1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/InstCombine/InstCombiner.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); } 86 87 const APFloat *getFpValPtr() const { 88 return reinterpret_cast<const APFloat *>(&FpValBuf); 89 } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFNeg(Value *V); 199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 201 202 // Debugging stuff are clustered here. 203 #ifndef NDEBUG 204 unsigned CreateInstrNum; 205 void initCreateInstNum() { CreateInstrNum = 0; } 206 void incCreateInstNum() { CreateInstrNum++; } 207 #else 208 void initCreateInstNum() {} 209 void incCreateInstNum() {} 210 #endif 211 212 InstCombiner::BuilderTy &Builder; 213 Instruction *Instr = nullptr; 214 }; 215 216 } // end anonymous namespace 217 218 //===----------------------------------------------------------------------===// 219 // 220 // Implementation of 221 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 222 // 223 //===----------------------------------------------------------------------===// 224 FAddendCoef::~FAddendCoef() { 225 if (BufHasFpVal) 226 getFpValPtr()->~APFloat(); 227 } 228 229 void FAddendCoef::set(const APFloat& C) { 230 APFloat *P = getFpValPtr(); 231 232 if (isInt()) { 233 // As the buffer is meanless byte stream, we cannot call 234 // APFloat::operator=(). 235 new(P) APFloat(C); 236 } else 237 *P = C; 238 239 IsFp = BufHasFpVal = true; 240 } 241 242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 243 if (!isInt()) 244 return; 245 246 APFloat *P = getFpValPtr(); 247 if (IntVal > 0) 248 new(P) APFloat(Sem, IntVal); 249 else { 250 new(P) APFloat(Sem, 0 - IntVal); 251 P->changeSign(); 252 } 253 IsFp = BufHasFpVal = true; 254 } 255 256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 257 if (Val >= 0) 258 return APFloat(Sem, Val); 259 260 APFloat T(Sem, 0 - Val); 261 T.changeSign(); 262 263 return T; 264 } 265 266 void FAddendCoef::operator=(const FAddendCoef &That) { 267 if (That.isInt()) 268 set(That.IntVal); 269 else 270 set(That.getFpVal()); 271 } 272 273 void FAddendCoef::operator+=(const FAddendCoef &That) { 274 RoundingMode RndMode = RoundingMode::NearestTiesToEven; 275 if (isInt() == That.isInt()) { 276 if (isInt()) 277 IntVal += That.IntVal; 278 else 279 getFpVal().add(That.getFpVal(), RndMode); 280 return; 281 } 282 283 if (isInt()) { 284 const APFloat &T = That.getFpVal(); 285 convertToFpType(T.getSemantics()); 286 getFpVal().add(T, RndMode); 287 return; 288 } 289 290 APFloat &T = getFpVal(); 291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 292 } 293 294 void FAddendCoef::operator*=(const FAddendCoef &That) { 295 if (That.isOne()) 296 return; 297 298 if (That.isMinusOne()) { 299 negate(); 300 return; 301 } 302 303 if (isInt() && That.isInt()) { 304 int Res = IntVal * (int)That.IntVal; 305 assert(!insaneIntVal(Res) && "Insane int value"); 306 IntVal = Res; 307 return; 308 } 309 310 const fltSemantics &Semantic = 311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 312 313 if (isInt()) 314 convertToFpType(Semantic); 315 APFloat &F0 = getFpVal(); 316 317 if (That.isInt()) 318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 319 APFloat::rmNearestTiesToEven); 320 else 321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 322 } 323 324 void FAddendCoef::negate() { 325 if (isInt()) 326 IntVal = 0 - IntVal; 327 else 328 getFpVal().changeSign(); 329 } 330 331 Value *FAddendCoef::getValue(Type *Ty) const { 332 return isInt() ? 333 ConstantFP::get(Ty, float(IntVal)) : 334 ConstantFP::get(Ty->getContext(), getFpVal()); 335 } 336 337 // The definition of <Val> Addends 338 // ========================================= 339 // A + B <1, A>, <1,B> 340 // A - B <1, A>, <1,B> 341 // 0 - B <-1, B> 342 // C * A, <C, A> 343 // A + C <1, A> <C, NULL> 344 // 0 +/- 0 <0, NULL> (corner case) 345 // 346 // Legend: A and B are not constant, C is constant 347 unsigned FAddend::drillValueDownOneStep 348 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 349 Instruction *I = nullptr; 350 if (!Val || !(I = dyn_cast<Instruction>(Val))) 351 return 0; 352 353 unsigned Opcode = I->getOpcode(); 354 355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 356 ConstantFP *C0, *C1; 357 Value *Opnd0 = I->getOperand(0); 358 Value *Opnd1 = I->getOperand(1); 359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 360 Opnd0 = nullptr; 361 362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 363 Opnd1 = nullptr; 364 365 if (Opnd0) { 366 if (!C0) 367 Addend0.set(1, Opnd0); 368 else 369 Addend0.set(C0, nullptr); 370 } 371 372 if (Opnd1) { 373 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 374 if (!C1) 375 Addend.set(1, Opnd1); 376 else 377 Addend.set(C1, nullptr); 378 if (Opcode == Instruction::FSub) 379 Addend.negate(); 380 } 381 382 if (Opnd0 || Opnd1) 383 return Opnd0 && Opnd1 ? 2 : 1; 384 385 // Both operands are zero. Weird! 386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 387 return 1; 388 } 389 390 if (I->getOpcode() == Instruction::FMul) { 391 Value *V0 = I->getOperand(0); 392 Value *V1 = I->getOperand(1); 393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 394 Addend0.set(C, V1); 395 return 1; 396 } 397 398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 399 Addend0.set(C, V0); 400 return 1; 401 } 402 } 403 404 return 0; 405 } 406 407 // Try to break *this* addend into two addends. e.g. Suppose this addend is 408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 409 // i.e. <2.3, X> and <2.3, Y>. 410 unsigned FAddend::drillAddendDownOneStep 411 (FAddend &Addend0, FAddend &Addend1) const { 412 if (isConstant()) 413 return 0; 414 415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 416 if (!BreakNum || Coeff.isOne()) 417 return BreakNum; 418 419 Addend0.Scale(Coeff); 420 421 if (BreakNum == 2) 422 Addend1.Scale(Coeff); 423 424 return BreakNum; 425 } 426 427 Value *FAddCombine::simplify(Instruction *I) { 428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 429 "Expected 'reassoc'+'nsz' instruction"); 430 431 // Currently we are not able to handle vector type. 432 if (I->getType()->isVectorTy()) 433 return nullptr; 434 435 assert((I->getOpcode() == Instruction::FAdd || 436 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 437 438 // Save the instruction before calling other member-functions. 439 Instr = I; 440 441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 442 443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 444 445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 446 unsigned Opnd0_ExpNum = 0; 447 unsigned Opnd1_ExpNum = 0; 448 449 if (!Opnd0.isConstant()) 450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 451 452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 453 if (OpndNum == 2 && !Opnd1.isConstant()) 454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 455 456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 457 if (Opnd0_ExpNum && Opnd1_ExpNum) { 458 AddendVect AllOpnds; 459 AllOpnds.push_back(&Opnd0_0); 460 AllOpnds.push_back(&Opnd1_0); 461 if (Opnd0_ExpNum == 2) 462 AllOpnds.push_back(&Opnd0_1); 463 if (Opnd1_ExpNum == 2) 464 AllOpnds.push_back(&Opnd1_1); 465 466 // Compute instruction quota. We should save at least one instruction. 467 unsigned InstQuota = 0; 468 469 Value *V0 = I->getOperand(0); 470 Value *V1 = I->getOperand(1); 471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 473 474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 475 return R; 476 } 477 478 if (OpndNum != 2) { 479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 480 // splitted into two addends, say "V = X - Y", the instruction would have 481 // been optimized into "I = Y - X" in the previous steps. 482 // 483 const FAddendCoef &CE = Opnd0.getCoef(); 484 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 485 } 486 487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 488 if (Opnd1_ExpNum) { 489 AddendVect AllOpnds; 490 AllOpnds.push_back(&Opnd0); 491 AllOpnds.push_back(&Opnd1_0); 492 if (Opnd1_ExpNum == 2) 493 AllOpnds.push_back(&Opnd1_1); 494 495 if (Value *R = simplifyFAdd(AllOpnds, 1)) 496 return R; 497 } 498 499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 500 if (Opnd0_ExpNum) { 501 AddendVect AllOpnds; 502 AllOpnds.push_back(&Opnd1); 503 AllOpnds.push_back(&Opnd0_0); 504 if (Opnd0_ExpNum == 2) 505 AllOpnds.push_back(&Opnd0_1); 506 507 if (Value *R = simplifyFAdd(AllOpnds, 1)) 508 return R; 509 } 510 511 return nullptr; 512 } 513 514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 515 unsigned AddendNum = Addends.size(); 516 assert(AddendNum <= 4 && "Too many addends"); 517 518 // For saving intermediate results; 519 unsigned NextTmpIdx = 0; 520 FAddend TmpResult[3]; 521 522 // Simplified addends are placed <SimpVect>. 523 AddendVect SimpVect; 524 525 // The outer loop works on one symbolic-value at a time. Suppose the input 526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 527 // The symbolic-values will be processed in this order: x, y, z. 528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 529 530 const FAddend *ThisAddend = Addends[SymIdx]; 531 if (!ThisAddend) { 532 // This addend was processed before. 533 continue; 534 } 535 536 Value *Val = ThisAddend->getSymVal(); 537 538 // If the resulting expr has constant-addend, this constant-addend is 539 // desirable to reside at the top of the resulting expression tree. Placing 540 // constant close to super-expr(s) will potentially reveal some 541 // optimization opportunities in super-expr(s). Here we do not implement 542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative 543 // call later. 544 545 unsigned StartIdx = SimpVect.size(); 546 SimpVect.push_back(ThisAddend); 547 548 // The inner loop collects addends sharing same symbolic-value, and these 549 // addends will be later on folded into a single addend. Following above 550 // example, if the symbolic value "y" is being processed, the inner loop 551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 552 // be later on folded into "<b1+b2, y>". 553 for (unsigned SameSymIdx = SymIdx + 1; 554 SameSymIdx < AddendNum; SameSymIdx++) { 555 const FAddend *T = Addends[SameSymIdx]; 556 if (T && T->getSymVal() == Val) { 557 // Set null such that next iteration of the outer loop will not process 558 // this addend again. 559 Addends[SameSymIdx] = nullptr; 560 SimpVect.push_back(T); 561 } 562 } 563 564 // If multiple addends share same symbolic value, fold them together. 565 if (StartIdx + 1 != SimpVect.size()) { 566 FAddend &R = TmpResult[NextTmpIdx ++]; 567 R = *SimpVect[StartIdx]; 568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 569 R += *SimpVect[Idx]; 570 571 // Pop all addends being folded and push the resulting folded addend. 572 SimpVect.resize(StartIdx); 573 if (!R.isZero()) { 574 SimpVect.push_back(&R); 575 } 576 } 577 } 578 579 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 580 "out-of-bound access"); 581 582 Value *Result; 583 if (!SimpVect.empty()) 584 Result = createNaryFAdd(SimpVect, InstrQuota); 585 else { 586 // The addition is folded to 0.0. 587 Result = ConstantFP::get(Instr->getType(), 0.0); 588 } 589 590 return Result; 591 } 592 593 Value *FAddCombine::createNaryFAdd 594 (const AddendVect &Opnds, unsigned InstrQuota) { 595 assert(!Opnds.empty() && "Expect at least one addend"); 596 597 // Step 1: Check if the # of instructions needed exceeds the quota. 598 599 unsigned InstrNeeded = calcInstrNumber(Opnds); 600 if (InstrNeeded > InstrQuota) 601 return nullptr; 602 603 initCreateInstNum(); 604 605 // step 2: Emit the N-ary addition. 606 // Note that at most three instructions are involved in Fadd-InstCombine: the 607 // addition in question, and at most two neighboring instructions. 608 // The resulting optimized addition should have at least one less instruction 609 // than the original addition expression tree. This implies that the resulting 610 // N-ary addition has at most two instructions, and we don't need to worry 611 // about tree-height when constructing the N-ary addition. 612 613 Value *LastVal = nullptr; 614 bool LastValNeedNeg = false; 615 616 // Iterate the addends, creating fadd/fsub using adjacent two addends. 617 for (const FAddend *Opnd : Opnds) { 618 bool NeedNeg; 619 Value *V = createAddendVal(*Opnd, NeedNeg); 620 if (!LastVal) { 621 LastVal = V; 622 LastValNeedNeg = NeedNeg; 623 continue; 624 } 625 626 if (LastValNeedNeg == NeedNeg) { 627 LastVal = createFAdd(LastVal, V); 628 continue; 629 } 630 631 if (LastValNeedNeg) 632 LastVal = createFSub(V, LastVal); 633 else 634 LastVal = createFSub(LastVal, V); 635 636 LastValNeedNeg = false; 637 } 638 639 if (LastValNeedNeg) { 640 LastVal = createFNeg(LastVal); 641 } 642 643 #ifndef NDEBUG 644 assert(CreateInstrNum == InstrNeeded && 645 "Inconsistent in instruction numbers"); 646 #endif 647 648 return LastVal; 649 } 650 651 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 652 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 653 if (Instruction *I = dyn_cast<Instruction>(V)) 654 createInstPostProc(I); 655 return V; 656 } 657 658 Value *FAddCombine::createFNeg(Value *V) { 659 Value *NewV = Builder.CreateFNeg(V); 660 if (Instruction *I = dyn_cast<Instruction>(NewV)) 661 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 662 return NewV; 663 } 664 665 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 666 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 667 if (Instruction *I = dyn_cast<Instruction>(V)) 668 createInstPostProc(I); 669 return V; 670 } 671 672 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 673 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 674 if (Instruction *I = dyn_cast<Instruction>(V)) 675 createInstPostProc(I); 676 return V; 677 } 678 679 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 680 NewInstr->setDebugLoc(Instr->getDebugLoc()); 681 682 // Keep track of the number of instruction created. 683 if (!NoNumber) 684 incCreateInstNum(); 685 686 // Propagate fast-math flags 687 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 688 } 689 690 // Return the number of instruction needed to emit the N-ary addition. 691 // NOTE: Keep this function in sync with createAddendVal(). 692 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 693 unsigned OpndNum = Opnds.size(); 694 unsigned InstrNeeded = OpndNum - 1; 695 696 // The number of addends in the form of "(-1)*x". 697 unsigned NegOpndNum = 0; 698 699 // Adjust the number of instructions needed to emit the N-ary add. 700 for (const FAddend *Opnd : Opnds) { 701 if (Opnd->isConstant()) 702 continue; 703 704 // The constant check above is really for a few special constant 705 // coefficients. 706 if (isa<UndefValue>(Opnd->getSymVal())) 707 continue; 708 709 const FAddendCoef &CE = Opnd->getCoef(); 710 if (CE.isMinusOne() || CE.isMinusTwo()) 711 NegOpndNum++; 712 713 // Let the addend be "c * x". If "c == +/-1", the value of the addend 714 // is immediately available; otherwise, it needs exactly one instruction 715 // to evaluate the value. 716 if (!CE.isMinusOne() && !CE.isOne()) 717 InstrNeeded++; 718 } 719 return InstrNeeded; 720 } 721 722 // Input Addend Value NeedNeg(output) 723 // ================================================================ 724 // Constant C C false 725 // <+/-1, V> V coefficient is -1 726 // <2/-2, V> "fadd V, V" coefficient is -2 727 // <C, V> "fmul V, C" false 728 // 729 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 730 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 731 const FAddendCoef &Coeff = Opnd.getCoef(); 732 733 if (Opnd.isConstant()) { 734 NeedNeg = false; 735 return Coeff.getValue(Instr->getType()); 736 } 737 738 Value *OpndVal = Opnd.getSymVal(); 739 740 if (Coeff.isMinusOne() || Coeff.isOne()) { 741 NeedNeg = Coeff.isMinusOne(); 742 return OpndVal; 743 } 744 745 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 746 NeedNeg = Coeff.isMinusTwo(); 747 return createFAdd(OpndVal, OpndVal); 748 } 749 750 NeedNeg = false; 751 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 752 } 753 754 // Checks if any operand is negative and we can convert add to sub. 755 // This function checks for following negative patterns 756 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 757 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 758 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 759 static Value *checkForNegativeOperand(BinaryOperator &I, 760 InstCombiner::BuilderTy &Builder) { 761 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 762 763 // This function creates 2 instructions to replace ADD, we need at least one 764 // of LHS or RHS to have one use to ensure benefit in transform. 765 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 766 return nullptr; 767 768 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 769 const APInt *C1 = nullptr, *C2 = nullptr; 770 771 // if ONE is on other side, swap 772 if (match(RHS, m_Add(m_Value(X), m_One()))) 773 std::swap(LHS, RHS); 774 775 if (match(LHS, m_Add(m_Value(X), m_One()))) { 776 // if XOR on other side, swap 777 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 778 std::swap(X, RHS); 779 780 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 781 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 782 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 783 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 784 Value *NewAnd = Builder.CreateAnd(Z, *C1); 785 return Builder.CreateSub(RHS, NewAnd, "sub"); 786 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 787 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 788 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 789 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 790 return Builder.CreateSub(RHS, NewOr, "sub"); 791 } 792 } 793 } 794 795 // Restore LHS and RHS 796 LHS = I.getOperand(0); 797 RHS = I.getOperand(1); 798 799 // if XOR is on other side, swap 800 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 801 std::swap(LHS, RHS); 802 803 // C2 is ODD 804 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 805 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 806 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 807 if (C1->countTrailingZeros() == 0) 808 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 809 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 810 return Builder.CreateSub(RHS, NewOr, "sub"); 811 } 812 return nullptr; 813 } 814 815 /// Wrapping flags may allow combining constants separated by an extend. 816 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 817 InstCombiner::BuilderTy &Builder) { 818 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 819 Type *Ty = Add.getType(); 820 Constant *Op1C; 821 if (!match(Op1, m_Constant(Op1C))) 822 return nullptr; 823 824 // Try this match first because it results in an add in the narrow type. 825 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 826 Value *X; 827 const APInt *C1, *C2; 828 if (match(Op1, m_APInt(C1)) && 829 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 830 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 831 Constant *NewC = 832 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); 833 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 834 } 835 836 // More general combining of constants in the wide type. 837 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 838 Constant *NarrowC; 839 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { 840 Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty); 841 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 842 Value *WideX = Builder.CreateSExt(X, Ty); 843 return BinaryOperator::CreateAdd(WideX, NewC); 844 } 845 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 846 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { 847 Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty); 848 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 849 Value *WideX = Builder.CreateZExt(X, Ty); 850 return BinaryOperator::CreateAdd(WideX, NewC); 851 } 852 853 return nullptr; 854 } 855 856 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) { 857 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 858 Constant *Op1C; 859 if (!match(Op1, m_ImmConstant(Op1C))) 860 return nullptr; 861 862 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 863 return NV; 864 865 Value *X; 866 Constant *Op00C; 867 868 // add (sub C1, X), C2 --> sub (add C1, C2), X 869 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 870 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 871 872 Value *Y; 873 874 // add (sub X, Y), -1 --> add (not Y), X 875 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 876 match(Op1, m_AllOnes())) 877 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 878 879 // zext(bool) + C -> bool ? C + 1 : C 880 if (match(Op0, m_ZExt(m_Value(X))) && 881 X->getType()->getScalarSizeInBits() == 1) 882 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1); 883 // sext(bool) + C -> bool ? C - 1 : C 884 if (match(Op0, m_SExt(m_Value(X))) && 885 X->getType()->getScalarSizeInBits() == 1) 886 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1); 887 888 // ~X + C --> (C-1) - X 889 if (match(Op0, m_Not(m_Value(X)))) 890 return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X); 891 892 const APInt *C; 893 if (!match(Op1, m_APInt(C))) 894 return nullptr; 895 896 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add` 897 Constant *Op01C; 898 if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) && 899 haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT)) 900 return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C)); 901 902 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 903 const APInt *C2; 904 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 905 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 906 907 if (C->isSignMask()) { 908 // If wrapping is not allowed, then the addition must set the sign bit: 909 // X + (signmask) --> X | signmask 910 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 911 return BinaryOperator::CreateOr(Op0, Op1); 912 913 // If wrapping is allowed, then the addition flips the sign bit of LHS: 914 // X + (signmask) --> X ^ signmask 915 return BinaryOperator::CreateXor(Op0, Op1); 916 } 917 918 // Is this add the last step in a convoluted sext? 919 // add(zext(xor i16 X, -32768), -32768) --> sext X 920 Type *Ty = Add.getType(); 921 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 922 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 923 return CastInst::Create(Instruction::SExt, X, Ty); 924 925 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) { 926 // (X ^ signmask) + C --> (X + (signmask ^ C)) 927 if (C2->isSignMask()) 928 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C)); 929 930 // If X has no high-bits set above an xor mask: 931 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X 932 if (C2->isMask()) { 933 KnownBits LHSKnown = computeKnownBits(X, 0, &Add); 934 if ((*C2 | LHSKnown.Zero).isAllOnes()) 935 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X); 936 } 937 938 // Look for a math+logic pattern that corresponds to sext-in-register of a 939 // value with cleared high bits. Convert that into a pair of shifts: 940 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC 941 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC 942 if (Op0->hasOneUse() && *C2 == -(*C)) { 943 unsigned BitWidth = Ty->getScalarSizeInBits(); 944 unsigned ShAmt = 0; 945 if (C->isPowerOf2()) 946 ShAmt = BitWidth - C->logBase2() - 1; 947 else if (C2->isPowerOf2()) 948 ShAmt = BitWidth - C2->logBase2() - 1; 949 if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt), 950 0, &Add)) { 951 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt); 952 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext"); 953 return BinaryOperator::CreateAShr(NewShl, ShAmtC); 954 } 955 } 956 } 957 958 if (C->isOne() && Op0->hasOneUse()) { 959 // add (sext i1 X), 1 --> zext (not X) 960 // TODO: The smallest IR representation is (select X, 0, 1), and that would 961 // not require the one-use check. But we need to remove a transform in 962 // visitSelect and make sure that IR value tracking for select is equal or 963 // better than for these ops. 964 if (match(Op0, m_SExt(m_Value(X))) && 965 X->getType()->getScalarSizeInBits() == 1) 966 return new ZExtInst(Builder.CreateNot(X), Ty); 967 968 // Shifts and add used to flip and mask off the low bit: 969 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 970 const APInt *C3; 971 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 972 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 973 Value *NotX = Builder.CreateNot(X); 974 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 975 } 976 } 977 978 // If all bits affected by the add are included in a high-bit-mask, do the 979 // add before the mask op: 980 // (X & 0xFF00) + xx00 --> (X + xx00) & 0xFF00 981 if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C2)))) && 982 C2->isNegative() && C2->isShiftedMask() && *C == (*C & *C2)) { 983 Value *NewAdd = Builder.CreateAdd(X, ConstantInt::get(Ty, *C)); 984 return BinaryOperator::CreateAnd(NewAdd, ConstantInt::get(Ty, *C2)); 985 } 986 987 return nullptr; 988 } 989 990 // Matches multiplication expression Op * C where C is a constant. Returns the 991 // constant value in C and the other operand in Op. Returns true if such a 992 // match is found. 993 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 994 const APInt *AI; 995 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 996 C = *AI; 997 return true; 998 } 999 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 1000 C = APInt(AI->getBitWidth(), 1); 1001 C <<= *AI; 1002 return true; 1003 } 1004 return false; 1005 } 1006 1007 // Matches remainder expression Op % C where C is a constant. Returns the 1008 // constant value in C and the other operand in Op. Returns the signedness of 1009 // the remainder operation in IsSigned. Returns true if such a match is 1010 // found. 1011 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 1012 const APInt *AI; 1013 IsSigned = false; 1014 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 1015 IsSigned = true; 1016 C = *AI; 1017 return true; 1018 } 1019 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 1020 C = *AI; 1021 return true; 1022 } 1023 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 1024 C = *AI + 1; 1025 return true; 1026 } 1027 return false; 1028 } 1029 1030 // Matches division expression Op / C with the given signedness as indicated 1031 // by IsSigned, where C is a constant. Returns the constant value in C and the 1032 // other operand in Op. Returns true if such a match is found. 1033 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 1034 const APInt *AI; 1035 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 1036 C = *AI; 1037 return true; 1038 } 1039 if (!IsSigned) { 1040 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 1041 C = *AI; 1042 return true; 1043 } 1044 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1045 C = APInt(AI->getBitWidth(), 1); 1046 C <<= *AI; 1047 return true; 1048 } 1049 } 1050 return false; 1051 } 1052 1053 // Returns whether C0 * C1 with the given signedness overflows. 1054 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1055 bool overflow; 1056 if (IsSigned) 1057 (void)C0.smul_ov(C1, overflow); 1058 else 1059 (void)C0.umul_ov(C1, overflow); 1060 return overflow; 1061 } 1062 1063 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1064 // does not overflow. 1065 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) { 1066 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1067 Value *X, *MulOpV; 1068 APInt C0, MulOpC; 1069 bool IsSigned; 1070 // Match I = X % C0 + MulOpV * C0 1071 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1072 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1073 C0 == MulOpC) { 1074 Value *RemOpV; 1075 APInt C1; 1076 bool Rem2IsSigned; 1077 // Match MulOpC = RemOpV % C1 1078 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1079 IsSigned == Rem2IsSigned) { 1080 Value *DivOpV; 1081 APInt DivOpC; 1082 // Match RemOpV = X / C0 1083 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1084 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1085 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1); 1086 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1087 : Builder.CreateURem(X, NewDivisor, "urem"); 1088 } 1089 } 1090 } 1091 1092 return nullptr; 1093 } 1094 1095 /// Fold 1096 /// (1 << NBits) - 1 1097 /// Into: 1098 /// ~(-(1 << NBits)) 1099 /// Because a 'not' is better for bit-tracking analysis and other transforms 1100 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1101 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1102 InstCombiner::BuilderTy &Builder) { 1103 Value *NBits; 1104 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1105 return nullptr; 1106 1107 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1108 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1109 // Be wary of constant folding. 1110 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1111 // Always NSW. But NUW propagates from `add`. 1112 BOp->setHasNoSignedWrap(); 1113 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1114 } 1115 1116 return BinaryOperator::CreateNot(NotMask, I.getName()); 1117 } 1118 1119 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1120 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1121 Type *Ty = I.getType(); 1122 auto getUAddSat = [&]() { 1123 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); 1124 }; 1125 1126 // add (umin X, ~Y), Y --> uaddsat X, Y 1127 Value *X, *Y; 1128 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1129 m_Deferred(Y)))) 1130 return CallInst::Create(getUAddSat(), { X, Y }); 1131 1132 // add (umin X, ~C), C --> uaddsat X, C 1133 const APInt *C, *NotC; 1134 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1135 *C == ~*NotC) 1136 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1137 1138 return nullptr; 1139 } 1140 1141 Instruction *InstCombinerImpl:: 1142 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( 1143 BinaryOperator &I) { 1144 assert((I.getOpcode() == Instruction::Add || 1145 I.getOpcode() == Instruction::Or || 1146 I.getOpcode() == Instruction::Sub) && 1147 "Expecting add/or/sub instruction"); 1148 1149 // We have a subtraction/addition between a (potentially truncated) *logical* 1150 // right-shift of X and a "select". 1151 Value *X, *Select; 1152 Instruction *LowBitsToSkip, *Extract; 1153 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( 1154 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), 1155 m_Instruction(Extract))), 1156 m_Value(Select)))) 1157 return nullptr; 1158 1159 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. 1160 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) 1161 return nullptr; 1162 1163 Type *XTy = X->getType(); 1164 bool HadTrunc = I.getType() != XTy; 1165 1166 // If there was a truncation of extracted value, then we'll need to produce 1167 // one extra instruction, so we need to ensure one instruction will go away. 1168 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1169 return nullptr; 1170 1171 // Extraction should extract high NBits bits, with shift amount calculated as: 1172 // low bits to skip = shift bitwidth - high bits to extract 1173 // The shift amount itself may be extended, and we need to look past zero-ext 1174 // when matching NBits, that will matter for matching later. 1175 Constant *C; 1176 Value *NBits; 1177 if (!match( 1178 LowBitsToSkip, 1179 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || 1180 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1181 APInt(C->getType()->getScalarSizeInBits(), 1182 X->getType()->getScalarSizeInBits())))) 1183 return nullptr; 1184 1185 // Sign-extending value can be zero-extended if we `sub`tract it, 1186 // or sign-extended otherwise. 1187 auto SkipExtInMagic = [&I](Value *&V) { 1188 if (I.getOpcode() == Instruction::Sub) 1189 match(V, m_ZExtOrSelf(m_Value(V))); 1190 else 1191 match(V, m_SExtOrSelf(m_Value(V))); 1192 }; 1193 1194 // Now, finally validate the sign-extending magic. 1195 // `select` itself may be appropriately extended, look past that. 1196 SkipExtInMagic(Select); 1197 1198 ICmpInst::Predicate Pred; 1199 const APInt *Thr; 1200 Value *SignExtendingValue, *Zero; 1201 bool ShouldSignext; 1202 // It must be a select between two values we will later establish to be a 1203 // sign-extending value and a zero constant. The condition guarding the 1204 // sign-extension must be based on a sign bit of the same X we had in `lshr`. 1205 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), 1206 m_Value(SignExtendingValue), m_Value(Zero))) || 1207 !isSignBitCheck(Pred, *Thr, ShouldSignext)) 1208 return nullptr; 1209 1210 // icmp-select pair is commutative. 1211 if (!ShouldSignext) 1212 std::swap(SignExtendingValue, Zero); 1213 1214 // If we should not perform sign-extension then we must add/or/subtract zero. 1215 if (!match(Zero, m_Zero())) 1216 return nullptr; 1217 // Otherwise, it should be some constant, left-shifted by the same NBits we 1218 // had in `lshr`. Said left-shift can also be appropriately extended. 1219 // Again, we must look past zero-ext when looking for NBits. 1220 SkipExtInMagic(SignExtendingValue); 1221 Constant *SignExtendingValueBaseConstant; 1222 if (!match(SignExtendingValue, 1223 m_Shl(m_Constant(SignExtendingValueBaseConstant), 1224 m_ZExtOrSelf(m_Specific(NBits))))) 1225 return nullptr; 1226 // If we `sub`, then the constant should be one, else it should be all-ones. 1227 if (I.getOpcode() == Instruction::Sub 1228 ? !match(SignExtendingValueBaseConstant, m_One()) 1229 : !match(SignExtendingValueBaseConstant, m_AllOnes())) 1230 return nullptr; 1231 1232 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, 1233 Extract->getName() + ".sext"); 1234 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. 1235 if (!HadTrunc) 1236 return NewAShr; 1237 1238 Builder.Insert(NewAShr); 1239 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); 1240 } 1241 1242 /// This is a specialization of a more general transform from 1243 /// SimplifyUsingDistributiveLaws. If that code can be made to work optimally 1244 /// for multi-use cases or propagating nsw/nuw, then we would not need this. 1245 static Instruction *factorizeMathWithShlOps(BinaryOperator &I, 1246 InstCombiner::BuilderTy &Builder) { 1247 // TODO: Also handle mul by doubling the shift amount? 1248 assert((I.getOpcode() == Instruction::Add || 1249 I.getOpcode() == Instruction::Sub) && 1250 "Expected add/sub"); 1251 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 1252 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 1253 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse())) 1254 return nullptr; 1255 1256 Value *X, *Y, *ShAmt; 1257 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) || 1258 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt)))) 1259 return nullptr; 1260 1261 // No-wrap propagates only when all ops have no-wrap. 1262 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() && 1263 Op1->hasNoSignedWrap(); 1264 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() && 1265 Op1->hasNoUnsignedWrap(); 1266 1267 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt 1268 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y); 1269 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) { 1270 NewI->setHasNoSignedWrap(HasNSW); 1271 NewI->setHasNoUnsignedWrap(HasNUW); 1272 } 1273 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt); 1274 NewShl->setHasNoSignedWrap(HasNSW); 1275 NewShl->setHasNoUnsignedWrap(HasNUW); 1276 return NewShl; 1277 } 1278 1279 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) { 1280 if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1), 1281 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1282 SQ.getWithInstruction(&I))) 1283 return replaceInstUsesWith(I, V); 1284 1285 if (SimplifyAssociativeOrCommutative(I)) 1286 return &I; 1287 1288 if (Instruction *X = foldVectorBinop(I)) 1289 return X; 1290 1291 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1292 return Phi; 1293 1294 // (A*B)+(A*C) -> A*(B+C) etc 1295 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1296 return replaceInstUsesWith(I, V); 1297 1298 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1299 return R; 1300 1301 if (Instruction *X = foldAddWithConstant(I)) 1302 return X; 1303 1304 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1305 return X; 1306 1307 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1308 Type *Ty = I.getType(); 1309 if (Ty->isIntOrIntVectorTy(1)) 1310 return BinaryOperator::CreateXor(LHS, RHS); 1311 1312 // X + X --> X << 1 1313 if (LHS == RHS) { 1314 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1315 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1316 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1317 return Shl; 1318 } 1319 1320 Value *A, *B; 1321 if (match(LHS, m_Neg(m_Value(A)))) { 1322 // -A + -B --> -(A + B) 1323 if (match(RHS, m_Neg(m_Value(B)))) 1324 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1325 1326 // -A + B --> B - A 1327 return BinaryOperator::CreateSub(RHS, A); 1328 } 1329 1330 // A + -B --> A - B 1331 if (match(RHS, m_Neg(m_Value(B)))) 1332 return BinaryOperator::CreateSub(LHS, B); 1333 1334 if (Value *V = checkForNegativeOperand(I, Builder)) 1335 return replaceInstUsesWith(I, V); 1336 1337 // (A + 1) + ~B --> A - B 1338 // ~B + (A + 1) --> A - B 1339 // (~B + A) + 1 --> A - B 1340 // (A + ~B) + 1 --> A - B 1341 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1342 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1343 return BinaryOperator::CreateSub(A, B); 1344 1345 // (A + RHS) + RHS --> A + (RHS << 1) 1346 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS))))) 1347 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add")); 1348 1349 // LHS + (A + LHS) --> A + (LHS << 1) 1350 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS))))) 1351 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add")); 1352 1353 { 1354 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2) 1355 Constant *C1, *C2; 1356 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)), 1357 m_Sub(m_ImmConstant(C2), m_Value(B)))) && 1358 (LHS->hasOneUse() || RHS->hasOneUse())) { 1359 Value *Sub = Builder.CreateSub(A, B); 1360 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2)); 1361 } 1362 } 1363 1364 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1365 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1366 1367 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2 1368 const APInt *C1, *C2; 1369 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) { 1370 APInt one(C2->getBitWidth(), 1); 1371 APInt minusC1 = -(*C1); 1372 if (minusC1 == (one << *C2)) { 1373 Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1); 1374 return BinaryOperator::CreateSRem(RHS, NewRHS); 1375 } 1376 } 1377 1378 // A+B --> A|B iff A and B have no bits set in common. 1379 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1380 return BinaryOperator::CreateOr(LHS, RHS); 1381 1382 // add (select X 0 (sub n A)) A --> select X A n 1383 { 1384 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1385 Value *A = RHS; 1386 if (!SI) { 1387 SI = dyn_cast<SelectInst>(RHS); 1388 A = LHS; 1389 } 1390 if (SI && SI->hasOneUse()) { 1391 Value *TV = SI->getTrueValue(); 1392 Value *FV = SI->getFalseValue(); 1393 Value *N; 1394 1395 // Can we fold the add into the argument of the select? 1396 // We check both true and false select arguments for a matching subtract. 1397 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1398 // Fold the add into the true select value. 1399 return SelectInst::Create(SI->getCondition(), N, A); 1400 1401 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1402 // Fold the add into the false select value. 1403 return SelectInst::Create(SI->getCondition(), A, N); 1404 } 1405 } 1406 1407 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1408 return Ext; 1409 1410 // (add (xor A, B) (and A, B)) --> (or A, B) 1411 // (add (and A, B) (xor A, B)) --> (or A, B) 1412 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1413 m_c_And(m_Deferred(A), m_Deferred(B))))) 1414 return BinaryOperator::CreateOr(A, B); 1415 1416 // (add (or A, B) (and A, B)) --> (add A, B) 1417 // (add (and A, B) (or A, B)) --> (add A, B) 1418 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1419 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1420 // Replacing operands in-place to preserve nuw/nsw flags. 1421 replaceOperand(I, 0, A); 1422 replaceOperand(I, 1, B); 1423 return &I; 1424 } 1425 1426 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1427 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1428 // computeKnownBits. 1429 bool Changed = false; 1430 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1431 Changed = true; 1432 I.setHasNoSignedWrap(true); 1433 } 1434 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1435 Changed = true; 1436 I.setHasNoUnsignedWrap(true); 1437 } 1438 1439 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1440 return V; 1441 1442 if (Instruction *V = 1443 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 1444 return V; 1445 1446 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1447 return SatAdd; 1448 1449 // usub.sat(A, B) + B => umax(A, B) 1450 if (match(&I, m_c_BinOp( 1451 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))), 1452 m_Deferred(B)))) { 1453 return replaceInstUsesWith(I, 1454 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B})); 1455 } 1456 1457 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common. 1458 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) && 1459 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) && 1460 haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT)) 1461 return replaceInstUsesWith( 1462 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 1463 {Builder.CreateOr(A, B)})); 1464 1465 return Changed ? &I : nullptr; 1466 } 1467 1468 /// Eliminate an op from a linear interpolation (lerp) pattern. 1469 static Instruction *factorizeLerp(BinaryOperator &I, 1470 InstCombiner::BuilderTy &Builder) { 1471 Value *X, *Y, *Z; 1472 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1473 m_OneUse(m_FSub(m_FPOne(), 1474 m_Value(Z))))), 1475 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1476 return nullptr; 1477 1478 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1479 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1480 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1481 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1482 } 1483 1484 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1485 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1486 InstCombiner::BuilderTy &Builder) { 1487 assert((I.getOpcode() == Instruction::FAdd || 1488 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1489 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1490 "FP factorization requires FMF"); 1491 1492 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1493 return Lerp; 1494 1495 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1496 if (!Op0->hasOneUse() || !Op1->hasOneUse()) 1497 return nullptr; 1498 1499 Value *X, *Y, *Z; 1500 bool IsFMul; 1501 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) && 1502 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) || 1503 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) && 1504 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z))))) 1505 IsFMul = true; 1506 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) && 1507 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z)))) 1508 IsFMul = false; 1509 else 1510 return nullptr; 1511 1512 // (X * Z) + (Y * Z) --> (X + Y) * Z 1513 // (X * Z) - (Y * Z) --> (X - Y) * Z 1514 // (X / Z) + (Y / Z) --> (X + Y) / Z 1515 // (X / Z) - (Y / Z) --> (X - Y) / Z 1516 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1517 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1518 : Builder.CreateFSubFMF(X, Y, &I); 1519 1520 // Bail out if we just created a denormal constant. 1521 // TODO: This is copied from a previous implementation. Is it necessary? 1522 const APFloat *C; 1523 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1524 return nullptr; 1525 1526 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1527 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1528 } 1529 1530 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) { 1531 if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1), 1532 I.getFastMathFlags(), 1533 SQ.getWithInstruction(&I))) 1534 return replaceInstUsesWith(I, V); 1535 1536 if (SimplifyAssociativeOrCommutative(I)) 1537 return &I; 1538 1539 if (Instruction *X = foldVectorBinop(I)) 1540 return X; 1541 1542 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1543 return Phi; 1544 1545 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1546 return FoldedFAdd; 1547 1548 // (-X) + Y --> Y - X 1549 Value *X, *Y; 1550 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1551 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1552 1553 // Similar to above, but look through fmul/fdiv for the negated term. 1554 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1555 Value *Z; 1556 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1557 m_Value(Z)))) { 1558 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1559 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1560 } 1561 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1562 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1563 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1564 m_Value(Z))) || 1565 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1566 m_Value(Z)))) { 1567 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1568 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1569 } 1570 1571 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1572 // integer add followed by a promotion. 1573 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1574 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1575 Value *LHSIntVal = LHSConv->getOperand(0); 1576 Type *FPType = LHSConv->getType(); 1577 1578 // TODO: This check is overly conservative. In many cases known bits 1579 // analysis can tell us that the result of the addition has less significant 1580 // bits than the integer type can hold. 1581 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1582 Type *FScalarTy = FTy->getScalarType(); 1583 Type *IScalarTy = ITy->getScalarType(); 1584 1585 // Do we have enough bits in the significand to represent the result of 1586 // the integer addition? 1587 unsigned MaxRepresentableBits = 1588 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1589 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1590 }; 1591 1592 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1593 // ... if the constant fits in the integer value. This is useful for things 1594 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1595 // requires a constant pool load, and generally allows the add to be better 1596 // instcombined. 1597 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1598 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1599 Constant *CI = 1600 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1601 if (LHSConv->hasOneUse() && 1602 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1603 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1604 // Insert the new integer add. 1605 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1606 return new SIToFPInst(NewAdd, I.getType()); 1607 } 1608 } 1609 1610 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1611 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1612 Value *RHSIntVal = RHSConv->getOperand(0); 1613 // It's enough to check LHS types only because we require int types to 1614 // be the same for this transform. 1615 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1616 // Only do this if x/y have the same type, if at least one of them has a 1617 // single use (so we don't increase the number of int->fp conversions), 1618 // and if the integer add will not overflow. 1619 if (LHSIntVal->getType() == RHSIntVal->getType() && 1620 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1621 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1622 // Insert the new integer add. 1623 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1624 return new SIToFPInst(NewAdd, I.getType()); 1625 } 1626 } 1627 } 1628 } 1629 1630 // Handle specials cases for FAdd with selects feeding the operation 1631 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1632 return replaceInstUsesWith(I, V); 1633 1634 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1635 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1636 return F; 1637 1638 // Try to fold fadd into start value of reduction intrinsic. 1639 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1640 m_AnyZeroFP(), m_Value(X))), 1641 m_Value(Y)))) { 1642 // fadd (rdx 0.0, X), Y --> rdx Y, X 1643 return replaceInstUsesWith( 1644 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1645 {X->getType()}, {Y, X}, &I)); 1646 } 1647 const APFloat *StartC, *C; 1648 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1649 m_APFloat(StartC), m_Value(X)))) && 1650 match(RHS, m_APFloat(C))) { 1651 // fadd (rdx StartC, X), C --> rdx (C + StartC), X 1652 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC); 1653 return replaceInstUsesWith( 1654 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1655 {X->getType()}, {NewStartC, X}, &I)); 1656 } 1657 1658 // (X * MulC) + X --> X * (MulC + 1.0) 1659 Constant *MulC; 1660 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)), 1661 m_Deferred(X)))) { 1662 MulC = ConstantExpr::getFAdd(MulC, ConstantFP::get(I.getType(), 1.0)); 1663 return BinaryOperator::CreateFMulFMF(X, MulC, &I); 1664 } 1665 1666 if (Value *V = FAddCombine(Builder).simplify(&I)) 1667 return replaceInstUsesWith(I, V); 1668 } 1669 1670 return nullptr; 1671 } 1672 1673 /// Optimize pointer differences into the same array into a size. Consider: 1674 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1675 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1676 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS, 1677 Type *Ty, bool IsNUW) { 1678 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1679 // this. 1680 bool Swapped = false; 1681 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1682 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) { 1683 std::swap(LHS, RHS); 1684 Swapped = true; 1685 } 1686 1687 // Require at least one GEP with a common base pointer on both sides. 1688 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1689 // (gep X, ...) - X 1690 if (LHSGEP->getOperand(0) == RHS) { 1691 GEP1 = LHSGEP; 1692 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1693 // (gep X, ...) - (gep X, ...) 1694 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1695 RHSGEP->getOperand(0)->stripPointerCasts()) { 1696 GEP1 = LHSGEP; 1697 GEP2 = RHSGEP; 1698 } 1699 } 1700 } 1701 1702 if (!GEP1) 1703 return nullptr; 1704 1705 if (GEP2) { 1706 // (gep X, ...) - (gep X, ...) 1707 // 1708 // Avoid duplicating the arithmetic if there are more than one non-constant 1709 // indices between the two GEPs and either GEP has a non-constant index and 1710 // multiple users. If zero non-constant index, the result is a constant and 1711 // there is no duplication. If one non-constant index, the result is an add 1712 // or sub with a constant, which is no larger than the original code, and 1713 // there's no duplicated arithmetic, even if either GEP has multiple 1714 // users. If more than one non-constant indices combined, as long as the GEP 1715 // with at least one non-constant index doesn't have multiple users, there 1716 // is no duplication. 1717 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1718 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1719 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1720 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1721 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1722 return nullptr; 1723 } 1724 } 1725 1726 // Emit the offset of the GEP and an intptr_t. 1727 Value *Result = EmitGEPOffset(GEP1); 1728 1729 // If this is a single inbounds GEP and the original sub was nuw, 1730 // then the final multiplication is also nuw. 1731 if (auto *I = dyn_cast<Instruction>(Result)) 1732 if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() && 1733 I->getOpcode() == Instruction::Mul) 1734 I->setHasNoUnsignedWrap(); 1735 1736 // If we have a 2nd GEP of the same base pointer, subtract the offsets. 1737 // If both GEPs are inbounds, then the subtract does not have signed overflow. 1738 if (GEP2) { 1739 Value *Offset = EmitGEPOffset(GEP2); 1740 Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false, 1741 GEP1->isInBounds() && GEP2->isInBounds()); 1742 } 1743 1744 // If we have p - gep(p, ...) then we have to negate the result. 1745 if (Swapped) 1746 Result = Builder.CreateNeg(Result, "diff.neg"); 1747 1748 return Builder.CreateIntCast(Result, Ty, true); 1749 } 1750 1751 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) { 1752 if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1), 1753 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1754 SQ.getWithInstruction(&I))) 1755 return replaceInstUsesWith(I, V); 1756 1757 if (Instruction *X = foldVectorBinop(I)) 1758 return X; 1759 1760 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1761 return Phi; 1762 1763 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1764 1765 // If this is a 'B = x-(-A)', change to B = x+A. 1766 // We deal with this without involving Negator to preserve NSW flag. 1767 if (Value *V = dyn_castNegVal(Op1)) { 1768 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1769 1770 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1771 assert(BO->getOpcode() == Instruction::Sub && 1772 "Expected a subtraction operator!"); 1773 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1774 Res->setHasNoSignedWrap(true); 1775 } else { 1776 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1777 Res->setHasNoSignedWrap(true); 1778 } 1779 1780 return Res; 1781 } 1782 1783 // Try this before Negator to preserve NSW flag. 1784 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1785 return R; 1786 1787 Constant *C; 1788 if (match(Op0, m_ImmConstant(C))) { 1789 Value *X; 1790 Constant *C2; 1791 1792 // C-(X+C2) --> (C-C2)-X 1793 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) 1794 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1795 } 1796 1797 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * { 1798 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1799 return Ext; 1800 1801 bool Changed = false; 1802 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 1803 Changed = true; 1804 I.setHasNoSignedWrap(true); 1805 } 1806 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 1807 Changed = true; 1808 I.setHasNoUnsignedWrap(true); 1809 } 1810 1811 return Changed ? &I : nullptr; 1812 }; 1813 1814 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`, 1815 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't 1816 // a pure negation used by a select that looks like abs/nabs. 1817 bool IsNegation = match(Op0, m_ZeroInt()); 1818 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) { 1819 const Instruction *UI = dyn_cast<Instruction>(U); 1820 if (!UI) 1821 return false; 1822 return match(UI, 1823 m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) || 1824 match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1))); 1825 })) { 1826 if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this)) 1827 return BinaryOperator::CreateAdd(NegOp1, Op0); 1828 } 1829 if (IsNegation) 1830 return TryToNarrowDeduceFlags(); // Should have been handled in Negator! 1831 1832 // (A*B)-(A*C) -> A*(B-C) etc 1833 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1834 return replaceInstUsesWith(I, V); 1835 1836 if (I.getType()->isIntOrIntVectorTy(1)) 1837 return BinaryOperator::CreateXor(Op0, Op1); 1838 1839 // Replace (-1 - A) with (~A). 1840 if (match(Op0, m_AllOnes())) 1841 return BinaryOperator::CreateNot(Op1); 1842 1843 // (X + -1) - Y --> ~Y + X 1844 Value *X, *Y; 1845 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 1846 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 1847 1848 // Reassociate sub/add sequences to create more add instructions and 1849 // reduce dependency chains: 1850 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 1851 Value *Z; 1852 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))), 1853 m_Value(Z))))) { 1854 Value *XZ = Builder.CreateAdd(X, Z); 1855 Value *YW = Builder.CreateAdd(Y, Op1); 1856 return BinaryOperator::CreateSub(XZ, YW); 1857 } 1858 1859 // ((X - Y) - Op1) --> X - (Y + Op1) 1860 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) { 1861 Value *Add = Builder.CreateAdd(Y, Op1); 1862 return BinaryOperator::CreateSub(X, Add); 1863 } 1864 1865 // (~X) - (~Y) --> Y - X 1866 // This is placed after the other reassociations and explicitly excludes a 1867 // sub-of-sub pattern to avoid infinite looping. 1868 if (isFreeToInvert(Op0, Op0->hasOneUse()) && 1869 isFreeToInvert(Op1, Op1->hasOneUse()) && 1870 !match(Op0, m_Sub(m_ImmConstant(), m_Value()))) { 1871 Value *NotOp0 = Builder.CreateNot(Op0); 1872 Value *NotOp1 = Builder.CreateNot(Op1); 1873 return BinaryOperator::CreateSub(NotOp1, NotOp0); 1874 } 1875 1876 auto m_AddRdx = [](Value *&Vec) { 1877 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec))); 1878 }; 1879 Value *V0, *V1; 1880 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) && 1881 V0->getType() == V1->getType()) { 1882 // Difference of sums is sum of differences: 1883 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1) 1884 Value *Sub = Builder.CreateSub(V0, V1); 1885 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add, 1886 {Sub->getType()}, {Sub}); 1887 return replaceInstUsesWith(I, Rdx); 1888 } 1889 1890 if (Constant *C = dyn_cast<Constant>(Op0)) { 1891 Value *X; 1892 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1893 // C - (zext bool) --> bool ? C - 1 : C 1894 return SelectInst::Create(X, InstCombiner::SubOne(C), C); 1895 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1896 // C - (sext bool) --> bool ? C + 1 : C 1897 return SelectInst::Create(X, InstCombiner::AddOne(C), C); 1898 1899 // C - ~X == X + (1+C) 1900 if (match(Op1, m_Not(m_Value(X)))) 1901 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C)); 1902 1903 // Try to fold constant sub into select arguments. 1904 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1905 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1906 return R; 1907 1908 // Try to fold constant sub into PHI values. 1909 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 1910 if (Instruction *R = foldOpIntoPhi(I, PN)) 1911 return R; 1912 1913 Constant *C2; 1914 1915 // C-(C2-X) --> X+(C-C2) 1916 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X)))) 1917 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 1918 } 1919 1920 const APInt *Op0C; 1921 if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) { 1922 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1923 // zero. 1924 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 1925 if ((*Op0C | RHSKnown.Zero).isAllOnes()) 1926 return BinaryOperator::CreateXor(Op1, Op0); 1927 } 1928 1929 { 1930 Value *Y; 1931 // X-(X+Y) == -Y X-(Y+X) == -Y 1932 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 1933 return BinaryOperator::CreateNeg(Y); 1934 1935 // (X-Y)-X == -Y 1936 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1937 return BinaryOperator::CreateNeg(Y); 1938 } 1939 1940 // (sub (or A, B) (and A, B)) --> (xor A, B) 1941 { 1942 Value *A, *B; 1943 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1944 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1945 return BinaryOperator::CreateXor(A, B); 1946 } 1947 1948 // (sub (add A, B) (or A, B)) --> (and A, B) 1949 { 1950 Value *A, *B; 1951 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 1952 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 1953 return BinaryOperator::CreateAnd(A, B); 1954 } 1955 1956 // (sub (add A, B) (and A, B)) --> (or A, B) 1957 { 1958 Value *A, *B; 1959 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 1960 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 1961 return BinaryOperator::CreateOr(A, B); 1962 } 1963 1964 // (sub (and A, B) (or A, B)) --> neg (xor A, B) 1965 { 1966 Value *A, *B; 1967 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1968 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 1969 (Op0->hasOneUse() || Op1->hasOneUse())) 1970 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); 1971 } 1972 1973 // (sub (or A, B), (xor A, B)) --> (and A, B) 1974 { 1975 Value *A, *B; 1976 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1977 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1978 return BinaryOperator::CreateAnd(A, B); 1979 } 1980 1981 // (sub (xor A, B) (or A, B)) --> neg (and A, B) 1982 { 1983 Value *A, *B; 1984 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1985 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 1986 (Op0->hasOneUse() || Op1->hasOneUse())) 1987 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); 1988 } 1989 1990 { 1991 Value *Y; 1992 // ((X | Y) - X) --> (~X & Y) 1993 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 1994 return BinaryOperator::CreateAnd( 1995 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 1996 } 1997 1998 { 1999 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) 2000 Value *X; 2001 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), 2002 m_OneUse(m_Neg(m_Value(X))))))) { 2003 return BinaryOperator::CreateNeg(Builder.CreateAnd( 2004 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); 2005 } 2006 } 2007 2008 { 2009 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) 2010 Constant *C; 2011 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { 2012 return BinaryOperator::CreateNeg( 2013 Builder.CreateAnd(Op1, Builder.CreateNot(C))); 2014 } 2015 } 2016 2017 { 2018 // If we have a subtraction between some value and a select between 2019 // said value and something else, sink subtraction into select hands, i.e.: 2020 // sub (select %Cond, %TrueVal, %FalseVal), %Op1 2021 // -> 2022 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) 2023 // or 2024 // sub %Op0, (select %Cond, %TrueVal, %FalseVal) 2025 // -> 2026 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) 2027 // This will result in select between new subtraction and 0. 2028 auto SinkSubIntoSelect = 2029 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, 2030 auto SubBuilder) -> Instruction * { 2031 Value *Cond, *TrueVal, *FalseVal; 2032 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), 2033 m_Value(FalseVal))))) 2034 return nullptr; 2035 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) 2036 return nullptr; 2037 // While it is really tempting to just create two subtractions and let 2038 // InstCombine fold one of those to 0, it isn't possible to do so 2039 // because of worklist visitation order. So ugly it is. 2040 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; 2041 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); 2042 Constant *Zero = Constant::getNullValue(Ty); 2043 SelectInst *NewSel = 2044 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, 2045 OtherHandOfSubIsTrueVal ? NewSub : Zero); 2046 // Preserve prof metadata if any. 2047 NewSel->copyMetadata(cast<Instruction>(*Select)); 2048 return NewSel; 2049 }; 2050 if (Instruction *NewSel = SinkSubIntoSelect( 2051 /*Select=*/Op0, /*OtherHandOfSub=*/Op1, 2052 [Builder = &Builder, Op1](Value *OtherHandOfSelect) { 2053 return Builder->CreateSub(OtherHandOfSelect, 2054 /*OtherHandOfSub=*/Op1); 2055 })) 2056 return NewSel; 2057 if (Instruction *NewSel = SinkSubIntoSelect( 2058 /*Select=*/Op1, /*OtherHandOfSub=*/Op0, 2059 [Builder = &Builder, Op0](Value *OtherHandOfSelect) { 2060 return Builder->CreateSub(/*OtherHandOfSub=*/Op0, 2061 OtherHandOfSelect); 2062 })) 2063 return NewSel; 2064 } 2065 2066 // (X - (X & Y)) --> (X & ~Y) 2067 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) && 2068 (Op1->hasOneUse() || isa<Constant>(Y))) 2069 return BinaryOperator::CreateAnd( 2070 Op0, Builder.CreateNot(Y, Y->getName() + ".not")); 2071 2072 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X 2073 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X 2074 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y) 2075 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y) 2076 // As long as Y is freely invertible, this will be neutral or a win. 2077 // Note: We don't generate the inverse max/min, just create the 'not' of 2078 // it and let other folds do the rest. 2079 if (match(Op0, m_Not(m_Value(X))) && 2080 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) && 2081 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2082 Value *Not = Builder.CreateNot(Op1); 2083 return BinaryOperator::CreateSub(Not, X); 2084 } 2085 if (match(Op1, m_Not(m_Value(X))) && 2086 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) && 2087 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2088 Value *Not = Builder.CreateNot(Op0); 2089 return BinaryOperator::CreateSub(X, Not); 2090 } 2091 2092 // TODO: This is the same logic as above but handles the cmp-select idioms 2093 // for min/max, so the use checks are increased to account for the 2094 // extra instructions. If we canonicalize to intrinsics, this block 2095 // can likely be removed. 2096 { 2097 Value *LHS, *RHS, *A; 2098 Value *NotA = Op0, *MinMax = Op1; 2099 SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; 2100 if (!SelectPatternResult::isMinOrMax(SPF)) { 2101 NotA = Op1; 2102 MinMax = Op0; 2103 SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; 2104 } 2105 if (SelectPatternResult::isMinOrMax(SPF) && 2106 match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) { 2107 if (NotA == LHS) 2108 std::swap(LHS, RHS); 2109 // LHS is now Y above and expected to have at least 2 uses (the min/max) 2110 // NotA is expected to have 2 uses from the min/max and 1 from the sub. 2111 if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) && 2112 !NotA->hasNUsesOrMore(4)) { 2113 Value *Not = Builder.CreateNot(MinMax); 2114 if (NotA == Op0) 2115 return BinaryOperator::CreateSub(Not, A); 2116 else 2117 return BinaryOperator::CreateSub(A, Not); 2118 } 2119 } 2120 } 2121 2122 // Optimize pointer differences into the same array into a size. Consider: 2123 // &A[10] - &A[0]: we should compile this to "10". 2124 Value *LHSOp, *RHSOp; 2125 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 2126 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 2127 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2128 I.hasNoUnsignedWrap())) 2129 return replaceInstUsesWith(I, Res); 2130 2131 // trunc(p)-trunc(q) -> trunc(p-q) 2132 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 2133 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 2134 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2135 /* IsNUW */ false)) 2136 return replaceInstUsesWith(I, Res); 2137 2138 // Canonicalize a shifty way to code absolute value to the common pattern. 2139 // There are 2 potential commuted variants. 2140 // We're relying on the fact that we only do this transform when the shift has 2141 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 2142 // instructions). 2143 Value *A; 2144 const APInt *ShAmt; 2145 Type *Ty = I.getType(); 2146 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 2147 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 2148 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 2149 // B = ashr i32 A, 31 ; smear the sign bit 2150 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 2151 // --> (A < 0) ? -A : A 2152 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); 2153 // Copy the nuw/nsw flags from the sub to the negate. 2154 Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), 2155 I.hasNoSignedWrap()); 2156 return SelectInst::Create(Cmp, Neg, A); 2157 } 2158 2159 // If we are subtracting a low-bit masked subset of some value from an add 2160 // of that same value with no low bits changed, that is clearing some low bits 2161 // of the sum: 2162 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC 2163 const APInt *AddC, *AndC; 2164 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) && 2165 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) { 2166 unsigned BitWidth = Ty->getScalarSizeInBits(); 2167 unsigned Cttz = AddC->countTrailingZeros(); 2168 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz)); 2169 if ((HighMask & *AndC).isZero()) 2170 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC))); 2171 } 2172 2173 if (Instruction *V = 2174 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2175 return V; 2176 2177 // X - usub.sat(X, Y) => umin(X, Y) 2178 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0), 2179 m_Value(Y))))) 2180 return replaceInstUsesWith( 2181 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y})); 2182 2183 // umax(X, Op1) - Op1 --> usub.sat(X, Op1) 2184 // TODO: The one-use restriction is not strictly necessary, but it may 2185 // require improving other pattern matching and/or codegen. 2186 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1))))) 2187 return replaceInstUsesWith( 2188 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1})); 2189 2190 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0) 2191 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) { 2192 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0}); 2193 return BinaryOperator::CreateNeg(USub); 2194 } 2195 2196 // C - ctpop(X) => ctpop(~X) if C is bitwidth 2197 if (match(Op0, m_SpecificInt(Ty->getScalarSizeInBits())) && 2198 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X))))) 2199 return replaceInstUsesWith( 2200 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 2201 {Builder.CreateNot(X)})); 2202 2203 return TryToNarrowDeduceFlags(); 2204 } 2205 2206 /// This eliminates floating-point negation in either 'fneg(X)' or 2207 /// 'fsub(-0.0, X)' form by combining into a constant operand. 2208 static Instruction *foldFNegIntoConstant(Instruction &I) { 2209 // This is limited with one-use because fneg is assumed better for 2210 // reassociation and cheaper in codegen than fmul/fdiv. 2211 // TODO: Should the m_OneUse restriction be removed? 2212 Instruction *FNegOp; 2213 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp))))) 2214 return nullptr; 2215 2216 Value *X; 2217 Constant *C; 2218 2219 // Fold negation into constant operand. 2220 // -(X * C) --> X * (-C) 2221 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C)))) 2222 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); 2223 // -(X / C) --> X / (-C) 2224 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C)))) 2225 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); 2226 // -(C / X) --> (-C) / X 2227 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) { 2228 Instruction *FDiv = 2229 BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); 2230 2231 // Intersect 'nsz' and 'ninf' because those special value exceptions may not 2232 // apply to the fdiv. Everything else propagates from the fneg. 2233 // TODO: We could propagate nsz/ninf from fdiv alone? 2234 FastMathFlags FMF = I.getFastMathFlags(); 2235 FastMathFlags OpFMF = FNegOp->getFastMathFlags(); 2236 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros()); 2237 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs()); 2238 return FDiv; 2239 } 2240 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]: 2241 // -(X + C) --> -X + -C --> -C - X 2242 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C)))) 2243 return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I); 2244 2245 return nullptr; 2246 } 2247 2248 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I, 2249 InstCombiner::BuilderTy &Builder) { 2250 Value *FNeg; 2251 if (!match(&I, m_FNeg(m_Value(FNeg)))) 2252 return nullptr; 2253 2254 Value *X, *Y; 2255 if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y))))) 2256 return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2257 2258 if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y))))) 2259 return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2260 2261 return nullptr; 2262 } 2263 2264 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) { 2265 Value *Op = I.getOperand(0); 2266 2267 if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(), 2268 getSimplifyQuery().getWithInstruction(&I))) 2269 return replaceInstUsesWith(I, V); 2270 2271 if (Instruction *X = foldFNegIntoConstant(I)) 2272 return X; 2273 2274 Value *X, *Y; 2275 2276 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 2277 if (I.hasNoSignedZeros() && 2278 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 2279 return BinaryOperator::CreateFSubFMF(Y, X, &I); 2280 2281 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2282 return R; 2283 2284 // Try to eliminate fneg if at least 1 arm of the select is negated. 2285 Value *Cond; 2286 if (match(Op, m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) { 2287 // Unlike most transforms, this one is not safe to propagate nsz unless 2288 // it is present on the original select. (We are conservatively intersecting 2289 // the nsz flags from the select and root fneg instruction.) 2290 auto propagateSelectFMF = [&](SelectInst *S) { 2291 S->copyFastMathFlags(&I); 2292 if (auto *OldSel = dyn_cast<SelectInst>(Op)) 2293 if (!OldSel->hasNoSignedZeros()) 2294 S->setHasNoSignedZeros(false); 2295 }; 2296 // -(Cond ? -P : Y) --> Cond ? P : -Y 2297 Value *P; 2298 if (match(X, m_FNeg(m_Value(P)))) { 2299 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); 2300 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY); 2301 propagateSelectFMF(NewSel); 2302 return NewSel; 2303 } 2304 // -(Cond ? X : -P) --> Cond ? -X : P 2305 if (match(Y, m_FNeg(m_Value(P)))) { 2306 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); 2307 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P); 2308 propagateSelectFMF(NewSel); 2309 return NewSel; 2310 } 2311 } 2312 2313 return nullptr; 2314 } 2315 2316 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) { 2317 if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1), 2318 I.getFastMathFlags(), 2319 getSimplifyQuery().getWithInstruction(&I))) 2320 return replaceInstUsesWith(I, V); 2321 2322 if (Instruction *X = foldVectorBinop(I)) 2323 return X; 2324 2325 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2326 return Phi; 2327 2328 // Subtraction from -0.0 is the canonical form of fneg. 2329 // fsub -0.0, X ==> fneg X 2330 // fsub nsz 0.0, X ==> fneg nsz X 2331 // 2332 // FIXME This matcher does not respect FTZ or DAZ yet: 2333 // fsub -0.0, Denorm ==> +-0 2334 // fneg Denorm ==> -Denorm 2335 Value *Op; 2336 if (match(&I, m_FNeg(m_Value(Op)))) 2337 return UnaryOperator::CreateFNegFMF(Op, &I); 2338 2339 if (Instruction *X = foldFNegIntoConstant(I)) 2340 return X; 2341 2342 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2343 return R; 2344 2345 Value *X, *Y; 2346 Constant *C; 2347 2348 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2349 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 2350 // Canonicalize to fadd to make analysis easier. 2351 // This can also help codegen because fadd is commutative. 2352 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 2353 // killed later. We still limit that particular transform with 'hasOneUse' 2354 // because an fneg is assumed better/cheaper than a generic fsub. 2355 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { 2356 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2357 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 2358 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 2359 } 2360 } 2361 2362 // (-X) - Op1 --> -(X + Op1) 2363 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) && 2364 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) { 2365 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I); 2366 return UnaryOperator::CreateFNegFMF(FAdd, &I); 2367 } 2368 2369 if (isa<Constant>(Op0)) 2370 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2371 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 2372 return NV; 2373 2374 // X - C --> X + (-C) 2375 // But don't transform constant expressions because there's an inverse fold 2376 // for X + (-Y) --> X - Y. 2377 if (match(Op1, m_ImmConstant(C))) 2378 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); 2379 2380 // X - (-Y) --> X + Y 2381 if (match(Op1, m_FNeg(m_Value(Y)))) 2382 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 2383 2384 // Similar to above, but look through a cast of the negated value: 2385 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 2386 Type *Ty = I.getType(); 2387 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 2388 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 2389 2390 // X - (fpext(-Y)) --> X + fpext(Y) 2391 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 2392 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 2393 2394 // Similar to above, but look through fmul/fdiv of the negated value: 2395 // Op0 - (-X * Y) --> Op0 + (X * Y) 2396 // Op0 - (Y * -X) --> Op0 + (X * Y) 2397 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 2398 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 2399 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 2400 } 2401 // Op0 - (-X / Y) --> Op0 + (X / Y) 2402 // Op0 - (X / -Y) --> Op0 + (X / Y) 2403 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 2404 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 2405 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 2406 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 2407 } 2408 2409 // Handle special cases for FSub with selects feeding the operation 2410 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 2411 return replaceInstUsesWith(I, V); 2412 2413 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2414 // (Y - X) - Y --> -X 2415 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 2416 return UnaryOperator::CreateFNegFMF(X, &I); 2417 2418 // Y - (X + Y) --> -X 2419 // Y - (Y + X) --> -X 2420 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 2421 return UnaryOperator::CreateFNegFMF(X, &I); 2422 2423 // (X * C) - X --> X * (C - 1.0) 2424 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 2425 Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0)); 2426 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 2427 } 2428 // X - (X * C) --> X * (1.0 - C) 2429 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 2430 Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C); 2431 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 2432 } 2433 2434 // Reassociate fsub/fadd sequences to create more fadd instructions and 2435 // reduce dependency chains: 2436 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2437 Value *Z; 2438 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))), 2439 m_Value(Z))))) { 2440 Value *XZ = Builder.CreateFAddFMF(X, Z, &I); 2441 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I); 2442 return BinaryOperator::CreateFSubFMF(XZ, YW, &I); 2443 } 2444 2445 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) { 2446 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum), 2447 m_Value(Vec))); 2448 }; 2449 Value *A0, *A1, *V0, *V1; 2450 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) && 2451 V0->getType() == V1->getType()) { 2452 // Difference of sums is sum of differences: 2453 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1 2454 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I); 2455 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 2456 {Sub->getType()}, {A0, Sub}, &I); 2457 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I); 2458 } 2459 2460 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2461 return F; 2462 2463 // TODO: This performs reassociative folds for FP ops. Some fraction of the 2464 // functionality has been subsumed by simple pattern matching here and in 2465 // InstSimplify. We should let a dedicated reassociation pass handle more 2466 // complex pattern matching and remove this from InstCombine. 2467 if (Value *V = FAddCombine(Builder).simplify(&I)) 2468 return replaceInstUsesWith(I, V); 2469 2470 // (X - Y) - Op1 --> X - (Y + Op1) 2471 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2472 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I); 2473 return BinaryOperator::CreateFSubFMF(X, FAdd, &I); 2474 } 2475 } 2476 2477 return nullptr; 2478 } 2479