1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include <cassert> 33 #include <utility> 34 35 using namespace llvm; 36 using namespace PatternMatch; 37 38 #define DEBUG_TYPE "instcombine" 39 40 namespace { 41 42 /// Class representing coefficient of floating-point addend. 43 /// This class needs to be highly efficient, which is especially true for 44 /// the constructor. As of I write this comment, the cost of the default 45 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 46 /// perform write-merging). 47 /// 48 class FAddendCoef { 49 public: 50 // The constructor has to initialize a APFloat, which is unnecessary for 51 // most addends which have coefficient either 1 or -1. So, the constructor 52 // is expensive. In order to avoid the cost of the constructor, we should 53 // reuse some instances whenever possible. The pre-created instances 54 // FAddCombine::Add[0-5] embodies this idea. 55 FAddendCoef() = default; 56 ~FAddendCoef(); 57 58 // If possible, don't define operator+/operator- etc because these 59 // operators inevitably call FAddendCoef's constructor which is not cheap. 60 void operator=(const FAddendCoef &A); 61 void operator+=(const FAddendCoef &A); 62 void operator*=(const FAddendCoef &S); 63 64 void set(short C) { 65 assert(!insaneIntVal(C) && "Insane coefficient"); 66 IsFp = false; IntVal = C; 67 } 68 69 void set(const APFloat& C); 70 71 void negate(); 72 73 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 74 Value *getValue(Type *) const; 75 76 bool isOne() const { return isInt() && IntVal == 1; } 77 bool isTwo() const { return isInt() && IntVal == 2; } 78 bool isMinusOne() const { return isInt() && IntVal == -1; } 79 bool isMinusTwo() const { return isInt() && IntVal == -2; } 80 81 private: 82 bool insaneIntVal(int V) { return V > 4 || V < -4; } 83 84 APFloat *getFpValPtr() 85 { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); } 86 87 const APFloat *getFpValPtr() const 88 { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); } 89 90 const APFloat &getFpVal() const { 91 assert(IsFp && BufHasFpVal && "Incorret state"); 92 return *getFpValPtr(); 93 } 94 95 APFloat &getFpVal() { 96 assert(IsFp && BufHasFpVal && "Incorret state"); 97 return *getFpValPtr(); 98 } 99 100 bool isInt() const { return !IsFp; } 101 102 // If the coefficient is represented by an integer, promote it to a 103 // floating point. 104 void convertToFpType(const fltSemantics &Sem); 105 106 // Construct an APFloat from a signed integer. 107 // TODO: We should get rid of this function when APFloat can be constructed 108 // from an *SIGNED* integer. 109 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 110 111 bool IsFp = false; 112 113 // True iff FpValBuf contains an instance of APFloat. 114 bool BufHasFpVal = false; 115 116 // The integer coefficient of an individual addend is either 1 or -1, 117 // and we try to simplify at most 4 addends from neighboring at most 118 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 119 // is overkill of this end. 120 short IntVal = 0; 121 122 AlignedCharArrayUnion<APFloat> FpValBuf; 123 }; 124 125 /// FAddend is used to represent floating-point addend. An addend is 126 /// represented as <C, V>, where the V is a symbolic value, and C is a 127 /// constant coefficient. A constant addend is represented as <C, 0>. 128 class FAddend { 129 public: 130 FAddend() = default; 131 132 void operator+=(const FAddend &T) { 133 assert((Val == T.Val) && "Symbolic-values disagree"); 134 Coeff += T.Coeff; 135 } 136 137 Value *getSymVal() const { return Val; } 138 const FAddendCoef &getCoef() const { return Coeff; } 139 140 bool isConstant() const { return Val == nullptr; } 141 bool isZero() const { return Coeff.isZero(); } 142 143 void set(short Coefficient, Value *V) { 144 Coeff.set(Coefficient); 145 Val = V; 146 } 147 void set(const APFloat &Coefficient, Value *V) { 148 Coeff.set(Coefficient); 149 Val = V; 150 } 151 void set(const ConstantFP *Coefficient, Value *V) { 152 Coeff.set(Coefficient->getValueAPF()); 153 Val = V; 154 } 155 156 void negate() { Coeff.negate(); } 157 158 /// Drill down the U-D chain one step to find the definition of V, and 159 /// try to break the definition into one or two addends. 160 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 161 162 /// Similar to FAddend::drillDownOneStep() except that the value being 163 /// splitted is the addend itself. 164 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 165 166 private: 167 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 168 169 // This addend has the value of "Coeff * Val". 170 Value *Val = nullptr; 171 FAddendCoef Coeff; 172 }; 173 174 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 175 /// with its neighboring at most two instructions. 176 /// 177 class FAddCombine { 178 public: 179 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 180 181 Value *simplify(Instruction *FAdd); 182 183 private: 184 using AddendVect = SmallVector<const FAddend *, 4>; 185 186 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 187 188 /// Convert given addend to a Value 189 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 190 191 /// Return the number of instructions needed to emit the N-ary addition. 192 unsigned calcInstrNumber(const AddendVect& Vect); 193 194 Value *createFSub(Value *Opnd0, Value *Opnd1); 195 Value *createFAdd(Value *Opnd0, Value *Opnd1); 196 Value *createFMul(Value *Opnd0, Value *Opnd1); 197 Value *createFNeg(Value *V); 198 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 199 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 200 201 // Debugging stuff are clustered here. 202 #ifndef NDEBUG 203 unsigned CreateInstrNum; 204 void initCreateInstNum() { CreateInstrNum = 0; } 205 void incCreateInstNum() { CreateInstrNum++; } 206 #else 207 void initCreateInstNum() {} 208 void incCreateInstNum() {} 209 #endif 210 211 InstCombiner::BuilderTy &Builder; 212 Instruction *Instr = nullptr; 213 }; 214 215 } // end anonymous namespace 216 217 //===----------------------------------------------------------------------===// 218 // 219 // Implementation of 220 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 221 // 222 //===----------------------------------------------------------------------===// 223 FAddendCoef::~FAddendCoef() { 224 if (BufHasFpVal) 225 getFpValPtr()->~APFloat(); 226 } 227 228 void FAddendCoef::set(const APFloat& C) { 229 APFloat *P = getFpValPtr(); 230 231 if (isInt()) { 232 // As the buffer is meanless byte stream, we cannot call 233 // APFloat::operator=(). 234 new(P) APFloat(C); 235 } else 236 *P = C; 237 238 IsFp = BufHasFpVal = true; 239 } 240 241 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 242 if (!isInt()) 243 return; 244 245 APFloat *P = getFpValPtr(); 246 if (IntVal > 0) 247 new(P) APFloat(Sem, IntVal); 248 else { 249 new(P) APFloat(Sem, 0 - IntVal); 250 P->changeSign(); 251 } 252 IsFp = BufHasFpVal = true; 253 } 254 255 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 256 if (Val >= 0) 257 return APFloat(Sem, Val); 258 259 APFloat T(Sem, 0 - Val); 260 T.changeSign(); 261 262 return T; 263 } 264 265 void FAddendCoef::operator=(const FAddendCoef &That) { 266 if (That.isInt()) 267 set(That.IntVal); 268 else 269 set(That.getFpVal()); 270 } 271 272 void FAddendCoef::operator+=(const FAddendCoef &That) { 273 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven; 274 if (isInt() == That.isInt()) { 275 if (isInt()) 276 IntVal += That.IntVal; 277 else 278 getFpVal().add(That.getFpVal(), RndMode); 279 return; 280 } 281 282 if (isInt()) { 283 const APFloat &T = That.getFpVal(); 284 convertToFpType(T.getSemantics()); 285 getFpVal().add(T, RndMode); 286 return; 287 } 288 289 APFloat &T = getFpVal(); 290 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 291 } 292 293 void FAddendCoef::operator*=(const FAddendCoef &That) { 294 if (That.isOne()) 295 return; 296 297 if (That.isMinusOne()) { 298 negate(); 299 return; 300 } 301 302 if (isInt() && That.isInt()) { 303 int Res = IntVal * (int)That.IntVal; 304 assert(!insaneIntVal(Res) && "Insane int value"); 305 IntVal = Res; 306 return; 307 } 308 309 const fltSemantics &Semantic = 310 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 311 312 if (isInt()) 313 convertToFpType(Semantic); 314 APFloat &F0 = getFpVal(); 315 316 if (That.isInt()) 317 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 318 APFloat::rmNearestTiesToEven); 319 else 320 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 321 } 322 323 void FAddendCoef::negate() { 324 if (isInt()) 325 IntVal = 0 - IntVal; 326 else 327 getFpVal().changeSign(); 328 } 329 330 Value *FAddendCoef::getValue(Type *Ty) const { 331 return isInt() ? 332 ConstantFP::get(Ty, float(IntVal)) : 333 ConstantFP::get(Ty->getContext(), getFpVal()); 334 } 335 336 // The definition of <Val> Addends 337 // ========================================= 338 // A + B <1, A>, <1,B> 339 // A - B <1, A>, <1,B> 340 // 0 - B <-1, B> 341 // C * A, <C, A> 342 // A + C <1, A> <C, NULL> 343 // 0 +/- 0 <0, NULL> (corner case) 344 // 345 // Legend: A and B are not constant, C is constant 346 unsigned FAddend::drillValueDownOneStep 347 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 348 Instruction *I = nullptr; 349 if (!Val || !(I = dyn_cast<Instruction>(Val))) 350 return 0; 351 352 unsigned Opcode = I->getOpcode(); 353 354 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 355 ConstantFP *C0, *C1; 356 Value *Opnd0 = I->getOperand(0); 357 Value *Opnd1 = I->getOperand(1); 358 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 359 Opnd0 = nullptr; 360 361 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 362 Opnd1 = nullptr; 363 364 if (Opnd0) { 365 if (!C0) 366 Addend0.set(1, Opnd0); 367 else 368 Addend0.set(C0, nullptr); 369 } 370 371 if (Opnd1) { 372 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 373 if (!C1) 374 Addend.set(1, Opnd1); 375 else 376 Addend.set(C1, nullptr); 377 if (Opcode == Instruction::FSub) 378 Addend.negate(); 379 } 380 381 if (Opnd0 || Opnd1) 382 return Opnd0 && Opnd1 ? 2 : 1; 383 384 // Both operands are zero. Weird! 385 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 386 return 1; 387 } 388 389 if (I->getOpcode() == Instruction::FMul) { 390 Value *V0 = I->getOperand(0); 391 Value *V1 = I->getOperand(1); 392 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 393 Addend0.set(C, V1); 394 return 1; 395 } 396 397 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 398 Addend0.set(C, V0); 399 return 1; 400 } 401 } 402 403 return 0; 404 } 405 406 // Try to break *this* addend into two addends. e.g. Suppose this addend is 407 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 408 // i.e. <2.3, X> and <2.3, Y>. 409 unsigned FAddend::drillAddendDownOneStep 410 (FAddend &Addend0, FAddend &Addend1) const { 411 if (isConstant()) 412 return 0; 413 414 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 415 if (!BreakNum || Coeff.isOne()) 416 return BreakNum; 417 418 Addend0.Scale(Coeff); 419 420 if (BreakNum == 2) 421 Addend1.Scale(Coeff); 422 423 return BreakNum; 424 } 425 426 Value *FAddCombine::simplify(Instruction *I) { 427 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 428 "Expected 'reassoc'+'nsz' instruction"); 429 430 // Currently we are not able to handle vector type. 431 if (I->getType()->isVectorTy()) 432 return nullptr; 433 434 assert((I->getOpcode() == Instruction::FAdd || 435 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 436 437 // Save the instruction before calling other member-functions. 438 Instr = I; 439 440 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 441 442 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 443 444 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 445 unsigned Opnd0_ExpNum = 0; 446 unsigned Opnd1_ExpNum = 0; 447 448 if (!Opnd0.isConstant()) 449 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 450 451 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 452 if (OpndNum == 2 && !Opnd1.isConstant()) 453 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 454 455 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 456 if (Opnd0_ExpNum && Opnd1_ExpNum) { 457 AddendVect AllOpnds; 458 AllOpnds.push_back(&Opnd0_0); 459 AllOpnds.push_back(&Opnd1_0); 460 if (Opnd0_ExpNum == 2) 461 AllOpnds.push_back(&Opnd0_1); 462 if (Opnd1_ExpNum == 2) 463 AllOpnds.push_back(&Opnd1_1); 464 465 // Compute instruction quota. We should save at least one instruction. 466 unsigned InstQuota = 0; 467 468 Value *V0 = I->getOperand(0); 469 Value *V1 = I->getOperand(1); 470 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 471 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 472 473 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 474 return R; 475 } 476 477 if (OpndNum != 2) { 478 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 479 // splitted into two addends, say "V = X - Y", the instruction would have 480 // been optimized into "I = Y - X" in the previous steps. 481 // 482 const FAddendCoef &CE = Opnd0.getCoef(); 483 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 484 } 485 486 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 487 if (Opnd1_ExpNum) { 488 AddendVect AllOpnds; 489 AllOpnds.push_back(&Opnd0); 490 AllOpnds.push_back(&Opnd1_0); 491 if (Opnd1_ExpNum == 2) 492 AllOpnds.push_back(&Opnd1_1); 493 494 if (Value *R = simplifyFAdd(AllOpnds, 1)) 495 return R; 496 } 497 498 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 499 if (Opnd0_ExpNum) { 500 AddendVect AllOpnds; 501 AllOpnds.push_back(&Opnd1); 502 AllOpnds.push_back(&Opnd0_0); 503 if (Opnd0_ExpNum == 2) 504 AllOpnds.push_back(&Opnd0_1); 505 506 if (Value *R = simplifyFAdd(AllOpnds, 1)) 507 return R; 508 } 509 510 return nullptr; 511 } 512 513 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 514 unsigned AddendNum = Addends.size(); 515 assert(AddendNum <= 4 && "Too many addends"); 516 517 // For saving intermediate results; 518 unsigned NextTmpIdx = 0; 519 FAddend TmpResult[3]; 520 521 // Points to the constant addend of the resulting simplified expression. 522 // If the resulting expr has constant-addend, this constant-addend is 523 // desirable to reside at the top of the resulting expression tree. Placing 524 // constant close to supper-expr(s) will potentially reveal some optimization 525 // opportunities in super-expr(s). 526 const FAddend *ConstAdd = nullptr; 527 528 // Simplified addends are placed <SimpVect>. 529 AddendVect SimpVect; 530 531 // The outer loop works on one symbolic-value at a time. Suppose the input 532 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 533 // The symbolic-values will be processed in this order: x, y, z. 534 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 535 536 const FAddend *ThisAddend = Addends[SymIdx]; 537 if (!ThisAddend) { 538 // This addend was processed before. 539 continue; 540 } 541 542 Value *Val = ThisAddend->getSymVal(); 543 unsigned StartIdx = SimpVect.size(); 544 SimpVect.push_back(ThisAddend); 545 546 // The inner loop collects addends sharing same symbolic-value, and these 547 // addends will be later on folded into a single addend. Following above 548 // example, if the symbolic value "y" is being processed, the inner loop 549 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 550 // be later on folded into "<b1+b2, y>". 551 for (unsigned SameSymIdx = SymIdx + 1; 552 SameSymIdx < AddendNum; SameSymIdx++) { 553 const FAddend *T = Addends[SameSymIdx]; 554 if (T && T->getSymVal() == Val) { 555 // Set null such that next iteration of the outer loop will not process 556 // this addend again. 557 Addends[SameSymIdx] = nullptr; 558 SimpVect.push_back(T); 559 } 560 } 561 562 // If multiple addends share same symbolic value, fold them together. 563 if (StartIdx + 1 != SimpVect.size()) { 564 FAddend &R = TmpResult[NextTmpIdx ++]; 565 R = *SimpVect[StartIdx]; 566 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 567 R += *SimpVect[Idx]; 568 569 // Pop all addends being folded and push the resulting folded addend. 570 SimpVect.resize(StartIdx); 571 if (Val) { 572 if (!R.isZero()) { 573 SimpVect.push_back(&R); 574 } 575 } else { 576 // Don't push constant addend at this time. It will be the last element 577 // of <SimpVect>. 578 ConstAdd = &R; 579 } 580 } 581 } 582 583 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 584 "out-of-bound access"); 585 586 if (ConstAdd) 587 SimpVect.push_back(ConstAdd); 588 589 Value *Result; 590 if (!SimpVect.empty()) 591 Result = createNaryFAdd(SimpVect, InstrQuota); 592 else { 593 // The addition is folded to 0.0. 594 Result = ConstantFP::get(Instr->getType(), 0.0); 595 } 596 597 return Result; 598 } 599 600 Value *FAddCombine::createNaryFAdd 601 (const AddendVect &Opnds, unsigned InstrQuota) { 602 assert(!Opnds.empty() && "Expect at least one addend"); 603 604 // Step 1: Check if the # of instructions needed exceeds the quota. 605 606 unsigned InstrNeeded = calcInstrNumber(Opnds); 607 if (InstrNeeded > InstrQuota) 608 return nullptr; 609 610 initCreateInstNum(); 611 612 // step 2: Emit the N-ary addition. 613 // Note that at most three instructions are involved in Fadd-InstCombine: the 614 // addition in question, and at most two neighboring instructions. 615 // The resulting optimized addition should have at least one less instruction 616 // than the original addition expression tree. This implies that the resulting 617 // N-ary addition has at most two instructions, and we don't need to worry 618 // about tree-height when constructing the N-ary addition. 619 620 Value *LastVal = nullptr; 621 bool LastValNeedNeg = false; 622 623 // Iterate the addends, creating fadd/fsub using adjacent two addends. 624 for (const FAddend *Opnd : Opnds) { 625 bool NeedNeg; 626 Value *V = createAddendVal(*Opnd, NeedNeg); 627 if (!LastVal) { 628 LastVal = V; 629 LastValNeedNeg = NeedNeg; 630 continue; 631 } 632 633 if (LastValNeedNeg == NeedNeg) { 634 LastVal = createFAdd(LastVal, V); 635 continue; 636 } 637 638 if (LastValNeedNeg) 639 LastVal = createFSub(V, LastVal); 640 else 641 LastVal = createFSub(LastVal, V); 642 643 LastValNeedNeg = false; 644 } 645 646 if (LastValNeedNeg) { 647 LastVal = createFNeg(LastVal); 648 } 649 650 #ifndef NDEBUG 651 assert(CreateInstrNum == InstrNeeded && 652 "Inconsistent in instruction numbers"); 653 #endif 654 655 return LastVal; 656 } 657 658 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 659 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 660 if (Instruction *I = dyn_cast<Instruction>(V)) 661 createInstPostProc(I); 662 return V; 663 } 664 665 Value *FAddCombine::createFNeg(Value *V) { 666 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType())); 667 Value *NewV = createFSub(Zero, V); 668 if (Instruction *I = dyn_cast<Instruction>(NewV)) 669 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 670 return NewV; 671 } 672 673 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 674 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 675 if (Instruction *I = dyn_cast<Instruction>(V)) 676 createInstPostProc(I); 677 return V; 678 } 679 680 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 681 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 682 if (Instruction *I = dyn_cast<Instruction>(V)) 683 createInstPostProc(I); 684 return V; 685 } 686 687 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 688 NewInstr->setDebugLoc(Instr->getDebugLoc()); 689 690 // Keep track of the number of instruction created. 691 if (!NoNumber) 692 incCreateInstNum(); 693 694 // Propagate fast-math flags 695 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 696 } 697 698 // Return the number of instruction needed to emit the N-ary addition. 699 // NOTE: Keep this function in sync with createAddendVal(). 700 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 701 unsigned OpndNum = Opnds.size(); 702 unsigned InstrNeeded = OpndNum - 1; 703 704 // The number of addends in the form of "(-1)*x". 705 unsigned NegOpndNum = 0; 706 707 // Adjust the number of instructions needed to emit the N-ary add. 708 for (const FAddend *Opnd : Opnds) { 709 if (Opnd->isConstant()) 710 continue; 711 712 // The constant check above is really for a few special constant 713 // coefficients. 714 if (isa<UndefValue>(Opnd->getSymVal())) 715 continue; 716 717 const FAddendCoef &CE = Opnd->getCoef(); 718 if (CE.isMinusOne() || CE.isMinusTwo()) 719 NegOpndNum++; 720 721 // Let the addend be "c * x". If "c == +/-1", the value of the addend 722 // is immediately available; otherwise, it needs exactly one instruction 723 // to evaluate the value. 724 if (!CE.isMinusOne() && !CE.isOne()) 725 InstrNeeded++; 726 } 727 if (NegOpndNum == OpndNum) 728 InstrNeeded++; 729 return InstrNeeded; 730 } 731 732 // Input Addend Value NeedNeg(output) 733 // ================================================================ 734 // Constant C C false 735 // <+/-1, V> V coefficient is -1 736 // <2/-2, V> "fadd V, V" coefficient is -2 737 // <C, V> "fmul V, C" false 738 // 739 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 740 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 741 const FAddendCoef &Coeff = Opnd.getCoef(); 742 743 if (Opnd.isConstant()) { 744 NeedNeg = false; 745 return Coeff.getValue(Instr->getType()); 746 } 747 748 Value *OpndVal = Opnd.getSymVal(); 749 750 if (Coeff.isMinusOne() || Coeff.isOne()) { 751 NeedNeg = Coeff.isMinusOne(); 752 return OpndVal; 753 } 754 755 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 756 NeedNeg = Coeff.isMinusTwo(); 757 return createFAdd(OpndVal, OpndVal); 758 } 759 760 NeedNeg = false; 761 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 762 } 763 764 // Checks if any operand is negative and we can convert add to sub. 765 // This function checks for following negative patterns 766 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 767 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 768 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 769 static Value *checkForNegativeOperand(BinaryOperator &I, 770 InstCombiner::BuilderTy &Builder) { 771 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 772 773 // This function creates 2 instructions to replace ADD, we need at least one 774 // of LHS or RHS to have one use to ensure benefit in transform. 775 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 776 return nullptr; 777 778 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 779 const APInt *C1 = nullptr, *C2 = nullptr; 780 781 // if ONE is on other side, swap 782 if (match(RHS, m_Add(m_Value(X), m_One()))) 783 std::swap(LHS, RHS); 784 785 if (match(LHS, m_Add(m_Value(X), m_One()))) { 786 // if XOR on other side, swap 787 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 788 std::swap(X, RHS); 789 790 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 791 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 792 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 793 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 794 Value *NewAnd = Builder.CreateAnd(Z, *C1); 795 return Builder.CreateSub(RHS, NewAnd, "sub"); 796 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 797 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 798 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 799 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 800 return Builder.CreateSub(RHS, NewOr, "sub"); 801 } 802 } 803 } 804 805 // Restore LHS and RHS 806 LHS = I.getOperand(0); 807 RHS = I.getOperand(1); 808 809 // if XOR is on other side, swap 810 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 811 std::swap(LHS, RHS); 812 813 // C2 is ODD 814 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 815 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 816 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 817 if (C1->countTrailingZeros() == 0) 818 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 819 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 820 return Builder.CreateSub(RHS, NewOr, "sub"); 821 } 822 return nullptr; 823 } 824 825 /// Wrapping flags may allow combining constants separated by an extend. 826 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 827 InstCombiner::BuilderTy &Builder) { 828 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 829 Type *Ty = Add.getType(); 830 Constant *Op1C; 831 if (!match(Op1, m_Constant(Op1C))) 832 return nullptr; 833 834 // Try this match first because it results in an add in the narrow type. 835 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 836 Value *X; 837 const APInt *C1, *C2; 838 if (match(Op1, m_APInt(C1)) && 839 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 840 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 841 Constant *NewC = 842 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); 843 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 844 } 845 846 // More general combining of constants in the wide type. 847 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 848 Constant *NarrowC; 849 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { 850 Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty); 851 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 852 Value *WideX = Builder.CreateSExt(X, Ty); 853 return BinaryOperator::CreateAdd(WideX, NewC); 854 } 855 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 856 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { 857 Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty); 858 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 859 Value *WideX = Builder.CreateZExt(X, Ty); 860 return BinaryOperator::CreateAdd(WideX, NewC); 861 } 862 863 return nullptr; 864 } 865 866 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) { 867 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 868 Constant *Op1C; 869 if (!match(Op1, m_Constant(Op1C))) 870 return nullptr; 871 872 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 873 return NV; 874 875 Value *X; 876 Constant *Op00C; 877 878 // add (sub C1, X), C2 --> sub (add C1, C2), X 879 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 880 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 881 882 Value *Y; 883 884 // add (sub X, Y), -1 --> add (not Y), X 885 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 886 match(Op1, m_AllOnes())) 887 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 888 889 // zext(bool) + C -> bool ? C + 1 : C 890 if (match(Op0, m_ZExt(m_Value(X))) && 891 X->getType()->getScalarSizeInBits() == 1) 892 return SelectInst::Create(X, AddOne(Op1C), Op1); 893 894 // ~X + C --> (C-1) - X 895 if (match(Op0, m_Not(m_Value(X)))) 896 return BinaryOperator::CreateSub(SubOne(Op1C), X); 897 898 const APInt *C; 899 if (!match(Op1, m_APInt(C))) 900 return nullptr; 901 902 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 903 const APInt *C2; 904 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 905 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 906 907 if (C->isSignMask()) { 908 // If wrapping is not allowed, then the addition must set the sign bit: 909 // X + (signmask) --> X | signmask 910 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 911 return BinaryOperator::CreateOr(Op0, Op1); 912 913 // If wrapping is allowed, then the addition flips the sign bit of LHS: 914 // X + (signmask) --> X ^ signmask 915 return BinaryOperator::CreateXor(Op0, Op1); 916 } 917 918 // Is this add the last step in a convoluted sext? 919 // add(zext(xor i16 X, -32768), -32768) --> sext X 920 Type *Ty = Add.getType(); 921 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 922 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 923 return CastInst::Create(Instruction::SExt, X, Ty); 924 925 if (C->isOneValue() && Op0->hasOneUse()) { 926 // add (sext i1 X), 1 --> zext (not X) 927 // TODO: The smallest IR representation is (select X, 0, 1), and that would 928 // not require the one-use check. But we need to remove a transform in 929 // visitSelect and make sure that IR value tracking for select is equal or 930 // better than for these ops. 931 if (match(Op0, m_SExt(m_Value(X))) && 932 X->getType()->getScalarSizeInBits() == 1) 933 return new ZExtInst(Builder.CreateNot(X), Ty); 934 935 // Shifts and add used to flip and mask off the low bit: 936 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 937 const APInt *C3; 938 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 939 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 940 Value *NotX = Builder.CreateNot(X); 941 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 942 } 943 } 944 945 return nullptr; 946 } 947 948 // Matches multiplication expression Op * C where C is a constant. Returns the 949 // constant value in C and the other operand in Op. Returns true if such a 950 // match is found. 951 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 952 const APInt *AI; 953 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 954 C = *AI; 955 return true; 956 } 957 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 958 C = APInt(AI->getBitWidth(), 1); 959 C <<= *AI; 960 return true; 961 } 962 return false; 963 } 964 965 // Matches remainder expression Op % C where C is a constant. Returns the 966 // constant value in C and the other operand in Op. Returns the signedness of 967 // the remainder operation in IsSigned. Returns true if such a match is 968 // found. 969 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 970 const APInt *AI; 971 IsSigned = false; 972 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 973 IsSigned = true; 974 C = *AI; 975 return true; 976 } 977 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 978 C = *AI; 979 return true; 980 } 981 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 982 C = *AI + 1; 983 return true; 984 } 985 return false; 986 } 987 988 // Matches division expression Op / C with the given signedness as indicated 989 // by IsSigned, where C is a constant. Returns the constant value in C and the 990 // other operand in Op. Returns true if such a match is found. 991 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 992 const APInt *AI; 993 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 994 C = *AI; 995 return true; 996 } 997 if (!IsSigned) { 998 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 999 C = *AI; 1000 return true; 1001 } 1002 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1003 C = APInt(AI->getBitWidth(), 1); 1004 C <<= *AI; 1005 return true; 1006 } 1007 } 1008 return false; 1009 } 1010 1011 // Returns whether C0 * C1 with the given signedness overflows. 1012 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1013 bool overflow; 1014 if (IsSigned) 1015 (void)C0.smul_ov(C1, overflow); 1016 else 1017 (void)C0.umul_ov(C1, overflow); 1018 return overflow; 1019 } 1020 1021 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1022 // does not overflow. 1023 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) { 1024 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1025 Value *X, *MulOpV; 1026 APInt C0, MulOpC; 1027 bool IsSigned; 1028 // Match I = X % C0 + MulOpV * C0 1029 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1030 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1031 C0 == MulOpC) { 1032 Value *RemOpV; 1033 APInt C1; 1034 bool Rem2IsSigned; 1035 // Match MulOpC = RemOpV % C1 1036 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1037 IsSigned == Rem2IsSigned) { 1038 Value *DivOpV; 1039 APInt DivOpC; 1040 // Match RemOpV = X / C0 1041 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1042 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1043 Value *NewDivisor = 1044 ConstantInt::get(X->getType()->getContext(), C0 * C1); 1045 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1046 : Builder.CreateURem(X, NewDivisor, "urem"); 1047 } 1048 } 1049 } 1050 1051 return nullptr; 1052 } 1053 1054 /// Fold 1055 /// (1 << NBits) - 1 1056 /// Into: 1057 /// ~(-(1 << NBits)) 1058 /// Because a 'not' is better for bit-tracking analysis and other transforms 1059 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1060 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1061 InstCombiner::BuilderTy &Builder) { 1062 Value *NBits; 1063 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1064 return nullptr; 1065 1066 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1067 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1068 // Be wary of constant folding. 1069 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1070 // Always NSW. But NUW propagates from `add`. 1071 BOp->setHasNoSignedWrap(); 1072 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1073 } 1074 1075 return BinaryOperator::CreateNot(NotMask, I.getName()); 1076 } 1077 1078 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1079 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1080 Type *Ty = I.getType(); 1081 auto getUAddSat = [&]() { 1082 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); 1083 }; 1084 1085 // add (umin X, ~Y), Y --> uaddsat X, Y 1086 Value *X, *Y; 1087 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1088 m_Deferred(Y)))) 1089 return CallInst::Create(getUAddSat(), { X, Y }); 1090 1091 // add (umin X, ~C), C --> uaddsat X, C 1092 const APInt *C, *NotC; 1093 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1094 *C == ~*NotC) 1095 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1096 1097 return nullptr; 1098 } 1099 1100 Instruction * 1101 InstCombiner::canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( 1102 BinaryOperator &I) { 1103 assert((I.getOpcode() == Instruction::Add || 1104 I.getOpcode() == Instruction::Or || 1105 I.getOpcode() == Instruction::Sub) && 1106 "Expecting add/or/sub instruction"); 1107 1108 // We have a subtraction/addition between a (potentially truncated) *logical* 1109 // right-shift of X and a "select". 1110 Value *X, *Select; 1111 Instruction *LowBitsToSkip, *Extract; 1112 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( 1113 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), 1114 m_Instruction(Extract))), 1115 m_Value(Select)))) 1116 return nullptr; 1117 1118 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. 1119 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) 1120 return nullptr; 1121 1122 Type *XTy = X->getType(); 1123 bool HadTrunc = I.getType() != XTy; 1124 1125 // If there was a truncation of extracted value, then we'll need to produce 1126 // one extra instruction, so we need to ensure one instruction will go away. 1127 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1128 return nullptr; 1129 1130 // Extraction should extract high NBits bits, with shift amount calculated as: 1131 // low bits to skip = shift bitwidth - high bits to extract 1132 // The shift amount itself may be extended, and we need to look past zero-ext 1133 // when matching NBits, that will matter for matching later. 1134 Constant *C; 1135 Value *NBits; 1136 if (!match( 1137 LowBitsToSkip, 1138 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || 1139 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1140 APInt(C->getType()->getScalarSizeInBits(), 1141 X->getType()->getScalarSizeInBits())))) 1142 return nullptr; 1143 1144 // Sign-extending value can be zero-extended if we `sub`tract it, 1145 // or sign-extended otherwise. 1146 auto SkipExtInMagic = [&I](Value *&V) { 1147 if (I.getOpcode() == Instruction::Sub) 1148 match(V, m_ZExtOrSelf(m_Value(V))); 1149 else 1150 match(V, m_SExtOrSelf(m_Value(V))); 1151 }; 1152 1153 // Now, finally validate the sign-extending magic. 1154 // `select` itself may be appropriately extended, look past that. 1155 SkipExtInMagic(Select); 1156 1157 ICmpInst::Predicate Pred; 1158 const APInt *Thr; 1159 Value *SignExtendingValue, *Zero; 1160 bool ShouldSignext; 1161 // It must be a select between two values we will later establish to be a 1162 // sign-extending value and a zero constant. The condition guarding the 1163 // sign-extension must be based on a sign bit of the same X we had in `lshr`. 1164 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), 1165 m_Value(SignExtendingValue), m_Value(Zero))) || 1166 !isSignBitCheck(Pred, *Thr, ShouldSignext)) 1167 return nullptr; 1168 1169 // icmp-select pair is commutative. 1170 if (!ShouldSignext) 1171 std::swap(SignExtendingValue, Zero); 1172 1173 // If we should not perform sign-extension then we must add/or/subtract zero. 1174 if (!match(Zero, m_Zero())) 1175 return nullptr; 1176 // Otherwise, it should be some constant, left-shifted by the same NBits we 1177 // had in `lshr`. Said left-shift can also be appropriately extended. 1178 // Again, we must look past zero-ext when looking for NBits. 1179 SkipExtInMagic(SignExtendingValue); 1180 Constant *SignExtendingValueBaseConstant; 1181 if (!match(SignExtendingValue, 1182 m_Shl(m_Constant(SignExtendingValueBaseConstant), 1183 m_ZExtOrSelf(m_Specific(NBits))))) 1184 return nullptr; 1185 // If we `sub`, then the constant should be one, else it should be all-ones. 1186 if (I.getOpcode() == Instruction::Sub 1187 ? !match(SignExtendingValueBaseConstant, m_One()) 1188 : !match(SignExtendingValueBaseConstant, m_AllOnes())) 1189 return nullptr; 1190 1191 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, 1192 Extract->getName() + ".sext"); 1193 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. 1194 if (!HadTrunc) 1195 return NewAShr; 1196 1197 Builder.Insert(NewAShr); 1198 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); 1199 } 1200 1201 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 1202 if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1), 1203 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1204 SQ.getWithInstruction(&I))) 1205 return replaceInstUsesWith(I, V); 1206 1207 if (SimplifyAssociativeOrCommutative(I)) 1208 return &I; 1209 1210 if (Instruction *X = foldVectorBinop(I)) 1211 return X; 1212 1213 // (A*B)+(A*C) -> A*(B+C) etc 1214 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1215 return replaceInstUsesWith(I, V); 1216 1217 if (Instruction *X = foldAddWithConstant(I)) 1218 return X; 1219 1220 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1221 return X; 1222 1223 // FIXME: This should be moved into the above helper function to allow these 1224 // transforms for general constant or constant splat vectors. 1225 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1226 Type *Ty = I.getType(); 1227 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1228 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr; 1229 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 1230 unsigned TySizeBits = Ty->getScalarSizeInBits(); 1231 const APInt &RHSVal = CI->getValue(); 1232 unsigned ExtendAmt = 0; 1233 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 1234 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 1235 if (XorRHS->getValue() == -RHSVal) { 1236 if (RHSVal.isPowerOf2()) 1237 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 1238 else if (XorRHS->getValue().isPowerOf2()) 1239 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 1240 } 1241 1242 if (ExtendAmt) { 1243 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 1244 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I)) 1245 ExtendAmt = 0; 1246 } 1247 1248 if (ExtendAmt) { 1249 Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt); 1250 Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext"); 1251 return BinaryOperator::CreateAShr(NewShl, ShAmt); 1252 } 1253 1254 // If this is a xor that was canonicalized from a sub, turn it back into 1255 // a sub and fuse this add with it. 1256 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 1257 KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I); 1258 if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue()) 1259 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 1260 XorLHS); 1261 } 1262 // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C, 1263 // transform them into (X + (signmask ^ C)) 1264 if (XorRHS->getValue().isSignMask()) 1265 return BinaryOperator::CreateAdd(XorLHS, 1266 ConstantExpr::getXor(XorRHS, CI)); 1267 } 1268 } 1269 1270 if (Ty->isIntOrIntVectorTy(1)) 1271 return BinaryOperator::CreateXor(LHS, RHS); 1272 1273 // X + X --> X << 1 1274 if (LHS == RHS) { 1275 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1276 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1277 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1278 return Shl; 1279 } 1280 1281 Value *A, *B; 1282 if (match(LHS, m_Neg(m_Value(A)))) { 1283 // -A + -B --> -(A + B) 1284 if (match(RHS, m_Neg(m_Value(B)))) 1285 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1286 1287 // -A + B --> B - A 1288 return BinaryOperator::CreateSub(RHS, A); 1289 } 1290 1291 // Canonicalize sext to zext for better value tracking potential. 1292 // add A, sext(B) --> sub A, zext(B) 1293 if (match(&I, m_c_Add(m_Value(A), m_OneUse(m_SExt(m_Value(B))))) && 1294 B->getType()->isIntOrIntVectorTy(1)) 1295 return BinaryOperator::CreateSub(A, Builder.CreateZExt(B, Ty)); 1296 1297 // A + -B --> A - B 1298 if (match(RHS, m_Neg(m_Value(B)))) 1299 return BinaryOperator::CreateSub(LHS, B); 1300 1301 if (Value *V = checkForNegativeOperand(I, Builder)) 1302 return replaceInstUsesWith(I, V); 1303 1304 // (A + 1) + ~B --> A - B 1305 // ~B + (A + 1) --> A - B 1306 // (~B + A) + 1 --> A - B 1307 // (A + ~B) + 1 --> A - B 1308 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1309 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1310 return BinaryOperator::CreateSub(A, B); 1311 1312 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1313 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1314 1315 // A+B --> A|B iff A and B have no bits set in common. 1316 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1317 return BinaryOperator::CreateOr(LHS, RHS); 1318 1319 // FIXME: We already did a check for ConstantInt RHS above this. 1320 // FIXME: Is this pattern covered by another fold? No regression tests fail on 1321 // removal. 1322 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 1323 // (X & FF00) + xx00 -> (X+xx00) & FF00 1324 Value *X; 1325 ConstantInt *C2; 1326 if (LHS->hasOneUse() && 1327 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 1328 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 1329 // See if all bits from the first bit set in the Add RHS up are included 1330 // in the mask. First, get the rightmost bit. 1331 const APInt &AddRHSV = CRHS->getValue(); 1332 1333 // Form a mask of all bits from the lowest bit added through the top. 1334 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 1335 1336 // See if the and mask includes all of these bits. 1337 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 1338 1339 if (AddRHSHighBits == AddRHSHighBitsAnd) { 1340 // Okay, the xform is safe. Insert the new add pronto. 1341 Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName()); 1342 return BinaryOperator::CreateAnd(NewAdd, C2); 1343 } 1344 } 1345 } 1346 1347 // add (select X 0 (sub n A)) A --> select X A n 1348 { 1349 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1350 Value *A = RHS; 1351 if (!SI) { 1352 SI = dyn_cast<SelectInst>(RHS); 1353 A = LHS; 1354 } 1355 if (SI && SI->hasOneUse()) { 1356 Value *TV = SI->getTrueValue(); 1357 Value *FV = SI->getFalseValue(); 1358 Value *N; 1359 1360 // Can we fold the add into the argument of the select? 1361 // We check both true and false select arguments for a matching subtract. 1362 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1363 // Fold the add into the true select value. 1364 return SelectInst::Create(SI->getCondition(), N, A); 1365 1366 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1367 // Fold the add into the false select value. 1368 return SelectInst::Create(SI->getCondition(), A, N); 1369 } 1370 } 1371 1372 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1373 return Ext; 1374 1375 // (add (xor A, B) (and A, B)) --> (or A, B) 1376 // (add (and A, B) (xor A, B)) --> (or A, B) 1377 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1378 m_c_And(m_Deferred(A), m_Deferred(B))))) 1379 return BinaryOperator::CreateOr(A, B); 1380 1381 // (add (or A, B) (and A, B)) --> (add A, B) 1382 // (add (and A, B) (or A, B)) --> (add A, B) 1383 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1384 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1385 I.setOperand(0, A); 1386 I.setOperand(1, B); 1387 return &I; 1388 } 1389 1390 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1391 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1392 // computeKnownBits. 1393 bool Changed = false; 1394 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1395 Changed = true; 1396 I.setHasNoSignedWrap(true); 1397 } 1398 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1399 Changed = true; 1400 I.setHasNoUnsignedWrap(true); 1401 } 1402 1403 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1404 return V; 1405 1406 if (Instruction *V = 1407 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 1408 return V; 1409 1410 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1411 return SatAdd; 1412 1413 return Changed ? &I : nullptr; 1414 } 1415 1416 /// Eliminate an op from a linear interpolation (lerp) pattern. 1417 static Instruction *factorizeLerp(BinaryOperator &I, 1418 InstCombiner::BuilderTy &Builder) { 1419 Value *X, *Y, *Z; 1420 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1421 m_OneUse(m_FSub(m_FPOne(), 1422 m_Value(Z))))), 1423 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1424 return nullptr; 1425 1426 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1427 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1428 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1429 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1430 } 1431 1432 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1433 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1434 InstCombiner::BuilderTy &Builder) { 1435 assert((I.getOpcode() == Instruction::FAdd || 1436 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1437 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1438 "FP factorization requires FMF"); 1439 1440 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1441 return Lerp; 1442 1443 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1444 Value *X, *Y, *Z; 1445 bool IsFMul; 1446 if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) && 1447 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) || 1448 (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) && 1449 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z)))))) 1450 IsFMul = true; 1451 else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) && 1452 match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z))))) 1453 IsFMul = false; 1454 else 1455 return nullptr; 1456 1457 // (X * Z) + (Y * Z) --> (X + Y) * Z 1458 // (X * Z) - (Y * Z) --> (X - Y) * Z 1459 // (X / Z) + (Y / Z) --> (X + Y) / Z 1460 // (X / Z) - (Y / Z) --> (X - Y) / Z 1461 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1462 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1463 : Builder.CreateFSubFMF(X, Y, &I); 1464 1465 // Bail out if we just created a denormal constant. 1466 // TODO: This is copied from a previous implementation. Is it necessary? 1467 const APFloat *C; 1468 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1469 return nullptr; 1470 1471 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1472 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1473 } 1474 1475 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 1476 if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1), 1477 I.getFastMathFlags(), 1478 SQ.getWithInstruction(&I))) 1479 return replaceInstUsesWith(I, V); 1480 1481 if (SimplifyAssociativeOrCommutative(I)) 1482 return &I; 1483 1484 if (Instruction *X = foldVectorBinop(I)) 1485 return X; 1486 1487 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1488 return FoldedFAdd; 1489 1490 // (-X) + Y --> Y - X 1491 Value *X, *Y; 1492 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1493 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1494 1495 // Similar to above, but look through fmul/fdiv for the negated term. 1496 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1497 Value *Z; 1498 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1499 m_Value(Z)))) { 1500 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1501 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1502 } 1503 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1504 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1505 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1506 m_Value(Z))) || 1507 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1508 m_Value(Z)))) { 1509 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1510 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1511 } 1512 1513 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1514 // integer add followed by a promotion. 1515 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1516 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1517 Value *LHSIntVal = LHSConv->getOperand(0); 1518 Type *FPType = LHSConv->getType(); 1519 1520 // TODO: This check is overly conservative. In many cases known bits 1521 // analysis can tell us that the result of the addition has less significant 1522 // bits than the integer type can hold. 1523 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1524 Type *FScalarTy = FTy->getScalarType(); 1525 Type *IScalarTy = ITy->getScalarType(); 1526 1527 // Do we have enough bits in the significand to represent the result of 1528 // the integer addition? 1529 unsigned MaxRepresentableBits = 1530 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1531 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1532 }; 1533 1534 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1535 // ... if the constant fits in the integer value. This is useful for things 1536 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1537 // requires a constant pool load, and generally allows the add to be better 1538 // instcombined. 1539 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1540 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1541 Constant *CI = 1542 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1543 if (LHSConv->hasOneUse() && 1544 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1545 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1546 // Insert the new integer add. 1547 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1548 return new SIToFPInst(NewAdd, I.getType()); 1549 } 1550 } 1551 1552 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1553 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1554 Value *RHSIntVal = RHSConv->getOperand(0); 1555 // It's enough to check LHS types only because we require int types to 1556 // be the same for this transform. 1557 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1558 // Only do this if x/y have the same type, if at least one of them has a 1559 // single use (so we don't increase the number of int->fp conversions), 1560 // and if the integer add will not overflow. 1561 if (LHSIntVal->getType() == RHSIntVal->getType() && 1562 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1563 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1564 // Insert the new integer add. 1565 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1566 return new SIToFPInst(NewAdd, I.getType()); 1567 } 1568 } 1569 } 1570 } 1571 1572 // Handle specials cases for FAdd with selects feeding the operation 1573 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1574 return replaceInstUsesWith(I, V); 1575 1576 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1577 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1578 return F; 1579 if (Value *V = FAddCombine(Builder).simplify(&I)) 1580 return replaceInstUsesWith(I, V); 1581 } 1582 1583 return nullptr; 1584 } 1585 1586 /// Optimize pointer differences into the same array into a size. Consider: 1587 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1588 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1589 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 1590 Type *Ty) { 1591 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1592 // this. 1593 bool Swapped = false; 1594 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1595 1596 // For now we require one side to be the base pointer "A" or a constant 1597 // GEP derived from it. 1598 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1599 // (gep X, ...) - X 1600 if (LHSGEP->getOperand(0) == RHS) { 1601 GEP1 = LHSGEP; 1602 Swapped = false; 1603 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1604 // (gep X, ...) - (gep X, ...) 1605 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1606 RHSGEP->getOperand(0)->stripPointerCasts()) { 1607 GEP2 = RHSGEP; 1608 GEP1 = LHSGEP; 1609 Swapped = false; 1610 } 1611 } 1612 } 1613 1614 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1615 // X - (gep X, ...) 1616 if (RHSGEP->getOperand(0) == LHS) { 1617 GEP1 = RHSGEP; 1618 Swapped = true; 1619 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1620 // (gep X, ...) - (gep X, ...) 1621 if (RHSGEP->getOperand(0)->stripPointerCasts() == 1622 LHSGEP->getOperand(0)->stripPointerCasts()) { 1623 GEP2 = LHSGEP; 1624 GEP1 = RHSGEP; 1625 Swapped = true; 1626 } 1627 } 1628 } 1629 1630 if (!GEP1) 1631 // No GEP found. 1632 return nullptr; 1633 1634 if (GEP2) { 1635 // (gep X, ...) - (gep X, ...) 1636 // 1637 // Avoid duplicating the arithmetic if there are more than one non-constant 1638 // indices between the two GEPs and either GEP has a non-constant index and 1639 // multiple users. If zero non-constant index, the result is a constant and 1640 // there is no duplication. If one non-constant index, the result is an add 1641 // or sub with a constant, which is no larger than the original code, and 1642 // there's no duplicated arithmetic, even if either GEP has multiple 1643 // users. If more than one non-constant indices combined, as long as the GEP 1644 // with at least one non-constant index doesn't have multiple users, there 1645 // is no duplication. 1646 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1647 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1648 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1649 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1650 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1651 return nullptr; 1652 } 1653 } 1654 1655 // Emit the offset of the GEP and an intptr_t. 1656 Value *Result = EmitGEPOffset(GEP1); 1657 1658 // If we had a constant expression GEP on the other side offsetting the 1659 // pointer, subtract it from the offset we have. 1660 if (GEP2) { 1661 Value *Offset = EmitGEPOffset(GEP2); 1662 Result = Builder.CreateSub(Result, Offset); 1663 } 1664 1665 // If we have p - gep(p, ...) then we have to negate the result. 1666 if (Swapped) 1667 Result = Builder.CreateNeg(Result, "diff.neg"); 1668 1669 return Builder.CreateIntCast(Result, Ty, true); 1670 } 1671 1672 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 1673 if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1), 1674 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1675 SQ.getWithInstruction(&I))) 1676 return replaceInstUsesWith(I, V); 1677 1678 if (Instruction *X = foldVectorBinop(I)) 1679 return X; 1680 1681 // (A*B)-(A*C) -> A*(B-C) etc 1682 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1683 return replaceInstUsesWith(I, V); 1684 1685 // If this is a 'B = x-(-A)', change to B = x+A. 1686 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1687 if (Value *V = dyn_castNegVal(Op1)) { 1688 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1689 1690 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1691 assert(BO->getOpcode() == Instruction::Sub && 1692 "Expected a subtraction operator!"); 1693 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1694 Res->setHasNoSignedWrap(true); 1695 } else { 1696 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1697 Res->setHasNoSignedWrap(true); 1698 } 1699 1700 return Res; 1701 } 1702 1703 if (I.getType()->isIntOrIntVectorTy(1)) 1704 return BinaryOperator::CreateXor(Op0, Op1); 1705 1706 // Replace (-1 - A) with (~A). 1707 if (match(Op0, m_AllOnes())) 1708 return BinaryOperator::CreateNot(Op1); 1709 1710 // (~X) - (~Y) --> Y - X 1711 Value *X, *Y; 1712 if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y)))) 1713 return BinaryOperator::CreateSub(Y, X); 1714 1715 // (X + -1) - Y --> ~Y + X 1716 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 1717 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 1718 1719 // Y - (X + 1) --> ~X + Y 1720 if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One())))) 1721 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0); 1722 1723 // Y - ~X --> (X + 1) + Y 1724 if (match(Op1, m_OneUse(m_Not(m_Value(X))))) { 1725 return BinaryOperator::CreateAdd( 1726 Builder.CreateAdd(Op0, ConstantInt::get(I.getType(), 1)), X); 1727 } 1728 1729 if (Constant *C = dyn_cast<Constant>(Op0)) { 1730 bool IsNegate = match(C, m_ZeroInt()); 1731 Value *X; 1732 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1733 // 0 - (zext bool) --> sext bool 1734 // C - (zext bool) --> bool ? C - 1 : C 1735 if (IsNegate) 1736 return CastInst::CreateSExtOrBitCast(X, I.getType()); 1737 return SelectInst::Create(X, SubOne(C), C); 1738 } 1739 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1740 // 0 - (sext bool) --> zext bool 1741 // C - (sext bool) --> bool ? C + 1 : C 1742 if (IsNegate) 1743 return CastInst::CreateZExtOrBitCast(X, I.getType()); 1744 return SelectInst::Create(X, AddOne(C), C); 1745 } 1746 1747 // C - ~X == X + (1+C) 1748 if (match(Op1, m_Not(m_Value(X)))) 1749 return BinaryOperator::CreateAdd(X, AddOne(C)); 1750 1751 // Try to fold constant sub into select arguments. 1752 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1753 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1754 return R; 1755 1756 // Try to fold constant sub into PHI values. 1757 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 1758 if (Instruction *R = foldOpIntoPhi(I, PN)) 1759 return R; 1760 1761 Constant *C2; 1762 1763 // C-(C2-X) --> X+(C-C2) 1764 if (match(Op1, m_Sub(m_Constant(C2), m_Value(X)))) 1765 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 1766 1767 // C-(X+C2) --> (C-C2)-X 1768 if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) 1769 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1770 } 1771 1772 const APInt *Op0C; 1773 if (match(Op0, m_APInt(Op0C))) { 1774 1775 if (Op0C->isNullValue()) { 1776 Value *Op1Wide; 1777 match(Op1, m_TruncOrSelf(m_Value(Op1Wide))); 1778 bool HadTrunc = Op1Wide != Op1; 1779 bool NoTruncOrTruncIsOneUse = !HadTrunc || Op1->hasOneUse(); 1780 unsigned BitWidth = Op1Wide->getType()->getScalarSizeInBits(); 1781 1782 Value *X; 1783 const APInt *ShAmt; 1784 // -(X >>u 31) -> (X >>s 31) 1785 if (NoTruncOrTruncIsOneUse && 1786 match(Op1Wide, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1787 *ShAmt == BitWidth - 1) { 1788 Value *ShAmtOp = cast<Instruction>(Op1Wide)->getOperand(1); 1789 Instruction *NewShift = BinaryOperator::CreateAShr(X, ShAmtOp); 1790 NewShift->copyIRFlags(Op1Wide); 1791 if (!HadTrunc) 1792 return NewShift; 1793 Builder.Insert(NewShift); 1794 return TruncInst::CreateTruncOrBitCast(NewShift, Op1->getType()); 1795 } 1796 // -(X >>s 31) -> (X >>u 31) 1797 if (NoTruncOrTruncIsOneUse && 1798 match(Op1Wide, m_AShr(m_Value(X), m_APInt(ShAmt))) && 1799 *ShAmt == BitWidth - 1) { 1800 Value *ShAmtOp = cast<Instruction>(Op1Wide)->getOperand(1); 1801 Instruction *NewShift = BinaryOperator::CreateLShr(X, ShAmtOp); 1802 NewShift->copyIRFlags(Op1Wide); 1803 if (!HadTrunc) 1804 return NewShift; 1805 Builder.Insert(NewShift); 1806 return TruncInst::CreateTruncOrBitCast(NewShift, Op1->getType()); 1807 } 1808 1809 if (!HadTrunc && Op1->hasOneUse()) { 1810 Value *LHS, *RHS; 1811 SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor; 1812 if (SPF == SPF_ABS || SPF == SPF_NABS) { 1813 // This is a negate of an ABS/NABS pattern. Just swap the operands 1814 // of the select. 1815 cast<SelectInst>(Op1)->swapValues(); 1816 // Don't swap prof metadata, we didn't change the branch behavior. 1817 return replaceInstUsesWith(I, Op1); 1818 } 1819 } 1820 } 1821 1822 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1823 // zero. 1824 if (Op0C->isMask()) { 1825 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 1826 if ((*Op0C | RHSKnown.Zero).isAllOnesValue()) 1827 return BinaryOperator::CreateXor(Op1, Op0); 1828 } 1829 } 1830 1831 { 1832 Value *Y; 1833 // X-(X+Y) == -Y X-(Y+X) == -Y 1834 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 1835 return BinaryOperator::CreateNeg(Y); 1836 1837 // (X-Y)-X == -Y 1838 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1839 return BinaryOperator::CreateNeg(Y); 1840 } 1841 1842 // (sub (or A, B) (and A, B)) --> (xor A, B) 1843 { 1844 Value *A, *B; 1845 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1846 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1847 return BinaryOperator::CreateXor(A, B); 1848 } 1849 1850 // (sub (and A, B) (or A, B)) --> neg (xor A, B) 1851 { 1852 Value *A, *B; 1853 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1854 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 1855 (Op0->hasOneUse() || Op1->hasOneUse())) 1856 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); 1857 } 1858 1859 // (sub (or A, B), (xor A, B)) --> (and A, B) 1860 { 1861 Value *A, *B; 1862 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1863 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1864 return BinaryOperator::CreateAnd(A, B); 1865 } 1866 1867 // (sub (xor A, B) (or A, B)) --> neg (and A, B) 1868 { 1869 Value *A, *B; 1870 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1871 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 1872 (Op0->hasOneUse() || Op1->hasOneUse())) 1873 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); 1874 } 1875 1876 { 1877 Value *Y; 1878 // ((X | Y) - X) --> (~X & Y) 1879 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 1880 return BinaryOperator::CreateAnd( 1881 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 1882 } 1883 1884 if (Op1->hasOneUse()) { 1885 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 1886 Constant *C = nullptr; 1887 1888 // (X - (Y - Z)) --> (X + (Z - Y)). 1889 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 1890 return BinaryOperator::CreateAdd(Op0, 1891 Builder.CreateSub(Z, Y, Op1->getName())); 1892 1893 // (X - (X & Y)) --> (X & ~Y) 1894 if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0)))) 1895 return BinaryOperator::CreateAnd(Op0, 1896 Builder.CreateNot(Y, Y->getName() + ".not")); 1897 1898 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow. 1899 // TODO: This could be extended to match arbitrary vector constants. 1900 const APInt *DivC; 1901 if (match(Op0, m_Zero()) && match(Op1, m_SDiv(m_Value(X), m_APInt(DivC))) && 1902 !DivC->isMinSignedValue() && *DivC != 1) { 1903 Constant *NegDivC = ConstantInt::get(I.getType(), -(*DivC)); 1904 Instruction *BO = BinaryOperator::CreateSDiv(X, NegDivC); 1905 BO->setIsExact(cast<BinaryOperator>(Op1)->isExact()); 1906 return BO; 1907 } 1908 1909 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 1910 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 1911 if (Value *XNeg = dyn_castNegVal(X)) 1912 return BinaryOperator::CreateShl(XNeg, Y); 1913 1914 // Subtracting -1/0 is the same as adding 1/0: 1915 // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y) 1916 // 'nuw' is dropped in favor of the canonical form. 1917 if (match(Op1, m_SExt(m_Value(Y))) && 1918 Y->getType()->getScalarSizeInBits() == 1) { 1919 Value *Zext = Builder.CreateZExt(Y, I.getType()); 1920 BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext); 1921 Add->setHasNoSignedWrap(I.hasNoSignedWrap()); 1922 return Add; 1923 } 1924 1925 // X - A*-B -> X + A*B 1926 // X - -A*B -> X + A*B 1927 Value *A, *B; 1928 if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B))))) 1929 return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B)); 1930 1931 // X - A*C -> X + A*-C 1932 // No need to handle commuted multiply because multiply handling will 1933 // ensure constant will be move to the right hand side. 1934 if (match(Op1, m_Mul(m_Value(A), m_Constant(C))) && !isa<ConstantExpr>(C)) { 1935 Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(C)); 1936 return BinaryOperator::CreateAdd(Op0, NewMul); 1937 } 1938 } 1939 1940 { 1941 // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A 1942 // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A 1943 // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O) 1944 // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O) 1945 // So long as O here is freely invertible, this will be neutral or a win. 1946 Value *LHS, *RHS, *A; 1947 Value *NotA = Op0, *MinMax = Op1; 1948 SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; 1949 if (!SelectPatternResult::isMinOrMax(SPF)) { 1950 NotA = Op1; 1951 MinMax = Op0; 1952 SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; 1953 } 1954 if (SelectPatternResult::isMinOrMax(SPF) && 1955 match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) { 1956 if (NotA == LHS) 1957 std::swap(LHS, RHS); 1958 // LHS is now O above and expected to have at least 2 uses (the min/max) 1959 // NotA is epected to have 2 uses from the min/max and 1 from the sub. 1960 if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) && 1961 !NotA->hasNUsesOrMore(4)) { 1962 // Note: We don't generate the inverse max/min, just create the not of 1963 // it and let other folds do the rest. 1964 Value *Not = Builder.CreateNot(MinMax); 1965 if (NotA == Op0) 1966 return BinaryOperator::CreateSub(Not, A); 1967 else 1968 return BinaryOperator::CreateSub(A, Not); 1969 } 1970 } 1971 } 1972 1973 // Optimize pointer differences into the same array into a size. Consider: 1974 // &A[10] - &A[0]: we should compile this to "10". 1975 Value *LHSOp, *RHSOp; 1976 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 1977 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 1978 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1979 return replaceInstUsesWith(I, Res); 1980 1981 // trunc(p)-trunc(q) -> trunc(p-q) 1982 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 1983 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 1984 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 1985 return replaceInstUsesWith(I, Res); 1986 1987 // Canonicalize a shifty way to code absolute value to the common pattern. 1988 // There are 2 potential commuted variants. 1989 // We're relying on the fact that we only do this transform when the shift has 1990 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 1991 // instructions). 1992 Value *A; 1993 const APInt *ShAmt; 1994 Type *Ty = I.getType(); 1995 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 1996 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 1997 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 1998 // B = ashr i32 A, 31 ; smear the sign bit 1999 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 2000 // --> (A < 0) ? -A : A 2001 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); 2002 // Copy the nuw/nsw flags from the sub to the negate. 2003 Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), 2004 I.hasNoSignedWrap()); 2005 return SelectInst::Create(Cmp, Neg, A); 2006 } 2007 2008 if (Instruction *V = 2009 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2010 return V; 2011 2012 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 2013 return Ext; 2014 2015 bool Changed = false; 2016 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 2017 Changed = true; 2018 I.setHasNoSignedWrap(true); 2019 } 2020 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 2021 Changed = true; 2022 I.setHasNoUnsignedWrap(true); 2023 } 2024 2025 return Changed ? &I : nullptr; 2026 } 2027 2028 /// This eliminates floating-point negation in either 'fneg(X)' or 2029 /// 'fsub(-0.0, X)' form by combining into a constant operand. 2030 static Instruction *foldFNegIntoConstant(Instruction &I) { 2031 Value *X; 2032 Constant *C; 2033 2034 // Fold negation into constant operand. This is limited with one-use because 2035 // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv. 2036 // -(X * C) --> X * (-C) 2037 // FIXME: It's arguable whether these should be m_OneUse or not. The current 2038 // belief is that the FNeg allows for better reassociation opportunities. 2039 if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C)))))) 2040 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); 2041 // -(X / C) --> X / (-C) 2042 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C)))))) 2043 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); 2044 // -(C / X) --> (-C) / X 2045 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X)))))) 2046 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); 2047 2048 return nullptr; 2049 } 2050 2051 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I, 2052 InstCombiner::BuilderTy &Builder) { 2053 Value *FNeg; 2054 if (!match(&I, m_FNeg(m_Value(FNeg)))) 2055 return nullptr; 2056 2057 Value *X, *Y; 2058 if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y))))) 2059 return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2060 2061 if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y))))) 2062 return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2063 2064 return nullptr; 2065 } 2066 2067 Instruction *InstCombiner::visitFNeg(UnaryOperator &I) { 2068 Value *Op = I.getOperand(0); 2069 2070 if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(), 2071 SQ.getWithInstruction(&I))) 2072 return replaceInstUsesWith(I, V); 2073 2074 if (Instruction *X = foldFNegIntoConstant(I)) 2075 return X; 2076 2077 Value *X, *Y; 2078 2079 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 2080 if (I.hasNoSignedZeros() && 2081 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 2082 return BinaryOperator::CreateFSubFMF(Y, X, &I); 2083 2084 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2085 return R; 2086 2087 return nullptr; 2088 } 2089 2090 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 2091 if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1), 2092 I.getFastMathFlags(), 2093 SQ.getWithInstruction(&I))) 2094 return replaceInstUsesWith(I, V); 2095 2096 if (Instruction *X = foldVectorBinop(I)) 2097 return X; 2098 2099 // Subtraction from -0.0 is the canonical form of fneg. 2100 // fsub nsz 0, X ==> fsub nsz -0.0, X 2101 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2102 if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP())) 2103 return BinaryOperator::CreateFNegFMF(Op1, &I); 2104 2105 if (Instruction *X = foldFNegIntoConstant(I)) 2106 return X; 2107 2108 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2109 return R; 2110 2111 Value *X, *Y; 2112 Constant *C; 2113 2114 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 2115 // Canonicalize to fadd to make analysis easier. 2116 // This can also help codegen because fadd is commutative. 2117 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 2118 // killed later. We still limit that particular transform with 'hasOneUse' 2119 // because an fneg is assumed better/cheaper than a generic fsub. 2120 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { 2121 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2122 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 2123 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 2124 } 2125 } 2126 2127 if (isa<Constant>(Op0)) 2128 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2129 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 2130 return NV; 2131 2132 // X - C --> X + (-C) 2133 // But don't transform constant expressions because there's an inverse fold 2134 // for X + (-Y) --> X - Y. 2135 if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1)) 2136 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); 2137 2138 // X - (-Y) --> X + Y 2139 if (match(Op1, m_FNeg(m_Value(Y)))) 2140 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 2141 2142 // Similar to above, but look through a cast of the negated value: 2143 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 2144 Type *Ty = I.getType(); 2145 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 2146 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 2147 2148 // X - (fpext(-Y)) --> X + fpext(Y) 2149 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 2150 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 2151 2152 // Similar to above, but look through fmul/fdiv of the negated value: 2153 // Op0 - (-X * Y) --> Op0 + (X * Y) 2154 // Op0 - (Y * -X) --> Op0 + (X * Y) 2155 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 2156 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 2157 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 2158 } 2159 // Op0 - (-X / Y) --> Op0 + (X / Y) 2160 // Op0 - (X / -Y) --> Op0 + (X / Y) 2161 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 2162 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 2163 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 2164 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 2165 } 2166 2167 // Handle special cases for FSub with selects feeding the operation 2168 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 2169 return replaceInstUsesWith(I, V); 2170 2171 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2172 // (Y - X) - Y --> -X 2173 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 2174 return BinaryOperator::CreateFNegFMF(X, &I); 2175 2176 // Y - (X + Y) --> -X 2177 // Y - (Y + X) --> -X 2178 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 2179 return BinaryOperator::CreateFNegFMF(X, &I); 2180 2181 // (X * C) - X --> X * (C - 1.0) 2182 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 2183 Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0)); 2184 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 2185 } 2186 // X - (X * C) --> X * (1.0 - C) 2187 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 2188 Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C); 2189 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 2190 } 2191 2192 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2193 return F; 2194 2195 // TODO: This performs reassociative folds for FP ops. Some fraction of the 2196 // functionality has been subsumed by simple pattern matching here and in 2197 // InstSimplify. We should let a dedicated reassociation pass handle more 2198 // complex pattern matching and remove this from InstCombine. 2199 if (Value *V = FAddCombine(Builder).simplify(&I)) 2200 return replaceInstUsesWith(I, V); 2201 } 2202 2203 return nullptr; 2204 } 2205