1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/InstCombine/InstCombiner.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); } 86 87 const APFloat *getFpValPtr() const { 88 return reinterpret_cast<const APFloat *>(&FpValBuf); 89 } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFNeg(Value *V); 199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 201 202 // Debugging stuff are clustered here. 203 #ifndef NDEBUG 204 unsigned CreateInstrNum; 205 void initCreateInstNum() { CreateInstrNum = 0; } 206 void incCreateInstNum() { CreateInstrNum++; } 207 #else 208 void initCreateInstNum() {} 209 void incCreateInstNum() {} 210 #endif 211 212 InstCombiner::BuilderTy &Builder; 213 Instruction *Instr = nullptr; 214 }; 215 216 } // end anonymous namespace 217 218 //===----------------------------------------------------------------------===// 219 // 220 // Implementation of 221 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 222 // 223 //===----------------------------------------------------------------------===// 224 FAddendCoef::~FAddendCoef() { 225 if (BufHasFpVal) 226 getFpValPtr()->~APFloat(); 227 } 228 229 void FAddendCoef::set(const APFloat& C) { 230 APFloat *P = getFpValPtr(); 231 232 if (isInt()) { 233 // As the buffer is meanless byte stream, we cannot call 234 // APFloat::operator=(). 235 new(P) APFloat(C); 236 } else 237 *P = C; 238 239 IsFp = BufHasFpVal = true; 240 } 241 242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 243 if (!isInt()) 244 return; 245 246 APFloat *P = getFpValPtr(); 247 if (IntVal > 0) 248 new(P) APFloat(Sem, IntVal); 249 else { 250 new(P) APFloat(Sem, 0 - IntVal); 251 P->changeSign(); 252 } 253 IsFp = BufHasFpVal = true; 254 } 255 256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 257 if (Val >= 0) 258 return APFloat(Sem, Val); 259 260 APFloat T(Sem, 0 - Val); 261 T.changeSign(); 262 263 return T; 264 } 265 266 void FAddendCoef::operator=(const FAddendCoef &That) { 267 if (That.isInt()) 268 set(That.IntVal); 269 else 270 set(That.getFpVal()); 271 } 272 273 void FAddendCoef::operator+=(const FAddendCoef &That) { 274 RoundingMode RndMode = RoundingMode::NearestTiesToEven; 275 if (isInt() == That.isInt()) { 276 if (isInt()) 277 IntVal += That.IntVal; 278 else 279 getFpVal().add(That.getFpVal(), RndMode); 280 return; 281 } 282 283 if (isInt()) { 284 const APFloat &T = That.getFpVal(); 285 convertToFpType(T.getSemantics()); 286 getFpVal().add(T, RndMode); 287 return; 288 } 289 290 APFloat &T = getFpVal(); 291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 292 } 293 294 void FAddendCoef::operator*=(const FAddendCoef &That) { 295 if (That.isOne()) 296 return; 297 298 if (That.isMinusOne()) { 299 negate(); 300 return; 301 } 302 303 if (isInt() && That.isInt()) { 304 int Res = IntVal * (int)That.IntVal; 305 assert(!insaneIntVal(Res) && "Insane int value"); 306 IntVal = Res; 307 return; 308 } 309 310 const fltSemantics &Semantic = 311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 312 313 if (isInt()) 314 convertToFpType(Semantic); 315 APFloat &F0 = getFpVal(); 316 317 if (That.isInt()) 318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 319 APFloat::rmNearestTiesToEven); 320 else 321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 322 } 323 324 void FAddendCoef::negate() { 325 if (isInt()) 326 IntVal = 0 - IntVal; 327 else 328 getFpVal().changeSign(); 329 } 330 331 Value *FAddendCoef::getValue(Type *Ty) const { 332 return isInt() ? 333 ConstantFP::get(Ty, float(IntVal)) : 334 ConstantFP::get(Ty->getContext(), getFpVal()); 335 } 336 337 // The definition of <Val> Addends 338 // ========================================= 339 // A + B <1, A>, <1,B> 340 // A - B <1, A>, <1,B> 341 // 0 - B <-1, B> 342 // C * A, <C, A> 343 // A + C <1, A> <C, NULL> 344 // 0 +/- 0 <0, NULL> (corner case) 345 // 346 // Legend: A and B are not constant, C is constant 347 unsigned FAddend::drillValueDownOneStep 348 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 349 Instruction *I = nullptr; 350 if (!Val || !(I = dyn_cast<Instruction>(Val))) 351 return 0; 352 353 unsigned Opcode = I->getOpcode(); 354 355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 356 ConstantFP *C0, *C1; 357 Value *Opnd0 = I->getOperand(0); 358 Value *Opnd1 = I->getOperand(1); 359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 360 Opnd0 = nullptr; 361 362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 363 Opnd1 = nullptr; 364 365 if (Opnd0) { 366 if (!C0) 367 Addend0.set(1, Opnd0); 368 else 369 Addend0.set(C0, nullptr); 370 } 371 372 if (Opnd1) { 373 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 374 if (!C1) 375 Addend.set(1, Opnd1); 376 else 377 Addend.set(C1, nullptr); 378 if (Opcode == Instruction::FSub) 379 Addend.negate(); 380 } 381 382 if (Opnd0 || Opnd1) 383 return Opnd0 && Opnd1 ? 2 : 1; 384 385 // Both operands are zero. Weird! 386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 387 return 1; 388 } 389 390 if (I->getOpcode() == Instruction::FMul) { 391 Value *V0 = I->getOperand(0); 392 Value *V1 = I->getOperand(1); 393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 394 Addend0.set(C, V1); 395 return 1; 396 } 397 398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 399 Addend0.set(C, V0); 400 return 1; 401 } 402 } 403 404 return 0; 405 } 406 407 // Try to break *this* addend into two addends. e.g. Suppose this addend is 408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 409 // i.e. <2.3, X> and <2.3, Y>. 410 unsigned FAddend::drillAddendDownOneStep 411 (FAddend &Addend0, FAddend &Addend1) const { 412 if (isConstant()) 413 return 0; 414 415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 416 if (!BreakNum || Coeff.isOne()) 417 return BreakNum; 418 419 Addend0.Scale(Coeff); 420 421 if (BreakNum == 2) 422 Addend1.Scale(Coeff); 423 424 return BreakNum; 425 } 426 427 Value *FAddCombine::simplify(Instruction *I) { 428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 429 "Expected 'reassoc'+'nsz' instruction"); 430 431 // Currently we are not able to handle vector type. 432 if (I->getType()->isVectorTy()) 433 return nullptr; 434 435 assert((I->getOpcode() == Instruction::FAdd || 436 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 437 438 // Save the instruction before calling other member-functions. 439 Instr = I; 440 441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 442 443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 444 445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 446 unsigned Opnd0_ExpNum = 0; 447 unsigned Opnd1_ExpNum = 0; 448 449 if (!Opnd0.isConstant()) 450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 451 452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 453 if (OpndNum == 2 && !Opnd1.isConstant()) 454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 455 456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 457 if (Opnd0_ExpNum && Opnd1_ExpNum) { 458 AddendVect AllOpnds; 459 AllOpnds.push_back(&Opnd0_0); 460 AllOpnds.push_back(&Opnd1_0); 461 if (Opnd0_ExpNum == 2) 462 AllOpnds.push_back(&Opnd0_1); 463 if (Opnd1_ExpNum == 2) 464 AllOpnds.push_back(&Opnd1_1); 465 466 // Compute instruction quota. We should save at least one instruction. 467 unsigned InstQuota = 0; 468 469 Value *V0 = I->getOperand(0); 470 Value *V1 = I->getOperand(1); 471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 473 474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 475 return R; 476 } 477 478 if (OpndNum != 2) { 479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 480 // splitted into two addends, say "V = X - Y", the instruction would have 481 // been optimized into "I = Y - X" in the previous steps. 482 // 483 const FAddendCoef &CE = Opnd0.getCoef(); 484 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 485 } 486 487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 488 if (Opnd1_ExpNum) { 489 AddendVect AllOpnds; 490 AllOpnds.push_back(&Opnd0); 491 AllOpnds.push_back(&Opnd1_0); 492 if (Opnd1_ExpNum == 2) 493 AllOpnds.push_back(&Opnd1_1); 494 495 if (Value *R = simplifyFAdd(AllOpnds, 1)) 496 return R; 497 } 498 499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 500 if (Opnd0_ExpNum) { 501 AddendVect AllOpnds; 502 AllOpnds.push_back(&Opnd1); 503 AllOpnds.push_back(&Opnd0_0); 504 if (Opnd0_ExpNum == 2) 505 AllOpnds.push_back(&Opnd0_1); 506 507 if (Value *R = simplifyFAdd(AllOpnds, 1)) 508 return R; 509 } 510 511 return nullptr; 512 } 513 514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 515 unsigned AddendNum = Addends.size(); 516 assert(AddendNum <= 4 && "Too many addends"); 517 518 // For saving intermediate results; 519 unsigned NextTmpIdx = 0; 520 FAddend TmpResult[3]; 521 522 // Simplified addends are placed <SimpVect>. 523 AddendVect SimpVect; 524 525 // The outer loop works on one symbolic-value at a time. Suppose the input 526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 527 // The symbolic-values will be processed in this order: x, y, z. 528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 529 530 const FAddend *ThisAddend = Addends[SymIdx]; 531 if (!ThisAddend) { 532 // This addend was processed before. 533 continue; 534 } 535 536 Value *Val = ThisAddend->getSymVal(); 537 538 // If the resulting expr has constant-addend, this constant-addend is 539 // desirable to reside at the top of the resulting expression tree. Placing 540 // constant close to super-expr(s) will potentially reveal some 541 // optimization opportunities in super-expr(s). Here we do not implement 542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative 543 // call later. 544 545 unsigned StartIdx = SimpVect.size(); 546 SimpVect.push_back(ThisAddend); 547 548 // The inner loop collects addends sharing same symbolic-value, and these 549 // addends will be later on folded into a single addend. Following above 550 // example, if the symbolic value "y" is being processed, the inner loop 551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 552 // be later on folded into "<b1+b2, y>". 553 for (unsigned SameSymIdx = SymIdx + 1; 554 SameSymIdx < AddendNum; SameSymIdx++) { 555 const FAddend *T = Addends[SameSymIdx]; 556 if (T && T->getSymVal() == Val) { 557 // Set null such that next iteration of the outer loop will not process 558 // this addend again. 559 Addends[SameSymIdx] = nullptr; 560 SimpVect.push_back(T); 561 } 562 } 563 564 // If multiple addends share same symbolic value, fold them together. 565 if (StartIdx + 1 != SimpVect.size()) { 566 FAddend &R = TmpResult[NextTmpIdx ++]; 567 R = *SimpVect[StartIdx]; 568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 569 R += *SimpVect[Idx]; 570 571 // Pop all addends being folded and push the resulting folded addend. 572 SimpVect.resize(StartIdx); 573 if (!R.isZero()) { 574 SimpVect.push_back(&R); 575 } 576 } 577 } 578 579 assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access"); 580 581 Value *Result; 582 if (!SimpVect.empty()) 583 Result = createNaryFAdd(SimpVect, InstrQuota); 584 else { 585 // The addition is folded to 0.0. 586 Result = ConstantFP::get(Instr->getType(), 0.0); 587 } 588 589 return Result; 590 } 591 592 Value *FAddCombine::createNaryFAdd 593 (const AddendVect &Opnds, unsigned InstrQuota) { 594 assert(!Opnds.empty() && "Expect at least one addend"); 595 596 // Step 1: Check if the # of instructions needed exceeds the quota. 597 598 unsigned InstrNeeded = calcInstrNumber(Opnds); 599 if (InstrNeeded > InstrQuota) 600 return nullptr; 601 602 initCreateInstNum(); 603 604 // step 2: Emit the N-ary addition. 605 // Note that at most three instructions are involved in Fadd-InstCombine: the 606 // addition in question, and at most two neighboring instructions. 607 // The resulting optimized addition should have at least one less instruction 608 // than the original addition expression tree. This implies that the resulting 609 // N-ary addition has at most two instructions, and we don't need to worry 610 // about tree-height when constructing the N-ary addition. 611 612 Value *LastVal = nullptr; 613 bool LastValNeedNeg = false; 614 615 // Iterate the addends, creating fadd/fsub using adjacent two addends. 616 for (const FAddend *Opnd : Opnds) { 617 bool NeedNeg; 618 Value *V = createAddendVal(*Opnd, NeedNeg); 619 if (!LastVal) { 620 LastVal = V; 621 LastValNeedNeg = NeedNeg; 622 continue; 623 } 624 625 if (LastValNeedNeg == NeedNeg) { 626 LastVal = createFAdd(LastVal, V); 627 continue; 628 } 629 630 if (LastValNeedNeg) 631 LastVal = createFSub(V, LastVal); 632 else 633 LastVal = createFSub(LastVal, V); 634 635 LastValNeedNeg = false; 636 } 637 638 if (LastValNeedNeg) { 639 LastVal = createFNeg(LastVal); 640 } 641 642 #ifndef NDEBUG 643 assert(CreateInstrNum == InstrNeeded && 644 "Inconsistent in instruction numbers"); 645 #endif 646 647 return LastVal; 648 } 649 650 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 651 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 652 if (Instruction *I = dyn_cast<Instruction>(V)) 653 createInstPostProc(I); 654 return V; 655 } 656 657 Value *FAddCombine::createFNeg(Value *V) { 658 Value *NewV = Builder.CreateFNeg(V); 659 if (Instruction *I = dyn_cast<Instruction>(NewV)) 660 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 661 return NewV; 662 } 663 664 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 665 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 666 if (Instruction *I = dyn_cast<Instruction>(V)) 667 createInstPostProc(I); 668 return V; 669 } 670 671 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 672 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 673 if (Instruction *I = dyn_cast<Instruction>(V)) 674 createInstPostProc(I); 675 return V; 676 } 677 678 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 679 NewInstr->setDebugLoc(Instr->getDebugLoc()); 680 681 // Keep track of the number of instruction created. 682 if (!NoNumber) 683 incCreateInstNum(); 684 685 // Propagate fast-math flags 686 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 687 } 688 689 // Return the number of instruction needed to emit the N-ary addition. 690 // NOTE: Keep this function in sync with createAddendVal(). 691 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 692 unsigned OpndNum = Opnds.size(); 693 unsigned InstrNeeded = OpndNum - 1; 694 695 // Adjust the number of instructions needed to emit the N-ary add. 696 for (const FAddend *Opnd : Opnds) { 697 if (Opnd->isConstant()) 698 continue; 699 700 // The constant check above is really for a few special constant 701 // coefficients. 702 if (isa<UndefValue>(Opnd->getSymVal())) 703 continue; 704 705 const FAddendCoef &CE = Opnd->getCoef(); 706 // Let the addend be "c * x". If "c == +/-1", the value of the addend 707 // is immediately available; otherwise, it needs exactly one instruction 708 // to evaluate the value. 709 if (!CE.isMinusOne() && !CE.isOne()) 710 InstrNeeded++; 711 } 712 return InstrNeeded; 713 } 714 715 // Input Addend Value NeedNeg(output) 716 // ================================================================ 717 // Constant C C false 718 // <+/-1, V> V coefficient is -1 719 // <2/-2, V> "fadd V, V" coefficient is -2 720 // <C, V> "fmul V, C" false 721 // 722 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 723 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 724 const FAddendCoef &Coeff = Opnd.getCoef(); 725 726 if (Opnd.isConstant()) { 727 NeedNeg = false; 728 return Coeff.getValue(Instr->getType()); 729 } 730 731 Value *OpndVal = Opnd.getSymVal(); 732 733 if (Coeff.isMinusOne() || Coeff.isOne()) { 734 NeedNeg = Coeff.isMinusOne(); 735 return OpndVal; 736 } 737 738 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 739 NeedNeg = Coeff.isMinusTwo(); 740 return createFAdd(OpndVal, OpndVal); 741 } 742 743 NeedNeg = false; 744 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 745 } 746 747 // Checks if any operand is negative and we can convert add to sub. 748 // This function checks for following negative patterns 749 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 750 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 751 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 752 static Value *checkForNegativeOperand(BinaryOperator &I, 753 InstCombiner::BuilderTy &Builder) { 754 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 755 756 // This function creates 2 instructions to replace ADD, we need at least one 757 // of LHS or RHS to have one use to ensure benefit in transform. 758 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 759 return nullptr; 760 761 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 762 const APInt *C1 = nullptr, *C2 = nullptr; 763 764 // if ONE is on other side, swap 765 if (match(RHS, m_Add(m_Value(X), m_One()))) 766 std::swap(LHS, RHS); 767 768 if (match(LHS, m_Add(m_Value(X), m_One()))) { 769 // if XOR on other side, swap 770 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 771 std::swap(X, RHS); 772 773 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 774 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 775 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 776 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 777 Value *NewAnd = Builder.CreateAnd(Z, *C1); 778 return Builder.CreateSub(RHS, NewAnd, "sub"); 779 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 780 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 781 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 782 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 783 return Builder.CreateSub(RHS, NewOr, "sub"); 784 } 785 } 786 } 787 788 // Restore LHS and RHS 789 LHS = I.getOperand(0); 790 RHS = I.getOperand(1); 791 792 // if XOR is on other side, swap 793 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 794 std::swap(LHS, RHS); 795 796 // C2 is ODD 797 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 798 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 799 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 800 if (C1->countr_zero() == 0) 801 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 802 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 803 return Builder.CreateSub(RHS, NewOr, "sub"); 804 } 805 return nullptr; 806 } 807 808 /// Wrapping flags may allow combining constants separated by an extend. 809 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 810 InstCombiner::BuilderTy &Builder) { 811 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 812 Type *Ty = Add.getType(); 813 Constant *Op1C; 814 if (!match(Op1, m_Constant(Op1C))) 815 return nullptr; 816 817 // Try this match first because it results in an add in the narrow type. 818 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 819 Value *X; 820 const APInt *C1, *C2; 821 if (match(Op1, m_APInt(C1)) && 822 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 823 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 824 Constant *NewC = 825 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); 826 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 827 } 828 829 // More general combining of constants in the wide type. 830 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 831 Constant *NarrowC; 832 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { 833 Value *WideC = Builder.CreateSExt(NarrowC, Ty); 834 Value *NewC = Builder.CreateAdd(WideC, Op1C); 835 Value *WideX = Builder.CreateSExt(X, Ty); 836 return BinaryOperator::CreateAdd(WideX, NewC); 837 } 838 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 839 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { 840 Value *WideC = Builder.CreateZExt(NarrowC, Ty); 841 Value *NewC = Builder.CreateAdd(WideC, Op1C); 842 Value *WideX = Builder.CreateZExt(X, Ty); 843 return BinaryOperator::CreateAdd(WideX, NewC); 844 } 845 846 return nullptr; 847 } 848 849 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) { 850 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 851 Type *Ty = Add.getType(); 852 Constant *Op1C; 853 if (!match(Op1, m_ImmConstant(Op1C))) 854 return nullptr; 855 856 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 857 return NV; 858 859 Value *X; 860 Constant *Op00C; 861 862 // add (sub C1, X), C2 --> sub (add C1, C2), X 863 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 864 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 865 866 Value *Y; 867 868 // add (sub X, Y), -1 --> add (not Y), X 869 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 870 match(Op1, m_AllOnes())) 871 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 872 873 // zext(bool) + C -> bool ? C + 1 : C 874 if (match(Op0, m_ZExt(m_Value(X))) && 875 X->getType()->getScalarSizeInBits() == 1) 876 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1); 877 // sext(bool) + C -> bool ? C - 1 : C 878 if (match(Op0, m_SExt(m_Value(X))) && 879 X->getType()->getScalarSizeInBits() == 1) 880 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1); 881 882 // ~X + C --> (C-1) - X 883 if (match(Op0, m_Not(m_Value(X)))) { 884 // ~X + C has NSW and (C-1) won't oveflow => (C-1)-X can have NSW 885 auto *COne = ConstantInt::get(Op1C->getType(), 1); 886 bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne, Add); 887 BinaryOperator *Res = 888 BinaryOperator::CreateSub(ConstantExpr::getSub(Op1C, COne), X); 889 Res->setHasNoSignedWrap(Add.hasNoSignedWrap() && WillNotSOV); 890 return Res; 891 } 892 893 // (iN X s>> (N - 1)) + 1 --> zext (X > -1) 894 const APInt *C; 895 unsigned BitWidth = Ty->getScalarSizeInBits(); 896 if (match(Op0, m_OneUse(m_AShr(m_Value(X), 897 m_SpecificIntAllowUndef(BitWidth - 1)))) && 898 match(Op1, m_One())) 899 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty); 900 901 if (!match(Op1, m_APInt(C))) 902 return nullptr; 903 904 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add` 905 Constant *Op01C; 906 if (match(Op0, m_DisjointOr(m_Value(X), m_ImmConstant(Op01C)))) 907 return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C)); 908 909 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 910 const APInt *C2; 911 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 912 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 913 914 if (C->isSignMask()) { 915 // If wrapping is not allowed, then the addition must set the sign bit: 916 // X + (signmask) --> X | signmask 917 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 918 return BinaryOperator::CreateOr(Op0, Op1); 919 920 // If wrapping is allowed, then the addition flips the sign bit of LHS: 921 // X + (signmask) --> X ^ signmask 922 return BinaryOperator::CreateXor(Op0, Op1); 923 } 924 925 // Is this add the last step in a convoluted sext? 926 // add(zext(xor i16 X, -32768), -32768) --> sext X 927 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 928 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 929 return CastInst::Create(Instruction::SExt, X, Ty); 930 931 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) { 932 // (X ^ signmask) + C --> (X + (signmask ^ C)) 933 if (C2->isSignMask()) 934 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C)); 935 936 // If X has no high-bits set above an xor mask: 937 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X 938 if (C2->isMask()) { 939 KnownBits LHSKnown = computeKnownBits(X, 0, &Add); 940 if ((*C2 | LHSKnown.Zero).isAllOnes()) 941 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X); 942 } 943 944 // Look for a math+logic pattern that corresponds to sext-in-register of a 945 // value with cleared high bits. Convert that into a pair of shifts: 946 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC 947 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC 948 if (Op0->hasOneUse() && *C2 == -(*C)) { 949 unsigned BitWidth = Ty->getScalarSizeInBits(); 950 unsigned ShAmt = 0; 951 if (C->isPowerOf2()) 952 ShAmt = BitWidth - C->logBase2() - 1; 953 else if (C2->isPowerOf2()) 954 ShAmt = BitWidth - C2->logBase2() - 1; 955 if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt), 956 0, &Add)) { 957 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt); 958 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext"); 959 return BinaryOperator::CreateAShr(NewShl, ShAmtC); 960 } 961 } 962 } 963 964 if (C->isOne() && Op0->hasOneUse()) { 965 // add (sext i1 X), 1 --> zext (not X) 966 // TODO: The smallest IR representation is (select X, 0, 1), and that would 967 // not require the one-use check. But we need to remove a transform in 968 // visitSelect and make sure that IR value tracking for select is equal or 969 // better than for these ops. 970 if (match(Op0, m_SExt(m_Value(X))) && 971 X->getType()->getScalarSizeInBits() == 1) 972 return new ZExtInst(Builder.CreateNot(X), Ty); 973 974 // Shifts and add used to flip and mask off the low bit: 975 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 976 const APInt *C3; 977 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 978 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 979 Value *NotX = Builder.CreateNot(X); 980 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 981 } 982 } 983 984 // Fold (add (zext (add X, -1)), 1) -> (zext X) if X is non-zero. 985 // TODO: There's a general form for any constant on the outer add. 986 if (C->isOne()) { 987 if (match(Op0, m_ZExt(m_Add(m_Value(X), m_AllOnes())))) { 988 const SimplifyQuery Q = SQ.getWithInstruction(&Add); 989 if (llvm::isKnownNonZero(X, DL, 0, Q.AC, Q.CxtI, Q.DT)) 990 return new ZExtInst(X, Ty); 991 } 992 } 993 994 return nullptr; 995 } 996 997 // match variations of a^2 + 2*a*b + b^2 998 // 999 // to reuse the code between the FP and Int versions, the instruction OpCodes 1000 // and constant types have been turned into template parameters. 1001 // 1002 // Mul2Rhs: The constant to perform the multiplicative equivalent of X*2 with; 1003 // should be `m_SpecificFP(2.0)` for FP and `m_SpecificInt(1)` for Int 1004 // (we're matching `X<<1` instead of `X*2` for Int) 1005 template <bool FP, typename Mul2Rhs> 1006 static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A, 1007 Value *&B) { 1008 constexpr unsigned MulOp = FP ? Instruction::FMul : Instruction::Mul; 1009 constexpr unsigned AddOp = FP ? Instruction::FAdd : Instruction::Add; 1010 constexpr unsigned Mul2Op = FP ? Instruction::FMul : Instruction::Shl; 1011 1012 // (a * a) + (((a * 2) + b) * b) 1013 if (match(&I, m_c_BinOp( 1014 AddOp, m_OneUse(m_BinOp(MulOp, m_Value(A), m_Deferred(A))), 1015 m_OneUse(m_BinOp( 1016 MulOp, 1017 m_c_BinOp(AddOp, m_BinOp(Mul2Op, m_Deferred(A), M2Rhs), 1018 m_Value(B)), 1019 m_Deferred(B)))))) 1020 return true; 1021 1022 // ((a * b) * 2) or ((a * 2) * b) 1023 // + 1024 // (a * a + b * b) or (b * b + a * a) 1025 return match( 1026 &I, 1027 m_c_BinOp(AddOp, 1028 m_CombineOr( 1029 m_OneUse(m_BinOp( 1030 Mul2Op, m_BinOp(MulOp, m_Value(A), m_Value(B)), M2Rhs)), 1031 m_OneUse(m_BinOp(MulOp, m_BinOp(Mul2Op, m_Value(A), M2Rhs), 1032 m_Value(B)))), 1033 m_OneUse(m_c_BinOp( 1034 AddOp, m_BinOp(MulOp, m_Deferred(A), m_Deferred(A)), 1035 m_BinOp(MulOp, m_Deferred(B), m_Deferred(B)))))); 1036 } 1037 1038 // Fold integer variations of a^2 + 2*a*b + b^2 -> (a + b)^2 1039 Instruction *InstCombinerImpl::foldSquareSumInt(BinaryOperator &I) { 1040 Value *A, *B; 1041 if (matchesSquareSum</*FP*/ false>(I, m_SpecificInt(1), A, B)) { 1042 Value *AB = Builder.CreateAdd(A, B); 1043 return BinaryOperator::CreateMul(AB, AB); 1044 } 1045 return nullptr; 1046 } 1047 1048 // Fold floating point variations of a^2 + 2*a*b + b^2 -> (a + b)^2 1049 // Requires `nsz` and `reassoc`. 1050 Instruction *InstCombinerImpl::foldSquareSumFP(BinaryOperator &I) { 1051 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && "Assumption mismatch"); 1052 Value *A, *B; 1053 if (matchesSquareSum</*FP*/ true>(I, m_SpecificFP(2.0), A, B)) { 1054 Value *AB = Builder.CreateFAddFMF(A, B, &I); 1055 return BinaryOperator::CreateFMulFMF(AB, AB, &I); 1056 } 1057 return nullptr; 1058 } 1059 1060 // Matches multiplication expression Op * C where C is a constant. Returns the 1061 // constant value in C and the other operand in Op. Returns true if such a 1062 // match is found. 1063 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 1064 const APInt *AI; 1065 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 1066 C = *AI; 1067 return true; 1068 } 1069 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 1070 C = APInt(AI->getBitWidth(), 1); 1071 C <<= *AI; 1072 return true; 1073 } 1074 return false; 1075 } 1076 1077 // Matches remainder expression Op % C where C is a constant. Returns the 1078 // constant value in C and the other operand in Op. Returns the signedness of 1079 // the remainder operation in IsSigned. Returns true if such a match is 1080 // found. 1081 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 1082 const APInt *AI; 1083 IsSigned = false; 1084 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 1085 IsSigned = true; 1086 C = *AI; 1087 return true; 1088 } 1089 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 1090 C = *AI; 1091 return true; 1092 } 1093 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 1094 C = *AI + 1; 1095 return true; 1096 } 1097 return false; 1098 } 1099 1100 // Matches division expression Op / C with the given signedness as indicated 1101 // by IsSigned, where C is a constant. Returns the constant value in C and the 1102 // other operand in Op. Returns true if such a match is found. 1103 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 1104 const APInt *AI; 1105 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 1106 C = *AI; 1107 return true; 1108 } 1109 if (!IsSigned) { 1110 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 1111 C = *AI; 1112 return true; 1113 } 1114 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1115 C = APInt(AI->getBitWidth(), 1); 1116 C <<= *AI; 1117 return true; 1118 } 1119 } 1120 return false; 1121 } 1122 1123 // Returns whether C0 * C1 with the given signedness overflows. 1124 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1125 bool overflow; 1126 if (IsSigned) 1127 (void)C0.smul_ov(C1, overflow); 1128 else 1129 (void)C0.umul_ov(C1, overflow); 1130 return overflow; 1131 } 1132 1133 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1134 // does not overflow. 1135 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) { 1136 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1137 Value *X, *MulOpV; 1138 APInt C0, MulOpC; 1139 bool IsSigned; 1140 // Match I = X % C0 + MulOpV * C0 1141 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1142 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1143 C0 == MulOpC) { 1144 Value *RemOpV; 1145 APInt C1; 1146 bool Rem2IsSigned; 1147 // Match MulOpC = RemOpV % C1 1148 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1149 IsSigned == Rem2IsSigned) { 1150 Value *DivOpV; 1151 APInt DivOpC; 1152 // Match RemOpV = X / C0 1153 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1154 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1155 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1); 1156 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1157 : Builder.CreateURem(X, NewDivisor, "urem"); 1158 } 1159 } 1160 } 1161 1162 return nullptr; 1163 } 1164 1165 /// Fold 1166 /// (1 << NBits) - 1 1167 /// Into: 1168 /// ~(-(1 << NBits)) 1169 /// Because a 'not' is better for bit-tracking analysis and other transforms 1170 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1171 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1172 InstCombiner::BuilderTy &Builder) { 1173 Value *NBits; 1174 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1175 return nullptr; 1176 1177 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1178 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1179 // Be wary of constant folding. 1180 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1181 // Always NSW. But NUW propagates from `add`. 1182 BOp->setHasNoSignedWrap(); 1183 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1184 } 1185 1186 return BinaryOperator::CreateNot(NotMask, I.getName()); 1187 } 1188 1189 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1190 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1191 Type *Ty = I.getType(); 1192 auto getUAddSat = [&]() { 1193 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); 1194 }; 1195 1196 // add (umin X, ~Y), Y --> uaddsat X, Y 1197 Value *X, *Y; 1198 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1199 m_Deferred(Y)))) 1200 return CallInst::Create(getUAddSat(), { X, Y }); 1201 1202 // add (umin X, ~C), C --> uaddsat X, C 1203 const APInt *C, *NotC; 1204 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1205 *C == ~*NotC) 1206 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1207 1208 return nullptr; 1209 } 1210 1211 // Transform: 1212 // (add A, (shl (neg B), Y)) 1213 // -> (sub A, (shl B, Y)) 1214 static Instruction *combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder, 1215 const BinaryOperator &I) { 1216 Value *A, *B, *Cnt; 1217 if (match(&I, 1218 m_c_Add(m_OneUse(m_Shl(m_OneUse(m_Neg(m_Value(B))), m_Value(Cnt))), 1219 m_Value(A)))) { 1220 Value *NewShl = Builder.CreateShl(B, Cnt); 1221 return BinaryOperator::CreateSub(A, NewShl); 1222 } 1223 return nullptr; 1224 } 1225 1226 /// Try to reduce signed division by power-of-2 to an arithmetic shift right. 1227 static Instruction *foldAddToAshr(BinaryOperator &Add) { 1228 // Division must be by power-of-2, but not the minimum signed value. 1229 Value *X; 1230 const APInt *DivC; 1231 if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) || 1232 DivC->isNegative()) 1233 return nullptr; 1234 1235 // Rounding is done by adding -1 if the dividend (X) is negative and has any 1236 // low bits set. It recognizes two canonical patterns: 1237 // 1. For an 'ugt' cmp with the signed minimum value (SMIN), the 1238 // pattern is: sext (icmp ugt (X & (DivC - 1)), SMIN). 1239 // 2. For an 'eq' cmp, the pattern's: sext (icmp eq X & (SMIN + 1), SMIN + 1). 1240 // Note that, by the time we end up here, if possible, ugt has been 1241 // canonicalized into eq. 1242 const APInt *MaskC, *MaskCCmp; 1243 ICmpInst::Predicate Pred; 1244 if (!match(Add.getOperand(1), 1245 m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)), 1246 m_APInt(MaskCCmp))))) 1247 return nullptr; 1248 1249 if ((Pred != ICmpInst::ICMP_UGT || !MaskCCmp->isSignMask()) && 1250 (Pred != ICmpInst::ICMP_EQ || *MaskCCmp != *MaskC)) 1251 return nullptr; 1252 1253 APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits()); 1254 bool IsMaskValid = Pred == ICmpInst::ICMP_UGT 1255 ? (*MaskC == (SMin | (*DivC - 1))) 1256 : (*DivC == 2 && *MaskC == SMin + 1); 1257 if (!IsMaskValid) 1258 return nullptr; 1259 1260 // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC) 1261 return BinaryOperator::CreateAShr( 1262 X, ConstantInt::get(Add.getType(), DivC->exactLogBase2())); 1263 } 1264 1265 Instruction *InstCombinerImpl:: 1266 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( 1267 BinaryOperator &I) { 1268 assert((I.getOpcode() == Instruction::Add || 1269 I.getOpcode() == Instruction::Or || 1270 I.getOpcode() == Instruction::Sub) && 1271 "Expecting add/or/sub instruction"); 1272 1273 // We have a subtraction/addition between a (potentially truncated) *logical* 1274 // right-shift of X and a "select". 1275 Value *X, *Select; 1276 Instruction *LowBitsToSkip, *Extract; 1277 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( 1278 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), 1279 m_Instruction(Extract))), 1280 m_Value(Select)))) 1281 return nullptr; 1282 1283 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. 1284 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) 1285 return nullptr; 1286 1287 Type *XTy = X->getType(); 1288 bool HadTrunc = I.getType() != XTy; 1289 1290 // If there was a truncation of extracted value, then we'll need to produce 1291 // one extra instruction, so we need to ensure one instruction will go away. 1292 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1293 return nullptr; 1294 1295 // Extraction should extract high NBits bits, with shift amount calculated as: 1296 // low bits to skip = shift bitwidth - high bits to extract 1297 // The shift amount itself may be extended, and we need to look past zero-ext 1298 // when matching NBits, that will matter for matching later. 1299 Constant *C; 1300 Value *NBits; 1301 if (!match( 1302 LowBitsToSkip, 1303 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || 1304 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1305 APInt(C->getType()->getScalarSizeInBits(), 1306 X->getType()->getScalarSizeInBits())))) 1307 return nullptr; 1308 1309 // Sign-extending value can be zero-extended if we `sub`tract it, 1310 // or sign-extended otherwise. 1311 auto SkipExtInMagic = [&I](Value *&V) { 1312 if (I.getOpcode() == Instruction::Sub) 1313 match(V, m_ZExtOrSelf(m_Value(V))); 1314 else 1315 match(V, m_SExtOrSelf(m_Value(V))); 1316 }; 1317 1318 // Now, finally validate the sign-extending magic. 1319 // `select` itself may be appropriately extended, look past that. 1320 SkipExtInMagic(Select); 1321 1322 ICmpInst::Predicate Pred; 1323 const APInt *Thr; 1324 Value *SignExtendingValue, *Zero; 1325 bool ShouldSignext; 1326 // It must be a select between two values we will later establish to be a 1327 // sign-extending value and a zero constant. The condition guarding the 1328 // sign-extension must be based on a sign bit of the same X we had in `lshr`. 1329 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), 1330 m_Value(SignExtendingValue), m_Value(Zero))) || 1331 !isSignBitCheck(Pred, *Thr, ShouldSignext)) 1332 return nullptr; 1333 1334 // icmp-select pair is commutative. 1335 if (!ShouldSignext) 1336 std::swap(SignExtendingValue, Zero); 1337 1338 // If we should not perform sign-extension then we must add/or/subtract zero. 1339 if (!match(Zero, m_Zero())) 1340 return nullptr; 1341 // Otherwise, it should be some constant, left-shifted by the same NBits we 1342 // had in `lshr`. Said left-shift can also be appropriately extended. 1343 // Again, we must look past zero-ext when looking for NBits. 1344 SkipExtInMagic(SignExtendingValue); 1345 Constant *SignExtendingValueBaseConstant; 1346 if (!match(SignExtendingValue, 1347 m_Shl(m_Constant(SignExtendingValueBaseConstant), 1348 m_ZExtOrSelf(m_Specific(NBits))))) 1349 return nullptr; 1350 // If we `sub`, then the constant should be one, else it should be all-ones. 1351 if (I.getOpcode() == Instruction::Sub 1352 ? !match(SignExtendingValueBaseConstant, m_One()) 1353 : !match(SignExtendingValueBaseConstant, m_AllOnes())) 1354 return nullptr; 1355 1356 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, 1357 Extract->getName() + ".sext"); 1358 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. 1359 if (!HadTrunc) 1360 return NewAShr; 1361 1362 Builder.Insert(NewAShr); 1363 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); 1364 } 1365 1366 /// This is a specialization of a more general transform from 1367 /// foldUsingDistributiveLaws. If that code can be made to work optimally 1368 /// for multi-use cases or propagating nsw/nuw, then we would not need this. 1369 static Instruction *factorizeMathWithShlOps(BinaryOperator &I, 1370 InstCombiner::BuilderTy &Builder) { 1371 // TODO: Also handle mul by doubling the shift amount? 1372 assert((I.getOpcode() == Instruction::Add || 1373 I.getOpcode() == Instruction::Sub) && 1374 "Expected add/sub"); 1375 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 1376 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 1377 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse())) 1378 return nullptr; 1379 1380 Value *X, *Y, *ShAmt; 1381 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) || 1382 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt)))) 1383 return nullptr; 1384 1385 // No-wrap propagates only when all ops have no-wrap. 1386 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() && 1387 Op1->hasNoSignedWrap(); 1388 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() && 1389 Op1->hasNoUnsignedWrap(); 1390 1391 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt 1392 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y); 1393 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) { 1394 NewI->setHasNoSignedWrap(HasNSW); 1395 NewI->setHasNoUnsignedWrap(HasNUW); 1396 } 1397 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt); 1398 NewShl->setHasNoSignedWrap(HasNSW); 1399 NewShl->setHasNoUnsignedWrap(HasNUW); 1400 return NewShl; 1401 } 1402 1403 /// Reduce a sequence of masked half-width multiplies to a single multiply. 1404 /// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y 1405 static Instruction *foldBoxMultiply(BinaryOperator &I) { 1406 unsigned BitWidth = I.getType()->getScalarSizeInBits(); 1407 // Skip the odd bitwidth types. 1408 if ((BitWidth & 0x1)) 1409 return nullptr; 1410 1411 unsigned HalfBits = BitWidth >> 1; 1412 APInt HalfMask = APInt::getMaxValue(HalfBits); 1413 1414 // ResLo = (CrossSum << HalfBits) + (YLo * XLo) 1415 Value *XLo, *YLo; 1416 Value *CrossSum; 1417 // Require one-use on the multiply to avoid increasing the number of 1418 // multiplications. 1419 if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)), 1420 m_OneUse(m_Mul(m_Value(YLo), m_Value(XLo)))))) 1421 return nullptr; 1422 1423 // XLo = X & HalfMask 1424 // YLo = Y & HalfMask 1425 // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros 1426 // to enhance robustness 1427 Value *X, *Y; 1428 if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) || 1429 !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask)))) 1430 return nullptr; 1431 1432 // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits)) 1433 // X' can be either X or XLo in the pattern (and the same for Y') 1434 if (match(CrossSum, 1435 m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)), 1436 m_CombineOr(m_Specific(X), m_Specific(XLo))), 1437 m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)), 1438 m_CombineOr(m_Specific(Y), m_Specific(YLo)))))) 1439 return BinaryOperator::CreateMul(X, Y); 1440 1441 return nullptr; 1442 } 1443 1444 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) { 1445 if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1), 1446 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1447 SQ.getWithInstruction(&I))) 1448 return replaceInstUsesWith(I, V); 1449 1450 if (SimplifyAssociativeOrCommutative(I)) 1451 return &I; 1452 1453 if (Instruction *X = foldVectorBinop(I)) 1454 return X; 1455 1456 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1457 return Phi; 1458 1459 // (A*B)+(A*C) -> A*(B+C) etc 1460 if (Value *V = foldUsingDistributiveLaws(I)) 1461 return replaceInstUsesWith(I, V); 1462 1463 if (Instruction *R = foldBoxMultiply(I)) 1464 return R; 1465 1466 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1467 return R; 1468 1469 if (Instruction *X = foldAddWithConstant(I)) 1470 return X; 1471 1472 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1473 return X; 1474 1475 if (Instruction *R = foldBinOpShiftWithShift(I)) 1476 return R; 1477 1478 if (Instruction *R = combineAddSubWithShlAddSub(Builder, I)) 1479 return R; 1480 1481 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1482 Type *Ty = I.getType(); 1483 if (Ty->isIntOrIntVectorTy(1)) 1484 return BinaryOperator::CreateXor(LHS, RHS); 1485 1486 // X + X --> X << 1 1487 if (LHS == RHS) { 1488 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1489 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1490 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1491 return Shl; 1492 } 1493 1494 Value *A, *B; 1495 if (match(LHS, m_Neg(m_Value(A)))) { 1496 // -A + -B --> -(A + B) 1497 if (match(RHS, m_Neg(m_Value(B)))) 1498 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1499 1500 // -A + B --> B - A 1501 auto *Sub = BinaryOperator::CreateSub(RHS, A); 1502 auto *OB0 = cast<OverflowingBinaryOperator>(LHS); 1503 Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OB0->hasNoSignedWrap()); 1504 1505 return Sub; 1506 } 1507 1508 // A + -B --> A - B 1509 if (match(RHS, m_Neg(m_Value(B)))) 1510 return BinaryOperator::CreateSub(LHS, B); 1511 1512 if (Value *V = checkForNegativeOperand(I, Builder)) 1513 return replaceInstUsesWith(I, V); 1514 1515 // (A + 1) + ~B --> A - B 1516 // ~B + (A + 1) --> A - B 1517 // (~B + A) + 1 --> A - B 1518 // (A + ~B) + 1 --> A - B 1519 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1520 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1521 return BinaryOperator::CreateSub(A, B); 1522 1523 // (A + RHS) + RHS --> A + (RHS << 1) 1524 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS))))) 1525 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add")); 1526 1527 // LHS + (A + LHS) --> A + (LHS << 1) 1528 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS))))) 1529 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add")); 1530 1531 { 1532 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2) 1533 Constant *C1, *C2; 1534 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)), 1535 m_Sub(m_ImmConstant(C2), m_Value(B)))) && 1536 (LHS->hasOneUse() || RHS->hasOneUse())) { 1537 Value *Sub = Builder.CreateSub(A, B); 1538 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2)); 1539 } 1540 1541 // Canonicalize a constant sub operand as an add operand for better folding: 1542 // (C1 - A) + B --> (B - A) + C1 1543 if (match(&I, m_c_Add(m_OneUse(m_Sub(m_ImmConstant(C1), m_Value(A))), 1544 m_Value(B)))) { 1545 Value *Sub = Builder.CreateSub(B, A, "reass.sub"); 1546 return BinaryOperator::CreateAdd(Sub, C1); 1547 } 1548 } 1549 1550 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1551 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1552 1553 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2 1554 const APInt *C1, *C2; 1555 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) { 1556 APInt one(C2->getBitWidth(), 1); 1557 APInt minusC1 = -(*C1); 1558 if (minusC1 == (one << *C2)) { 1559 Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1); 1560 return BinaryOperator::CreateSRem(RHS, NewRHS); 1561 } 1562 } 1563 1564 // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit 1565 if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) && 1566 C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countl_zero())) { 1567 Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1); 1568 return BinaryOperator::CreateAnd(A, NewMask); 1569 } 1570 1571 // ZExt (B - A) + ZExt(A) --> ZExt(B) 1572 if ((match(RHS, m_ZExt(m_Value(A))) && 1573 match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) || 1574 (match(LHS, m_ZExt(m_Value(A))) && 1575 match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A)))))) 1576 return new ZExtInst(B, LHS->getType()); 1577 1578 // zext(A) + sext(A) --> 0 if A is i1 1579 if (match(&I, m_c_BinOp(m_ZExt(m_Value(A)), m_SExt(m_Deferred(A)))) && 1580 A->getType()->isIntOrIntVectorTy(1)) 1581 return replaceInstUsesWith(I, Constant::getNullValue(I.getType())); 1582 1583 // A+B --> A|B iff A and B have no bits set in common. 1584 WithCache<const Value *> LHSCache(LHS), RHSCache(RHS); 1585 if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(&I))) 1586 return BinaryOperator::CreateDisjointOr(LHS, RHS); 1587 1588 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1589 return Ext; 1590 1591 // (add (xor A, B) (and A, B)) --> (or A, B) 1592 // (add (and A, B) (xor A, B)) --> (or A, B) 1593 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1594 m_c_And(m_Deferred(A), m_Deferred(B))))) 1595 return BinaryOperator::CreateOr(A, B); 1596 1597 // (add (or A, B) (and A, B)) --> (add A, B) 1598 // (add (and A, B) (or A, B)) --> (add A, B) 1599 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1600 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1601 // Replacing operands in-place to preserve nuw/nsw flags. 1602 replaceOperand(I, 0, A); 1603 replaceOperand(I, 1, B); 1604 return &I; 1605 } 1606 1607 // (add A (or A, -A)) --> (and (add A, -1) A) 1608 // (add A (or -A, A)) --> (and (add A, -1) A) 1609 // (add (or A, -A) A) --> (and (add A, -1) A) 1610 // (add (or -A, A) A) --> (and (add A, -1) A) 1611 if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)), 1612 m_Deferred(A)))))) { 1613 Value *Add = 1614 Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "", 1615 I.hasNoUnsignedWrap(), I.hasNoSignedWrap()); 1616 return BinaryOperator::CreateAnd(Add, A); 1617 } 1618 1619 // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A) 1620 // Forms all commutable operations, and simplifies ctpop -> cttz folds. 1621 if (match(&I, 1622 m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))), 1623 m_AllOnes()))) { 1624 Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType()); 1625 Value *Dec = Builder.CreateAdd(A, AllOnes); 1626 Value *Not = Builder.CreateXor(A, AllOnes); 1627 return BinaryOperator::CreateAnd(Dec, Not); 1628 } 1629 1630 // Disguised reassociation/factorization: 1631 // ~(A * C1) + A 1632 // ((A * -C1) - 1) + A 1633 // ((A * -C1) + A) - 1 1634 // (A * (1 - C1)) - 1 1635 if (match(&I, 1636 m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))), 1637 m_Deferred(A)))) { 1638 Type *Ty = I.getType(); 1639 Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1); 1640 Value *NewMul = Builder.CreateMul(A, NewMulC); 1641 return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty)); 1642 } 1643 1644 // (A * -2**C) + B --> B - (A << C) 1645 const APInt *NegPow2C; 1646 if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))), 1647 m_Value(B)))) { 1648 Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countr_zero()); 1649 Value *Shl = Builder.CreateShl(A, ShiftAmtC); 1650 return BinaryOperator::CreateSub(B, Shl); 1651 } 1652 1653 // Canonicalize signum variant that ends in add: 1654 // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0)) 1655 ICmpInst::Predicate Pred; 1656 uint64_t BitWidth = Ty->getScalarSizeInBits(); 1657 if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowUndef(BitWidth - 1))) && 1658 match(RHS, m_OneUse(m_ZExt( 1659 m_OneUse(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))))) && 1660 Pred == CmpInst::ICMP_SGT) { 1661 Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull"); 1662 Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext"); 1663 return BinaryOperator::CreateOr(LHS, Zext); 1664 } 1665 1666 if (Instruction *Ashr = foldAddToAshr(I)) 1667 return Ashr; 1668 1669 // (~X) + (~Y) --> -2 - (X + Y) 1670 { 1671 // To ensure we can save instructions we need to ensure that we consume both 1672 // LHS/RHS (i.e they have a `not`). 1673 bool ConsumesLHS, ConsumesRHS; 1674 if (isFreeToInvert(LHS, LHS->hasOneUse(), ConsumesLHS) && ConsumesLHS && 1675 isFreeToInvert(RHS, RHS->hasOneUse(), ConsumesRHS) && ConsumesRHS) { 1676 Value *NotLHS = getFreelyInverted(LHS, LHS->hasOneUse(), &Builder); 1677 Value *NotRHS = getFreelyInverted(RHS, RHS->hasOneUse(), &Builder); 1678 assert(NotLHS != nullptr && NotRHS != nullptr && 1679 "isFreeToInvert desynced with getFreelyInverted"); 1680 Value *LHSPlusRHS = Builder.CreateAdd(NotLHS, NotRHS); 1681 return BinaryOperator::CreateSub( 1682 ConstantInt::getSigned(RHS->getType(), -2), LHSPlusRHS); 1683 } 1684 } 1685 1686 if (Instruction *R = tryFoldInstWithCtpopWithNot(&I)) 1687 return R; 1688 1689 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1690 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1691 // computeKnownBits. 1692 bool Changed = false; 1693 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHSCache, RHSCache, I)) { 1694 Changed = true; 1695 I.setHasNoSignedWrap(true); 1696 } 1697 if (!I.hasNoUnsignedWrap() && 1698 willNotOverflowUnsignedAdd(LHSCache, RHSCache, I)) { 1699 Changed = true; 1700 I.setHasNoUnsignedWrap(true); 1701 } 1702 1703 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1704 return V; 1705 1706 if (Instruction *V = 1707 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 1708 return V; 1709 1710 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1711 return SatAdd; 1712 1713 // usub.sat(A, B) + B => umax(A, B) 1714 if (match(&I, m_c_BinOp( 1715 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))), 1716 m_Deferred(B)))) { 1717 return replaceInstUsesWith(I, 1718 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B})); 1719 } 1720 1721 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common. 1722 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) && 1723 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) && 1724 haveNoCommonBitsSet(A, B, SQ.getWithInstruction(&I))) 1725 return replaceInstUsesWith( 1726 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 1727 {Builder.CreateOr(A, B)})); 1728 1729 // Fold the log2_ceil idiom: 1730 // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1)) 1731 // --> 1732 // BW - ctlz(A - 1, false) 1733 const APInt *XorC; 1734 if (match(&I, 1735 m_c_Add( 1736 m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)), 1737 m_One())), 1738 m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor( 1739 m_OneUse(m_TruncOrSelf(m_OneUse( 1740 m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))), 1741 m_APInt(XorC))))))) && 1742 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) && 1743 *XorC == A->getType()->getScalarSizeInBits() - 1) { 1744 Value *Sub = Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType())); 1745 Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()}, 1746 {Sub, Builder.getFalse()}); 1747 Value *Ret = Builder.CreateSub( 1748 ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()), 1749 Ctlz, "", /*HasNUW*/ true, /*HasNSW*/ true); 1750 return replaceInstUsesWith(I, Builder.CreateZExtOrTrunc(Ret, I.getType())); 1751 } 1752 1753 if (Instruction *Res = foldSquareSumInt(I)) 1754 return Res; 1755 1756 if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 1757 return Res; 1758 1759 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I)) 1760 return Res; 1761 1762 return Changed ? &I : nullptr; 1763 } 1764 1765 /// Eliminate an op from a linear interpolation (lerp) pattern. 1766 static Instruction *factorizeLerp(BinaryOperator &I, 1767 InstCombiner::BuilderTy &Builder) { 1768 Value *X, *Y, *Z; 1769 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1770 m_OneUse(m_FSub(m_FPOne(), 1771 m_Value(Z))))), 1772 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1773 return nullptr; 1774 1775 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1776 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1777 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1778 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1779 } 1780 1781 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1782 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1783 InstCombiner::BuilderTy &Builder) { 1784 assert((I.getOpcode() == Instruction::FAdd || 1785 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1786 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1787 "FP factorization requires FMF"); 1788 1789 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1790 return Lerp; 1791 1792 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1793 if (!Op0->hasOneUse() || !Op1->hasOneUse()) 1794 return nullptr; 1795 1796 Value *X, *Y, *Z; 1797 bool IsFMul; 1798 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) && 1799 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) || 1800 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) && 1801 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z))))) 1802 IsFMul = true; 1803 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) && 1804 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z)))) 1805 IsFMul = false; 1806 else 1807 return nullptr; 1808 1809 // (X * Z) + (Y * Z) --> (X + Y) * Z 1810 // (X * Z) - (Y * Z) --> (X - Y) * Z 1811 // (X / Z) + (Y / Z) --> (X + Y) / Z 1812 // (X / Z) - (Y / Z) --> (X - Y) / Z 1813 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1814 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1815 : Builder.CreateFSubFMF(X, Y, &I); 1816 1817 // Bail out if we just created a denormal constant. 1818 // TODO: This is copied from a previous implementation. Is it necessary? 1819 const APFloat *C; 1820 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1821 return nullptr; 1822 1823 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1824 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1825 } 1826 1827 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) { 1828 if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1), 1829 I.getFastMathFlags(), 1830 SQ.getWithInstruction(&I))) 1831 return replaceInstUsesWith(I, V); 1832 1833 if (SimplifyAssociativeOrCommutative(I)) 1834 return &I; 1835 1836 if (Instruction *X = foldVectorBinop(I)) 1837 return X; 1838 1839 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 1840 return Phi; 1841 1842 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1843 return FoldedFAdd; 1844 1845 // (-X) + Y --> Y - X 1846 Value *X, *Y; 1847 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1848 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1849 1850 // Similar to above, but look through fmul/fdiv for the negated term. 1851 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1852 Value *Z; 1853 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1854 m_Value(Z)))) { 1855 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1856 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1857 } 1858 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1859 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1860 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1861 m_Value(Z))) || 1862 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1863 m_Value(Z)))) { 1864 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1865 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1866 } 1867 1868 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1869 // integer add followed by a promotion. 1870 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1871 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1872 Value *LHSIntVal = LHSConv->getOperand(0); 1873 Type *FPType = LHSConv->getType(); 1874 1875 // TODO: This check is overly conservative. In many cases known bits 1876 // analysis can tell us that the result of the addition has less significant 1877 // bits than the integer type can hold. 1878 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1879 Type *FScalarTy = FTy->getScalarType(); 1880 Type *IScalarTy = ITy->getScalarType(); 1881 1882 // Do we have enough bits in the significand to represent the result of 1883 // the integer addition? 1884 unsigned MaxRepresentableBits = 1885 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1886 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1887 }; 1888 1889 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1890 // ... if the constant fits in the integer value. This is useful for things 1891 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1892 // requires a constant pool load, and generally allows the add to be better 1893 // instcombined. 1894 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1895 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1896 Constant *CI = ConstantFoldCastOperand(Instruction::FPToSI, CFP, 1897 LHSIntVal->getType(), DL); 1898 if (LHSConv->hasOneUse() && 1899 ConstantFoldCastOperand(Instruction::SIToFP, CI, I.getType(), DL) == 1900 CFP && 1901 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1902 // Insert the new integer add. 1903 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1904 return new SIToFPInst(NewAdd, I.getType()); 1905 } 1906 } 1907 1908 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1909 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1910 Value *RHSIntVal = RHSConv->getOperand(0); 1911 // It's enough to check LHS types only because we require int types to 1912 // be the same for this transform. 1913 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1914 // Only do this if x/y have the same type, if at least one of them has a 1915 // single use (so we don't increase the number of int->fp conversions), 1916 // and if the integer add will not overflow. 1917 if (LHSIntVal->getType() == RHSIntVal->getType() && 1918 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1919 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1920 // Insert the new integer add. 1921 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1922 return new SIToFPInst(NewAdd, I.getType()); 1923 } 1924 } 1925 } 1926 } 1927 1928 // Handle specials cases for FAdd with selects feeding the operation 1929 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1930 return replaceInstUsesWith(I, V); 1931 1932 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1933 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1934 return F; 1935 1936 if (Instruction *F = foldSquareSumFP(I)) 1937 return F; 1938 1939 // Try to fold fadd into start value of reduction intrinsic. 1940 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1941 m_AnyZeroFP(), m_Value(X))), 1942 m_Value(Y)))) { 1943 // fadd (rdx 0.0, X), Y --> rdx Y, X 1944 return replaceInstUsesWith( 1945 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1946 {X->getType()}, {Y, X}, &I)); 1947 } 1948 const APFloat *StartC, *C; 1949 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( 1950 m_APFloat(StartC), m_Value(X)))) && 1951 match(RHS, m_APFloat(C))) { 1952 // fadd (rdx StartC, X), C --> rdx (C + StartC), X 1953 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC); 1954 return replaceInstUsesWith( 1955 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 1956 {X->getType()}, {NewStartC, X}, &I)); 1957 } 1958 1959 // (X * MulC) + X --> X * (MulC + 1.0) 1960 Constant *MulC; 1961 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)), 1962 m_Deferred(X)))) { 1963 if (Constant *NewMulC = ConstantFoldBinaryOpOperands( 1964 Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL)) 1965 return BinaryOperator::CreateFMulFMF(X, NewMulC, &I); 1966 } 1967 1968 // (-X - Y) + (X + Z) --> Z - Y 1969 if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)), 1970 m_c_FAdd(m_Deferred(X), m_Value(Z))))) 1971 return BinaryOperator::CreateFSubFMF(Z, Y, &I); 1972 1973 if (Value *V = FAddCombine(Builder).simplify(&I)) 1974 return replaceInstUsesWith(I, V); 1975 } 1976 1977 // minumum(X, Y) + maximum(X, Y) => X + Y. 1978 if (match(&I, 1979 m_c_FAdd(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)), 1980 m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X), 1981 m_Deferred(Y))))) { 1982 BinaryOperator *Result = BinaryOperator::CreateFAddFMF(X, Y, &I); 1983 // We cannot preserve ninf if nnan flag is not set. 1984 // If X is NaN and Y is Inf then in original program we had NaN + NaN, 1985 // while in optimized version NaN + Inf and this is a poison with ninf flag. 1986 if (!Result->hasNoNaNs()) 1987 Result->setHasNoInfs(false); 1988 return Result; 1989 } 1990 1991 return nullptr; 1992 } 1993 1994 /// Optimize pointer differences into the same array into a size. Consider: 1995 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1996 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1997 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS, 1998 Type *Ty, bool IsNUW) { 1999 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 2000 // this. 2001 bool Swapped = false; 2002 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 2003 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) { 2004 std::swap(LHS, RHS); 2005 Swapped = true; 2006 } 2007 2008 // Require at least one GEP with a common base pointer on both sides. 2009 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 2010 // (gep X, ...) - X 2011 if (LHSGEP->getOperand(0)->stripPointerCasts() == 2012 RHS->stripPointerCasts()) { 2013 GEP1 = LHSGEP; 2014 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 2015 // (gep X, ...) - (gep X, ...) 2016 if (LHSGEP->getOperand(0)->stripPointerCasts() == 2017 RHSGEP->getOperand(0)->stripPointerCasts()) { 2018 GEP1 = LHSGEP; 2019 GEP2 = RHSGEP; 2020 } 2021 } 2022 } 2023 2024 if (!GEP1) 2025 return nullptr; 2026 2027 if (GEP2) { 2028 // (gep X, ...) - (gep X, ...) 2029 // 2030 // Avoid duplicating the arithmetic if there are more than one non-constant 2031 // indices between the two GEPs and either GEP has a non-constant index and 2032 // multiple users. If zero non-constant index, the result is a constant and 2033 // there is no duplication. If one non-constant index, the result is an add 2034 // or sub with a constant, which is no larger than the original code, and 2035 // there's no duplicated arithmetic, even if either GEP has multiple 2036 // users. If more than one non-constant indices combined, as long as the GEP 2037 // with at least one non-constant index doesn't have multiple users, there 2038 // is no duplication. 2039 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 2040 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 2041 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 2042 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 2043 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 2044 return nullptr; 2045 } 2046 } 2047 2048 // Emit the offset of the GEP and an intptr_t. 2049 Value *Result = EmitGEPOffset(GEP1); 2050 2051 // If this is a single inbounds GEP and the original sub was nuw, 2052 // then the final multiplication is also nuw. 2053 if (auto *I = dyn_cast<Instruction>(Result)) 2054 if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() && 2055 I->getOpcode() == Instruction::Mul) 2056 I->setHasNoUnsignedWrap(); 2057 2058 // If we have a 2nd GEP of the same base pointer, subtract the offsets. 2059 // If both GEPs are inbounds, then the subtract does not have signed overflow. 2060 if (GEP2) { 2061 Value *Offset = EmitGEPOffset(GEP2); 2062 Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false, 2063 GEP1->isInBounds() && GEP2->isInBounds()); 2064 } 2065 2066 // If we have p - gep(p, ...) then we have to negate the result. 2067 if (Swapped) 2068 Result = Builder.CreateNeg(Result, "diff.neg"); 2069 2070 return Builder.CreateIntCast(Result, Ty, true); 2071 } 2072 2073 static Instruction *foldSubOfMinMax(BinaryOperator &I, 2074 InstCombiner::BuilderTy &Builder) { 2075 Value *Op0 = I.getOperand(0); 2076 Value *Op1 = I.getOperand(1); 2077 Type *Ty = I.getType(); 2078 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1); 2079 if (!MinMax) 2080 return nullptr; 2081 2082 // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y) 2083 // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y) 2084 Value *X = MinMax->getLHS(); 2085 Value *Y = MinMax->getRHS(); 2086 if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) && 2087 (Op0->hasOneUse() || Op1->hasOneUse())) { 2088 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 2089 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 2090 return CallInst::Create(F, {X, Y}); 2091 } 2092 2093 // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z)) 2094 // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y)) 2095 Value *Z; 2096 if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) { 2097 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) { 2098 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z}); 2099 return BinaryOperator::CreateAdd(X, USub); 2100 } 2101 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) { 2102 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y}); 2103 return BinaryOperator::CreateAdd(X, USub); 2104 } 2105 } 2106 2107 // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z 2108 // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z 2109 if (MinMax->isSigned() && match(Y, m_ZeroInt()) && 2110 match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) { 2111 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); 2112 Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); 2113 return CallInst::Create(F, {Op0, Z}); 2114 } 2115 2116 return nullptr; 2117 } 2118 2119 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) { 2120 if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1), 2121 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 2122 SQ.getWithInstruction(&I))) 2123 return replaceInstUsesWith(I, V); 2124 2125 if (Instruction *X = foldVectorBinop(I)) 2126 return X; 2127 2128 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2129 return Phi; 2130 2131 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2132 2133 // If this is a 'B = x-(-A)', change to B = x+A. 2134 // We deal with this without involving Negator to preserve NSW flag. 2135 if (Value *V = dyn_castNegVal(Op1)) { 2136 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 2137 2138 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 2139 assert(BO->getOpcode() == Instruction::Sub && 2140 "Expected a subtraction operator!"); 2141 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 2142 Res->setHasNoSignedWrap(true); 2143 } else { 2144 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 2145 Res->setHasNoSignedWrap(true); 2146 } 2147 2148 return Res; 2149 } 2150 2151 // Try this before Negator to preserve NSW flag. 2152 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 2153 return R; 2154 2155 Constant *C; 2156 if (match(Op0, m_ImmConstant(C))) { 2157 Value *X; 2158 Constant *C2; 2159 2160 // C-(X+C2) --> (C-C2)-X 2161 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) { 2162 // C-C2 never overflow, and C-(X+C2), (X+C2) has NSW/NUW 2163 // => (C-C2)-X can have NSW/NUW 2164 bool WillNotSOV = willNotOverflowSignedSub(C, C2, I); 2165 BinaryOperator *Res = 2166 BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 2167 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2168 Res->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO1->hasNoSignedWrap() && 2169 WillNotSOV); 2170 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() && 2171 OBO1->hasNoUnsignedWrap()); 2172 return Res; 2173 } 2174 } 2175 2176 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * { 2177 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 2178 return Ext; 2179 2180 bool Changed = false; 2181 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 2182 Changed = true; 2183 I.setHasNoSignedWrap(true); 2184 } 2185 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 2186 Changed = true; 2187 I.setHasNoUnsignedWrap(true); 2188 } 2189 2190 return Changed ? &I : nullptr; 2191 }; 2192 2193 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`, 2194 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't 2195 // a pure negation used by a select that looks like abs/nabs. 2196 bool IsNegation = match(Op0, m_ZeroInt()); 2197 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) { 2198 const Instruction *UI = dyn_cast<Instruction>(U); 2199 if (!UI) 2200 return false; 2201 return match(UI, 2202 m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) || 2203 match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1))); 2204 })) { 2205 if (Value *NegOp1 = Negator::Negate(IsNegation, /* IsNSW */ IsNegation && 2206 I.hasNoSignedWrap(), 2207 Op1, *this)) 2208 return BinaryOperator::CreateAdd(NegOp1, Op0); 2209 } 2210 if (IsNegation) 2211 return TryToNarrowDeduceFlags(); // Should have been handled in Negator! 2212 2213 // (A*B)-(A*C) -> A*(B-C) etc 2214 if (Value *V = foldUsingDistributiveLaws(I)) 2215 return replaceInstUsesWith(I, V); 2216 2217 if (I.getType()->isIntOrIntVectorTy(1)) 2218 return BinaryOperator::CreateXor(Op0, Op1); 2219 2220 // Replace (-1 - A) with (~A). 2221 if (match(Op0, m_AllOnes())) 2222 return BinaryOperator::CreateNot(Op1); 2223 2224 // (X + -1) - Y --> ~Y + X 2225 Value *X, *Y; 2226 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 2227 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 2228 2229 // Reassociate sub/add sequences to create more add instructions and 2230 // reduce dependency chains: 2231 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2232 Value *Z; 2233 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))), 2234 m_Value(Z))))) { 2235 Value *XZ = Builder.CreateAdd(X, Z); 2236 Value *YW = Builder.CreateAdd(Y, Op1); 2237 return BinaryOperator::CreateSub(XZ, YW); 2238 } 2239 2240 // ((X - Y) - Op1) --> X - (Y + Op1) 2241 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) { 2242 OverflowingBinaryOperator *LHSSub = cast<OverflowingBinaryOperator>(Op0); 2243 bool HasNUW = I.hasNoUnsignedWrap() && LHSSub->hasNoUnsignedWrap(); 2244 bool HasNSW = HasNUW && I.hasNoSignedWrap() && LHSSub->hasNoSignedWrap(); 2245 Value *Add = Builder.CreateAdd(Y, Op1, "", /* HasNUW */ HasNUW, 2246 /* HasNSW */ HasNSW); 2247 BinaryOperator *Sub = BinaryOperator::CreateSub(X, Add); 2248 Sub->setHasNoUnsignedWrap(HasNUW); 2249 Sub->setHasNoSignedWrap(HasNSW); 2250 return Sub; 2251 } 2252 2253 { 2254 // (X + Z) - (Y + Z) --> (X - Y) 2255 // This is done in other passes, but we want to be able to consume this 2256 // pattern in InstCombine so we can generate it without creating infinite 2257 // loops. 2258 if (match(Op0, m_Add(m_Value(X), m_Value(Z))) && 2259 match(Op1, m_c_Add(m_Value(Y), m_Specific(Z)))) 2260 return BinaryOperator::CreateSub(X, Y); 2261 2262 // (X + C0) - (Y + C1) --> (X - Y) + (C0 - C1) 2263 Constant *CX, *CY; 2264 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(CX)))) && 2265 match(Op1, m_OneUse(m_Add(m_Value(Y), m_ImmConstant(CY))))) { 2266 Value *OpsSub = Builder.CreateSub(X, Y); 2267 Constant *ConstsSub = ConstantExpr::getSub(CX, CY); 2268 return BinaryOperator::CreateAdd(OpsSub, ConstsSub); 2269 } 2270 } 2271 2272 // (~X) - (~Y) --> Y - X 2273 { 2274 // Need to ensure we can consume at least one of the `not` instructions, 2275 // otherwise this can inf loop. 2276 bool ConsumesOp0, ConsumesOp1; 2277 if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) && 2278 isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) && 2279 (ConsumesOp0 || ConsumesOp1)) { 2280 Value *NotOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder); 2281 Value *NotOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder); 2282 assert(NotOp0 != nullptr && NotOp1 != nullptr && 2283 "isFreeToInvert desynced with getFreelyInverted"); 2284 return BinaryOperator::CreateSub(NotOp1, NotOp0); 2285 } 2286 } 2287 2288 auto m_AddRdx = [](Value *&Vec) { 2289 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec))); 2290 }; 2291 Value *V0, *V1; 2292 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) && 2293 V0->getType() == V1->getType()) { 2294 // Difference of sums is sum of differences: 2295 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1) 2296 Value *Sub = Builder.CreateSub(V0, V1); 2297 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add, 2298 {Sub->getType()}, {Sub}); 2299 return replaceInstUsesWith(I, Rdx); 2300 } 2301 2302 if (Constant *C = dyn_cast<Constant>(Op0)) { 2303 Value *X; 2304 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2305 // C - (zext bool) --> bool ? C - 1 : C 2306 return SelectInst::Create(X, InstCombiner::SubOne(C), C); 2307 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 2308 // C - (sext bool) --> bool ? C + 1 : C 2309 return SelectInst::Create(X, InstCombiner::AddOne(C), C); 2310 2311 // C - ~X == X + (1+C) 2312 if (match(Op1, m_Not(m_Value(X)))) 2313 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C)); 2314 2315 // Try to fold constant sub into select arguments. 2316 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2317 if (Instruction *R = FoldOpIntoSelect(I, SI)) 2318 return R; 2319 2320 // Try to fold constant sub into PHI values. 2321 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 2322 if (Instruction *R = foldOpIntoPhi(I, PN)) 2323 return R; 2324 2325 Constant *C2; 2326 2327 // C-(C2-X) --> X+(C-C2) 2328 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X)))) 2329 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 2330 } 2331 2332 const APInt *Op0C; 2333 if (match(Op0, m_APInt(Op0C))) { 2334 if (Op0C->isMask()) { 2335 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 2336 // zero. 2337 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 2338 if ((*Op0C | RHSKnown.Zero).isAllOnes()) 2339 return BinaryOperator::CreateXor(Op1, Op0); 2340 } 2341 2342 // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when: 2343 // (C3 - ((C2 & C3) - 1)) is pow2 2344 // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1) 2345 // C2 is negative pow2 || sub nuw 2346 const APInt *C2, *C3; 2347 BinaryOperator *InnerSub; 2348 if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) && 2349 match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) && 2350 (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) { 2351 APInt C2AndC3 = *C2 & *C3; 2352 APInt C2AndC3Minus1 = C2AndC3 - 1; 2353 APInt C2AddC3 = *C2 + *C3; 2354 if ((*C3 - C2AndC3Minus1).isPowerOf2() && 2355 C2AndC3Minus1.isSubsetOf(C2AddC3)) { 2356 Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2)); 2357 return BinaryOperator::CreateAdd( 2358 And, ConstantInt::get(I.getType(), *Op0C - C2AndC3)); 2359 } 2360 } 2361 } 2362 2363 { 2364 Value *Y; 2365 // X-(X+Y) == -Y X-(Y+X) == -Y 2366 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 2367 return BinaryOperator::CreateNeg(Y); 2368 2369 // (X-Y)-X == -Y 2370 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 2371 return BinaryOperator::CreateNeg(Y); 2372 } 2373 2374 // (sub (or A, B) (and A, B)) --> (xor A, B) 2375 { 2376 Value *A, *B; 2377 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2378 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2379 return BinaryOperator::CreateXor(A, B); 2380 } 2381 2382 // (sub (add A, B) (or A, B)) --> (and A, B) 2383 { 2384 Value *A, *B; 2385 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2386 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 2387 return BinaryOperator::CreateAnd(A, B); 2388 } 2389 2390 // (sub (add A, B) (and A, B)) --> (or A, B) 2391 { 2392 Value *A, *B; 2393 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2394 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 2395 return BinaryOperator::CreateOr(A, B); 2396 } 2397 2398 // (sub (and A, B) (or A, B)) --> neg (xor A, B) 2399 { 2400 Value *A, *B; 2401 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2402 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2403 (Op0->hasOneUse() || Op1->hasOneUse())) 2404 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); 2405 } 2406 2407 // (sub (or A, B), (xor A, B)) --> (and A, B) 2408 { 2409 Value *A, *B; 2410 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2411 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 2412 return BinaryOperator::CreateAnd(A, B); 2413 } 2414 2415 // (sub (xor A, B) (or A, B)) --> neg (and A, B) 2416 { 2417 Value *A, *B; 2418 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2419 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 2420 (Op0->hasOneUse() || Op1->hasOneUse())) 2421 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); 2422 } 2423 2424 { 2425 Value *Y; 2426 // ((X | Y) - X) --> (~X & Y) 2427 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 2428 return BinaryOperator::CreateAnd( 2429 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 2430 } 2431 2432 { 2433 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) 2434 Value *X; 2435 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), 2436 m_OneUse(m_Neg(m_Value(X))))))) { 2437 return BinaryOperator::CreateNeg(Builder.CreateAnd( 2438 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); 2439 } 2440 } 2441 2442 { 2443 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) 2444 Constant *C; 2445 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { 2446 return BinaryOperator::CreateNeg( 2447 Builder.CreateAnd(Op1, Builder.CreateNot(C))); 2448 } 2449 } 2450 2451 if (Instruction *R = tryFoldInstWithCtpopWithNot(&I)) 2452 return R; 2453 2454 if (Instruction *R = foldSubOfMinMax(I, Builder)) 2455 return R; 2456 2457 { 2458 // If we have a subtraction between some value and a select between 2459 // said value and something else, sink subtraction into select hands, i.e.: 2460 // sub (select %Cond, %TrueVal, %FalseVal), %Op1 2461 // -> 2462 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) 2463 // or 2464 // sub %Op0, (select %Cond, %TrueVal, %FalseVal) 2465 // -> 2466 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) 2467 // This will result in select between new subtraction and 0. 2468 auto SinkSubIntoSelect = 2469 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, 2470 auto SubBuilder) -> Instruction * { 2471 Value *Cond, *TrueVal, *FalseVal; 2472 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), 2473 m_Value(FalseVal))))) 2474 return nullptr; 2475 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) 2476 return nullptr; 2477 // While it is really tempting to just create two subtractions and let 2478 // InstCombine fold one of those to 0, it isn't possible to do so 2479 // because of worklist visitation order. So ugly it is. 2480 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; 2481 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); 2482 Constant *Zero = Constant::getNullValue(Ty); 2483 SelectInst *NewSel = 2484 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, 2485 OtherHandOfSubIsTrueVal ? NewSub : Zero); 2486 // Preserve prof metadata if any. 2487 NewSel->copyMetadata(cast<Instruction>(*Select)); 2488 return NewSel; 2489 }; 2490 if (Instruction *NewSel = SinkSubIntoSelect( 2491 /*Select=*/Op0, /*OtherHandOfSub=*/Op1, 2492 [Builder = &Builder, Op1](Value *OtherHandOfSelect) { 2493 return Builder->CreateSub(OtherHandOfSelect, 2494 /*OtherHandOfSub=*/Op1); 2495 })) 2496 return NewSel; 2497 if (Instruction *NewSel = SinkSubIntoSelect( 2498 /*Select=*/Op1, /*OtherHandOfSub=*/Op0, 2499 [Builder = &Builder, Op0](Value *OtherHandOfSelect) { 2500 return Builder->CreateSub(/*OtherHandOfSub=*/Op0, 2501 OtherHandOfSelect); 2502 })) 2503 return NewSel; 2504 } 2505 2506 // (X - (X & Y)) --> (X & ~Y) 2507 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) && 2508 (Op1->hasOneUse() || isa<Constant>(Y))) 2509 return BinaryOperator::CreateAnd( 2510 Op0, Builder.CreateNot(Y, Y->getName() + ".not")); 2511 2512 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X 2513 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X 2514 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y) 2515 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y) 2516 // As long as Y is freely invertible, this will be neutral or a win. 2517 // Note: We don't generate the inverse max/min, just create the 'not' of 2518 // it and let other folds do the rest. 2519 if (match(Op0, m_Not(m_Value(X))) && 2520 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) && 2521 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2522 Value *Not = Builder.CreateNot(Op1); 2523 return BinaryOperator::CreateSub(Not, X); 2524 } 2525 if (match(Op1, m_Not(m_Value(X))) && 2526 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) && 2527 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { 2528 Value *Not = Builder.CreateNot(Op0); 2529 return BinaryOperator::CreateSub(X, Not); 2530 } 2531 2532 // Optimize pointer differences into the same array into a size. Consider: 2533 // &A[10] - &A[0]: we should compile this to "10". 2534 Value *LHSOp, *RHSOp; 2535 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 2536 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 2537 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2538 I.hasNoUnsignedWrap())) 2539 return replaceInstUsesWith(I, Res); 2540 2541 // trunc(p)-trunc(q) -> trunc(p-q) 2542 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 2543 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 2544 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2545 /* IsNUW */ false)) 2546 return replaceInstUsesWith(I, Res); 2547 2548 // Canonicalize a shifty way to code absolute value to the common pattern. 2549 // There are 2 potential commuted variants. 2550 // We're relying on the fact that we only do this transform when the shift has 2551 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 2552 // instructions). 2553 Value *A; 2554 const APInt *ShAmt; 2555 Type *Ty = I.getType(); 2556 unsigned BitWidth = Ty->getScalarSizeInBits(); 2557 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 2558 Op1->hasNUses(2) && *ShAmt == BitWidth - 1 && 2559 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 2560 // B = ashr i32 A, 31 ; smear the sign bit 2561 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 2562 // --> (A < 0) ? -A : A 2563 Value *IsNeg = Builder.CreateIsNeg(A); 2564 // Copy the nuw/nsw flags from the sub to the negate. 2565 Value *NegA = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), 2566 I.hasNoSignedWrap()); 2567 return SelectInst::Create(IsNeg, NegA, A); 2568 } 2569 2570 // If we are subtracting a low-bit masked subset of some value from an add 2571 // of that same value with no low bits changed, that is clearing some low bits 2572 // of the sum: 2573 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC 2574 const APInt *AddC, *AndC; 2575 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) && 2576 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) { 2577 unsigned Cttz = AddC->countr_zero(); 2578 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz)); 2579 if ((HighMask & *AndC).isZero()) 2580 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC))); 2581 } 2582 2583 if (Instruction *V = 2584 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2585 return V; 2586 2587 // X - usub.sat(X, Y) => umin(X, Y) 2588 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0), 2589 m_Value(Y))))) 2590 return replaceInstUsesWith( 2591 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y})); 2592 2593 // umax(X, Op1) - Op1 --> usub.sat(X, Op1) 2594 // TODO: The one-use restriction is not strictly necessary, but it may 2595 // require improving other pattern matching and/or codegen. 2596 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1))))) 2597 return replaceInstUsesWith( 2598 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1})); 2599 2600 // Op0 - umin(X, Op0) --> usub.sat(Op0, X) 2601 if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0))))) 2602 return replaceInstUsesWith( 2603 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X})); 2604 2605 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0) 2606 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) { 2607 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0}); 2608 return BinaryOperator::CreateNeg(USub); 2609 } 2610 2611 // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X) 2612 if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) { 2613 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X}); 2614 return BinaryOperator::CreateNeg(USub); 2615 } 2616 2617 // C - ctpop(X) => ctpop(~X) if C is bitwidth 2618 if (match(Op0, m_SpecificInt(BitWidth)) && 2619 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X))))) 2620 return replaceInstUsesWith( 2621 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, 2622 {Builder.CreateNot(X)})); 2623 2624 // Reduce multiplies for difference-of-squares by factoring: 2625 // (X * X) - (Y * Y) --> (X + Y) * (X - Y) 2626 if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) && 2627 match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) { 2628 auto *OBO0 = cast<OverflowingBinaryOperator>(Op0); 2629 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2630 bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() && 2631 OBO1->hasNoSignedWrap() && BitWidth > 2; 2632 bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() && 2633 OBO1->hasNoUnsignedWrap() && BitWidth > 1; 2634 Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW); 2635 Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW); 2636 Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW); 2637 return replaceInstUsesWith(I, Mul); 2638 } 2639 2640 // max(X,Y) nsw/nuw - min(X,Y) --> abs(X nsw - Y) 2641 if (match(Op0, m_OneUse(m_c_SMax(m_Value(X), m_Value(Y)))) && 2642 match(Op1, m_OneUse(m_c_SMin(m_Specific(X), m_Specific(Y))))) { 2643 if (I.hasNoUnsignedWrap() || I.hasNoSignedWrap()) { 2644 Value *Sub = 2645 Builder.CreateSub(X, Y, "sub", /*HasNUW=*/false, /*HasNSW=*/true); 2646 Value *Call = 2647 Builder.CreateBinaryIntrinsic(Intrinsic::abs, Sub, Builder.getTrue()); 2648 return replaceInstUsesWith(I, Call); 2649 } 2650 } 2651 2652 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I)) 2653 return Res; 2654 2655 return TryToNarrowDeduceFlags(); 2656 } 2657 2658 /// This eliminates floating-point negation in either 'fneg(X)' or 2659 /// 'fsub(-0.0, X)' form by combining into a constant operand. 2660 static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) { 2661 // This is limited with one-use because fneg is assumed better for 2662 // reassociation and cheaper in codegen than fmul/fdiv. 2663 // TODO: Should the m_OneUse restriction be removed? 2664 Instruction *FNegOp; 2665 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp))))) 2666 return nullptr; 2667 2668 Value *X; 2669 Constant *C; 2670 2671 // Fold negation into constant operand. 2672 // -(X * C) --> X * (-C) 2673 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C)))) 2674 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2675 return BinaryOperator::CreateFMulFMF(X, NegC, &I); 2676 // -(X / C) --> X / (-C) 2677 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C)))) 2678 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2679 return BinaryOperator::CreateFDivFMF(X, NegC, &I); 2680 // -(C / X) --> (-C) / X 2681 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) 2682 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) { 2683 Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I); 2684 2685 // Intersect 'nsz' and 'ninf' because those special value exceptions may 2686 // not apply to the fdiv. Everything else propagates from the fneg. 2687 // TODO: We could propagate nsz/ninf from fdiv alone? 2688 FastMathFlags FMF = I.getFastMathFlags(); 2689 FastMathFlags OpFMF = FNegOp->getFastMathFlags(); 2690 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros()); 2691 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs()); 2692 return FDiv; 2693 } 2694 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]: 2695 // -(X + C) --> -X + -C --> -C - X 2696 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C)))) 2697 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2698 return BinaryOperator::CreateFSubFMF(NegC, X, &I); 2699 2700 return nullptr; 2701 } 2702 2703 Instruction *InstCombinerImpl::hoistFNegAboveFMulFDiv(Value *FNegOp, 2704 Instruction &FMFSource) { 2705 Value *X, *Y; 2706 if (match(FNegOp, m_FMul(m_Value(X), m_Value(Y)))) { 2707 return cast<Instruction>(Builder.CreateFMulFMF( 2708 Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource)); 2709 } 2710 2711 if (match(FNegOp, m_FDiv(m_Value(X), m_Value(Y)))) { 2712 return cast<Instruction>(Builder.CreateFDivFMF( 2713 Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource)); 2714 } 2715 2716 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(FNegOp)) { 2717 // Make sure to preserve flags and metadata on the call. 2718 if (II->getIntrinsicID() == Intrinsic::ldexp) { 2719 FastMathFlags FMF = FMFSource.getFastMathFlags() | II->getFastMathFlags(); 2720 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2721 Builder.setFastMathFlags(FMF); 2722 2723 CallInst *New = Builder.CreateCall( 2724 II->getCalledFunction(), 2725 {Builder.CreateFNeg(II->getArgOperand(0)), II->getArgOperand(1)}); 2726 New->copyMetadata(*II); 2727 return New; 2728 } 2729 } 2730 2731 return nullptr; 2732 } 2733 2734 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) { 2735 Value *Op = I.getOperand(0); 2736 2737 if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(), 2738 getSimplifyQuery().getWithInstruction(&I))) 2739 return replaceInstUsesWith(I, V); 2740 2741 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2742 return X; 2743 2744 Value *X, *Y; 2745 2746 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 2747 if (I.hasNoSignedZeros() && 2748 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 2749 return BinaryOperator::CreateFSubFMF(Y, X, &I); 2750 2751 Value *OneUse; 2752 if (!match(Op, m_OneUse(m_Value(OneUse)))) 2753 return nullptr; 2754 2755 if (Instruction *R = hoistFNegAboveFMulFDiv(OneUse, I)) 2756 return replaceInstUsesWith(I, R); 2757 2758 // Try to eliminate fneg if at least 1 arm of the select is negated. 2759 Value *Cond; 2760 if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) { 2761 // Unlike most transforms, this one is not safe to propagate nsz unless 2762 // it is present on the original select. We union the flags from the select 2763 // and fneg and then remove nsz if needed. 2764 auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) { 2765 S->copyFastMathFlags(&I); 2766 if (auto *OldSel = dyn_cast<SelectInst>(Op)) { 2767 FastMathFlags FMF = I.getFastMathFlags() | OldSel->getFastMathFlags(); 2768 S->setFastMathFlags(FMF); 2769 if (!OldSel->hasNoSignedZeros() && !CommonOperand && 2770 !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition())) 2771 S->setHasNoSignedZeros(false); 2772 } 2773 }; 2774 // -(Cond ? -P : Y) --> Cond ? P : -Y 2775 Value *P; 2776 if (match(X, m_FNeg(m_Value(P)))) { 2777 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); 2778 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY); 2779 propagateSelectFMF(NewSel, P == Y); 2780 return NewSel; 2781 } 2782 // -(Cond ? X : -P) --> Cond ? -X : P 2783 if (match(Y, m_FNeg(m_Value(P)))) { 2784 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); 2785 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P); 2786 propagateSelectFMF(NewSel, P == X); 2787 return NewSel; 2788 } 2789 } 2790 2791 // fneg (copysign x, y) -> copysign x, (fneg y) 2792 if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) { 2793 // The source copysign has an additional value input, so we can't propagate 2794 // flags the copysign doesn't also have. 2795 FastMathFlags FMF = I.getFastMathFlags(); 2796 FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags(); 2797 2798 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2799 Builder.setFastMathFlags(FMF); 2800 2801 Value *NegY = Builder.CreateFNeg(Y); 2802 Value *NewCopySign = Builder.CreateCopySign(X, NegY); 2803 return replaceInstUsesWith(I, NewCopySign); 2804 } 2805 2806 return nullptr; 2807 } 2808 2809 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) { 2810 if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1), 2811 I.getFastMathFlags(), 2812 getSimplifyQuery().getWithInstruction(&I))) 2813 return replaceInstUsesWith(I, V); 2814 2815 if (Instruction *X = foldVectorBinop(I)) 2816 return X; 2817 2818 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 2819 return Phi; 2820 2821 // Subtraction from -0.0 is the canonical form of fneg. 2822 // fsub -0.0, X ==> fneg X 2823 // fsub nsz 0.0, X ==> fneg nsz X 2824 // 2825 // FIXME This matcher does not respect FTZ or DAZ yet: 2826 // fsub -0.0, Denorm ==> +-0 2827 // fneg Denorm ==> -Denorm 2828 Value *Op; 2829 if (match(&I, m_FNeg(m_Value(Op)))) 2830 return UnaryOperator::CreateFNegFMF(Op, &I); 2831 2832 if (Instruction *X = foldFNegIntoConstant(I, DL)) 2833 return X; 2834 2835 Value *X, *Y; 2836 Constant *C; 2837 2838 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2839 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 2840 // Canonicalize to fadd to make analysis easier. 2841 // This can also help codegen because fadd is commutative. 2842 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 2843 // killed later. We still limit that particular transform with 'hasOneUse' 2844 // because an fneg is assumed better/cheaper than a generic fsub. 2845 if (I.hasNoSignedZeros() || cannotBeNegativeZero(Op0, SQ.DL, SQ.TLI)) { 2846 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2847 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 2848 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 2849 } 2850 } 2851 2852 // (-X) - Op1 --> -(X + Op1) 2853 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) && 2854 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) { 2855 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I); 2856 return UnaryOperator::CreateFNegFMF(FAdd, &I); 2857 } 2858 2859 if (isa<Constant>(Op0)) 2860 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2861 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 2862 return NV; 2863 2864 // X - C --> X + (-C) 2865 // But don't transform constant expressions because there's an inverse fold 2866 // for X + (-Y) --> X - Y. 2867 if (match(Op1, m_ImmConstant(C))) 2868 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) 2869 return BinaryOperator::CreateFAddFMF(Op0, NegC, &I); 2870 2871 // X - (-Y) --> X + Y 2872 if (match(Op1, m_FNeg(m_Value(Y)))) 2873 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 2874 2875 // Similar to above, but look through a cast of the negated value: 2876 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 2877 Type *Ty = I.getType(); 2878 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 2879 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 2880 2881 // X - (fpext(-Y)) --> X + fpext(Y) 2882 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 2883 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 2884 2885 // Similar to above, but look through fmul/fdiv of the negated value: 2886 // Op0 - (-X * Y) --> Op0 + (X * Y) 2887 // Op0 - (Y * -X) --> Op0 + (X * Y) 2888 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 2889 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 2890 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 2891 } 2892 // Op0 - (-X / Y) --> Op0 + (X / Y) 2893 // Op0 - (X / -Y) --> Op0 + (X / Y) 2894 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 2895 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 2896 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 2897 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 2898 } 2899 2900 // Handle special cases for FSub with selects feeding the operation 2901 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 2902 return replaceInstUsesWith(I, V); 2903 2904 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2905 // (Y - X) - Y --> -X 2906 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 2907 return UnaryOperator::CreateFNegFMF(X, &I); 2908 2909 // Y - (X + Y) --> -X 2910 // Y - (Y + X) --> -X 2911 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 2912 return UnaryOperator::CreateFNegFMF(X, &I); 2913 2914 // (X * C) - X --> X * (C - 1.0) 2915 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 2916 if (Constant *CSubOne = ConstantFoldBinaryOpOperands( 2917 Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL)) 2918 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 2919 } 2920 // X - (X * C) --> X * (1.0 - C) 2921 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 2922 if (Constant *OneSubC = ConstantFoldBinaryOpOperands( 2923 Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL)) 2924 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 2925 } 2926 2927 // Reassociate fsub/fadd sequences to create more fadd instructions and 2928 // reduce dependency chains: 2929 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2930 Value *Z; 2931 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))), 2932 m_Value(Z))))) { 2933 Value *XZ = Builder.CreateFAddFMF(X, Z, &I); 2934 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I); 2935 return BinaryOperator::CreateFSubFMF(XZ, YW, &I); 2936 } 2937 2938 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) { 2939 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum), 2940 m_Value(Vec))); 2941 }; 2942 Value *A0, *A1, *V0, *V1; 2943 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) && 2944 V0->getType() == V1->getType()) { 2945 // Difference of sums is sum of differences: 2946 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1 2947 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I); 2948 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 2949 {Sub->getType()}, {A0, Sub}, &I); 2950 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I); 2951 } 2952 2953 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2954 return F; 2955 2956 // TODO: This performs reassociative folds for FP ops. Some fraction of the 2957 // functionality has been subsumed by simple pattern matching here and in 2958 // InstSimplify. We should let a dedicated reassociation pass handle more 2959 // complex pattern matching and remove this from InstCombine. 2960 if (Value *V = FAddCombine(Builder).simplify(&I)) 2961 return replaceInstUsesWith(I, V); 2962 2963 // (X - Y) - Op1 --> X - (Y + Op1) 2964 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2965 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I); 2966 return BinaryOperator::CreateFSubFMF(X, FAdd, &I); 2967 } 2968 } 2969 2970 return nullptr; 2971 } 2972