folded away.
4206           BuilderTy::InsertPointGuard Guard(Builder);
4207           // Set insertion point to right after the Y.
4208           Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
4209           Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4210           // Replace all uses of Y (excluding the one in NotY!) with NotY.
4211           Worklist.pushUsersToWorkList(*Y);
4212           Y->replaceUsesWithIf(NotY,
4213                                [NotY](Use &U) { return U.getUser() != NotY; });
4214         }
4215         // All done.
4216         return Builder.CreateAnd(LHS, RHS);
4217       }
4218     }
4219   }
4220 
4221   return nullptr;
4222 }
4223 
4224 /// If we have a masked merge, in the canonical form of:
4225 /// (assuming that A only has one use.)
4226 ///   |        A  |  |B|
4227 ///   ((x ^ y) & M) ^ y
4228 ///    |  D  |
4229 /// * If M is inverted:
4230 ///      |  D  |
4231 ///     ((x ^ y) & ~M) ^ y
4232 ///   We can canonicalize by swapping the final xor operand
4233 ///   to eliminate the 'not' of the mask.
4234 ///     ((x ^ y) & M) ^ x
4235 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
4236 ///   because that shortens the dependency chain and improves analysis:
4237 ///     (x & M) | (y & ~M)
4238 static Instruction *visitMaskedMerge(BinaryOperator &I,
4239                                      InstCombiner::BuilderTy &Builder) {
4240   Value *B, *X, *D;
4241   Value *M;
4242   if (!match(&I, m_c_Xor(m_Value(B),
4243                          m_OneUse(m_c_And(
4244                              m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
4245                                           m_Value(D)),
4246                              m_Value(M))))))
4247     return nullptr;
4248 
4249   Value *NotM;
4250   if (match(M, m_Not(m_Value(NotM)))) {
4251     // De-invert the mask and swap the value in B part.
4252     Value *NewA = Builder.CreateAnd(D, NotM);
4253     return BinaryOperator::CreateXor(NewA, X);
4254   }
4255 
4256   Constant *C;
4257   if (D->hasOneUse() && match(M, m_Constant(C))) {
4258     // Propagating undef is unsafe. Clamp undef elements to -1.
4259     Type *EltTy = C->getType()->getScalarType();
4260     C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
4261     // Unfold.
4262     Value *LHS = Builder.CreateAnd(X, C);
4263     Value *NotC = Builder.CreateNot(C);
4264     Value *RHS = Builder.CreateAnd(B, NotC);
4265     return BinaryOperator::CreateOr(LHS, RHS);
4266   }
4267 
4268   return nullptr;
4269 }
4270 
4271 static Instruction *foldNotXor(BinaryOperator &I,
4272                                InstCombiner::BuilderTy &Builder) {
4273   Value *X, *Y;
4274   // FIXME: one-use check is not needed in general, but currently we are unable
4275   // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
4276   if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
4277     return nullptr;
4278 
4279   auto hasCommonOperand = [](Value *A, Value *B, Value *C, Value *D) {
4280     return A == C || A == D || B == C || B == D;
4281   };
4282 
4283   Value *A, *B, *C, *D;
4284   // Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?)
4285   // 4 commuted variants
4286   if (match(X, m_And(m_Value(A), m_Value(B))) &&
4287       match(Y, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
4288     Value *NotY = Builder.CreateNot(Y);
4289     return BinaryOperator::CreateOr(X, NotY);
4290   };
4291 
4292   // Canonicalize ~((A | ?) ^ (A & B)) -> (A & B) | ~(A | ?)
4293   // 4 commuted variants
4294   if (match(Y, m_And(m_Value(A), m_Value(B))) &&
4295       match(X, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
4296     Value *NotX = Builder.CreateNot(X);
4297     return BinaryOperator::CreateOr(Y, NotX);
4298   };
4299 
4300   return nullptr;
4301 }
4302 
4303 /// Canonicalize a shifty way to code absolute value to the more common pattern
4304 /// that uses negation and select.
4305 static Instruction *canonicalizeAbs(BinaryOperator &Xor,
4306                                     InstCombiner::BuilderTy &Builder) {
4307   assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction.");
4308 
4309   // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
4310   // We're relying on the fact that we only do this transform when the shift has
4311   // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
4312   // instructions).
4313   Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1);
4314   if (Op0->hasNUses(2))
4315     std::swap(Op0, Op1);
4316 
4317   Type *Ty = Xor.getType();
4318   Value *A;
4319   const APInt *ShAmt;
4320   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
4321       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
4322       match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
4323     // Op1 = ashr i32 A, 31   ; smear the sign bit
4324     // xor (add A, Op1), Op1  ; add -1 and flip bits if negative
4325     // --> (A < 0) ? -A : A
4326     Value *IsNeg = Builder.CreateIsNeg(A);
4327     // Copy the nsw flags from the add to the negate.
4328     auto *Add = cast<BinaryOperator>(Op0);
4329     Value *NegA = Add->hasNoUnsignedWrap()
4330                       ? Constant::getNullValue(A->getType())
4331                       : Builder.CreateNeg(A, "", Add->hasNoSignedWrap());
4332     return SelectInst::Create(IsNeg, NegA, A);
4333   }
4334   return nullptr;
4335 }
4336 
4337 static bool canFreelyInvert(InstCombiner &IC, Value *Op,
4338                             Instruction *IgnoredUser) {
4339   auto *I = dyn_cast<Instruction>(Op);
4340   return I && IC.isFreeToInvert(I, /*WillInvertAllUses=*/true) &&
4341          IC.canFreelyInvertAllUsersOf(I, IgnoredUser);
4342 }
4343 
4344 static Value *freelyInvert(InstCombinerImpl &IC, Value *Op,
4345                            Instruction *IgnoredUser) {
4346   auto *I = cast<Instruction>(Op);
4347   IC.Builder.SetInsertPoint(*I->getInsertionPointAfterDef());
4348   Value *NotOp = IC.Builder.CreateNot(Op, Op->getName() + ".not");
4349   Op->replaceUsesWithIf(NotOp,
4350                         [NotOp](Use &U) { return U.getUser() != NotOp; });
4351   IC.freelyInvertAllUsersOf(NotOp, IgnoredUser);
4352   return NotOp;
4353 }
4354 
4355 // Transform
4356 //   z = ~(x &/| y)
4357 // into:
4358 //   z = ((~x) |/& (~y))
4359 // iff both x and y are free to invert and all uses of z can be freely updated.
4360 bool InstCombinerImpl::sinkNotIntoLogicalOp(Instruction &I) {
4361   Value *Op0, *Op1;
4362   if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
4363     return false;
4364 
4365   // If this logic op has not been simplified yet, just bail out and let that
4366   // happen first. Otherwise, the code below may wrongly invert.
4367   if (Op0 == Op1)
4368     return false;
4369 
4370   Instruction::BinaryOps NewOpc =
4371       match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
4372   bool IsBinaryOp = isa<BinaryOperator>(I);
4373 
4374   // Can our users be adapted?
4375   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
4376     return false;
4377 
4378   // And can the operands be adapted?
4379   if (!canFreelyInvert(*this, Op0, &I) || !canFreelyInvert(*this, Op1, &I))
4380     return false;
4381 
4382   Op0 = freelyInvert(*this, Op0, &I);
4383   Op1 = freelyInvert(*this, Op1, &I);
4384 
4385   Builder.SetInsertPoint(*I.getInsertionPointAfterDef());
4386   Value *NewLogicOp;
4387   if (IsBinaryOp)
4388     NewLogicOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
4389   else
4390     NewLogicOp =
4391         Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
4392 
4393   replaceInstUsesWith(I, NewLogicOp);
4394   // We can not just create an outer `not`, it will most likely be immediately
4395   // folded back, reconstructing our initial pattern, and causing an
4396   // infinite combine loop, so immediately manually fold it away.
4397   freelyInvertAllUsersOf(NewLogicOp);
4398   return true;
4399 }
4400 
4401 // Transform
4402 //   z = (~x) &/| y
4403 // into:
4404 //   z = ~(x |/& (~y))
4405 // iff y is free to invert and all uses of z can be freely updated.
4406 bool InstCombinerImpl::sinkNotIntoOtherHandOfLogicalOp(Instruction &I) {
4407   Value *Op0, *Op1;
4408   if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
4409     return false;
4410   Instruction::BinaryOps NewOpc =
4411       match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
4412   bool IsBinaryOp = isa<BinaryOperator>(I);
4413 
4414   Value *NotOp0 = nullptr;
4415   Value *NotOp1 = nullptr;
4416   Value **OpToInvert = nullptr;
4417   if (match(Op0, m_Not(m_Value(NotOp0))) && canFreelyInvert(*this, Op1, &I)) {
4418     Op0 = NotOp0;
4419     OpToInvert = &Op1;
4420   } else if (match(Op1, m_Not(m_Value(NotOp1))) &&
4421              canFreelyInvert(*this, Op0, &I)) {
4422     Op1 = NotOp1;
4423     OpToInvert = &Op0;
4424   } else
4425     return false;
4426 
4427   // And can our users be adapted?
4428   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
4429     return false;
4430 
4431   *OpToInvert = freelyInvert(*this, *OpToInvert, &I);
4432 
4433   Builder.SetInsertPoint(*I.getInsertionPointAfterDef());
4434   Value *NewBinOp;
4435   if (IsBinaryOp)
4436     NewBinOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
4437   else
4438     NewBinOp = Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
4439   replaceInstUsesWith(I, NewBinOp);
4440   // We can not just create an outer `not`, it will most likely be immediately
4441   // folded back, reconstructing our initial pattern, and causing an
4442   // infinite combine loop, so immediately manually fold it away.
4443   freelyInvertAllUsersOf(NewBinOp);
4444   return true;
4445 }
4446 
4447 Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) {
4448   Value *NotOp;
4449   if (!match(&I, m_Not(m_Value(NotOp))))
4450     return nullptr;
4451 
4452   // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
4453   // We must eliminate the and/or (one-use) for these transforms to not increase
4454   // the instruction count.
4455   //
4456   // ~(~X & Y) --> (X | ~Y)
4457   // ~(Y & ~X) --> (X | ~Y)
4458   //
4459   // Note: The logical matches do not check for the commuted patterns because
4460   //       those are handled via SimplifySelectsFeedingBinaryOp().
4461   Type *Ty = I.getType();
4462   Value *X, *Y;
4463   if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) {
4464     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4465     return BinaryOperator::CreateOr(X, NotY);
4466   }
4467   if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) {
4468     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4469     return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY);
4470   }
4471 
4472   // ~(~X | Y) --> (X & ~Y)
4473   // ~(Y | ~X) --> (X & ~Y)
4474   if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) {
4475     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4476     return BinaryOperator::CreateAnd(X, NotY);
4477   }
4478   if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) {
4479     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4480     return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty));
4481   }
4482 
4483   // Is this a 'not' (~) fed by a binary operator?
4484   BinaryOperator *NotVal;
4485   if (match(NotOp, m_BinOp(NotVal))) {
4486     // ~((-X) | Y) --> (X - 1) & (~Y)
4487     if (match(NotVal,
4488               m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) {
4489       Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty));
4490       Value *NotY = Builder.CreateNot(Y);
4491       return BinaryOperator::CreateAnd(DecX, NotY);
4492     }
4493 
4494     // ~(~X >>s Y) --> (X >>s Y)
4495     if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
4496       return BinaryOperator::CreateAShr(X, Y);
4497 
4498     // Treat lshr with non-negative operand as ashr.
4499     // ~(~X >>u Y) --> (X >>s Y) iff X is known negative
4500     if (match(NotVal, m_LShr(m_Not(m_Value(X)), m_Value(Y))) &&
4501         isKnownNegative(X, SQ.getWithInstruction(NotVal)))
4502       return BinaryOperator::CreateAShr(X, Y);
4503 
4504     // Bit-hack form of a signbit test for iN type:
4505     // ~(X >>s (N - 1)) --> sext i1 (X > -1) to iN
4506     unsigned FullShift = Ty->getScalarSizeInBits() - 1;
4507     if (match(NotVal, m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))))) {
4508       Value *IsNotNeg = Builder.CreateIsNotNeg(X, "isnotneg");
4509       return new SExtInst(IsNotNeg, Ty);
4510     }
4511 
4512     // If we are inverting a right-shifted constant, we may be able to eliminate
4513     // the 'not' by inverting the constant and using the opposite shift type.
4514     // Canonicalization rules ensure that only a negative constant uses 'ashr',
4515     // but we must check that in case that transform has not fired yet.
4516 
4517     // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
4518     Constant *C;
4519     if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
4520         match(C, m_Negative()))
4521       return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
4522 
4523     // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
4524     if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
4525         match(C, m_NonNegative()))
4526       return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
4527 
4528     // ~(X + C) --> ~C - X
4529     if (match(NotVal, m_Add(m_Value(X), m_ImmConstant(C))))
4530       return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X);
4531 
4532     // ~(X - Y) --> ~X + Y
4533     // FIXME: is it really beneficial to sink the `not` here?
4534     if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
4535       if (isa<Constant>(X) || NotVal->hasOneUse())
4536         return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
4537 
4538     // ~(~X + Y) --> X - Y
4539     if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
4540       return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
4541                                                    NotVal);
4542   }
4543 
4544   // not (cmp A, B) = !cmp A, B
4545   CmpInst::Predicate Pred;
4546   if (match(NotOp, m_Cmp(Pred, m_Value(), m_Value())) &&
4547       (NotOp->hasOneUse() ||
4548        InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(NotOp),
4549                                                /*IgnoredUser=*/nullptr))) {
4550     cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred));
4551     freelyInvertAllUsersOf(NotOp);
4552     return &I;
4553   }
4554 
4555   // Move a 'not' ahead of casts of a bool to enable logic reduction:
4556   // not (bitcast (sext i1 X)) --> bitcast (sext (not i1 X))
4557   if (match(NotOp, m_OneUse(m_BitCast(m_OneUse(m_SExt(m_Value(X)))))) && X->getType()->isIntOrIntVectorTy(1)) {
4558     Type *SextTy = cast<BitCastOperator>(NotOp)->getSrcTy();
4559     Value *NotX = Builder.CreateNot(X);
4560     Value *Sext = Builder.CreateSExt(NotX, SextTy);
4561     return CastInst::CreateBitOrPointerCast(Sext, Ty);
4562   }
4563 
4564   if (auto *NotOpI = dyn_cast<Instruction>(NotOp))
4565     if (sinkNotIntoLogicalOp(*NotOpI))
4566       return &I;
4567 
4568   // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
4569   // ~min(~X, ~Y) --> max(X, Y)
4570   // ~max(~X, Y) --> min(X, ~Y)
4571   auto *II = dyn_cast<IntrinsicInst>(NotOp);
4572   if (II && II->hasOneUse()) {
4573     if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) {
4574       Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
4575       Value *NotY = Builder.CreateNot(Y);
4576       Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY);
4577       return replaceInstUsesWith(I, InvMaxMin);
4578     }
4579 
4580     if (II->getIntrinsicID() == Intrinsic::is_fpclass) {
4581       ConstantInt *ClassMask = cast<ConstantInt>(II->getArgOperand(1));
4582       II->setArgOperand(
4583           1, ConstantInt::get(ClassMask->getType(),
4584                               ~ClassMask->getZExtValue() & fcAllFlags));
4585       return replaceInstUsesWith(I, II);
4586     }
4587   }
4588 
4589   if (NotOp->hasOneUse()) {
4590     // Pull 'not' into operands of select if both operands are one-use compares
4591     // or one is one-use compare and the other one is a constant.
4592     // Inverting the predicates eliminates the 'not' operation.
4593     // Example:
4594     //   not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
4595     //     select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
4596     //   not (select ?, (cmp TPred, ?, ?), true -->
4597     //     select ?, (cmp InvTPred, ?, ?), false
4598     if (auto *Sel = dyn_cast<SelectInst>(NotOp)) {
4599       Value *TV = Sel->getTrueValue();
4600       Value *FV = Sel->getFalseValue();
4601       auto *CmpT = dyn_cast<CmpInst>(TV);
4602       auto *CmpF = dyn_cast<CmpInst>(FV);
4603       bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV);
4604       bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV);
4605       if (InvertibleT && InvertibleF) {
4606         if (CmpT)
4607           CmpT->setPredicate(CmpT->getInversePredicate());
4608         else
4609           Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV)));
4610         if (CmpF)
4611           CmpF->setPredicate(CmpF->getInversePredicate());
4612         else
4613           Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV)));
4614         return replaceInstUsesWith(I, Sel);
4615       }
4616     }
4617   }
4618 
4619   if (Instruction *NewXor = foldNotXor(I, Builder))
4620     return NewXor;
4621 
4622   // TODO: Could handle multi-use better by checking if all uses of NotOp (other
4623   // than I) can be inverted.
4624   if (Value *R = getFreelyInverted(NotOp, NotOp->hasOneUse(), &Builder))
4625     return replaceInstUsesWith(I, R);
4626 
4627   return nullptr;
4628 }
4629 
4630 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
4631 // here. We should standardize that construct where it is needed or choose some
4632 // other way to ensure that commutated variants of patterns are not missed.
4633 Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) {
4634   if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1),
4635                                  SQ.getWithInstruction(&I)))
4636     return replaceInstUsesWith(I, V);
4637 
4638   if (SimplifyAssociativeOrCommutative(I))
4639     return &I;
4640 
4641   if (Instruction *X = foldVectorBinop(I))
4642     return X;
4643 
4644   if (Instruction *Phi = foldBinopWithPhiOperands(I))
4645     return Phi;
4646 
4647   if (Instruction *NewXor = foldXorToXor(I, Builder))
4648     return NewXor;
4649 
4650   // (A&B)^(A&C) -> A&(B^C) etc
4651   if (Value *V = foldUsingDistributiveLaws(I))
4652     return replaceInstUsesWith(I, V);
4653 
4654   // See if we can simplify any instructions used by the instruction whose sole
4655   // purpose is to compute bits we don't care about.
4656   if (SimplifyDemandedInstructionBits(I))
4657     return &I;
4658 
4659   if (Instruction *R = foldNot(I))
4660     return R;
4661 
4662   if (Instruction *R = foldBinOpShiftWithShift(I))
4663     return R;
4664 
4665   // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
4666   // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
4667   // calls in there are unnecessary as SimplifyDemandedInstructionBits should
4668   // have already taken care of those cases.
4669   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4670   Value *M;
4671   if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
4672                         m_c_And(m_Deferred(M), m_Value())))) {
4673     if (isGuaranteedNotToBeUndef(M))
4674       return BinaryOperator::CreateDisjointOr(Op0, Op1);
4675     else
4676       return BinaryOperator::CreateOr(Op0, Op1);
4677   }
4678 
4679   if (Instruction *Xor = visitMaskedMerge(I, Builder))
4680     return Xor;
4681 
4682   Value *X, *Y;
4683   Constant *C1;
4684   if (match(Op1, m_Constant(C1))) {
4685     Constant *C2;
4686 
4687     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) &&
4688         match(C1, m_ImmConstant())) {
4689       // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2)
4690       C2 = Constant::replaceUndefsWith(
4691           C2, Constant::getAllOnesValue(C2->getType()->getScalarType()));
4692       Value *And = Builder.CreateAnd(
4693           X, Constant::mergeUndefsWith(ConstantExpr::getNot(C2), C1));
4694       return BinaryOperator::CreateXor(
4695           And, Constant::mergeUndefsWith(ConstantExpr::getXor(C1, C2), C1));
4696     }
4697 
4698     // Use DeMorgan and reassociation to eliminate a 'not' op.
4699     if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
4700       // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
4701       Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
4702       return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
4703     }
4704     if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
4705       // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
4706       Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
4707       return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
4708     }
4709 
4710     // Convert xor ([trunc] (ashr X, BW-1)), C =>
4711     //   select(X >s -1, C, ~C)
4712     // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the
4713     // constant depending on whether this input is less than 0.
4714     const APInt *CA;
4715     if (match(Op0, m_OneUse(m_TruncOrSelf(
4716                        m_AShr(m_Value(X), m_APIntAllowPoison(CA))))) &&
4717         *CA == X->getType()->getScalarSizeInBits() - 1 &&
4718         !match(C1, m_AllOnes())) {
4719       assert(!C1->isZeroValue() && "Unexpected xor with 0");
4720       Value *IsNotNeg = Builder.CreateIsNotNeg(X);
4721       return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1));
4722     }
4723   }
4724 
4725   Type *Ty = I.getType();
4726   {
4727     const APInt *RHSC;
4728     if (match(Op1, m_APInt(RHSC))) {
4729       Value *X;
4730       const APInt *C;
4731       // (C - X) ^ signmaskC --> (C + signmaskC) - X
4732       if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
4733         return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
4734 
4735       // (X + C) ^ signmaskC --> X + (C + signmaskC)
4736       if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
4737         return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
4738 
4739       // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0
4740       if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
4741           MaskedValueIsZero(X, *C, 0, &I))
4742         return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
4743 
4744       // When X is a power-of-two or zero and zero input is poison:
4745       // ctlz(i32 X) ^ 31 --> cttz(X)
4746       // cttz(i32 X) ^ 31 --> ctlz(X)
4747       auto *II = dyn_cast<IntrinsicInst>(Op0);
4748       if (II && II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) {
4749         Intrinsic::ID IID = II->getIntrinsicID();
4750         if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) &&
4751             match(II->getArgOperand(1), m_One()) &&
4752             isKnownToBeAPowerOfTwo(II->getArgOperand(0), /*OrZero */ true)) {
4753           IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz;
4754           Function *F = Intrinsic::getDeclaration(II->getModule(), IID, Ty);
4755           return CallInst::Create(F, {II->getArgOperand(0), Builder.getTrue()});
4756         }
4757       }
4758 
4759       // If RHSC is inverting the remaining bits of shifted X,
4760       // canonicalize to a 'not' before the shift to help SCEV and codegen:
4761       // (X << C) ^ RHSC --> ~X << C
4762       if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
4763           *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) {
4764         Value *NotX = Builder.CreateNot(X);
4765         return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
4766       }
4767       // (X >>u C) ^ RHSC --> ~X >>u C
4768       if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
4769           *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) {
4770         Value *NotX = Builder.CreateNot(X);
4771         return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
4772       }
4773       // TODO: We could handle 'ashr' here as well. That would be matching
4774       //       a 'not' op and moving it before the shift. Doing that requires
4775       //       preventing the inverse fold in canShiftBinOpWithConstantRHS().
4776     }
4777 
4778     // If we are XORing the sign bit of a floating-point value, convert
4779     // this to fneg, then cast back to integer.
4780     //
4781     // This is generous interpretation of noimplicitfloat, this is not a true
4782     // floating-point operation.
4783     //
4784     // Assumes any IEEE-represented type has the sign bit in the high bit.
4785     // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt
4786     Value *CastOp;
4787     if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) &&
4788         match(Op1, m_SignMask()) &&
4789         !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
4790             Attribute::NoImplicitFloat)) {
4791       Type *EltTy = CastOp->getType()->getScalarType();
4792       if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) {
4793         Value *FNeg = Builder.CreateFNeg(CastOp);
4794         return new BitCastInst(FNeg, I.getType());
4795       }
4796     }
4797   }
4798 
4799   // FIXME: This should not be limited to scalar (pull into APInt match above).
4800   {
4801     Value *X;
4802     ConstantInt *C1, *C2, *C3;
4803     // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
4804     if (match(Op1, m_ConstantInt(C3)) &&
4805         match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)),
4806                           m_ConstantInt(C2))) &&
4807         Op0->hasOneUse()) {
4808       // fold (C1 >> C2) ^ C3
4809       APInt FoldConst = C1->getValue().lshr(C2->getValue());
4810       FoldConst ^= C3->getValue();
4811       // Prepare the two operands.
4812       auto *Opnd0 = Builder.CreateLShr(X, C2);
4813       Opnd0->takeName(Op0);
4814       return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
4815     }
4816   }
4817 
4818   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
4819     return FoldedLogic;
4820 
4821   // Y ^ (X | Y) --> X & ~Y
4822   // Y ^ (Y | X) --> X & ~Y
4823   if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
4824     return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
4825   // (X | Y) ^ Y --> X & ~Y
4826   // (Y | X) ^ Y --> X & ~Y
4827   if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
4828     return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
4829 
4830   // Y ^ (X & Y) --> ~X & Y
4831   // Y ^ (Y & X) --> ~X & Y
4832   if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
4833     return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
4834   // (X & Y) ^ Y --> ~X & Y
4835   // (Y & X) ^ Y --> ~X & Y
4836   // Canonical form is (X & C) ^ C; don't touch that.
4837   // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
4838   //       be fixed to prefer that (otherwise we get infinite looping).
4839   if (!match(Op1, m_Constant()) &&
4840       match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
4841     return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
4842 
4843   Value *A, *B, *C;
4844   // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
4845   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
4846                         m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
4847       return BinaryOperator::CreateXor(
4848           Builder.CreateAnd(Builder.CreateNot(A), C), B);
4849 
4850   // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
4851   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
4852                         m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
4853       return BinaryOperator::CreateXor(
4854           Builder.CreateAnd(Builder.CreateNot(B), C), A);
4855 
4856   // (A & B) ^ (A ^ B) -> (A | B)
4857   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
4858       match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
4859     return BinaryOperator::CreateOr(A, B);
4860   // (A ^ B) ^ (A & B) -> (A | B)
4861   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
4862       match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
4863     return BinaryOperator::CreateOr(A, B);
4864 
4865   // (A & ~B) ^ ~A -> ~(A & B)
4866   // (~B & A) ^ ~A -> ~(A & B)
4867   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
4868       match(Op1, m_Not(m_Specific(A))))
4869     return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
4870 
4871   // (~A & B) ^ A --> A | B -- There are 4 commuted variants.
4872   if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A))))
4873     return BinaryOperator::CreateOr(A, B);
4874 
4875   // (~A | B) ^ A --> ~(A & B)
4876   if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B)))))
4877     return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B));
4878 
4879   // A ^ (~A | B) --> ~(A & B)
4880   if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B)))))
4881     return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B));
4882 
4883   // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants.
4884   // TODO: Loosen one-use restriction if common operand is a constant.
4885   Value *D;
4886   if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
4887       match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
4888     if (B == C || B == D)
4889       std::swap(A, B);
4890     if (A == C)
4891       std::swap(C, D);
4892     if (A == D) {
4893       Value *NotA = Builder.CreateNot(A);
4894       return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
4895     }
4896   }
4897 
4898   // (A & B) ^ (A | C) --> A ? ~B : C -- There are 4 commuted variants.
4899   if (I.getType()->isIntOrIntVectorTy(1) &&
4900       match(Op0, m_OneUse(m_LogicalAnd(m_Value(A), m_Value(B)))) &&
4901       match(Op1, m_OneUse(m_LogicalOr(m_Value(C), m_Value(D))))) {
4902     bool NeedFreeze = isa<SelectInst>(Op0) && isa<SelectInst>(Op1) && B == D;
4903     if (B == C || B == D)
4904       std::swap(A, B);
4905     if (A == C)
4906       std::swap(C, D);
4907     if (A == D) {
4908       if (NeedFreeze)
4909         A = Builder.CreateFreeze(A);
4910       Value *NotB = Builder.CreateNot(B);
4911       return SelectInst::Create(A, NotB, C);
4912     }
4913   }
4914 
4915   if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4916     if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4917       if (Value *V = foldXorOfICmps(LHS, RHS, I))
4918         return replaceInstUsesWith(I, V);
4919 
4920   if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
4921     return CastedXor;
4922 
4923   if (Instruction *Abs = canonicalizeAbs(I, Builder))
4924     return Abs;
4925 
4926   // Otherwise, if all else failed, try to hoist the xor-by-constant:
4927   //   (X ^ C) ^ Y --> (X ^ Y) ^ C
4928   // Just like we do in other places, we completely avoid the fold
4929   // for constantexprs, at least to avoid endless combine loop.
4930   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X),
4931                                                     m_Unless(m_ConstantExpr())),
4932                                        m_ImmConstant(C1))),
4933                         m_Value(Y))))
4934     return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1);
4935 
4936   if (Instruction *R = reassociateForUses(I, Builder))
4937     return R;
4938 
4939   if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
4940     return Canonicalized;
4941 
4942   if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
4943     return Folded;
4944 
4945   if (Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(I))
4946     return Folded;
4947 
4948   if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
4949     return Res;
4950 
4951   if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder))
4952     return Res;
4953 
4954   return nullptr;
4955 }
4956