xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Transforms/InstCombine/InstCombiner.h"
33 #include <cassert>
34 #include <utility>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "instcombine"
40 
41 namespace {
42 
43   /// Class representing coefficient of floating-point addend.
44   /// This class needs to be highly efficient, which is especially true for
45   /// the constructor. As of I write this comment, the cost of the default
46   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47   /// perform write-merging).
48   ///
49   class FAddendCoef {
50   public:
51     // The constructor has to initialize a APFloat, which is unnecessary for
52     // most addends which have coefficient either 1 or -1. So, the constructor
53     // is expensive. In order to avoid the cost of the constructor, we should
54     // reuse some instances whenever possible. The pre-created instances
55     // FAddCombine::Add[0-5] embodies this idea.
56     FAddendCoef() = default;
57     ~FAddendCoef();
58 
59     // If possible, don't define operator+/operator- etc because these
60     // operators inevitably call FAddendCoef's constructor which is not cheap.
61     void operator=(const FAddendCoef &A);
62     void operator+=(const FAddendCoef &A);
63     void operator*=(const FAddendCoef &S);
64 
65     void set(short C) {
66       assert(!insaneIntVal(C) && "Insane coefficient");
67       IsFp = false; IntVal = C;
68     }
69 
70     void set(const APFloat& C);
71 
72     void negate();
73 
74     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75     Value *getValue(Type *) const;
76 
77     bool isOne() const { return isInt() && IntVal == 1; }
78     bool isTwo() const { return isInt() && IntVal == 2; }
79     bool isMinusOne() const { return isInt() && IntVal == -1; }
80     bool isMinusTwo() const { return isInt() && IntVal == -2; }
81 
82   private:
83     bool insaneIntVal(int V) { return V > 4 || V < -4; }
84 
85     APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
86 
87     const APFloat *getFpValPtr() const {
88       return reinterpret_cast<const APFloat *>(&FpValBuf);
89     }
90 
91     const APFloat &getFpVal() const {
92       assert(IsFp && BufHasFpVal && "Incorret state");
93       return *getFpValPtr();
94     }
95 
96     APFloat &getFpVal() {
97       assert(IsFp && BufHasFpVal && "Incorret state");
98       return *getFpValPtr();
99     }
100 
101     bool isInt() const { return !IsFp; }
102 
103     // If the coefficient is represented by an integer, promote it to a
104     // floating point.
105     void convertToFpType(const fltSemantics &Sem);
106 
107     // Construct an APFloat from a signed integer.
108     // TODO: We should get rid of this function when APFloat can be constructed
109     //       from an *SIGNED* integer.
110     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111 
112     bool IsFp = false;
113 
114     // True iff FpValBuf contains an instance of APFloat.
115     bool BufHasFpVal = false;
116 
117     // The integer coefficient of an individual addend is either 1 or -1,
118     // and we try to simplify at most 4 addends from neighboring at most
119     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120     // is overkill of this end.
121     short IntVal = 0;
122 
123     AlignedCharArrayUnion<APFloat> FpValBuf;
124   };
125 
126   /// FAddend is used to represent floating-point addend. An addend is
127   /// represented as <C, V>, where the V is a symbolic value, and C is a
128   /// constant coefficient. A constant addend is represented as <C, 0>.
129   class FAddend {
130   public:
131     FAddend() = default;
132 
133     void operator+=(const FAddend &T) {
134       assert((Val == T.Val) && "Symbolic-values disagree");
135       Coeff += T.Coeff;
136     }
137 
138     Value *getSymVal() const { return Val; }
139     const FAddendCoef &getCoef() const { return Coeff; }
140 
141     bool isConstant() const { return Val == nullptr; }
142     bool isZero() const { return Coeff.isZero(); }
143 
144     void set(short Coefficient, Value *V) {
145       Coeff.set(Coefficient);
146       Val = V;
147     }
148     void set(const APFloat &Coefficient, Value *V) {
149       Coeff.set(Coefficient);
150       Val = V;
151     }
152     void set(const ConstantFP *Coefficient, Value *V) {
153       Coeff.set(Coefficient->getValueAPF());
154       Val = V;
155     }
156 
157     void negate() { Coeff.negate(); }
158 
159     /// Drill down the U-D chain one step to find the definition of V, and
160     /// try to break the definition into one or two addends.
161     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162 
163     /// Similar to FAddend::drillDownOneStep() except that the value being
164     /// splitted is the addend itself.
165     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166 
167   private:
168     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169 
170     // This addend has the value of "Coeff * Val".
171     Value *Val = nullptr;
172     FAddendCoef Coeff;
173   };
174 
175   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176   /// with its neighboring at most two instructions.
177   ///
178   class FAddCombine {
179   public:
180     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181 
182     Value *simplify(Instruction *FAdd);
183 
184   private:
185     using AddendVect = SmallVector<const FAddend *, 4>;
186 
187     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188 
189     /// Convert given addend to a Value
190     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191 
192     /// Return the number of instructions needed to emit the N-ary addition.
193     unsigned calcInstrNumber(const AddendVect& Vect);
194 
195     Value *createFSub(Value *Opnd0, Value *Opnd1);
196     Value *createFAdd(Value *Opnd0, Value *Opnd1);
197     Value *createFMul(Value *Opnd0, Value *Opnd1);
198     Value *createFNeg(Value *V);
199     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
200     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201 
202      // Debugging stuff are clustered here.
203     #ifndef NDEBUG
204       unsigned CreateInstrNum;
205       void initCreateInstNum() { CreateInstrNum = 0; }
206       void incCreateInstNum() { CreateInstrNum++; }
207     #else
208       void initCreateInstNum() {}
209       void incCreateInstNum() {}
210     #endif
211 
212     InstCombiner::BuilderTy &Builder;
213     Instruction *Instr = nullptr;
214   };
215 
216 } // end anonymous namespace
217 
218 //===----------------------------------------------------------------------===//
219 //
220 // Implementation of
221 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
222 //
223 //===----------------------------------------------------------------------===//
224 FAddendCoef::~FAddendCoef() {
225   if (BufHasFpVal)
226     getFpValPtr()->~APFloat();
227 }
228 
229 void FAddendCoef::set(const APFloat& C) {
230   APFloat *P = getFpValPtr();
231 
232   if (isInt()) {
233     // As the buffer is meanless byte stream, we cannot call
234     // APFloat::operator=().
235     new(P) APFloat(C);
236   } else
237     *P = C;
238 
239   IsFp = BufHasFpVal = true;
240 }
241 
242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
243   if (!isInt())
244     return;
245 
246   APFloat *P = getFpValPtr();
247   if (IntVal > 0)
248     new(P) APFloat(Sem, IntVal);
249   else {
250     new(P) APFloat(Sem, 0 - IntVal);
251     P->changeSign();
252   }
253   IsFp = BufHasFpVal = true;
254 }
255 
256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
257   if (Val >= 0)
258     return APFloat(Sem, Val);
259 
260   APFloat T(Sem, 0 - Val);
261   T.changeSign();
262 
263   return T;
264 }
265 
266 void FAddendCoef::operator=(const FAddendCoef &That) {
267   if (That.isInt())
268     set(That.IntVal);
269   else
270     set(That.getFpVal());
271 }
272 
273 void FAddendCoef::operator+=(const FAddendCoef &That) {
274   RoundingMode RndMode = RoundingMode::NearestTiesToEven;
275   if (isInt() == That.isInt()) {
276     if (isInt())
277       IntVal += That.IntVal;
278     else
279       getFpVal().add(That.getFpVal(), RndMode);
280     return;
281   }
282 
283   if (isInt()) {
284     const APFloat &T = That.getFpVal();
285     convertToFpType(T.getSemantics());
286     getFpVal().add(T, RndMode);
287     return;
288   }
289 
290   APFloat &T = getFpVal();
291   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
292 }
293 
294 void FAddendCoef::operator*=(const FAddendCoef &That) {
295   if (That.isOne())
296     return;
297 
298   if (That.isMinusOne()) {
299     negate();
300     return;
301   }
302 
303   if (isInt() && That.isInt()) {
304     int Res = IntVal * (int)That.IntVal;
305     assert(!insaneIntVal(Res) && "Insane int value");
306     IntVal = Res;
307     return;
308   }
309 
310   const fltSemantics &Semantic =
311     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312 
313   if (isInt())
314     convertToFpType(Semantic);
315   APFloat &F0 = getFpVal();
316 
317   if (That.isInt())
318     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
319                 APFloat::rmNearestTiesToEven);
320   else
321     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
322 }
323 
324 void FAddendCoef::negate() {
325   if (isInt())
326     IntVal = 0 - IntVal;
327   else
328     getFpVal().changeSign();
329 }
330 
331 Value *FAddendCoef::getValue(Type *Ty) const {
332   return isInt() ?
333     ConstantFP::get(Ty, float(IntVal)) :
334     ConstantFP::get(Ty->getContext(), getFpVal());
335 }
336 
337 // The definition of <Val>     Addends
338 // =========================================
339 //  A + B                     <1, A>, <1,B>
340 //  A - B                     <1, A>, <1,B>
341 //  0 - B                     <-1, B>
342 //  C * A,                    <C, A>
343 //  A + C                     <1, A> <C, NULL>
344 //  0 +/- 0                   <0, NULL> (corner case)
345 //
346 // Legend: A and B are not constant, C is constant
347 unsigned FAddend::drillValueDownOneStep
348   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
349   Instruction *I = nullptr;
350   if (!Val || !(I = dyn_cast<Instruction>(Val)))
351     return 0;
352 
353   unsigned Opcode = I->getOpcode();
354 
355   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
356     ConstantFP *C0, *C1;
357     Value *Opnd0 = I->getOperand(0);
358     Value *Opnd1 = I->getOperand(1);
359     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
360       Opnd0 = nullptr;
361 
362     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
363       Opnd1 = nullptr;
364 
365     if (Opnd0) {
366       if (!C0)
367         Addend0.set(1, Opnd0);
368       else
369         Addend0.set(C0, nullptr);
370     }
371 
372     if (Opnd1) {
373       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
374       if (!C1)
375         Addend.set(1, Opnd1);
376       else
377         Addend.set(C1, nullptr);
378       if (Opcode == Instruction::FSub)
379         Addend.negate();
380     }
381 
382     if (Opnd0 || Opnd1)
383       return Opnd0 && Opnd1 ? 2 : 1;
384 
385     // Both operands are zero. Weird!
386     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
387     return 1;
388   }
389 
390   if (I->getOpcode() == Instruction::FMul) {
391     Value *V0 = I->getOperand(0);
392     Value *V1 = I->getOperand(1);
393     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
394       Addend0.set(C, V1);
395       return 1;
396     }
397 
398     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
399       Addend0.set(C, V0);
400       return 1;
401     }
402   }
403 
404   return 0;
405 }
406 
407 // Try to break *this* addend into two addends. e.g. Suppose this addend is
408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409 // i.e. <2.3, X> and <2.3, Y>.
410 unsigned FAddend::drillAddendDownOneStep
411   (FAddend &Addend0, FAddend &Addend1) const {
412   if (isConstant())
413     return 0;
414 
415   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416   if (!BreakNum || Coeff.isOne())
417     return BreakNum;
418 
419   Addend0.Scale(Coeff);
420 
421   if (BreakNum == 2)
422     Addend1.Scale(Coeff);
423 
424   return BreakNum;
425 }
426 
427 Value *FAddCombine::simplify(Instruction *I) {
428   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
429          "Expected 'reassoc'+'nsz' instruction");
430 
431   // Currently we are not able to handle vector type.
432   if (I->getType()->isVectorTy())
433     return nullptr;
434 
435   assert((I->getOpcode() == Instruction::FAdd ||
436           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437 
438   // Save the instruction before calling other member-functions.
439   Instr = I;
440 
441   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442 
443   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
444 
445   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446   unsigned Opnd0_ExpNum = 0;
447   unsigned Opnd1_ExpNum = 0;
448 
449   if (!Opnd0.isConstant())
450     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
451 
452   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453   if (OpndNum == 2 && !Opnd1.isConstant())
454     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
455 
456   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457   if (Opnd0_ExpNum && Opnd1_ExpNum) {
458     AddendVect AllOpnds;
459     AllOpnds.push_back(&Opnd0_0);
460     AllOpnds.push_back(&Opnd1_0);
461     if (Opnd0_ExpNum == 2)
462       AllOpnds.push_back(&Opnd0_1);
463     if (Opnd1_ExpNum == 2)
464       AllOpnds.push_back(&Opnd1_1);
465 
466     // Compute instruction quota. We should save at least one instruction.
467     unsigned InstQuota = 0;
468 
469     Value *V0 = I->getOperand(0);
470     Value *V1 = I->getOperand(1);
471     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
472                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
473 
474     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
475       return R;
476   }
477 
478   if (OpndNum != 2) {
479     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480     // splitted into two addends, say "V = X - Y", the instruction would have
481     // been optimized into "I = Y - X" in the previous steps.
482     //
483     const FAddendCoef &CE = Opnd0.getCoef();
484     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
485   }
486 
487   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
488   if (Opnd1_ExpNum) {
489     AddendVect AllOpnds;
490     AllOpnds.push_back(&Opnd0);
491     AllOpnds.push_back(&Opnd1_0);
492     if (Opnd1_ExpNum == 2)
493       AllOpnds.push_back(&Opnd1_1);
494 
495     if (Value *R = simplifyFAdd(AllOpnds, 1))
496       return R;
497   }
498 
499   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
500   if (Opnd0_ExpNum) {
501     AddendVect AllOpnds;
502     AllOpnds.push_back(&Opnd1);
503     AllOpnds.push_back(&Opnd0_0);
504     if (Opnd0_ExpNum == 2)
505       AllOpnds.push_back(&Opnd0_1);
506 
507     if (Value *R = simplifyFAdd(AllOpnds, 1))
508       return R;
509   }
510 
511   return nullptr;
512 }
513 
514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
515   unsigned AddendNum = Addends.size();
516   assert(AddendNum <= 4 && "Too many addends");
517 
518   // For saving intermediate results;
519   unsigned NextTmpIdx = 0;
520   FAddend TmpResult[3];
521 
522   // Simplified addends are placed <SimpVect>.
523   AddendVect SimpVect;
524 
525   // The outer loop works on one symbolic-value at a time. Suppose the input
526   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
527   // The symbolic-values will be processed in this order: x, y, z.
528   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
529 
530     const FAddend *ThisAddend = Addends[SymIdx];
531     if (!ThisAddend) {
532       // This addend was processed before.
533       continue;
534     }
535 
536     Value *Val = ThisAddend->getSymVal();
537 
538     // If the resulting expr has constant-addend, this constant-addend is
539     // desirable to reside at the top of the resulting expression tree. Placing
540     // constant close to super-expr(s) will potentially reveal some
541     // optimization opportunities in super-expr(s). Here we do not implement
542     // this logic intentionally and rely on SimplifyAssociativeOrCommutative
543     // call later.
544 
545     unsigned StartIdx = SimpVect.size();
546     SimpVect.push_back(ThisAddend);
547 
548     // The inner loop collects addends sharing same symbolic-value, and these
549     // addends will be later on folded into a single addend. Following above
550     // example, if the symbolic value "y" is being processed, the inner loop
551     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
552     // be later on folded into "<b1+b2, y>".
553     for (unsigned SameSymIdx = SymIdx + 1;
554          SameSymIdx < AddendNum; SameSymIdx++) {
555       const FAddend *T = Addends[SameSymIdx];
556       if (T && T->getSymVal() == Val) {
557         // Set null such that next iteration of the outer loop will not process
558         // this addend again.
559         Addends[SameSymIdx] = nullptr;
560         SimpVect.push_back(T);
561       }
562     }
563 
564     // If multiple addends share same symbolic value, fold them together.
565     if (StartIdx + 1 != SimpVect.size()) {
566       FAddend &R = TmpResult[NextTmpIdx ++];
567       R = *SimpVect[StartIdx];
568       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
569         R += *SimpVect[Idx];
570 
571       // Pop all addends being folded and push the resulting folded addend.
572       SimpVect.resize(StartIdx);
573       if (!R.isZero()) {
574         SimpVect.push_back(&R);
575       }
576     }
577   }
578 
579   assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access");
580 
581   Value *Result;
582   if (!SimpVect.empty())
583     Result = createNaryFAdd(SimpVect, InstrQuota);
584   else {
585     // The addition is folded to 0.0.
586     Result = ConstantFP::get(Instr->getType(), 0.0);
587   }
588 
589   return Result;
590 }
591 
592 Value *FAddCombine::createNaryFAdd
593   (const AddendVect &Opnds, unsigned InstrQuota) {
594   assert(!Opnds.empty() && "Expect at least one addend");
595 
596   // Step 1: Check if the # of instructions needed exceeds the quota.
597 
598   unsigned InstrNeeded = calcInstrNumber(Opnds);
599   if (InstrNeeded > InstrQuota)
600     return nullptr;
601 
602   initCreateInstNum();
603 
604   // step 2: Emit the N-ary addition.
605   // Note that at most three instructions are involved in Fadd-InstCombine: the
606   // addition in question, and at most two neighboring instructions.
607   // The resulting optimized addition should have at least one less instruction
608   // than the original addition expression tree. This implies that the resulting
609   // N-ary addition has at most two instructions, and we don't need to worry
610   // about tree-height when constructing the N-ary addition.
611 
612   Value *LastVal = nullptr;
613   bool LastValNeedNeg = false;
614 
615   // Iterate the addends, creating fadd/fsub using adjacent two addends.
616   for (const FAddend *Opnd : Opnds) {
617     bool NeedNeg;
618     Value *V = createAddendVal(*Opnd, NeedNeg);
619     if (!LastVal) {
620       LastVal = V;
621       LastValNeedNeg = NeedNeg;
622       continue;
623     }
624 
625     if (LastValNeedNeg == NeedNeg) {
626       LastVal = createFAdd(LastVal, V);
627       continue;
628     }
629 
630     if (LastValNeedNeg)
631       LastVal = createFSub(V, LastVal);
632     else
633       LastVal = createFSub(LastVal, V);
634 
635     LastValNeedNeg = false;
636   }
637 
638   if (LastValNeedNeg) {
639     LastVal = createFNeg(LastVal);
640   }
641 
642 #ifndef NDEBUG
643   assert(CreateInstrNum == InstrNeeded &&
644          "Inconsistent in instruction numbers");
645 #endif
646 
647   return LastVal;
648 }
649 
650 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
651   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
652   if (Instruction *I = dyn_cast<Instruction>(V))
653     createInstPostProc(I);
654   return V;
655 }
656 
657 Value *FAddCombine::createFNeg(Value *V) {
658   Value *NewV = Builder.CreateFNeg(V);
659   if (Instruction *I = dyn_cast<Instruction>(NewV))
660     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
661   return NewV;
662 }
663 
664 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
665   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
666   if (Instruction *I = dyn_cast<Instruction>(V))
667     createInstPostProc(I);
668   return V;
669 }
670 
671 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
672   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
673   if (Instruction *I = dyn_cast<Instruction>(V))
674     createInstPostProc(I);
675   return V;
676 }
677 
678 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
679   NewInstr->setDebugLoc(Instr->getDebugLoc());
680 
681   // Keep track of the number of instruction created.
682   if (!NoNumber)
683     incCreateInstNum();
684 
685   // Propagate fast-math flags
686   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
687 }
688 
689 // Return the number of instruction needed to emit the N-ary addition.
690 // NOTE: Keep this function in sync with createAddendVal().
691 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
692   unsigned OpndNum = Opnds.size();
693   unsigned InstrNeeded = OpndNum - 1;
694 
695   // Adjust the number of instructions needed to emit the N-ary add.
696   for (const FAddend *Opnd : Opnds) {
697     if (Opnd->isConstant())
698       continue;
699 
700     // The constant check above is really for a few special constant
701     // coefficients.
702     if (isa<UndefValue>(Opnd->getSymVal()))
703       continue;
704 
705     const FAddendCoef &CE = Opnd->getCoef();
706     // Let the addend be "c * x". If "c == +/-1", the value of the addend
707     // is immediately available; otherwise, it needs exactly one instruction
708     // to evaluate the value.
709     if (!CE.isMinusOne() && !CE.isOne())
710       InstrNeeded++;
711   }
712   return InstrNeeded;
713 }
714 
715 // Input Addend        Value           NeedNeg(output)
716 // ================================================================
717 // Constant C          C               false
718 // <+/-1, V>           V               coefficient is -1
719 // <2/-2, V>          "fadd V, V"      coefficient is -2
720 // <C, V>             "fmul V, C"      false
721 //
722 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
723 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
724   const FAddendCoef &Coeff = Opnd.getCoef();
725 
726   if (Opnd.isConstant()) {
727     NeedNeg = false;
728     return Coeff.getValue(Instr->getType());
729   }
730 
731   Value *OpndVal = Opnd.getSymVal();
732 
733   if (Coeff.isMinusOne() || Coeff.isOne()) {
734     NeedNeg = Coeff.isMinusOne();
735     return OpndVal;
736   }
737 
738   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
739     NeedNeg = Coeff.isMinusTwo();
740     return createFAdd(OpndVal, OpndVal);
741   }
742 
743   NeedNeg = false;
744   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
745 }
746 
747 // Checks if any operand is negative and we can convert add to sub.
748 // This function checks for following negative patterns
749 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
750 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
751 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
752 static Value *checkForNegativeOperand(BinaryOperator &I,
753                                       InstCombiner::BuilderTy &Builder) {
754   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
755 
756   // This function creates 2 instructions to replace ADD, we need at least one
757   // of LHS or RHS to have one use to ensure benefit in transform.
758   if (!LHS->hasOneUse() && !RHS->hasOneUse())
759     return nullptr;
760 
761   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
762   const APInt *C1 = nullptr, *C2 = nullptr;
763 
764   // if ONE is on other side, swap
765   if (match(RHS, m_Add(m_Value(X), m_One())))
766     std::swap(LHS, RHS);
767 
768   if (match(LHS, m_Add(m_Value(X), m_One()))) {
769     // if XOR on other side, swap
770     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
771       std::swap(X, RHS);
772 
773     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
774       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
775       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
776       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
777         Value *NewAnd = Builder.CreateAnd(Z, *C1);
778         return Builder.CreateSub(RHS, NewAnd, "sub");
779       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
780         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
781         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
782         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
783         return Builder.CreateSub(RHS, NewOr, "sub");
784       }
785     }
786   }
787 
788   // Restore LHS and RHS
789   LHS = I.getOperand(0);
790   RHS = I.getOperand(1);
791 
792   // if XOR is on other side, swap
793   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
794     std::swap(LHS, RHS);
795 
796   // C2 is ODD
797   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
798   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
799   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
800     if (C1->countTrailingZeros() == 0)
801       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
802         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
803         return Builder.CreateSub(RHS, NewOr, "sub");
804       }
805   return nullptr;
806 }
807 
808 /// Wrapping flags may allow combining constants separated by an extend.
809 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
810                                   InstCombiner::BuilderTy &Builder) {
811   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
812   Type *Ty = Add.getType();
813   Constant *Op1C;
814   if (!match(Op1, m_Constant(Op1C)))
815     return nullptr;
816 
817   // Try this match first because it results in an add in the narrow type.
818   // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
819   Value *X;
820   const APInt *C1, *C2;
821   if (match(Op1, m_APInt(C1)) &&
822       match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
823       C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
824     Constant *NewC =
825         ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
826     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
827   }
828 
829   // More general combining of constants in the wide type.
830   // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
831   Constant *NarrowC;
832   if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
833     Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
834     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
835     Value *WideX = Builder.CreateSExt(X, Ty);
836     return BinaryOperator::CreateAdd(WideX, NewC);
837   }
838   // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
839   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
840     Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
841     Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
842     Value *WideX = Builder.CreateZExt(X, Ty);
843     return BinaryOperator::CreateAdd(WideX, NewC);
844   }
845 
846   return nullptr;
847 }
848 
849 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
850   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
851   Type *Ty = Add.getType();
852   Constant *Op1C;
853   if (!match(Op1, m_ImmConstant(Op1C)))
854     return nullptr;
855 
856   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
857     return NV;
858 
859   Value *X;
860   Constant *Op00C;
861 
862   // add (sub C1, X), C2 --> sub (add C1, C2), X
863   if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
864     return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
865 
866   Value *Y;
867 
868   // add (sub X, Y), -1 --> add (not Y), X
869   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
870       match(Op1, m_AllOnes()))
871     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
872 
873   // zext(bool) + C -> bool ? C + 1 : C
874   if (match(Op0, m_ZExt(m_Value(X))) &&
875       X->getType()->getScalarSizeInBits() == 1)
876     return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
877   // sext(bool) + C -> bool ? C - 1 : C
878   if (match(Op0, m_SExt(m_Value(X))) &&
879       X->getType()->getScalarSizeInBits() == 1)
880     return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
881 
882   // ~X + C --> (C-1) - X
883   if (match(Op0, m_Not(m_Value(X))))
884     return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X);
885 
886   // (iN X s>> (N - 1)) + 1 --> zext (X > -1)
887   const APInt *C;
888   unsigned BitWidth = Ty->getScalarSizeInBits();
889   if (match(Op0, m_OneUse(m_AShr(m_Value(X),
890                                  m_SpecificIntAllowUndef(BitWidth - 1)))) &&
891       match(Op1, m_One()))
892     return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
893 
894   if (!match(Op1, m_APInt(C)))
895     return nullptr;
896 
897   // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
898   Constant *Op01C;
899   if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) &&
900       haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT))
901     return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
902 
903   // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
904   const APInt *C2;
905   if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
906     return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
907 
908   if (C->isSignMask()) {
909     // If wrapping is not allowed, then the addition must set the sign bit:
910     // X + (signmask) --> X | signmask
911     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
912       return BinaryOperator::CreateOr(Op0, Op1);
913 
914     // If wrapping is allowed, then the addition flips the sign bit of LHS:
915     // X + (signmask) --> X ^ signmask
916     return BinaryOperator::CreateXor(Op0, Op1);
917   }
918 
919   // Is this add the last step in a convoluted sext?
920   // add(zext(xor i16 X, -32768), -32768) --> sext X
921   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
922       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
923     return CastInst::Create(Instruction::SExt, X, Ty);
924 
925   if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
926     // (X ^ signmask) + C --> (X + (signmask ^ C))
927     if (C2->isSignMask())
928       return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
929 
930     // If X has no high-bits set above an xor mask:
931     // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
932     if (C2->isMask()) {
933       KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
934       if ((*C2 | LHSKnown.Zero).isAllOnes())
935         return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
936     }
937 
938     // Look for a math+logic pattern that corresponds to sext-in-register of a
939     // value with cleared high bits. Convert that into a pair of shifts:
940     // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
941     // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
942     if (Op0->hasOneUse() && *C2 == -(*C)) {
943       unsigned BitWidth = Ty->getScalarSizeInBits();
944       unsigned ShAmt = 0;
945       if (C->isPowerOf2())
946         ShAmt = BitWidth - C->logBase2() - 1;
947       else if (C2->isPowerOf2())
948         ShAmt = BitWidth - C2->logBase2() - 1;
949       if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
950                                      0, &Add)) {
951         Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
952         Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
953         return BinaryOperator::CreateAShr(NewShl, ShAmtC);
954       }
955     }
956   }
957 
958   if (C->isOne() && Op0->hasOneUse()) {
959     // add (sext i1 X), 1 --> zext (not X)
960     // TODO: The smallest IR representation is (select X, 0, 1), and that would
961     // not require the one-use check. But we need to remove a transform in
962     // visitSelect and make sure that IR value tracking for select is equal or
963     // better than for these ops.
964     if (match(Op0, m_SExt(m_Value(X))) &&
965         X->getType()->getScalarSizeInBits() == 1)
966       return new ZExtInst(Builder.CreateNot(X), Ty);
967 
968     // Shifts and add used to flip and mask off the low bit:
969     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
970     const APInt *C3;
971     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
972         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
973       Value *NotX = Builder.CreateNot(X);
974       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
975     }
976   }
977 
978   return nullptr;
979 }
980 
981 // Matches multiplication expression Op * C where C is a constant. Returns the
982 // constant value in C and the other operand in Op. Returns true if such a
983 // match is found.
984 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
985   const APInt *AI;
986   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
987     C = *AI;
988     return true;
989   }
990   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
991     C = APInt(AI->getBitWidth(), 1);
992     C <<= *AI;
993     return true;
994   }
995   return false;
996 }
997 
998 // Matches remainder expression Op % C where C is a constant. Returns the
999 // constant value in C and the other operand in Op. Returns the signedness of
1000 // the remainder operation in IsSigned. Returns true if such a match is
1001 // found.
1002 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1003   const APInt *AI;
1004   IsSigned = false;
1005   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
1006     IsSigned = true;
1007     C = *AI;
1008     return true;
1009   }
1010   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
1011     C = *AI;
1012     return true;
1013   }
1014   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
1015     C = *AI + 1;
1016     return true;
1017   }
1018   return false;
1019 }
1020 
1021 // Matches division expression Op / C with the given signedness as indicated
1022 // by IsSigned, where C is a constant. Returns the constant value in C and the
1023 // other operand in Op. Returns true if such a match is found.
1024 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1025   const APInt *AI;
1026   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
1027     C = *AI;
1028     return true;
1029   }
1030   if (!IsSigned) {
1031     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1032       C = *AI;
1033       return true;
1034     }
1035     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1036       C = APInt(AI->getBitWidth(), 1);
1037       C <<= *AI;
1038       return true;
1039     }
1040   }
1041   return false;
1042 }
1043 
1044 // Returns whether C0 * C1 with the given signedness overflows.
1045 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1046   bool overflow;
1047   if (IsSigned)
1048     (void)C0.smul_ov(C1, overflow);
1049   else
1050     (void)C0.umul_ov(C1, overflow);
1051   return overflow;
1052 }
1053 
1054 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1055 // does not overflow.
1056 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
1057   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1058   Value *X, *MulOpV;
1059   APInt C0, MulOpC;
1060   bool IsSigned;
1061   // Match I = X % C0 + MulOpV * C0
1062   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1063        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1064       C0 == MulOpC) {
1065     Value *RemOpV;
1066     APInt C1;
1067     bool Rem2IsSigned;
1068     // Match MulOpC = RemOpV % C1
1069     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1070         IsSigned == Rem2IsSigned) {
1071       Value *DivOpV;
1072       APInt DivOpC;
1073       // Match RemOpV = X / C0
1074       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1075           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1076         Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1077         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1078                         : Builder.CreateURem(X, NewDivisor, "urem");
1079       }
1080     }
1081   }
1082 
1083   return nullptr;
1084 }
1085 
1086 /// Fold
1087 ///   (1 << NBits) - 1
1088 /// Into:
1089 ///   ~(-(1 << NBits))
1090 /// Because a 'not' is better for bit-tracking analysis and other transforms
1091 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1092 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1093                                            InstCombiner::BuilderTy &Builder) {
1094   Value *NBits;
1095   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1096     return nullptr;
1097 
1098   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1099   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1100   // Be wary of constant folding.
1101   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1102     // Always NSW. But NUW propagates from `add`.
1103     BOp->setHasNoSignedWrap();
1104     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1105   }
1106 
1107   return BinaryOperator::CreateNot(NotMask, I.getName());
1108 }
1109 
1110 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1111   assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1112   Type *Ty = I.getType();
1113   auto getUAddSat = [&]() {
1114     return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1115   };
1116 
1117   // add (umin X, ~Y), Y --> uaddsat X, Y
1118   Value *X, *Y;
1119   if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1120                         m_Deferred(Y))))
1121     return CallInst::Create(getUAddSat(), { X, Y });
1122 
1123   // add (umin X, ~C), C --> uaddsat X, C
1124   const APInt *C, *NotC;
1125   if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1126       *C == ~*NotC)
1127     return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1128 
1129   return nullptr;
1130 }
1131 
1132 /// Try to reduce signed division by power-of-2 to an arithmetic shift right.
1133 static Instruction *foldAddToAshr(BinaryOperator &Add) {
1134   // Division must be by power-of-2, but not the minimum signed value.
1135   Value *X;
1136   const APInt *DivC;
1137   if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) ||
1138       DivC->isNegative())
1139     return nullptr;
1140 
1141   // Rounding is done by adding -1 if the dividend (X) is negative and has any
1142   // low bits set. The canonical pattern for that is an "ugt" compare with SMIN:
1143   // sext (icmp ugt (X & (DivC - 1)), SMIN)
1144   const APInt *MaskC;
1145   ICmpInst::Predicate Pred;
1146   if (!match(Add.getOperand(1),
1147              m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)),
1148                            m_SignMask()))) ||
1149       Pred != ICmpInst::ICMP_UGT)
1150     return nullptr;
1151 
1152   APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits());
1153   if (*MaskC != (SMin | (*DivC - 1)))
1154     return nullptr;
1155 
1156   // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC)
1157   return BinaryOperator::CreateAShr(
1158       X, ConstantInt::get(Add.getType(), DivC->exactLogBase2()));
1159 }
1160 
1161 Instruction *InstCombinerImpl::
1162     canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1163         BinaryOperator &I) {
1164   assert((I.getOpcode() == Instruction::Add ||
1165           I.getOpcode() == Instruction::Or ||
1166           I.getOpcode() == Instruction::Sub) &&
1167          "Expecting add/or/sub instruction");
1168 
1169   // We have a subtraction/addition between a (potentially truncated) *logical*
1170   // right-shift of X and a "select".
1171   Value *X, *Select;
1172   Instruction *LowBitsToSkip, *Extract;
1173   if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1174                                m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1175                                m_Instruction(Extract))),
1176                            m_Value(Select))))
1177     return nullptr;
1178 
1179   // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1180   if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1181     return nullptr;
1182 
1183   Type *XTy = X->getType();
1184   bool HadTrunc = I.getType() != XTy;
1185 
1186   // If there was a truncation of extracted value, then we'll need to produce
1187   // one extra instruction, so we need to ensure one instruction will go away.
1188   if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1189     return nullptr;
1190 
1191   // Extraction should extract high NBits bits, with shift amount calculated as:
1192   //   low bits to skip = shift bitwidth - high bits to extract
1193   // The shift amount itself may be extended, and we need to look past zero-ext
1194   // when matching NBits, that will matter for matching later.
1195   Constant *C;
1196   Value *NBits;
1197   if (!match(
1198           LowBitsToSkip,
1199           m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
1200       !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1201                                    APInt(C->getType()->getScalarSizeInBits(),
1202                                          X->getType()->getScalarSizeInBits()))))
1203     return nullptr;
1204 
1205   // Sign-extending value can be zero-extended if we `sub`tract it,
1206   // or sign-extended otherwise.
1207   auto SkipExtInMagic = [&I](Value *&V) {
1208     if (I.getOpcode() == Instruction::Sub)
1209       match(V, m_ZExtOrSelf(m_Value(V)));
1210     else
1211       match(V, m_SExtOrSelf(m_Value(V)));
1212   };
1213 
1214   // Now, finally validate the sign-extending magic.
1215   // `select` itself may be appropriately extended, look past that.
1216   SkipExtInMagic(Select);
1217 
1218   ICmpInst::Predicate Pred;
1219   const APInt *Thr;
1220   Value *SignExtendingValue, *Zero;
1221   bool ShouldSignext;
1222   // It must be a select between two values we will later establish to be a
1223   // sign-extending value and a zero constant. The condition guarding the
1224   // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1225   if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1226                               m_Value(SignExtendingValue), m_Value(Zero))) ||
1227       !isSignBitCheck(Pred, *Thr, ShouldSignext))
1228     return nullptr;
1229 
1230   // icmp-select pair is commutative.
1231   if (!ShouldSignext)
1232     std::swap(SignExtendingValue, Zero);
1233 
1234   // If we should not perform sign-extension then we must add/or/subtract zero.
1235   if (!match(Zero, m_Zero()))
1236     return nullptr;
1237   // Otherwise, it should be some constant, left-shifted by the same NBits we
1238   // had in `lshr`. Said left-shift can also be appropriately extended.
1239   // Again, we must look past zero-ext when looking for NBits.
1240   SkipExtInMagic(SignExtendingValue);
1241   Constant *SignExtendingValueBaseConstant;
1242   if (!match(SignExtendingValue,
1243              m_Shl(m_Constant(SignExtendingValueBaseConstant),
1244                    m_ZExtOrSelf(m_Specific(NBits)))))
1245     return nullptr;
1246   // If we `sub`, then the constant should be one, else it should be all-ones.
1247   if (I.getOpcode() == Instruction::Sub
1248           ? !match(SignExtendingValueBaseConstant, m_One())
1249           : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1250     return nullptr;
1251 
1252   auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1253                                              Extract->getName() + ".sext");
1254   NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1255   if (!HadTrunc)
1256     return NewAShr;
1257 
1258   Builder.Insert(NewAShr);
1259   return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1260 }
1261 
1262 /// This is a specialization of a more general transform from
1263 /// foldUsingDistributiveLaws. If that code can be made to work optimally
1264 /// for multi-use cases or propagating nsw/nuw, then we would not need this.
1265 static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
1266                                             InstCombiner::BuilderTy &Builder) {
1267   // TODO: Also handle mul by doubling the shift amount?
1268   assert((I.getOpcode() == Instruction::Add ||
1269           I.getOpcode() == Instruction::Sub) &&
1270          "Expected add/sub");
1271   auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
1272   auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
1273   if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1274     return nullptr;
1275 
1276   Value *X, *Y, *ShAmt;
1277   if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
1278       !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
1279     return nullptr;
1280 
1281   // No-wrap propagates only when all ops have no-wrap.
1282   bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1283                 Op1->hasNoSignedWrap();
1284   bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1285                 Op1->hasNoUnsignedWrap();
1286 
1287   // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1288   Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
1289   if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1290     NewI->setHasNoSignedWrap(HasNSW);
1291     NewI->setHasNoUnsignedWrap(HasNUW);
1292   }
1293   auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1294   NewShl->setHasNoSignedWrap(HasNSW);
1295   NewShl->setHasNoUnsignedWrap(HasNUW);
1296   return NewShl;
1297 }
1298 
1299 /// Reduce a sequence of masked half-width multiplies to a single multiply.
1300 /// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y
1301 static Instruction *foldBoxMultiply(BinaryOperator &I) {
1302   unsigned BitWidth = I.getType()->getScalarSizeInBits();
1303   // Skip the odd bitwidth types.
1304   if ((BitWidth & 0x1))
1305     return nullptr;
1306 
1307   unsigned HalfBits = BitWidth >> 1;
1308   APInt HalfMask = APInt::getMaxValue(HalfBits);
1309 
1310   // ResLo = (CrossSum << HalfBits) + (YLo * XLo)
1311   Value *XLo, *YLo;
1312   Value *CrossSum;
1313   if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)),
1314                          m_Mul(m_Value(YLo), m_Value(XLo)))))
1315     return nullptr;
1316 
1317   // XLo = X & HalfMask
1318   // YLo = Y & HalfMask
1319   // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros
1320   // to enhance robustness
1321   Value *X, *Y;
1322   if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) ||
1323       !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask))))
1324     return nullptr;
1325 
1326   // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits))
1327   // X' can be either X or XLo in the pattern (and the same for Y')
1328   if (match(CrossSum,
1329             m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)),
1330                             m_CombineOr(m_Specific(X), m_Specific(XLo))),
1331                     m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)),
1332                             m_CombineOr(m_Specific(Y), m_Specific(YLo))))))
1333     return BinaryOperator::CreateMul(X, Y);
1334 
1335   return nullptr;
1336 }
1337 
1338 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
1339   if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1),
1340                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1341                                  SQ.getWithInstruction(&I)))
1342     return replaceInstUsesWith(I, V);
1343 
1344   if (SimplifyAssociativeOrCommutative(I))
1345     return &I;
1346 
1347   if (Instruction *X = foldVectorBinop(I))
1348     return X;
1349 
1350   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1351     return Phi;
1352 
1353   // (A*B)+(A*C) -> A*(B+C) etc
1354   if (Value *V = foldUsingDistributiveLaws(I))
1355     return replaceInstUsesWith(I, V);
1356 
1357   if (Instruction *R = foldBoxMultiply(I))
1358     return R;
1359 
1360   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1361     return R;
1362 
1363   if (Instruction *X = foldAddWithConstant(I))
1364     return X;
1365 
1366   if (Instruction *X = foldNoWrapAdd(I, Builder))
1367     return X;
1368 
1369   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1370   Type *Ty = I.getType();
1371   if (Ty->isIntOrIntVectorTy(1))
1372     return BinaryOperator::CreateXor(LHS, RHS);
1373 
1374   // X + X --> X << 1
1375   if (LHS == RHS) {
1376     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1377     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1378     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1379     return Shl;
1380   }
1381 
1382   Value *A, *B;
1383   if (match(LHS, m_Neg(m_Value(A)))) {
1384     // -A + -B --> -(A + B)
1385     if (match(RHS, m_Neg(m_Value(B))))
1386       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1387 
1388     // -A + B --> B - A
1389     return BinaryOperator::CreateSub(RHS, A);
1390   }
1391 
1392   // A + -B  -->  A - B
1393   if (match(RHS, m_Neg(m_Value(B))))
1394     return BinaryOperator::CreateSub(LHS, B);
1395 
1396   if (Value *V = checkForNegativeOperand(I, Builder))
1397     return replaceInstUsesWith(I, V);
1398 
1399   // (A + 1) + ~B --> A - B
1400   // ~B + (A + 1) --> A - B
1401   // (~B + A) + 1 --> A - B
1402   // (A + ~B) + 1 --> A - B
1403   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1404       match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1405     return BinaryOperator::CreateSub(A, B);
1406 
1407   // (A + RHS) + RHS --> A + (RHS << 1)
1408   if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1409     return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1410 
1411   // LHS + (A + LHS) --> A + (LHS << 1)
1412   if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1413     return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1414 
1415   {
1416     // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1417     Constant *C1, *C2;
1418     if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
1419                           m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
1420         (LHS->hasOneUse() || RHS->hasOneUse())) {
1421       Value *Sub = Builder.CreateSub(A, B);
1422       return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
1423     }
1424   }
1425 
1426   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1427   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1428 
1429   // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1430   const APInt *C1, *C2;
1431   if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1432     APInt one(C2->getBitWidth(), 1);
1433     APInt minusC1 = -(*C1);
1434     if (minusC1 == (one << *C2)) {
1435       Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
1436       return BinaryOperator::CreateSRem(RHS, NewRHS);
1437     }
1438   }
1439 
1440   // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit
1441   if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) &&
1442       C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countLeadingZeros())) {
1443     Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1);
1444     return BinaryOperator::CreateAnd(A, NewMask);
1445   }
1446 
1447   // ZExt (B - A) + ZExt(A) --> ZExt(B)
1448   if ((match(RHS, m_ZExt(m_Value(A))) &&
1449        match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) ||
1450       (match(LHS, m_ZExt(m_Value(A))) &&
1451        match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))))
1452     return new ZExtInst(B, LHS->getType());
1453 
1454   // A+B --> A|B iff A and B have no bits set in common.
1455   if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1456     return BinaryOperator::CreateOr(LHS, RHS);
1457 
1458   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1459     return Ext;
1460 
1461   // (add (xor A, B) (and A, B)) --> (or A, B)
1462   // (add (and A, B) (xor A, B)) --> (or A, B)
1463   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1464                           m_c_And(m_Deferred(A), m_Deferred(B)))))
1465     return BinaryOperator::CreateOr(A, B);
1466 
1467   // (add (or A, B) (and A, B)) --> (add A, B)
1468   // (add (and A, B) (or A, B)) --> (add A, B)
1469   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1470                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1471     // Replacing operands in-place to preserve nuw/nsw flags.
1472     replaceOperand(I, 0, A);
1473     replaceOperand(I, 1, B);
1474     return &I;
1475   }
1476 
1477   // (add A (or A, -A)) --> (and (add A, -1) A)
1478   // (add A (or -A, A)) --> (and (add A, -1) A)
1479   // (add (or A, -A) A) --> (and (add A, -1) A)
1480   // (add (or -A, A) A) --> (and (add A, -1) A)
1481   if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)),
1482                                                       m_Deferred(A)))))) {
1483     Value *Add =
1484         Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "",
1485                           I.hasNoUnsignedWrap(), I.hasNoSignedWrap());
1486     return BinaryOperator::CreateAnd(Add, A);
1487   }
1488 
1489   // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A)
1490   // Forms all commutable operations, and simplifies ctpop -> cttz folds.
1491   if (match(&I,
1492             m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))),
1493                   m_AllOnes()))) {
1494     Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType());
1495     Value *Dec = Builder.CreateAdd(A, AllOnes);
1496     Value *Not = Builder.CreateXor(A, AllOnes);
1497     return BinaryOperator::CreateAnd(Dec, Not);
1498   }
1499 
1500   // Disguised reassociation/factorization:
1501   // ~(A * C1) + A
1502   // ((A * -C1) - 1) + A
1503   // ((A * -C1) + A) - 1
1504   // (A * (1 - C1)) - 1
1505   if (match(&I,
1506             m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))),
1507                     m_Deferred(A)))) {
1508     Type *Ty = I.getType();
1509     Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1);
1510     Value *NewMul = Builder.CreateMul(A, NewMulC);
1511     return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty));
1512   }
1513 
1514   // (A * -2**C) + B --> B - (A << C)
1515   const APInt *NegPow2C;
1516   if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))),
1517                         m_Value(B)))) {
1518     Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countTrailingZeros());
1519     Value *Shl = Builder.CreateShl(A, ShiftAmtC);
1520     return BinaryOperator::CreateSub(B, Shl);
1521   }
1522 
1523   // Canonicalize signum variant that ends in add:
1524   // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0))
1525   ICmpInst::Predicate Pred;
1526   uint64_t BitWidth = Ty->getScalarSizeInBits();
1527   if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowUndef(BitWidth - 1))) &&
1528       match(RHS, m_OneUse(m_ZExt(
1529                      m_OneUse(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))))) &&
1530       Pred == CmpInst::ICMP_SGT) {
1531     Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull");
1532     Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext");
1533     return BinaryOperator::CreateOr(LHS, Zext);
1534   }
1535 
1536   if (Instruction *Ashr = foldAddToAshr(I))
1537     return Ashr;
1538 
1539   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1540   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1541   // computeKnownBits.
1542   bool Changed = false;
1543   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1544     Changed = true;
1545     I.setHasNoSignedWrap(true);
1546   }
1547   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1548     Changed = true;
1549     I.setHasNoUnsignedWrap(true);
1550   }
1551 
1552   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1553     return V;
1554 
1555   if (Instruction *V =
1556           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1557     return V;
1558 
1559   if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1560     return SatAdd;
1561 
1562   // usub.sat(A, B) + B => umax(A, B)
1563   if (match(&I, m_c_BinOp(
1564           m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
1565           m_Deferred(B)))) {
1566     return replaceInstUsesWith(I,
1567         Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1568   }
1569 
1570   // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1571   if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
1572       match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
1573       haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT))
1574     return replaceInstUsesWith(
1575         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1576                                    {Builder.CreateOr(A, B)}));
1577 
1578   return Changed ? &I : nullptr;
1579 }
1580 
1581 /// Eliminate an op from a linear interpolation (lerp) pattern.
1582 static Instruction *factorizeLerp(BinaryOperator &I,
1583                                   InstCombiner::BuilderTy &Builder) {
1584   Value *X, *Y, *Z;
1585   if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1586                                             m_OneUse(m_FSub(m_FPOne(),
1587                                                             m_Value(Z))))),
1588                           m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1589     return nullptr;
1590 
1591   // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1592   Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1593   Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1594   return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1595 }
1596 
1597 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1598 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1599                                       InstCombiner::BuilderTy &Builder) {
1600   assert((I.getOpcode() == Instruction::FAdd ||
1601           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1602   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1603          "FP factorization requires FMF");
1604 
1605   if (Instruction *Lerp = factorizeLerp(I, Builder))
1606     return Lerp;
1607 
1608   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1609   if (!Op0->hasOneUse() || !Op1->hasOneUse())
1610     return nullptr;
1611 
1612   Value *X, *Y, *Z;
1613   bool IsFMul;
1614   if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) &&
1615        match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) ||
1616       (match(Op0, m_FMul(m_Value(Z), m_Value(X))) &&
1617        match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))))
1618     IsFMul = true;
1619   else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) &&
1620            match(Op1, m_FDiv(m_Value(Y), m_Specific(Z))))
1621     IsFMul = false;
1622   else
1623     return nullptr;
1624 
1625   // (X * Z) + (Y * Z) --> (X + Y) * Z
1626   // (X * Z) - (Y * Z) --> (X - Y) * Z
1627   // (X / Z) + (Y / Z) --> (X + Y) / Z
1628   // (X / Z) - (Y / Z) --> (X - Y) / Z
1629   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1630   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1631                      : Builder.CreateFSubFMF(X, Y, &I);
1632 
1633   // Bail out if we just created a denormal constant.
1634   // TODO: This is copied from a previous implementation. Is it necessary?
1635   const APFloat *C;
1636   if (match(XY, m_APFloat(C)) && !C->isNormal())
1637     return nullptr;
1638 
1639   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1640                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1641 }
1642 
1643 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
1644   if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1),
1645                                   I.getFastMathFlags(),
1646                                   SQ.getWithInstruction(&I)))
1647     return replaceInstUsesWith(I, V);
1648 
1649   if (SimplifyAssociativeOrCommutative(I))
1650     return &I;
1651 
1652   if (Instruction *X = foldVectorBinop(I))
1653     return X;
1654 
1655   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1656     return Phi;
1657 
1658   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1659     return FoldedFAdd;
1660 
1661   // (-X) + Y --> Y - X
1662   Value *X, *Y;
1663   if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1664     return BinaryOperator::CreateFSubFMF(Y, X, &I);
1665 
1666   // Similar to above, but look through fmul/fdiv for the negated term.
1667   // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1668   Value *Z;
1669   if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1670                          m_Value(Z)))) {
1671     Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1672     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1673   }
1674   // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1675   // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1676   if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1677                          m_Value(Z))) ||
1678       match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1679                          m_Value(Z)))) {
1680     Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1681     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1682   }
1683 
1684   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1685   // integer add followed by a promotion.
1686   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1687   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1688     Value *LHSIntVal = LHSConv->getOperand(0);
1689     Type *FPType = LHSConv->getType();
1690 
1691     // TODO: This check is overly conservative. In many cases known bits
1692     // analysis can tell us that the result of the addition has less significant
1693     // bits than the integer type can hold.
1694     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1695       Type *FScalarTy = FTy->getScalarType();
1696       Type *IScalarTy = ITy->getScalarType();
1697 
1698       // Do we have enough bits in the significand to represent the result of
1699       // the integer addition?
1700       unsigned MaxRepresentableBits =
1701           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1702       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1703     };
1704 
1705     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1706     // ... if the constant fits in the integer value.  This is useful for things
1707     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1708     // requires a constant pool load, and generally allows the add to be better
1709     // instcombined.
1710     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1711       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1712         Constant *CI =
1713           ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1714         if (LHSConv->hasOneUse() &&
1715             ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1716             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1717           // Insert the new integer add.
1718           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1719           return new SIToFPInst(NewAdd, I.getType());
1720         }
1721       }
1722 
1723     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1724     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1725       Value *RHSIntVal = RHSConv->getOperand(0);
1726       // It's enough to check LHS types only because we require int types to
1727       // be the same for this transform.
1728       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1729         // Only do this if x/y have the same type, if at least one of them has a
1730         // single use (so we don't increase the number of int->fp conversions),
1731         // and if the integer add will not overflow.
1732         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1733             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1734             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1735           // Insert the new integer add.
1736           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1737           return new SIToFPInst(NewAdd, I.getType());
1738         }
1739       }
1740     }
1741   }
1742 
1743   // Handle specials cases for FAdd with selects feeding the operation
1744   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1745     return replaceInstUsesWith(I, V);
1746 
1747   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1748     if (Instruction *F = factorizeFAddFSub(I, Builder))
1749       return F;
1750 
1751     // Try to fold fadd into start value of reduction intrinsic.
1752     if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1753                                m_AnyZeroFP(), m_Value(X))),
1754                            m_Value(Y)))) {
1755       // fadd (rdx 0.0, X), Y --> rdx Y, X
1756       return replaceInstUsesWith(
1757           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1758                                      {X->getType()}, {Y, X}, &I));
1759     }
1760     const APFloat *StartC, *C;
1761     if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1762                        m_APFloat(StartC), m_Value(X)))) &&
1763         match(RHS, m_APFloat(C))) {
1764       // fadd (rdx StartC, X), C --> rdx (C + StartC), X
1765       Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
1766       return replaceInstUsesWith(
1767           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1768                                      {X->getType()}, {NewStartC, X}, &I));
1769     }
1770 
1771     // (X * MulC) + X --> X * (MulC + 1.0)
1772     Constant *MulC;
1773     if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)),
1774                            m_Deferred(X)))) {
1775       if (Constant *NewMulC = ConstantFoldBinaryOpOperands(
1776               Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL))
1777         return BinaryOperator::CreateFMulFMF(X, NewMulC, &I);
1778     }
1779 
1780     // (-X - Y) + (X + Z) --> Z - Y
1781     if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)),
1782                            m_c_FAdd(m_Deferred(X), m_Value(Z)))))
1783       return BinaryOperator::CreateFSubFMF(Z, Y, &I);
1784 
1785     if (Value *V = FAddCombine(Builder).simplify(&I))
1786       return replaceInstUsesWith(I, V);
1787   }
1788 
1789   return nullptr;
1790 }
1791 
1792 /// Optimize pointer differences into the same array into a size.  Consider:
1793 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1794 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1795 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
1796                                                    Type *Ty, bool IsNUW) {
1797   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1798   // this.
1799   bool Swapped = false;
1800   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1801   if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
1802     std::swap(LHS, RHS);
1803     Swapped = true;
1804   }
1805 
1806   // Require at least one GEP with a common base pointer on both sides.
1807   if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1808     // (gep X, ...) - X
1809     if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1810         RHS->stripPointerCasts()) {
1811       GEP1 = LHSGEP;
1812     } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1813       // (gep X, ...) - (gep X, ...)
1814       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1815           RHSGEP->getOperand(0)->stripPointerCasts()) {
1816         GEP1 = LHSGEP;
1817         GEP2 = RHSGEP;
1818       }
1819     }
1820   }
1821 
1822   if (!GEP1)
1823     return nullptr;
1824 
1825   if (GEP2) {
1826     // (gep X, ...) - (gep X, ...)
1827     //
1828     // Avoid duplicating the arithmetic if there are more than one non-constant
1829     // indices between the two GEPs and either GEP has a non-constant index and
1830     // multiple users. If zero non-constant index, the result is a constant and
1831     // there is no duplication. If one non-constant index, the result is an add
1832     // or sub with a constant, which is no larger than the original code, and
1833     // there's no duplicated arithmetic, even if either GEP has multiple
1834     // users. If more than one non-constant indices combined, as long as the GEP
1835     // with at least one non-constant index doesn't have multiple users, there
1836     // is no duplication.
1837     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1838     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1839     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1840         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1841          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1842       return nullptr;
1843     }
1844   }
1845 
1846   // Emit the offset of the GEP and an intptr_t.
1847   Value *Result = EmitGEPOffset(GEP1);
1848 
1849   // If this is a single inbounds GEP and the original sub was nuw,
1850   // then the final multiplication is also nuw.
1851   if (auto *I = dyn_cast<Instruction>(Result))
1852     if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
1853         I->getOpcode() == Instruction::Mul)
1854       I->setHasNoUnsignedWrap();
1855 
1856   // If we have a 2nd GEP of the same base pointer, subtract the offsets.
1857   // If both GEPs are inbounds, then the subtract does not have signed overflow.
1858   if (GEP2) {
1859     Value *Offset = EmitGEPOffset(GEP2);
1860     Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
1861                                GEP1->isInBounds() && GEP2->isInBounds());
1862   }
1863 
1864   // If we have p - gep(p, ...)  then we have to negate the result.
1865   if (Swapped)
1866     Result = Builder.CreateNeg(Result, "diff.neg");
1867 
1868   return Builder.CreateIntCast(Result, Ty, true);
1869 }
1870 
1871 static Instruction *foldSubOfMinMax(BinaryOperator &I,
1872                                     InstCombiner::BuilderTy &Builder) {
1873   Value *Op0 = I.getOperand(0);
1874   Value *Op1 = I.getOperand(1);
1875   Type *Ty = I.getType();
1876   auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
1877   if (!MinMax)
1878     return nullptr;
1879 
1880   // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y)
1881   // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y)
1882   Value *X = MinMax->getLHS();
1883   Value *Y = MinMax->getRHS();
1884   if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) &&
1885       (Op0->hasOneUse() || Op1->hasOneUse())) {
1886     Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
1887     Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
1888     return CallInst::Create(F, {X, Y});
1889   }
1890 
1891   // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z))
1892   // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y))
1893   Value *Z;
1894   if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) {
1895     if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) {
1896       Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z});
1897       return BinaryOperator::CreateAdd(X, USub);
1898     }
1899     if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) {
1900       Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y});
1901       return BinaryOperator::CreateAdd(X, USub);
1902     }
1903   }
1904 
1905   // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z
1906   // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z
1907   if (MinMax->isSigned() && match(Y, m_ZeroInt()) &&
1908       match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) {
1909     Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
1910     Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
1911     return CallInst::Create(F, {Op0, Z});
1912   }
1913 
1914   return nullptr;
1915 }
1916 
1917 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
1918   if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1),
1919                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1920                                  SQ.getWithInstruction(&I)))
1921     return replaceInstUsesWith(I, V);
1922 
1923   if (Instruction *X = foldVectorBinop(I))
1924     return X;
1925 
1926   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1927     return Phi;
1928 
1929   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1930 
1931   // If this is a 'B = x-(-A)', change to B = x+A.
1932   // We deal with this without involving Negator to preserve NSW flag.
1933   if (Value *V = dyn_castNegVal(Op1)) {
1934     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1935 
1936     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1937       assert(BO->getOpcode() == Instruction::Sub &&
1938              "Expected a subtraction operator!");
1939       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1940         Res->setHasNoSignedWrap(true);
1941     } else {
1942       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1943         Res->setHasNoSignedWrap(true);
1944     }
1945 
1946     return Res;
1947   }
1948 
1949   // Try this before Negator to preserve NSW flag.
1950   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1951     return R;
1952 
1953   Constant *C;
1954   if (match(Op0, m_ImmConstant(C))) {
1955     Value *X;
1956     Constant *C2;
1957 
1958     // C-(X+C2) --> (C-C2)-X
1959     if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2))))
1960       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1961   }
1962 
1963   auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
1964     if (Instruction *Ext = narrowMathIfNoOverflow(I))
1965       return Ext;
1966 
1967     bool Changed = false;
1968     if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1969       Changed = true;
1970       I.setHasNoSignedWrap(true);
1971     }
1972     if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1973       Changed = true;
1974       I.setHasNoUnsignedWrap(true);
1975     }
1976 
1977     return Changed ? &I : nullptr;
1978   };
1979 
1980   // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
1981   // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
1982   // a pure negation used by a select that looks like abs/nabs.
1983   bool IsNegation = match(Op0, m_ZeroInt());
1984   if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
1985         const Instruction *UI = dyn_cast<Instruction>(U);
1986         if (!UI)
1987           return false;
1988         return match(UI,
1989                      m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
1990                match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
1991       })) {
1992     if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
1993       return BinaryOperator::CreateAdd(NegOp1, Op0);
1994   }
1995   if (IsNegation)
1996     return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
1997 
1998   // (A*B)-(A*C) -> A*(B-C) etc
1999   if (Value *V = foldUsingDistributiveLaws(I))
2000     return replaceInstUsesWith(I, V);
2001 
2002   if (I.getType()->isIntOrIntVectorTy(1))
2003     return BinaryOperator::CreateXor(Op0, Op1);
2004 
2005   // Replace (-1 - A) with (~A).
2006   if (match(Op0, m_AllOnes()))
2007     return BinaryOperator::CreateNot(Op1);
2008 
2009   // (X + -1) - Y --> ~Y + X
2010   Value *X, *Y;
2011   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
2012     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
2013 
2014   // Reassociate sub/add sequences to create more add instructions and
2015   // reduce dependency chains:
2016   // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2017   Value *Z;
2018   if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
2019                                   m_Value(Z))))) {
2020     Value *XZ = Builder.CreateAdd(X, Z);
2021     Value *YW = Builder.CreateAdd(Y, Op1);
2022     return BinaryOperator::CreateSub(XZ, YW);
2023   }
2024 
2025   // ((X - Y) - Op1)  -->  X - (Y + Op1)
2026   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
2027     Value *Add = Builder.CreateAdd(Y, Op1);
2028     return BinaryOperator::CreateSub(X, Add);
2029   }
2030 
2031   // (~X) - (~Y) --> Y - X
2032   // This is placed after the other reassociations and explicitly excludes a
2033   // sub-of-sub pattern to avoid infinite looping.
2034   if (isFreeToInvert(Op0, Op0->hasOneUse()) &&
2035       isFreeToInvert(Op1, Op1->hasOneUse()) &&
2036       !match(Op0, m_Sub(m_ImmConstant(), m_Value()))) {
2037     Value *NotOp0 = Builder.CreateNot(Op0);
2038     Value *NotOp1 = Builder.CreateNot(Op1);
2039     return BinaryOperator::CreateSub(NotOp1, NotOp0);
2040   }
2041 
2042   auto m_AddRdx = [](Value *&Vec) {
2043     return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
2044   };
2045   Value *V0, *V1;
2046   if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
2047       V0->getType() == V1->getType()) {
2048     // Difference of sums is sum of differences:
2049     // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
2050     Value *Sub = Builder.CreateSub(V0, V1);
2051     Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
2052                                          {Sub->getType()}, {Sub});
2053     return replaceInstUsesWith(I, Rdx);
2054   }
2055 
2056   if (Constant *C = dyn_cast<Constant>(Op0)) {
2057     Value *X;
2058     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2059       // C - (zext bool) --> bool ? C - 1 : C
2060       return SelectInst::Create(X, InstCombiner::SubOne(C), C);
2061     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2062       // C - (sext bool) --> bool ? C + 1 : C
2063       return SelectInst::Create(X, InstCombiner::AddOne(C), C);
2064 
2065     // C - ~X == X + (1+C)
2066     if (match(Op1, m_Not(m_Value(X))))
2067       return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
2068 
2069     // Try to fold constant sub into select arguments.
2070     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2071       if (Instruction *R = FoldOpIntoSelect(I, SI))
2072         return R;
2073 
2074     // Try to fold constant sub into PHI values.
2075     if (PHINode *PN = dyn_cast<PHINode>(Op1))
2076       if (Instruction *R = foldOpIntoPhi(I, PN))
2077         return R;
2078 
2079     Constant *C2;
2080 
2081     // C-(C2-X) --> X+(C-C2)
2082     if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
2083       return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
2084   }
2085 
2086   const APInt *Op0C;
2087   if (match(Op0, m_APInt(Op0C))) {
2088     if (Op0C->isMask()) {
2089       // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
2090       // zero.
2091       KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
2092       if ((*Op0C | RHSKnown.Zero).isAllOnes())
2093         return BinaryOperator::CreateXor(Op1, Op0);
2094     }
2095 
2096     // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when:
2097     // (C3 - ((C2 & C3) - 1)) is pow2
2098     // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1)
2099     // C2 is negative pow2 || sub nuw
2100     const APInt *C2, *C3;
2101     BinaryOperator *InnerSub;
2102     if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) &&
2103         match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) &&
2104         (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) {
2105       APInt C2AndC3 = *C2 & *C3;
2106       APInt C2AndC3Minus1 = C2AndC3 - 1;
2107       APInt C2AddC3 = *C2 + *C3;
2108       if ((*C3 - C2AndC3Minus1).isPowerOf2() &&
2109           C2AndC3Minus1.isSubsetOf(C2AddC3)) {
2110         Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2));
2111         return BinaryOperator::CreateAdd(
2112             And, ConstantInt::get(I.getType(), *Op0C - C2AndC3));
2113       }
2114     }
2115   }
2116 
2117   {
2118     Value *Y;
2119     // X-(X+Y) == -Y    X-(Y+X) == -Y
2120     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
2121       return BinaryOperator::CreateNeg(Y);
2122 
2123     // (X-Y)-X == -Y
2124     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
2125       return BinaryOperator::CreateNeg(Y);
2126   }
2127 
2128   // (sub (or A, B) (and A, B)) --> (xor A, B)
2129   {
2130     Value *A, *B;
2131     if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2132         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2133       return BinaryOperator::CreateXor(A, B);
2134   }
2135 
2136   // (sub (add A, B) (or A, B)) --> (and A, B)
2137   {
2138     Value *A, *B;
2139     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2140         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2141       return BinaryOperator::CreateAnd(A, B);
2142   }
2143 
2144   // (sub (add A, B) (and A, B)) --> (or A, B)
2145   {
2146     Value *A, *B;
2147     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2148         match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
2149       return BinaryOperator::CreateOr(A, B);
2150   }
2151 
2152   // (sub (and A, B) (or A, B)) --> neg (xor A, B)
2153   {
2154     Value *A, *B;
2155     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2156         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2157         (Op0->hasOneUse() || Op1->hasOneUse()))
2158       return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
2159   }
2160 
2161   // (sub (or A, B), (xor A, B)) --> (and A, B)
2162   {
2163     Value *A, *B;
2164     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2165         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2166       return BinaryOperator::CreateAnd(A, B);
2167   }
2168 
2169   // (sub (xor A, B) (or A, B)) --> neg (and A, B)
2170   {
2171     Value *A, *B;
2172     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2173         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2174         (Op0->hasOneUse() || Op1->hasOneUse()))
2175       return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
2176   }
2177 
2178   {
2179     Value *Y;
2180     // ((X | Y) - X) --> (~X & Y)
2181     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
2182       return BinaryOperator::CreateAnd(
2183           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
2184   }
2185 
2186   {
2187     // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
2188     Value *X;
2189     if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
2190                                     m_OneUse(m_Neg(m_Value(X))))))) {
2191       return BinaryOperator::CreateNeg(Builder.CreateAnd(
2192           Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
2193     }
2194   }
2195 
2196   {
2197     // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
2198     Constant *C;
2199     if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
2200       return BinaryOperator::CreateNeg(
2201           Builder.CreateAnd(Op1, Builder.CreateNot(C)));
2202     }
2203   }
2204 
2205   if (Instruction *R = foldSubOfMinMax(I, Builder))
2206     return R;
2207 
2208   {
2209     // If we have a subtraction between some value and a select between
2210     // said value and something else, sink subtraction into select hands, i.e.:
2211     //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
2212     //     ->
2213     //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
2214     //  or
2215     //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
2216     //     ->
2217     //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2218     // This will result in select between new subtraction and 0.
2219     auto SinkSubIntoSelect =
2220         [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
2221                            auto SubBuilder) -> Instruction * {
2222       Value *Cond, *TrueVal, *FalseVal;
2223       if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
2224                                            m_Value(FalseVal)))))
2225         return nullptr;
2226       if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2227         return nullptr;
2228       // While it is really tempting to just create two subtractions and let
2229       // InstCombine fold one of those to 0, it isn't possible to do so
2230       // because of worklist visitation order. So ugly it is.
2231       bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2232       Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2233       Constant *Zero = Constant::getNullValue(Ty);
2234       SelectInst *NewSel =
2235           SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
2236                              OtherHandOfSubIsTrueVal ? NewSub : Zero);
2237       // Preserve prof metadata if any.
2238       NewSel->copyMetadata(cast<Instruction>(*Select));
2239       return NewSel;
2240     };
2241     if (Instruction *NewSel = SinkSubIntoSelect(
2242             /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
2243             [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
2244               return Builder->CreateSub(OtherHandOfSelect,
2245                                         /*OtherHandOfSub=*/Op1);
2246             }))
2247       return NewSel;
2248     if (Instruction *NewSel = SinkSubIntoSelect(
2249             /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
2250             [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
2251               return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
2252                                         OtherHandOfSelect);
2253             }))
2254       return NewSel;
2255   }
2256 
2257   // (X - (X & Y))   -->   (X & ~Y)
2258   if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
2259       (Op1->hasOneUse() || isa<Constant>(Y)))
2260     return BinaryOperator::CreateAnd(
2261         Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
2262 
2263   // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
2264   // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
2265   // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
2266   // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
2267   // As long as Y is freely invertible, this will be neutral or a win.
2268   // Note: We don't generate the inverse max/min, just create the 'not' of
2269   // it and let other folds do the rest.
2270   if (match(Op0, m_Not(m_Value(X))) &&
2271       match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
2272       !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2273     Value *Not = Builder.CreateNot(Op1);
2274     return BinaryOperator::CreateSub(Not, X);
2275   }
2276   if (match(Op1, m_Not(m_Value(X))) &&
2277       match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
2278       !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2279     Value *Not = Builder.CreateNot(Op0);
2280     return BinaryOperator::CreateSub(X, Not);
2281   }
2282 
2283   // Optimize pointer differences into the same array into a size.  Consider:
2284   //  &A[10] - &A[0]: we should compile this to "10".
2285   Value *LHSOp, *RHSOp;
2286   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2287       match(Op1, m_PtrToInt(m_Value(RHSOp))))
2288     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2289                                                I.hasNoUnsignedWrap()))
2290       return replaceInstUsesWith(I, Res);
2291 
2292   // trunc(p)-trunc(q) -> trunc(p-q)
2293   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2294       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2295     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2296                                                /* IsNUW */ false))
2297       return replaceInstUsesWith(I, Res);
2298 
2299   // Canonicalize a shifty way to code absolute value to the common pattern.
2300   // There are 2 potential commuted variants.
2301   // We're relying on the fact that we only do this transform when the shift has
2302   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2303   // instructions).
2304   Value *A;
2305   const APInt *ShAmt;
2306   Type *Ty = I.getType();
2307   unsigned BitWidth = Ty->getScalarSizeInBits();
2308   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2309       Op1->hasNUses(2) && *ShAmt == BitWidth - 1 &&
2310       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2311     // B = ashr i32 A, 31 ; smear the sign bit
2312     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
2313     // --> (A < 0) ? -A : A
2314     Value *IsNeg = Builder.CreateIsNeg(A);
2315     // Copy the nuw/nsw flags from the sub to the negate.
2316     Value *NegA = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
2317                                     I.hasNoSignedWrap());
2318     return SelectInst::Create(IsNeg, NegA, A);
2319   }
2320 
2321   // If we are subtracting a low-bit masked subset of some value from an add
2322   // of that same value with no low bits changed, that is clearing some low bits
2323   // of the sum:
2324   // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2325   const APInt *AddC, *AndC;
2326   if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
2327       match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
2328     unsigned Cttz = AddC->countTrailingZeros();
2329     APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2330     if ((HighMask & *AndC).isZero())
2331       return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2332   }
2333 
2334   if (Instruction *V =
2335           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2336     return V;
2337 
2338   // X - usub.sat(X, Y) => umin(X, Y)
2339   if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
2340                                                            m_Value(Y)))))
2341     return replaceInstUsesWith(
2342         I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2343 
2344   // umax(X, Op1) - Op1 --> usub.sat(X, Op1)
2345   // TODO: The one-use restriction is not strictly necessary, but it may
2346   //       require improving other pattern matching and/or codegen.
2347   if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1)))))
2348     return replaceInstUsesWith(
2349         I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
2350 
2351   // Op0 - umin(X, Op0) --> usub.sat(Op0, X)
2352   if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0)))))
2353     return replaceInstUsesWith(
2354         I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X}));
2355 
2356   // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
2357   if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) {
2358     Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
2359     return BinaryOperator::CreateNeg(USub);
2360   }
2361 
2362   // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X)
2363   if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) {
2364     Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X});
2365     return BinaryOperator::CreateNeg(USub);
2366   }
2367 
2368   // C - ctpop(X) => ctpop(~X) if C is bitwidth
2369   if (match(Op0, m_SpecificInt(BitWidth)) &&
2370       match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
2371     return replaceInstUsesWith(
2372         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2373                                    {Builder.CreateNot(X)}));
2374 
2375   // Reduce multiplies for difference-of-squares by factoring:
2376   // (X * X) - (Y * Y) --> (X + Y) * (X - Y)
2377   if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) &&
2378       match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) {
2379     auto *OBO0 = cast<OverflowingBinaryOperator>(Op0);
2380     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2381     bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() &&
2382                         OBO1->hasNoSignedWrap() && BitWidth > 2;
2383     bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() &&
2384                         OBO1->hasNoUnsignedWrap() && BitWidth > 1;
2385     Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW);
2386     Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW);
2387     Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW);
2388     return replaceInstUsesWith(I, Mul);
2389   }
2390 
2391   return TryToNarrowDeduceFlags();
2392 }
2393 
2394 /// This eliminates floating-point negation in either 'fneg(X)' or
2395 /// 'fsub(-0.0, X)' form by combining into a constant operand.
2396 static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) {
2397   // This is limited with one-use because fneg is assumed better for
2398   // reassociation and cheaper in codegen than fmul/fdiv.
2399   // TODO: Should the m_OneUse restriction be removed?
2400   Instruction *FNegOp;
2401   if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
2402     return nullptr;
2403 
2404   Value *X;
2405   Constant *C;
2406 
2407   // Fold negation into constant operand.
2408   // -(X * C) --> X * (-C)
2409   if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
2410     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2411       return BinaryOperator::CreateFMulFMF(X, NegC, &I);
2412   // -(X / C) --> X / (-C)
2413   if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
2414     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2415       return BinaryOperator::CreateFDivFMF(X, NegC, &I);
2416   // -(C / X) --> (-C) / X
2417   if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X))))
2418     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) {
2419       Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I);
2420 
2421       // Intersect 'nsz' and 'ninf' because those special value exceptions may
2422       // not apply to the fdiv. Everything else propagates from the fneg.
2423       // TODO: We could propagate nsz/ninf from fdiv alone?
2424       FastMathFlags FMF = I.getFastMathFlags();
2425       FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2426       FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
2427       FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
2428       return FDiv;
2429     }
2430   // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2431   // -(X + C) --> -X + -C --> -C - X
2432   if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2433     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2434       return BinaryOperator::CreateFSubFMF(NegC, X, &I);
2435 
2436   return nullptr;
2437 }
2438 
2439 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
2440                                            InstCombiner::BuilderTy &Builder) {
2441   Value *FNeg;
2442   if (!match(&I, m_FNeg(m_Value(FNeg))))
2443     return nullptr;
2444 
2445   Value *X, *Y;
2446   if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
2447     return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2448 
2449   if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
2450     return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
2451 
2452   return nullptr;
2453 }
2454 
2455 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
2456   Value *Op = I.getOperand(0);
2457 
2458   if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(),
2459                                   getSimplifyQuery().getWithInstruction(&I)))
2460     return replaceInstUsesWith(I, V);
2461 
2462   if (Instruction *X = foldFNegIntoConstant(I, DL))
2463     return X;
2464 
2465   Value *X, *Y;
2466 
2467   // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2468   if (I.hasNoSignedZeros() &&
2469       match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2470     return BinaryOperator::CreateFSubFMF(Y, X, &I);
2471 
2472   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2473     return R;
2474 
2475   Value *OneUse;
2476   if (!match(Op, m_OneUse(m_Value(OneUse))))
2477     return nullptr;
2478 
2479   // Try to eliminate fneg if at least 1 arm of the select is negated.
2480   Value *Cond;
2481   if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) {
2482     // Unlike most transforms, this one is not safe to propagate nsz unless
2483     // it is present on the original select. We union the flags from the select
2484     // and fneg and then remove nsz if needed.
2485     auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) {
2486       S->copyFastMathFlags(&I);
2487       if (auto *OldSel = dyn_cast<SelectInst>(Op)) {
2488         FastMathFlags FMF = I.getFastMathFlags();
2489         FMF |= OldSel->getFastMathFlags();
2490         S->setFastMathFlags(FMF);
2491         if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
2492             !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition()))
2493           S->setHasNoSignedZeros(false);
2494       }
2495     };
2496     // -(Cond ? -P : Y) --> Cond ? P : -Y
2497     Value *P;
2498     if (match(X, m_FNeg(m_Value(P)))) {
2499       Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2500       SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
2501       propagateSelectFMF(NewSel, P == Y);
2502       return NewSel;
2503     }
2504     // -(Cond ? X : -P) --> Cond ? -X : P
2505     if (match(Y, m_FNeg(m_Value(P)))) {
2506       Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2507       SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
2508       propagateSelectFMF(NewSel, P == X);
2509       return NewSel;
2510     }
2511   }
2512 
2513   // fneg (copysign x, y) -> copysign x, (fneg y)
2514   if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) {
2515     // The source copysign has an additional value input, so we can't propagate
2516     // flags the copysign doesn't also have.
2517     FastMathFlags FMF = I.getFastMathFlags();
2518     FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags();
2519 
2520     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2521     Builder.setFastMathFlags(FMF);
2522 
2523     Value *NegY = Builder.CreateFNeg(Y);
2524     Value *NewCopySign = Builder.CreateCopySign(X, NegY);
2525     return replaceInstUsesWith(I, NewCopySign);
2526   }
2527 
2528   return nullptr;
2529 }
2530 
2531 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
2532   if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1),
2533                                   I.getFastMathFlags(),
2534                                   getSimplifyQuery().getWithInstruction(&I)))
2535     return replaceInstUsesWith(I, V);
2536 
2537   if (Instruction *X = foldVectorBinop(I))
2538     return X;
2539 
2540   if (Instruction *Phi = foldBinopWithPhiOperands(I))
2541     return Phi;
2542 
2543   // Subtraction from -0.0 is the canonical form of fneg.
2544   // fsub -0.0, X ==> fneg X
2545   // fsub nsz 0.0, X ==> fneg nsz X
2546   //
2547   // FIXME This matcher does not respect FTZ or DAZ yet:
2548   // fsub -0.0, Denorm ==> +-0
2549   // fneg Denorm ==> -Denorm
2550   Value *Op;
2551   if (match(&I, m_FNeg(m_Value(Op))))
2552     return UnaryOperator::CreateFNegFMF(Op, &I);
2553 
2554   if (Instruction *X = foldFNegIntoConstant(I, DL))
2555     return X;
2556 
2557   if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
2558     return R;
2559 
2560   Value *X, *Y;
2561   Constant *C;
2562 
2563   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2564   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2565   // Canonicalize to fadd to make analysis easier.
2566   // This can also help codegen because fadd is commutative.
2567   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2568   // killed later. We still limit that particular transform with 'hasOneUse'
2569   // because an fneg is assumed better/cheaper than a generic fsub.
2570   if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
2571     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2572       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2573       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2574     }
2575   }
2576 
2577   // (-X) - Op1 --> -(X + Op1)
2578   if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2579       match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2580     Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2581     return UnaryOperator::CreateFNegFMF(FAdd, &I);
2582   }
2583 
2584   if (isa<Constant>(Op0))
2585     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2586       if (Instruction *NV = FoldOpIntoSelect(I, SI))
2587         return NV;
2588 
2589   // X - C --> X + (-C)
2590   // But don't transform constant expressions because there's an inverse fold
2591   // for X + (-Y) --> X - Y.
2592   if (match(Op1, m_ImmConstant(C)))
2593     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2594       return BinaryOperator::CreateFAddFMF(Op0, NegC, &I);
2595 
2596   // X - (-Y) --> X + Y
2597   if (match(Op1, m_FNeg(m_Value(Y))))
2598     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2599 
2600   // Similar to above, but look through a cast of the negated value:
2601   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2602   Type *Ty = I.getType();
2603   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2604     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2605 
2606   // X - (fpext(-Y)) --> X + fpext(Y)
2607   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2608     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2609 
2610   // Similar to above, but look through fmul/fdiv of the negated value:
2611   // Op0 - (-X * Y) --> Op0 + (X * Y)
2612   // Op0 - (Y * -X) --> Op0 + (X * Y)
2613   if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2614     Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2615     return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2616   }
2617   // Op0 - (-X / Y) --> Op0 + (X / Y)
2618   // Op0 - (X / -Y) --> Op0 + (X / Y)
2619   if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2620       match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2621     Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2622     return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2623   }
2624 
2625   // Handle special cases for FSub with selects feeding the operation
2626   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2627     return replaceInstUsesWith(I, V);
2628 
2629   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2630     // (Y - X) - Y --> -X
2631     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2632       return UnaryOperator::CreateFNegFMF(X, &I);
2633 
2634     // Y - (X + Y) --> -X
2635     // Y - (Y + X) --> -X
2636     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2637       return UnaryOperator::CreateFNegFMF(X, &I);
2638 
2639     // (X * C) - X --> X * (C - 1.0)
2640     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2641       if (Constant *CSubOne = ConstantFoldBinaryOpOperands(
2642               Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL))
2643         return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2644     }
2645     // X - (X * C) --> X * (1.0 - C)
2646     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2647       if (Constant *OneSubC = ConstantFoldBinaryOpOperands(
2648               Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL))
2649         return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2650     }
2651 
2652     // Reassociate fsub/fadd sequences to create more fadd instructions and
2653     // reduce dependency chains:
2654     // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2655     Value *Z;
2656     if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
2657                                      m_Value(Z))))) {
2658       Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
2659       Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
2660       return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
2661     }
2662 
2663     auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
2664       return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
2665                                                                  m_Value(Vec)));
2666     };
2667     Value *A0, *A1, *V0, *V1;
2668     if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
2669         V0->getType() == V1->getType()) {
2670       // Difference of sums is sum of differences:
2671       // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2672       Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
2673       Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2674                                            {Sub->getType()}, {A0, Sub}, &I);
2675       return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
2676     }
2677 
2678     if (Instruction *F = factorizeFAddFSub(I, Builder))
2679       return F;
2680 
2681     // TODO: This performs reassociative folds for FP ops. Some fraction of the
2682     // functionality has been subsumed by simple pattern matching here and in
2683     // InstSimplify. We should let a dedicated reassociation pass handle more
2684     // complex pattern matching and remove this from InstCombine.
2685     if (Value *V = FAddCombine(Builder).simplify(&I))
2686       return replaceInstUsesWith(I, V);
2687 
2688     // (X - Y) - Op1 --> X - (Y + Op1)
2689     if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2690       Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
2691       return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
2692     }
2693   }
2694 
2695   return nullptr;
2696 }
2697