1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/InstCombine/InstCombiner.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); } 86 87 const APFloat *getFpValPtr() const { 88 return reinterpret_cast<const APFloat *>(&FpValBuf); 89 } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFNeg(Value *V); 199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 201 202 // Debugging stuff are clustered here. 203 #ifndef NDEBUG 204 unsigned CreateInstrNum; 205 void initCreateInstNum() { CreateInstrNum = 0; } 206 void incCreateInstNum() { CreateInstrNum++; } 207 #else 208 void initCreateInstNum() {} 209 void incCreateInstNum() {} 210 #endif 211 212 InstCombiner::BuilderTy &Builder; 213 Instruction *Instr = nullptr; 214 }; 215 216 } // end anonymous namespace 217 218 //===----------------------------------------------------------------------===// 219 // 220 // Implementation of 221 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 222 // 223 //===----------------------------------------------------------------------===// 224 FAddendCoef::~FAddendCoef() { 225 if (BufHasFpVal) 226 getFpValPtr()->~APFloat(); 227 } 228 229 void FAddendCoef::set(const APFloat& C) { 230 APFloat *P = getFpValPtr(); 231 232 if (isInt()) { 233 // As the buffer is meanless byte stream, we cannot call 234 // APFloat::operator=(). 235 new(P) APFloat(C); 236 } else 237 *P = C; 238 239 IsFp = BufHasFpVal = true; 240 } 241 242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 243 if (!isInt()) 244 return; 245 246 APFloat *P = getFpValPtr(); 247 if (IntVal > 0) 248 new(P) APFloat(Sem, IntVal); 249 else { 250 new(P) APFloat(Sem, 0 - IntVal); 251 P->changeSign(); 252 } 253 IsFp = BufHasFpVal = true; 254 } 255 256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 257 if (Val >= 0) 258 return APFloat(Sem, Val); 259 260 APFloat T(Sem, 0 - Val); 261 T.changeSign(); 262 263 return T; 264 } 265 266 void FAddendCoef::operator=(const FAddendCoef &That) { 267 if (That.isInt()) 268 set(That.IntVal); 269 else 270 set(That.getFpVal()); 271 } 272 273 void FAddendCoef::operator+=(const FAddendCoef &That) { 274 RoundingMode RndMode = RoundingMode::NearestTiesToEven; 275 if (isInt() == That.isInt()) { 276 if (isInt()) 277 IntVal += That.IntVal; 278 else 279 getFpVal().add(That.getFpVal(), RndMode); 280 return; 281 } 282 283 if (isInt()) { 284 const APFloat &T = That.getFpVal(); 285 convertToFpType(T.getSemantics()); 286 getFpVal().add(T, RndMode); 287 return; 288 } 289 290 APFloat &T = getFpVal(); 291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 292 } 293 294 void FAddendCoef::operator*=(const FAddendCoef &That) { 295 if (That.isOne()) 296 return; 297 298 if (That.isMinusOne()) { 299 negate(); 300 return; 301 } 302 303 if (isInt() && That.isInt()) { 304 int Res = IntVal * (int)That.IntVal; 305 assert(!insaneIntVal(Res) && "Insane int value"); 306 IntVal = Res; 307 return; 308 } 309 310 const fltSemantics &Semantic = 311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 312 313 if (isInt()) 314 convertToFpType(Semantic); 315 APFloat &F0 = getFpVal(); 316 317 if (That.isInt()) 318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 319 APFloat::rmNearestTiesToEven); 320 else 321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 322 } 323 324 void FAddendCoef::negate() { 325 if (isInt()) 326 IntVal = 0 - IntVal; 327 else 328 getFpVal().changeSign(); 329 } 330 331 Value *FAddendCoef::getValue(Type *Ty) const { 332 return isInt() ? 333 ConstantFP::get(Ty, float(IntVal)) : 334 ConstantFP::get(Ty->getContext(), getFpVal()); 335 } 336 337 // The definition of <Val> Addends 338 // ========================================= 339 // A + B <1, A>, <1,B> 340 // A - B <1, A>, <1,B> 341 // 0 - B <-1, B> 342 // C * A, <C, A> 343 // A + C <1, A> <C, NULL> 344 // 0 +/- 0 <0, NULL> (corner case) 345 // 346 // Legend: A and B are not constant, C is constant 347 unsigned FAddend::drillValueDownOneStep 348 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 349 Instruction *I = nullptr; 350 if (!Val || !(I = dyn_cast<Instruction>(Val))) 351 return 0; 352 353 unsigned Opcode = I->getOpcode(); 354 355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 356 ConstantFP *C0, *C1; 357 Value *Opnd0 = I->getOperand(0); 358 Value *Opnd1 = I->getOperand(1); 359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 360 Opnd0 = nullptr; 361 362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 363 Opnd1 = nullptr; 364 365 if (Opnd0) { 366 if (!C0) 367 Addend0.set(1, Opnd0); 368 else 369 Addend0.set(C0, nullptr); 370 } 371 372 if (Opnd1) { 373 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 374 if (!C1) 375 Addend.set(1, Opnd1); 376 else 377 Addend.set(C1, nullptr); 378 if (Opcode == Instruction::FSub) 379 Addend.negate(); 380 } 381 382 if (Opnd0 || Opnd1) 383 return Opnd0 && Opnd1 ? 2 : 1; 384 385 // Both operands are zero. Weird! 386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 387 return 1; 388 } 389 390 if (I->getOpcode() == Instruction::FMul) { 391 Value *V0 = I->getOperand(0); 392 Value *V1 = I->getOperand(1); 393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 394 Addend0.set(C, V1); 395 return 1; 396 } 397 398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 399 Addend0.set(C, V0); 400 return 1; 401 } 402 } 403 404 return 0; 405 } 406 407 // Try to break *this* addend into two addends. e.g. Suppose this addend is 408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 409 // i.e. <2.3, X> and <2.3, Y>. 410 unsigned FAddend::drillAddendDownOneStep 411 (FAddend &Addend0, FAddend &Addend1) const { 412 if (isConstant()) 413 return 0; 414 415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 416 if (!BreakNum || Coeff.isOne()) 417 return BreakNum; 418 419 Addend0.Scale(Coeff); 420 421 if (BreakNum == 2) 422 Addend1.Scale(Coeff); 423 424 return BreakNum; 425 } 426 427 Value *FAddCombine::simplify(Instruction *I) { 428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 429 "Expected 'reassoc'+'nsz' instruction"); 430 431 // Currently we are not able to handle vector type. 432 if (I->getType()->isVectorTy()) 433 return nullptr; 434 435 assert((I->getOpcode() == Instruction::FAdd || 436 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 437 438 // Save the instruction before calling other member-functions. 439 Instr = I; 440 441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 442 443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 444 445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 446 unsigned Opnd0_ExpNum = 0; 447 unsigned Opnd1_ExpNum = 0; 448 449 if (!Opnd0.isConstant()) 450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 451 452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 453 if (OpndNum == 2 && !Opnd1.isConstant()) 454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 455 456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 457 if (Opnd0_ExpNum && Opnd1_ExpNum) { 458 AddendVect AllOpnds; 459 AllOpnds.push_back(&Opnd0_0); 460 AllOpnds.push_back(&Opnd1_0); 461 if (Opnd0_ExpNum == 2) 462 AllOpnds.push_back(&Opnd0_1); 463 if (Opnd1_ExpNum == 2) 464 AllOpnds.push_back(&Opnd1_1); 465 466 // Compute instruction quota. We should save at least one instruction. 467 unsigned InstQuota = 0; 468 469 Value *V0 = I->getOperand(0); 470 Value *V1 = I->getOperand(1); 471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 473 474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 475 return R; 476 } 477 478 if (OpndNum != 2) { 479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 480 // splitted into two addends, say "V = X - Y", the instruction would have 481 // been optimized into "I = Y - X" in the previous steps. 482 // 483 const FAddendCoef &CE = Opnd0.getCoef(); 484 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 485 } 486 487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 488 if (Opnd1_ExpNum) { 489 AddendVect AllOpnds; 490 AllOpnds.push_back(&Opnd0); 491 AllOpnds.push_back(&Opnd1_0); 492 if (Opnd1_ExpNum == 2) 493 AllOpnds.push_back(&Opnd1_1); 494 495 if (Value *R = simplifyFAdd(AllOpnds, 1)) 496 return R; 497 } 498 499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 500 if (Opnd0_ExpNum) { 501 AddendVect AllOpnds; 502 AllOpnds.push_back(&Opnd1); 503 AllOpnds.push_back(&Opnd0_0); 504 if (Opnd0_ExpNum == 2) 505 AllOpnds.push_back(&Opnd0_1); 506 507 if (Value *R = simplifyFAdd(AllOpnds, 1)) 508 return R; 509 } 510 511 return nullptr; 512 } 513 514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 515 unsigned AddendNum = Addends.size(); 516 assert(AddendNum <= 4 && "Too many addends"); 517 518 // For saving intermediate results; 519 unsigned NextTmpIdx = 0; 520 FAddend TmpResult[3]; 521 522 // Simplified addends are placed <SimpVect>. 523 AddendVect SimpVect; 524 525 // The outer loop works on one symbolic-value at a time. Suppose the input 526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 527 // The symbolic-values will be processed in this order: x, y, z. 528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 529 530 const FAddend *ThisAddend = Addends[SymIdx]; 531 if (!ThisAddend) { 532 // This addend was processed before. 533 continue; 534 } 535 536 Value *Val = ThisAddend->getSymVal(); 537 538 // If the resulting expr has constant-addend, this constant-addend is 539 // desirable to reside at the top of the resulting expression tree. Placing 540 // constant close to super-expr(s) will potentially reveal some 541 // optimization opportunities in super-expr(s). Here we do not implement 542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative 543 // call later. 544 545 unsigned StartIdx = SimpVect.size(); 546 SimpVect.push_back(ThisAddend); 547 548 // The inner loop collects addends sharing same symbolic-value, and these 549 // addends will be later on folded into a single addend. Following above 550 // example, if the symbolic value "y" is being processed, the inner loop 551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 552 // be later on folded into "<b1+b2, y>". 553 for (unsigned SameSymIdx = SymIdx + 1; 554 SameSymIdx < AddendNum; SameSymIdx++) { 555 const FAddend *T = Addends[SameSymIdx]; 556 if (T && T->getSymVal() == Val) { 557 // Set null such that next iteration of the outer loop will not process 558 // this addend again. 559 Addends[SameSymIdx] = nullptr; 560 SimpVect.push_back(T); 561 } 562 } 563 564 // If multiple addends share same symbolic value, fold them together. 565 if (StartIdx + 1 != SimpVect.size()) { 566 FAddend &R = TmpResult[NextTmpIdx ++]; 567 R = *SimpVect[StartIdx]; 568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 569 R += *SimpVect[Idx]; 570 571 // Pop all addends being folded and push the resulting folded addend. 572 SimpVect.resize(StartIdx); 573 if (!R.isZero()) { 574 SimpVect.push_back(&R); 575 } 576 } 577 } 578 579 assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access"); 580 581 Value *Result; 582 if (!SimpVect.empty()) 583 Result = createNaryFAdd(SimpVect, InstrQuota); 584 else { 585 // The addition is folded to 0.0. 586 Result = ConstantFP::get(Instr->getType(), 0.0); 587 } 588 589 return Result; 590 } 591 592 Value *FAddCombine::createNaryFAdd 593 (const AddendVect &Opnds, unsigned InstrQuota) { 594 assert(!Opnds.empty() && "Expect at least one addend"); 595 596 // Step 1: Check if the # of instructions needed exceeds the quota. 597 598 unsigned InstrNeeded = calcInstrNumber(Opnds); 599 if (InstrNeeded > InstrQuota) 600 return nullptr; 601 602 initCreateInstNum(); 603 604 // step 2: Emit the N-ary addition. 605 // Note that at most three instructions are involved in Fadd-InstCombine: the 606 // addition in question, and at most two neighboring instructions. 607 // The resulting optimized addition should have at least one less instruction 608 // than the original addition expression tree. This implies that the resulting 609 // N-ary addition has at most two instructions, and we don't need to worry 610 // about tree-height when constructing the N-ary addition. 611 612 Value *LastVal = nullptr; 613 bool LastValNeedNeg = false; 614 615 // Iterate the addends, creating fadd/fsub using adjacent two addends. 616 for (const FAddend *Opnd : Opnds) { 617 bool NeedNeg; 618 Value *V = createAddendVal(*Opnd, NeedNeg); 619 if (!LastVal) { 620 LastVal = V; 621 LastValNeedNeg = NeedNeg; 622 continue; 623 } 624 625 if (LastValNeedNeg == NeedNeg) { 626 LastVal = createFAdd(LastVal, V); 627 continue; 628 } 629 630 if (LastValNeedNeg) 631 LastVal = createFSub(V, LastVal); 632 else 633 LastVal = createFSub(LastVal, V); 634 635 LastValNeedNeg = false; 636 } 637 638 if (LastValNeedNeg) { 639 LastVal = createFNeg(LastVal); 640 } 641 642 #ifndef NDEBUG 643 assert(CreateInstrNum == InstrNeeded && 644 "Inconsistent in instruction numbers"); 645 #endif 646 647 return LastVal; 648 } 649 650 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 651 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 652 if (Instruction *I = dyn_cast<Instruction>(V)) 653 createInstPostProc(I); 654 return V; 655 } 656 657 Value *FAddCombine::createFNeg(Value *V) { 658 Value *NewV = Builder.CreateFNeg(V); 659 if (Instruction *I = dyn_cast<Instruction>(NewV)) 660 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 661 return NewV; 662 } 663 664 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 665 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 666 if (Instruction *I = dyn_cast<Instruction>(V)) 667 createInstPostProc(I); 668 return V; 669 } 670 671 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 672 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 673 if (Instruction *I = dyn_cast<Instruction>(V)) 674 createInstPostProc(I); 675 return V; 676 } 677 678 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 679 NewInstr->setDebugLoc(Instr->getDebugLoc()); 680 681 // Keep track of the number of instruction created. 682 if (!NoNumber) 683 incCreateInstNum(); 684 685 // Propagate fast-math flags 686 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 687 } 688 689 // Return the number of instruction needed to emit the N-ary addition. 690 // NOTE: Keep this function in sync with createAddendVal(). 691 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 692 unsigned OpndNum = Opnds.size(); 693 unsigned InstrNeeded = OpndNum - 1; 694 695 // Adjust the number of instructions needed to emit the N-ary add. 696 for (const FAddend *Opnd : Opnds) { 697 if (Opnd->isConstant()) 698 continue; 699 700 // The constant check above is really for a few special constant 701 // coefficients. 702 if (isa<UndefValue>(Opnd->getSymVal())) 703 continue; 704 705 const FAddendCoef &CE = Opnd->getCoef(); 706 // Let the addend be "c * x". If "c == +/-1", the value of the addend 707 // is immediately available; otherwise, it needs exactly one instruction 708 // to evaluate the value. 709 if (!CE.isMinusOne() && !CE.isOne()) 710 InstrNeeded++; 711 } 712 return InstrNeeded; 713 } 714 715 // Input Addend Value NeedNeg(output) 716 // ================================================================ 717 // Constant C C false 718 // <+/-1, V> V coefficient is -1 719 // <2/-2, V> "fadd V, V" coefficient is -2 720 // <C, V> "fmul V, C" false 721 // 722 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 723 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 724 const FAddendCoef &Coeff = Opnd.getCoef(); 725 726 if (Opnd.isConstant()) { 727 NeedNeg = false; 728 return Coeff.getValue(Instr->getType()); 729 } 730 731 Value *OpndVal = Opnd.getSymVal(); 732 733 if (Coeff.isMinusOne() || Coeff.isOne()) { 734 NeedNeg = Coeff.isMinusOne(); 735 return OpndVal; 736 } 737 738 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 739 NeedNeg = Coeff.isMinusTwo(); 740 return createFAdd(OpndVal, OpndVal); 741 } 742 743 NeedNeg = false; 744 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 745 } 746 747 // Checks if any operand is negative and we can convert add to sub. 748 // This function checks for following negative patterns 749 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 750 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 751 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 752 static Value *checkForNegativeOperand(BinaryOperator &I, 753 InstCombiner::BuilderTy &Builder) { 754 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 755 756 // This function creates 2 instructions to replace ADD, we need at least one 757 // of LHS or RHS to have one use to ensure benefit in transform. 758 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 759 return nullptr; 760 761 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 762 const APInt *C1 = nullptr, *C2 = nullptr; 763 764 // if ONE is on other side, swap 765 if (match(RHS, m_Add(m_Value(X), m_One()))) 766 std::swap(LHS, RHS); 767 768 if (match(LHS, m_Add(m_Value(X), m_One()))) { 769 // if XOR on other side, swap 770 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 771 std::swap(X, RHS); 772 773 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 774 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 775 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 776 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 777 Value *NewAnd = Builder.CreateAnd(Z, *C1); 778 return Builder.CreateSub(RHS, NewAnd, "sub"); 779 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 780 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 781 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 782 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 783 return Builder.CreateSub(RHS, NewOr, "sub"); 784 } 785 } 786 } 787 788 // Restore LHS and RHS 789 LHS = I.getOperand(0); 790 RHS = I.getOperand(1); 791 792 // if XOR is on other side, swap 793 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 794 std::swap(LHS, RHS); 795 796 // C2 is ODD 797 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 798 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 799 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 800 if (C1->countr_zero() == 0) 801 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 802 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 803 return Builder.CreateSub(RHS, NewOr, "sub"); 804 } 805 return nullptr; 806 } 807 808 /// Wrapping flags may allow combining constants separated by an extend. 809 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 810 InstCombiner::BuilderTy &Builder) { 811 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 812 Type *Ty = Add.getType(); 813 Constant *Op1C; 814 if (!match(Op1, m_Constant(Op1C))) 815 return nullptr; 816 817 // Try this match first because it results in an add in the narrow type. 818 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 819 Value *X; 820 const APInt *C1, *C2; 821 if (match(Op1, m_APInt(C1)) && 822 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 823 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 824 Constant *NewC = 825 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); 826 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 827 } 828 829 // More general combining of constants in the wide type. 830 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 831 Constant *NarrowC; 832 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { 833 Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty); 834 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 835 Value *WideX = Builder.CreateSExt(X, Ty); 836 return BinaryOperator::CreateAdd(WideX, NewC); 837 } 838 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 839 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { 840 Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty); 841 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 842 Value *WideX = Builder.CreateZExt(X, Ty); 843 return BinaryOperator::CreateAdd(WideX, NewC); 844 } 845 846 return nullptr; 847 } 848 849 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) { 850 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 851 Type *Ty = Add.getType(); 852 Constant *Op1C; 853 if (!match(Op1, m_ImmConstant(Op1C))) 854 return nullptr; 855 856 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 857 return NV; 858 859 Value *X; 860 Constant *Op00C; 861 862 // add (sub C1, X), C2 --> sub (add C1, C2), X 863 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 864 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 865 866 Value *Y; 867 868 // add (sub X, Y), -1 --> add (not Y), X 869 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 870 match(Op1, m_AllOnes())) 871 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 872 873 // zext(bool) + C -> bool ? C + 1 : C 874 if (match(Op0, m_ZExt(m_Value(X))) && 875 X->getType()->getScalarSizeInBits() == 1) 876 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1); 877 // sext(bool) + C -> bool ? C - 1 : C 878 if (match(Op0, m_SExt(m_Value(X))) && 879 X->getType()->getScalarSizeInBits() == 1) 880 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1); 881 882 // ~X + C --> (C-1) - X 883 if (match(Op0, m_Not(m_Value(X)))) { 884 // ~X + C has NSW and (C-1) won't oveflow => (C-1)-X can have NSW 885 auto *COne = ConstantInt::get(Op1C->getType(), 1); 886 bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne, Add); 887 BinaryOperator *Res = 888 BinaryOperator::CreateSub(ConstantExpr::getSub(Op1C, COne), X); 889 Res->setHasNoSignedWrap(Add.hasNoSignedWrap() && WillNotSOV); 890 return Res; 891 } 892 893 // (iN X s>> (N - 1)) + 1 --> zext (X > -1) 894 const APInt *C; 895 unsigned BitWidth = Ty->getScalarSizeInBits(); 896 if (match(Op0, m_OneUse(m_AShr(m_Value(X), 897 m_SpecificIntAllowUndef(BitWidth - 1)))) && 898 match(Op1, m_One())) 899 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty); 900 901 if (!match(Op1, m_APInt(C))) 902 return nullptr; 903 904 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add` 905 Constant *Op01C; 906 if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) && 907 haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT)) 908 return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C)); 909 910 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 911 const APInt *C2; 912 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 913 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 914 915 if (C->isSignMask()) { 916 // If wrapping is not allowed, then the addition must set the sign bit: 917 // X + (signmask) --> X | signmask 918 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 919 return BinaryOperator::CreateOr(Op0, Op1); 920 921 // If wrapping is allowed, then the addition flips the sign bit of LHS: 922 // X + (signmask) --> X ^ signmask 923 return BinaryOperator::CreateXor(Op0, Op1); 924 } 925 926 // Is this add the last step in a convoluted sext? 927 // add(zext(xor i16 X, -32768), -32768) --> sext X 928 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 929 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 930 return CastInst::Create(Instruction::SExt, X, Ty); 931 932 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) { 933 // (X ^ signmask) + C --> (X + (signmask ^ C)) 934 if (C2->isSignMask()) 935 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C)); 936 937 // If X has no high-bits set above an xor mask: 938 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X 939 if (C2->isMask()) { 940 KnownBits LHSKnown = computeKnownBits(X, 0, &Add); 941 if ((*C2 | LHSKnown.Zero).isAllOnes()) 942 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X); 943 } 944 945 // Look for a math+logic pattern that corresponds to sext-in-register of a 946 // value with cleared high bits. Convert that into a pair of shifts: 947 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC 948 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC 949 if (Op0->hasOneUse() && *C2 == -(*C)) { 950 unsigned BitWidth = Ty->getScalarSizeInBits(); 951 unsigned ShAmt = 0; 952 if (C->isPowerOf2()) 953 ShAmt = BitWidth - C->logBase2() - 1; 954 else if (C2->isPowerOf2()) 955 ShAmt = BitWidth - C2->logBase2() - 1; 956 if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt), 957 0, &Add)) { 958 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt); 959 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext"); 960 return BinaryOperator::CreateAShr(NewShl, ShAmtC); 961 } 962 } 963 } 964 965 if (C->isOne() && Op0->hasOneUse()) { 966 // add (sext i1 X), 1 --> zext (not X) 967 // TODO: The smallest IR representation is (select X, 0, 1), and that would 968 // not require the one-use check. But we need to remove a transform in 969 // visitSelect and make sure that IR value tracking for select is equal or 970 // better than for these ops. 971 if (match(Op0, m_SExt(m_Value(X))) && 972 X->getType()->getScalarSizeInBits() == 1) 973 return new ZExtInst(Builder.CreateNot(X), Ty); 974 975 // Shifts and add used to flip and mask off the low bit: 976 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 977 const APInt *C3; 978 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 979 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 980 Value *NotX = Builder.CreateNot(X); 981 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 982 } 983 } 984 985 // Fold (add (zext (add X, -1)), 1) -> (zext X) if X is non-zero. 986 // TODO: There's a general form for any constant on the outer add. 987 if (C->isOne()) { 988 if (match(Op0, m_ZExt(m_Add(m_Value(X), m_AllOnes())))) { 989 const SimplifyQuery Q = SQ.getWithInstruction(&Add); 990 if (llvm::isKnownNonZero(X, DL, 0, Q.AC, Q.CxtI, Q.DT)) 991 return new ZExtInst(X, Ty); 992 } 993 } 994 995 return nullptr; 996 } 997 998 // Matches multiplication expression Op * C where C is a constant. Returns the 999 // constant value in C and the other operand in Op. Returns true if such a 1000 // match is found. 1001 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 1002 const APInt *AI; 1003 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 1004 C = *AI; 1005 return true; 1006 } 1007 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 1008 C = APInt(AI->getBitWidth(), 1); 1009 C <<= *AI; 1010 return true; 1011 } 1012 return false; 1013 } 1014 1015 // Matches remainder expression Op % C where C is a constant. Returns the 1016 // constant value in C and the other operand in Op. Returns the signedness of 1017 // the remainder operation in IsSigned. Returns true if such a match is 1018 // found. 1019 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 1020 const APInt *AI; 1021 IsSigned = false; 1022 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 1023 IsSigned = true; 1024 C = *AI; 1025 return true; 1026 } 1027 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 1028 C = *AI; 1029 return true; 1030 } 1031 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 1032 C = *AI + 1; 1033 return true; 1034 } 1035 return false; 1036 } 1037 1038 // Matches division expression Op / C with the given signedness as indicated 1039 // by IsSigned, where C is a constant. Returns the constant value in C and the 1040 // other operand in Op. Returns true if such a match is found. 1041 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 1042 const APInt *AI; 1043 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 1044 C = *AI; 1045 return true; 1046 } 1047 if (!IsSigned) { 1048 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 1049 C = *AI; 1050 return true; 1051 } 1052 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1053 C = APInt(AI->getBitWidth(), 1); 1054 C <<= *AI; 1055 return true; 1056 } 1057 } 1058 return false; 1059 } 1060 1061 // Returns whether C0 * C1 with the given signedness overflows. 1062 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1063 bool overflow; 1064 if (IsSigned) 1065 (void)C0.smul_ov(C1, overflow); 1066 else 1067 (void)C0.umul_ov(C1, overflow); 1068 return overflow; 1069 } 1070 1071 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1072 // does not overflow. 1073 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) { 1074 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1075 Value *X, *MulOpV; 1076 APInt C0, MulOpC; 1077 bool IsSigned; 1078 // Match I = X % C0 + MulOpV * C0 1079 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1080 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1081 C0 == MulOpC) { 1082 Value *RemOpV; 1083 APInt C1; 1084 bool Rem2IsSigned; 1085 // Match MulOpC = RemOpV % C1 1086 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1087 IsSigned == Rem2IsSigned) { 1088 Value *DivOpV; 1089 APInt DivOpC; 1090 // Match RemOpV = X / C0 1091 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1092 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1093 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1); 1094 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1095 : Builder.CreateURem(X, NewDivisor, "urem"); 1096 } 1097 } 1098 } 1099 1100 return nullptr; 1101 } 1102 1103 /// Fold 1104 /// (1 << NBits) - 1 1105 /// Into: 1106 /// ~(-(1 << NBits)) 1107 /// Because a 'not' is better for bit-tracking analysis and other transforms 1108 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1109 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1110 InstCombiner::BuilderTy &Builder) { 1111 Value *NBits; 1112 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1113 return nullptr; 1114 1115 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1116 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1117 // Be wary of constant folding. 1118 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1119 // Always NSW. But NUW propagates from `add`. 1120 BOp->setHasNoSignedWrap(); 1121 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1122 } 1123 1124 return BinaryOperator::CreateNot(NotMask, I.getName()); 1125 } 1126 1127 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1128 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1129 Type *Ty = I.getType(); 1130 auto getUAddSat = [&]() { 1131 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); 1132 }; 1133 1134 // add (umin X, ~Y), Y --> uaddsat X, Y 1135 Value *X, *Y; 1136 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1137 m_Deferred(Y)))) 1138 return CallInst::Create(getUAddSat(), { X, Y }); 1139 1140 // add (umin X, ~C), C --> uaddsat X, C 1141 const APInt *C, *NotC; 1142 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1143 *C == ~*NotC) 1144 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1145 1146 return nullptr; 1147 } 1148 1149 /// Try to reduce signed division by power-of-2 to an arithmetic shift right. 1150 static Instruction *foldAddToAshr(BinaryOperator &Add) { 1151 // Division must be by power-of-2, but not the minimum signed value. 1152 Value *X; 1153 const APInt *DivC; 1154 if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) || 1155 DivC->isNegative()) 1156 return nullptr; 1157 1158 // Rounding is done by adding -1 if the dividend (X) is negative and has any 1159 // low bits set. The canonical pattern for that is an "ugt" compare with SMIN: 1160 // sext (icmp ugt (X & (DivC - 1)), SMIN) 1161 const APInt *MaskC; 1162 ICmpInst::Predicate Pred; 1163 if (!match(Add.getOperand(1), 1164 m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)), 1165 m_SignMask()))) || 1166 Pred != ICmpInst::ICMP_UGT) 1167 return nullptr; 1168 1169 APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits()); 1170 if (*MaskC != (SMin | (*DivC - 1))) 1171 return nullptr; 1172 1173 // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC) 1174 return BinaryOperator::CreateAShr( 1175 X, ConstantInt::get(Add.getType(), DivC->exactLogBase2())); 1176 } 1177 1178 Instruction *InstCombinerImpl:: 1179 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( 1180 BinaryOperator &I) { 1181 assert((I.getOpcode() == Instruction::Add || 1182 I.getOpcode() == Instruction::Or || 1183 I.getOpcode() == Instruction::Sub) && 1184 "Expecting add/or/sub instruction"); 1185 1186 // We have a subtraction/addition between a (potentially truncated) *logical* 1187 // right-shift of X and a "select". 1188 Value *X, *Select; 1189 Instruction *LowBitsToSkip, *Extract; 1190 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( 1191 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), 1192 m_Instruction(Extract))), 1193 m_Value(Select)))) 1194 return nullptr; 1195 1196 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. 1197 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) 1198 return nullptr; 1199 1200 Type *XTy = X->getType(); 1201 bool HadTrunc = I.getType() != XTy; 1202 1203 // If there was a truncation of extracted value, then we'll need to produce 1204 // one extra instruction, so we need to ensure one instruction will go away. 1205 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1206 return nullptr; 1207 1208 // Extraction should extract high NBits bits, with shift amount calculated as: 1209 // low bits to skip = shift bitwidth - high bits to extract 1210 // The shift amount itself may be extended, and we need to look past zero-ext 1211 // when matching NBits, that will matter for matching later. 1212 Constant *C; 1213 Value *NBits; 1214 if (!match( 1215 LowBitsToSkip, 1216 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || 1217 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1218 APInt(C->getType()->getScalarSizeInBits(), 1219 X->getType()->getScalarSizeInBits())))) 1220 return nullptr; 1221 1222 // Sign-extending value can be zero-extended if we `sub`tract it, 1223 // or sign-extended otherwise. 1224 auto SkipExtInMagic = [&I](Value *&V) { 1225 if (I.getOpcode() == Instruction::Sub) 1226 match(V, m_ZExtOrSelf(m_Value(V))); 1227 else 1228 match(V, m_SExtOrSelf(m_Value(V))); 1229 }; 1230 1231 // Now, finally validate the sign-extending magic. 1232 // `select` itself may be appropriately extended, look past that. 1233 SkipExtInMagic(Select); 1234 1235 ICmpInst::Predicate Pred; 1236 const APInt *Thr; 1237 Value *SignExtendingValue, *Zero; 1238 bool ShouldSignext; 1239 // It must be a select between two values we will later establish to be a 1240 // sign-extending value and a zero constant. The condition guarding the 1241 // sign-extension must be based on a sign bit of the same X we had in `lshr`. 1242 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), 1243 m_Value(SignExtendingValue), m_Value(Zero))) || 1244 !isSignBitCheck(Pred, *Thr, ShouldSignext)) 1245 return nullptr; 1246 1247 // icmp-select pair is commutative. 1248 if (!ShouldSignext) 1249 std::swap(SignExtendingValue, Zero); 1250 1251 // If we should not perform sign-extension then we must add/or/subtract zero. 1252 if (!match(Zero, m_Zero())) 1253 return nullptr; 1254 // Otherwise, it should be some constant, left-shifted by the same NBits we 1255 // had in `lshr`. Said left-shift can also be appropriately extended. 1256 // Again, we must look past zero-ext when looking for NBits. 1257 SkipExtInMagic(SignExtendingValue); 1258 Constant *SignExtendingValueBaseConstant; 1259 if (!match(SignExtendingValue, 1260 m_Shl(m_Constant(SignExtendingValueBaseConstant), 1261 m_ZExtOrSelf(m_Specific(NBits))))) 1262 return nullptr; 1263 // If we `sub`, then the constant should be one, else it should be all-ones. 1264 if (I.getOpcode() == Instruction::Sub 1265 ? !match(SignExtendingValueBaseConstant, m_One()) 1266 : !match(SignExtendingValueBaseConstant, m_AllOnes())) 1267 return nullptr; 1268 1269 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, 1270 Extract->getName() + ".sext"); 1271 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. 1272 if (!HadTrunc) 1273 return NewAShr; 1274 1275 Builder.Insert(NewAShr); 1276 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); 1277 } 1278 1279 /// This is a specialization of a more general transform from 1280 /// foldUsingDistributiveLaws. If that code can be made to work optimally 1281 /// for multi-use cases or propagating nsw/nuw, then we would not need this. 1282 static Instruction *factorizeMathWithShlOps(BinaryOperator &I, 1283 InstCombiner::BuilderTy &Builder) { 1284 // TODO: Also handle mul by doubling the shift amount? 1285 assert((I.getOpcode() == Instruction::Add || 1286 I.getOpcode() == Instruction::Sub) && 1287 "Expected add/sub"); 1288 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 1289 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 1290 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse())) 1291 return nullptr; 1292 1293 Value *X, *Y, *ShAmt; 1294 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) || 1295 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt)))) 1296 return nullptr; 1297 1298 // No-wrap propagates only when all ops have no-wrap. 1299 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() && 1300 Op1->hasNoSignedWrap(); 1301 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() && 1302 Op1->hasNoUnsignedWrap(); 1303 1304 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt 1305 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y); 1306 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) { 1307 NewI->setHasNoSignedWrap(HasNSW); 1308 NewI->setHasNoUnsignedWrap(HasNUW); 1309 } 1310 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt); 1311 NewShl->setHasNoSignedWrap(HasNSW); 1312 NewShl->setHasNoUnsignedWrap(HasNUW); 1313 return NewShl; 1314 } 1315 1316 /// Reduce a sequence of masked half-width multiplies to a single multiply. 1317 /// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y 1318 static Instruction *foldBoxMultiply(BinaryOperator &I) { 1319 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1320 // Skip the odd bitwidth types. 1321 if ((BitWidth & 0x1)) 1322 return nullptr; 1323 1324 unsigned HalfBits = BitWidth >> 1; 1325 APInt HalfMask = APInt::getMaxValue(HalfBits); 1326 1327 // ResLo = (CrossSum << HalfBits) + (YLo * XLo) 1328 Value *XLo, *YLo; 1329 Value *CrossSum; 1330 if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)), 1331 m_Mul(m_Value(YLo), m_Value(XLo))))) 1332 return nullptr; 1333 1334 // XLo = X & HalfMask 1335 // YLo = Y & HalfMask 1336 // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros 1337 // to enhance robustness 1338 Value *X, *Y; 1339 if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) || 1340 !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask)))) 1341 return nullptr; 1342 1343 // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits)) 1344 // X' can be either X or XLo in the pattern (and the same for Y') 1345 if (match(CrossSum, 1346 m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)), 1347 m_CombineOr(m_Specific(X), m_Specific(XLo))), 1348 m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)), 1349 m_CombineOr(m_Specific(Y), m_Specific(YLo)))))) 1350 return BinaryOperator::CreateMul(X, Y); 1351 1352 return nullptr; 1353 } 1354 1355 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) { 1356 if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1), 1357 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1358 SQ.getWithInstruction(&I))) 1359 return replaceInstUsesWith(I, V); 1360 1361 if (SimplifyAssociativeOrCommutative(I)) 1362 return &I; 1363 1364 if (Instruction *X = foldVectorBinop(I)) 1365 return X; 1366 1367 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1368 return Phi; 1369 1370 // (A*B)+(A*C) -> A*(B+C) etc 1371 if (Value *V = foldUsingDistributiveLaws(I)) 1372 return replaceInstUsesWith(I, V); 1373 1374 if (Instruction *R = foldBoxMultiply(I)) 1375 return R; 1376 1377 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1378 return R; 1379 1380 if (Instruction *X = foldAddWithConstant(I)) 1381 return X; 1382 1383 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1384 return X; 1385 1386 if (Instruction *R = foldBinOpShiftWithShift(I)) 1387 return R; 1388 1389 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1390 Type *Ty = I.getType(); 1391 if (Ty->isIntOrIntVectorTy(1)) 1392 return BinaryOperator::CreateXor(LHS, RHS); 1393 1394 // X + X --> X << 1 1395 if (LHS == RHS) { 1396 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1397 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1398 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1399 return Shl; 1400 } 1401 1402 Value *A, *B; 1403 if (match(LHS, m_Neg(m_Value(A)))) { 1404 // -A + -B --> -(A + B) 1405 if (match(RHS, m_Neg(m_Value(B)))) 1406 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1407 1408 // -A + B --> B - A 1409 return BinaryOperator::CreateSub(RHS, A); 1410 } 1411 1412 // A + -B --> A - B 1413 if (match(RHS, m_Neg(m_Value(B)))) 1414 return BinaryOperator::CreateSub(LHS, B); 1415 1416 if (Value *V = checkForNegativeOperand(I, Builder)) 1417 return replaceInstUsesWith(I, V); 1418 1419 // (A + 1) + ~B --> A - B 1420 // ~B + (A + 1) --> A - B 1421 // (~B + A) + 1 --> A - B 1422 // (A + ~B) + 1 --> A - B 1423 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1424 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1425 return BinaryOperator::CreateSub(A, B); 1426 1427 // (A + RHS) + RHS --> A + (RHS << 1) 1428 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS))))) 1429 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add")); 1430 1431 // LHS + (A + LHS) --> A + (LHS << 1) 1432 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS))))) 1433 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add")); 1434 1435 { 1436 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2) 1437 Constant *C1, *C2; 1438 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)), 1439 m_Sub(m_ImmConstant(C2), m_Value(B)))) && 1440 (LHS->hasOneUse() || RHS->hasOneUse())) { 1441 Value *Sub = Builder.CreateSub(A, B); 1442 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2)); 1443 } 1444 1445 // Canonicalize a constant sub operand as an add operand for better folding: 1446 // (C1 - A) + B --> (B - A) + C1 1447 if (match(&I, m_c_Add(m_OneUse(m_Sub(m_ImmConstant(C1), m_Value(A))), 1448 m_Value(B)))) { 1449 Value *Sub = Builder.CreateSub(B, A, "reass.sub"); 1450 return BinaryOperator::CreateAdd(Sub, C1); 1451 } 1452 } 1453 1454 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1455 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1456 1457 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2 1458 const APInt *C1, *C2; 1459 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) { 1460 APInt one(C2->getBitWidth(), 1); 1461 APInt minusC1 = -(*C1); 1462 if (minusC1 == (one << *C2)) { 1463 Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1); 1464 return BinaryOperator::CreateSRem(RHS, NewRHS); 1465 } 1466 } 1467 1468 // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit 1469 if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) && 1470 C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countl_zero())) { 1471 Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1); 1472 return BinaryOperator::CreateAnd(A, NewMask); 1473 } 1474 1475 // ZExt (B - A) + ZExt(A) --> ZExt(B) 1476 if ((match(RHS, m_ZExt(m_Value(A))) && 1477 match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) || 1478 (match(LHS, m_ZExt(m_Value(A))) && 1479 match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A)))))) 1480 return new ZExtInst(B, LHS->getType()); 1481 1482 // zext(A) + sext(A) --> 0 if A is i1 1483 if (match(&I, m_c_BinOp(m_ZExt(m_Value(A)), m_SExt(m_Deferred(A)))) && 1484 A->getType()->isIntOrIntVectorTy(1)) 1485 return replaceInstUsesWith(I, Constant::getNullValue(I.getType())); 1486 1487 // A+B --> A|B iff A and B have no bits set in common. 1488 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1489 return BinaryOperator::CreateOr(LHS, RHS); 1490 1491 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1492 return Ext; 1493 1494 // (add (xor A, B) (and A, B)) --> (or A, B) 1495 // (add (and A, B) (xor A, B)) --> (or A, B) 1496 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1497 m_c_And(m_Deferred(A), m_Deferred(B))))) 1498 return BinaryOperator::CreateOr(A, B); 1499 1500 // (add (or A, B) (and A, B)) --> (add A, B) 1501 // (add (and A, B) (or A, B)) --> (add A, B) 1502 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1503 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1504 // Replacing operands in-place to preserve nuw/nsw flags. 1505 replaceOperand(I, 0, A); 1506 replaceOperand(I, 1, B); 1507 return &I; 1508 } 1509 1510 // (add A (or A, -A)) --> (and (add A, -1) A) 1511 // (add A (or -A, A)) --> (and (add A, -1) A) 1512 // (add (or A, -A) A) --> (and (add A, -1) A) 1513 // (add (or -A, A) A) --> (and (add A, -1) A) 1514 if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)), 1515 m_Deferred(A)))))) { 1516 Value *Add = 1517 Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "", 1518 I.hasNoUnsignedWrap(), I.hasNoSignedWrap()); 1519 return BinaryOperator::CreateAnd(Add, A); 1520 } 1521 1522 // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A) 1523 // Forms all commutable operations, and simplifies ctpop -> cttz folds. 1524 if (match(&I, 1525 m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))), 1526 m_AllOnes()))) { 1527 Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType()); 1528 Value *Dec = Builder.CreateAdd(A, AllOnes); 1529 Value *Not = Builder.CreateXor(A, AllOnes); 1530 return BinaryOperator::CreateAnd(Dec, Not); 1531 } 1532 1533 // Disguised reassociation/factorization: 1534 // ~(A * C1) + A 1535 // ((A * -C1) - 1) + A 1536 // ((A * -C1) + A) - 1 1537 // (A * (1 - C1)) - 1 1538 if (match(&I, 1539 m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))), 1540 m_Deferred(A)))) { 1541 Type *Ty = I.getType(); 1542 Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1); 1543 Value *NewMul = Builder.CreateMul(A, NewMulC); 1544 return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty)); 1545 } 1546 1547 // (A * -2**C) + B --> B - (A << C) 1548 const APInt *NegPow2C; 1549 if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))), 1550 m_Value(B)))) { 1551 Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countr_zero()); 1552 Value *Shl = Builder.CreateShl(A, ShiftAmtC); 1553 return BinaryOperator::CreateSub(B, Shl); 1554 } 1555 1556 // Canonicalize signum variant that ends in add: 1557 // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0)) 1558 ICmpInst::Predicate Pred; 1559 uint64_t BitWidth = Ty->getScalarSizeInBits(); 1560 if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowUndef(BitWidth - 1))) && 1561 match(RHS, m_OneUse(m_ZExt( 1562 m_OneUse(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))))) && 1563 Pred == CmpInst::ICMP_SGT) { 1564 Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull"); 1565 Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext"); 1566 return BinaryOperator::CreateOr(LHS, Zext); 1567 } 1568 1569 if (Instruction *Ashr = foldAddToAshr(I)) 1570 return Ashr; 1571 1572 // min(A, B) + max(A, B) => A + B. 1573 if (match(&I, m_CombineOr(m_c_Add(m_SMax(m_Value(A), m_Value(B)), 1574 m_c_SMin(m_Deferred(A), m_Deferred(B))), 1575 m_c_Add(m_UMax(m_Value(A), m_Value(B)), 1576 m_c_UMin(m_Deferred(A), m_Deferred(B)))))) 1577 return BinaryOperator::CreateWithCopiedFlags(Instruction::Add, A, B, &I); 1578 1579 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1580 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1581 // computeKnownBits. 1582 bool Changed = false; 1583 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1584 Changed = true; 1585 I.setHasNoSignedWrap(true); 1586 } 1587 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1588 Changed = true; 1589 I.setHasNoUnsignedWrap(true); 1590 } 1591 1592 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1593 return V; 1594 1595 if (Instruction *V = 1596 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 1597 return V; 1598 1599 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1600 return SatAdd; 1601 1602 // usub.sat(A, B) + B => umax(A, B) 1603 if (match(&I, m_c_BinOp( 1604 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))), 1605 m_Deferred(B)))) { 1606 return replaceInstUsesWith(I, 1607 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B})); 1608 } 1609 1610 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common. 1611 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) && 1612 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) && 1613 haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT)) 1614 return replaceInstUsesWith( 1615 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 1616 {Builder.CreateOr(A, B)})); 1617 1618 if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 1619 return Res; 1620 1621 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I)) 1622 return Res; 1623 1624 return Changed ? &I : nullptr; 1625 } 1626 1627 /// Eliminate an op from a linear interpolation (lerp) pattern. 1628 static Instruction *factorizeLerp(BinaryOperator &I, 1629 InstCombiner::BuilderTy &Builder) { 1630 Value *X, *Y, *Z; 1631 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1632 m_OneUse(m_FSub(m_FPOne(), 1633 m_Value(Z))))), 1634 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1635 return nullptr; 1636 1637 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1638 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1639 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1640 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1641 } 1642 1643 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1644 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1645 InstCombiner::BuilderTy &Builder) { 1646 assert((I.getOpcode() == Instruction::FAdd || 1647 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1648 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1649 "FP factorization requires FMF"); 1650 1651 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1652 return Lerp; 1653 1654 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1655 if (!Op0->hasOneUse() || !Op1->hasOneUse()) 1656 return nullptr; 1657 1658 Value *X, *Y, *Z; 1659 bool IsFMul; 1660 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) && 1661 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) || 1662 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) && 1663 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z))))) 1664 IsFMul = true; 1665 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) && 1666 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z)))) 1667 IsFMul = false; 1668 else 1669 return nullptr; 1670 1671 // (X * Z) + (Y * Z) --> (X + Y) * Z 1672 // (X * Z) - (Y * Z) --> (X - Y) * Z 1673 // (X / Z) + (Y / Z) --> (X + Y) / Z 1674 // (X / Z) - (Y / Z) --> (X - Y) / Z 1675 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1676 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1677 : Builder.CreateFSubFMF(X, Y, &I); 1678 1679 // Bail out if we just created a denormal constant. 1680 // TODO: This is copied from a previous implementation. Is it necessary? 1681 const APFloat *C; 1682 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1683 return nullptr; 1684 1685 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1686 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1687 } 1688 1689 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) { 1690 if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1), 1691 I.getFastMathFlags(), 1692 SQ.getWithInstruction(&I))) 1693 return replaceInstUsesWith(I, V); 1694 1695 if (SimplifyAssociativeOrCommutative(I)) 1696 return &I; 1697 1698 if (Instruction *X = foldVectorBinop(I)) 1699 return X; 1700 1701 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1702 return Phi; 1703 1704 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1705 return FoldedFAdd; 1706 1707 // (-X) + Y --> Y - X 1708 Value *X, *Y; 1709 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1710 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1711 1712 // Similar to above, but look through fmul/fdiv for the negated term. 1713 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1714 Value *Z; 1715 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1716 m_Value(Z)))) { 1717 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1718 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1719 } 1720 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1721 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1722 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1723 m_Value(Z))) || 1724 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1725 m_Value(Z)))) { 1726 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1727 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1728 } 1729 1730 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1731 // integer add followed by a promotion. 1732 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1733 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1734 Value *LHSIntVal = LHSConv->getOperand(0); 1735 Type *FPType = LHSConv->getType(); 1736 1737 // TODO: This check is overly conservative. In many cases known bits 1738 // analysis can tell us that the result of the addition has less significant 1739 // bits than the integer type can hold. 1740 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1741 Type *FScalarTy = FTy->getScalarType(); 1742 Type *IScalarTy = ITy->getScalarType(); 1743 1744 // Do we have enough bits in the significand to represent the result of 1745 // the integer addition? 1746 unsigned MaxRepresentableBits = 1747 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1748 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1749 }; 1750 1751 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1752 // ... if the constant fits in the integer value. This is useful for things 1753 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1754 // requires a constant pool load, and generally allows the add to be better 1755 // instcombined. 1756 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1757 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1758 Constant *CI = 1759 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1760 if (LHSConv->hasOneUse() && 1761 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1762 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1763 // Insert the new integer add. 1764 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1765 return new SIToFPInst(NewAdd, I.getType()); 1766 } 1767 } 1768 1769 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1770 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1771 Value *RHSIntVal = RHSConv->getOperand(0); 1772 // It's enough to check LHS types only because we require int types to 1773 // be the same for this transform. 1774 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1775 // Only do this if x/y have the same type, if at least one of them has a 1776 // single use (so we don't increase the number of int->fp conversions), 1777 // and if the integer add will not overflow. 1778 if (LHSIntVal->getType() == RHSIntVal->getType() && 1779 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1780 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1781 // Insert the new integer add. 1782 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1783 return new SIToFPInst(NewAdd, I.getType()); 1784 } 1785 } 1786 } 1787 } 1788 1789 // Handle specials cases for FAdd with selects feeding the operation 1790 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1791 return replaceInstUsesWith(I, V); 1792 1793 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1794 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1795 return F; 1796 1797 // Try to fold fadd into start value of reduction intrinsic. 1798 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1799 m_AnyZeroFP(), m_Value(X))), 1800 m_Value(Y)))) { 1801 // fadd (rdx 0.0, X), Y --> rdx Y, X 1802 return replaceInstUsesWith( 1803 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1804 {X->getType()}, {Y, X}, &I)); 1805 } 1806 const APFloat *StartC, *C; 1807 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1808 m_APFloat(StartC), m_Value(X)))) && 1809 match(RHS, m_APFloat(C))) { 1810 // fadd (rdx StartC, X), C --> rdx (C + StartC), X 1811 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC); 1812 return replaceInstUsesWith( 1813 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1814 {X->getType()}, {NewStartC, X}, &I)); 1815 } 1816 1817 // (X * MulC) + X --> X * (MulC + 1.0) 1818 Constant *MulC; 1819 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)), 1820 m_Deferred(X)))) { 1821 if (Constant *NewMulC = ConstantFoldBinaryOpOperands( 1822 Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL)) 1823 return BinaryOperator::CreateFMulFMF(X, NewMulC, &I); 1824 } 1825 1826 // (-X - Y) + (X + Z) --> Z - Y 1827 if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)), 1828 m_c_FAdd(m_Deferred(X), m_Value(Z))))) 1829 return BinaryOperator::CreateFSubFMF(Z, Y, &I); 1830 1831 if (Value *V = FAddCombine(Builder).simplify(&I)) 1832 return replaceInstUsesWith(I, V); 1833 } 1834 1835 // minumum(X, Y) + maximum(X, Y) => X + Y. 1836 if (match(&I, 1837 m_c_FAdd(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)), 1838 m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X), 1839 m_Deferred(Y))))) { 1840 BinaryOperator *Result = BinaryOperator::CreateFAddFMF(X, Y, &I); 1841 // We cannot preserve ninf if nnan flag is not set. 1842 // If X is NaN and Y is Inf then in original program we had NaN + NaN, 1843 // while in optimized version NaN + Inf and this is a poison with ninf flag. 1844 if (!Result->hasNoNaNs()) 1845 Result->setHasNoInfs(false); 1846 return Result; 1847 } 1848 1849 return nullptr; 1850 } 1851 1852 /// Optimize pointer differences into the same array into a size. Consider: 1853 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1854 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1855 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS, 1856 Type *Ty, bool IsNUW) { 1857 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1858 // this. 1859 bool Swapped = false; 1860 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1861 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) { 1862 std::swap(LHS, RHS); 1863 Swapped = true; 1864 } 1865 1866 // Require at least one GEP with a common base pointer on both sides. 1867 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1868 // (gep X, ...) - X 1869 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1870 RHS->stripPointerCasts()) { 1871 GEP1 = LHSGEP; 1872 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1873 // (gep X, ...) - (gep X, ...) 1874 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1875 RHSGEP->getOperand(0)->stripPointerCasts()) { 1876 GEP1 = LHSGEP; 1877 GEP2 = RHSGEP; 1878 } 1879 } 1880 } 1881 1882 if (!GEP1) 1883 return nullptr; 1884 1885 if (GEP2) { 1886 // (gep X, ...) - (gep X, ...) 1887 // 1888 // Avoid duplicating the arithmetic if there are more than one non-constant 1889 // indices between the two GEPs and either GEP has a non-constant index and 1890 // multiple users. If zero non-constant index, the result is a constant and 1891 // there is no duplication. If one non-constant index, the result is an add 1892 // or sub with a constant, which is no larger than the original code, and 1893 // there's no duplicated arithmetic, even if either GEP has multiple 1894 // users. If more than one non-constant indices combined, as long as the GEP 1895 // with at least one non-constant index doesn't have multiple users, there 1896 // is no duplication. 1897 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1898 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1899 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1900 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1901 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1902 return nullptr; 1903 } 1904 } 1905 1906 // Emit the offset of the GEP and an intptr_t. 1907 Value *Result = EmitGEPOffset(GEP1); 1908 1909 // If this is a single inbounds GEP and the original sub was nuw, 1910 // then the final multiplication is also nuw. 1911 if (auto *I = dyn_cast<Instruction>(Result)) 1912 if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() && 1913 I->getOpcode() == Instruction::Mul) 1914 I->setHasNoUnsignedWrap(); 1915 1916 // If we have a 2nd GEP of the same base pointer, subtract the offsets. 1917 // If both GEPs are inbounds, then the subtract does not have signed overflow. 1918 if (GEP2) { 1919 Value *Offset = EmitGEPOffset(GEP2); 1920 Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false, 1921 GEP1->isInBounds() && GEP2->isInBounds()); 1922 } 1923 1924 // If we have p - gep(p, ...) then we have to negate the result. 1925 if (Swapped) 1926 Result = Builder.CreateNeg(Result, "diff.neg"); 1927 1928 return Builder.CreateIntCast(Result, Ty, true); 1929 } 1930 1931 static Instruction *foldSubOfMinMax(BinaryOperator &I, 1932 InstCombiner::BuilderTy &Builder) { 1933 Value *Op0 = I.getOperand(0); 1934 Value *Op1 = I.getOperand(1); 1935 Type *Ty = I.getType(); 1936 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1); 1937 if (!MinMax) 1938 return nullptr; 1939 1940 // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y) 1941 // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y) 1942 Value *X = MinMax->getLHS(); 1943 Value *Y = MinMax->getRHS(); 1944 if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) && 1945 (Op0->hasOneUse() || Op1->hasOneUse())) { 1946 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 1947 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 1948 return CallInst::Create(F, {X, Y}); 1949 } 1950 1951 // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z)) 1952 // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y)) 1953 Value *Z; 1954 if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) { 1955 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) { 1956 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z}); 1957 return BinaryOperator::CreateAdd(X, USub); 1958 } 1959 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) { 1960 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y}); 1961 return BinaryOperator::CreateAdd(X, USub); 1962 } 1963 } 1964 1965 // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z 1966 // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z 1967 if (MinMax->isSigned() && match(Y, m_ZeroInt()) && 1968 match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) { 1969 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 1970 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 1971 return CallInst::Create(F, {Op0, Z}); 1972 } 1973 1974 return nullptr; 1975 } 1976 1977 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) { 1978 if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1), 1979 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1980 SQ.getWithInstruction(&I))) 1981 return replaceInstUsesWith(I, V); 1982 1983 if (Instruction *X = foldVectorBinop(I)) 1984 return X; 1985 1986 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1987 return Phi; 1988 1989 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1990 1991 // If this is a 'B = x-(-A)', change to B = x+A. 1992 // We deal with this without involving Negator to preserve NSW flag. 1993 if (Value *V = dyn_castNegVal(Op1)) { 1994 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1995 1996 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1997 assert(BO->getOpcode() == Instruction::Sub && 1998 "Expected a subtraction operator!"); 1999 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 2000 Res->setHasNoSignedWrap(true); 2001 } else { 2002 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 2003 Res->setHasNoSignedWrap(true); 2004 } 2005 2006 return Res; 2007 } 2008 2009 // Try this before Negator to preserve NSW flag. 2010 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 2011 return R; 2012 2013 Constant *C; 2014 if (match(Op0, m_ImmConstant(C))) { 2015 Value *X; 2016 Constant *C2; 2017 2018 // C-(X+C2) --> (C-C2)-X 2019 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) { 2020 // C-C2 never overflow, and C-(X+C2), (X+C2) has NSW 2021 // => (C-C2)-X can have NSW 2022 bool WillNotSOV = willNotOverflowSignedSub(C, C2, I); 2023 BinaryOperator *Res = 2024 BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 2025 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2026 Res->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO1->hasNoSignedWrap() && 2027 WillNotSOV); 2028 return Res; 2029 } 2030 } 2031 2032 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * { 2033 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 2034 return Ext; 2035 2036 bool Changed = false; 2037 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 2038 Changed = true; 2039 I.setHasNoSignedWrap(true); 2040 } 2041 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 2042 Changed = true; 2043 I.setHasNoUnsignedWrap(true); 2044 } 2045 2046 return Changed ? &I : nullptr; 2047 }; 2048 2049 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`, 2050 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't 2051 // a pure negation used by a select that looks like abs/nabs. 2052 bool IsNegation = match(Op0, m_ZeroInt()); 2053 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) { 2054 const Instruction *UI = dyn_cast<Instruction>(U); 2055 if (!UI) 2056 return false; 2057 return match(UI, 2058 m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) || 2059 match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1))); 2060 })) { 2061 if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this)) 2062 return BinaryOperator::CreateAdd(NegOp1, Op0); 2063 } 2064 if (IsNegation) 2065 return TryToNarrowDeduceFlags(); // Should have been handled in Negator! 2066 2067 // (A*B)-(A*C) -> A*(B-C) etc 2068 if (Value *V = foldUsingDistributiveLaws(I)) 2069 return replaceInstUsesWith(I, V); 2070 2071 if (I.getType()->isIntOrIntVectorTy(1)) 2072 return BinaryOperator::CreateXor(Op0, Op1); 2073 2074 // Replace (-1 - A) with (~A). 2075 if (match(Op0, m_AllOnes())) 2076 return BinaryOperator::CreateNot(Op1); 2077 2078 // (X + -1) - Y --> ~Y + X 2079 Value *X, *Y; 2080 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 2081 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 2082 2083 // Reassociate sub/add sequences to create more add instructions and 2084 // reduce dependency chains: 2085 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2086 Value *Z; 2087 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))), 2088 m_Value(Z))))) { 2089 Value *XZ = Builder.CreateAdd(X, Z); 2090 Value *YW = Builder.CreateAdd(Y, Op1); 2091 return BinaryOperator::CreateSub(XZ, YW); 2092 } 2093 2094 // ((X - Y) - Op1) --> X - (Y + Op1) 2095 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) { 2096 Value *Add = Builder.CreateAdd(Y, Op1); 2097 return BinaryOperator::CreateSub(X, Add); 2098 } 2099 2100 // (~X) - (~Y) --> Y - X 2101 // This is placed after the other reassociations and explicitly excludes a 2102 // sub-of-sub pattern to avoid infinite looping. 2103 if (isFreeToInvert(Op0, Op0->hasOneUse()) && 2104 isFreeToInvert(Op1, Op1->hasOneUse()) && 2105 !match(Op0, m_Sub(m_ImmConstant(), m_Value()))) { 2106 Value *NotOp0 = Builder.CreateNot(Op0); 2107 Value *NotOp1 = Builder.CreateNot(Op1); 2108 return BinaryOperator::CreateSub(NotOp1, NotOp0); 2109 } 2110 2111 auto m_AddRdx = [](Value *&Vec) { 2112 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec))); 2113 }; 2114 Value *V0, *V1; 2115 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) && 2116 V0->getType() == V1->getType()) { 2117 // Difference of sums is sum of differences: 2118 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1) 2119 Value *Sub = Builder.CreateSub(V0, V1); 2120 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add, 2121 {Sub->getType()}, {Sub}); 2122 return replaceInstUsesWith(I, Rdx); 2123 } 2124 2125 if (Constant *C = dyn_cast<Constant>(Op0)) { 2126 Value *X; 2127 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2128 // C - (zext bool) --> bool ? C - 1 : C 2129 return SelectInst::Create(X, InstCombiner::SubOne(C), C); 2130 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2131 // C - (sext bool) --> bool ? C + 1 : C 2132 return SelectInst::Create(X, InstCombiner::AddOne(C), C); 2133 2134 // C - ~X == X + (1+C) 2135 if (match(Op1, m_Not(m_Value(X)))) 2136 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C)); 2137 2138 // Try to fold constant sub into select arguments. 2139 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2140 if (Instruction *R = FoldOpIntoSelect(I, SI)) 2141 return R; 2142 2143 // Try to fold constant sub into PHI values. 2144 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 2145 if (Instruction *R = foldOpIntoPhi(I, PN)) 2146 return R; 2147 2148 Constant *C2; 2149 2150 // C-(C2-X) --> X+(C-C2) 2151 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X)))) 2152 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 2153 } 2154 2155 const APInt *Op0C; 2156 if (match(Op0, m_APInt(Op0C))) { 2157 if (Op0C->isMask()) { 2158 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 2159 // zero. 2160 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 2161 if ((*Op0C | RHSKnown.Zero).isAllOnes()) 2162 return BinaryOperator::CreateXor(Op1, Op0); 2163 } 2164 2165 // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when: 2166 // (C3 - ((C2 & C3) - 1)) is pow2 2167 // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1) 2168 // C2 is negative pow2 || sub nuw 2169 const APInt *C2, *C3; 2170 BinaryOperator *InnerSub; 2171 if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) && 2172 match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) && 2173 (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) { 2174 APInt C2AndC3 = *C2 & *C3; 2175 APInt C2AndC3Minus1 = C2AndC3 - 1; 2176 APInt C2AddC3 = *C2 + *C3; 2177 if ((*C3 - C2AndC3Minus1).isPowerOf2() && 2178 C2AndC3Minus1.isSubsetOf(C2AddC3)) { 2179 Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2)); 2180 return BinaryOperator::CreateAdd( 2181 And, ConstantInt::get(I.getType(), *Op0C - C2AndC3)); 2182 } 2183 } 2184 } 2185 2186 { 2187 Value *Y; 2188 // X-(X+Y) == -Y X-(Y+X) == -Y 2189 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 2190 return BinaryOperator::CreateNeg(Y); 2191 2192 // (X-Y)-X == -Y 2193 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 2194 return BinaryOperator::CreateNeg(Y); 2195 } 2196 2197 // (sub (or A, B) (and A, B)) --> (xor A, B) 2198 { 2199 Value *A, *B; 2200 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2201 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2202 return BinaryOperator::CreateXor(A, B); 2203 } 2204 2205 // (sub (add A, B) (or A, B)) --> (and A, B) 2206 { 2207 Value *A, *B; 2208 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2209 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 2210 return BinaryOperator::CreateAnd(A, B); 2211 } 2212 2213 // (sub (add A, B) (and A, B)) --> (or A, B) 2214 { 2215 Value *A, *B; 2216 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2217 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 2218 return BinaryOperator::CreateOr(A, B); 2219 } 2220 2221 // (sub (and A, B) (or A, B)) --> neg (xor A, B) 2222 { 2223 Value *A, *B; 2224 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2225 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2226 (Op0->hasOneUse() || Op1->hasOneUse())) 2227 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); 2228 } 2229 2230 // (sub (or A, B), (xor A, B)) --> (and A, B) 2231 { 2232 Value *A, *B; 2233 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2234 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2235 return BinaryOperator::CreateAnd(A, B); 2236 } 2237 2238 // (sub (xor A, B) (or A, B)) --> neg (and A, B) 2239 { 2240 Value *A, *B; 2241 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2242 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2243 (Op0->hasOneUse() || Op1->hasOneUse())) 2244 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); 2245 } 2246 2247 { 2248 Value *Y; 2249 // ((X | Y) - X) --> (~X & Y) 2250 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 2251 return BinaryOperator::CreateAnd( 2252 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 2253 } 2254 2255 { 2256 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) 2257 Value *X; 2258 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), 2259 m_OneUse(m_Neg(m_Value(X))))))) { 2260 return BinaryOperator::CreateNeg(Builder.CreateAnd( 2261 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); 2262 } 2263 } 2264 2265 { 2266 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) 2267 Constant *C; 2268 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { 2269 return BinaryOperator::CreateNeg( 2270 Builder.CreateAnd(Op1, Builder.CreateNot(C))); 2271 } 2272 } 2273 2274 if (Instruction *R = foldSubOfMinMax(I, Builder)) 2275 return R; 2276 2277 { 2278 // If we have a subtraction between some value and a select between 2279 // said value and something else, sink subtraction into select hands, i.e.: 2280 // sub (select %Cond, %TrueVal, %FalseVal), %Op1 2281 // -> 2282 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) 2283 // or 2284 // sub %Op0, (select %Cond, %TrueVal, %FalseVal) 2285 // -> 2286 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) 2287 // This will result in select between new subtraction and 0. 2288 auto SinkSubIntoSelect = 2289 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, 2290 auto SubBuilder) -> Instruction * { 2291 Value *Cond, *TrueVal, *FalseVal; 2292 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), 2293 m_Value(FalseVal))))) 2294 return nullptr; 2295 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) 2296 return nullptr; 2297 // While it is really tempting to just create two subtractions and let 2298 // InstCombine fold one of those to 0, it isn't possible to do so 2299 // because of worklist visitation order. So ugly it is. 2300 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; 2301 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); 2302 Constant *Zero = Constant::getNullValue(Ty); 2303 SelectInst *NewSel = 2304 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, 2305 OtherHandOfSubIsTrueVal ? NewSub : Zero); 2306 // Preserve prof metadata if any. 2307 NewSel->copyMetadata(cast<Instruction>(*Select)); 2308 return NewSel; 2309 }; 2310 if (Instruction *NewSel = SinkSubIntoSelect( 2311 /*Select=*/Op0, /*OtherHandOfSub=*/Op1, 2312 [Builder = &Builder, Op1](Value *OtherHandOfSelect) { 2313 return Builder->CreateSub(OtherHandOfSelect, 2314 /*OtherHandOfSub=*/Op1); 2315 })) 2316 return NewSel; 2317 if (Instruction *NewSel = SinkSubIntoSelect( 2318 /*Select=*/Op1, /*OtherHandOfSub=*/Op0, 2319 [Builder = &Builder, Op0](Value *OtherHandOfSelect) { 2320 return Builder->CreateSub(/*OtherHandOfSub=*/Op0, 2321 OtherHandOfSelect); 2322 })) 2323 return NewSel; 2324 } 2325 2326 // (X - (X & Y)) --> (X & ~Y) 2327 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) && 2328 (Op1->hasOneUse() || isa<Constant>(Y))) 2329 return BinaryOperator::CreateAnd( 2330 Op0, Builder.CreateNot(Y, Y->getName() + ".not")); 2331 2332 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X 2333 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X 2334 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y) 2335 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y) 2336 // As long as Y is freely invertible, this will be neutral or a win. 2337 // Note: We don't generate the inverse max/min, just create the 'not' of 2338 // it and let other folds do the rest. 2339 if (match(Op0, m_Not(m_Value(X))) && 2340 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) && 2341 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2342 Value *Not = Builder.CreateNot(Op1); 2343 return BinaryOperator::CreateSub(Not, X); 2344 } 2345 if (match(Op1, m_Not(m_Value(X))) && 2346 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) && 2347 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2348 Value *Not = Builder.CreateNot(Op0); 2349 return BinaryOperator::CreateSub(X, Not); 2350 } 2351 2352 // Optimize pointer differences into the same array into a size. Consider: 2353 // &A[10] - &A[0]: we should compile this to "10". 2354 Value *LHSOp, *RHSOp; 2355 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 2356 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 2357 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2358 I.hasNoUnsignedWrap())) 2359 return replaceInstUsesWith(I, Res); 2360 2361 // trunc(p)-trunc(q) -> trunc(p-q) 2362 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 2363 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 2364 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2365 /* IsNUW */ false)) 2366 return replaceInstUsesWith(I, Res); 2367 2368 // Canonicalize a shifty way to code absolute value to the common pattern. 2369 // There are 2 potential commuted variants. 2370 // We're relying on the fact that we only do this transform when the shift has 2371 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 2372 // instructions). 2373 Value *A; 2374 const APInt *ShAmt; 2375 Type *Ty = I.getType(); 2376 unsigned BitWidth = Ty->getScalarSizeInBits(); 2377 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 2378 Op1->hasNUses(2) && *ShAmt == BitWidth - 1 && 2379 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 2380 // B = ashr i32 A, 31 ; smear the sign bit 2381 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 2382 // --> (A < 0) ? -A : A 2383 Value *IsNeg = Builder.CreateIsNeg(A); 2384 // Copy the nuw/nsw flags from the sub to the negate. 2385 Value *NegA = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), 2386 I.hasNoSignedWrap()); 2387 return SelectInst::Create(IsNeg, NegA, A); 2388 } 2389 2390 // If we are subtracting a low-bit masked subset of some value from an add 2391 // of that same value with no low bits changed, that is clearing some low bits 2392 // of the sum: 2393 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC 2394 const APInt *AddC, *AndC; 2395 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) && 2396 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) { 2397 unsigned Cttz = AddC->countr_zero(); 2398 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz)); 2399 if ((HighMask & *AndC).isZero()) 2400 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC))); 2401 } 2402 2403 if (Instruction *V = 2404 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2405 return V; 2406 2407 // X - usub.sat(X, Y) => umin(X, Y) 2408 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0), 2409 m_Value(Y))))) 2410 return replaceInstUsesWith( 2411 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y})); 2412 2413 // umax(X, Op1) - Op1 --> usub.sat(X, Op1) 2414 // TODO: The one-use restriction is not strictly necessary, but it may 2415 // require improving other pattern matching and/or codegen. 2416 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1))))) 2417 return replaceInstUsesWith( 2418 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1})); 2419 2420 // Op0 - umin(X, Op0) --> usub.sat(Op0, X) 2421 if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0))))) 2422 return replaceInstUsesWith( 2423 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X})); 2424 2425 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0) 2426 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) { 2427 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0}); 2428 return BinaryOperator::CreateNeg(USub); 2429 } 2430 2431 // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X) 2432 if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) { 2433 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X}); 2434 return BinaryOperator::CreateNeg(USub); 2435 } 2436 2437 // C - ctpop(X) => ctpop(~X) if C is bitwidth 2438 if (match(Op0, m_SpecificInt(BitWidth)) && 2439 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X))))) 2440 return replaceInstUsesWith( 2441 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 2442 {Builder.CreateNot(X)})); 2443 2444 // Reduce multiplies for difference-of-squares by factoring: 2445 // (X * X) - (Y * Y) --> (X + Y) * (X - Y) 2446 if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) && 2447 match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) { 2448 auto *OBO0 = cast<OverflowingBinaryOperator>(Op0); 2449 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2450 bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() && 2451 OBO1->hasNoSignedWrap() && BitWidth > 2; 2452 bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() && 2453 OBO1->hasNoUnsignedWrap() && BitWidth > 1; 2454 Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW); 2455 Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW); 2456 Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW); 2457 return replaceInstUsesWith(I, Mul); 2458 } 2459 2460 // max(X,Y) nsw/nuw - min(X,Y) --> abs(X nsw - Y) 2461 if (match(Op0, m_OneUse(m_c_SMax(m_Value(X), m_Value(Y)))) && 2462 match(Op1, m_OneUse(m_c_SMin(m_Specific(X), m_Specific(Y))))) { 2463 if (I.hasNoUnsignedWrap() || I.hasNoSignedWrap()) { 2464 Value *Sub = 2465 Builder.CreateSub(X, Y, "sub", /*HasNUW=*/false, /*HasNSW=*/true); 2466 Value *Call = 2467 Builder.CreateBinaryIntrinsic(Intrinsic::abs, Sub, Builder.getTrue()); 2468 return replaceInstUsesWith(I, Call); 2469 } 2470 } 2471 2472 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I)) 2473 return Res; 2474 2475 return TryToNarrowDeduceFlags(); 2476 } 2477 2478 /// This eliminates floating-point negation in either 'fneg(X)' or 2479 /// 'fsub(-0.0, X)' form by combining into a constant operand. 2480 static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) { 2481 // This is limited with one-use because fneg is assumed better for 2482 // reassociation and cheaper in codegen than fmul/fdiv. 2483 // TODO: Should the m_OneUse restriction be removed? 2484 Instruction *FNegOp; 2485 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp))))) 2486 return nullptr; 2487 2488 Value *X; 2489 Constant *C; 2490 2491 // Fold negation into constant operand. 2492 // -(X * C) --> X * (-C) 2493 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C)))) 2494 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2495 return BinaryOperator::CreateFMulFMF(X, NegC, &I); 2496 // -(X / C) --> X / (-C) 2497 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C)))) 2498 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2499 return BinaryOperator::CreateFDivFMF(X, NegC, &I); 2500 // -(C / X) --> (-C) / X 2501 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) 2502 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) { 2503 Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I); 2504 2505 // Intersect 'nsz' and 'ninf' because those special value exceptions may 2506 // not apply to the fdiv. Everything else propagates from the fneg. 2507 // TODO: We could propagate nsz/ninf from fdiv alone? 2508 FastMathFlags FMF = I.getFastMathFlags(); 2509 FastMathFlags OpFMF = FNegOp->getFastMathFlags(); 2510 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros()); 2511 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs()); 2512 return FDiv; 2513 } 2514 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]: 2515 // -(X + C) --> -X + -C --> -C - X 2516 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C)))) 2517 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2518 return BinaryOperator::CreateFSubFMF(NegC, X, &I); 2519 2520 return nullptr; 2521 } 2522 2523 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I, 2524 InstCombiner::BuilderTy &Builder) { 2525 Value *FNeg; 2526 if (!match(&I, m_FNeg(m_Value(FNeg)))) 2527 return nullptr; 2528 2529 Value *X, *Y; 2530 if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y))))) 2531 return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2532 2533 if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y))))) 2534 return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2535 2536 return nullptr; 2537 } 2538 2539 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) { 2540 Value *Op = I.getOperand(0); 2541 2542 if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(), 2543 getSimplifyQuery().getWithInstruction(&I))) 2544 return replaceInstUsesWith(I, V); 2545 2546 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2547 return X; 2548 2549 Value *X, *Y; 2550 2551 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 2552 if (I.hasNoSignedZeros() && 2553 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 2554 return BinaryOperator::CreateFSubFMF(Y, X, &I); 2555 2556 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2557 return R; 2558 2559 Value *OneUse; 2560 if (!match(Op, m_OneUse(m_Value(OneUse)))) 2561 return nullptr; 2562 2563 // Try to eliminate fneg if at least 1 arm of the select is negated. 2564 Value *Cond; 2565 if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) { 2566 // Unlike most transforms, this one is not safe to propagate nsz unless 2567 // it is present on the original select. We union the flags from the select 2568 // and fneg and then remove nsz if needed. 2569 auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) { 2570 S->copyFastMathFlags(&I); 2571 if (auto *OldSel = dyn_cast<SelectInst>(Op)) { 2572 FastMathFlags FMF = I.getFastMathFlags(); 2573 FMF |= OldSel->getFastMathFlags(); 2574 S->setFastMathFlags(FMF); 2575 if (!OldSel->hasNoSignedZeros() && !CommonOperand && 2576 !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition())) 2577 S->setHasNoSignedZeros(false); 2578 } 2579 }; 2580 // -(Cond ? -P : Y) --> Cond ? P : -Y 2581 Value *P; 2582 if (match(X, m_FNeg(m_Value(P)))) { 2583 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); 2584 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY); 2585 propagateSelectFMF(NewSel, P == Y); 2586 return NewSel; 2587 } 2588 // -(Cond ? X : -P) --> Cond ? -X : P 2589 if (match(Y, m_FNeg(m_Value(P)))) { 2590 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); 2591 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P); 2592 propagateSelectFMF(NewSel, P == X); 2593 return NewSel; 2594 } 2595 } 2596 2597 // fneg (copysign x, y) -> copysign x, (fneg y) 2598 if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) { 2599 // The source copysign has an additional value input, so we can't propagate 2600 // flags the copysign doesn't also have. 2601 FastMathFlags FMF = I.getFastMathFlags(); 2602 FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags(); 2603 2604 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2605 Builder.setFastMathFlags(FMF); 2606 2607 Value *NegY = Builder.CreateFNeg(Y); 2608 Value *NewCopySign = Builder.CreateCopySign(X, NegY); 2609 return replaceInstUsesWith(I, NewCopySign); 2610 } 2611 2612 return nullptr; 2613 } 2614 2615 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) { 2616 if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1), 2617 I.getFastMathFlags(), 2618 getSimplifyQuery().getWithInstruction(&I))) 2619 return replaceInstUsesWith(I, V); 2620 2621 if (Instruction *X = foldVectorBinop(I)) 2622 return X; 2623 2624 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2625 return Phi; 2626 2627 // Subtraction from -0.0 is the canonical form of fneg. 2628 // fsub -0.0, X ==> fneg X 2629 // fsub nsz 0.0, X ==> fneg nsz X 2630 // 2631 // FIXME This matcher does not respect FTZ or DAZ yet: 2632 // fsub -0.0, Denorm ==> +-0 2633 // fneg Denorm ==> -Denorm 2634 Value *Op; 2635 if (match(&I, m_FNeg(m_Value(Op)))) 2636 return UnaryOperator::CreateFNegFMF(Op, &I); 2637 2638 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2639 return X; 2640 2641 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2642 return R; 2643 2644 Value *X, *Y; 2645 Constant *C; 2646 2647 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2648 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 2649 // Canonicalize to fadd to make analysis easier. 2650 // This can also help codegen because fadd is commutative. 2651 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 2652 // killed later. We still limit that particular transform with 'hasOneUse' 2653 // because an fneg is assumed better/cheaper than a generic fsub. 2654 if (I.hasNoSignedZeros() || cannotBeNegativeZero(Op0, SQ.DL, SQ.TLI)) { 2655 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2656 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 2657 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 2658 } 2659 } 2660 2661 // (-X) - Op1 --> -(X + Op1) 2662 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) && 2663 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) { 2664 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I); 2665 return UnaryOperator::CreateFNegFMF(FAdd, &I); 2666 } 2667 2668 if (isa<Constant>(Op0)) 2669 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2670 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 2671 return NV; 2672 2673 // X - C --> X + (-C) 2674 // But don't transform constant expressions because there's an inverse fold 2675 // for X + (-Y) --> X - Y. 2676 if (match(Op1, m_ImmConstant(C))) 2677 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2678 return BinaryOperator::CreateFAddFMF(Op0, NegC, &I); 2679 2680 // X - (-Y) --> X + Y 2681 if (match(Op1, m_FNeg(m_Value(Y)))) 2682 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 2683 2684 // Similar to above, but look through a cast of the negated value: 2685 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 2686 Type *Ty = I.getType(); 2687 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 2688 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 2689 2690 // X - (fpext(-Y)) --> X + fpext(Y) 2691 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 2692 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 2693 2694 // Similar to above, but look through fmul/fdiv of the negated value: 2695 // Op0 - (-X * Y) --> Op0 + (X * Y) 2696 // Op0 - (Y * -X) --> Op0 + (X * Y) 2697 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 2698 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 2699 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 2700 } 2701 // Op0 - (-X / Y) --> Op0 + (X / Y) 2702 // Op0 - (X / -Y) --> Op0 + (X / Y) 2703 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 2704 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 2705 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 2706 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 2707 } 2708 2709 // Handle special cases for FSub with selects feeding the operation 2710 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 2711 return replaceInstUsesWith(I, V); 2712 2713 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2714 // (Y - X) - Y --> -X 2715 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 2716 return UnaryOperator::CreateFNegFMF(X, &I); 2717 2718 // Y - (X + Y) --> -X 2719 // Y - (Y + X) --> -X 2720 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 2721 return UnaryOperator::CreateFNegFMF(X, &I); 2722 2723 // (X * C) - X --> X * (C - 1.0) 2724 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 2725 if (Constant *CSubOne = ConstantFoldBinaryOpOperands( 2726 Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL)) 2727 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 2728 } 2729 // X - (X * C) --> X * (1.0 - C) 2730 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 2731 if (Constant *OneSubC = ConstantFoldBinaryOpOperands( 2732 Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL)) 2733 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 2734 } 2735 2736 // Reassociate fsub/fadd sequences to create more fadd instructions and 2737 // reduce dependency chains: 2738 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2739 Value *Z; 2740 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))), 2741 m_Value(Z))))) { 2742 Value *XZ = Builder.CreateFAddFMF(X, Z, &I); 2743 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I); 2744 return BinaryOperator::CreateFSubFMF(XZ, YW, &I); 2745 } 2746 2747 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) { 2748 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum), 2749 m_Value(Vec))); 2750 }; 2751 Value *A0, *A1, *V0, *V1; 2752 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) && 2753 V0->getType() == V1->getType()) { 2754 // Difference of sums is sum of differences: 2755 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1 2756 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I); 2757 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 2758 {Sub->getType()}, {A0, Sub}, &I); 2759 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I); 2760 } 2761 2762 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2763 return F; 2764 2765 // TODO: This performs reassociative folds for FP ops. Some fraction of the 2766 // functionality has been subsumed by simple pattern matching here and in 2767 // InstSimplify. We should let a dedicated reassociation pass handle more 2768 // complex pattern matching and remove this from InstCombine. 2769 if (Value *V = FAddCombine(Builder).simplify(&I)) 2770 return replaceInstUsesWith(I, V); 2771 2772 // (X - Y) - Op1 --> X - (Y + Op1) 2773 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2774 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I); 2775 return BinaryOperator::CreateFSubFMF(X, FAdd, &I); 2776 } 2777 } 2778 2779 return nullptr; 2780 } 2781