1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/InstCombine/InstCombiner.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); } 86 87 const APFloat *getFpValPtr() const { 88 return reinterpret_cast<const APFloat *>(&FpValBuf); 89 } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFNeg(Value *V); 199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 201 202 // Debugging stuff are clustered here. 203 #ifndef NDEBUG 204 unsigned CreateInstrNum; 205 void initCreateInstNum() { CreateInstrNum = 0; } 206 void incCreateInstNum() { CreateInstrNum++; } 207 #else 208 void initCreateInstNum() {} 209 void incCreateInstNum() {} 210 #endif 211 212 InstCombiner::BuilderTy &Builder; 213 Instruction *Instr = nullptr; 214 }; 215 216 } // end anonymous namespace 217 218 //===----------------------------------------------------------------------===// 219 // 220 // Implementation of 221 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 222 // 223 //===----------------------------------------------------------------------===// 224 FAddendCoef::~FAddendCoef() { 225 if (BufHasFpVal) 226 getFpValPtr()->~APFloat(); 227 } 228 229 void FAddendCoef::set(const APFloat& C) { 230 APFloat *P = getFpValPtr(); 231 232 if (isInt()) { 233 // As the buffer is meanless byte stream, we cannot call 234 // APFloat::operator=(). 235 new(P) APFloat(C); 236 } else 237 *P = C; 238 239 IsFp = BufHasFpVal = true; 240 } 241 242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 243 if (!isInt()) 244 return; 245 246 APFloat *P = getFpValPtr(); 247 if (IntVal > 0) 248 new(P) APFloat(Sem, IntVal); 249 else { 250 new(P) APFloat(Sem, 0 - IntVal); 251 P->changeSign(); 252 } 253 IsFp = BufHasFpVal = true; 254 } 255 256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 257 if (Val >= 0) 258 return APFloat(Sem, Val); 259 260 APFloat T(Sem, 0 - Val); 261 T.changeSign(); 262 263 return T; 264 } 265 266 void FAddendCoef::operator=(const FAddendCoef &That) { 267 if (That.isInt()) 268 set(That.IntVal); 269 else 270 set(That.getFpVal()); 271 } 272 273 void FAddendCoef::operator+=(const FAddendCoef &That) { 274 RoundingMode RndMode = RoundingMode::NearestTiesToEven; 275 if (isInt() == That.isInt()) { 276 if (isInt()) 277 IntVal += That.IntVal; 278 else 279 getFpVal().add(That.getFpVal(), RndMode); 280 return; 281 } 282 283 if (isInt()) { 284 const APFloat &T = That.getFpVal(); 285 convertToFpType(T.getSemantics()); 286 getFpVal().add(T, RndMode); 287 return; 288 } 289 290 APFloat &T = getFpVal(); 291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 292 } 293 294 void FAddendCoef::operator*=(const FAddendCoef &That) { 295 if (That.isOne()) 296 return; 297 298 if (That.isMinusOne()) { 299 negate(); 300 return; 301 } 302 303 if (isInt() && That.isInt()) { 304 int Res = IntVal * (int)That.IntVal; 305 assert(!insaneIntVal(Res) && "Insane int value"); 306 IntVal = Res; 307 return; 308 } 309 310 const fltSemantics &Semantic = 311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 312 313 if (isInt()) 314 convertToFpType(Semantic); 315 APFloat &F0 = getFpVal(); 316 317 if (That.isInt()) 318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 319 APFloat::rmNearestTiesToEven); 320 else 321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 322 } 323 324 void FAddendCoef::negate() { 325 if (isInt()) 326 IntVal = 0 - IntVal; 327 else 328 getFpVal().changeSign(); 329 } 330 331 Value *FAddendCoef::getValue(Type *Ty) const { 332 return isInt() ? 333 ConstantFP::get(Ty, float(IntVal)) : 334 ConstantFP::get(Ty->getContext(), getFpVal()); 335 } 336 337 // The definition of <Val> Addends 338 // ========================================= 339 // A + B <1, A>, <1,B> 340 // A - B <1, A>, <1,B> 341 // 0 - B <-1, B> 342 // C * A, <C, A> 343 // A + C <1, A> <C, NULL> 344 // 0 +/- 0 <0, NULL> (corner case) 345 // 346 // Legend: A and B are not constant, C is constant 347 unsigned FAddend::drillValueDownOneStep 348 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 349 Instruction *I = nullptr; 350 if (!Val || !(I = dyn_cast<Instruction>(Val))) 351 return 0; 352 353 unsigned Opcode = I->getOpcode(); 354 355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 356 ConstantFP *C0, *C1; 357 Value *Opnd0 = I->getOperand(0); 358 Value *Opnd1 = I->getOperand(1); 359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 360 Opnd0 = nullptr; 361 362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 363 Opnd1 = nullptr; 364 365 if (Opnd0) { 366 if (!C0) 367 Addend0.set(1, Opnd0); 368 else 369 Addend0.set(C0, nullptr); 370 } 371 372 if (Opnd1) { 373 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 374 if (!C1) 375 Addend.set(1, Opnd1); 376 else 377 Addend.set(C1, nullptr); 378 if (Opcode == Instruction::FSub) 379 Addend.negate(); 380 } 381 382 if (Opnd0 || Opnd1) 383 return Opnd0 && Opnd1 ? 2 : 1; 384 385 // Both operands are zero. Weird! 386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 387 return 1; 388 } 389 390 if (I->getOpcode() == Instruction::FMul) { 391 Value *V0 = I->getOperand(0); 392 Value *V1 = I->getOperand(1); 393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 394 Addend0.set(C, V1); 395 return 1; 396 } 397 398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 399 Addend0.set(C, V0); 400 return 1; 401 } 402 } 403 404 return 0; 405 } 406 407 // Try to break *this* addend into two addends. e.g. Suppose this addend is 408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 409 // i.e. <2.3, X> and <2.3, Y>. 410 unsigned FAddend::drillAddendDownOneStep 411 (FAddend &Addend0, FAddend &Addend1) const { 412 if (isConstant()) 413 return 0; 414 415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 416 if (!BreakNum || Coeff.isOne()) 417 return BreakNum; 418 419 Addend0.Scale(Coeff); 420 421 if (BreakNum == 2) 422 Addend1.Scale(Coeff); 423 424 return BreakNum; 425 } 426 427 Value *FAddCombine::simplify(Instruction *I) { 428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 429 "Expected 'reassoc'+'nsz' instruction"); 430 431 // Currently we are not able to handle vector type. 432 if (I->getType()->isVectorTy()) 433 return nullptr; 434 435 assert((I->getOpcode() == Instruction::FAdd || 436 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 437 438 // Save the instruction before calling other member-functions. 439 Instr = I; 440 441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 442 443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 444 445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 446 unsigned Opnd0_ExpNum = 0; 447 unsigned Opnd1_ExpNum = 0; 448 449 if (!Opnd0.isConstant()) 450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 451 452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 453 if (OpndNum == 2 && !Opnd1.isConstant()) 454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 455 456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 457 if (Opnd0_ExpNum && Opnd1_ExpNum) { 458 AddendVect AllOpnds; 459 AllOpnds.push_back(&Opnd0_0); 460 AllOpnds.push_back(&Opnd1_0); 461 if (Opnd0_ExpNum == 2) 462 AllOpnds.push_back(&Opnd0_1); 463 if (Opnd1_ExpNum == 2) 464 AllOpnds.push_back(&Opnd1_1); 465 466 // Compute instruction quota. We should save at least one instruction. 467 unsigned InstQuota = 0; 468 469 Value *V0 = I->getOperand(0); 470 Value *V1 = I->getOperand(1); 471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 473 474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 475 return R; 476 } 477 478 if (OpndNum != 2) { 479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 480 // splitted into two addends, say "V = X - Y", the instruction would have 481 // been optimized into "I = Y - X" in the previous steps. 482 // 483 const FAddendCoef &CE = Opnd0.getCoef(); 484 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 485 } 486 487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 488 if (Opnd1_ExpNum) { 489 AddendVect AllOpnds; 490 AllOpnds.push_back(&Opnd0); 491 AllOpnds.push_back(&Opnd1_0); 492 if (Opnd1_ExpNum == 2) 493 AllOpnds.push_back(&Opnd1_1); 494 495 if (Value *R = simplifyFAdd(AllOpnds, 1)) 496 return R; 497 } 498 499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 500 if (Opnd0_ExpNum) { 501 AddendVect AllOpnds; 502 AllOpnds.push_back(&Opnd1); 503 AllOpnds.push_back(&Opnd0_0); 504 if (Opnd0_ExpNum == 2) 505 AllOpnds.push_back(&Opnd0_1); 506 507 if (Value *R = simplifyFAdd(AllOpnds, 1)) 508 return R; 509 } 510 511 return nullptr; 512 } 513 514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 515 unsigned AddendNum = Addends.size(); 516 assert(AddendNum <= 4 && "Too many addends"); 517 518 // For saving intermediate results; 519 unsigned NextTmpIdx = 0; 520 FAddend TmpResult[3]; 521 522 // Simplified addends are placed <SimpVect>. 523 AddendVect SimpVect; 524 525 // The outer loop works on one symbolic-value at a time. Suppose the input 526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 527 // The symbolic-values will be processed in this order: x, y, z. 528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 529 530 const FAddend *ThisAddend = Addends[SymIdx]; 531 if (!ThisAddend) { 532 // This addend was processed before. 533 continue; 534 } 535 536 Value *Val = ThisAddend->getSymVal(); 537 538 // If the resulting expr has constant-addend, this constant-addend is 539 // desirable to reside at the top of the resulting expression tree. Placing 540 // constant close to super-expr(s) will potentially reveal some 541 // optimization opportunities in super-expr(s). Here we do not implement 542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative 543 // call later. 544 545 unsigned StartIdx = SimpVect.size(); 546 SimpVect.push_back(ThisAddend); 547 548 // The inner loop collects addends sharing same symbolic-value, and these 549 // addends will be later on folded into a single addend. Following above 550 // example, if the symbolic value "y" is being processed, the inner loop 551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 552 // be later on folded into "<b1+b2, y>". 553 for (unsigned SameSymIdx = SymIdx + 1; 554 SameSymIdx < AddendNum; SameSymIdx++) { 555 const FAddend *T = Addends[SameSymIdx]; 556 if (T && T->getSymVal() == Val) { 557 // Set null such that next iteration of the outer loop will not process 558 // this addend again. 559 Addends[SameSymIdx] = nullptr; 560 SimpVect.push_back(T); 561 } 562 } 563 564 // If multiple addends share same symbolic value, fold them together. 565 if (StartIdx + 1 != SimpVect.size()) { 566 FAddend &R = TmpResult[NextTmpIdx ++]; 567 R = *SimpVect[StartIdx]; 568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 569 R += *SimpVect[Idx]; 570 571 // Pop all addends being folded and push the resulting folded addend. 572 SimpVect.resize(StartIdx); 573 if (!R.isZero()) { 574 SimpVect.push_back(&R); 575 } 576 } 577 } 578 579 assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access"); 580 581 Value *Result; 582 if (!SimpVect.empty()) 583 Result = createNaryFAdd(SimpVect, InstrQuota); 584 else { 585 // The addition is folded to 0.0. 586 Result = ConstantFP::get(Instr->getType(), 0.0); 587 } 588 589 return Result; 590 } 591 592 Value *FAddCombine::createNaryFAdd 593 (const AddendVect &Opnds, unsigned InstrQuota) { 594 assert(!Opnds.empty() && "Expect at least one addend"); 595 596 // Step 1: Check if the # of instructions needed exceeds the quota. 597 598 unsigned InstrNeeded = calcInstrNumber(Opnds); 599 if (InstrNeeded > InstrQuota) 600 return nullptr; 601 602 initCreateInstNum(); 603 604 // step 2: Emit the N-ary addition. 605 // Note that at most three instructions are involved in Fadd-InstCombine: the 606 // addition in question, and at most two neighboring instructions. 607 // The resulting optimized addition should have at least one less instruction 608 // than the original addition expression tree. This implies that the resulting 609 // N-ary addition has at most two instructions, and we don't need to worry 610 // about tree-height when constructing the N-ary addition. 611 612 Value *LastVal = nullptr; 613 bool LastValNeedNeg = false; 614 615 // Iterate the addends, creating fadd/fsub using adjacent two addends. 616 for (const FAddend *Opnd : Opnds) { 617 bool NeedNeg; 618 Value *V = createAddendVal(*Opnd, NeedNeg); 619 if (!LastVal) { 620 LastVal = V; 621 LastValNeedNeg = NeedNeg; 622 continue; 623 } 624 625 if (LastValNeedNeg == NeedNeg) { 626 LastVal = createFAdd(LastVal, V); 627 continue; 628 } 629 630 if (LastValNeedNeg) 631 LastVal = createFSub(V, LastVal); 632 else 633 LastVal = createFSub(LastVal, V); 634 635 LastValNeedNeg = false; 636 } 637 638 if (LastValNeedNeg) { 639 LastVal = createFNeg(LastVal); 640 } 641 642 #ifndef NDEBUG 643 assert(CreateInstrNum == InstrNeeded && 644 "Inconsistent in instruction numbers"); 645 #endif 646 647 return LastVal; 648 } 649 650 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 651 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 652 if (Instruction *I = dyn_cast<Instruction>(V)) 653 createInstPostProc(I); 654 return V; 655 } 656 657 Value *FAddCombine::createFNeg(Value *V) { 658 Value *NewV = Builder.CreateFNeg(V); 659 if (Instruction *I = dyn_cast<Instruction>(NewV)) 660 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 661 return NewV; 662 } 663 664 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 665 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 666 if (Instruction *I = dyn_cast<Instruction>(V)) 667 createInstPostProc(I); 668 return V; 669 } 670 671 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 672 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 673 if (Instruction *I = dyn_cast<Instruction>(V)) 674 createInstPostProc(I); 675 return V; 676 } 677 678 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 679 NewInstr->setDebugLoc(Instr->getDebugLoc()); 680 681 // Keep track of the number of instruction created. 682 if (!NoNumber) 683 incCreateInstNum(); 684 685 // Propagate fast-math flags 686 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 687 } 688 689 // Return the number of instruction needed to emit the N-ary addition. 690 // NOTE: Keep this function in sync with createAddendVal(). 691 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 692 unsigned OpndNum = Opnds.size(); 693 unsigned InstrNeeded = OpndNum - 1; 694 695 // Adjust the number of instructions needed to emit the N-ary add. 696 for (const FAddend *Opnd : Opnds) { 697 if (Opnd->isConstant()) 698 continue; 699 700 // The constant check above is really for a few special constant 701 // coefficients. 702 if (isa<UndefValue>(Opnd->getSymVal())) 703 continue; 704 705 const FAddendCoef &CE = Opnd->getCoef(); 706 // Let the addend be "c * x". If "c == +/-1", the value of the addend 707 // is immediately available; otherwise, it needs exactly one instruction 708 // to evaluate the value. 709 if (!CE.isMinusOne() && !CE.isOne()) 710 InstrNeeded++; 711 } 712 return InstrNeeded; 713 } 714 715 // Input Addend Value NeedNeg(output) 716 // ================================================================ 717 // Constant C C false 718 // <+/-1, V> V coefficient is -1 719 // <2/-2, V> "fadd V, V" coefficient is -2 720 // <C, V> "fmul V, C" false 721 // 722 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 723 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 724 const FAddendCoef &Coeff = Opnd.getCoef(); 725 726 if (Opnd.isConstant()) { 727 NeedNeg = false; 728 return Coeff.getValue(Instr->getType()); 729 } 730 731 Value *OpndVal = Opnd.getSymVal(); 732 733 if (Coeff.isMinusOne() || Coeff.isOne()) { 734 NeedNeg = Coeff.isMinusOne(); 735 return OpndVal; 736 } 737 738 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 739 NeedNeg = Coeff.isMinusTwo(); 740 return createFAdd(OpndVal, OpndVal); 741 } 742 743 NeedNeg = false; 744 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 745 } 746 747 // Checks if any operand is negative and we can convert add to sub. 748 // This function checks for following negative patterns 749 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 750 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 751 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 752 static Value *checkForNegativeOperand(BinaryOperator &I, 753 InstCombiner::BuilderTy &Builder) { 754 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 755 756 // This function creates 2 instructions to replace ADD, we need at least one 757 // of LHS or RHS to have one use to ensure benefit in transform. 758 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 759 return nullptr; 760 761 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 762 const APInt *C1 = nullptr, *C2 = nullptr; 763 764 // if ONE is on other side, swap 765 if (match(RHS, m_Add(m_Value(X), m_One()))) 766 std::swap(LHS, RHS); 767 768 if (match(LHS, m_Add(m_Value(X), m_One()))) { 769 // if XOR on other side, swap 770 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 771 std::swap(X, RHS); 772 773 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 774 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 775 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 776 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 777 Value *NewAnd = Builder.CreateAnd(Z, *C1); 778 return Builder.CreateSub(RHS, NewAnd, "sub"); 779 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 780 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 781 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 782 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 783 return Builder.CreateSub(RHS, NewOr, "sub"); 784 } 785 } 786 } 787 788 // Restore LHS and RHS 789 LHS = I.getOperand(0); 790 RHS = I.getOperand(1); 791 792 // if XOR is on other side, swap 793 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 794 std::swap(LHS, RHS); 795 796 // C2 is ODD 797 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 798 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 799 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 800 if (C1->countTrailingZeros() == 0) 801 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 802 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 803 return Builder.CreateSub(RHS, NewOr, "sub"); 804 } 805 return nullptr; 806 } 807 808 /// Wrapping flags may allow combining constants separated by an extend. 809 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 810 InstCombiner::BuilderTy &Builder) { 811 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 812 Type *Ty = Add.getType(); 813 Constant *Op1C; 814 if (!match(Op1, m_Constant(Op1C))) 815 return nullptr; 816 817 // Try this match first because it results in an add in the narrow type. 818 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 819 Value *X; 820 const APInt *C1, *C2; 821 if (match(Op1, m_APInt(C1)) && 822 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 823 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 824 Constant *NewC = 825 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); 826 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 827 } 828 829 // More general combining of constants in the wide type. 830 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 831 Constant *NarrowC; 832 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { 833 Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty); 834 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 835 Value *WideX = Builder.CreateSExt(X, Ty); 836 return BinaryOperator::CreateAdd(WideX, NewC); 837 } 838 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 839 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { 840 Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty); 841 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 842 Value *WideX = Builder.CreateZExt(X, Ty); 843 return BinaryOperator::CreateAdd(WideX, NewC); 844 } 845 846 return nullptr; 847 } 848 849 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) { 850 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 851 Type *Ty = Add.getType(); 852 Constant *Op1C; 853 if (!match(Op1, m_ImmConstant(Op1C))) 854 return nullptr; 855 856 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 857 return NV; 858 859 Value *X; 860 Constant *Op00C; 861 862 // add (sub C1, X), C2 --> sub (add C1, C2), X 863 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 864 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 865 866 Value *Y; 867 868 // add (sub X, Y), -1 --> add (not Y), X 869 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 870 match(Op1, m_AllOnes())) 871 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 872 873 // zext(bool) + C -> bool ? C + 1 : C 874 if (match(Op0, m_ZExt(m_Value(X))) && 875 X->getType()->getScalarSizeInBits() == 1) 876 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1); 877 // sext(bool) + C -> bool ? C - 1 : C 878 if (match(Op0, m_SExt(m_Value(X))) && 879 X->getType()->getScalarSizeInBits() == 1) 880 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1); 881 882 // ~X + C --> (C-1) - X 883 if (match(Op0, m_Not(m_Value(X)))) 884 return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X); 885 886 // (iN X s>> (N - 1)) + 1 --> zext (X > -1) 887 const APInt *C; 888 unsigned BitWidth = Ty->getScalarSizeInBits(); 889 if (match(Op0, m_OneUse(m_AShr(m_Value(X), 890 m_SpecificIntAllowUndef(BitWidth - 1)))) && 891 match(Op1, m_One())) 892 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty); 893 894 if (!match(Op1, m_APInt(C))) 895 return nullptr; 896 897 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add` 898 Constant *Op01C; 899 if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) && 900 haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT)) 901 return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C)); 902 903 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 904 const APInt *C2; 905 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 906 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 907 908 if (C->isSignMask()) { 909 // If wrapping is not allowed, then the addition must set the sign bit: 910 // X + (signmask) --> X | signmask 911 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 912 return BinaryOperator::CreateOr(Op0, Op1); 913 914 // If wrapping is allowed, then the addition flips the sign bit of LHS: 915 // X + (signmask) --> X ^ signmask 916 return BinaryOperator::CreateXor(Op0, Op1); 917 } 918 919 // Is this add the last step in a convoluted sext? 920 // add(zext(xor i16 X, -32768), -32768) --> sext X 921 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 922 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 923 return CastInst::Create(Instruction::SExt, X, Ty); 924 925 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) { 926 // (X ^ signmask) + C --> (X + (signmask ^ C)) 927 if (C2->isSignMask()) 928 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C)); 929 930 // If X has no high-bits set above an xor mask: 931 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X 932 if (C2->isMask()) { 933 KnownBits LHSKnown = computeKnownBits(X, 0, &Add); 934 if ((*C2 | LHSKnown.Zero).isAllOnes()) 935 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X); 936 } 937 938 // Look for a math+logic pattern that corresponds to sext-in-register of a 939 // value with cleared high bits. Convert that into a pair of shifts: 940 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC 941 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC 942 if (Op0->hasOneUse() && *C2 == -(*C)) { 943 unsigned BitWidth = Ty->getScalarSizeInBits(); 944 unsigned ShAmt = 0; 945 if (C->isPowerOf2()) 946 ShAmt = BitWidth - C->logBase2() - 1; 947 else if (C2->isPowerOf2()) 948 ShAmt = BitWidth - C2->logBase2() - 1; 949 if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt), 950 0, &Add)) { 951 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt); 952 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext"); 953 return BinaryOperator::CreateAShr(NewShl, ShAmtC); 954 } 955 } 956 } 957 958 if (C->isOne() && Op0->hasOneUse()) { 959 // add (sext i1 X), 1 --> zext (not X) 960 // TODO: The smallest IR representation is (select X, 0, 1), and that would 961 // not require the one-use check. But we need to remove a transform in 962 // visitSelect and make sure that IR value tracking for select is equal or 963 // better than for these ops. 964 if (match(Op0, m_SExt(m_Value(X))) && 965 X->getType()->getScalarSizeInBits() == 1) 966 return new ZExtInst(Builder.CreateNot(X), Ty); 967 968 // Shifts and add used to flip and mask off the low bit: 969 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 970 const APInt *C3; 971 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 972 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 973 Value *NotX = Builder.CreateNot(X); 974 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 975 } 976 } 977 978 return nullptr; 979 } 980 981 // Matches multiplication expression Op * C where C is a constant. Returns the 982 // constant value in C and the other operand in Op. Returns true if such a 983 // match is found. 984 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 985 const APInt *AI; 986 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 987 C = *AI; 988 return true; 989 } 990 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 991 C = APInt(AI->getBitWidth(), 1); 992 C <<= *AI; 993 return true; 994 } 995 return false; 996 } 997 998 // Matches remainder expression Op % C where C is a constant. Returns the 999 // constant value in C and the other operand in Op. Returns the signedness of 1000 // the remainder operation in IsSigned. Returns true if such a match is 1001 // found. 1002 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 1003 const APInt *AI; 1004 IsSigned = false; 1005 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 1006 IsSigned = true; 1007 C = *AI; 1008 return true; 1009 } 1010 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 1011 C = *AI; 1012 return true; 1013 } 1014 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 1015 C = *AI + 1; 1016 return true; 1017 } 1018 return false; 1019 } 1020 1021 // Matches division expression Op / C with the given signedness as indicated 1022 // by IsSigned, where C is a constant. Returns the constant value in C and the 1023 // other operand in Op. Returns true if such a match is found. 1024 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 1025 const APInt *AI; 1026 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 1027 C = *AI; 1028 return true; 1029 } 1030 if (!IsSigned) { 1031 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 1032 C = *AI; 1033 return true; 1034 } 1035 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1036 C = APInt(AI->getBitWidth(), 1); 1037 C <<= *AI; 1038 return true; 1039 } 1040 } 1041 return false; 1042 } 1043 1044 // Returns whether C0 * C1 with the given signedness overflows. 1045 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1046 bool overflow; 1047 if (IsSigned) 1048 (void)C0.smul_ov(C1, overflow); 1049 else 1050 (void)C0.umul_ov(C1, overflow); 1051 return overflow; 1052 } 1053 1054 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1055 // does not overflow. 1056 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) { 1057 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1058 Value *X, *MulOpV; 1059 APInt C0, MulOpC; 1060 bool IsSigned; 1061 // Match I = X % C0 + MulOpV * C0 1062 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1063 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1064 C0 == MulOpC) { 1065 Value *RemOpV; 1066 APInt C1; 1067 bool Rem2IsSigned; 1068 // Match MulOpC = RemOpV % C1 1069 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1070 IsSigned == Rem2IsSigned) { 1071 Value *DivOpV; 1072 APInt DivOpC; 1073 // Match RemOpV = X / C0 1074 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1075 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1076 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1); 1077 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1078 : Builder.CreateURem(X, NewDivisor, "urem"); 1079 } 1080 } 1081 } 1082 1083 return nullptr; 1084 } 1085 1086 /// Fold 1087 /// (1 << NBits) - 1 1088 /// Into: 1089 /// ~(-(1 << NBits)) 1090 /// Because a 'not' is better for bit-tracking analysis and other transforms 1091 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1092 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1093 InstCombiner::BuilderTy &Builder) { 1094 Value *NBits; 1095 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1096 return nullptr; 1097 1098 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1099 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1100 // Be wary of constant folding. 1101 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1102 // Always NSW. But NUW propagates from `add`. 1103 BOp->setHasNoSignedWrap(); 1104 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1105 } 1106 1107 return BinaryOperator::CreateNot(NotMask, I.getName()); 1108 } 1109 1110 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1111 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1112 Type *Ty = I.getType(); 1113 auto getUAddSat = [&]() { 1114 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); 1115 }; 1116 1117 // add (umin X, ~Y), Y --> uaddsat X, Y 1118 Value *X, *Y; 1119 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1120 m_Deferred(Y)))) 1121 return CallInst::Create(getUAddSat(), { X, Y }); 1122 1123 // add (umin X, ~C), C --> uaddsat X, C 1124 const APInt *C, *NotC; 1125 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1126 *C == ~*NotC) 1127 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1128 1129 return nullptr; 1130 } 1131 1132 /// Try to reduce signed division by power-of-2 to an arithmetic shift right. 1133 static Instruction *foldAddToAshr(BinaryOperator &Add) { 1134 // Division must be by power-of-2, but not the minimum signed value. 1135 Value *X; 1136 const APInt *DivC; 1137 if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) || 1138 DivC->isNegative()) 1139 return nullptr; 1140 1141 // Rounding is done by adding -1 if the dividend (X) is negative and has any 1142 // low bits set. The canonical pattern for that is an "ugt" compare with SMIN: 1143 // sext (icmp ugt (X & (DivC - 1)), SMIN) 1144 const APInt *MaskC; 1145 ICmpInst::Predicate Pred; 1146 if (!match(Add.getOperand(1), 1147 m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)), 1148 m_SignMask()))) || 1149 Pred != ICmpInst::ICMP_UGT) 1150 return nullptr; 1151 1152 APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits()); 1153 if (*MaskC != (SMin | (*DivC - 1))) 1154 return nullptr; 1155 1156 // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC) 1157 return BinaryOperator::CreateAShr( 1158 X, ConstantInt::get(Add.getType(), DivC->exactLogBase2())); 1159 } 1160 1161 Instruction *InstCombinerImpl:: 1162 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( 1163 BinaryOperator &I) { 1164 assert((I.getOpcode() == Instruction::Add || 1165 I.getOpcode() == Instruction::Or || 1166 I.getOpcode() == Instruction::Sub) && 1167 "Expecting add/or/sub instruction"); 1168 1169 // We have a subtraction/addition between a (potentially truncated) *logical* 1170 // right-shift of X and a "select". 1171 Value *X, *Select; 1172 Instruction *LowBitsToSkip, *Extract; 1173 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( 1174 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), 1175 m_Instruction(Extract))), 1176 m_Value(Select)))) 1177 return nullptr; 1178 1179 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. 1180 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) 1181 return nullptr; 1182 1183 Type *XTy = X->getType(); 1184 bool HadTrunc = I.getType() != XTy; 1185 1186 // If there was a truncation of extracted value, then we'll need to produce 1187 // one extra instruction, so we need to ensure one instruction will go away. 1188 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1189 return nullptr; 1190 1191 // Extraction should extract high NBits bits, with shift amount calculated as: 1192 // low bits to skip = shift bitwidth - high bits to extract 1193 // The shift amount itself may be extended, and we need to look past zero-ext 1194 // when matching NBits, that will matter for matching later. 1195 Constant *C; 1196 Value *NBits; 1197 if (!match( 1198 LowBitsToSkip, 1199 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || 1200 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1201 APInt(C->getType()->getScalarSizeInBits(), 1202 X->getType()->getScalarSizeInBits())))) 1203 return nullptr; 1204 1205 // Sign-extending value can be zero-extended if we `sub`tract it, 1206 // or sign-extended otherwise. 1207 auto SkipExtInMagic = [&I](Value *&V) { 1208 if (I.getOpcode() == Instruction::Sub) 1209 match(V, m_ZExtOrSelf(m_Value(V))); 1210 else 1211 match(V, m_SExtOrSelf(m_Value(V))); 1212 }; 1213 1214 // Now, finally validate the sign-extending magic. 1215 // `select` itself may be appropriately extended, look past that. 1216 SkipExtInMagic(Select); 1217 1218 ICmpInst::Predicate Pred; 1219 const APInt *Thr; 1220 Value *SignExtendingValue, *Zero; 1221 bool ShouldSignext; 1222 // It must be a select between two values we will later establish to be a 1223 // sign-extending value and a zero constant. The condition guarding the 1224 // sign-extension must be based on a sign bit of the same X we had in `lshr`. 1225 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), 1226 m_Value(SignExtendingValue), m_Value(Zero))) || 1227 !isSignBitCheck(Pred, *Thr, ShouldSignext)) 1228 return nullptr; 1229 1230 // icmp-select pair is commutative. 1231 if (!ShouldSignext) 1232 std::swap(SignExtendingValue, Zero); 1233 1234 // If we should not perform sign-extension then we must add/or/subtract zero. 1235 if (!match(Zero, m_Zero())) 1236 return nullptr; 1237 // Otherwise, it should be some constant, left-shifted by the same NBits we 1238 // had in `lshr`. Said left-shift can also be appropriately extended. 1239 // Again, we must look past zero-ext when looking for NBits. 1240 SkipExtInMagic(SignExtendingValue); 1241 Constant *SignExtendingValueBaseConstant; 1242 if (!match(SignExtendingValue, 1243 m_Shl(m_Constant(SignExtendingValueBaseConstant), 1244 m_ZExtOrSelf(m_Specific(NBits))))) 1245 return nullptr; 1246 // If we `sub`, then the constant should be one, else it should be all-ones. 1247 if (I.getOpcode() == Instruction::Sub 1248 ? !match(SignExtendingValueBaseConstant, m_One()) 1249 : !match(SignExtendingValueBaseConstant, m_AllOnes())) 1250 return nullptr; 1251 1252 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, 1253 Extract->getName() + ".sext"); 1254 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. 1255 if (!HadTrunc) 1256 return NewAShr; 1257 1258 Builder.Insert(NewAShr); 1259 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); 1260 } 1261 1262 /// This is a specialization of a more general transform from 1263 /// foldUsingDistributiveLaws. If that code can be made to work optimally 1264 /// for multi-use cases or propagating nsw/nuw, then we would not need this. 1265 static Instruction *factorizeMathWithShlOps(BinaryOperator &I, 1266 InstCombiner::BuilderTy &Builder) { 1267 // TODO: Also handle mul by doubling the shift amount? 1268 assert((I.getOpcode() == Instruction::Add || 1269 I.getOpcode() == Instruction::Sub) && 1270 "Expected add/sub"); 1271 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 1272 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 1273 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse())) 1274 return nullptr; 1275 1276 Value *X, *Y, *ShAmt; 1277 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) || 1278 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt)))) 1279 return nullptr; 1280 1281 // No-wrap propagates only when all ops have no-wrap. 1282 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() && 1283 Op1->hasNoSignedWrap(); 1284 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() && 1285 Op1->hasNoUnsignedWrap(); 1286 1287 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt 1288 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y); 1289 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) { 1290 NewI->setHasNoSignedWrap(HasNSW); 1291 NewI->setHasNoUnsignedWrap(HasNUW); 1292 } 1293 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt); 1294 NewShl->setHasNoSignedWrap(HasNSW); 1295 NewShl->setHasNoUnsignedWrap(HasNUW); 1296 return NewShl; 1297 } 1298 1299 /// Reduce a sequence of masked half-width multiplies to a single multiply. 1300 /// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y 1301 static Instruction *foldBoxMultiply(BinaryOperator &I) { 1302 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1303 // Skip the odd bitwidth types. 1304 if ((BitWidth & 0x1)) 1305 return nullptr; 1306 1307 unsigned HalfBits = BitWidth >> 1; 1308 APInt HalfMask = APInt::getMaxValue(HalfBits); 1309 1310 // ResLo = (CrossSum << HalfBits) + (YLo * XLo) 1311 Value *XLo, *YLo; 1312 Value *CrossSum; 1313 if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)), 1314 m_Mul(m_Value(YLo), m_Value(XLo))))) 1315 return nullptr; 1316 1317 // XLo = X & HalfMask 1318 // YLo = Y & HalfMask 1319 // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros 1320 // to enhance robustness 1321 Value *X, *Y; 1322 if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) || 1323 !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask)))) 1324 return nullptr; 1325 1326 // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits)) 1327 // X' can be either X or XLo in the pattern (and the same for Y') 1328 if (match(CrossSum, 1329 m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)), 1330 m_CombineOr(m_Specific(X), m_Specific(XLo))), 1331 m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)), 1332 m_CombineOr(m_Specific(Y), m_Specific(YLo)))))) 1333 return BinaryOperator::CreateMul(X, Y); 1334 1335 return nullptr; 1336 } 1337 1338 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) { 1339 if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1), 1340 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1341 SQ.getWithInstruction(&I))) 1342 return replaceInstUsesWith(I, V); 1343 1344 if (SimplifyAssociativeOrCommutative(I)) 1345 return &I; 1346 1347 if (Instruction *X = foldVectorBinop(I)) 1348 return X; 1349 1350 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1351 return Phi; 1352 1353 // (A*B)+(A*C) -> A*(B+C) etc 1354 if (Value *V = foldUsingDistributiveLaws(I)) 1355 return replaceInstUsesWith(I, V); 1356 1357 if (Instruction *R = foldBoxMultiply(I)) 1358 return R; 1359 1360 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1361 return R; 1362 1363 if (Instruction *X = foldAddWithConstant(I)) 1364 return X; 1365 1366 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1367 return X; 1368 1369 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1370 Type *Ty = I.getType(); 1371 if (Ty->isIntOrIntVectorTy(1)) 1372 return BinaryOperator::CreateXor(LHS, RHS); 1373 1374 // X + X --> X << 1 1375 if (LHS == RHS) { 1376 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1377 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1378 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1379 return Shl; 1380 } 1381 1382 Value *A, *B; 1383 if (match(LHS, m_Neg(m_Value(A)))) { 1384 // -A + -B --> -(A + B) 1385 if (match(RHS, m_Neg(m_Value(B)))) 1386 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1387 1388 // -A + B --> B - A 1389 return BinaryOperator::CreateSub(RHS, A); 1390 } 1391 1392 // A + -B --> A - B 1393 if (match(RHS, m_Neg(m_Value(B)))) 1394 return BinaryOperator::CreateSub(LHS, B); 1395 1396 if (Value *V = checkForNegativeOperand(I, Builder)) 1397 return replaceInstUsesWith(I, V); 1398 1399 // (A + 1) + ~B --> A - B 1400 // ~B + (A + 1) --> A - B 1401 // (~B + A) + 1 --> A - B 1402 // (A + ~B) + 1 --> A - B 1403 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1404 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1405 return BinaryOperator::CreateSub(A, B); 1406 1407 // (A + RHS) + RHS --> A + (RHS << 1) 1408 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS))))) 1409 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add")); 1410 1411 // LHS + (A + LHS) --> A + (LHS << 1) 1412 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS))))) 1413 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add")); 1414 1415 { 1416 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2) 1417 Constant *C1, *C2; 1418 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)), 1419 m_Sub(m_ImmConstant(C2), m_Value(B)))) && 1420 (LHS->hasOneUse() || RHS->hasOneUse())) { 1421 Value *Sub = Builder.CreateSub(A, B); 1422 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2)); 1423 } 1424 } 1425 1426 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1427 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1428 1429 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2 1430 const APInt *C1, *C2; 1431 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) { 1432 APInt one(C2->getBitWidth(), 1); 1433 APInt minusC1 = -(*C1); 1434 if (minusC1 == (one << *C2)) { 1435 Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1); 1436 return BinaryOperator::CreateSRem(RHS, NewRHS); 1437 } 1438 } 1439 1440 // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit 1441 if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) && 1442 C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countLeadingZeros())) { 1443 Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1); 1444 return BinaryOperator::CreateAnd(A, NewMask); 1445 } 1446 1447 // ZExt (B - A) + ZExt(A) --> ZExt(B) 1448 if ((match(RHS, m_ZExt(m_Value(A))) && 1449 match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) || 1450 (match(LHS, m_ZExt(m_Value(A))) && 1451 match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A)))))) 1452 return new ZExtInst(B, LHS->getType()); 1453 1454 // A+B --> A|B iff A and B have no bits set in common. 1455 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1456 return BinaryOperator::CreateOr(LHS, RHS); 1457 1458 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1459 return Ext; 1460 1461 // (add (xor A, B) (and A, B)) --> (or A, B) 1462 // (add (and A, B) (xor A, B)) --> (or A, B) 1463 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1464 m_c_And(m_Deferred(A), m_Deferred(B))))) 1465 return BinaryOperator::CreateOr(A, B); 1466 1467 // (add (or A, B) (and A, B)) --> (add A, B) 1468 // (add (and A, B) (or A, B)) --> (add A, B) 1469 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1470 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1471 // Replacing operands in-place to preserve nuw/nsw flags. 1472 replaceOperand(I, 0, A); 1473 replaceOperand(I, 1, B); 1474 return &I; 1475 } 1476 1477 // (add A (or A, -A)) --> (and (add A, -1) A) 1478 // (add A (or -A, A)) --> (and (add A, -1) A) 1479 // (add (or A, -A) A) --> (and (add A, -1) A) 1480 // (add (or -A, A) A) --> (and (add A, -1) A) 1481 if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)), 1482 m_Deferred(A)))))) { 1483 Value *Add = 1484 Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "", 1485 I.hasNoUnsignedWrap(), I.hasNoSignedWrap()); 1486 return BinaryOperator::CreateAnd(Add, A); 1487 } 1488 1489 // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A) 1490 // Forms all commutable operations, and simplifies ctpop -> cttz folds. 1491 if (match(&I, 1492 m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))), 1493 m_AllOnes()))) { 1494 Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType()); 1495 Value *Dec = Builder.CreateAdd(A, AllOnes); 1496 Value *Not = Builder.CreateXor(A, AllOnes); 1497 return BinaryOperator::CreateAnd(Dec, Not); 1498 } 1499 1500 // Disguised reassociation/factorization: 1501 // ~(A * C1) + A 1502 // ((A * -C1) - 1) + A 1503 // ((A * -C1) + A) - 1 1504 // (A * (1 - C1)) - 1 1505 if (match(&I, 1506 m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))), 1507 m_Deferred(A)))) { 1508 Type *Ty = I.getType(); 1509 Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1); 1510 Value *NewMul = Builder.CreateMul(A, NewMulC); 1511 return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty)); 1512 } 1513 1514 // (A * -2**C) + B --> B - (A << C) 1515 const APInt *NegPow2C; 1516 if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))), 1517 m_Value(B)))) { 1518 Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countTrailingZeros()); 1519 Value *Shl = Builder.CreateShl(A, ShiftAmtC); 1520 return BinaryOperator::CreateSub(B, Shl); 1521 } 1522 1523 // Canonicalize signum variant that ends in add: 1524 // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0)) 1525 ICmpInst::Predicate Pred; 1526 uint64_t BitWidth = Ty->getScalarSizeInBits(); 1527 if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowUndef(BitWidth - 1))) && 1528 match(RHS, m_OneUse(m_ZExt( 1529 m_OneUse(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))))) && 1530 Pred == CmpInst::ICMP_SGT) { 1531 Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull"); 1532 Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext"); 1533 return BinaryOperator::CreateOr(LHS, Zext); 1534 } 1535 1536 if (Instruction *Ashr = foldAddToAshr(I)) 1537 return Ashr; 1538 1539 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1540 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1541 // computeKnownBits. 1542 bool Changed = false; 1543 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1544 Changed = true; 1545 I.setHasNoSignedWrap(true); 1546 } 1547 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1548 Changed = true; 1549 I.setHasNoUnsignedWrap(true); 1550 } 1551 1552 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1553 return V; 1554 1555 if (Instruction *V = 1556 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 1557 return V; 1558 1559 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1560 return SatAdd; 1561 1562 // usub.sat(A, B) + B => umax(A, B) 1563 if (match(&I, m_c_BinOp( 1564 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))), 1565 m_Deferred(B)))) { 1566 return replaceInstUsesWith(I, 1567 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B})); 1568 } 1569 1570 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common. 1571 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) && 1572 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) && 1573 haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT)) 1574 return replaceInstUsesWith( 1575 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 1576 {Builder.CreateOr(A, B)})); 1577 1578 return Changed ? &I : nullptr; 1579 } 1580 1581 /// Eliminate an op from a linear interpolation (lerp) pattern. 1582 static Instruction *factorizeLerp(BinaryOperator &I, 1583 InstCombiner::BuilderTy &Builder) { 1584 Value *X, *Y, *Z; 1585 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1586 m_OneUse(m_FSub(m_FPOne(), 1587 m_Value(Z))))), 1588 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1589 return nullptr; 1590 1591 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1592 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1593 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1594 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1595 } 1596 1597 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1598 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1599 InstCombiner::BuilderTy &Builder) { 1600 assert((I.getOpcode() == Instruction::FAdd || 1601 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1602 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1603 "FP factorization requires FMF"); 1604 1605 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1606 return Lerp; 1607 1608 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1609 if (!Op0->hasOneUse() || !Op1->hasOneUse()) 1610 return nullptr; 1611 1612 Value *X, *Y, *Z; 1613 bool IsFMul; 1614 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) && 1615 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) || 1616 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) && 1617 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z))))) 1618 IsFMul = true; 1619 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) && 1620 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z)))) 1621 IsFMul = false; 1622 else 1623 return nullptr; 1624 1625 // (X * Z) + (Y * Z) --> (X + Y) * Z 1626 // (X * Z) - (Y * Z) --> (X - Y) * Z 1627 // (X / Z) + (Y / Z) --> (X + Y) / Z 1628 // (X / Z) - (Y / Z) --> (X - Y) / Z 1629 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1630 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1631 : Builder.CreateFSubFMF(X, Y, &I); 1632 1633 // Bail out if we just created a denormal constant. 1634 // TODO: This is copied from a previous implementation. Is it necessary? 1635 const APFloat *C; 1636 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1637 return nullptr; 1638 1639 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1640 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1641 } 1642 1643 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) { 1644 if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1), 1645 I.getFastMathFlags(), 1646 SQ.getWithInstruction(&I))) 1647 return replaceInstUsesWith(I, V); 1648 1649 if (SimplifyAssociativeOrCommutative(I)) 1650 return &I; 1651 1652 if (Instruction *X = foldVectorBinop(I)) 1653 return X; 1654 1655 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1656 return Phi; 1657 1658 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1659 return FoldedFAdd; 1660 1661 // (-X) + Y --> Y - X 1662 Value *X, *Y; 1663 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1664 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1665 1666 // Similar to above, but look through fmul/fdiv for the negated term. 1667 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1668 Value *Z; 1669 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1670 m_Value(Z)))) { 1671 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1672 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1673 } 1674 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1675 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1676 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1677 m_Value(Z))) || 1678 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1679 m_Value(Z)))) { 1680 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1681 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1682 } 1683 1684 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1685 // integer add followed by a promotion. 1686 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1687 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1688 Value *LHSIntVal = LHSConv->getOperand(0); 1689 Type *FPType = LHSConv->getType(); 1690 1691 // TODO: This check is overly conservative. In many cases known bits 1692 // analysis can tell us that the result of the addition has less significant 1693 // bits than the integer type can hold. 1694 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1695 Type *FScalarTy = FTy->getScalarType(); 1696 Type *IScalarTy = ITy->getScalarType(); 1697 1698 // Do we have enough bits in the significand to represent the result of 1699 // the integer addition? 1700 unsigned MaxRepresentableBits = 1701 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1702 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1703 }; 1704 1705 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1706 // ... if the constant fits in the integer value. This is useful for things 1707 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1708 // requires a constant pool load, and generally allows the add to be better 1709 // instcombined. 1710 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1711 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1712 Constant *CI = 1713 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1714 if (LHSConv->hasOneUse() && 1715 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1716 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1717 // Insert the new integer add. 1718 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1719 return new SIToFPInst(NewAdd, I.getType()); 1720 } 1721 } 1722 1723 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1724 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1725 Value *RHSIntVal = RHSConv->getOperand(0); 1726 // It's enough to check LHS types only because we require int types to 1727 // be the same for this transform. 1728 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1729 // Only do this if x/y have the same type, if at least one of them has a 1730 // single use (so we don't increase the number of int->fp conversions), 1731 // and if the integer add will not overflow. 1732 if (LHSIntVal->getType() == RHSIntVal->getType() && 1733 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1734 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1735 // Insert the new integer add. 1736 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1737 return new SIToFPInst(NewAdd, I.getType()); 1738 } 1739 } 1740 } 1741 } 1742 1743 // Handle specials cases for FAdd with selects feeding the operation 1744 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1745 return replaceInstUsesWith(I, V); 1746 1747 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1748 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1749 return F; 1750 1751 // Try to fold fadd into start value of reduction intrinsic. 1752 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1753 m_AnyZeroFP(), m_Value(X))), 1754 m_Value(Y)))) { 1755 // fadd (rdx 0.0, X), Y --> rdx Y, X 1756 return replaceInstUsesWith( 1757 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1758 {X->getType()}, {Y, X}, &I)); 1759 } 1760 const APFloat *StartC, *C; 1761 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1762 m_APFloat(StartC), m_Value(X)))) && 1763 match(RHS, m_APFloat(C))) { 1764 // fadd (rdx StartC, X), C --> rdx (C + StartC), X 1765 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC); 1766 return replaceInstUsesWith( 1767 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1768 {X->getType()}, {NewStartC, X}, &I)); 1769 } 1770 1771 // (X * MulC) + X --> X * (MulC + 1.0) 1772 Constant *MulC; 1773 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)), 1774 m_Deferred(X)))) { 1775 if (Constant *NewMulC = ConstantFoldBinaryOpOperands( 1776 Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL)) 1777 return BinaryOperator::CreateFMulFMF(X, NewMulC, &I); 1778 } 1779 1780 // (-X - Y) + (X + Z) --> Z - Y 1781 if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)), 1782 m_c_FAdd(m_Deferred(X), m_Value(Z))))) 1783 return BinaryOperator::CreateFSubFMF(Z, Y, &I); 1784 1785 if (Value *V = FAddCombine(Builder).simplify(&I)) 1786 return replaceInstUsesWith(I, V); 1787 } 1788 1789 return nullptr; 1790 } 1791 1792 /// Optimize pointer differences into the same array into a size. Consider: 1793 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1794 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1795 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS, 1796 Type *Ty, bool IsNUW) { 1797 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1798 // this. 1799 bool Swapped = false; 1800 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1801 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) { 1802 std::swap(LHS, RHS); 1803 Swapped = true; 1804 } 1805 1806 // Require at least one GEP with a common base pointer on both sides. 1807 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1808 // (gep X, ...) - X 1809 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1810 RHS->stripPointerCasts()) { 1811 GEP1 = LHSGEP; 1812 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1813 // (gep X, ...) - (gep X, ...) 1814 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1815 RHSGEP->getOperand(0)->stripPointerCasts()) { 1816 GEP1 = LHSGEP; 1817 GEP2 = RHSGEP; 1818 } 1819 } 1820 } 1821 1822 if (!GEP1) 1823 return nullptr; 1824 1825 if (GEP2) { 1826 // (gep X, ...) - (gep X, ...) 1827 // 1828 // Avoid duplicating the arithmetic if there are more than one non-constant 1829 // indices between the two GEPs and either GEP has a non-constant index and 1830 // multiple users. If zero non-constant index, the result is a constant and 1831 // there is no duplication. If one non-constant index, the result is an add 1832 // or sub with a constant, which is no larger than the original code, and 1833 // there's no duplicated arithmetic, even if either GEP has multiple 1834 // users. If more than one non-constant indices combined, as long as the GEP 1835 // with at least one non-constant index doesn't have multiple users, there 1836 // is no duplication. 1837 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1838 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1839 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1840 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1841 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1842 return nullptr; 1843 } 1844 } 1845 1846 // Emit the offset of the GEP and an intptr_t. 1847 Value *Result = EmitGEPOffset(GEP1); 1848 1849 // If this is a single inbounds GEP and the original sub was nuw, 1850 // then the final multiplication is also nuw. 1851 if (auto *I = dyn_cast<Instruction>(Result)) 1852 if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() && 1853 I->getOpcode() == Instruction::Mul) 1854 I->setHasNoUnsignedWrap(); 1855 1856 // If we have a 2nd GEP of the same base pointer, subtract the offsets. 1857 // If both GEPs are inbounds, then the subtract does not have signed overflow. 1858 if (GEP2) { 1859 Value *Offset = EmitGEPOffset(GEP2); 1860 Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false, 1861 GEP1->isInBounds() && GEP2->isInBounds()); 1862 } 1863 1864 // If we have p - gep(p, ...) then we have to negate the result. 1865 if (Swapped) 1866 Result = Builder.CreateNeg(Result, "diff.neg"); 1867 1868 return Builder.CreateIntCast(Result, Ty, true); 1869 } 1870 1871 static Instruction *foldSubOfMinMax(BinaryOperator &I, 1872 InstCombiner::BuilderTy &Builder) { 1873 Value *Op0 = I.getOperand(0); 1874 Value *Op1 = I.getOperand(1); 1875 Type *Ty = I.getType(); 1876 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1); 1877 if (!MinMax) 1878 return nullptr; 1879 1880 // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y) 1881 // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y) 1882 Value *X = MinMax->getLHS(); 1883 Value *Y = MinMax->getRHS(); 1884 if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) && 1885 (Op0->hasOneUse() || Op1->hasOneUse())) { 1886 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 1887 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 1888 return CallInst::Create(F, {X, Y}); 1889 } 1890 1891 // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z)) 1892 // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y)) 1893 Value *Z; 1894 if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) { 1895 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) { 1896 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z}); 1897 return BinaryOperator::CreateAdd(X, USub); 1898 } 1899 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) { 1900 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y}); 1901 return BinaryOperator::CreateAdd(X, USub); 1902 } 1903 } 1904 1905 // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z 1906 // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z 1907 if (MinMax->isSigned() && match(Y, m_ZeroInt()) && 1908 match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) { 1909 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 1910 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 1911 return CallInst::Create(F, {Op0, Z}); 1912 } 1913 1914 return nullptr; 1915 } 1916 1917 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) { 1918 if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1), 1919 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1920 SQ.getWithInstruction(&I))) 1921 return replaceInstUsesWith(I, V); 1922 1923 if (Instruction *X = foldVectorBinop(I)) 1924 return X; 1925 1926 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1927 return Phi; 1928 1929 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1930 1931 // If this is a 'B = x-(-A)', change to B = x+A. 1932 // We deal with this without involving Negator to preserve NSW flag. 1933 if (Value *V = dyn_castNegVal(Op1)) { 1934 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1935 1936 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1937 assert(BO->getOpcode() == Instruction::Sub && 1938 "Expected a subtraction operator!"); 1939 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1940 Res->setHasNoSignedWrap(true); 1941 } else { 1942 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1943 Res->setHasNoSignedWrap(true); 1944 } 1945 1946 return Res; 1947 } 1948 1949 // Try this before Negator to preserve NSW flag. 1950 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1951 return R; 1952 1953 Constant *C; 1954 if (match(Op0, m_ImmConstant(C))) { 1955 Value *X; 1956 Constant *C2; 1957 1958 // C-(X+C2) --> (C-C2)-X 1959 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) 1960 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1961 } 1962 1963 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * { 1964 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1965 return Ext; 1966 1967 bool Changed = false; 1968 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 1969 Changed = true; 1970 I.setHasNoSignedWrap(true); 1971 } 1972 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 1973 Changed = true; 1974 I.setHasNoUnsignedWrap(true); 1975 } 1976 1977 return Changed ? &I : nullptr; 1978 }; 1979 1980 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`, 1981 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't 1982 // a pure negation used by a select that looks like abs/nabs. 1983 bool IsNegation = match(Op0, m_ZeroInt()); 1984 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) { 1985 const Instruction *UI = dyn_cast<Instruction>(U); 1986 if (!UI) 1987 return false; 1988 return match(UI, 1989 m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) || 1990 match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1))); 1991 })) { 1992 if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this)) 1993 return BinaryOperator::CreateAdd(NegOp1, Op0); 1994 } 1995 if (IsNegation) 1996 return TryToNarrowDeduceFlags(); // Should have been handled in Negator! 1997 1998 // (A*B)-(A*C) -> A*(B-C) etc 1999 if (Value *V = foldUsingDistributiveLaws(I)) 2000 return replaceInstUsesWith(I, V); 2001 2002 if (I.getType()->isIntOrIntVectorTy(1)) 2003 return BinaryOperator::CreateXor(Op0, Op1); 2004 2005 // Replace (-1 - A) with (~A). 2006 if (match(Op0, m_AllOnes())) 2007 return BinaryOperator::CreateNot(Op1); 2008 2009 // (X + -1) - Y --> ~Y + X 2010 Value *X, *Y; 2011 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 2012 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 2013 2014 // Reassociate sub/add sequences to create more add instructions and 2015 // reduce dependency chains: 2016 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2017 Value *Z; 2018 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))), 2019 m_Value(Z))))) { 2020 Value *XZ = Builder.CreateAdd(X, Z); 2021 Value *YW = Builder.CreateAdd(Y, Op1); 2022 return BinaryOperator::CreateSub(XZ, YW); 2023 } 2024 2025 // ((X - Y) - Op1) --> X - (Y + Op1) 2026 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) { 2027 Value *Add = Builder.CreateAdd(Y, Op1); 2028 return BinaryOperator::CreateSub(X, Add); 2029 } 2030 2031 // (~X) - (~Y) --> Y - X 2032 // This is placed after the other reassociations and explicitly excludes a 2033 // sub-of-sub pattern to avoid infinite looping. 2034 if (isFreeToInvert(Op0, Op0->hasOneUse()) && 2035 isFreeToInvert(Op1, Op1->hasOneUse()) && 2036 !match(Op0, m_Sub(m_ImmConstant(), m_Value()))) { 2037 Value *NotOp0 = Builder.CreateNot(Op0); 2038 Value *NotOp1 = Builder.CreateNot(Op1); 2039 return BinaryOperator::CreateSub(NotOp1, NotOp0); 2040 } 2041 2042 auto m_AddRdx = [](Value *&Vec) { 2043 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec))); 2044 }; 2045 Value *V0, *V1; 2046 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) && 2047 V0->getType() == V1->getType()) { 2048 // Difference of sums is sum of differences: 2049 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1) 2050 Value *Sub = Builder.CreateSub(V0, V1); 2051 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add, 2052 {Sub->getType()}, {Sub}); 2053 return replaceInstUsesWith(I, Rdx); 2054 } 2055 2056 if (Constant *C = dyn_cast<Constant>(Op0)) { 2057 Value *X; 2058 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2059 // C - (zext bool) --> bool ? C - 1 : C 2060 return SelectInst::Create(X, InstCombiner::SubOne(C), C); 2061 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2062 // C - (sext bool) --> bool ? C + 1 : C 2063 return SelectInst::Create(X, InstCombiner::AddOne(C), C); 2064 2065 // C - ~X == X + (1+C) 2066 if (match(Op1, m_Not(m_Value(X)))) 2067 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C)); 2068 2069 // Try to fold constant sub into select arguments. 2070 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2071 if (Instruction *R = FoldOpIntoSelect(I, SI)) 2072 return R; 2073 2074 // Try to fold constant sub into PHI values. 2075 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 2076 if (Instruction *R = foldOpIntoPhi(I, PN)) 2077 return R; 2078 2079 Constant *C2; 2080 2081 // C-(C2-X) --> X+(C-C2) 2082 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X)))) 2083 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 2084 } 2085 2086 const APInt *Op0C; 2087 if (match(Op0, m_APInt(Op0C))) { 2088 if (Op0C->isMask()) { 2089 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 2090 // zero. 2091 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 2092 if ((*Op0C | RHSKnown.Zero).isAllOnes()) 2093 return BinaryOperator::CreateXor(Op1, Op0); 2094 } 2095 2096 // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when: 2097 // (C3 - ((C2 & C3) - 1)) is pow2 2098 // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1) 2099 // C2 is negative pow2 || sub nuw 2100 const APInt *C2, *C3; 2101 BinaryOperator *InnerSub; 2102 if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) && 2103 match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) && 2104 (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) { 2105 APInt C2AndC3 = *C2 & *C3; 2106 APInt C2AndC3Minus1 = C2AndC3 - 1; 2107 APInt C2AddC3 = *C2 + *C3; 2108 if ((*C3 - C2AndC3Minus1).isPowerOf2() && 2109 C2AndC3Minus1.isSubsetOf(C2AddC3)) { 2110 Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2)); 2111 return BinaryOperator::CreateAdd( 2112 And, ConstantInt::get(I.getType(), *Op0C - C2AndC3)); 2113 } 2114 } 2115 } 2116 2117 { 2118 Value *Y; 2119 // X-(X+Y) == -Y X-(Y+X) == -Y 2120 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 2121 return BinaryOperator::CreateNeg(Y); 2122 2123 // (X-Y)-X == -Y 2124 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 2125 return BinaryOperator::CreateNeg(Y); 2126 } 2127 2128 // (sub (or A, B) (and A, B)) --> (xor A, B) 2129 { 2130 Value *A, *B; 2131 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2132 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2133 return BinaryOperator::CreateXor(A, B); 2134 } 2135 2136 // (sub (add A, B) (or A, B)) --> (and A, B) 2137 { 2138 Value *A, *B; 2139 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2140 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 2141 return BinaryOperator::CreateAnd(A, B); 2142 } 2143 2144 // (sub (add A, B) (and A, B)) --> (or A, B) 2145 { 2146 Value *A, *B; 2147 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2148 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 2149 return BinaryOperator::CreateOr(A, B); 2150 } 2151 2152 // (sub (and A, B) (or A, B)) --> neg (xor A, B) 2153 { 2154 Value *A, *B; 2155 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2156 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2157 (Op0->hasOneUse() || Op1->hasOneUse())) 2158 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); 2159 } 2160 2161 // (sub (or A, B), (xor A, B)) --> (and A, B) 2162 { 2163 Value *A, *B; 2164 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2165 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2166 return BinaryOperator::CreateAnd(A, B); 2167 } 2168 2169 // (sub (xor A, B) (or A, B)) --> neg (and A, B) 2170 { 2171 Value *A, *B; 2172 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2173 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2174 (Op0->hasOneUse() || Op1->hasOneUse())) 2175 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); 2176 } 2177 2178 { 2179 Value *Y; 2180 // ((X | Y) - X) --> (~X & Y) 2181 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 2182 return BinaryOperator::CreateAnd( 2183 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 2184 } 2185 2186 { 2187 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) 2188 Value *X; 2189 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), 2190 m_OneUse(m_Neg(m_Value(X))))))) { 2191 return BinaryOperator::CreateNeg(Builder.CreateAnd( 2192 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); 2193 } 2194 } 2195 2196 { 2197 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) 2198 Constant *C; 2199 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { 2200 return BinaryOperator::CreateNeg( 2201 Builder.CreateAnd(Op1, Builder.CreateNot(C))); 2202 } 2203 } 2204 2205 if (Instruction *R = foldSubOfMinMax(I, Builder)) 2206 return R; 2207 2208 { 2209 // If we have a subtraction between some value and a select between 2210 // said value and something else, sink subtraction into select hands, i.e.: 2211 // sub (select %Cond, %TrueVal, %FalseVal), %Op1 2212 // -> 2213 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) 2214 // or 2215 // sub %Op0, (select %Cond, %TrueVal, %FalseVal) 2216 // -> 2217 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) 2218 // This will result in select between new subtraction and 0. 2219 auto SinkSubIntoSelect = 2220 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, 2221 auto SubBuilder) -> Instruction * { 2222 Value *Cond, *TrueVal, *FalseVal; 2223 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), 2224 m_Value(FalseVal))))) 2225 return nullptr; 2226 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) 2227 return nullptr; 2228 // While it is really tempting to just create two subtractions and let 2229 // InstCombine fold one of those to 0, it isn't possible to do so 2230 // because of worklist visitation order. So ugly it is. 2231 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; 2232 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); 2233 Constant *Zero = Constant::getNullValue(Ty); 2234 SelectInst *NewSel = 2235 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, 2236 OtherHandOfSubIsTrueVal ? NewSub : Zero); 2237 // Preserve prof metadata if any. 2238 NewSel->copyMetadata(cast<Instruction>(*Select)); 2239 return NewSel; 2240 }; 2241 if (Instruction *NewSel = SinkSubIntoSelect( 2242 /*Select=*/Op0, /*OtherHandOfSub=*/Op1, 2243 [Builder = &Builder, Op1](Value *OtherHandOfSelect) { 2244 return Builder->CreateSub(OtherHandOfSelect, 2245 /*OtherHandOfSub=*/Op1); 2246 })) 2247 return NewSel; 2248 if (Instruction *NewSel = SinkSubIntoSelect( 2249 /*Select=*/Op1, /*OtherHandOfSub=*/Op0, 2250 [Builder = &Builder, Op0](Value *OtherHandOfSelect) { 2251 return Builder->CreateSub(/*OtherHandOfSub=*/Op0, 2252 OtherHandOfSelect); 2253 })) 2254 return NewSel; 2255 } 2256 2257 // (X - (X & Y)) --> (X & ~Y) 2258 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) && 2259 (Op1->hasOneUse() || isa<Constant>(Y))) 2260 return BinaryOperator::CreateAnd( 2261 Op0, Builder.CreateNot(Y, Y->getName() + ".not")); 2262 2263 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X 2264 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X 2265 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y) 2266 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y) 2267 // As long as Y is freely invertible, this will be neutral or a win. 2268 // Note: We don't generate the inverse max/min, just create the 'not' of 2269 // it and let other folds do the rest. 2270 if (match(Op0, m_Not(m_Value(X))) && 2271 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) && 2272 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2273 Value *Not = Builder.CreateNot(Op1); 2274 return BinaryOperator::CreateSub(Not, X); 2275 } 2276 if (match(Op1, m_Not(m_Value(X))) && 2277 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) && 2278 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2279 Value *Not = Builder.CreateNot(Op0); 2280 return BinaryOperator::CreateSub(X, Not); 2281 } 2282 2283 // Optimize pointer differences into the same array into a size. Consider: 2284 // &A[10] - &A[0]: we should compile this to "10". 2285 Value *LHSOp, *RHSOp; 2286 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 2287 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 2288 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2289 I.hasNoUnsignedWrap())) 2290 return replaceInstUsesWith(I, Res); 2291 2292 // trunc(p)-trunc(q) -> trunc(p-q) 2293 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 2294 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 2295 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2296 /* IsNUW */ false)) 2297 return replaceInstUsesWith(I, Res); 2298 2299 // Canonicalize a shifty way to code absolute value to the common pattern. 2300 // There are 2 potential commuted variants. 2301 // We're relying on the fact that we only do this transform when the shift has 2302 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 2303 // instructions). 2304 Value *A; 2305 const APInt *ShAmt; 2306 Type *Ty = I.getType(); 2307 unsigned BitWidth = Ty->getScalarSizeInBits(); 2308 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 2309 Op1->hasNUses(2) && *ShAmt == BitWidth - 1 && 2310 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 2311 // B = ashr i32 A, 31 ; smear the sign bit 2312 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 2313 // --> (A < 0) ? -A : A 2314 Value *IsNeg = Builder.CreateIsNeg(A); 2315 // Copy the nuw/nsw flags from the sub to the negate. 2316 Value *NegA = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), 2317 I.hasNoSignedWrap()); 2318 return SelectInst::Create(IsNeg, NegA, A); 2319 } 2320 2321 // If we are subtracting a low-bit masked subset of some value from an add 2322 // of that same value with no low bits changed, that is clearing some low bits 2323 // of the sum: 2324 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC 2325 const APInt *AddC, *AndC; 2326 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) && 2327 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) { 2328 unsigned Cttz = AddC->countTrailingZeros(); 2329 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz)); 2330 if ((HighMask & *AndC).isZero()) 2331 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC))); 2332 } 2333 2334 if (Instruction *V = 2335 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2336 return V; 2337 2338 // X - usub.sat(X, Y) => umin(X, Y) 2339 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0), 2340 m_Value(Y))))) 2341 return replaceInstUsesWith( 2342 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y})); 2343 2344 // umax(X, Op1) - Op1 --> usub.sat(X, Op1) 2345 // TODO: The one-use restriction is not strictly necessary, but it may 2346 // require improving other pattern matching and/or codegen. 2347 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1))))) 2348 return replaceInstUsesWith( 2349 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1})); 2350 2351 // Op0 - umin(X, Op0) --> usub.sat(Op0, X) 2352 if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0))))) 2353 return replaceInstUsesWith( 2354 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X})); 2355 2356 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0) 2357 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) { 2358 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0}); 2359 return BinaryOperator::CreateNeg(USub); 2360 } 2361 2362 // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X) 2363 if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) { 2364 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X}); 2365 return BinaryOperator::CreateNeg(USub); 2366 } 2367 2368 // C - ctpop(X) => ctpop(~X) if C is bitwidth 2369 if (match(Op0, m_SpecificInt(BitWidth)) && 2370 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X))))) 2371 return replaceInstUsesWith( 2372 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 2373 {Builder.CreateNot(X)})); 2374 2375 // Reduce multiplies for difference-of-squares by factoring: 2376 // (X * X) - (Y * Y) --> (X + Y) * (X - Y) 2377 if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) && 2378 match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) { 2379 auto *OBO0 = cast<OverflowingBinaryOperator>(Op0); 2380 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2381 bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() && 2382 OBO1->hasNoSignedWrap() && BitWidth > 2; 2383 bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() && 2384 OBO1->hasNoUnsignedWrap() && BitWidth > 1; 2385 Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW); 2386 Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW); 2387 Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW); 2388 return replaceInstUsesWith(I, Mul); 2389 } 2390 2391 return TryToNarrowDeduceFlags(); 2392 } 2393 2394 /// This eliminates floating-point negation in either 'fneg(X)' or 2395 /// 'fsub(-0.0, X)' form by combining into a constant operand. 2396 static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) { 2397 // This is limited with one-use because fneg is assumed better for 2398 // reassociation and cheaper in codegen than fmul/fdiv. 2399 // TODO: Should the m_OneUse restriction be removed? 2400 Instruction *FNegOp; 2401 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp))))) 2402 return nullptr; 2403 2404 Value *X; 2405 Constant *C; 2406 2407 // Fold negation into constant operand. 2408 // -(X * C) --> X * (-C) 2409 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C)))) 2410 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2411 return BinaryOperator::CreateFMulFMF(X, NegC, &I); 2412 // -(X / C) --> X / (-C) 2413 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C)))) 2414 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2415 return BinaryOperator::CreateFDivFMF(X, NegC, &I); 2416 // -(C / X) --> (-C) / X 2417 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) 2418 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) { 2419 Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I); 2420 2421 // Intersect 'nsz' and 'ninf' because those special value exceptions may 2422 // not apply to the fdiv. Everything else propagates from the fneg. 2423 // TODO: We could propagate nsz/ninf from fdiv alone? 2424 FastMathFlags FMF = I.getFastMathFlags(); 2425 FastMathFlags OpFMF = FNegOp->getFastMathFlags(); 2426 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros()); 2427 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs()); 2428 return FDiv; 2429 } 2430 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]: 2431 // -(X + C) --> -X + -C --> -C - X 2432 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C)))) 2433 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2434 return BinaryOperator::CreateFSubFMF(NegC, X, &I); 2435 2436 return nullptr; 2437 } 2438 2439 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I, 2440 InstCombiner::BuilderTy &Builder) { 2441 Value *FNeg; 2442 if (!match(&I, m_FNeg(m_Value(FNeg)))) 2443 return nullptr; 2444 2445 Value *X, *Y; 2446 if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y))))) 2447 return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2448 2449 if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y))))) 2450 return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2451 2452 return nullptr; 2453 } 2454 2455 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) { 2456 Value *Op = I.getOperand(0); 2457 2458 if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(), 2459 getSimplifyQuery().getWithInstruction(&I))) 2460 return replaceInstUsesWith(I, V); 2461 2462 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2463 return X; 2464 2465 Value *X, *Y; 2466 2467 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 2468 if (I.hasNoSignedZeros() && 2469 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 2470 return BinaryOperator::CreateFSubFMF(Y, X, &I); 2471 2472 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2473 return R; 2474 2475 Value *OneUse; 2476 if (!match(Op, m_OneUse(m_Value(OneUse)))) 2477 return nullptr; 2478 2479 // Try to eliminate fneg if at least 1 arm of the select is negated. 2480 Value *Cond; 2481 if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) { 2482 // Unlike most transforms, this one is not safe to propagate nsz unless 2483 // it is present on the original select. We union the flags from the select 2484 // and fneg and then remove nsz if needed. 2485 auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) { 2486 S->copyFastMathFlags(&I); 2487 if (auto *OldSel = dyn_cast<SelectInst>(Op)) { 2488 FastMathFlags FMF = I.getFastMathFlags(); 2489 FMF |= OldSel->getFastMathFlags(); 2490 S->setFastMathFlags(FMF); 2491 if (!OldSel->hasNoSignedZeros() && !CommonOperand && 2492 !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition())) 2493 S->setHasNoSignedZeros(false); 2494 } 2495 }; 2496 // -(Cond ? -P : Y) --> Cond ? P : -Y 2497 Value *P; 2498 if (match(X, m_FNeg(m_Value(P)))) { 2499 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); 2500 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY); 2501 propagateSelectFMF(NewSel, P == Y); 2502 return NewSel; 2503 } 2504 // -(Cond ? X : -P) --> Cond ? -X : P 2505 if (match(Y, m_FNeg(m_Value(P)))) { 2506 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); 2507 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P); 2508 propagateSelectFMF(NewSel, P == X); 2509 return NewSel; 2510 } 2511 } 2512 2513 // fneg (copysign x, y) -> copysign x, (fneg y) 2514 if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) { 2515 // The source copysign has an additional value input, so we can't propagate 2516 // flags the copysign doesn't also have. 2517 FastMathFlags FMF = I.getFastMathFlags(); 2518 FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags(); 2519 2520 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2521 Builder.setFastMathFlags(FMF); 2522 2523 Value *NegY = Builder.CreateFNeg(Y); 2524 Value *NewCopySign = Builder.CreateCopySign(X, NegY); 2525 return replaceInstUsesWith(I, NewCopySign); 2526 } 2527 2528 return nullptr; 2529 } 2530 2531 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) { 2532 if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1), 2533 I.getFastMathFlags(), 2534 getSimplifyQuery().getWithInstruction(&I))) 2535 return replaceInstUsesWith(I, V); 2536 2537 if (Instruction *X = foldVectorBinop(I)) 2538 return X; 2539 2540 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2541 return Phi; 2542 2543 // Subtraction from -0.0 is the canonical form of fneg. 2544 // fsub -0.0, X ==> fneg X 2545 // fsub nsz 0.0, X ==> fneg nsz X 2546 // 2547 // FIXME This matcher does not respect FTZ or DAZ yet: 2548 // fsub -0.0, Denorm ==> +-0 2549 // fneg Denorm ==> -Denorm 2550 Value *Op; 2551 if (match(&I, m_FNeg(m_Value(Op)))) 2552 return UnaryOperator::CreateFNegFMF(Op, &I); 2553 2554 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2555 return X; 2556 2557 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2558 return R; 2559 2560 Value *X, *Y; 2561 Constant *C; 2562 2563 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2564 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 2565 // Canonicalize to fadd to make analysis easier. 2566 // This can also help codegen because fadd is commutative. 2567 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 2568 // killed later. We still limit that particular transform with 'hasOneUse' 2569 // because an fneg is assumed better/cheaper than a generic fsub. 2570 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { 2571 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2572 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 2573 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 2574 } 2575 } 2576 2577 // (-X) - Op1 --> -(X + Op1) 2578 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) && 2579 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) { 2580 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I); 2581 return UnaryOperator::CreateFNegFMF(FAdd, &I); 2582 } 2583 2584 if (isa<Constant>(Op0)) 2585 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2586 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 2587 return NV; 2588 2589 // X - C --> X + (-C) 2590 // But don't transform constant expressions because there's an inverse fold 2591 // for X + (-Y) --> X - Y. 2592 if (match(Op1, m_ImmConstant(C))) 2593 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2594 return BinaryOperator::CreateFAddFMF(Op0, NegC, &I); 2595 2596 // X - (-Y) --> X + Y 2597 if (match(Op1, m_FNeg(m_Value(Y)))) 2598 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 2599 2600 // Similar to above, but look through a cast of the negated value: 2601 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 2602 Type *Ty = I.getType(); 2603 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 2604 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 2605 2606 // X - (fpext(-Y)) --> X + fpext(Y) 2607 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 2608 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 2609 2610 // Similar to above, but look through fmul/fdiv of the negated value: 2611 // Op0 - (-X * Y) --> Op0 + (X * Y) 2612 // Op0 - (Y * -X) --> Op0 + (X * Y) 2613 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 2614 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 2615 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 2616 } 2617 // Op0 - (-X / Y) --> Op0 + (X / Y) 2618 // Op0 - (X / -Y) --> Op0 + (X / Y) 2619 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 2620 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 2621 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 2622 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 2623 } 2624 2625 // Handle special cases for FSub with selects feeding the operation 2626 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 2627 return replaceInstUsesWith(I, V); 2628 2629 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2630 // (Y - X) - Y --> -X 2631 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 2632 return UnaryOperator::CreateFNegFMF(X, &I); 2633 2634 // Y - (X + Y) --> -X 2635 // Y - (Y + X) --> -X 2636 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 2637 return UnaryOperator::CreateFNegFMF(X, &I); 2638 2639 // (X * C) - X --> X * (C - 1.0) 2640 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 2641 if (Constant *CSubOne = ConstantFoldBinaryOpOperands( 2642 Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL)) 2643 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 2644 } 2645 // X - (X * C) --> X * (1.0 - C) 2646 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 2647 if (Constant *OneSubC = ConstantFoldBinaryOpOperands( 2648 Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL)) 2649 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 2650 } 2651 2652 // Reassociate fsub/fadd sequences to create more fadd instructions and 2653 // reduce dependency chains: 2654 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2655 Value *Z; 2656 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))), 2657 m_Value(Z))))) { 2658 Value *XZ = Builder.CreateFAddFMF(X, Z, &I); 2659 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I); 2660 return BinaryOperator::CreateFSubFMF(XZ, YW, &I); 2661 } 2662 2663 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) { 2664 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum), 2665 m_Value(Vec))); 2666 }; 2667 Value *A0, *A1, *V0, *V1; 2668 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) && 2669 V0->getType() == V1->getType()) { 2670 // Difference of sums is sum of differences: 2671 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1 2672 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I); 2673 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 2674 {Sub->getType()}, {A0, Sub}, &I); 2675 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I); 2676 } 2677 2678 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2679 return F; 2680 2681 // TODO: This performs reassociative folds for FP ops. Some fraction of the 2682 // functionality has been subsumed by simple pattern matching here and in 2683 // InstSimplify. We should let a dedicated reassociation pass handle more 2684 // complex pattern matching and remove this from InstCombine. 2685 if (Value *V = FAddCombine(Builder).simplify(&I)) 2686 return replaceInstUsesWith(I, V); 2687 2688 // (X - Y) - Op1 --> X - (Y + Op1) 2689 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2690 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I); 2691 return BinaryOperator::CreateFSubFMF(X, FAdd, &I); 2692 } 2693 } 2694 2695 return nullptr; 2696 } 2697