xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp (revision 31ba4ce8898f9dfa5e7f054fdbc26e50a599a6e3)
1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitAnd, visitOr, and visitXor functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/CmpInstAnalysis.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/ConstantRange.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Transforms/InstCombine/InstCombiner.h"
20 #include "llvm/Transforms/Utils/Local.h"
21 
22 using namespace llvm;
23 using namespace PatternMatch;
24 
25 #define DEBUG_TYPE "instcombine"
26 
27 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
28 /// a four bit mask.
29 static unsigned getFCmpCode(FCmpInst::Predicate CC) {
30   assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE &&
31          "Unexpected FCmp predicate!");
32   // Take advantage of the bit pattern of FCmpInst::Predicate here.
33   //                                                 U L G E
34   static_assert(FCmpInst::FCMP_FALSE ==  0, "");  // 0 0 0 0
35   static_assert(FCmpInst::FCMP_OEQ   ==  1, "");  // 0 0 0 1
36   static_assert(FCmpInst::FCMP_OGT   ==  2, "");  // 0 0 1 0
37   static_assert(FCmpInst::FCMP_OGE   ==  3, "");  // 0 0 1 1
38   static_assert(FCmpInst::FCMP_OLT   ==  4, "");  // 0 1 0 0
39   static_assert(FCmpInst::FCMP_OLE   ==  5, "");  // 0 1 0 1
40   static_assert(FCmpInst::FCMP_ONE   ==  6, "");  // 0 1 1 0
41   static_assert(FCmpInst::FCMP_ORD   ==  7, "");  // 0 1 1 1
42   static_assert(FCmpInst::FCMP_UNO   ==  8, "");  // 1 0 0 0
43   static_assert(FCmpInst::FCMP_UEQ   ==  9, "");  // 1 0 0 1
44   static_assert(FCmpInst::FCMP_UGT   == 10, "");  // 1 0 1 0
45   static_assert(FCmpInst::FCMP_UGE   == 11, "");  // 1 0 1 1
46   static_assert(FCmpInst::FCMP_ULT   == 12, "");  // 1 1 0 0
47   static_assert(FCmpInst::FCMP_ULE   == 13, "");  // 1 1 0 1
48   static_assert(FCmpInst::FCMP_UNE   == 14, "");  // 1 1 1 0
49   static_assert(FCmpInst::FCMP_TRUE  == 15, "");  // 1 1 1 1
50   return CC;
51 }
52 
53 /// This is the complement of getICmpCode, which turns an opcode and two
54 /// operands into either a constant true or false, or a brand new ICmp
55 /// instruction. The sign is passed in to determine which kind of predicate to
56 /// use in the new icmp instruction.
57 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
58                               InstCombiner::BuilderTy &Builder) {
59   ICmpInst::Predicate NewPred;
60   if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
61     return TorF;
62   return Builder.CreateICmp(NewPred, LHS, RHS);
63 }
64 
65 /// This is the complement of getFCmpCode, which turns an opcode and two
66 /// operands into either a FCmp instruction, or a true/false constant.
67 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
68                            InstCombiner::BuilderTy &Builder) {
69   const auto Pred = static_cast<FCmpInst::Predicate>(Code);
70   assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
71          "Unexpected FCmp predicate!");
72   if (Pred == FCmpInst::FCMP_FALSE)
73     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
74   if (Pred == FCmpInst::FCMP_TRUE)
75     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
76   return Builder.CreateFCmp(Pred, LHS, RHS);
77 }
78 
79 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
80 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
81 /// \param I Binary operator to transform.
82 /// \return Pointer to node that must replace the original binary operator, or
83 ///         null pointer if no transformation was made.
84 static Value *SimplifyBSwap(BinaryOperator &I,
85                             InstCombiner::BuilderTy &Builder) {
86   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
87 
88   Value *OldLHS = I.getOperand(0);
89   Value *OldRHS = I.getOperand(1);
90 
91   Value *NewLHS;
92   if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
93     return nullptr;
94 
95   Value *NewRHS;
96   const APInt *C;
97 
98   if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
99     // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
100     if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
101       return nullptr;
102     // NewRHS initialized by the matcher.
103   } else if (match(OldRHS, m_APInt(C))) {
104     // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
105     if (!OldLHS->hasOneUse())
106       return nullptr;
107     NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
108   } else
109     return nullptr;
110 
111   Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
112   Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
113                                           I.getType());
114   return Builder.CreateCall(F, BinOp);
115 }
116 
117 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
118 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
119 /// whether to treat V, Lo, and Hi as signed or not.
120 Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo,
121                                          const APInt &Hi, bool isSigned,
122                                          bool Inside) {
123   assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
124          "Lo is not < Hi in range emission code!");
125 
126   Type *Ty = V->getType();
127 
128   // V >= Min && V <  Hi --> V <  Hi
129   // V <  Min || V >= Hi --> V >= Hi
130   ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
131   if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
132     Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
133     return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
134   }
135 
136   // V >= Lo && V <  Hi --> V - Lo u<  Hi - Lo
137   // V <  Lo || V >= Hi --> V - Lo u>= Hi - Lo
138   Value *VMinusLo =
139       Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
140   Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
141   return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
142 }
143 
144 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
145 /// that can be simplified.
146 /// One of A and B is considered the mask. The other is the value. This is
147 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
148 /// only "Mask", then both A and B can be considered masks. If A is the mask,
149 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
150 /// If both A and C are constants, this proof is also easy.
151 /// For the following explanations, we assume that A is the mask.
152 ///
153 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
154 /// bits of A are set in B.
155 ///   Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
156 ///
157 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
158 /// bits of A are cleared in B.
159 ///   Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
160 ///
161 /// "Mixed" declares that (A & B) == C and C might or might not contain any
162 /// number of one bits and zero bits.
163 ///   Example: (icmp eq (A & 3), 1) -> AMask_Mixed
164 ///
165 /// "Not" means that in above descriptions "==" should be replaced by "!=".
166 ///   Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
167 ///
168 /// If the mask A contains a single bit, then the following is equivalent:
169 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
170 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
171 enum MaskedICmpType {
172   AMask_AllOnes           =     1,
173   AMask_NotAllOnes        =     2,
174   BMask_AllOnes           =     4,
175   BMask_NotAllOnes        =     8,
176   Mask_AllZeros           =    16,
177   Mask_NotAllZeros        =    32,
178   AMask_Mixed             =    64,
179   AMask_NotMixed          =   128,
180   BMask_Mixed             =   256,
181   BMask_NotMixed          =   512
182 };
183 
184 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
185 /// satisfies.
186 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
187                                   ICmpInst::Predicate Pred) {
188   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
189   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
190   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
191   bool IsEq = (Pred == ICmpInst::ICMP_EQ);
192   bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2());
193   bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2());
194   unsigned MaskVal = 0;
195   if (CCst && CCst->isZero()) {
196     // if C is zero, then both A and B qualify as mask
197     MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
198                      : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
199     if (IsAPow2)
200       MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
201                        : (AMask_AllOnes | AMask_Mixed));
202     if (IsBPow2)
203       MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
204                        : (BMask_AllOnes | BMask_Mixed));
205     return MaskVal;
206   }
207 
208   if (A == C) {
209     MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
210                      : (AMask_NotAllOnes | AMask_NotMixed));
211     if (IsAPow2)
212       MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
213                        : (Mask_AllZeros | AMask_Mixed));
214   } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) {
215     MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
216   }
217 
218   if (B == C) {
219     MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
220                      : (BMask_NotAllOnes | BMask_NotMixed));
221     if (IsBPow2)
222       MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
223                        : (Mask_AllZeros | BMask_Mixed));
224   } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) {
225     MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
226   }
227 
228   return MaskVal;
229 }
230 
231 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
232 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
233 /// is adjacent to the corresponding normal flag (recording ==), this just
234 /// involves swapping those bits over.
235 static unsigned conjugateICmpMask(unsigned Mask) {
236   unsigned NewMask;
237   NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
238                      AMask_Mixed | BMask_Mixed))
239             << 1;
240 
241   NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
242                       AMask_NotMixed | BMask_NotMixed))
243              >> 1;
244 
245   return NewMask;
246 }
247 
248 // Adapts the external decomposeBitTestICmp for local use.
249 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
250                                  Value *&X, Value *&Y, Value *&Z) {
251   APInt Mask;
252   if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
253     return false;
254 
255   Y = ConstantInt::get(X->getType(), Mask);
256   Z = ConstantInt::get(X->getType(), 0);
257   return true;
258 }
259 
260 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
261 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
262 /// the right hand side as a pair.
263 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
264 /// and PredR are their predicates, respectively.
265 static
266 Optional<std::pair<unsigned, unsigned>>
267 getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
268                          Value *&D, Value *&E, ICmpInst *LHS,
269                          ICmpInst *RHS,
270                          ICmpInst::Predicate &PredL,
271                          ICmpInst::Predicate &PredR) {
272   // vectors are not (yet?) supported. Don't support pointers either.
273   if (!LHS->getOperand(0)->getType()->isIntegerTy() ||
274       !RHS->getOperand(0)->getType()->isIntegerTy())
275     return None;
276 
277   // Here comes the tricky part:
278   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
279   // and L11 & L12 == L21 & L22. The same goes for RHS.
280   // Now we must find those components L** and R**, that are equal, so
281   // that we can extract the parameters A, B, C, D, and E for the canonical
282   // above.
283   Value *L1 = LHS->getOperand(0);
284   Value *L2 = LHS->getOperand(1);
285   Value *L11, *L12, *L21, *L22;
286   // Check whether the icmp can be decomposed into a bit test.
287   if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
288     L21 = L22 = L1 = nullptr;
289   } else {
290     // Look for ANDs in the LHS icmp.
291     if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
292       // Any icmp can be viewed as being trivially masked; if it allows us to
293       // remove one, it's worth it.
294       L11 = L1;
295       L12 = Constant::getAllOnesValue(L1->getType());
296     }
297 
298     if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
299       L21 = L2;
300       L22 = Constant::getAllOnesValue(L2->getType());
301     }
302   }
303 
304   // Bail if LHS was a icmp that can't be decomposed into an equality.
305   if (!ICmpInst::isEquality(PredL))
306     return None;
307 
308   Value *R1 = RHS->getOperand(0);
309   Value *R2 = RHS->getOperand(1);
310   Value *R11, *R12;
311   bool Ok = false;
312   if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
313     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
314       A = R11;
315       D = R12;
316     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
317       A = R12;
318       D = R11;
319     } else {
320       return None;
321     }
322     E = R2;
323     R1 = nullptr;
324     Ok = true;
325   } else {
326     if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
327       // As before, model no mask as a trivial mask if it'll let us do an
328       // optimization.
329       R11 = R1;
330       R12 = Constant::getAllOnesValue(R1->getType());
331     }
332 
333     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
334       A = R11;
335       D = R12;
336       E = R2;
337       Ok = true;
338     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
339       A = R12;
340       D = R11;
341       E = R2;
342       Ok = true;
343     }
344   }
345 
346   // Bail if RHS was a icmp that can't be decomposed into an equality.
347   if (!ICmpInst::isEquality(PredR))
348     return None;
349 
350   // Look for ANDs on the right side of the RHS icmp.
351   if (!Ok) {
352     if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
353       R11 = R2;
354       R12 = Constant::getAllOnesValue(R2->getType());
355     }
356 
357     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
358       A = R11;
359       D = R12;
360       E = R1;
361       Ok = true;
362     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
363       A = R12;
364       D = R11;
365       E = R1;
366       Ok = true;
367     } else {
368       return None;
369     }
370   }
371   if (!Ok)
372     return None;
373 
374   if (L11 == A) {
375     B = L12;
376     C = L2;
377   } else if (L12 == A) {
378     B = L11;
379     C = L2;
380   } else if (L21 == A) {
381     B = L22;
382     C = L1;
383   } else if (L22 == A) {
384     B = L21;
385     C = L1;
386   }
387 
388   unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
389   unsigned RightType = getMaskedICmpType(A, D, E, PredR);
390   return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
391 }
392 
393 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
394 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
395 /// and the right hand side is of type BMask_Mixed. For example,
396 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
397 static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
398     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
399     Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
400     InstCombiner::BuilderTy &Builder) {
401   // We are given the canonical form:
402   //   (icmp ne (A & B), 0) & (icmp eq (A & D), E).
403   // where D & E == E.
404   //
405   // If IsAnd is false, we get it in negated form:
406   //   (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
407   //      !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
408   //
409   // We currently handle the case of B, C, D, E are constant.
410   //
411   ConstantInt *BCst, *CCst, *DCst, *ECst;
412   if (!match(B, m_ConstantInt(BCst)) || !match(C, m_ConstantInt(CCst)) ||
413       !match(D, m_ConstantInt(DCst)) || !match(E, m_ConstantInt(ECst)))
414     return nullptr;
415 
416   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
417 
418   // Update E to the canonical form when D is a power of two and RHS is
419   // canonicalized as,
420   // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
421   // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
422   if (PredR != NewCC)
423     ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
424 
425   // If B or D is zero, skip because if LHS or RHS can be trivially folded by
426   // other folding rules and this pattern won't apply any more.
427   if (BCst->getValue() == 0 || DCst->getValue() == 0)
428     return nullptr;
429 
430   // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
431   // deduce anything from it.
432   // For example,
433   // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
434   if ((BCst->getValue() & DCst->getValue()) == 0)
435     return nullptr;
436 
437   // If the following two conditions are met:
438   //
439   // 1. mask B covers only a single bit that's not covered by mask D, that is,
440   // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
441   // B and D has only one bit set) and,
442   //
443   // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
444   // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
445   //
446   // then that single bit in B must be one and thus the whole expression can be
447   // folded to
448   //   (A & (B | D)) == (B & (B ^ D)) | E.
449   //
450   // For example,
451   // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
452   // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
453   if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) &&
454       (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) {
455     APInt BorD = BCst->getValue() | DCst->getValue();
456     APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) |
457         ECst->getValue();
458     Value *NewMask = ConstantInt::get(BCst->getType(), BorD);
459     Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE);
460     Value *NewAnd = Builder.CreateAnd(A, NewMask);
461     return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
462   }
463 
464   auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
465     return (C1->getValue() & C2->getValue()) == C1->getValue();
466   };
467   auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
468     return (C1->getValue() & C2->getValue()) == C2->getValue();
469   };
470 
471   // In the following, we consider only the cases where B is a superset of D, B
472   // is a subset of D, or B == D because otherwise there's at least one bit
473   // covered by B but not D, in which case we can't deduce much from it, so
474   // no folding (aside from the single must-be-one bit case right above.)
475   // For example,
476   // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
477   if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
478     return nullptr;
479 
480   // At this point, either B is a superset of D, B is a subset of D or B == D.
481 
482   // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
483   // and the whole expression becomes false (or true if negated), otherwise, no
484   // folding.
485   // For example,
486   // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
487   // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
488   if (ECst->isZero()) {
489     if (IsSubSetOrEqual(BCst, DCst))
490       return ConstantInt::get(LHS->getType(), !IsAnd);
491     return nullptr;
492   }
493 
494   // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
495   // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
496   // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
497   // RHS. For example,
498   // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
499   // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
500   if (IsSuperSetOrEqual(BCst, DCst))
501     return RHS;
502   // Otherwise, B is a subset of D. If B and E have a common bit set,
503   // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
504   // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
505   assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
506   if ((BCst->getValue() & ECst->getValue()) != 0)
507     return RHS;
508   // Otherwise, LHS and RHS contradict and the whole expression becomes false
509   // (or true if negated.) For example,
510   // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
511   // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
512   return ConstantInt::get(LHS->getType(), !IsAnd);
513 }
514 
515 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
516 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
517 /// aren't of the common mask pattern type.
518 static Value *foldLogOpOfMaskedICmpsAsymmetric(
519     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
520     Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
521     unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
522   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
523          "Expected equality predicates for masked type of icmps.");
524   // Handle Mask_NotAllZeros-BMask_Mixed cases.
525   // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
526   // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
527   //    which gets swapped to
528   //    (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
529   if (!IsAnd) {
530     LHSMask = conjugateICmpMask(LHSMask);
531     RHSMask = conjugateICmpMask(RHSMask);
532   }
533   if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
534     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
535             LHS, RHS, IsAnd, A, B, C, D, E,
536             PredL, PredR, Builder)) {
537       return V;
538     }
539   } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
540     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
541             RHS, LHS, IsAnd, A, D, E, B, C,
542             PredR, PredL, Builder)) {
543       return V;
544     }
545   }
546   return nullptr;
547 }
548 
549 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
550 /// into a single (icmp(A & X) ==/!= Y).
551 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
552                                      InstCombiner::BuilderTy &Builder) {
553   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
554   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
555   Optional<std::pair<unsigned, unsigned>> MaskPair =
556       getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
557   if (!MaskPair)
558     return nullptr;
559   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
560          "Expected equality predicates for masked type of icmps.");
561   unsigned LHSMask = MaskPair->first;
562   unsigned RHSMask = MaskPair->second;
563   unsigned Mask = LHSMask & RHSMask;
564   if (Mask == 0) {
565     // Even if the two sides don't share a common pattern, check if folding can
566     // still happen.
567     if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
568             LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
569             Builder))
570       return V;
571     return nullptr;
572   }
573 
574   // In full generality:
575   //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
576   // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
577   //
578   // If the latter can be converted into (icmp (A & X) Op Y) then the former is
579   // equivalent to (icmp (A & X) !Op Y).
580   //
581   // Therefore, we can pretend for the rest of this function that we're dealing
582   // with the conjunction, provided we flip the sense of any comparisons (both
583   // input and output).
584 
585   // In most cases we're going to produce an EQ for the "&&" case.
586   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
587   if (!IsAnd) {
588     // Convert the masking analysis into its equivalent with negated
589     // comparisons.
590     Mask = conjugateICmpMask(Mask);
591   }
592 
593   if (Mask & Mask_AllZeros) {
594     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
595     // -> (icmp eq (A & (B|D)), 0)
596     Value *NewOr = Builder.CreateOr(B, D);
597     Value *NewAnd = Builder.CreateAnd(A, NewOr);
598     // We can't use C as zero because we might actually handle
599     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
600     // with B and D, having a single bit set.
601     Value *Zero = Constant::getNullValue(A->getType());
602     return Builder.CreateICmp(NewCC, NewAnd, Zero);
603   }
604   if (Mask & BMask_AllOnes) {
605     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
606     // -> (icmp eq (A & (B|D)), (B|D))
607     Value *NewOr = Builder.CreateOr(B, D);
608     Value *NewAnd = Builder.CreateAnd(A, NewOr);
609     return Builder.CreateICmp(NewCC, NewAnd, NewOr);
610   }
611   if (Mask & AMask_AllOnes) {
612     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
613     // -> (icmp eq (A & (B&D)), A)
614     Value *NewAnd1 = Builder.CreateAnd(B, D);
615     Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
616     return Builder.CreateICmp(NewCC, NewAnd2, A);
617   }
618 
619   // Remaining cases assume at least that B and D are constant, and depend on
620   // their actual values. This isn't strictly necessary, just a "handle the
621   // easy cases for now" decision.
622   ConstantInt *BCst, *DCst;
623   if (!match(B, m_ConstantInt(BCst)) || !match(D, m_ConstantInt(DCst)))
624     return nullptr;
625 
626   if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
627     // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
628     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
629     //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
630     // Only valid if one of the masks is a superset of the other (check "B&D" is
631     // the same as either B or D).
632     APInt NewMask = BCst->getValue() & DCst->getValue();
633 
634     if (NewMask == BCst->getValue())
635       return LHS;
636     else if (NewMask == DCst->getValue())
637       return RHS;
638   }
639 
640   if (Mask & AMask_NotAllOnes) {
641     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
642     //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
643     // Only valid if one of the masks is a superset of the other (check "B|D" is
644     // the same as either B or D).
645     APInt NewMask = BCst->getValue() | DCst->getValue();
646 
647     if (NewMask == BCst->getValue())
648       return LHS;
649     else if (NewMask == DCst->getValue())
650       return RHS;
651   }
652 
653   if (Mask & BMask_Mixed) {
654     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
655     // We already know that B & C == C && D & E == E.
656     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
657     // C and E, which are shared by both the mask B and the mask D, don't
658     // contradict, then we can transform to
659     // -> (icmp eq (A & (B|D)), (C|E))
660     // Currently, we only handle the case of B, C, D, and E being constant.
661     // We can't simply use C and E because we might actually handle
662     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
663     // with B and D, having a single bit set.
664     ConstantInt *CCst, *ECst;
665     if (!match(C, m_ConstantInt(CCst)) || !match(E, m_ConstantInt(ECst)))
666       return nullptr;
667     if (PredL != NewCC)
668       CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
669     if (PredR != NewCC)
670       ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
671 
672     // If there is a conflict, we should actually return a false for the
673     // whole construct.
674     if (((BCst->getValue() & DCst->getValue()) &
675          (CCst->getValue() ^ ECst->getValue())).getBoolValue())
676       return ConstantInt::get(LHS->getType(), !IsAnd);
677 
678     Value *NewOr1 = Builder.CreateOr(B, D);
679     Value *NewOr2 = ConstantExpr::getOr(CCst, ECst);
680     Value *NewAnd = Builder.CreateAnd(A, NewOr1);
681     return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
682   }
683 
684   return nullptr;
685 }
686 
687 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
688 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
689 /// If \p Inverted is true then the check is for the inverted range, e.g.
690 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
691 Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
692                                             bool Inverted) {
693   // Check the lower range comparison, e.g. x >= 0
694   // InstCombine already ensured that if there is a constant it's on the RHS.
695   ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
696   if (!RangeStart)
697     return nullptr;
698 
699   ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
700                                Cmp0->getPredicate());
701 
702   // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
703   if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
704         (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
705     return nullptr;
706 
707   ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
708                                Cmp1->getPredicate());
709 
710   Value *Input = Cmp0->getOperand(0);
711   Value *RangeEnd;
712   if (Cmp1->getOperand(0) == Input) {
713     // For the upper range compare we have: icmp x, n
714     RangeEnd = Cmp1->getOperand(1);
715   } else if (Cmp1->getOperand(1) == Input) {
716     // For the upper range compare we have: icmp n, x
717     RangeEnd = Cmp1->getOperand(0);
718     Pred1 = ICmpInst::getSwappedPredicate(Pred1);
719   } else {
720     return nullptr;
721   }
722 
723   // Check the upper range comparison, e.g. x < n
724   ICmpInst::Predicate NewPred;
725   switch (Pred1) {
726     case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
727     case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
728     default: return nullptr;
729   }
730 
731   // This simplification is only valid if the upper range is not negative.
732   KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
733   if (!Known.isNonNegative())
734     return nullptr;
735 
736   if (Inverted)
737     NewPred = ICmpInst::getInversePredicate(NewPred);
738 
739   return Builder.CreateICmp(NewPred, Input, RangeEnd);
740 }
741 
742 static Value *
743 foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS,
744                                      bool JoinedByAnd,
745                                      InstCombiner::BuilderTy &Builder) {
746   Value *X = LHS->getOperand(0);
747   if (X != RHS->getOperand(0))
748     return nullptr;
749 
750   const APInt *C1, *C2;
751   if (!match(LHS->getOperand(1), m_APInt(C1)) ||
752       !match(RHS->getOperand(1), m_APInt(C2)))
753     return nullptr;
754 
755   // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
756   ICmpInst::Predicate Pred = LHS->getPredicate();
757   if (Pred !=  RHS->getPredicate())
758     return nullptr;
759   if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
760     return nullptr;
761   if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
762     return nullptr;
763 
764   // The larger unsigned constant goes on the right.
765   if (C1->ugt(*C2))
766     std::swap(C1, C2);
767 
768   APInt Xor = *C1 ^ *C2;
769   if (Xor.isPowerOf2()) {
770     // If LHSC and RHSC differ by only one bit, then set that bit in X and
771     // compare against the larger constant:
772     // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
773     // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
774     // We choose an 'or' with a Pow2 constant rather than the inverse mask with
775     // 'and' because that may lead to smaller codegen from a smaller constant.
776     Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor));
777     return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2));
778   }
779 
780   // Special case: get the ordering right when the values wrap around zero.
781   // Ie, we assumed the constants were unsigned when swapping earlier.
782   if (C1->isNullValue() && C2->isAllOnesValue())
783     std::swap(C1, C2);
784 
785   if (*C1 == *C2 - 1) {
786     // (X == 13 || X == 14) --> X - 13 <=u 1
787     // (X != 13 && X != 14) --> X - 13  >u 1
788     // An 'add' is the canonical IR form, so favor that over a 'sub'.
789     Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1)));
790     auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE;
791     return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1));
792   }
793 
794   return nullptr;
795 }
796 
797 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
798 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
799 Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS,
800                                                        ICmpInst *RHS,
801                                                        BinaryOperator &Logic) {
802   bool JoinedByAnd = Logic.getOpcode() == Instruction::And;
803   assert((JoinedByAnd || Logic.getOpcode() == Instruction::Or) &&
804          "Wrong opcode");
805   ICmpInst::Predicate Pred = LHS->getPredicate();
806   if (Pred != RHS->getPredicate())
807     return nullptr;
808   if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
809     return nullptr;
810   if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
811     return nullptr;
812 
813   if (!match(LHS->getOperand(1), m_Zero()) ||
814       !match(RHS->getOperand(1), m_Zero()))
815     return nullptr;
816 
817   Value *A, *B, *C, *D;
818   if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) &&
819       match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) {
820     if (A == D || B == D)
821       std::swap(C, D);
822     if (B == C)
823       std::swap(A, B);
824 
825     if (A == C &&
826         isKnownToBeAPowerOfTwo(B, false, 0, &Logic) &&
827         isKnownToBeAPowerOfTwo(D, false, 0, &Logic)) {
828       Value *Mask = Builder.CreateOr(B, D);
829       Value *Masked = Builder.CreateAnd(A, Mask);
830       auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
831       return Builder.CreateICmp(NewPred, Masked, Mask);
832     }
833   }
834 
835   return nullptr;
836 }
837 
838 /// General pattern:
839 ///   X & Y
840 ///
841 /// Where Y is checking that all the high bits (covered by a mask 4294967168)
842 /// are uniform, i.e.  %arg & 4294967168  can be either  4294967168  or  0
843 /// Pattern can be one of:
844 ///   %t = add        i32 %arg,    128
845 ///   %r = icmp   ult i32 %t,      256
846 /// Or
847 ///   %t0 = shl       i32 %arg,    24
848 ///   %t1 = ashr      i32 %t0,     24
849 ///   %r  = icmp  eq  i32 %t1,     %arg
850 /// Or
851 ///   %t0 = trunc     i32 %arg  to i8
852 ///   %t1 = sext      i8  %t0   to i32
853 ///   %r  = icmp  eq  i32 %t1,     %arg
854 /// This pattern is a signed truncation check.
855 ///
856 /// And X is checking that some bit in that same mask is zero.
857 /// I.e. can be one of:
858 ///   %r = icmp sgt i32   %arg,    -1
859 /// Or
860 ///   %t = and      i32   %arg,    2147483648
861 ///   %r = icmp eq  i32   %t,      0
862 ///
863 /// Since we are checking that all the bits in that mask are the same,
864 /// and a particular bit is zero, what we are really checking is that all the
865 /// masked bits are zero.
866 /// So this should be transformed to:
867 ///   %r = icmp ult i32 %arg, 128
868 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
869                                         Instruction &CxtI,
870                                         InstCombiner::BuilderTy &Builder) {
871   assert(CxtI.getOpcode() == Instruction::And);
872 
873   // Match  icmp ult (add %arg, C01), C1   (C1 == C01 << 1; powers of two)
874   auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
875                                             APInt &SignBitMask) -> bool {
876     CmpInst::Predicate Pred;
877     const APInt *I01, *I1; // powers of two; I1 == I01 << 1
878     if (!(match(ICmp,
879                 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
880           Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
881       return false;
882     // Which bit is the new sign bit as per the 'signed truncation' pattern?
883     SignBitMask = *I01;
884     return true;
885   };
886 
887   // One icmp needs to be 'signed truncation check'.
888   // We need to match this first, else we will mismatch commutative cases.
889   Value *X1;
890   APInt HighestBit;
891   ICmpInst *OtherICmp;
892   if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
893     OtherICmp = ICmp0;
894   else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
895     OtherICmp = ICmp1;
896   else
897     return nullptr;
898 
899   assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
900 
901   // Try to match/decompose into:  icmp eq (X & Mask), 0
902   auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
903                            APInt &UnsetBitsMask) -> bool {
904     CmpInst::Predicate Pred = ICmp->getPredicate();
905     // Can it be decomposed into  icmp eq (X & Mask), 0  ?
906     if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
907                                    Pred, X, UnsetBitsMask,
908                                    /*LookThroughTrunc=*/false) &&
909         Pred == ICmpInst::ICMP_EQ)
910       return true;
911     // Is it  icmp eq (X & Mask), 0  already?
912     const APInt *Mask;
913     if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
914         Pred == ICmpInst::ICMP_EQ) {
915       UnsetBitsMask = *Mask;
916       return true;
917     }
918     return false;
919   };
920 
921   // And the other icmp needs to be decomposable into a bit test.
922   Value *X0;
923   APInt UnsetBitsMask;
924   if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
925     return nullptr;
926 
927   assert(!UnsetBitsMask.isNullValue() && "empty mask makes no sense.");
928 
929   // Are they working on the same value?
930   Value *X;
931   if (X1 == X0) {
932     // Ok as is.
933     X = X1;
934   } else if (match(X0, m_Trunc(m_Specific(X1)))) {
935     UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
936     X = X1;
937   } else
938     return nullptr;
939 
940   // So which bits should be uniform as per the 'signed truncation check'?
941   // (all the bits starting with (i.e. including) HighestBit)
942   APInt SignBitsMask = ~(HighestBit - 1U);
943 
944   // UnsetBitsMask must have some common bits with SignBitsMask,
945   if (!UnsetBitsMask.intersects(SignBitsMask))
946     return nullptr;
947 
948   // Does UnsetBitsMask contain any bits outside of SignBitsMask?
949   if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
950     APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
951     if (!OtherHighestBit.isPowerOf2())
952       return nullptr;
953     HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
954   }
955   // Else, if it does not, then all is ok as-is.
956 
957   // %r = icmp ult %X, SignBit
958   return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
959                                CxtI.getName() + ".simplified");
960 }
961 
962 /// Reduce a pair of compares that check if a value has exactly 1 bit set.
963 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
964                              InstCombiner::BuilderTy &Builder) {
965   // Handle 'and' / 'or' commutation: make the equality check the first operand.
966   if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
967     std::swap(Cmp0, Cmp1);
968   else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
969     std::swap(Cmp0, Cmp1);
970 
971   // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
972   CmpInst::Predicate Pred0, Pred1;
973   Value *X;
974   if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
975       match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
976                          m_SpecificInt(2))) &&
977       Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
978     Value *CtPop = Cmp1->getOperand(0);
979     return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
980   }
981   // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
982   if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
983       match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
984                          m_SpecificInt(1))) &&
985       Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
986     Value *CtPop = Cmp1->getOperand(0);
987     return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
988   }
989   return nullptr;
990 }
991 
992 /// Commuted variants are assumed to be handled by calling this function again
993 /// with the parameters swapped.
994 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
995                                          ICmpInst *UnsignedICmp, bool IsAnd,
996                                          const SimplifyQuery &Q,
997                                          InstCombiner::BuilderTy &Builder) {
998   Value *ZeroCmpOp;
999   ICmpInst::Predicate EqPred;
1000   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
1001       !ICmpInst::isEquality(EqPred))
1002     return nullptr;
1003 
1004   auto IsKnownNonZero = [&](Value *V) {
1005     return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1006   };
1007 
1008   ICmpInst::Predicate UnsignedPred;
1009 
1010   Value *A, *B;
1011   if (match(UnsignedICmp,
1012             m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
1013       match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
1014       (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
1015     auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
1016       if (!IsKnownNonZero(NonZero))
1017         std::swap(NonZero, Other);
1018       return IsKnownNonZero(NonZero);
1019     };
1020 
1021     // Given  ZeroCmpOp = (A + B)
1022     //   ZeroCmpOp <= A && ZeroCmpOp != 0  -->  (0-B) <  A
1023     //   ZeroCmpOp >  A || ZeroCmpOp == 0  -->  (0-B) >= A
1024     //
1025     //   ZeroCmpOp <  A && ZeroCmpOp != 0  -->  (0-X) <  Y  iff
1026     //   ZeroCmpOp >= A || ZeroCmpOp == 0  -->  (0-X) >= Y  iff
1027     //     with X being the value (A/B) that is known to be non-zero,
1028     //     and Y being remaining value.
1029     if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1030         IsAnd)
1031       return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1032     if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
1033         IsAnd && GetKnownNonZeroAndOther(B, A))
1034       return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1035     if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1036         !IsAnd)
1037       return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1038     if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
1039         !IsAnd && GetKnownNonZeroAndOther(B, A))
1040       return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1041   }
1042 
1043   Value *Base, *Offset;
1044   if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset))))
1045     return nullptr;
1046 
1047   if (!match(UnsignedICmp,
1048              m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) ||
1049       !ICmpInst::isUnsigned(UnsignedPred))
1050     return nullptr;
1051 
1052   // Base >=/> Offset && (Base - Offset) != 0  <-->  Base > Offset
1053   // (no overflow and not null)
1054   if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1055        UnsignedPred == ICmpInst::ICMP_UGT) &&
1056       EqPred == ICmpInst::ICMP_NE && IsAnd)
1057     return Builder.CreateICmpUGT(Base, Offset);
1058 
1059   // Base <=/< Offset || (Base - Offset) == 0  <-->  Base <= Offset
1060   // (overflow or null)
1061   if ((UnsignedPred == ICmpInst::ICMP_ULE ||
1062        UnsignedPred == ICmpInst::ICMP_ULT) &&
1063       EqPred == ICmpInst::ICMP_EQ && !IsAnd)
1064     return Builder.CreateICmpULE(Base, Offset);
1065 
1066   // Base <= Offset && (Base - Offset) != 0  -->  Base < Offset
1067   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1068       IsAnd)
1069     return Builder.CreateICmpULT(Base, Offset);
1070 
1071   // Base > Offset || (Base - Offset) == 0  -->  Base >= Offset
1072   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1073       !IsAnd)
1074     return Builder.CreateICmpUGE(Base, Offset);
1075 
1076   return nullptr;
1077 }
1078 
1079 /// Reduce logic-of-compares with equality to a constant by substituting a
1080 /// common operand with the constant. Callers are expected to call this with
1081 /// Cmp0/Cmp1 switched to handle logic op commutativity.
1082 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1,
1083                                           BinaryOperator &Logic,
1084                                           InstCombiner::BuilderTy &Builder,
1085                                           const SimplifyQuery &Q) {
1086   bool IsAnd = Logic.getOpcode() == Instruction::And;
1087   assert((IsAnd || Logic.getOpcode() == Instruction::Or) && "Wrong logic op");
1088 
1089   // Match an equality compare with a non-poison constant as Cmp0.
1090   // Also, give up if the compare can be constant-folded to avoid looping.
1091   ICmpInst::Predicate Pred0;
1092   Value *X;
1093   Constant *C;
1094   if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
1095       !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X))
1096     return nullptr;
1097   if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
1098       (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
1099     return nullptr;
1100 
1101   // The other compare must include a common operand (X). Canonicalize the
1102   // common operand as operand 1 (Pred1 is swapped if the common operand was
1103   // operand 0).
1104   Value *Y;
1105   ICmpInst::Predicate Pred1;
1106   if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X))))
1107     return nullptr;
1108 
1109   // Replace variable with constant value equivalence to remove a variable use:
1110   // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
1111   // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
1112   // Can think of the 'or' substitution with the 'and' bool equivalent:
1113   // A || B --> A || (!A && B)
1114   Value *SubstituteCmp = SimplifyICmpInst(Pred1, Y, C, Q);
1115   if (!SubstituteCmp) {
1116     // If we need to create a new instruction, require that the old compare can
1117     // be removed.
1118     if (!Cmp1->hasOneUse())
1119       return nullptr;
1120     SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
1121   }
1122   return Builder.CreateBinOp(Logic.getOpcode(), Cmp0, SubstituteCmp);
1123 }
1124 
1125 /// Fold (icmp)&(icmp) if possible.
1126 Value *InstCombinerImpl::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS,
1127                                         BinaryOperator &And) {
1128   const SimplifyQuery Q = SQ.getWithInstruction(&And);
1129 
1130   // Fold (!iszero(A & K1) & !iszero(A & K2)) ->  (A & (K1 | K2)) == (K1 | K2)
1131   // if K1 and K2 are a one-bit mask.
1132   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, And))
1133     return V;
1134 
1135   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1136 
1137   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
1138   if (predicatesFoldable(PredL, PredR)) {
1139     if (LHS->getOperand(0) == RHS->getOperand(1) &&
1140         LHS->getOperand(1) == RHS->getOperand(0))
1141       LHS->swapOperands();
1142     if (LHS->getOperand(0) == RHS->getOperand(0) &&
1143         LHS->getOperand(1) == RHS->getOperand(1)) {
1144       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1145       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
1146       bool IsSigned = LHS->isSigned() || RHS->isSigned();
1147       return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
1148     }
1149   }
1150 
1151   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
1152   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
1153     return V;
1154 
1155   if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, And, Builder, Q))
1156     return V;
1157   if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, And, Builder, Q))
1158     return V;
1159 
1160   // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
1161   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
1162     return V;
1163 
1164   // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
1165   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
1166     return V;
1167 
1168   if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder))
1169     return V;
1170 
1171   if (Value *V = foldSignedTruncationCheck(LHS, RHS, And, Builder))
1172     return V;
1173 
1174   if (Value *V = foldIsPowerOf2(LHS, RHS, true /* JoinedByAnd */, Builder))
1175     return V;
1176 
1177   if (Value *X =
1178           foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/true, Q, Builder))
1179     return X;
1180   if (Value *X =
1181           foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/true, Q, Builder))
1182     return X;
1183 
1184   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
1185   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
1186 
1187   ConstantInt *LHSC, *RHSC;
1188   if (!match(LHS->getOperand(1), m_ConstantInt(LHSC)) ||
1189       !match(RHS->getOperand(1), m_ConstantInt(RHSC)))
1190     return nullptr;
1191 
1192   if (LHSC == RHSC && PredL == PredR) {
1193     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
1194     // where C is a power of 2 or
1195     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
1196     if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) ||
1197         (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) {
1198       Value *NewOr = Builder.CreateOr(LHS0, RHS0);
1199       return Builder.CreateICmp(PredL, NewOr, LHSC);
1200     }
1201   }
1202 
1203   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
1204   // where CMAX is the all ones value for the truncated type,
1205   // iff the lower bits of C2 and CA are zero.
1206   if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() &&
1207       RHS->hasOneUse()) {
1208     Value *V;
1209     ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr;
1210 
1211     // (trunc x) == C1 & (and x, CA) == C2
1212     // (and x, CA) == C2 & (trunc x) == C1
1213     if (match(RHS0, m_Trunc(m_Value(V))) &&
1214         match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
1215       SmallC = RHSC;
1216       BigC = LHSC;
1217     } else if (match(LHS0, m_Trunc(m_Value(V))) &&
1218                match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
1219       SmallC = LHSC;
1220       BigC = RHSC;
1221     }
1222 
1223     if (SmallC && BigC) {
1224       unsigned BigBitSize = BigC->getType()->getBitWidth();
1225       unsigned SmallBitSize = SmallC->getType()->getBitWidth();
1226 
1227       // Check that the low bits are zero.
1228       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
1229       if ((Low & AndC->getValue()).isNullValue() &&
1230           (Low & BigC->getValue()).isNullValue()) {
1231         Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue());
1232         APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue();
1233         Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N);
1234         return Builder.CreateICmp(PredL, NewAnd, NewVal);
1235       }
1236     }
1237   }
1238 
1239   // From here on, we only handle:
1240   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
1241   if (LHS0 != RHS0)
1242     return nullptr;
1243 
1244   // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
1245   if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
1246       PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
1247       PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
1248       PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
1249     return nullptr;
1250 
1251   // We can't fold (ugt x, C) & (sgt x, C2).
1252   if (!predicatesFoldable(PredL, PredR))
1253     return nullptr;
1254 
1255   // Ensure that the larger constant is on the RHS.
1256   bool ShouldSwap;
1257   if (CmpInst::isSigned(PredL) ||
1258       (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
1259     ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
1260   else
1261     ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
1262 
1263   if (ShouldSwap) {
1264     std::swap(LHS, RHS);
1265     std::swap(LHSC, RHSC);
1266     std::swap(PredL, PredR);
1267   }
1268 
1269   // At this point, we know we have two icmp instructions
1270   // comparing a value against two constants and and'ing the result
1271   // together.  Because of the above check, we know that we only have
1272   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
1273   // (from the icmp folding check above), that the two constants
1274   // are not equal and that the larger constant is on the RHS
1275   assert(LHSC != RHSC && "Compares not folded above?");
1276 
1277   switch (PredL) {
1278   default:
1279     llvm_unreachable("Unknown integer condition code!");
1280   case ICmpInst::ICMP_NE:
1281     switch (PredR) {
1282     default:
1283       llvm_unreachable("Unknown integer condition code!");
1284     case ICmpInst::ICMP_ULT:
1285       // (X != 13 & X u< 14) -> X < 13
1286       if (LHSC->getValue() == (RHSC->getValue() - 1))
1287         return Builder.CreateICmpULT(LHS0, LHSC);
1288       if (LHSC->isZero()) // (X != 0 & X u< C) -> X-1 u< C-1
1289         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1290                                false, true);
1291       break; // (X != 13 & X u< 15) -> no change
1292     case ICmpInst::ICMP_SLT:
1293       // (X != 13 & X s< 14) -> X < 13
1294       if (LHSC->getValue() == (RHSC->getValue() - 1))
1295         return Builder.CreateICmpSLT(LHS0, LHSC);
1296       // (X != INT_MIN & X s< C) -> X-(INT_MIN+1) u< (C-(INT_MIN+1))
1297       if (LHSC->isMinValue(true))
1298         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1299                                true, true);
1300       break; // (X != 13 & X s< 15) -> no change
1301     case ICmpInst::ICMP_NE:
1302       // Potential folds for this case should already be handled.
1303       break;
1304     }
1305     break;
1306   case ICmpInst::ICMP_UGT:
1307     switch (PredR) {
1308     default:
1309       llvm_unreachable("Unknown integer condition code!");
1310     case ICmpInst::ICMP_NE:
1311       // (X u> 13 & X != 14) -> X u> 14
1312       if (RHSC->getValue() == (LHSC->getValue() + 1))
1313         return Builder.CreateICmp(PredL, LHS0, RHSC);
1314       // X u> C & X != UINT_MAX -> (X-(C+1)) u< UINT_MAX-(C+1)
1315       if (RHSC->isMaxValue(false))
1316         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1317                                false, true);
1318       break;                 // (X u> 13 & X != 15) -> no change
1319     case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) u< 1
1320       return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1321                              false, true);
1322     }
1323     break;
1324   case ICmpInst::ICMP_SGT:
1325     switch (PredR) {
1326     default:
1327       llvm_unreachable("Unknown integer condition code!");
1328     case ICmpInst::ICMP_NE:
1329       // (X s> 13 & X != 14) -> X s> 14
1330       if (RHSC->getValue() == (LHSC->getValue() + 1))
1331         return Builder.CreateICmp(PredL, LHS0, RHSC);
1332       // X s> C & X != INT_MAX -> (X-(C+1)) u< INT_MAX-(C+1)
1333       if (RHSC->isMaxValue(true))
1334         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1335                                true, true);
1336       break;                 // (X s> 13 & X != 15) -> no change
1337     case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) u< 1
1338       return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true,
1339                              true);
1340     }
1341     break;
1342   }
1343 
1344   return nullptr;
1345 }
1346 
1347 Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
1348                                           bool IsAnd) {
1349   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1350   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1351   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1352 
1353   if (LHS0 == RHS1 && RHS0 == LHS1) {
1354     // Swap RHS operands to match LHS.
1355     PredR = FCmpInst::getSwappedPredicate(PredR);
1356     std::swap(RHS0, RHS1);
1357   }
1358 
1359   // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1360   // Suppose the relation between x and y is R, where R is one of
1361   // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1362   // testing the desired relations.
1363   //
1364   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1365   //    bool(R & CC0) && bool(R & CC1)
1366   //  = bool((R & CC0) & (R & CC1))
1367   //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1368   //
1369   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1370   //    bool(R & CC0) || bool(R & CC1)
1371   //  = bool((R & CC0) | (R & CC1))
1372   //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1373   if (LHS0 == RHS0 && LHS1 == RHS1) {
1374     unsigned FCmpCodeL = getFCmpCode(PredL);
1375     unsigned FCmpCodeR = getFCmpCode(PredR);
1376     unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1377     return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1378   }
1379 
1380   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1381       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1382     if (LHS0->getType() != RHS0->getType())
1383       return nullptr;
1384 
1385     // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1386     // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1387     if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1388       // Ignore the constants because they are obviously not NANs:
1389       // (fcmp ord x, 0.0) & (fcmp ord y, 0.0)  -> (fcmp ord x, y)
1390       // (fcmp uno x, 0.0) | (fcmp uno y, 0.0)  -> (fcmp uno x, y)
1391       return Builder.CreateFCmp(PredL, LHS0, RHS0);
1392   }
1393 
1394   return nullptr;
1395 }
1396 
1397 /// This a limited reassociation for a special case (see above) where we are
1398 /// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1399 /// This could be handled more generally in '-reassociation', but it seems like
1400 /// an unlikely pattern for a large number of logic ops and fcmps.
1401 static Instruction *reassociateFCmps(BinaryOperator &BO,
1402                                      InstCombiner::BuilderTy &Builder) {
1403   Instruction::BinaryOps Opcode = BO.getOpcode();
1404   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1405          "Expecting and/or op for fcmp transform");
1406 
1407   // There are 4 commuted variants of the pattern. Canonicalize operands of this
1408   // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1409   Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1410   FCmpInst::Predicate Pred;
1411   if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
1412     std::swap(Op0, Op1);
1413 
1414   // Match inner binop and the predicate for combining 2 NAN checks into 1.
1415   BinaryOperator *BO1;
1416   FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1417                                                            : FCmpInst::FCMP_UNO;
1418   if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
1419       !match(Op1, m_BinOp(BO1)) || BO1->getOpcode() != Opcode)
1420     return nullptr;
1421 
1422   // The inner logic op must have a matching fcmp operand.
1423   Value *BO10 = BO1->getOperand(0), *BO11 = BO1->getOperand(1), *Y;
1424   if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1425       Pred != NanPred || X->getType() != Y->getType())
1426     std::swap(BO10, BO11);
1427 
1428   if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1429       Pred != NanPred || X->getType() != Y->getType())
1430     return nullptr;
1431 
1432   // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1433   // or  (fcmp uno X, 0), (or  (fcmp uno Y, 0), Z) --> or  (fcmp uno X, Y), Z
1434   Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
1435   if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
1436     // Intersect FMF from the 2 source fcmps.
1437     NewFCmpInst->copyIRFlags(Op0);
1438     NewFCmpInst->andIRFlags(BO10);
1439   }
1440   return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1441 }
1442 
1443 /// Match De Morgan's Laws:
1444 /// (~A & ~B) == (~(A | B))
1445 /// (~A | ~B) == (~(A & B))
1446 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1447                                        InstCombiner::BuilderTy &Builder) {
1448   auto Opcode = I.getOpcode();
1449   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1450          "Trying to match De Morgan's Laws with something other than and/or");
1451 
1452   // Flip the logic operation.
1453   Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1454 
1455   Value *A, *B;
1456   if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) &&
1457       match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) &&
1458       !InstCombiner::isFreeToInvert(A, A->hasOneUse()) &&
1459       !InstCombiner::isFreeToInvert(B, B->hasOneUse())) {
1460     Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan");
1461     return BinaryOperator::CreateNot(AndOr);
1462   }
1463 
1464   return nullptr;
1465 }
1466 
1467 bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
1468   Value *CastSrc = CI->getOperand(0);
1469 
1470   // Noop casts and casts of constants should be eliminated trivially.
1471   if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1472     return false;
1473 
1474   // If this cast is paired with another cast that can be eliminated, we prefer
1475   // to have it eliminated.
1476   if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1477     if (isEliminableCastPair(PrecedingCI, CI))
1478       return false;
1479 
1480   return true;
1481 }
1482 
1483 /// Fold {and,or,xor} (cast X), C.
1484 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1485                                           InstCombiner::BuilderTy &Builder) {
1486   Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1487   if (!C)
1488     return nullptr;
1489 
1490   auto LogicOpc = Logic.getOpcode();
1491   Type *DestTy = Logic.getType();
1492   Type *SrcTy = Cast->getSrcTy();
1493 
1494   // Move the logic operation ahead of a zext or sext if the constant is
1495   // unchanged in the smaller source type. Performing the logic in a smaller
1496   // type may provide more information to later folds, and the smaller logic
1497   // instruction may be cheaper (particularly in the case of vectors).
1498   Value *X;
1499   if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1500     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1501     Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
1502     if (ZextTruncC == C) {
1503       // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1504       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1505       return new ZExtInst(NewOp, DestTy);
1506     }
1507   }
1508 
1509   if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
1510     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1511     Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
1512     if (SextTruncC == C) {
1513       // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1514       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1515       return new SExtInst(NewOp, DestTy);
1516     }
1517   }
1518 
1519   return nullptr;
1520 }
1521 
1522 /// Fold {and,or,xor} (cast X), Y.
1523 Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
1524   auto LogicOpc = I.getOpcode();
1525   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1526 
1527   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1528   CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1529   if (!Cast0)
1530     return nullptr;
1531 
1532   // This must be a cast from an integer or integer vector source type to allow
1533   // transformation of the logic operation to the source type.
1534   Type *DestTy = I.getType();
1535   Type *SrcTy = Cast0->getSrcTy();
1536   if (!SrcTy->isIntOrIntVectorTy())
1537     return nullptr;
1538 
1539   if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
1540     return Ret;
1541 
1542   CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1543   if (!Cast1)
1544     return nullptr;
1545 
1546   // Both operands of the logic operation are casts. The casts must be of the
1547   // same type for reduction.
1548   auto CastOpcode = Cast0->getOpcode();
1549   if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
1550     return nullptr;
1551 
1552   Value *Cast0Src = Cast0->getOperand(0);
1553   Value *Cast1Src = Cast1->getOperand(0);
1554 
1555   // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1556   if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1557     Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1558                                         I.getName());
1559     return CastInst::Create(CastOpcode, NewOp, DestTy);
1560   }
1561 
1562   // For now, only 'and'/'or' have optimizations after this.
1563   if (LogicOpc == Instruction::Xor)
1564     return nullptr;
1565 
1566   // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1567   // cast is otherwise not optimizable.  This happens for vector sexts.
1568   ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
1569   ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
1570   if (ICmp0 && ICmp1) {
1571     Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I)
1572                                               : foldOrOfICmps(ICmp0, ICmp1, I);
1573     if (Res)
1574       return CastInst::Create(CastOpcode, Res, DestTy);
1575     return nullptr;
1576   }
1577 
1578   // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1579   // cast is otherwise not optimizable.  This happens for vector sexts.
1580   FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
1581   FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
1582   if (FCmp0 && FCmp1)
1583     if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
1584       return CastInst::Create(CastOpcode, R, DestTy);
1585 
1586   return nullptr;
1587 }
1588 
1589 static Instruction *foldAndToXor(BinaryOperator &I,
1590                                  InstCombiner::BuilderTy &Builder) {
1591   assert(I.getOpcode() == Instruction::And);
1592   Value *Op0 = I.getOperand(0);
1593   Value *Op1 = I.getOperand(1);
1594   Value *A, *B;
1595 
1596   // Operand complexity canonicalization guarantees that the 'or' is Op0.
1597   // (A | B) & ~(A & B) --> A ^ B
1598   // (A | B) & ~(B & A) --> A ^ B
1599   if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1600                         m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1601     return BinaryOperator::CreateXor(A, B);
1602 
1603   // (A | ~B) & (~A | B) --> ~(A ^ B)
1604   // (A | ~B) & (B | ~A) --> ~(A ^ B)
1605   // (~B | A) & (~A | B) --> ~(A ^ B)
1606   // (~B | A) & (B | ~A) --> ~(A ^ B)
1607   if (Op0->hasOneUse() || Op1->hasOneUse())
1608     if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1609                           m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1610       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1611 
1612   return nullptr;
1613 }
1614 
1615 static Instruction *foldOrToXor(BinaryOperator &I,
1616                                 InstCombiner::BuilderTy &Builder) {
1617   assert(I.getOpcode() == Instruction::Or);
1618   Value *Op0 = I.getOperand(0);
1619   Value *Op1 = I.getOperand(1);
1620   Value *A, *B;
1621 
1622   // Operand complexity canonicalization guarantees that the 'and' is Op0.
1623   // (A & B) | ~(A | B) --> ~(A ^ B)
1624   // (A & B) | ~(B | A) --> ~(A ^ B)
1625   if (Op0->hasOneUse() || Op1->hasOneUse())
1626     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1627         match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1628       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1629 
1630   // Operand complexity canonicalization guarantees that the 'xor' is Op0.
1631   // (A ^ B) | ~(A | B) --> ~(A & B)
1632   // (A ^ B) | ~(B | A) --> ~(A & B)
1633   if (Op0->hasOneUse() || Op1->hasOneUse())
1634     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1635         match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1636       return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
1637 
1638   // (A & ~B) | (~A & B) --> A ^ B
1639   // (A & ~B) | (B & ~A) --> A ^ B
1640   // (~B & A) | (~A & B) --> A ^ B
1641   // (~B & A) | (B & ~A) --> A ^ B
1642   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1643       match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1644     return BinaryOperator::CreateXor(A, B);
1645 
1646   return nullptr;
1647 }
1648 
1649 /// Return true if a constant shift amount is always less than the specified
1650 /// bit-width. If not, the shift could create poison in the narrower type.
1651 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1652   APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
1653   return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
1654 }
1655 
1656 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1657 /// a common zext operand: and (binop (zext X), C), (zext X).
1658 Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
1659   // This transform could also apply to {or, and, xor}, but there are better
1660   // folds for those cases, so we don't expect those patterns here. AShr is not
1661   // handled because it should always be transformed to LShr in this sequence.
1662   // The subtract transform is different because it has a constant on the left.
1663   // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1664   Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1665   Constant *C;
1666   if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1667       !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1668       !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1669       !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1670       !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1671     return nullptr;
1672 
1673   Value *X;
1674   if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1675     return nullptr;
1676 
1677   Type *Ty = And.getType();
1678   if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1679     return nullptr;
1680 
1681   // If we're narrowing a shift, the shift amount must be safe (less than the
1682   // width) in the narrower type. If the shift amount is greater, instsimplify
1683   // usually handles that case, but we can't guarantee/assert it.
1684   Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1685   if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1686     if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1687       return nullptr;
1688 
1689   // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1690   // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1691   Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1692   Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1693                                          : Builder.CreateBinOp(Opc, X, NewC);
1694   return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1695 }
1696 
1697 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
1698 // here. We should standardize that construct where it is needed or choose some
1699 // other way to ensure that commutated variants of patterns are not missed.
1700 Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) {
1701   Type *Ty = I.getType();
1702 
1703   if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1),
1704                                  SQ.getWithInstruction(&I)))
1705     return replaceInstUsesWith(I, V);
1706 
1707   if (SimplifyAssociativeOrCommutative(I))
1708     return &I;
1709 
1710   if (Instruction *X = foldVectorBinop(I))
1711     return X;
1712 
1713   // See if we can simplify any instructions used by the instruction whose sole
1714   // purpose is to compute bits we don't care about.
1715   if (SimplifyDemandedInstructionBits(I))
1716     return &I;
1717 
1718   // Do this before using distributive laws to catch simple and/or/not patterns.
1719   if (Instruction *Xor = foldAndToXor(I, Builder))
1720     return Xor;
1721 
1722   // (A|B)&(A|C) -> A|(B&C) etc
1723   if (Value *V = SimplifyUsingDistributiveLaws(I))
1724     return replaceInstUsesWith(I, V);
1725 
1726   if (Value *V = SimplifyBSwap(I, Builder))
1727     return replaceInstUsesWith(I, V);
1728 
1729   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1730 
1731   Value *X, *Y;
1732   if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
1733       match(Op1, m_One())) {
1734     // (1 << X) & 1 --> zext(X == 0)
1735     // (1 >> X) & 1 --> zext(X == 0)
1736     Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
1737     return new ZExtInst(IsZero, Ty);
1738   }
1739 
1740   const APInt *C;
1741   if (match(Op1, m_APInt(C))) {
1742     const APInt *XorC;
1743     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
1744       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1745       Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
1746       Value *And = Builder.CreateAnd(X, Op1);
1747       And->takeName(Op0);
1748       return BinaryOperator::CreateXor(And, NewC);
1749     }
1750 
1751     const APInt *OrC;
1752     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
1753       // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
1754       // NOTE: This reduces the number of bits set in the & mask, which
1755       // can expose opportunities for store narrowing for scalars.
1756       // NOTE: SimplifyDemandedBits should have already removed bits from C1
1757       // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
1758       // above, but this feels safer.
1759       APInt Together = *C & *OrC;
1760       Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
1761       And->takeName(Op0);
1762       return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
1763     }
1764 
1765     // If the mask is only needed on one incoming arm, push the 'and' op up.
1766     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
1767         match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
1768       APInt NotAndMask(~(*C));
1769       BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
1770       if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
1771         // Not masking anything out for the LHS, move mask to RHS.
1772         // and ({x}or X, Y), C --> {x}or X, (and Y, C)
1773         Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
1774         return BinaryOperator::Create(BinOp, X, NewRHS);
1775       }
1776       if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
1777         // Not masking anything out for the RHS, move mask to LHS.
1778         // and ({x}or X, Y), C --> {x}or (and X, C), Y
1779         Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
1780         return BinaryOperator::Create(BinOp, NewLHS, Y);
1781       }
1782     }
1783 
1784     unsigned Width = Ty->getScalarSizeInBits();
1785     const APInt *ShiftC;
1786     if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC)))))) {
1787       if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
1788         // We are clearing high bits that were potentially set by sext+ashr:
1789         // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
1790         Value *Sext = Builder.CreateSExt(X, Ty);
1791         Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
1792         return BinaryOperator::CreateLShr(Sext, ShAmtC);
1793       }
1794     }
1795 
1796     const APInt *AddC;
1797     if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
1798       // If we add zeros to every bit below a mask, the add has no effect:
1799       // (X + AddC) & LowMaskC --> X & LowMaskC
1800       unsigned Ctlz = C->countLeadingZeros();
1801       APInt LowMask(APInt::getLowBitsSet(Width, Width - Ctlz));
1802       if ((*AddC & LowMask).isNullValue())
1803         return BinaryOperator::CreateAnd(X, Op1);
1804 
1805       // If we are masking the result of the add down to exactly one bit and
1806       // the constant we are adding has no bits set below that bit, then the
1807       // add is flipping a single bit. Example:
1808       // (X + 4) & 4 --> (X & 4) ^ 4
1809       if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
1810         assert((*C & *AddC) != 0 && "Expected common bit");
1811         Value *NewAnd = Builder.CreateAnd(X, Op1);
1812         return BinaryOperator::CreateXor(NewAnd, Op1);
1813       }
1814     }
1815   }
1816 
1817   ConstantInt *AndRHS;
1818   if (match(Op1, m_ConstantInt(AndRHS))) {
1819     const APInt &AndRHSMask = AndRHS->getValue();
1820 
1821     // Optimize a variety of ((val OP C1) & C2) combinations...
1822     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1823       // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth
1824       // of X and OP behaves well when given trunc(C1) and X.
1825       // TODO: Do this for vectors by using m_APInt instead of m_ConstantInt.
1826       switch (Op0I->getOpcode()) {
1827       default:
1828         break;
1829       case Instruction::Xor:
1830       case Instruction::Or:
1831       case Instruction::Mul:
1832       case Instruction::Add:
1833       case Instruction::Sub:
1834         Value *X;
1835         ConstantInt *C1;
1836         // TODO: The one use restrictions could be relaxed a little if the AND
1837         // is going to be removed.
1838         if (match(Op0I, m_OneUse(m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))),
1839                                            m_ConstantInt(C1))))) {
1840           if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) {
1841             auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType());
1842             Value *BinOp;
1843             Value *Op0LHS = Op0I->getOperand(0);
1844             if (isa<ZExtInst>(Op0LHS))
1845               BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1);
1846             else
1847               BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X);
1848             auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType());
1849             auto *And = Builder.CreateAnd(BinOp, TruncC2);
1850             return new ZExtInst(And, Ty);
1851           }
1852         }
1853       }
1854     }
1855   }
1856 
1857   if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))),
1858                       m_SignMask())) &&
1859       match(Y, m_SpecificInt_ICMP(
1860                    ICmpInst::Predicate::ICMP_EQ,
1861                    APInt(Ty->getScalarSizeInBits(),
1862                          Ty->getScalarSizeInBits() -
1863                              X->getType()->getScalarSizeInBits())))) {
1864     auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
1865     auto *SanitizedSignMask = cast<Constant>(Op1);
1866     // We must be careful with the undef elements of the sign bit mask, however:
1867     // the mask elt can be undef iff the shift amount for that lane was undef,
1868     // otherwise we need to sanitize undef masks to zero.
1869     SanitizedSignMask = Constant::replaceUndefsWith(
1870         SanitizedSignMask, ConstantInt::getNullValue(Ty->getScalarType()));
1871     SanitizedSignMask =
1872         Constant::mergeUndefsWith(SanitizedSignMask, cast<Constant>(Y));
1873     return BinaryOperator::CreateAnd(SExt, SanitizedSignMask);
1874   }
1875 
1876   if (Instruction *Z = narrowMaskedBinOp(I))
1877     return Z;
1878 
1879   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
1880     return FoldedLogic;
1881 
1882   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
1883     return DeMorgan;
1884 
1885   {
1886     Value *A, *B, *C;
1887     // A & (A ^ B) --> A & ~B
1888     if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
1889       return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
1890     // (A ^ B) & A --> A & ~B
1891     if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
1892       return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
1893 
1894     // A & ~(A ^ B) --> A & B
1895     if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B)))))
1896       return BinaryOperator::CreateAnd(Op0, B);
1897     // ~(A ^ B) & A --> A & B
1898     if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B)))))
1899       return BinaryOperator::CreateAnd(Op1, B);
1900 
1901     // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
1902     if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
1903       if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
1904         if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
1905           return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
1906 
1907     // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
1908     if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
1909       if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
1910         if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
1911           return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
1912 
1913     // (A | B) & ((~A) ^ B) -> (A & B)
1914     // (A | B) & (B ^ (~A)) -> (A & B)
1915     // (B | A) & ((~A) ^ B) -> (A & B)
1916     // (B | A) & (B ^ (~A)) -> (A & B)
1917     if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1918         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1919       return BinaryOperator::CreateAnd(A, B);
1920 
1921     // ((~A) ^ B) & (A | B) -> (A & B)
1922     // ((~A) ^ B) & (B | A) -> (A & B)
1923     // (B ^ (~A)) & (A | B) -> (A & B)
1924     // (B ^ (~A)) & (B | A) -> (A & B)
1925     if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1926         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
1927       return BinaryOperator::CreateAnd(A, B);
1928   }
1929 
1930   {
1931     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
1932     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
1933     if (LHS && RHS)
1934       if (Value *Res = foldAndOfICmps(LHS, RHS, I))
1935         return replaceInstUsesWith(I, Res);
1936 
1937     // TODO: Make this recursive; it's a little tricky because an arbitrary
1938     // number of 'and' instructions might have to be created.
1939     if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1940       if (auto *Cmp = dyn_cast<ICmpInst>(X))
1941         if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1942           return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1943       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1944         if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1945           return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1946     }
1947     if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1948       if (auto *Cmp = dyn_cast<ICmpInst>(X))
1949         if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1950           return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1951       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1952         if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1953           return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1954     }
1955   }
1956 
1957   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1958     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1959       if (Value *Res = foldLogicOfFCmps(LHS, RHS, true))
1960         return replaceInstUsesWith(I, Res);
1961 
1962   if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
1963     return FoldedFCmps;
1964 
1965   if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
1966     return CastedAnd;
1967 
1968   // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
1969   Value *A;
1970   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
1971       A->getType()->isIntOrIntVectorTy(1))
1972     return SelectInst::Create(A, Op1, Constant::getNullValue(Ty));
1973   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
1974       A->getType()->isIntOrIntVectorTy(1))
1975     return SelectInst::Create(A, Op0, Constant::getNullValue(Ty));
1976 
1977   // and(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? X : 0.
1978   if (match(&I, m_c_And(m_OneUse(m_AShr(
1979                             m_NSWSub(m_Value(Y), m_Value(X)),
1980                             m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
1981                         m_Deferred(X)))) {
1982     Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
1983     return SelectInst::Create(NewICmpInst, X, ConstantInt::getNullValue(Ty));
1984   }
1985 
1986   // (~x) & y  -->  ~(x | (~y))  iff that gets rid of inversions
1987   if (sinkNotIntoOtherHandOfAndOrOr(I))
1988     return &I;
1989 
1990   return nullptr;
1991 }
1992 
1993 Instruction *InstCombinerImpl::matchBSwapOrBitReverse(BinaryOperator &Or,
1994                                                       bool MatchBSwaps,
1995                                                       bool MatchBitReversals) {
1996   assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
1997   Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
1998 
1999   // Look through zero extends.
2000   if (Instruction *Ext = dyn_cast<ZExtInst>(Op0))
2001     Op0 = Ext->getOperand(0);
2002 
2003   if (Instruction *Ext = dyn_cast<ZExtInst>(Op1))
2004     Op1 = Ext->getOperand(0);
2005 
2006   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
2007   bool OrWithOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
2008                    match(Op1, m_Or(m_Value(), m_Value()));
2009 
2010   // (A >> B) | C  and  (A << B) | C                -> bswap if possible.
2011   bool OrWithShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) ||
2012                       match(Op1, m_LogicalShift(m_Value(), m_Value()));
2013 
2014   // (A & B) | C  and  A | (B & C)                  -> bswap if possible.
2015   bool OrWithAnds = match(Op0, m_And(m_Value(), m_Value())) ||
2016                     match(Op1, m_And(m_Value(), m_Value()));
2017 
2018   // fshl(A,B,C) | D  and  A | fshl(B,C,D)          -> bswap if possible.
2019   // fshr(A,B,C) | D  and  A | fshr(B,C,D)          -> bswap if possible.
2020   bool OrWithFunnels = match(Op0, m_FShl(m_Value(), m_Value(), m_Value())) ||
2021                        match(Op0, m_FShr(m_Value(), m_Value(), m_Value())) ||
2022                        match(Op0, m_FShl(m_Value(), m_Value(), m_Value())) ||
2023                        match(Op0, m_FShr(m_Value(), m_Value(), m_Value()));
2024 
2025   // TODO: Do we need all these filtering checks or should we just rely on
2026   // recognizeBSwapOrBitReverseIdiom + collectBitParts to reject them quickly?
2027   if (!OrWithOrs && !OrWithShifts && !OrWithAnds && !OrWithFunnels)
2028     return nullptr;
2029 
2030   SmallVector<Instruction *, 4> Insts;
2031   if (!recognizeBSwapOrBitReverseIdiom(&Or, MatchBSwaps, MatchBitReversals,
2032                                        Insts))
2033     return nullptr;
2034   Instruction *LastInst = Insts.pop_back_val();
2035   LastInst->removeFromParent();
2036 
2037   for (auto *Inst : Insts)
2038     Worklist.push(Inst);
2039   return LastInst;
2040 }
2041 
2042 /// Match UB-safe variants of the funnel shift intrinsic.
2043 static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) {
2044   // TODO: Can we reduce the code duplication between this and the related
2045   // rotate matching code under visitSelect and visitTrunc?
2046   unsigned Width = Or.getType()->getScalarSizeInBits();
2047 
2048   // First, find an or'd pair of opposite shifts:
2049   // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)
2050   BinaryOperator *Or0, *Or1;
2051   if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
2052       !match(Or.getOperand(1), m_BinOp(Or1)))
2053     return nullptr;
2054 
2055   Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
2056   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
2057       !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
2058       Or0->getOpcode() == Or1->getOpcode())
2059     return nullptr;
2060 
2061   // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
2062   if (Or0->getOpcode() == BinaryOperator::LShr) {
2063     std::swap(Or0, Or1);
2064     std::swap(ShVal0, ShVal1);
2065     std::swap(ShAmt0, ShAmt1);
2066   }
2067   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2068          Or1->getOpcode() == BinaryOperator::LShr &&
2069          "Illegal or(shift,shift) pair");
2070 
2071   // Match the shift amount operands for a funnel shift pattern. This always
2072   // matches a subtraction on the R operand.
2073   auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
2074     // Check for constant shift amounts that sum to the bitwidth.
2075     const APInt *LI, *RI;
2076     if (match(L, m_APIntAllowUndef(LI)) && match(R, m_APIntAllowUndef(RI)))
2077       if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
2078         return ConstantInt::get(L->getType(), *LI);
2079 
2080     Constant *LC, *RC;
2081     if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
2082         match(L, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2083         match(R, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2084         match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowUndef(Width)))
2085       return ConstantExpr::mergeUndefsWith(LC, RC);
2086 
2087     // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width.
2088     // We limit this to X < Width in case the backend re-expands the intrinsic,
2089     // and has to reintroduce a shift modulo operation (InstCombine might remove
2090     // it after this fold). This still doesn't guarantee that the final codegen
2091     // will match this original pattern.
2092     if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
2093       KnownBits KnownL = IC.computeKnownBits(L, /*Depth*/ 0, &Or);
2094       return KnownL.getMaxValue().ult(Width) ? L : nullptr;
2095     }
2096 
2097     // For non-constant cases, the following patterns currently only work for
2098     // rotation patterns.
2099     // TODO: Add general funnel-shift compatible patterns.
2100     if (ShVal0 != ShVal1)
2101       return nullptr;
2102 
2103     // For non-constant cases we don't support non-pow2 shift masks.
2104     // TODO: Is it worth matching urem as well?
2105     if (!isPowerOf2_32(Width))
2106       return nullptr;
2107 
2108     // The shift amount may be masked with negation:
2109     // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
2110     Value *X;
2111     unsigned Mask = Width - 1;
2112     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
2113         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
2114       return X;
2115 
2116     // Similar to above, but the shift amount may be extended after masking,
2117     // so return the extended value as the parameter for the intrinsic.
2118     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2119         match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
2120                        m_SpecificInt(Mask))))
2121       return L;
2122 
2123     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2124         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
2125       return L;
2126 
2127     return nullptr;
2128   };
2129 
2130   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
2131   bool IsFshl = true; // Sub on LSHR.
2132   if (!ShAmt) {
2133     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
2134     IsFshl = false; // Sub on SHL.
2135   }
2136   if (!ShAmt)
2137     return nullptr;
2138 
2139   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2140   Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
2141   return IntrinsicInst::Create(F, {ShVal0, ShVal1, ShAmt});
2142 }
2143 
2144 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
2145 static Instruction *matchOrConcat(Instruction &Or,
2146                                   InstCombiner::BuilderTy &Builder) {
2147   assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
2148   Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
2149   Type *Ty = Or.getType();
2150 
2151   unsigned Width = Ty->getScalarSizeInBits();
2152   if ((Width & 1) != 0)
2153     return nullptr;
2154   unsigned HalfWidth = Width / 2;
2155 
2156   // Canonicalize zext (lower half) to LHS.
2157   if (!isa<ZExtInst>(Op0))
2158     std::swap(Op0, Op1);
2159 
2160   // Find lower/upper half.
2161   Value *LowerSrc, *ShlVal, *UpperSrc;
2162   const APInt *C;
2163   if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
2164       !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
2165       !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
2166     return nullptr;
2167   if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
2168       LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
2169     return nullptr;
2170 
2171   auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
2172     Value *NewLower = Builder.CreateZExt(Lo, Ty);
2173     Value *NewUpper = Builder.CreateZExt(Hi, Ty);
2174     NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
2175     Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
2176     Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty);
2177     return Builder.CreateCall(F, BinOp);
2178   };
2179 
2180   // BSWAP: Push the concat down, swapping the lower/upper sources.
2181   // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
2182   Value *LowerBSwap, *UpperBSwap;
2183   if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
2184       match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
2185     return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
2186 
2187   // BITREVERSE: Push the concat down, swapping the lower/upper sources.
2188   // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
2189   Value *LowerBRev, *UpperBRev;
2190   if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
2191       match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
2192     return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
2193 
2194   return nullptr;
2195 }
2196 
2197 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
2198 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
2199   unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
2200   for (unsigned i = 0; i != NumElts; ++i) {
2201     Constant *EltC1 = C1->getAggregateElement(i);
2202     Constant *EltC2 = C2->getAggregateElement(i);
2203     if (!EltC1 || !EltC2)
2204       return false;
2205 
2206     // One element must be all ones, and the other must be all zeros.
2207     if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
2208           (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
2209       return false;
2210   }
2211   return true;
2212 }
2213 
2214 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
2215 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
2216 /// B, it can be used as the condition operand of a select instruction.
2217 Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B) {
2218   // Step 1: We may have peeked through bitcasts in the caller.
2219   // Exit immediately if we don't have (vector) integer types.
2220   Type *Ty = A->getType();
2221   if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
2222     return nullptr;
2223 
2224   // Step 2: We need 0 or all-1's bitmasks.
2225   if (ComputeNumSignBits(A) != Ty->getScalarSizeInBits())
2226     return nullptr;
2227 
2228   // Step 3: If B is the 'not' value of A, we have our answer.
2229   if (match(A, m_Not(m_Specific(B)))) {
2230     // If these are scalars or vectors of i1, A can be used directly.
2231     if (Ty->isIntOrIntVectorTy(1))
2232       return A;
2233     return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(Ty));
2234   }
2235 
2236   // If both operands are constants, see if the constants are inverse bitmasks.
2237   Constant *AConst, *BConst;
2238   if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
2239     if (AConst == ConstantExpr::getNot(BConst))
2240       return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
2241 
2242   // Look for more complex patterns. The 'not' op may be hidden behind various
2243   // casts. Look through sexts and bitcasts to find the booleans.
2244   Value *Cond;
2245   Value *NotB;
2246   if (match(A, m_SExt(m_Value(Cond))) &&
2247       Cond->getType()->isIntOrIntVectorTy(1) &&
2248       match(B, m_OneUse(m_Not(m_Value(NotB))))) {
2249     NotB = peekThroughBitcast(NotB, true);
2250     if (match(NotB, m_SExt(m_Specific(Cond))))
2251       return Cond;
2252   }
2253 
2254   // All scalar (and most vector) possibilities should be handled now.
2255   // Try more matches that only apply to non-splat constant vectors.
2256   if (!Ty->isVectorTy())
2257     return nullptr;
2258 
2259   // If both operands are xor'd with constants using the same sexted boolean
2260   // operand, see if the constants are inverse bitmasks.
2261   // TODO: Use ConstantExpr::getNot()?
2262   if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
2263       match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
2264       Cond->getType()->isIntOrIntVectorTy(1) &&
2265       areInverseVectorBitmasks(AConst, BConst)) {
2266     AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
2267     return Builder.CreateXor(Cond, AConst);
2268   }
2269   return nullptr;
2270 }
2271 
2272 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
2273 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
2274 Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *C, Value *B,
2275                                               Value *D) {
2276   // The potential condition of the select may be bitcasted. In that case, look
2277   // through its bitcast and the corresponding bitcast of the 'not' condition.
2278   Type *OrigType = A->getType();
2279   A = peekThroughBitcast(A, true);
2280   B = peekThroughBitcast(B, true);
2281   if (Value *Cond = getSelectCondition(A, B)) {
2282     // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
2283     // The bitcasts will either all exist or all not exist. The builder will
2284     // not create unnecessary casts if the types already match.
2285     Value *BitcastC = Builder.CreateBitCast(C, A->getType());
2286     Value *BitcastD = Builder.CreateBitCast(D, A->getType());
2287     Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
2288     return Builder.CreateBitCast(Select, OrigType);
2289   }
2290 
2291   return nullptr;
2292 }
2293 
2294 /// Fold (icmp)|(icmp) if possible.
2295 Value *InstCombinerImpl::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
2296                                        BinaryOperator &Or) {
2297   const SimplifyQuery Q = SQ.getWithInstruction(&Or);
2298 
2299   // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
2300   // if K1 and K2 are a one-bit mask.
2301   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, Or))
2302     return V;
2303 
2304   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2305   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
2306   Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
2307   auto *LHSC = dyn_cast<ConstantInt>(LHS1);
2308   auto *RHSC = dyn_cast<ConstantInt>(RHS1);
2309 
2310   // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
2311   //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
2312   // The original condition actually refers to the following two ranges:
2313   // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
2314   // We can fold these two ranges if:
2315   // 1) C1 and C2 is unsigned greater than C3.
2316   // 2) The two ranges are separated.
2317   // 3) C1 ^ C2 is one-bit mask.
2318   // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
2319   // This implies all values in the two ranges differ by exactly one bit.
2320   if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) &&
2321       PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() &&
2322       LHSC->getType() == RHSC->getType() &&
2323       LHSC->getValue() == (RHSC->getValue())) {
2324 
2325     Value *AddOpnd;
2326     ConstantInt *LAddC, *RAddC;
2327     if (match(LHS0, m_Add(m_Value(AddOpnd), m_ConstantInt(LAddC))) &&
2328         match(RHS0, m_Add(m_Specific(AddOpnd), m_ConstantInt(RAddC))) &&
2329         LAddC->getValue().ugt(LHSC->getValue()) &&
2330         RAddC->getValue().ugt(LHSC->getValue())) {
2331 
2332       APInt DiffC = LAddC->getValue() ^ RAddC->getValue();
2333       if (DiffC.isPowerOf2()) {
2334         ConstantInt *MaxAddC = nullptr;
2335         if (LAddC->getValue().ult(RAddC->getValue()))
2336           MaxAddC = RAddC;
2337         else
2338           MaxAddC = LAddC;
2339 
2340         APInt RRangeLow = -RAddC->getValue();
2341         APInt RRangeHigh = RRangeLow + LHSC->getValue();
2342         APInt LRangeLow = -LAddC->getValue();
2343         APInt LRangeHigh = LRangeLow + LHSC->getValue();
2344         APInt LowRangeDiff = RRangeLow ^ LRangeLow;
2345         APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
2346         APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
2347                                                    : RRangeLow - LRangeLow;
2348 
2349         if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
2350             RangeDiff.ugt(LHSC->getValue())) {
2351           Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC);
2352 
2353           Value *NewAnd = Builder.CreateAnd(AddOpnd, MaskC);
2354           Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC);
2355           return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC);
2356         }
2357       }
2358     }
2359   }
2360 
2361   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
2362   if (predicatesFoldable(PredL, PredR)) {
2363     if (LHS0 == RHS1 && LHS1 == RHS0)
2364       LHS->swapOperands();
2365     if (LHS0 == RHS0 && LHS1 == RHS1) {
2366       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
2367       bool IsSigned = LHS->isSigned() || RHS->isSigned();
2368       return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
2369     }
2370   }
2371 
2372   // handle (roughly):
2373   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
2374   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
2375     return V;
2376 
2377   if (LHS->hasOneUse() || RHS->hasOneUse()) {
2378     // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
2379     // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
2380     Value *A = nullptr, *B = nullptr;
2381     if (PredL == ICmpInst::ICMP_EQ && match(LHS1, m_Zero())) {
2382       B = LHS0;
2383       if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS1)
2384         A = RHS0;
2385       else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0)
2386         A = RHS1;
2387     }
2388     // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
2389     // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
2390     else if (PredR == ICmpInst::ICMP_EQ && match(RHS1, m_Zero())) {
2391       B = RHS0;
2392       if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS1)
2393         A = LHS0;
2394       else if (PredL == ICmpInst::ICMP_UGT && RHS0 == LHS0)
2395         A = LHS1;
2396     }
2397     if (A && B && B->getType()->isIntOrIntVectorTy())
2398       return Builder.CreateICmp(
2399           ICmpInst::ICMP_UGE,
2400           Builder.CreateAdd(B, Constant::getAllOnesValue(B->getType())), A);
2401   }
2402 
2403   if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, Or, Builder, Q))
2404     return V;
2405   if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, Or, Builder, Q))
2406     return V;
2407 
2408   // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
2409   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
2410     return V;
2411 
2412   // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
2413   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
2414     return V;
2415 
2416   if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder))
2417     return V;
2418 
2419   if (Value *V = foldIsPowerOf2(LHS, RHS, false /* JoinedByAnd */, Builder))
2420     return V;
2421 
2422   if (Value *X =
2423           foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/false, Q, Builder))
2424     return X;
2425   if (Value *X =
2426           foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/false, Q, Builder))
2427     return X;
2428 
2429   // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
2430   // TODO: Remove this when foldLogOpOfMaskedICmps can handle vectors.
2431   if (PredL == ICmpInst::ICMP_NE && match(LHS1, m_Zero()) &&
2432       PredR == ICmpInst::ICMP_NE && match(RHS1, m_Zero()) &&
2433       LHS0->getType()->isIntOrIntVectorTy() &&
2434       LHS0->getType() == RHS0->getType()) {
2435     Value *NewOr = Builder.CreateOr(LHS0, RHS0);
2436     return Builder.CreateICmp(PredL, NewOr,
2437                               Constant::getNullValue(NewOr->getType()));
2438   }
2439 
2440   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
2441   if (!LHSC || !RHSC)
2442     return nullptr;
2443 
2444   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
2445   //   iff C2 + CA == C1.
2446   if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) {
2447     ConstantInt *AddC;
2448     if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC))))
2449       if (RHSC->getValue() + AddC->getValue() == LHSC->getValue())
2450         return Builder.CreateICmpULE(LHS0, LHSC);
2451   }
2452 
2453   // From here on, we only handle:
2454   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
2455   if (LHS0 != RHS0)
2456     return nullptr;
2457 
2458   // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
2459   if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
2460       PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
2461       PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
2462       PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
2463     return nullptr;
2464 
2465   // We can't fold (ugt x, C) | (sgt x, C2).
2466   if (!predicatesFoldable(PredL, PredR))
2467     return nullptr;
2468 
2469   // Ensure that the larger constant is on the RHS.
2470   bool ShouldSwap;
2471   if (CmpInst::isSigned(PredL) ||
2472       (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
2473     ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
2474   else
2475     ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
2476 
2477   if (ShouldSwap) {
2478     std::swap(LHS, RHS);
2479     std::swap(LHSC, RHSC);
2480     std::swap(PredL, PredR);
2481   }
2482 
2483   // At this point, we know we have two icmp instructions
2484   // comparing a value against two constants and or'ing the result
2485   // together.  Because of the above check, we know that we only have
2486   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
2487   // icmp folding check above), that the two constants are not
2488   // equal.
2489   assert(LHSC != RHSC && "Compares not folded above?");
2490 
2491   switch (PredL) {
2492   default:
2493     llvm_unreachable("Unknown integer condition code!");
2494   case ICmpInst::ICMP_EQ:
2495     switch (PredR) {
2496     default:
2497       llvm_unreachable("Unknown integer condition code!");
2498     case ICmpInst::ICMP_EQ:
2499       // Potential folds for this case should already be handled.
2500       break;
2501     case ICmpInst::ICMP_UGT:
2502       // (X == 0 || X u> C) -> (X-1) u>= C
2503       if (LHSC->isMinValue(false))
2504         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1,
2505                                false, false);
2506       // (X == 13 | X u> 14) -> no change
2507       break;
2508     case ICmpInst::ICMP_SGT:
2509       // (X == INT_MIN || X s> C) -> (X-(INT_MIN+1)) u>= C-INT_MIN
2510       if (LHSC->isMinValue(true))
2511         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1,
2512                                true, false);
2513       // (X == 13 | X s> 14) -> no change
2514       break;
2515     }
2516     break;
2517   case ICmpInst::ICMP_ULT:
2518     switch (PredR) {
2519     default:
2520       llvm_unreachable("Unknown integer condition code!");
2521     case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
2522       // (X u< C || X == UINT_MAX) => (X-C) u>= UINT_MAX-C
2523       if (RHSC->isMaxValue(false))
2524         return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(),
2525                                false, false);
2526       break;
2527     case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
2528       assert(!RHSC->isMaxValue(false) && "Missed icmp simplification");
2529       return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1,
2530                              false, false);
2531     }
2532     break;
2533   case ICmpInst::ICMP_SLT:
2534     switch (PredR) {
2535     default:
2536       llvm_unreachable("Unknown integer condition code!");
2537     case ICmpInst::ICMP_EQ:
2538       // (X s< C || X == INT_MAX) => (X-C) u>= INT_MAX-C
2539       if (RHSC->isMaxValue(true))
2540         return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(),
2541                                true, false);
2542       // (X s< 13 | X == 14) -> no change
2543       break;
2544     case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) u> 2
2545       assert(!RHSC->isMaxValue(true) && "Missed icmp simplification");
2546       return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true,
2547                              false);
2548     }
2549     break;
2550   }
2551   return nullptr;
2552 }
2553 
2554 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2555 // here. We should standardize that construct where it is needed or choose some
2556 // other way to ensure that commutated variants of patterns are not missed.
2557 Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) {
2558   if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1),
2559                                 SQ.getWithInstruction(&I)))
2560     return replaceInstUsesWith(I, V);
2561 
2562   if (SimplifyAssociativeOrCommutative(I))
2563     return &I;
2564 
2565   if (Instruction *X = foldVectorBinop(I))
2566     return X;
2567 
2568   // See if we can simplify any instructions used by the instruction whose sole
2569   // purpose is to compute bits we don't care about.
2570   if (SimplifyDemandedInstructionBits(I))
2571     return &I;
2572 
2573   // Do this before using distributive laws to catch simple and/or/not patterns.
2574   if (Instruction *Xor = foldOrToXor(I, Builder))
2575     return Xor;
2576 
2577   // (A&B)|(A&C) -> A&(B|C) etc
2578   if (Value *V = SimplifyUsingDistributiveLaws(I))
2579     return replaceInstUsesWith(I, V);
2580 
2581   if (Value *V = SimplifyBSwap(I, Builder))
2582     return replaceInstUsesWith(I, V);
2583 
2584   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2585     return FoldedLogic;
2586 
2587   if (Instruction *BSwap = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true,
2588                                                   /*MatchBitReversals*/ false))
2589     return BSwap;
2590 
2591   if (Instruction *Funnel = matchFunnelShift(I, *this))
2592     return Funnel;
2593 
2594   if (Instruction *Concat = matchOrConcat(I, Builder))
2595     return replaceInstUsesWith(I, Concat);
2596 
2597   Value *X, *Y;
2598   const APInt *CV;
2599   if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
2600       !CV->isAllOnesValue() && MaskedValueIsZero(Y, *CV, 0, &I)) {
2601     // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
2602     // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
2603     Value *Or = Builder.CreateOr(X, Y);
2604     return BinaryOperator::CreateXor(Or, ConstantInt::get(I.getType(), *CV));
2605   }
2606 
2607   // (A & C)|(B & D)
2608   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2609   Value *A, *B, *C, *D;
2610   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
2611       match(Op1, m_And(m_Value(B), m_Value(D)))) {
2612     // (A & C1)|(B & C2)
2613     ConstantInt *C1, *C2;
2614     if (match(C, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2))) {
2615       Value *V1 = nullptr, *V2 = nullptr;
2616       if ((C1->getValue() & C2->getValue()).isNullValue()) {
2617         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2618         // iff (C1&C2) == 0 and (N&~C1) == 0
2619         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2620             ((V1 == B &&
2621               MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
2622              (V2 == B &&
2623               MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V)
2624           return BinaryOperator::CreateAnd(A,
2625                                 Builder.getInt(C1->getValue()|C2->getValue()));
2626         // Or commutes, try both ways.
2627         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2628             ((V1 == A &&
2629               MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
2630              (V2 == A &&
2631               MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V)
2632           return BinaryOperator::CreateAnd(B,
2633                                  Builder.getInt(C1->getValue()|C2->getValue()));
2634 
2635         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2636         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2637         ConstantInt *C3 = nullptr, *C4 = nullptr;
2638         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2639             (C3->getValue() & ~C1->getValue()).isNullValue() &&
2640             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2641             (C4->getValue() & ~C2->getValue()).isNullValue()) {
2642           V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2643           return BinaryOperator::CreateAnd(V2,
2644                                  Builder.getInt(C1->getValue()|C2->getValue()));
2645         }
2646       }
2647 
2648       if (C1->getValue() == ~C2->getValue()) {
2649         Value *X;
2650 
2651         // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2
2652         if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
2653           return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B);
2654         // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2
2655         if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
2656           return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A);
2657 
2658         // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2
2659         if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
2660           return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B);
2661         // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2
2662         if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
2663           return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A);
2664       }
2665     }
2666 
2667     // Don't try to form a select if it's unlikely that we'll get rid of at
2668     // least one of the operands. A select is generally more expensive than the
2669     // 'or' that it is replacing.
2670     if (Op0->hasOneUse() || Op1->hasOneUse()) {
2671       // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
2672       if (Value *V = matchSelectFromAndOr(A, C, B, D))
2673         return replaceInstUsesWith(I, V);
2674       if (Value *V = matchSelectFromAndOr(A, C, D, B))
2675         return replaceInstUsesWith(I, V);
2676       if (Value *V = matchSelectFromAndOr(C, A, B, D))
2677         return replaceInstUsesWith(I, V);
2678       if (Value *V = matchSelectFromAndOr(C, A, D, B))
2679         return replaceInstUsesWith(I, V);
2680       if (Value *V = matchSelectFromAndOr(B, D, A, C))
2681         return replaceInstUsesWith(I, V);
2682       if (Value *V = matchSelectFromAndOr(B, D, C, A))
2683         return replaceInstUsesWith(I, V);
2684       if (Value *V = matchSelectFromAndOr(D, B, A, C))
2685         return replaceInstUsesWith(I, V);
2686       if (Value *V = matchSelectFromAndOr(D, B, C, A))
2687         return replaceInstUsesWith(I, V);
2688     }
2689   }
2690 
2691   // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2692   if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2693     if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2694       return BinaryOperator::CreateOr(Op0, C);
2695 
2696   // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2697   if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2698     if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2699       return BinaryOperator::CreateOr(Op1, C);
2700 
2701   // ((B | C) & A) | B -> B | (A & C)
2702   if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
2703     return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
2704 
2705   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2706     return DeMorgan;
2707 
2708   // Canonicalize xor to the RHS.
2709   bool SwappedForXor = false;
2710   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2711     std::swap(Op0, Op1);
2712     SwappedForXor = true;
2713   }
2714 
2715   // A | ( A ^ B) -> A |  B
2716   // A | (~A ^ B) -> A | ~B
2717   // (A & B) | (A ^ B)
2718   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2719     if (Op0 == A || Op0 == B)
2720       return BinaryOperator::CreateOr(A, B);
2721 
2722     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2723         match(Op0, m_And(m_Specific(B), m_Specific(A))))
2724       return BinaryOperator::CreateOr(A, B);
2725 
2726     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2727       Value *Not = Builder.CreateNot(B, B->getName() + ".not");
2728       return BinaryOperator::CreateOr(Not, Op0);
2729     }
2730     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2731       Value *Not = Builder.CreateNot(A, A->getName() + ".not");
2732       return BinaryOperator::CreateOr(Not, Op0);
2733     }
2734   }
2735 
2736   // A | ~(A | B) -> A | ~B
2737   // A | ~(A ^ B) -> A | ~B
2738   if (match(Op1, m_Not(m_Value(A))))
2739     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2740       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2741           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2742                                B->getOpcode() == Instruction::Xor)) {
2743         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2744                                                  B->getOperand(0);
2745         Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
2746         return BinaryOperator::CreateOr(Not, Op0);
2747       }
2748 
2749   if (SwappedForXor)
2750     std::swap(Op0, Op1);
2751 
2752   {
2753     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2754     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2755     if (LHS && RHS)
2756       if (Value *Res = foldOrOfICmps(LHS, RHS, I))
2757         return replaceInstUsesWith(I, Res);
2758 
2759     // TODO: Make this recursive; it's a little tricky because an arbitrary
2760     // number of 'or' instructions might have to be created.
2761     Value *X, *Y;
2762     if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2763       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2764         if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2765           return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2766       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2767         if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2768           return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2769     }
2770     if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2771       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2772         if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2773           return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2774       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2775         if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2776           return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2777     }
2778   }
2779 
2780   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2781     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2782       if (Value *Res = foldLogicOfFCmps(LHS, RHS, false))
2783         return replaceInstUsesWith(I, Res);
2784 
2785   if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2786     return FoldedFCmps;
2787 
2788   if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
2789     return CastedOr;
2790 
2791   // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
2792   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2793       A->getType()->isIntOrIntVectorTy(1))
2794     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2795   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2796       A->getType()->isIntOrIntVectorTy(1))
2797     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2798 
2799   // Note: If we've gotten to the point of visiting the outer OR, then the
2800   // inner one couldn't be simplified.  If it was a constant, then it won't
2801   // be simplified by a later pass either, so we try swapping the inner/outer
2802   // ORs in the hopes that we'll be able to simplify it this way.
2803   // (X|C) | V --> (X|V) | C
2804   ConstantInt *CI;
2805   if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
2806       match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
2807     Value *Inner = Builder.CreateOr(A, Op1);
2808     Inner->takeName(Op0);
2809     return BinaryOperator::CreateOr(Inner, CI);
2810   }
2811 
2812   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2813   // Since this OR statement hasn't been optimized further yet, we hope
2814   // that this transformation will allow the new ORs to be optimized.
2815   {
2816     Value *X = nullptr, *Y = nullptr;
2817     if (Op0->hasOneUse() && Op1->hasOneUse() &&
2818         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2819         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2820       Value *orTrue = Builder.CreateOr(A, C);
2821       Value *orFalse = Builder.CreateOr(B, D);
2822       return SelectInst::Create(X, orTrue, orFalse);
2823     }
2824   }
2825 
2826   // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X)  --> X s> Y ? -1 : X.
2827   {
2828     Value *X, *Y;
2829     Type *Ty = I.getType();
2830     if (match(&I, m_c_Or(m_OneUse(m_AShr(
2831                              m_NSWSub(m_Value(Y), m_Value(X)),
2832                              m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
2833                          m_Deferred(X)))) {
2834       Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
2835       Value *AllOnes = ConstantInt::getAllOnesValue(Ty);
2836       return SelectInst::Create(NewICmpInst, AllOnes, X);
2837     }
2838   }
2839 
2840   if (Instruction *V =
2841           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2842     return V;
2843 
2844   CmpInst::Predicate Pred;
2845   Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
2846   // Check if the OR weakens the overflow condition for umul.with.overflow by
2847   // treating any non-zero result as overflow. In that case, we overflow if both
2848   // umul.with.overflow operands are != 0, as in that case the result can only
2849   // be 0, iff the multiplication overflows.
2850   if (match(&I,
2851             m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)),
2852                                 m_Value(Ov)),
2853                    m_CombineAnd(m_ICmp(Pred,
2854                                        m_CombineAnd(m_ExtractValue<0>(
2855                                                         m_Deferred(UMulWithOv)),
2856                                                     m_Value(Mul)),
2857                                        m_ZeroInt()),
2858                                 m_Value(MulIsNotZero)))) &&
2859       (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) &&
2860       Pred == CmpInst::ICMP_NE) {
2861     Value *A, *B;
2862     if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>(
2863                               m_Value(A), m_Value(B)))) {
2864       Value *NotNullA = Builder.CreateIsNotNull(A);
2865       Value *NotNullB = Builder.CreateIsNotNull(B);
2866       return BinaryOperator::CreateAnd(NotNullA, NotNullB);
2867     }
2868   }
2869 
2870   // (~x) | y  -->  ~(x & (~y))  iff that gets rid of inversions
2871   if (sinkNotIntoOtherHandOfAndOrOr(I))
2872     return &I;
2873 
2874   return nullptr;
2875 }
2876 
2877 /// A ^ B can be specified using other logic ops in a variety of patterns. We
2878 /// can fold these early and efficiently by morphing an existing instruction.
2879 static Instruction *foldXorToXor(BinaryOperator &I,
2880                                  InstCombiner::BuilderTy &Builder) {
2881   assert(I.getOpcode() == Instruction::Xor);
2882   Value *Op0 = I.getOperand(0);
2883   Value *Op1 = I.getOperand(1);
2884   Value *A, *B;
2885 
2886   // There are 4 commuted variants for each of the basic patterns.
2887 
2888   // (A & B) ^ (A | B) -> A ^ B
2889   // (A & B) ^ (B | A) -> A ^ B
2890   // (A | B) ^ (A & B) -> A ^ B
2891   // (A | B) ^ (B & A) -> A ^ B
2892   if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
2893                         m_c_Or(m_Deferred(A), m_Deferred(B)))))
2894     return BinaryOperator::CreateXor(A, B);
2895 
2896   // (A | ~B) ^ (~A | B) -> A ^ B
2897   // (~B | A) ^ (~A | B) -> A ^ B
2898   // (~A | B) ^ (A | ~B) -> A ^ B
2899   // (B | ~A) ^ (A | ~B) -> A ^ B
2900   if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
2901                       m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
2902     return BinaryOperator::CreateXor(A, B);
2903 
2904   // (A & ~B) ^ (~A & B) -> A ^ B
2905   // (~B & A) ^ (~A & B) -> A ^ B
2906   // (~A & B) ^ (A & ~B) -> A ^ B
2907   // (B & ~A) ^ (A & ~B) -> A ^ B
2908   if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
2909                       m_c_And(m_Not(m_Deferred(A)), m_Deferred(B)))))
2910     return BinaryOperator::CreateXor(A, B);
2911 
2912   // For the remaining cases we need to get rid of one of the operands.
2913   if (!Op0->hasOneUse() && !Op1->hasOneUse())
2914     return nullptr;
2915 
2916   // (A | B) ^ ~(A & B) -> ~(A ^ B)
2917   // (A | B) ^ ~(B & A) -> ~(A ^ B)
2918   // (A & B) ^ ~(A | B) -> ~(A ^ B)
2919   // (A & B) ^ ~(B | A) -> ~(A ^ B)
2920   // Complexity sorting ensures the not will be on the right side.
2921   if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
2922        match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
2923       (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2924        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
2925     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
2926 
2927   return nullptr;
2928 }
2929 
2930 Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
2931                                         BinaryOperator &I) {
2932   assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
2933          I.getOperand(1) == RHS && "Should be 'xor' with these operands");
2934 
2935   if (predicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2936     if (LHS->getOperand(0) == RHS->getOperand(1) &&
2937         LHS->getOperand(1) == RHS->getOperand(0))
2938       LHS->swapOperands();
2939     if (LHS->getOperand(0) == RHS->getOperand(0) &&
2940         LHS->getOperand(1) == RHS->getOperand(1)) {
2941       // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2942       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2943       unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2944       bool IsSigned = LHS->isSigned() || RHS->isSigned();
2945       return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
2946     }
2947   }
2948 
2949   // TODO: This can be generalized to compares of non-signbits using
2950   // decomposeBitTestICmp(). It could be enhanced more by using (something like)
2951   // foldLogOpOfMaskedICmps().
2952   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2953   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
2954   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
2955   if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
2956       LHS0->getType() == RHS0->getType() &&
2957       LHS0->getType()->isIntOrIntVectorTy()) {
2958     // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
2959     // (X <  0) ^ (Y <  0) --> (X ^ Y) < 0
2960     if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2961          PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) ||
2962         (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2963          PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) {
2964       Value *Zero = ConstantInt::getNullValue(LHS0->getType());
2965       return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero);
2966     }
2967     // (X > -1) ^ (Y <  0) --> (X ^ Y) > -1
2968     // (X <  0) ^ (Y > -1) --> (X ^ Y) > -1
2969     if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2970          PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) ||
2971         (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2972          PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) {
2973       Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType());
2974       return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne);
2975     }
2976   }
2977 
2978   // Instead of trying to imitate the folds for and/or, decompose this 'xor'
2979   // into those logic ops. That is, try to turn this into an and-of-icmps
2980   // because we have many folds for that pattern.
2981   //
2982   // This is based on a truth table definition of xor:
2983   // X ^ Y --> (X | Y) & !(X & Y)
2984   if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
2985     // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
2986     // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
2987     if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
2988       // TODO: Independently handle cases where the 'and' side is a constant.
2989       ICmpInst *X = nullptr, *Y = nullptr;
2990       if (OrICmp == LHS && AndICmp == RHS) {
2991         // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS  --> X & !Y
2992         X = LHS;
2993         Y = RHS;
2994       }
2995       if (OrICmp == RHS && AndICmp == LHS) {
2996         // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS  --> !Y & X
2997         X = RHS;
2998         Y = LHS;
2999       }
3000       if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
3001         // Invert the predicate of 'Y', thus inverting its output.
3002         Y->setPredicate(Y->getInversePredicate());
3003         // So, are there other uses of Y?
3004         if (!Y->hasOneUse()) {
3005           // We need to adapt other uses of Y though. Get a value that matches
3006           // the original value of Y before inversion. While this increases
3007           // immediate instruction count, we have just ensured that all the
3008           // users are freely-invertible, so that 'not' *will* get folded away.
3009           BuilderTy::InsertPointGuard Guard(Builder);
3010           // Set insertion point to right after the Y.
3011           Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
3012           Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3013           // Replace all uses of Y (excluding the one in NotY!) with NotY.
3014           Worklist.pushUsersToWorkList(*Y);
3015           Y->replaceUsesWithIf(NotY,
3016                                [NotY](Use &U) { return U.getUser() != NotY; });
3017         }
3018         // All done.
3019         return Builder.CreateAnd(LHS, RHS);
3020       }
3021     }
3022   }
3023 
3024   return nullptr;
3025 }
3026 
3027 /// If we have a masked merge, in the canonical form of:
3028 /// (assuming that A only has one use.)
3029 ///   |        A  |  |B|
3030 ///   ((x ^ y) & M) ^ y
3031 ///    |  D  |
3032 /// * If M is inverted:
3033 ///      |  D  |
3034 ///     ((x ^ y) & ~M) ^ y
3035 ///   We can canonicalize by swapping the final xor operand
3036 ///   to eliminate the 'not' of the mask.
3037 ///     ((x ^ y) & M) ^ x
3038 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
3039 ///   because that shortens the dependency chain and improves analysis:
3040 ///     (x & M) | (y & ~M)
3041 static Instruction *visitMaskedMerge(BinaryOperator &I,
3042                                      InstCombiner::BuilderTy &Builder) {
3043   Value *B, *X, *D;
3044   Value *M;
3045   if (!match(&I, m_c_Xor(m_Value(B),
3046                          m_OneUse(m_c_And(
3047                              m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
3048                                           m_Value(D)),
3049                              m_Value(M))))))
3050     return nullptr;
3051 
3052   Value *NotM;
3053   if (match(M, m_Not(m_Value(NotM)))) {
3054     // De-invert the mask and swap the value in B part.
3055     Value *NewA = Builder.CreateAnd(D, NotM);
3056     return BinaryOperator::CreateXor(NewA, X);
3057   }
3058 
3059   Constant *C;
3060   if (D->hasOneUse() && match(M, m_Constant(C))) {
3061     // Propagating undef is unsafe. Clamp undef elements to -1.
3062     Type *EltTy = C->getType()->getScalarType();
3063     C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3064     // Unfold.
3065     Value *LHS = Builder.CreateAnd(X, C);
3066     Value *NotC = Builder.CreateNot(C);
3067     Value *RHS = Builder.CreateAnd(B, NotC);
3068     return BinaryOperator::CreateOr(LHS, RHS);
3069   }
3070 
3071   return nullptr;
3072 }
3073 
3074 // Transform
3075 //   ~(x ^ y)
3076 // into:
3077 //   (~x) ^ y
3078 // or into
3079 //   x ^ (~y)
3080 static Instruction *sinkNotIntoXor(BinaryOperator &I,
3081                                    InstCombiner::BuilderTy &Builder) {
3082   Value *X, *Y;
3083   // FIXME: one-use check is not needed in general, but currently we are unable
3084   // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
3085   if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
3086     return nullptr;
3087 
3088   // We only want to do the transform if it is free to do.
3089   if (InstCombiner::isFreeToInvert(X, X->hasOneUse())) {
3090     // Ok, good.
3091   } else if (InstCombiner::isFreeToInvert(Y, Y->hasOneUse())) {
3092     std::swap(X, Y);
3093   } else
3094     return nullptr;
3095 
3096   Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
3097   return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
3098 }
3099 
3100 // Transform
3101 //   z = (~x) &/| y
3102 // into:
3103 //   z = ~(x |/& (~y))
3104 // iff y is free to invert and all uses of z can be freely updated.
3105 bool InstCombinerImpl::sinkNotIntoOtherHandOfAndOrOr(BinaryOperator &I) {
3106   Instruction::BinaryOps NewOpc;
3107   switch (I.getOpcode()) {
3108   case Instruction::And:
3109     NewOpc = Instruction::Or;
3110     break;
3111   case Instruction::Or:
3112     NewOpc = Instruction::And;
3113     break;
3114   default:
3115     return false;
3116   };
3117 
3118   Value *X, *Y;
3119   if (!match(&I, m_c_BinOp(m_Not(m_Value(X)), m_Value(Y))))
3120     return false;
3121 
3122   // Will we be able to fold the `not` into Y eventually?
3123   if (!InstCombiner::isFreeToInvert(Y, Y->hasOneUse()))
3124     return false;
3125 
3126   // And can our users be adapted?
3127   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
3128     return false;
3129 
3130   Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3131   Value *NewBinOp =
3132       BinaryOperator::Create(NewOpc, X, NotY, I.getName() + ".not");
3133   Builder.Insert(NewBinOp);
3134   replaceInstUsesWith(I, NewBinOp);
3135   // We can not just create an outer `not`, it will most likely be immediately
3136   // folded back, reconstructing our initial pattern, and causing an
3137   // infinite combine loop, so immediately manually fold it away.
3138   freelyInvertAllUsersOf(NewBinOp);
3139   return true;
3140 }
3141 
3142 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
3143 // here. We should standardize that construct where it is needed or choose some
3144 // other way to ensure that commutated variants of patterns are not missed.
3145 Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) {
3146   if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1),
3147                                  SQ.getWithInstruction(&I)))
3148     return replaceInstUsesWith(I, V);
3149 
3150   if (SimplifyAssociativeOrCommutative(I))
3151     return &I;
3152 
3153   if (Instruction *X = foldVectorBinop(I))
3154     return X;
3155 
3156   if (Instruction *NewXor = foldXorToXor(I, Builder))
3157     return NewXor;
3158 
3159   // (A&B)^(A&C) -> A&(B^C) etc
3160   if (Value *V = SimplifyUsingDistributiveLaws(I))
3161     return replaceInstUsesWith(I, V);
3162 
3163   // See if we can simplify any instructions used by the instruction whose sole
3164   // purpose is to compute bits we don't care about.
3165   if (SimplifyDemandedInstructionBits(I))
3166     return &I;
3167 
3168   if (Value *V = SimplifyBSwap(I, Builder))
3169     return replaceInstUsesWith(I, V);
3170 
3171   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3172   Type *Ty = I.getType();
3173 
3174   // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
3175   // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
3176   // calls in there are unnecessary as SimplifyDemandedInstructionBits should
3177   // have already taken care of those cases.
3178   Value *M;
3179   if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
3180                         m_c_And(m_Deferred(M), m_Value()))))
3181     return BinaryOperator::CreateOr(Op0, Op1);
3182 
3183   // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
3184   Value *X, *Y;
3185 
3186   // We must eliminate the and/or (one-use) for these transforms to not increase
3187   // the instruction count.
3188   // ~(~X & Y) --> (X | ~Y)
3189   // ~(Y & ~X) --> (X | ~Y)
3190   if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) {
3191     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3192     return BinaryOperator::CreateOr(X, NotY);
3193   }
3194   // ~(~X | Y) --> (X & ~Y)
3195   // ~(Y | ~X) --> (X & ~Y)
3196   if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) {
3197     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3198     return BinaryOperator::CreateAnd(X, NotY);
3199   }
3200 
3201   if (Instruction *Xor = visitMaskedMerge(I, Builder))
3202     return Xor;
3203 
3204   // Is this a 'not' (~) fed by a binary operator?
3205   BinaryOperator *NotVal;
3206   if (match(&I, m_Not(m_BinOp(NotVal)))) {
3207     if (NotVal->getOpcode() == Instruction::And ||
3208         NotVal->getOpcode() == Instruction::Or) {
3209       // Apply DeMorgan's Law when inverts are free:
3210       // ~(X & Y) --> (~X | ~Y)
3211       // ~(X | Y) --> (~X & ~Y)
3212       if (isFreeToInvert(NotVal->getOperand(0),
3213                          NotVal->getOperand(0)->hasOneUse()) &&
3214           isFreeToInvert(NotVal->getOperand(1),
3215                          NotVal->getOperand(1)->hasOneUse())) {
3216         Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
3217         Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
3218         if (NotVal->getOpcode() == Instruction::And)
3219           return BinaryOperator::CreateOr(NotX, NotY);
3220         return BinaryOperator::CreateAnd(NotX, NotY);
3221       }
3222     }
3223 
3224     // ~(~X >>s Y) --> (X >>s Y)
3225     if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
3226       return BinaryOperator::CreateAShr(X, Y);
3227 
3228     // If we are inverting a right-shifted constant, we may be able to eliminate
3229     // the 'not' by inverting the constant and using the opposite shift type.
3230     // Canonicalization rules ensure that only a negative constant uses 'ashr',
3231     // but we must check that in case that transform has not fired yet.
3232 
3233     // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
3234     Constant *C;
3235     if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
3236         match(C, m_Negative())) {
3237       // We matched a negative constant, so propagating undef is unsafe.
3238       // Clamp undef elements to -1.
3239       Type *EltTy = Ty->getScalarType();
3240       C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3241       return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
3242     }
3243 
3244     // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
3245     if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
3246         match(C, m_NonNegative())) {
3247       // We matched a non-negative constant, so propagating undef is unsafe.
3248       // Clamp undef elements to 0.
3249       Type *EltTy = Ty->getScalarType();
3250       C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy));
3251       return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
3252     }
3253 
3254     // ~(X + C) --> ~C - X
3255     if (match(NotVal, m_c_Add(m_Value(X), m_ImmConstant(C))))
3256       return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X);
3257 
3258     // ~(X - Y) --> ~X + Y
3259     // FIXME: is it really beneficial to sink the `not` here?
3260     if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
3261       if (isa<Constant>(X) || NotVal->hasOneUse())
3262         return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
3263 
3264     // ~(~X + Y) --> X - Y
3265     if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
3266       return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
3267                                                    NotVal);
3268   }
3269 
3270   // Use DeMorgan and reassociation to eliminate a 'not' op.
3271   Constant *C1;
3272   if (match(Op1, m_Constant(C1))) {
3273     Constant *C2;
3274     if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
3275       // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
3276       Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
3277       return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
3278     }
3279     if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
3280       // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
3281       Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
3282       return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
3283     }
3284   }
3285 
3286   // not (cmp A, B) = !cmp A, B
3287   CmpInst::Predicate Pred;
3288   if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) {
3289     cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred));
3290     return replaceInstUsesWith(I, Op0);
3291   }
3292 
3293   {
3294     const APInt *RHSC;
3295     if (match(Op1, m_APInt(RHSC))) {
3296       Value *X;
3297       const APInt *C;
3298       // (C - X) ^ signmaskC --> (C + signmaskC) - X
3299       if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
3300         return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
3301 
3302       // (X + C) ^ signmaskC --> X + (C + signmaskC)
3303       if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
3304         return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
3305 
3306       // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0
3307       if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
3308           MaskedValueIsZero(X, *C, 0, &I))
3309         return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
3310 
3311       // If RHSC is inverting the remaining bits of shifted X,
3312       // canonicalize to a 'not' before the shift to help SCEV and codegen:
3313       // (X << C) ^ RHSC --> ~X << C
3314       if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
3315           *RHSC == APInt::getAllOnesValue(Ty->getScalarSizeInBits()).shl(*C)) {
3316         Value *NotX = Builder.CreateNot(X);
3317         return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
3318       }
3319       // (X >>u C) ^ RHSC --> ~X >>u C
3320       if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
3321           *RHSC == APInt::getAllOnesValue(Ty->getScalarSizeInBits()).lshr(*C)) {
3322         Value *NotX = Builder.CreateNot(X);
3323         return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
3324       }
3325       // TODO: We could handle 'ashr' here as well. That would be matching
3326       //       a 'not' op and moving it before the shift. Doing that requires
3327       //       preventing the inverse fold in canShiftBinOpWithConstantRHS().
3328     }
3329   }
3330 
3331   // FIXME: This should not be limited to scalar (pull into APInt match above).
3332   {
3333     Value *X;
3334     ConstantInt *C1, *C2, *C3;
3335     // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
3336     if (match(Op1, m_ConstantInt(C3)) &&
3337         match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)),
3338                           m_ConstantInt(C2))) &&
3339         Op0->hasOneUse()) {
3340       // fold (C1 >> C2) ^ C3
3341       APInt FoldConst = C1->getValue().lshr(C2->getValue());
3342       FoldConst ^= C3->getValue();
3343       // Prepare the two operands.
3344       auto *Opnd0 = cast<Instruction>(Builder.CreateLShr(X, C2));
3345       Opnd0->takeName(cast<Instruction>(Op0));
3346       Opnd0->setDebugLoc(I.getDebugLoc());
3347       return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
3348     }
3349   }
3350 
3351   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
3352     return FoldedLogic;
3353 
3354   // Y ^ (X | Y) --> X & ~Y
3355   // Y ^ (Y | X) --> X & ~Y
3356   if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
3357     return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
3358   // (X | Y) ^ Y --> X & ~Y
3359   // (Y | X) ^ Y --> X & ~Y
3360   if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
3361     return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
3362 
3363   // Y ^ (X & Y) --> ~X & Y
3364   // Y ^ (Y & X) --> ~X & Y
3365   if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
3366     return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
3367   // (X & Y) ^ Y --> ~X & Y
3368   // (Y & X) ^ Y --> ~X & Y
3369   // Canonical form is (X & C) ^ C; don't touch that.
3370   // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
3371   //       be fixed to prefer that (otherwise we get infinite looping).
3372   if (!match(Op1, m_Constant()) &&
3373       match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
3374     return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
3375 
3376   Value *A, *B, *C;
3377   // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
3378   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
3379                         m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
3380       return BinaryOperator::CreateXor(
3381           Builder.CreateAnd(Builder.CreateNot(A), C), B);
3382 
3383   // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
3384   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
3385                         m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
3386       return BinaryOperator::CreateXor(
3387           Builder.CreateAnd(Builder.CreateNot(B), C), A);
3388 
3389   // (A & B) ^ (A ^ B) -> (A | B)
3390   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
3391       match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
3392     return BinaryOperator::CreateOr(A, B);
3393   // (A ^ B) ^ (A & B) -> (A | B)
3394   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
3395       match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
3396     return BinaryOperator::CreateOr(A, B);
3397 
3398   // (A & ~B) ^ ~A -> ~(A & B)
3399   // (~B & A) ^ ~A -> ~(A & B)
3400   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
3401       match(Op1, m_Not(m_Specific(A))))
3402     return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
3403 
3404   // (~A & B) ^ A --> A | B -- There are 4 commuted variants.
3405   if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A))))
3406     return BinaryOperator::CreateOr(A, B);
3407 
3408   // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants.
3409   // TODO: Loosen one-use restriction if common operand is a constant.
3410   Value *D;
3411   if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
3412       match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
3413     if (B == C || B == D)
3414       std::swap(A, B);
3415     if (A == C)
3416       std::swap(C, D);
3417     if (A == D) {
3418       Value *NotA = Builder.CreateNot(A);
3419       return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
3420     }
3421   }
3422 
3423   if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
3424     if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
3425       if (Value *V = foldXorOfICmps(LHS, RHS, I))
3426         return replaceInstUsesWith(I, V);
3427 
3428   if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
3429     return CastedXor;
3430 
3431   // Canonicalize a shifty way to code absolute value to the common pattern.
3432   // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
3433   // We're relying on the fact that we only do this transform when the shift has
3434   // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
3435   // instructions).
3436   if (Op0->hasNUses(2))
3437     std::swap(Op0, Op1);
3438 
3439   const APInt *ShAmt;
3440   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
3441       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
3442       match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
3443     // B = ashr i32 A, 31 ; smear the sign bit
3444     // xor (add A, B), B  ; add -1 and flip bits if negative
3445     // --> (A < 0) ? -A : A
3446     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
3447     // Copy the nuw/nsw flags from the add to the negate.
3448     auto *Add = cast<BinaryOperator>(Op0);
3449     Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
3450                                    Add->hasNoSignedWrap());
3451     return SelectInst::Create(Cmp, Neg, A);
3452   }
3453 
3454   // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
3455   //
3456   //   %notx = xor i32 %x, -1
3457   //   %cmp1 = icmp sgt i32 %notx, %y
3458   //   %smax = select i1 %cmp1, i32 %notx, i32 %y
3459   //   %res = xor i32 %smax, -1
3460   // =>
3461   //   %noty = xor i32 %y, -1
3462   //   %cmp2 = icmp slt %x, %noty
3463   //   %res = select i1 %cmp2, i32 %x, i32 %noty
3464   //
3465   // Same is applicable for smin/umax/umin.
3466   if (match(Op1, m_AllOnes()) && Op0->hasOneUse()) {
3467     Value *LHS, *RHS;
3468     SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor;
3469     if (SelectPatternResult::isMinOrMax(SPF)) {
3470       // It's possible we get here before the not has been simplified, so make
3471       // sure the input to the not isn't freely invertible.
3472       if (match(LHS, m_Not(m_Value(X))) && !isFreeToInvert(X, X->hasOneUse())) {
3473         Value *NotY = Builder.CreateNot(RHS);
3474         return SelectInst::Create(
3475             Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY);
3476       }
3477 
3478       // It's possible we get here before the not has been simplified, so make
3479       // sure the input to the not isn't freely invertible.
3480       if (match(RHS, m_Not(m_Value(Y))) && !isFreeToInvert(Y, Y->hasOneUse())) {
3481         Value *NotX = Builder.CreateNot(LHS);
3482         return SelectInst::Create(
3483             Builder.CreateICmp(getInverseMinMaxPred(SPF), NotX, Y), NotX, Y);
3484       }
3485 
3486       // If both sides are freely invertible, then we can get rid of the xor
3487       // completely.
3488       if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
3489           isFreeToInvert(RHS, !RHS->hasNUsesOrMore(3))) {
3490         Value *NotLHS = Builder.CreateNot(LHS);
3491         Value *NotRHS = Builder.CreateNot(RHS);
3492         return SelectInst::Create(
3493             Builder.CreateICmp(getInverseMinMaxPred(SPF), NotLHS, NotRHS),
3494             NotLHS, NotRHS);
3495       }
3496     }
3497 
3498     // Pull 'not' into operands of select if both operands are one-use compares
3499     // or one is one-use compare and the other one is a constant.
3500     // Inverting the predicates eliminates the 'not' operation.
3501     // Example:
3502     //   not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
3503     //     select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
3504     //   not (select ?, (cmp TPred, ?, ?), true -->
3505     //     select ?, (cmp InvTPred, ?, ?), false
3506     if (auto *Sel = dyn_cast<SelectInst>(Op0)) {
3507       Value *TV = Sel->getTrueValue();
3508       Value *FV = Sel->getFalseValue();
3509       auto *CmpT = dyn_cast<CmpInst>(TV);
3510       auto *CmpF = dyn_cast<CmpInst>(FV);
3511       bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV);
3512       bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV);
3513       if (InvertibleT && InvertibleF) {
3514         if (CmpT)
3515           CmpT->setPredicate(CmpT->getInversePredicate());
3516         else
3517           Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV)));
3518         if (CmpF)
3519           CmpF->setPredicate(CmpF->getInversePredicate());
3520         else
3521           Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV)));
3522         return replaceInstUsesWith(I, Sel);
3523       }
3524     }
3525   }
3526 
3527   if (Instruction *NewXor = sinkNotIntoXor(I, Builder))
3528     return NewXor;
3529 
3530   // Otherwise, if all else failed, try to hoist the xor-by-constant:
3531   //   (X ^ C) ^ Y --> (X ^ Y) ^ C
3532   // Just like we do in other places, we completely avoid the fold
3533   // for constantexprs, at least to avoid endless combine loop.
3534   if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X),
3535                                                     m_Unless(m_ConstantExpr())),
3536                                        m_ImmConstant(C1))),
3537                         m_Value(Y))))
3538     return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1);
3539 
3540   return nullptr;
3541 }
3542