1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/InstCombine/InstCombiner.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); } 86 87 const APFloat *getFpValPtr() const { 88 return reinterpret_cast<const APFloat *>(&FpValBuf); 89 } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFNeg(Value *V); 199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 201 202 // Debugging stuff are clustered here. 203 #ifndef NDEBUG 204 unsigned CreateInstrNum; 205 void initCreateInstNum() { CreateInstrNum = 0; } 206 void incCreateInstNum() { CreateInstrNum++; } 207 #else 208 void initCreateInstNum() {} 209 void incCreateInstNum() {} 210 #endif 211 212 InstCombiner::BuilderTy &Builder; 213 Instruction *Instr = nullptr; 214 }; 215 216 } // end anonymous namespace 217 218 //===----------------------------------------------------------------------===// 219 // 220 // Implementation of 221 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 222 // 223 //===----------------------------------------------------------------------===// 224 FAddendCoef::~FAddendCoef() { 225 if (BufHasFpVal) 226 getFpValPtr()->~APFloat(); 227 } 228 229 void FAddendCoef::set(const APFloat& C) { 230 APFloat *P = getFpValPtr(); 231 232 if (isInt()) { 233 // As the buffer is meanless byte stream, we cannot call 234 // APFloat::operator=(). 235 new(P) APFloat(C); 236 } else 237 *P = C; 238 239 IsFp = BufHasFpVal = true; 240 } 241 242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 243 if (!isInt()) 244 return; 245 246 APFloat *P = getFpValPtr(); 247 if (IntVal > 0) 248 new(P) APFloat(Sem, IntVal); 249 else { 250 new(P) APFloat(Sem, 0 - IntVal); 251 P->changeSign(); 252 } 253 IsFp = BufHasFpVal = true; 254 } 255 256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 257 if (Val >= 0) 258 return APFloat(Sem, Val); 259 260 APFloat T(Sem, 0 - Val); 261 T.changeSign(); 262 263 return T; 264 } 265 266 void FAddendCoef::operator=(const FAddendCoef &That) { 267 if (That.isInt()) 268 set(That.IntVal); 269 else 270 set(That.getFpVal()); 271 } 272 273 void FAddendCoef::operator+=(const FAddendCoef &That) { 274 RoundingMode RndMode = RoundingMode::NearestTiesToEven; 275 if (isInt() == That.isInt()) { 276 if (isInt()) 277 IntVal += That.IntVal; 278 else 279 getFpVal().add(That.getFpVal(), RndMode); 280 return; 281 } 282 283 if (isInt()) { 284 const APFloat &T = That.getFpVal(); 285 convertToFpType(T.getSemantics()); 286 getFpVal().add(T, RndMode); 287 return; 288 } 289 290 APFloat &T = getFpVal(); 291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 292 } 293 294 void FAddendCoef::operator*=(const FAddendCoef &That) { 295 if (That.isOne()) 296 return; 297 298 if (That.isMinusOne()) { 299 negate(); 300 return; 301 } 302 303 if (isInt() && That.isInt()) { 304 int Res = IntVal * (int)That.IntVal; 305 assert(!insaneIntVal(Res) && "Insane int value"); 306 IntVal = Res; 307 return; 308 } 309 310 const fltSemantics &Semantic = 311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 312 313 if (isInt()) 314 convertToFpType(Semantic); 315 APFloat &F0 = getFpVal(); 316 317 if (That.isInt()) 318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 319 APFloat::rmNearestTiesToEven); 320 else 321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 322 } 323 324 void FAddendCoef::negate() { 325 if (isInt()) 326 IntVal = 0 - IntVal; 327 else 328 getFpVal().changeSign(); 329 } 330 331 Value *FAddendCoef::getValue(Type *Ty) const { 332 return isInt() ? 333 ConstantFP::get(Ty, float(IntVal)) : 334 ConstantFP::get(Ty->getContext(), getFpVal()); 335 } 336 337 // The definition of <Val> Addends 338 // ========================================= 339 // A + B <1, A>, <1,B> 340 // A - B <1, A>, <1,B> 341 // 0 - B <-1, B> 342 // C * A, <C, A> 343 // A + C <1, A> <C, NULL> 344 // 0 +/- 0 <0, NULL> (corner case) 345 // 346 // Legend: A and B are not constant, C is constant 347 unsigned FAddend::drillValueDownOneStep 348 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 349 Instruction *I = nullptr; 350 if (!Val || !(I = dyn_cast<Instruction>(Val))) 351 return 0; 352 353 unsigned Opcode = I->getOpcode(); 354 355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 356 ConstantFP *C0, *C1; 357 Value *Opnd0 = I->getOperand(0); 358 Value *Opnd1 = I->getOperand(1); 359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 360 Opnd0 = nullptr; 361 362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 363 Opnd1 = nullptr; 364 365 if (Opnd0) { 366 if (!C0) 367 Addend0.set(1, Opnd0); 368 else 369 Addend0.set(C0, nullptr); 370 } 371 372 if (Opnd1) { 373 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 374 if (!C1) 375 Addend.set(1, Opnd1); 376 else 377 Addend.set(C1, nullptr); 378 if (Opcode == Instruction::FSub) 379 Addend.negate(); 380 } 381 382 if (Opnd0 || Opnd1) 383 return Opnd0 && Opnd1 ? 2 : 1; 384 385 // Both operands are zero. Weird! 386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 387 return 1; 388 } 389 390 if (I->getOpcode() == Instruction::FMul) { 391 Value *V0 = I->getOperand(0); 392 Value *V1 = I->getOperand(1); 393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 394 Addend0.set(C, V1); 395 return 1; 396 } 397 398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 399 Addend0.set(C, V0); 400 return 1; 401 } 402 } 403 404 return 0; 405 } 406 407 // Try to break *this* addend into two addends. e.g. Suppose this addend is 408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 409 // i.e. <2.3, X> and <2.3, Y>. 410 unsigned FAddend::drillAddendDownOneStep 411 (FAddend &Addend0, FAddend &Addend1) const { 412 if (isConstant()) 413 return 0; 414 415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 416 if (!BreakNum || Coeff.isOne()) 417 return BreakNum; 418 419 Addend0.Scale(Coeff); 420 421 if (BreakNum == 2) 422 Addend1.Scale(Coeff); 423 424 return BreakNum; 425 } 426 427 Value *FAddCombine::simplify(Instruction *I) { 428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 429 "Expected 'reassoc'+'nsz' instruction"); 430 431 // Currently we are not able to handle vector type. 432 if (I->getType()->isVectorTy()) 433 return nullptr; 434 435 assert((I->getOpcode() == Instruction::FAdd || 436 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 437 438 // Save the instruction before calling other member-functions. 439 Instr = I; 440 441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 442 443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 444 445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 446 unsigned Opnd0_ExpNum = 0; 447 unsigned Opnd1_ExpNum = 0; 448 449 if (!Opnd0.isConstant()) 450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 451 452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 453 if (OpndNum == 2 && !Opnd1.isConstant()) 454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 455 456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 457 if (Opnd0_ExpNum && Opnd1_ExpNum) { 458 AddendVect AllOpnds; 459 AllOpnds.push_back(&Opnd0_0); 460 AllOpnds.push_back(&Opnd1_0); 461 if (Opnd0_ExpNum == 2) 462 AllOpnds.push_back(&Opnd0_1); 463 if (Opnd1_ExpNum == 2) 464 AllOpnds.push_back(&Opnd1_1); 465 466 // Compute instruction quota. We should save at least one instruction. 467 unsigned InstQuota = 0; 468 469 Value *V0 = I->getOperand(0); 470 Value *V1 = I->getOperand(1); 471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 473 474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 475 return R; 476 } 477 478 if (OpndNum != 2) { 479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 480 // splitted into two addends, say "V = X - Y", the instruction would have 481 // been optimized into "I = Y - X" in the previous steps. 482 // 483 const FAddendCoef &CE = Opnd0.getCoef(); 484 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 485 } 486 487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 488 if (Opnd1_ExpNum) { 489 AddendVect AllOpnds; 490 AllOpnds.push_back(&Opnd0); 491 AllOpnds.push_back(&Opnd1_0); 492 if (Opnd1_ExpNum == 2) 493 AllOpnds.push_back(&Opnd1_1); 494 495 if (Value *R = simplifyFAdd(AllOpnds, 1)) 496 return R; 497 } 498 499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 500 if (Opnd0_ExpNum) { 501 AddendVect AllOpnds; 502 AllOpnds.push_back(&Opnd1); 503 AllOpnds.push_back(&Opnd0_0); 504 if (Opnd0_ExpNum == 2) 505 AllOpnds.push_back(&Opnd0_1); 506 507 if (Value *R = simplifyFAdd(AllOpnds, 1)) 508 return R; 509 } 510 511 return nullptr; 512 } 513 514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 515 unsigned AddendNum = Addends.size(); 516 assert(AddendNum <= 4 && "Too many addends"); 517 518 // For saving intermediate results; 519 unsigned NextTmpIdx = 0; 520 FAddend TmpResult[3]; 521 522 // Simplified addends are placed <SimpVect>. 523 AddendVect SimpVect; 524 525 // The outer loop works on one symbolic-value at a time. Suppose the input 526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 527 // The symbolic-values will be processed in this order: x, y, z. 528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 529 530 const FAddend *ThisAddend = Addends[SymIdx]; 531 if (!ThisAddend) { 532 // This addend was processed before. 533 continue; 534 } 535 536 Value *Val = ThisAddend->getSymVal(); 537 538 // If the resulting expr has constant-addend, this constant-addend is 539 // desirable to reside at the top of the resulting expression tree. Placing 540 // constant close to super-expr(s) will potentially reveal some 541 // optimization opportunities in super-expr(s). Here we do not implement 542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative 543 // call later. 544 545 unsigned StartIdx = SimpVect.size(); 546 SimpVect.push_back(ThisAddend); 547 548 // The inner loop collects addends sharing same symbolic-value, and these 549 // addends will be later on folded into a single addend. Following above 550 // example, if the symbolic value "y" is being processed, the inner loop 551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 552 // be later on folded into "<b1+b2, y>". 553 for (unsigned SameSymIdx = SymIdx + 1; 554 SameSymIdx < AddendNum; SameSymIdx++) { 555 const FAddend *T = Addends[SameSymIdx]; 556 if (T && T->getSymVal() == Val) { 557 // Set null such that next iteration of the outer loop will not process 558 // this addend again. 559 Addends[SameSymIdx] = nullptr; 560 SimpVect.push_back(T); 561 } 562 } 563 564 // If multiple addends share same symbolic value, fold them together. 565 if (StartIdx + 1 != SimpVect.size()) { 566 FAddend &R = TmpResult[NextTmpIdx ++]; 567 R = *SimpVect[StartIdx]; 568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 569 R += *SimpVect[Idx]; 570 571 // Pop all addends being folded and push the resulting folded addend. 572 SimpVect.resize(StartIdx); 573 if (!R.isZero()) { 574 SimpVect.push_back(&R); 575 } 576 } 577 } 578 579 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 580 "out-of-bound access"); 581 582 Value *Result; 583 if (!SimpVect.empty()) 584 Result = createNaryFAdd(SimpVect, InstrQuota); 585 else { 586 // The addition is folded to 0.0. 587 Result = ConstantFP::get(Instr->getType(), 0.0); 588 } 589 590 return Result; 591 } 592 593 Value *FAddCombine::createNaryFAdd 594 (const AddendVect &Opnds, unsigned InstrQuota) { 595 assert(!Opnds.empty() && "Expect at least one addend"); 596 597 // Step 1: Check if the # of instructions needed exceeds the quota. 598 599 unsigned InstrNeeded = calcInstrNumber(Opnds); 600 if (InstrNeeded > InstrQuota) 601 return nullptr; 602 603 initCreateInstNum(); 604 605 // step 2: Emit the N-ary addition. 606 // Note that at most three instructions are involved in Fadd-InstCombine: the 607 // addition in question, and at most two neighboring instructions. 608 // The resulting optimized addition should have at least one less instruction 609 // than the original addition expression tree. This implies that the resulting 610 // N-ary addition has at most two instructions, and we don't need to worry 611 // about tree-height when constructing the N-ary addition. 612 613 Value *LastVal = nullptr; 614 bool LastValNeedNeg = false; 615 616 // Iterate the addends, creating fadd/fsub using adjacent two addends. 617 for (const FAddend *Opnd : Opnds) { 618 bool NeedNeg; 619 Value *V = createAddendVal(*Opnd, NeedNeg); 620 if (!LastVal) { 621 LastVal = V; 622 LastValNeedNeg = NeedNeg; 623 continue; 624 } 625 626 if (LastValNeedNeg == NeedNeg) { 627 LastVal = createFAdd(LastVal, V); 628 continue; 629 } 630 631 if (LastValNeedNeg) 632 LastVal = createFSub(V, LastVal); 633 else 634 LastVal = createFSub(LastVal, V); 635 636 LastValNeedNeg = false; 637 } 638 639 if (LastValNeedNeg) { 640 LastVal = createFNeg(LastVal); 641 } 642 643 #ifndef NDEBUG 644 assert(CreateInstrNum == InstrNeeded && 645 "Inconsistent in instruction numbers"); 646 #endif 647 648 return LastVal; 649 } 650 651 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 652 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 653 if (Instruction *I = dyn_cast<Instruction>(V)) 654 createInstPostProc(I); 655 return V; 656 } 657 658 Value *FAddCombine::createFNeg(Value *V) { 659 Value *NewV = Builder.CreateFNeg(V); 660 if (Instruction *I = dyn_cast<Instruction>(NewV)) 661 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 662 return NewV; 663 } 664 665 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 666 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 667 if (Instruction *I = dyn_cast<Instruction>(V)) 668 createInstPostProc(I); 669 return V; 670 } 671 672 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 673 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 674 if (Instruction *I = dyn_cast<Instruction>(V)) 675 createInstPostProc(I); 676 return V; 677 } 678 679 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 680 NewInstr->setDebugLoc(Instr->getDebugLoc()); 681 682 // Keep track of the number of instruction created. 683 if (!NoNumber) 684 incCreateInstNum(); 685 686 // Propagate fast-math flags 687 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 688 } 689 690 // Return the number of instruction needed to emit the N-ary addition. 691 // NOTE: Keep this function in sync with createAddendVal(). 692 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 693 unsigned OpndNum = Opnds.size(); 694 unsigned InstrNeeded = OpndNum - 1; 695 696 // Adjust the number of instructions needed to emit the N-ary add. 697 for (const FAddend *Opnd : Opnds) { 698 if (Opnd->isConstant()) 699 continue; 700 701 // The constant check above is really for a few special constant 702 // coefficients. 703 if (isa<UndefValue>(Opnd->getSymVal())) 704 continue; 705 706 const FAddendCoef &CE = Opnd->getCoef(); 707 // Let the addend be "c * x". If "c == +/-1", the value of the addend 708 // is immediately available; otherwise, it needs exactly one instruction 709 // to evaluate the value. 710 if (!CE.isMinusOne() && !CE.isOne()) 711 InstrNeeded++; 712 } 713 return InstrNeeded; 714 } 715 716 // Input Addend Value NeedNeg(output) 717 // ================================================================ 718 // Constant C C false 719 // <+/-1, V> V coefficient is -1 720 // <2/-2, V> "fadd V, V" coefficient is -2 721 // <C, V> "fmul V, C" false 722 // 723 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 724 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 725 const FAddendCoef &Coeff = Opnd.getCoef(); 726 727 if (Opnd.isConstant()) { 728 NeedNeg = false; 729 return Coeff.getValue(Instr->getType()); 730 } 731 732 Value *OpndVal = Opnd.getSymVal(); 733 734 if (Coeff.isMinusOne() || Coeff.isOne()) { 735 NeedNeg = Coeff.isMinusOne(); 736 return OpndVal; 737 } 738 739 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 740 NeedNeg = Coeff.isMinusTwo(); 741 return createFAdd(OpndVal, OpndVal); 742 } 743 744 NeedNeg = false; 745 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 746 } 747 748 // Checks if any operand is negative and we can convert add to sub. 749 // This function checks for following negative patterns 750 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 751 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 752 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 753 static Value *checkForNegativeOperand(BinaryOperator &I, 754 InstCombiner::BuilderTy &Builder) { 755 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 756 757 // This function creates 2 instructions to replace ADD, we need at least one 758 // of LHS or RHS to have one use to ensure benefit in transform. 759 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 760 return nullptr; 761 762 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 763 const APInt *C1 = nullptr, *C2 = nullptr; 764 765 // if ONE is on other side, swap 766 if (match(RHS, m_Add(m_Value(X), m_One()))) 767 std::swap(LHS, RHS); 768 769 if (match(LHS, m_Add(m_Value(X), m_One()))) { 770 // if XOR on other side, swap 771 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 772 std::swap(X, RHS); 773 774 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 775 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 776 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 777 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 778 Value *NewAnd = Builder.CreateAnd(Z, *C1); 779 return Builder.CreateSub(RHS, NewAnd, "sub"); 780 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 781 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 782 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 783 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 784 return Builder.CreateSub(RHS, NewOr, "sub"); 785 } 786 } 787 } 788 789 // Restore LHS and RHS 790 LHS = I.getOperand(0); 791 RHS = I.getOperand(1); 792 793 // if XOR is on other side, swap 794 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 795 std::swap(LHS, RHS); 796 797 // C2 is ODD 798 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 799 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 800 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 801 if (C1->countTrailingZeros() == 0) 802 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 803 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 804 return Builder.CreateSub(RHS, NewOr, "sub"); 805 } 806 return nullptr; 807 } 808 809 /// Wrapping flags may allow combining constants separated by an extend. 810 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 811 InstCombiner::BuilderTy &Builder) { 812 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 813 Type *Ty = Add.getType(); 814 Constant *Op1C; 815 if (!match(Op1, m_Constant(Op1C))) 816 return nullptr; 817 818 // Try this match first because it results in an add in the narrow type. 819 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 820 Value *X; 821 const APInt *C1, *C2; 822 if (match(Op1, m_APInt(C1)) && 823 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 824 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 825 Constant *NewC = 826 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); 827 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 828 } 829 830 // More general combining of constants in the wide type. 831 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 832 Constant *NarrowC; 833 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { 834 Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty); 835 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 836 Value *WideX = Builder.CreateSExt(X, Ty); 837 return BinaryOperator::CreateAdd(WideX, NewC); 838 } 839 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 840 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { 841 Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty); 842 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 843 Value *WideX = Builder.CreateZExt(X, Ty); 844 return BinaryOperator::CreateAdd(WideX, NewC); 845 } 846 847 return nullptr; 848 } 849 850 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) { 851 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 852 Constant *Op1C; 853 if (!match(Op1, m_ImmConstant(Op1C))) 854 return nullptr; 855 856 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 857 return NV; 858 859 Value *X; 860 Constant *Op00C; 861 862 // add (sub C1, X), C2 --> sub (add C1, C2), X 863 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 864 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 865 866 Value *Y; 867 868 // add (sub X, Y), -1 --> add (not Y), X 869 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 870 match(Op1, m_AllOnes())) 871 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 872 873 // zext(bool) + C -> bool ? C + 1 : C 874 if (match(Op0, m_ZExt(m_Value(X))) && 875 X->getType()->getScalarSizeInBits() == 1) 876 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1); 877 // sext(bool) + C -> bool ? C - 1 : C 878 if (match(Op0, m_SExt(m_Value(X))) && 879 X->getType()->getScalarSizeInBits() == 1) 880 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1); 881 882 // ~X + C --> (C-1) - X 883 if (match(Op0, m_Not(m_Value(X)))) 884 return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X); 885 886 const APInt *C; 887 if (!match(Op1, m_APInt(C))) 888 return nullptr; 889 890 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add` 891 Constant *Op01C; 892 if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) && 893 haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT)) 894 return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C)); 895 896 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 897 const APInt *C2; 898 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 899 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 900 901 if (C->isSignMask()) { 902 // If wrapping is not allowed, then the addition must set the sign bit: 903 // X + (signmask) --> X | signmask 904 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 905 return BinaryOperator::CreateOr(Op0, Op1); 906 907 // If wrapping is allowed, then the addition flips the sign bit of LHS: 908 // X + (signmask) --> X ^ signmask 909 return BinaryOperator::CreateXor(Op0, Op1); 910 } 911 912 // Is this add the last step in a convoluted sext? 913 // add(zext(xor i16 X, -32768), -32768) --> sext X 914 Type *Ty = Add.getType(); 915 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 916 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 917 return CastInst::Create(Instruction::SExt, X, Ty); 918 919 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) { 920 // (X ^ signmask) + C --> (X + (signmask ^ C)) 921 if (C2->isSignMask()) 922 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C)); 923 924 // If X has no high-bits set above an xor mask: 925 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X 926 if (C2->isMask()) { 927 KnownBits LHSKnown = computeKnownBits(X, 0, &Add); 928 if ((*C2 | LHSKnown.Zero).isAllOnes()) 929 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X); 930 } 931 932 // Look for a math+logic pattern that corresponds to sext-in-register of a 933 // value with cleared high bits. Convert that into a pair of shifts: 934 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC 935 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC 936 if (Op0->hasOneUse() && *C2 == -(*C)) { 937 unsigned BitWidth = Ty->getScalarSizeInBits(); 938 unsigned ShAmt = 0; 939 if (C->isPowerOf2()) 940 ShAmt = BitWidth - C->logBase2() - 1; 941 else if (C2->isPowerOf2()) 942 ShAmt = BitWidth - C2->logBase2() - 1; 943 if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt), 944 0, &Add)) { 945 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt); 946 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext"); 947 return BinaryOperator::CreateAShr(NewShl, ShAmtC); 948 } 949 } 950 } 951 952 if (C->isOne() && Op0->hasOneUse()) { 953 // add (sext i1 X), 1 --> zext (not X) 954 // TODO: The smallest IR representation is (select X, 0, 1), and that would 955 // not require the one-use check. But we need to remove a transform in 956 // visitSelect and make sure that IR value tracking for select is equal or 957 // better than for these ops. 958 if (match(Op0, m_SExt(m_Value(X))) && 959 X->getType()->getScalarSizeInBits() == 1) 960 return new ZExtInst(Builder.CreateNot(X), Ty); 961 962 // Shifts and add used to flip and mask off the low bit: 963 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 964 const APInt *C3; 965 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 966 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 967 Value *NotX = Builder.CreateNot(X); 968 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 969 } 970 } 971 972 // If all bits affected by the add are included in a high-bit-mask, do the 973 // add before the mask op: 974 // (X & 0xFF00) + xx00 --> (X + xx00) & 0xFF00 975 if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C2)))) && 976 C2->isNegative() && C2->isShiftedMask() && *C == (*C & *C2)) { 977 Value *NewAdd = Builder.CreateAdd(X, ConstantInt::get(Ty, *C)); 978 return BinaryOperator::CreateAnd(NewAdd, ConstantInt::get(Ty, *C2)); 979 } 980 981 return nullptr; 982 } 983 984 // Matches multiplication expression Op * C where C is a constant. Returns the 985 // constant value in C and the other operand in Op. Returns true if such a 986 // match is found. 987 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 988 const APInt *AI; 989 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 990 C = *AI; 991 return true; 992 } 993 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 994 C = APInt(AI->getBitWidth(), 1); 995 C <<= *AI; 996 return true; 997 } 998 return false; 999 } 1000 1001 // Matches remainder expression Op % C where C is a constant. Returns the 1002 // constant value in C and the other operand in Op. Returns the signedness of 1003 // the remainder operation in IsSigned. Returns true if such a match is 1004 // found. 1005 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 1006 const APInt *AI; 1007 IsSigned = false; 1008 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 1009 IsSigned = true; 1010 C = *AI; 1011 return true; 1012 } 1013 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 1014 C = *AI; 1015 return true; 1016 } 1017 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 1018 C = *AI + 1; 1019 return true; 1020 } 1021 return false; 1022 } 1023 1024 // Matches division expression Op / C with the given signedness as indicated 1025 // by IsSigned, where C is a constant. Returns the constant value in C and the 1026 // other operand in Op. Returns true if such a match is found. 1027 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 1028 const APInt *AI; 1029 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 1030 C = *AI; 1031 return true; 1032 } 1033 if (!IsSigned) { 1034 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 1035 C = *AI; 1036 return true; 1037 } 1038 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1039 C = APInt(AI->getBitWidth(), 1); 1040 C <<= *AI; 1041 return true; 1042 } 1043 } 1044 return false; 1045 } 1046 1047 // Returns whether C0 * C1 with the given signedness overflows. 1048 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1049 bool overflow; 1050 if (IsSigned) 1051 (void)C0.smul_ov(C1, overflow); 1052 else 1053 (void)C0.umul_ov(C1, overflow); 1054 return overflow; 1055 } 1056 1057 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1058 // does not overflow. 1059 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) { 1060 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1061 Value *X, *MulOpV; 1062 APInt C0, MulOpC; 1063 bool IsSigned; 1064 // Match I = X % C0 + MulOpV * C0 1065 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1066 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1067 C0 == MulOpC) { 1068 Value *RemOpV; 1069 APInt C1; 1070 bool Rem2IsSigned; 1071 // Match MulOpC = RemOpV % C1 1072 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1073 IsSigned == Rem2IsSigned) { 1074 Value *DivOpV; 1075 APInt DivOpC; 1076 // Match RemOpV = X / C0 1077 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1078 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1079 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1); 1080 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1081 : Builder.CreateURem(X, NewDivisor, "urem"); 1082 } 1083 } 1084 } 1085 1086 return nullptr; 1087 } 1088 1089 /// Fold 1090 /// (1 << NBits) - 1 1091 /// Into: 1092 /// ~(-(1 << NBits)) 1093 /// Because a 'not' is better for bit-tracking analysis and other transforms 1094 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1095 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1096 InstCombiner::BuilderTy &Builder) { 1097 Value *NBits; 1098 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1099 return nullptr; 1100 1101 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1102 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1103 // Be wary of constant folding. 1104 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1105 // Always NSW. But NUW propagates from `add`. 1106 BOp->setHasNoSignedWrap(); 1107 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1108 } 1109 1110 return BinaryOperator::CreateNot(NotMask, I.getName()); 1111 } 1112 1113 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1114 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1115 Type *Ty = I.getType(); 1116 auto getUAddSat = [&]() { 1117 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); 1118 }; 1119 1120 // add (umin X, ~Y), Y --> uaddsat X, Y 1121 Value *X, *Y; 1122 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1123 m_Deferred(Y)))) 1124 return CallInst::Create(getUAddSat(), { X, Y }); 1125 1126 // add (umin X, ~C), C --> uaddsat X, C 1127 const APInt *C, *NotC; 1128 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1129 *C == ~*NotC) 1130 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1131 1132 return nullptr; 1133 } 1134 1135 Instruction *InstCombinerImpl:: 1136 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( 1137 BinaryOperator &I) { 1138 assert((I.getOpcode() == Instruction::Add || 1139 I.getOpcode() == Instruction::Or || 1140 I.getOpcode() == Instruction::Sub) && 1141 "Expecting add/or/sub instruction"); 1142 1143 // We have a subtraction/addition between a (potentially truncated) *logical* 1144 // right-shift of X and a "select". 1145 Value *X, *Select; 1146 Instruction *LowBitsToSkip, *Extract; 1147 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( 1148 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), 1149 m_Instruction(Extract))), 1150 m_Value(Select)))) 1151 return nullptr; 1152 1153 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. 1154 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) 1155 return nullptr; 1156 1157 Type *XTy = X->getType(); 1158 bool HadTrunc = I.getType() != XTy; 1159 1160 // If there was a truncation of extracted value, then we'll need to produce 1161 // one extra instruction, so we need to ensure one instruction will go away. 1162 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1163 return nullptr; 1164 1165 // Extraction should extract high NBits bits, with shift amount calculated as: 1166 // low bits to skip = shift bitwidth - high bits to extract 1167 // The shift amount itself may be extended, and we need to look past zero-ext 1168 // when matching NBits, that will matter for matching later. 1169 Constant *C; 1170 Value *NBits; 1171 if (!match( 1172 LowBitsToSkip, 1173 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || 1174 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1175 APInt(C->getType()->getScalarSizeInBits(), 1176 X->getType()->getScalarSizeInBits())))) 1177 return nullptr; 1178 1179 // Sign-extending value can be zero-extended if we `sub`tract it, 1180 // or sign-extended otherwise. 1181 auto SkipExtInMagic = [&I](Value *&V) { 1182 if (I.getOpcode() == Instruction::Sub) 1183 match(V, m_ZExtOrSelf(m_Value(V))); 1184 else 1185 match(V, m_SExtOrSelf(m_Value(V))); 1186 }; 1187 1188 // Now, finally validate the sign-extending magic. 1189 // `select` itself may be appropriately extended, look past that. 1190 SkipExtInMagic(Select); 1191 1192 ICmpInst::Predicate Pred; 1193 const APInt *Thr; 1194 Value *SignExtendingValue, *Zero; 1195 bool ShouldSignext; 1196 // It must be a select between two values we will later establish to be a 1197 // sign-extending value and a zero constant. The condition guarding the 1198 // sign-extension must be based on a sign bit of the same X we had in `lshr`. 1199 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), 1200 m_Value(SignExtendingValue), m_Value(Zero))) || 1201 !isSignBitCheck(Pred, *Thr, ShouldSignext)) 1202 return nullptr; 1203 1204 // icmp-select pair is commutative. 1205 if (!ShouldSignext) 1206 std::swap(SignExtendingValue, Zero); 1207 1208 // If we should not perform sign-extension then we must add/or/subtract zero. 1209 if (!match(Zero, m_Zero())) 1210 return nullptr; 1211 // Otherwise, it should be some constant, left-shifted by the same NBits we 1212 // had in `lshr`. Said left-shift can also be appropriately extended. 1213 // Again, we must look past zero-ext when looking for NBits. 1214 SkipExtInMagic(SignExtendingValue); 1215 Constant *SignExtendingValueBaseConstant; 1216 if (!match(SignExtendingValue, 1217 m_Shl(m_Constant(SignExtendingValueBaseConstant), 1218 m_ZExtOrSelf(m_Specific(NBits))))) 1219 return nullptr; 1220 // If we `sub`, then the constant should be one, else it should be all-ones. 1221 if (I.getOpcode() == Instruction::Sub 1222 ? !match(SignExtendingValueBaseConstant, m_One()) 1223 : !match(SignExtendingValueBaseConstant, m_AllOnes())) 1224 return nullptr; 1225 1226 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, 1227 Extract->getName() + ".sext"); 1228 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. 1229 if (!HadTrunc) 1230 return NewAShr; 1231 1232 Builder.Insert(NewAShr); 1233 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); 1234 } 1235 1236 /// This is a specialization of a more general transform from 1237 /// SimplifyUsingDistributiveLaws. If that code can be made to work optimally 1238 /// for multi-use cases or propagating nsw/nuw, then we would not need this. 1239 static Instruction *factorizeMathWithShlOps(BinaryOperator &I, 1240 InstCombiner::BuilderTy &Builder) { 1241 // TODO: Also handle mul by doubling the shift amount? 1242 assert((I.getOpcode() == Instruction::Add || 1243 I.getOpcode() == Instruction::Sub) && 1244 "Expected add/sub"); 1245 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 1246 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 1247 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse())) 1248 return nullptr; 1249 1250 Value *X, *Y, *ShAmt; 1251 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) || 1252 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt)))) 1253 return nullptr; 1254 1255 // No-wrap propagates only when all ops have no-wrap. 1256 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() && 1257 Op1->hasNoSignedWrap(); 1258 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() && 1259 Op1->hasNoUnsignedWrap(); 1260 1261 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt 1262 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y); 1263 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) { 1264 NewI->setHasNoSignedWrap(HasNSW); 1265 NewI->setHasNoUnsignedWrap(HasNUW); 1266 } 1267 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt); 1268 NewShl->setHasNoSignedWrap(HasNSW); 1269 NewShl->setHasNoUnsignedWrap(HasNUW); 1270 return NewShl; 1271 } 1272 1273 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) { 1274 if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1), 1275 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1276 SQ.getWithInstruction(&I))) 1277 return replaceInstUsesWith(I, V); 1278 1279 if (SimplifyAssociativeOrCommutative(I)) 1280 return &I; 1281 1282 if (Instruction *X = foldVectorBinop(I)) 1283 return X; 1284 1285 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1286 return Phi; 1287 1288 // (A*B)+(A*C) -> A*(B+C) etc 1289 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1290 return replaceInstUsesWith(I, V); 1291 1292 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1293 return R; 1294 1295 if (Instruction *X = foldAddWithConstant(I)) 1296 return X; 1297 1298 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1299 return X; 1300 1301 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1302 Type *Ty = I.getType(); 1303 if (Ty->isIntOrIntVectorTy(1)) 1304 return BinaryOperator::CreateXor(LHS, RHS); 1305 1306 // X + X --> X << 1 1307 if (LHS == RHS) { 1308 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1309 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1310 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1311 return Shl; 1312 } 1313 1314 Value *A, *B; 1315 if (match(LHS, m_Neg(m_Value(A)))) { 1316 // -A + -B --> -(A + B) 1317 if (match(RHS, m_Neg(m_Value(B)))) 1318 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1319 1320 // -A + B --> B - A 1321 return BinaryOperator::CreateSub(RHS, A); 1322 } 1323 1324 // A + -B --> A - B 1325 if (match(RHS, m_Neg(m_Value(B)))) 1326 return BinaryOperator::CreateSub(LHS, B); 1327 1328 if (Value *V = checkForNegativeOperand(I, Builder)) 1329 return replaceInstUsesWith(I, V); 1330 1331 // (A + 1) + ~B --> A - B 1332 // ~B + (A + 1) --> A - B 1333 // (~B + A) + 1 --> A - B 1334 // (A + ~B) + 1 --> A - B 1335 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1336 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1337 return BinaryOperator::CreateSub(A, B); 1338 1339 // (A + RHS) + RHS --> A + (RHS << 1) 1340 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS))))) 1341 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add")); 1342 1343 // LHS + (A + LHS) --> A + (LHS << 1) 1344 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS))))) 1345 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add")); 1346 1347 { 1348 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2) 1349 Constant *C1, *C2; 1350 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)), 1351 m_Sub(m_ImmConstant(C2), m_Value(B)))) && 1352 (LHS->hasOneUse() || RHS->hasOneUse())) { 1353 Value *Sub = Builder.CreateSub(A, B); 1354 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2)); 1355 } 1356 } 1357 1358 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1359 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1360 1361 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2 1362 const APInt *C1, *C2; 1363 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) { 1364 APInt one(C2->getBitWidth(), 1); 1365 APInt minusC1 = -(*C1); 1366 if (minusC1 == (one << *C2)) { 1367 Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1); 1368 return BinaryOperator::CreateSRem(RHS, NewRHS); 1369 } 1370 } 1371 1372 // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit 1373 if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) && 1374 C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countLeadingZeros())) { 1375 Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1); 1376 return BinaryOperator::CreateAnd(A, NewMask); 1377 } 1378 1379 // A+B --> A|B iff A and B have no bits set in common. 1380 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1381 return BinaryOperator::CreateOr(LHS, RHS); 1382 1383 // add (select X 0 (sub n A)) A --> select X A n 1384 { 1385 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1386 Value *A = RHS; 1387 if (!SI) { 1388 SI = dyn_cast<SelectInst>(RHS); 1389 A = LHS; 1390 } 1391 if (SI && SI->hasOneUse()) { 1392 Value *TV = SI->getTrueValue(); 1393 Value *FV = SI->getFalseValue(); 1394 Value *N; 1395 1396 // Can we fold the add into the argument of the select? 1397 // We check both true and false select arguments for a matching subtract. 1398 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1399 // Fold the add into the true select value. 1400 return SelectInst::Create(SI->getCondition(), N, A); 1401 1402 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1403 // Fold the add into the false select value. 1404 return SelectInst::Create(SI->getCondition(), A, N); 1405 } 1406 } 1407 1408 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1409 return Ext; 1410 1411 // (add (xor A, B) (and A, B)) --> (or A, B) 1412 // (add (and A, B) (xor A, B)) --> (or A, B) 1413 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1414 m_c_And(m_Deferred(A), m_Deferred(B))))) 1415 return BinaryOperator::CreateOr(A, B); 1416 1417 // (add (or A, B) (and A, B)) --> (add A, B) 1418 // (add (and A, B) (or A, B)) --> (add A, B) 1419 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1420 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1421 // Replacing operands in-place to preserve nuw/nsw flags. 1422 replaceOperand(I, 0, A); 1423 replaceOperand(I, 1, B); 1424 return &I; 1425 } 1426 1427 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1428 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1429 // computeKnownBits. 1430 bool Changed = false; 1431 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1432 Changed = true; 1433 I.setHasNoSignedWrap(true); 1434 } 1435 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1436 Changed = true; 1437 I.setHasNoUnsignedWrap(true); 1438 } 1439 1440 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1441 return V; 1442 1443 if (Instruction *V = 1444 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 1445 return V; 1446 1447 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1448 return SatAdd; 1449 1450 // usub.sat(A, B) + B => umax(A, B) 1451 if (match(&I, m_c_BinOp( 1452 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))), 1453 m_Deferred(B)))) { 1454 return replaceInstUsesWith(I, 1455 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B})); 1456 } 1457 1458 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common. 1459 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) && 1460 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) && 1461 haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT)) 1462 return replaceInstUsesWith( 1463 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 1464 {Builder.CreateOr(A, B)})); 1465 1466 return Changed ? &I : nullptr; 1467 } 1468 1469 /// Eliminate an op from a linear interpolation (lerp) pattern. 1470 static Instruction *factorizeLerp(BinaryOperator &I, 1471 InstCombiner::BuilderTy &Builder) { 1472 Value *X, *Y, *Z; 1473 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1474 m_OneUse(m_FSub(m_FPOne(), 1475 m_Value(Z))))), 1476 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1477 return nullptr; 1478 1479 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1480 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1481 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1482 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1483 } 1484 1485 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1486 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1487 InstCombiner::BuilderTy &Builder) { 1488 assert((I.getOpcode() == Instruction::FAdd || 1489 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1490 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1491 "FP factorization requires FMF"); 1492 1493 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1494 return Lerp; 1495 1496 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1497 if (!Op0->hasOneUse() || !Op1->hasOneUse()) 1498 return nullptr; 1499 1500 Value *X, *Y, *Z; 1501 bool IsFMul; 1502 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) && 1503 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) || 1504 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) && 1505 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z))))) 1506 IsFMul = true; 1507 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) && 1508 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z)))) 1509 IsFMul = false; 1510 else 1511 return nullptr; 1512 1513 // (X * Z) + (Y * Z) --> (X + Y) * Z 1514 // (X * Z) - (Y * Z) --> (X - Y) * Z 1515 // (X / Z) + (Y / Z) --> (X + Y) / Z 1516 // (X / Z) - (Y / Z) --> (X - Y) / Z 1517 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1518 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1519 : Builder.CreateFSubFMF(X, Y, &I); 1520 1521 // Bail out if we just created a denormal constant. 1522 // TODO: This is copied from a previous implementation. Is it necessary? 1523 const APFloat *C; 1524 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1525 return nullptr; 1526 1527 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1528 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1529 } 1530 1531 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) { 1532 if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1), 1533 I.getFastMathFlags(), 1534 SQ.getWithInstruction(&I))) 1535 return replaceInstUsesWith(I, V); 1536 1537 if (SimplifyAssociativeOrCommutative(I)) 1538 return &I; 1539 1540 if (Instruction *X = foldVectorBinop(I)) 1541 return X; 1542 1543 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1544 return Phi; 1545 1546 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1547 return FoldedFAdd; 1548 1549 // (-X) + Y --> Y - X 1550 Value *X, *Y; 1551 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1552 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1553 1554 // Similar to above, but look through fmul/fdiv for the negated term. 1555 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1556 Value *Z; 1557 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1558 m_Value(Z)))) { 1559 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1560 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1561 } 1562 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1563 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1564 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1565 m_Value(Z))) || 1566 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1567 m_Value(Z)))) { 1568 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1569 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1570 } 1571 1572 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1573 // integer add followed by a promotion. 1574 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1575 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1576 Value *LHSIntVal = LHSConv->getOperand(0); 1577 Type *FPType = LHSConv->getType(); 1578 1579 // TODO: This check is overly conservative. In many cases known bits 1580 // analysis can tell us that the result of the addition has less significant 1581 // bits than the integer type can hold. 1582 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1583 Type *FScalarTy = FTy->getScalarType(); 1584 Type *IScalarTy = ITy->getScalarType(); 1585 1586 // Do we have enough bits in the significand to represent the result of 1587 // the integer addition? 1588 unsigned MaxRepresentableBits = 1589 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1590 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1591 }; 1592 1593 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1594 // ... if the constant fits in the integer value. This is useful for things 1595 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1596 // requires a constant pool load, and generally allows the add to be better 1597 // instcombined. 1598 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1599 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1600 Constant *CI = 1601 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1602 if (LHSConv->hasOneUse() && 1603 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1604 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1605 // Insert the new integer add. 1606 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1607 return new SIToFPInst(NewAdd, I.getType()); 1608 } 1609 } 1610 1611 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1612 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1613 Value *RHSIntVal = RHSConv->getOperand(0); 1614 // It's enough to check LHS types only because we require int types to 1615 // be the same for this transform. 1616 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1617 // Only do this if x/y have the same type, if at least one of them has a 1618 // single use (so we don't increase the number of int->fp conversions), 1619 // and if the integer add will not overflow. 1620 if (LHSIntVal->getType() == RHSIntVal->getType() && 1621 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1622 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1623 // Insert the new integer add. 1624 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1625 return new SIToFPInst(NewAdd, I.getType()); 1626 } 1627 } 1628 } 1629 } 1630 1631 // Handle specials cases for FAdd with selects feeding the operation 1632 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1633 return replaceInstUsesWith(I, V); 1634 1635 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1636 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1637 return F; 1638 1639 // Try to fold fadd into start value of reduction intrinsic. 1640 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1641 m_AnyZeroFP(), m_Value(X))), 1642 m_Value(Y)))) { 1643 // fadd (rdx 0.0, X), Y --> rdx Y, X 1644 return replaceInstUsesWith( 1645 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1646 {X->getType()}, {Y, X}, &I)); 1647 } 1648 const APFloat *StartC, *C; 1649 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1650 m_APFloat(StartC), m_Value(X)))) && 1651 match(RHS, m_APFloat(C))) { 1652 // fadd (rdx StartC, X), C --> rdx (C + StartC), X 1653 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC); 1654 return replaceInstUsesWith( 1655 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1656 {X->getType()}, {NewStartC, X}, &I)); 1657 } 1658 1659 // (X * MulC) + X --> X * (MulC + 1.0) 1660 Constant *MulC; 1661 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)), 1662 m_Deferred(X)))) { 1663 if (Constant *NewMulC = ConstantFoldBinaryOpOperands( 1664 Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL)) 1665 return BinaryOperator::CreateFMulFMF(X, NewMulC, &I); 1666 } 1667 1668 if (Value *V = FAddCombine(Builder).simplify(&I)) 1669 return replaceInstUsesWith(I, V); 1670 } 1671 1672 return nullptr; 1673 } 1674 1675 /// Optimize pointer differences into the same array into a size. Consider: 1676 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1677 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1678 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS, 1679 Type *Ty, bool IsNUW) { 1680 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1681 // this. 1682 bool Swapped = false; 1683 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1684 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) { 1685 std::swap(LHS, RHS); 1686 Swapped = true; 1687 } 1688 1689 // Require at least one GEP with a common base pointer on both sides. 1690 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1691 // (gep X, ...) - X 1692 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1693 RHS->stripPointerCasts()) { 1694 GEP1 = LHSGEP; 1695 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1696 // (gep X, ...) - (gep X, ...) 1697 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1698 RHSGEP->getOperand(0)->stripPointerCasts()) { 1699 GEP1 = LHSGEP; 1700 GEP2 = RHSGEP; 1701 } 1702 } 1703 } 1704 1705 if (!GEP1) 1706 return nullptr; 1707 1708 if (GEP2) { 1709 // (gep X, ...) - (gep X, ...) 1710 // 1711 // Avoid duplicating the arithmetic if there are more than one non-constant 1712 // indices between the two GEPs and either GEP has a non-constant index and 1713 // multiple users. If zero non-constant index, the result is a constant and 1714 // there is no duplication. If one non-constant index, the result is an add 1715 // or sub with a constant, which is no larger than the original code, and 1716 // there's no duplicated arithmetic, even if either GEP has multiple 1717 // users. If more than one non-constant indices combined, as long as the GEP 1718 // with at least one non-constant index doesn't have multiple users, there 1719 // is no duplication. 1720 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1721 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1722 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1723 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1724 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1725 return nullptr; 1726 } 1727 } 1728 1729 // Emit the offset of the GEP and an intptr_t. 1730 Value *Result = EmitGEPOffset(GEP1); 1731 1732 // If this is a single inbounds GEP and the original sub was nuw, 1733 // then the final multiplication is also nuw. 1734 if (auto *I = dyn_cast<Instruction>(Result)) 1735 if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() && 1736 I->getOpcode() == Instruction::Mul) 1737 I->setHasNoUnsignedWrap(); 1738 1739 // If we have a 2nd GEP of the same base pointer, subtract the offsets. 1740 // If both GEPs are inbounds, then the subtract does not have signed overflow. 1741 if (GEP2) { 1742 Value *Offset = EmitGEPOffset(GEP2); 1743 Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false, 1744 GEP1->isInBounds() && GEP2->isInBounds()); 1745 } 1746 1747 // If we have p - gep(p, ...) then we have to negate the result. 1748 if (Swapped) 1749 Result = Builder.CreateNeg(Result, "diff.neg"); 1750 1751 return Builder.CreateIntCast(Result, Ty, true); 1752 } 1753 1754 static Instruction *foldSubOfMinMax(BinaryOperator &I, 1755 InstCombiner::BuilderTy &Builder) { 1756 Value *Op0 = I.getOperand(0); 1757 Value *Op1 = I.getOperand(1); 1758 Type *Ty = I.getType(); 1759 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1); 1760 if (!MinMax) 1761 return nullptr; 1762 1763 // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y) 1764 // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y) 1765 Value *X = MinMax->getLHS(); 1766 Value *Y = MinMax->getRHS(); 1767 if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) && 1768 (Op0->hasOneUse() || Op1->hasOneUse())) { 1769 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 1770 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 1771 return CallInst::Create(F, {X, Y}); 1772 } 1773 1774 // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z)) 1775 // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y)) 1776 Value *Z; 1777 if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) { 1778 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) { 1779 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z}); 1780 return BinaryOperator::CreateAdd(X, USub); 1781 } 1782 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) { 1783 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y}); 1784 return BinaryOperator::CreateAdd(X, USub); 1785 } 1786 } 1787 1788 // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z 1789 // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z 1790 if (MinMax->isSigned() && match(Y, m_ZeroInt()) && 1791 match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) { 1792 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 1793 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 1794 return CallInst::Create(F, {Op0, Z}); 1795 } 1796 1797 return nullptr; 1798 } 1799 1800 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) { 1801 if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1), 1802 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1803 SQ.getWithInstruction(&I))) 1804 return replaceInstUsesWith(I, V); 1805 1806 if (Instruction *X = foldVectorBinop(I)) 1807 return X; 1808 1809 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1810 return Phi; 1811 1812 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1813 1814 // If this is a 'B = x-(-A)', change to B = x+A. 1815 // We deal with this without involving Negator to preserve NSW flag. 1816 if (Value *V = dyn_castNegVal(Op1)) { 1817 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1818 1819 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1820 assert(BO->getOpcode() == Instruction::Sub && 1821 "Expected a subtraction operator!"); 1822 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1823 Res->setHasNoSignedWrap(true); 1824 } else { 1825 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1826 Res->setHasNoSignedWrap(true); 1827 } 1828 1829 return Res; 1830 } 1831 1832 // Try this before Negator to preserve NSW flag. 1833 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1834 return R; 1835 1836 Constant *C; 1837 if (match(Op0, m_ImmConstant(C))) { 1838 Value *X; 1839 Constant *C2; 1840 1841 // C-(X+C2) --> (C-C2)-X 1842 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) 1843 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1844 } 1845 1846 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * { 1847 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1848 return Ext; 1849 1850 bool Changed = false; 1851 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 1852 Changed = true; 1853 I.setHasNoSignedWrap(true); 1854 } 1855 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 1856 Changed = true; 1857 I.setHasNoUnsignedWrap(true); 1858 } 1859 1860 return Changed ? &I : nullptr; 1861 }; 1862 1863 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`, 1864 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't 1865 // a pure negation used by a select that looks like abs/nabs. 1866 bool IsNegation = match(Op0, m_ZeroInt()); 1867 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) { 1868 const Instruction *UI = dyn_cast<Instruction>(U); 1869 if (!UI) 1870 return false; 1871 return match(UI, 1872 m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) || 1873 match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1))); 1874 })) { 1875 if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this)) 1876 return BinaryOperator::CreateAdd(NegOp1, Op0); 1877 } 1878 if (IsNegation) 1879 return TryToNarrowDeduceFlags(); // Should have been handled in Negator! 1880 1881 // (A*B)-(A*C) -> A*(B-C) etc 1882 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1883 return replaceInstUsesWith(I, V); 1884 1885 if (I.getType()->isIntOrIntVectorTy(1)) 1886 return BinaryOperator::CreateXor(Op0, Op1); 1887 1888 // Replace (-1 - A) with (~A). 1889 if (match(Op0, m_AllOnes())) 1890 return BinaryOperator::CreateNot(Op1); 1891 1892 // (X + -1) - Y --> ~Y + X 1893 Value *X, *Y; 1894 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 1895 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 1896 1897 // Reassociate sub/add sequences to create more add instructions and 1898 // reduce dependency chains: 1899 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 1900 Value *Z; 1901 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))), 1902 m_Value(Z))))) { 1903 Value *XZ = Builder.CreateAdd(X, Z); 1904 Value *YW = Builder.CreateAdd(Y, Op1); 1905 return BinaryOperator::CreateSub(XZ, YW); 1906 } 1907 1908 // ((X - Y) - Op1) --> X - (Y + Op1) 1909 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) { 1910 Value *Add = Builder.CreateAdd(Y, Op1); 1911 return BinaryOperator::CreateSub(X, Add); 1912 } 1913 1914 // (~X) - (~Y) --> Y - X 1915 // This is placed after the other reassociations and explicitly excludes a 1916 // sub-of-sub pattern to avoid infinite looping. 1917 if (isFreeToInvert(Op0, Op0->hasOneUse()) && 1918 isFreeToInvert(Op1, Op1->hasOneUse()) && 1919 !match(Op0, m_Sub(m_ImmConstant(), m_Value()))) { 1920 Value *NotOp0 = Builder.CreateNot(Op0); 1921 Value *NotOp1 = Builder.CreateNot(Op1); 1922 return BinaryOperator::CreateSub(NotOp1, NotOp0); 1923 } 1924 1925 auto m_AddRdx = [](Value *&Vec) { 1926 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec))); 1927 }; 1928 Value *V0, *V1; 1929 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) && 1930 V0->getType() == V1->getType()) { 1931 // Difference of sums is sum of differences: 1932 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1) 1933 Value *Sub = Builder.CreateSub(V0, V1); 1934 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add, 1935 {Sub->getType()}, {Sub}); 1936 return replaceInstUsesWith(I, Rdx); 1937 } 1938 1939 if (Constant *C = dyn_cast<Constant>(Op0)) { 1940 Value *X; 1941 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1942 // C - (zext bool) --> bool ? C - 1 : C 1943 return SelectInst::Create(X, InstCombiner::SubOne(C), C); 1944 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1945 // C - (sext bool) --> bool ? C + 1 : C 1946 return SelectInst::Create(X, InstCombiner::AddOne(C), C); 1947 1948 // C - ~X == X + (1+C) 1949 if (match(Op1, m_Not(m_Value(X)))) 1950 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C)); 1951 1952 // Try to fold constant sub into select arguments. 1953 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1954 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1955 return R; 1956 1957 // Try to fold constant sub into PHI values. 1958 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 1959 if (Instruction *R = foldOpIntoPhi(I, PN)) 1960 return R; 1961 1962 Constant *C2; 1963 1964 // C-(C2-X) --> X+(C-C2) 1965 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X)))) 1966 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 1967 } 1968 1969 const APInt *Op0C; 1970 if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) { 1971 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1972 // zero. 1973 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 1974 if ((*Op0C | RHSKnown.Zero).isAllOnes()) 1975 return BinaryOperator::CreateXor(Op1, Op0); 1976 } 1977 1978 { 1979 Value *Y; 1980 // X-(X+Y) == -Y X-(Y+X) == -Y 1981 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 1982 return BinaryOperator::CreateNeg(Y); 1983 1984 // (X-Y)-X == -Y 1985 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1986 return BinaryOperator::CreateNeg(Y); 1987 } 1988 1989 // (sub (or A, B) (and A, B)) --> (xor A, B) 1990 { 1991 Value *A, *B; 1992 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1993 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1994 return BinaryOperator::CreateXor(A, B); 1995 } 1996 1997 // (sub (add A, B) (or A, B)) --> (and A, B) 1998 { 1999 Value *A, *B; 2000 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2001 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 2002 return BinaryOperator::CreateAnd(A, B); 2003 } 2004 2005 // (sub (add A, B) (and A, B)) --> (or A, B) 2006 { 2007 Value *A, *B; 2008 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2009 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 2010 return BinaryOperator::CreateOr(A, B); 2011 } 2012 2013 // (sub (and A, B) (or A, B)) --> neg (xor A, B) 2014 { 2015 Value *A, *B; 2016 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2017 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2018 (Op0->hasOneUse() || Op1->hasOneUse())) 2019 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); 2020 } 2021 2022 // (sub (or A, B), (xor A, B)) --> (and A, B) 2023 { 2024 Value *A, *B; 2025 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2026 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2027 return BinaryOperator::CreateAnd(A, B); 2028 } 2029 2030 // (sub (xor A, B) (or A, B)) --> neg (and A, B) 2031 { 2032 Value *A, *B; 2033 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2034 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2035 (Op0->hasOneUse() || Op1->hasOneUse())) 2036 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); 2037 } 2038 2039 { 2040 Value *Y; 2041 // ((X | Y) - X) --> (~X & Y) 2042 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 2043 return BinaryOperator::CreateAnd( 2044 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 2045 } 2046 2047 { 2048 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) 2049 Value *X; 2050 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), 2051 m_OneUse(m_Neg(m_Value(X))))))) { 2052 return BinaryOperator::CreateNeg(Builder.CreateAnd( 2053 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); 2054 } 2055 } 2056 2057 { 2058 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) 2059 Constant *C; 2060 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { 2061 return BinaryOperator::CreateNeg( 2062 Builder.CreateAnd(Op1, Builder.CreateNot(C))); 2063 } 2064 } 2065 2066 if (Instruction *R = foldSubOfMinMax(I, Builder)) 2067 return R; 2068 2069 { 2070 // If we have a subtraction between some value and a select between 2071 // said value and something else, sink subtraction into select hands, i.e.: 2072 // sub (select %Cond, %TrueVal, %FalseVal), %Op1 2073 // -> 2074 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) 2075 // or 2076 // sub %Op0, (select %Cond, %TrueVal, %FalseVal) 2077 // -> 2078 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) 2079 // This will result in select between new subtraction and 0. 2080 auto SinkSubIntoSelect = 2081 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, 2082 auto SubBuilder) -> Instruction * { 2083 Value *Cond, *TrueVal, *FalseVal; 2084 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), 2085 m_Value(FalseVal))))) 2086 return nullptr; 2087 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) 2088 return nullptr; 2089 // While it is really tempting to just create two subtractions and let 2090 // InstCombine fold one of those to 0, it isn't possible to do so 2091 // because of worklist visitation order. So ugly it is. 2092 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; 2093 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); 2094 Constant *Zero = Constant::getNullValue(Ty); 2095 SelectInst *NewSel = 2096 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, 2097 OtherHandOfSubIsTrueVal ? NewSub : Zero); 2098 // Preserve prof metadata if any. 2099 NewSel->copyMetadata(cast<Instruction>(*Select)); 2100 return NewSel; 2101 }; 2102 if (Instruction *NewSel = SinkSubIntoSelect( 2103 /*Select=*/Op0, /*OtherHandOfSub=*/Op1, 2104 [Builder = &Builder, Op1](Value *OtherHandOfSelect) { 2105 return Builder->CreateSub(OtherHandOfSelect, 2106 /*OtherHandOfSub=*/Op1); 2107 })) 2108 return NewSel; 2109 if (Instruction *NewSel = SinkSubIntoSelect( 2110 /*Select=*/Op1, /*OtherHandOfSub=*/Op0, 2111 [Builder = &Builder, Op0](Value *OtherHandOfSelect) { 2112 return Builder->CreateSub(/*OtherHandOfSub=*/Op0, 2113 OtherHandOfSelect); 2114 })) 2115 return NewSel; 2116 } 2117 2118 // (X - (X & Y)) --> (X & ~Y) 2119 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) && 2120 (Op1->hasOneUse() || isa<Constant>(Y))) 2121 return BinaryOperator::CreateAnd( 2122 Op0, Builder.CreateNot(Y, Y->getName() + ".not")); 2123 2124 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X 2125 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X 2126 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y) 2127 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y) 2128 // As long as Y is freely invertible, this will be neutral or a win. 2129 // Note: We don't generate the inverse max/min, just create the 'not' of 2130 // it and let other folds do the rest. 2131 if (match(Op0, m_Not(m_Value(X))) && 2132 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) && 2133 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2134 Value *Not = Builder.CreateNot(Op1); 2135 return BinaryOperator::CreateSub(Not, X); 2136 } 2137 if (match(Op1, m_Not(m_Value(X))) && 2138 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) && 2139 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2140 Value *Not = Builder.CreateNot(Op0); 2141 return BinaryOperator::CreateSub(X, Not); 2142 } 2143 2144 // Optimize pointer differences into the same array into a size. Consider: 2145 // &A[10] - &A[0]: we should compile this to "10". 2146 Value *LHSOp, *RHSOp; 2147 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 2148 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 2149 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2150 I.hasNoUnsignedWrap())) 2151 return replaceInstUsesWith(I, Res); 2152 2153 // trunc(p)-trunc(q) -> trunc(p-q) 2154 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 2155 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 2156 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2157 /* IsNUW */ false)) 2158 return replaceInstUsesWith(I, Res); 2159 2160 // Canonicalize a shifty way to code absolute value to the common pattern. 2161 // There are 2 potential commuted variants. 2162 // We're relying on the fact that we only do this transform when the shift has 2163 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 2164 // instructions). 2165 Value *A; 2166 const APInt *ShAmt; 2167 Type *Ty = I.getType(); 2168 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 2169 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 2170 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 2171 // B = ashr i32 A, 31 ; smear the sign bit 2172 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 2173 // --> (A < 0) ? -A : A 2174 Value *IsNeg = Builder.CreateIsNeg(A); 2175 // Copy the nuw/nsw flags from the sub to the negate. 2176 Value *NegA = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), 2177 I.hasNoSignedWrap()); 2178 return SelectInst::Create(IsNeg, NegA, A); 2179 } 2180 2181 // If we are subtracting a low-bit masked subset of some value from an add 2182 // of that same value with no low bits changed, that is clearing some low bits 2183 // of the sum: 2184 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC 2185 const APInt *AddC, *AndC; 2186 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) && 2187 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) { 2188 unsigned BitWidth = Ty->getScalarSizeInBits(); 2189 unsigned Cttz = AddC->countTrailingZeros(); 2190 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz)); 2191 if ((HighMask & *AndC).isZero()) 2192 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC))); 2193 } 2194 2195 if (Instruction *V = 2196 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2197 return V; 2198 2199 // X - usub.sat(X, Y) => umin(X, Y) 2200 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0), 2201 m_Value(Y))))) 2202 return replaceInstUsesWith( 2203 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y})); 2204 2205 // umax(X, Op1) - Op1 --> usub.sat(X, Op1) 2206 // TODO: The one-use restriction is not strictly necessary, but it may 2207 // require improving other pattern matching and/or codegen. 2208 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1))))) 2209 return replaceInstUsesWith( 2210 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1})); 2211 2212 // Op0 - umin(X, Op0) --> usub.sat(Op0, X) 2213 if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0))))) 2214 return replaceInstUsesWith( 2215 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X})); 2216 2217 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0) 2218 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) { 2219 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0}); 2220 return BinaryOperator::CreateNeg(USub); 2221 } 2222 2223 // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X) 2224 if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) { 2225 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X}); 2226 return BinaryOperator::CreateNeg(USub); 2227 } 2228 2229 // C - ctpop(X) => ctpop(~X) if C is bitwidth 2230 if (match(Op0, m_SpecificInt(Ty->getScalarSizeInBits())) && 2231 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X))))) 2232 return replaceInstUsesWith( 2233 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 2234 {Builder.CreateNot(X)})); 2235 2236 return TryToNarrowDeduceFlags(); 2237 } 2238 2239 /// This eliminates floating-point negation in either 'fneg(X)' or 2240 /// 'fsub(-0.0, X)' form by combining into a constant operand. 2241 static Instruction *foldFNegIntoConstant(Instruction &I) { 2242 // This is limited with one-use because fneg is assumed better for 2243 // reassociation and cheaper in codegen than fmul/fdiv. 2244 // TODO: Should the m_OneUse restriction be removed? 2245 Instruction *FNegOp; 2246 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp))))) 2247 return nullptr; 2248 2249 Value *X; 2250 Constant *C; 2251 2252 // Fold negation into constant operand. 2253 // -(X * C) --> X * (-C) 2254 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C)))) 2255 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); 2256 // -(X / C) --> X / (-C) 2257 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C)))) 2258 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); 2259 // -(C / X) --> (-C) / X 2260 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) { 2261 Instruction *FDiv = 2262 BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); 2263 2264 // Intersect 'nsz' and 'ninf' because those special value exceptions may not 2265 // apply to the fdiv. Everything else propagates from the fneg. 2266 // TODO: We could propagate nsz/ninf from fdiv alone? 2267 FastMathFlags FMF = I.getFastMathFlags(); 2268 FastMathFlags OpFMF = FNegOp->getFastMathFlags(); 2269 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros()); 2270 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs()); 2271 return FDiv; 2272 } 2273 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]: 2274 // -(X + C) --> -X + -C --> -C - X 2275 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C)))) 2276 return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I); 2277 2278 return nullptr; 2279 } 2280 2281 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I, 2282 InstCombiner::BuilderTy &Builder) { 2283 Value *FNeg; 2284 if (!match(&I, m_FNeg(m_Value(FNeg)))) 2285 return nullptr; 2286 2287 Value *X, *Y; 2288 if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y))))) 2289 return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2290 2291 if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y))))) 2292 return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2293 2294 return nullptr; 2295 } 2296 2297 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) { 2298 Value *Op = I.getOperand(0); 2299 2300 if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(), 2301 getSimplifyQuery().getWithInstruction(&I))) 2302 return replaceInstUsesWith(I, V); 2303 2304 if (Instruction *X = foldFNegIntoConstant(I)) 2305 return X; 2306 2307 Value *X, *Y; 2308 2309 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 2310 if (I.hasNoSignedZeros() && 2311 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 2312 return BinaryOperator::CreateFSubFMF(Y, X, &I); 2313 2314 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2315 return R; 2316 2317 // Try to eliminate fneg if at least 1 arm of the select is negated. 2318 Value *Cond; 2319 if (match(Op, m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) { 2320 // Unlike most transforms, this one is not safe to propagate nsz unless 2321 // it is present on the original select. (We are conservatively intersecting 2322 // the nsz flags from the select and root fneg instruction.) 2323 auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) { 2324 S->copyFastMathFlags(&I); 2325 if (auto *OldSel = dyn_cast<SelectInst>(Op)) 2326 if (!OldSel->hasNoSignedZeros() && !CommonOperand && 2327 !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition())) 2328 S->setHasNoSignedZeros(false); 2329 }; 2330 // -(Cond ? -P : Y) --> Cond ? P : -Y 2331 Value *P; 2332 if (match(X, m_FNeg(m_Value(P)))) { 2333 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); 2334 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY); 2335 propagateSelectFMF(NewSel, P == Y); 2336 return NewSel; 2337 } 2338 // -(Cond ? X : -P) --> Cond ? -X : P 2339 if (match(Y, m_FNeg(m_Value(P)))) { 2340 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); 2341 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P); 2342 propagateSelectFMF(NewSel, P == X); 2343 return NewSel; 2344 } 2345 } 2346 2347 return nullptr; 2348 } 2349 2350 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) { 2351 if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1), 2352 I.getFastMathFlags(), 2353 getSimplifyQuery().getWithInstruction(&I))) 2354 return replaceInstUsesWith(I, V); 2355 2356 if (Instruction *X = foldVectorBinop(I)) 2357 return X; 2358 2359 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2360 return Phi; 2361 2362 // Subtraction from -0.0 is the canonical form of fneg. 2363 // fsub -0.0, X ==> fneg X 2364 // fsub nsz 0.0, X ==> fneg nsz X 2365 // 2366 // FIXME This matcher does not respect FTZ or DAZ yet: 2367 // fsub -0.0, Denorm ==> +-0 2368 // fneg Denorm ==> -Denorm 2369 Value *Op; 2370 if (match(&I, m_FNeg(m_Value(Op)))) 2371 return UnaryOperator::CreateFNegFMF(Op, &I); 2372 2373 if (Instruction *X = foldFNegIntoConstant(I)) 2374 return X; 2375 2376 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2377 return R; 2378 2379 Value *X, *Y; 2380 Constant *C; 2381 2382 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2383 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 2384 // Canonicalize to fadd to make analysis easier. 2385 // This can also help codegen because fadd is commutative. 2386 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 2387 // killed later. We still limit that particular transform with 'hasOneUse' 2388 // because an fneg is assumed better/cheaper than a generic fsub. 2389 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { 2390 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2391 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 2392 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 2393 } 2394 } 2395 2396 // (-X) - Op1 --> -(X + Op1) 2397 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) && 2398 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) { 2399 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I); 2400 return UnaryOperator::CreateFNegFMF(FAdd, &I); 2401 } 2402 2403 if (isa<Constant>(Op0)) 2404 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2405 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 2406 return NV; 2407 2408 // X - C --> X + (-C) 2409 // But don't transform constant expressions because there's an inverse fold 2410 // for X + (-Y) --> X - Y. 2411 if (match(Op1, m_ImmConstant(C))) 2412 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); 2413 2414 // X - (-Y) --> X + Y 2415 if (match(Op1, m_FNeg(m_Value(Y)))) 2416 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 2417 2418 // Similar to above, but look through a cast of the negated value: 2419 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 2420 Type *Ty = I.getType(); 2421 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 2422 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 2423 2424 // X - (fpext(-Y)) --> X + fpext(Y) 2425 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 2426 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 2427 2428 // Similar to above, but look through fmul/fdiv of the negated value: 2429 // Op0 - (-X * Y) --> Op0 + (X * Y) 2430 // Op0 - (Y * -X) --> Op0 + (X * Y) 2431 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 2432 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 2433 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 2434 } 2435 // Op0 - (-X / Y) --> Op0 + (X / Y) 2436 // Op0 - (X / -Y) --> Op0 + (X / Y) 2437 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 2438 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 2439 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 2440 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 2441 } 2442 2443 // Handle special cases for FSub with selects feeding the operation 2444 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 2445 return replaceInstUsesWith(I, V); 2446 2447 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2448 // (Y - X) - Y --> -X 2449 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 2450 return UnaryOperator::CreateFNegFMF(X, &I); 2451 2452 // Y - (X + Y) --> -X 2453 // Y - (Y + X) --> -X 2454 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 2455 return UnaryOperator::CreateFNegFMF(X, &I); 2456 2457 // (X * C) - X --> X * (C - 1.0) 2458 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 2459 if (Constant *CSubOne = ConstantFoldBinaryOpOperands( 2460 Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL)) 2461 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 2462 } 2463 // X - (X * C) --> X * (1.0 - C) 2464 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 2465 if (Constant *OneSubC = ConstantFoldBinaryOpOperands( 2466 Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL)) 2467 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 2468 } 2469 2470 // Reassociate fsub/fadd sequences to create more fadd instructions and 2471 // reduce dependency chains: 2472 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2473 Value *Z; 2474 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))), 2475 m_Value(Z))))) { 2476 Value *XZ = Builder.CreateFAddFMF(X, Z, &I); 2477 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I); 2478 return BinaryOperator::CreateFSubFMF(XZ, YW, &I); 2479 } 2480 2481 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) { 2482 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum), 2483 m_Value(Vec))); 2484 }; 2485 Value *A0, *A1, *V0, *V1; 2486 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) && 2487 V0->getType() == V1->getType()) { 2488 // Difference of sums is sum of differences: 2489 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1 2490 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I); 2491 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 2492 {Sub->getType()}, {A0, Sub}, &I); 2493 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I); 2494 } 2495 2496 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2497 return F; 2498 2499 // TODO: This performs reassociative folds for FP ops. Some fraction of the 2500 // functionality has been subsumed by simple pattern matching here and in 2501 // InstSimplify. We should let a dedicated reassociation pass handle more 2502 // complex pattern matching and remove this from InstCombine. 2503 if (Value *V = FAddCombine(Builder).simplify(&I)) 2504 return replaceInstUsesWith(I, V); 2505 2506 // (X - Y) - Op1 --> X - (Y + Op1) 2507 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2508 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I); 2509 return BinaryOperator::CreateFSubFMF(X, FAdd, &I); 2510 } 2511 } 2512 2513 return nullptr; 2514 } 2515