xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Transforms/InstCombine/InstCombiner.h"
33 #include <cassert>
34 #include <utility>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "instcombine"
40 
41 namespace {
42 
43   /// Class representing coefficient of floating-point addend.
44   /// This class needs to be highly efficient, which is especially true for
45   /// the constructor. As of I write this comment, the cost of the default
46   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47   /// perform write-merging).
48   ///
49   class FAddendCoef {
50   public:
51     // The constructor has to initialize a APFloat, which is unnecessary for
52     // most addends which have coefficient either 1 or -1. So, the constructor
53     // is expensive. In order to avoid the cost of the constructor, we should
54     // reuse some instances whenever possible. The pre-created instances
55     // FAddCombine::Add[0-5] embodies this idea.
56     FAddendCoef() = default;
57     ~FAddendCoef();
58 
59     // If possible, don't define operator+/operator- etc because these
60     // operators inevitably call FAddendCoef's constructor which is not cheap.
61     void operator=(const FAddendCoef &A);
62     void operator+=(const FAddendCoef &A);
63     void operator*=(const FAddendCoef &S);
64 
65     void set(short C) {
66       assert(!insaneIntVal(C) && "Insane coefficient");
67       IsFp = false; IntVal = C;
68     }
69 
70     void set(const APFloat& C);
71 
72     void negate();
73 
74     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75     Value *getValue(Type *) const;
76 
77     bool isOne() const { return isInt() && IntVal == 1; }
78     bool isTwo() const { return isInt() && IntVal == 2; }
79     bool isMinusOne() const { return isInt() && IntVal == -1; }
80     bool isMinusTwo() const { return isInt() && IntVal == -2; }
81 
82   private:
83     bool insaneIntVal(int V) { return V > 4 || V < -4; }
84 
85     APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
86 
87     const APFloat *getFpValPtr() const {
88       return reinterpret_cast<const APFloat *>(&FpValBuf);
89     }
90 
91     const APFloat &getFpVal() const {
92       assert(IsFp && BufHasFpVal && "Incorret state");
93       return *getFpValPtr();
94     }
95 
96     APFloat &getFpVal() {
97       assert(IsFp && BufHasFpVal && "Incorret state");
98       return *getFpValPtr();
99     }
100 
101     bool isInt() const { return !IsFp; }
102 
103     // If the coefficient is represented by an integer, promote it to a
104     // floating point.
105     void convertToFpType(const fltSemantics &Sem);
106 
107     // Construct an APFloat from a signed integer.
108     // TODO: We should get rid of this function when APFloat can be constructed
109     //       from an *SIGNED* integer.
110     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111 
112     bool IsFp = false;
113 
114     // True iff FpValBuf contains an instance of APFloat.
115     bool BufHasFpVal = false;
116 
117     // The integer coefficient of an individual addend is either 1 or -1,
118     // and we try to simplify at most 4 addends from neighboring at most
119     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120     // is overkill of this end.
121     short IntVal = 0;
122 
123     AlignedCharArrayUnion<APFloat> FpValBuf;
124   };
125 
126   /// FAddend is used to represent floating-point addend. An addend is
127   /// represented as <C, V>, where the V is a symbolic value, and C is a
128   /// constant coefficient. A constant addend is represented as <C, 0>.
129   class FAddend {
130   public:
131     FAddend() = default;
132 
133     void operator+=(const FAddend &T) {
134       assert((Val == T.Val) && "Symbolic-values disagree");
135       Coeff += T.Coeff;
136     }
137 
138     Value *getSymVal() const { return Val; }
139     const FAddendCoef &getCoef() const { return Coeff; }
140 
141     bool isConstant() const { return Val == nullptr; }
142     bool isZero() const { return Coeff.isZero(); }
143 
144     void set(short Coefficient, Value *V) {
145       Coeff.set(Coefficient);
146       Val = V;
147     }
148     void set(const APFloat &Coefficient, Value *V) {
149       Coeff.set(Coefficient);
150       Val = V;
151     }
152     void set(const ConstantFP *Coefficient, Value *V) {
153       Coeff.set(Coefficient->getValueAPF());
154       Val = V;
155     }
156 
157     void negate() { Coeff.negate(); }
158 
159     /// Drill down the U-D chain one step to find the definition of V, and
160     /// try to break the definition into one or two addends.
161     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162 
163     /// Similar to FAddend::drillDownOneStep() except that the value being
164     /// splitted is the addend itself.
165     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166 
167   private:
168     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169 
170     // This addend has the value of "Coeff * Val".
171     Value *Val = nullptr;
172     FAddendCoef Coeff;
173   };
174 
175   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176   /// with its neighboring at most two instructions.
177   ///
178   class FAddCombine {
179   public:
180     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181 
182     Value *simplify(Instruction *FAdd);
183 
184   private:
185     using AddendVect = SmallVector<const FAddend *, 4>;
186 
187     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188 
189     /// Convert given addend to a Value
190     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191 
192     /// Return the number of instructions needed to emit the N-ary addition.
193     unsigned calcInstrNumber(const AddendVect& Vect);
194 
195     Value *createFSub(Value *Opnd0, Value *Opnd1);
196     Value *createFAdd(Value *Opnd0, Value *Opnd1);
197     Value *createFMul(Value *Opnd0, Value *Opnd1);
198     Value *createFNeg(Value *V);
199     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
200     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201 
202      // Debugging stuff are clustered here.
203     #ifndef NDEBUG
204       unsigned CreateInstrNum;
205       void initCreateInstNum() { CreateInstrNum = 0; }
206       void incCreateInstNum() { CreateInstrNum++; }
207     #else
208       void initCreateInstNum() {}
209       void incCreateInstNum() {}
210     #endif
211 
212     InstCombiner::BuilderTy &Builder;
213     Instruction *Instr = nullptr;
214   };
215 
216 } // end anonymous namespace
217 
218 //===----------------------------------------------------------------------===//
219 //
220 // Implementation of
221 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
222 //
223 //===----------------------------------------------------------------------===//
224 FAddendCoef::~FAddendCoef() {
225   if (BufHasFpVal)
226     getFpValPtr()->~APFloat();
227 }
228 
229 void FAddendCoef::set(const APFloat& C) {
230   APFloat *P = getFpValPtr();
231 
232   if (isInt()) {
233     // As the buffer is meanless byte stream, we cannot call
234     // APFloat::operator=().
235     new(P) APFloat(C);
236   } else
237     *P = C;
238 
239   IsFp = BufHasFpVal = true;
240 }
241 
242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
243   if (!isInt())
244     return;
245 
246   APFloat *P = getFpValPtr();
247   if (IntVal > 0)
248     new(P) APFloat(Sem, IntVal);
249   else {
250     new(P) APFloat(Sem, 0 - IntVal);
251     P->changeSign();
252   }
253   IsFp = BufHasFpVal = true;
254 }
255 
256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
257   if (Val >= 0)
258     return APFloat(Sem, Val);
259 
260   APFloat T(Sem, 0 - Val);
261   T.changeSign();
262 
263   return T;
264 }
265 
266 void FAddendCoef::operator=(const FAddendCoef &That) {
267   if (That.isInt())
268     set(That.IntVal);
269   else
270     set(That.getFpVal());
271 }
272 
273 void FAddendCoef::operator+=(const FAddendCoef &That) {
274   RoundingMode RndMode = RoundingMode::NearestTiesToEven;
275   if (isInt() == That.isInt()) {
276     if (isInt())
277       IntVal += That.IntVal;
278     else
279       getFpVal().add(That.getFpVal(), RndMode);
280     return;
281   }
282 
283   if (isInt()) {
284     const APFloat &T = That.getFpVal();
285     convertToFpType(T.getSemantics());
286     getFpVal().add(T, RndMode);
287     return;
288   }
289 
290   APFloat &T = getFpVal();
291   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
292 }
293 
294 void FAddendCoef::operator*=(const FAddendCoef &That) {
295   if (That.isOne())
296     return;
297 
298   if (That.isMinusOne()) {
299     negate();
300     return;
301   }
302 
303   if (isInt() && That.isInt()) {
304     int Res = IntVal * (int)That.IntVal;
305     assert(!insaneIntVal(Res) && "Insane int value");
306     IntVal = Res;
307     return;
308   }
309 
310   const fltSemantics &Semantic =
311     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312 
313   if (isInt())
314     convertToFpType(Semantic);
315   APFloat &F0 = getFpVal();
316 
317   if (That.isInt())
318     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
319                 APFloat::rmNearestTiesToEven);
320   else
321     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
322 }
323 
324 void FAddendCoef::negate() {
325   if (isInt())
326     IntVal = 0 - IntVal;
327   else
328     getFpVal().changeSign();
329 }
330 
331 Value *FAddendCoef::getValue(Type *Ty) const {
332   return isInt() ?
333     ConstantFP::get(Ty, float(IntVal)) :
334     ConstantFP::get(Ty->getContext(), getFpVal());
335 }
336 
337 // The definition of <Val>     Addends
338 // =========================================
339 //  A + B                     <1, A>, <1,B>
340 //  A - B                     <1, A>, <1,B>
341 //  0 - B                     <-1, B>
342 //  C * A,                    <C, A>
343 //  A + C                     <1, A> <C, NULL>
344 //  0 +/- 0                   <0, NULL> (corner case)
345 //
346 // Legend: A and B are not constant, C is constant
347 unsigned FAddend::drillValueDownOneStep
348   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
349   Instruction *I = nullptr;
350   if (!Val || !(I = dyn_cast<Instruction>(Val)))
351     return 0;
352 
353   unsigned Opcode = I->getOpcode();
354 
355   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
356     ConstantFP *C0, *C1;
357     Value *Opnd0 = I->getOperand(0);
358     Value *Opnd1 = I->getOperand(1);
359     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
360       Opnd0 = nullptr;
361 
362     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
363       Opnd1 = nullptr;
364 
365     if (Opnd0) {
366       if (!C0)
367         Addend0.set(1, Opnd0);
368       else
369         Addend0.set(C0, nullptr);
370     }
371 
372     if (Opnd1) {
373       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
374       if (!C1)
375         Addend.set(1, Opnd1);
376       else
377         Addend.set(C1, nullptr);
378       if (Opcode == Instruction::FSub)
379         Addend.negate();
380     }
381 
382     if (Opnd0 || Opnd1)
383       return Opnd0 && Opnd1 ? 2 : 1;
384 
385     // Both operands are zero. Weird!
386     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
387     return 1;
388   }
389 
390   if (I->getOpcode() == Instruction::FMul) {
391     Value *V0 = I->getOperand(0);
392     Value *V1 = I->getOperand(1);
393     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
394       Addend0.set(C, V1);
395       return 1;
396     }
397 
398     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
399       Addend0.set(C, V0);
400       return 1;
401     }
402   }
403 
404   return 0;
405 }
406 
407 // Try to break *this* addend into two addends. e.g. Suppose this addend is
408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409 // i.e. <2.3, X> and <2.3, Y>.
410 unsigned FAddend::drillAddendDownOneStep
411   (FAddend &Addend0, FAddend &Addend1) const {
412   if (isConstant())
413     return 0;
414 
415   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416   if (!BreakNum || Coeff.isOne())
417     return BreakNum;
418 
419   Addend0.Scale(Coeff);
420 
421   if (BreakNum == 2)
422     Addend1.Scale(Coeff);
423 
424   return BreakNum;
425 }
426 
427 Value *FAddCombine::simplify(Instruction *I) {
428   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
429          "Expected 'reassoc'+'nsz' instruction");
430 
431   // Currently we are not able to handle vector type.
432   if (I->getType()->isVectorTy())
433     return nullptr;
434 
435   assert((I->getOpcode() == Instruction::FAdd ||
436           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437 
438   // Save the instruction before calling other member-functions.
439   Instr = I;
440 
441   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442 
443   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
444 
445   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446   unsigned Opnd0_ExpNum = 0;
447   unsigned Opnd1_ExpNum = 0;
448 
449   if (!Opnd0.isConstant())
450     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
451 
452   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453   if (OpndNum == 2 && !Opnd1.isConstant())
454     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
455 
456   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457   if (Opnd0_ExpNum && Opnd1_ExpNum) {
458     AddendVect AllOpnds;
459     AllOpnds.push_back(&Opnd0_0);
460     AllOpnds.push_back(&Opnd1_0);
461     if (Opnd0_ExpNum == 2)
462       AllOpnds.push_back(&Opnd0_1);
463     if (Opnd1_ExpNum == 2)
464       AllOpnds.push_back(&Opnd1_1);
465 
466     // Compute instruction quota. We should save at least one instruction.
467     unsigned InstQuota = 0;
468 
469     Value *V0 = I->getOperand(0);
470     Value *V1 = I->getOperand(1);
471     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
472                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
473 
474     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
475       return R;
476   }
477 
478   if (OpndNum != 2) {
479     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480     // splitted into two addends, say "V = X - Y", the instruction would have
481     // been optimized into "I = Y - X" in the previous steps.
482     //
483     const FAddendCoef &CE = Opnd0.getCoef();
484     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
485   }
486 
487   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
488   if (Opnd1_ExpNum) {
489     AddendVect AllOpnds;
490     AllOpnds.push_back(&Opnd0);
491     AllOpnds.push_back(&Opnd1_0);
492     if (Opnd1_ExpNum == 2)
493       AllOpnds.push_back(&Opnd1_1);
494 
495     if (Value *R = simplifyFAdd(AllOpnds, 1))
496       return R;
497   }
498 
499   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
500   if (Opnd0_ExpNum) {
501     AddendVect AllOpnds;
502     AllOpnds.push_back(&Opnd1);
503     AllOpnds.push_back(&Opnd0_0);
504     if (Opnd0_ExpNum == 2)
505       AllOpnds.push_back(&Opnd0_1);
506 
507     if (Value *R = simplifyFAdd(AllOpnds, 1))
508       return R;
509   }
510 
511   return nullptr;
512 }
513 
514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
515   unsigned AddendNum = Addends.size();
516   assert(AddendNum <= 4 && "Too many addends");
517 
518   // For saving intermediate results;
519   unsigned NextTmpIdx = 0;
520   FAddend TmpResult[3];
521 
522   // Simplified addends are placed <SimpVect>.
523   AddendVect SimpVect;
524 
525   // The outer loop works on one symbolic-value at a time. Suppose the input
526   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
527   // The symbolic-values will be processed in this order: x, y, z.
528   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
529 
530     const FAddend *ThisAddend = Addends[SymIdx];
531     if (!ThisAddend) {
532       // This addend was processed before.
533       continue;
534     }
535 
536     Value *Val = ThisAddend->getSymVal();
537 
538     // If the resulting expr has constant-addend, this constant-addend is
539     // desirable to reside at the top of the resulting expression tree. Placing
540     // constant close to super-expr(s) will potentially reveal some
541     // optimization opportunities in super-expr(s). Here we do not implement
542     // this logic intentionally and rely on SimplifyAssociativeOrCommutative
543     // call later.
544 
545     unsigned StartIdx = SimpVect.size();
546     SimpVect.push_back(ThisAddend);
547 
548     // The inner loop collects addends sharing same symbolic-value, and these
549     // addends will be later on folded into a single addend. Following above
550     // example, if the symbolic value "y" is being processed, the inner loop
551     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
552     // be later on folded into "<b1+b2, y>".
553     for (unsigned SameSymIdx = SymIdx + 1;
554          SameSymIdx < AddendNum; SameSymIdx++) {
555       const FAddend *T = Addends[SameSymIdx];
556       if (T && T->getSymVal() == Val) {
557         // Set null such that next iteration of the outer loop will not process
558         // this addend again.
559         Addends[SameSymIdx] = nullptr;
560         SimpVect.push_back(T);
561       }
562     }
563 
564     // If multiple addends share same symbolic value, fold them together.
565     if (StartIdx + 1 != SimpVect.size()) {
566       FAddend &R = TmpResult[NextTmpIdx ++];
567       R = *SimpVect[StartIdx];
568       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
569         R += *SimpVect[Idx];
570 
571       // Pop all addends being folded and push the resulting folded addend.
572       SimpVect.resize(StartIdx);
573       if (!R.isZero()) {
574         SimpVect.push_back(&R);
575       }
576     }
577   }
578 
579   assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access");
580 
581   Value *Result;
582   if (!SimpVect.empty())
583     Result = createNaryFAdd(SimpVect, InstrQuota);
584   else {
585     // The addition is folded to 0.0.
586     Result = ConstantFP::get(Instr->getType(), 0.0);
587   }
588 
589   return Result;
590 }
591 
592 Value *FAddCombine::createNaryFAdd
593   (const AddendVect &Opnds, unsigned InstrQuota) {
594   assert(!Opnds.empty() && "Expect at least one addend");
595 
596   // Step 1: Check if the # of instructions needed exceeds the quota.
597 
598   unsigned InstrNeeded = calcInstrNumber(Opnds);
599   if (InstrNeeded > InstrQuota)
600     return nullptr;
601 
602   initCreateInstNum();
603 
604   // step 2: Emit the N-ary addition.
605   // Note that at most three instructions are involved in Fadd-InstCombine: the
606   // addition in question, and at most two neighboring instructions.
607   // The resulting optimized addition should have at least one less instruction
608   // than the original addition expression tree. This implies that the resulting
609   // N-ary addition has at most two instructions, and we don't need to worry
610   // about tree-height when constructing the N-ary addition.
611 
612   Value *LastVal = nullptr;
613   bool LastValNeedNeg = false;
614 
615   // Iterate the addends, creating fadd/fsub using adjacent two addends.
616   for (const FAddend *Opnd : Opnds) {
617     bool NeedNeg;
618     Value *V = createAddendVal(*Opnd, NeedNeg);
619     if (!LastVal) {
620       LastVal = V;
621       LastValNeedNeg = NeedNeg;
622       continue;
623     }
624 
625     if (LastValNeedNeg == NeedNeg) {
626       LastVal = createFAdd(LastVal, V);
627       continue;
628     }
629 
630     if (LastValNeedNeg)
631       LastVal = createFSub(V, LastVal);
632     else
633       LastVal = createFSub(LastVal, V);
634 
635     LastValNeedNeg = false;
636   }
637 
638   if (LastValNeedNeg) {
639     LastVal = createFNeg(LastVal);
640   }
641 
642 #ifndef NDEBUG
643   assert(CreateInstrNum == InstrNeeded &&
644          "Inconsistent in instruction numbers");
645 #endif
646 
647   return LastVal;
648 }
649 
650 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
651   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
652   if (Instruction *I = dyn_cast<Instruction>(V))
653     createInstPostProc(I);
654   return V;
655 }
656 
657 Value *FAddCombine::createFNeg(Value *V) {
658   Value *NewV = Builder.CreateFNeg(V);
659   if (Instruction *I = dyn_cast<Instruction>(NewV))
660     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
661   return NewV;
662 }
663 
664 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
665   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
666   if (Instruction *I = dyn_cast<Instruction>(V))
667     createInstPostProc(I);
668   return V;
669 }
670 
671 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
672   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
673   if (Instruction *I = dyn_cast<Instruction>(V))
674     createInstPostProc(I);
675   return V;
676 }
677 
678 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
679   NewInstr->setDebugLoc(Instr->getDebugLoc());
680 
681   // Keep track of the number of instruction created.
682   if (!NoNumber)
683     incCreateInstNum();
684 
685   // Propagate fast-math flags
686   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
687 }
688 
689 // Return the number of instruction needed to emit the N-ary addition.
690 // NOTE: Keep this function in sync with createAddendVal().
691 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
692   unsigned OpndNum = Opnds.size();
693   unsigned InstrNeeded = OpndNum - 1;
694 
695   // Adjust the number of instructions needed to emit the N-ary add.
696   for (const FAddend *Opnd : Opnds) {
697     if (Opnd->isConstant())
698       continue;
699 
700     // The constant check above is really for a few special constant
701     // coefficients.
702     if (isa<UndefValue>(Opnd->getSymVal()))
703       continue;
704 
705     const FAddendCoef &CE = Opnd->getCoef();
706     // Let the addend be "c * x". If "c == +/-1", the value of the addend
707     // is immediately available; otherwise, it needs exactly one instruction
708     // to evaluate the value.
709     if (!CE.isMinusOne() && !CE.isOne())
710       InstrNeeded++;
711   }
712   return InstrNeeded;
713 }
714 
715 // Input Addend        Value           NeedNeg(output)
716 // ================================================================
717 // Constant C          C               false
718 // <+/-1, V>           V               coefficient is -1
719 // <2/-2, V>          "fadd V, V"      coefficient is -2
720 // <C, V>             "fmul V, C"      false
721 //
722 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
723 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
724   const FAddendCoef &Coeff = Opnd.getCoef();
725 
726   if (Opnd.isConstant()) {
727     NeedNeg = false;
728     return Coeff.getValue(Instr->getType());
729   }
730 
731   Value *OpndVal = Opnd.getSymVal();
732 
733   if (Coeff.isMinusOne() || Coeff.isOne()) {
734     NeedNeg = Coeff.isMinusOne();
735     return OpndVal;
736   }
737 
738   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
739     NeedNeg = Coeff.isMinusTwo();
740     return createFAdd(OpndVal, OpndVal);
741   }
742 
743   NeedNeg = false;
744   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
745 }
746 
747 // Checks if any operand is negative and we can convert add to sub.
748 // This function checks for following negative patterns
749 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
750 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
751 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
752 static Value *checkForNegativeOperand(BinaryOperator &I,
753                                       InstCombiner::BuilderTy &Builder) {
754   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
755 
756   // This function creates 2 instructions to replace ADD, we need at least one
757   // of LHS or RHS to have one use to ensure benefit in transform.
758   if (!LHS->hasOneUse() && !RHS->hasOneUse())
759     return nullptr;
760 
761   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
762   const APInt *C1 = nullptr, *C2 = nullptr;
763 
764   // if ONE is on other side, swap
765   if (match(RHS, m_Add(m_Value(X), m_One())))
766     std::swap(LHS, RHS);
767 
768   if (match(LHS, m_Add(m_Value(X), m_One()))) {
769     // if XOR on other side, swap
770     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
771       std::swap(X, RHS);
772 
773     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
774       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
775       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
776       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
777         Value *NewAnd = Builder.CreateAnd(Z, *C1);
778         return Builder.CreateSub(RHS, NewAnd, "sub");
779       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
780         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
781         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
782         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
783         return Builder.CreateSub(RHS, NewOr, "sub");
784       }
785     }
786   }
787 
788   // Restore LHS and RHS
789   LHS = I.getOperand(0);
790   RHS = I.getOperand(1);
791 
792   // if XOR is on other side, swap
793   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
794     std::swap(LHS, RHS);
795 
796   // C2 is ODD
797   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
798   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
799   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
800     if (C1->countr_zero() == 0)
801       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
802         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
803         return Builder.CreateSub(RHS, NewOr, "sub");
804       }
805   return nullptr;
806 }
807 
808 /// Wrapping flags may allow combining constants separated by an extend.
809 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
810                                   InstCombiner::BuilderTy &Builder) {
811   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
812   Type *Ty = Add.getType();
813   Constant *Op1C;
814   if (!match(Op1, m_Constant(Op1C)))
815     return nullptr;
816 
817   // Try this match first because it results in an add in the narrow type.
818   // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
819   Value *X;
820   const APInt *C1, *C2;
821   if (match(Op1, m_APInt(C1)) &&
822       match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
823       C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
824     Constant *NewC =
825         ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
826     return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
827   }
828 
829   // More general combining of constants in the wide type.
830   // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
831   Constant *NarrowC;
832   if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
833     Value *WideC = Builder.CreateSExt(NarrowC, Ty);
834     Value *NewC = Builder.CreateAdd(WideC, Op1C);
835     Value *WideX = Builder.CreateSExt(X, Ty);
836     return BinaryOperator::CreateAdd(WideX, NewC);
837   }
838   // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
839   if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
840     Value *WideC = Builder.CreateZExt(NarrowC, Ty);
841     Value *NewC = Builder.CreateAdd(WideC, Op1C);
842     Value *WideX = Builder.CreateZExt(X, Ty);
843     return BinaryOperator::CreateAdd(WideX, NewC);
844   }
845 
846   return nullptr;
847 }
848 
849 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
850   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
851   Type *Ty = Add.getType();
852   Constant *Op1C;
853   if (!match(Op1, m_ImmConstant(Op1C)))
854     return nullptr;
855 
856   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
857     return NV;
858 
859   Value *X;
860   Constant *Op00C;
861 
862   // add (sub C1, X), C2 --> sub (add C1, C2), X
863   if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
864     return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
865 
866   Value *Y;
867 
868   // add (sub X, Y), -1 --> add (not Y), X
869   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
870       match(Op1, m_AllOnes()))
871     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
872 
873   // zext(bool) + C -> bool ? C + 1 : C
874   if (match(Op0, m_ZExt(m_Value(X))) &&
875       X->getType()->getScalarSizeInBits() == 1)
876     return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
877   // sext(bool) + C -> bool ? C - 1 : C
878   if (match(Op0, m_SExt(m_Value(X))) &&
879       X->getType()->getScalarSizeInBits() == 1)
880     return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
881 
882   // ~X + C --> (C-1) - X
883   if (match(Op0, m_Not(m_Value(X)))) {
884     // ~X + C has NSW and (C-1) won't oveflow => (C-1)-X can have NSW
885     auto *COne = ConstantInt::get(Op1C->getType(), 1);
886     bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne, Add);
887     BinaryOperator *Res =
888         BinaryOperator::CreateSub(ConstantExpr::getSub(Op1C, COne), X);
889     Res->setHasNoSignedWrap(Add.hasNoSignedWrap() && WillNotSOV);
890     return Res;
891   }
892 
893   // (iN X s>> (N - 1)) + 1 --> zext (X > -1)
894   const APInt *C;
895   unsigned BitWidth = Ty->getScalarSizeInBits();
896   if (match(Op0, m_OneUse(m_AShr(m_Value(X),
897                                  m_SpecificIntAllowUndef(BitWidth - 1)))) &&
898       match(Op1, m_One()))
899     return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
900 
901   if (!match(Op1, m_APInt(C)))
902     return nullptr;
903 
904   // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
905   Constant *Op01C;
906   if (match(Op0, m_DisjointOr(m_Value(X), m_ImmConstant(Op01C))))
907     return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
908 
909   // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
910   const APInt *C2;
911   if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
912     return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
913 
914   if (C->isSignMask()) {
915     // If wrapping is not allowed, then the addition must set the sign bit:
916     // X + (signmask) --> X | signmask
917     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
918       return BinaryOperator::CreateOr(Op0, Op1);
919 
920     // If wrapping is allowed, then the addition flips the sign bit of LHS:
921     // X + (signmask) --> X ^ signmask
922     return BinaryOperator::CreateXor(Op0, Op1);
923   }
924 
925   // Is this add the last step in a convoluted sext?
926   // add(zext(xor i16 X, -32768), -32768) --> sext X
927   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
928       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
929     return CastInst::Create(Instruction::SExt, X, Ty);
930 
931   if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
932     // (X ^ signmask) + C --> (X + (signmask ^ C))
933     if (C2->isSignMask())
934       return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
935 
936     // If X has no high-bits set above an xor mask:
937     // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
938     if (C2->isMask()) {
939       KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
940       if ((*C2 | LHSKnown.Zero).isAllOnes())
941         return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
942     }
943 
944     // Look for a math+logic pattern that corresponds to sext-in-register of a
945     // value with cleared high bits. Convert that into a pair of shifts:
946     // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
947     // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
948     if (Op0->hasOneUse() && *C2 == -(*C)) {
949       unsigned BitWidth = Ty->getScalarSizeInBits();
950       unsigned ShAmt = 0;
951       if (C->isPowerOf2())
952         ShAmt = BitWidth - C->logBase2() - 1;
953       else if (C2->isPowerOf2())
954         ShAmt = BitWidth - C2->logBase2() - 1;
955       if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
956                                      0, &Add)) {
957         Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
958         Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
959         return BinaryOperator::CreateAShr(NewShl, ShAmtC);
960       }
961     }
962   }
963 
964   if (C->isOne() && Op0->hasOneUse()) {
965     // add (sext i1 X), 1 --> zext (not X)
966     // TODO: The smallest IR representation is (select X, 0, 1), and that would
967     // not require the one-use check. But we need to remove a transform in
968     // visitSelect and make sure that IR value tracking for select is equal or
969     // better than for these ops.
970     if (match(Op0, m_SExt(m_Value(X))) &&
971         X->getType()->getScalarSizeInBits() == 1)
972       return new ZExtInst(Builder.CreateNot(X), Ty);
973 
974     // Shifts and add used to flip and mask off the low bit:
975     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
976     const APInt *C3;
977     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
978         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
979       Value *NotX = Builder.CreateNot(X);
980       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
981     }
982   }
983 
984   // Fold (add (zext (add X, -1)), 1) -> (zext X) if X is non-zero.
985   // TODO: There's a general form for any constant on the outer add.
986   if (C->isOne()) {
987     if (match(Op0, m_ZExt(m_Add(m_Value(X), m_AllOnes())))) {
988       const SimplifyQuery Q = SQ.getWithInstruction(&Add);
989       if (llvm::isKnownNonZero(X, DL, 0, Q.AC, Q.CxtI, Q.DT))
990         return new ZExtInst(X, Ty);
991     }
992   }
993 
994   return nullptr;
995 }
996 
997 // match variations of a^2 + 2*a*b + b^2
998 //
999 // to reuse the code between the FP and Int versions, the instruction OpCodes
1000 //  and constant types have been turned into template parameters.
1001 //
1002 // Mul2Rhs: The constant to perform the multiplicative equivalent of X*2 with;
1003 //  should be `m_SpecificFP(2.0)` for FP and `m_SpecificInt(1)` for Int
1004 //  (we're matching `X<<1` instead of `X*2` for Int)
1005 template <bool FP, typename Mul2Rhs>
1006 static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A,
1007                              Value *&B) {
1008   constexpr unsigned MulOp = FP ? Instruction::FMul : Instruction::Mul;
1009   constexpr unsigned AddOp = FP ? Instruction::FAdd : Instruction::Add;
1010   constexpr unsigned Mul2Op = FP ? Instruction::FMul : Instruction::Shl;
1011 
1012   // (a * a) + (((a * 2) + b) * b)
1013   if (match(&I, m_c_BinOp(
1014                     AddOp, m_OneUse(m_BinOp(MulOp, m_Value(A), m_Deferred(A))),
1015                     m_OneUse(m_BinOp(
1016                         MulOp,
1017                         m_c_BinOp(AddOp, m_BinOp(Mul2Op, m_Deferred(A), M2Rhs),
1018                                   m_Value(B)),
1019                         m_Deferred(B))))))
1020     return true;
1021 
1022   // ((a * b) * 2)  or ((a * 2) * b)
1023   // +
1024   // (a * a + b * b) or (b * b + a * a)
1025   return match(
1026       &I,
1027       m_c_BinOp(AddOp,
1028                 m_CombineOr(
1029                     m_OneUse(m_BinOp(
1030                         Mul2Op, m_BinOp(MulOp, m_Value(A), m_Value(B)), M2Rhs)),
1031                     m_OneUse(m_BinOp(MulOp, m_BinOp(Mul2Op, m_Value(A), M2Rhs),
1032                                      m_Value(B)))),
1033                 m_OneUse(m_c_BinOp(
1034                     AddOp, m_BinOp(MulOp, m_Deferred(A), m_Deferred(A)),
1035                     m_BinOp(MulOp, m_Deferred(B), m_Deferred(B))))));
1036 }
1037 
1038 // Fold integer variations of a^2 + 2*a*b + b^2 -> (a + b)^2
1039 Instruction *InstCombinerImpl::foldSquareSumInt(BinaryOperator &I) {
1040   Value *A, *B;
1041   if (matchesSquareSum</*FP*/ false>(I, m_SpecificInt(1), A, B)) {
1042     Value *AB = Builder.CreateAdd(A, B);
1043     return BinaryOperator::CreateMul(AB, AB);
1044   }
1045   return nullptr;
1046 }
1047 
1048 // Fold floating point variations of a^2 + 2*a*b + b^2 -> (a + b)^2
1049 // Requires `nsz` and `reassoc`.
1050 Instruction *InstCombinerImpl::foldSquareSumFP(BinaryOperator &I) {
1051   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && "Assumption mismatch");
1052   Value *A, *B;
1053   if (matchesSquareSum</*FP*/ true>(I, m_SpecificFP(2.0), A, B)) {
1054     Value *AB = Builder.CreateFAddFMF(A, B, &I);
1055     return BinaryOperator::CreateFMulFMF(AB, AB, &I);
1056   }
1057   return nullptr;
1058 }
1059 
1060 // Matches multiplication expression Op * C where C is a constant. Returns the
1061 // constant value in C and the other operand in Op. Returns true if such a
1062 // match is found.
1063 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
1064   const APInt *AI;
1065   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
1066     C = *AI;
1067     return true;
1068   }
1069   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
1070     C = APInt(AI->getBitWidth(), 1);
1071     C <<= *AI;
1072     return true;
1073   }
1074   return false;
1075 }
1076 
1077 // Matches remainder expression Op % C where C is a constant. Returns the
1078 // constant value in C and the other operand in Op. Returns the signedness of
1079 // the remainder operation in IsSigned. Returns true if such a match is
1080 // found.
1081 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1082   const APInt *AI;
1083   IsSigned = false;
1084   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
1085     IsSigned = true;
1086     C = *AI;
1087     return true;
1088   }
1089   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
1090     C = *AI;
1091     return true;
1092   }
1093   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
1094     C = *AI + 1;
1095     return true;
1096   }
1097   return false;
1098 }
1099 
1100 // Matches division expression Op / C with the given signedness as indicated
1101 // by IsSigned, where C is a constant. Returns the constant value in C and the
1102 // other operand in Op. Returns true if such a match is found.
1103 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1104   const APInt *AI;
1105   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
1106     C = *AI;
1107     return true;
1108   }
1109   if (!IsSigned) {
1110     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1111       C = *AI;
1112       return true;
1113     }
1114     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1115       C = APInt(AI->getBitWidth(), 1);
1116       C <<= *AI;
1117       return true;
1118     }
1119   }
1120   return false;
1121 }
1122 
1123 // Returns whether C0 * C1 with the given signedness overflows.
1124 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1125   bool overflow;
1126   if (IsSigned)
1127     (void)C0.smul_ov(C1, overflow);
1128   else
1129     (void)C0.umul_ov(C1, overflow);
1130   return overflow;
1131 }
1132 
1133 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1134 // does not overflow.
1135 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
1136   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1137   Value *X, *MulOpV;
1138   APInt C0, MulOpC;
1139   bool IsSigned;
1140   // Match I = X % C0 + MulOpV * C0
1141   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1142        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1143       C0 == MulOpC) {
1144     Value *RemOpV;
1145     APInt C1;
1146     bool Rem2IsSigned;
1147     // Match MulOpC = RemOpV % C1
1148     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1149         IsSigned == Rem2IsSigned) {
1150       Value *DivOpV;
1151       APInt DivOpC;
1152       // Match RemOpV = X / C0
1153       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1154           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1155         Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1156         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1157                         : Builder.CreateURem(X, NewDivisor, "urem");
1158       }
1159     }
1160   }
1161 
1162   return nullptr;
1163 }
1164 
1165 /// Fold
1166 ///   (1 << NBits) - 1
1167 /// Into:
1168 ///   ~(-(1 << NBits))
1169 /// Because a 'not' is better for bit-tracking analysis and other transforms
1170 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1171 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1172                                            InstCombiner::BuilderTy &Builder) {
1173   Value *NBits;
1174   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1175     return nullptr;
1176 
1177   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1178   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1179   // Be wary of constant folding.
1180   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1181     // Always NSW. But NUW propagates from `add`.
1182     BOp->setHasNoSignedWrap();
1183     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1184   }
1185 
1186   return BinaryOperator::CreateNot(NotMask, I.getName());
1187 }
1188 
1189 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1190   assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1191   Type *Ty = I.getType();
1192   auto getUAddSat = [&]() {
1193     return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1194   };
1195 
1196   // add (umin X, ~Y), Y --> uaddsat X, Y
1197   Value *X, *Y;
1198   if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1199                         m_Deferred(Y))))
1200     return CallInst::Create(getUAddSat(), { X, Y });
1201 
1202   // add (umin X, ~C), C --> uaddsat X, C
1203   const APInt *C, *NotC;
1204   if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1205       *C == ~*NotC)
1206     return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1207 
1208   return nullptr;
1209 }
1210 
1211 // Transform:
1212 //  (add A, (shl (neg B), Y))
1213 //      -> (sub A, (shl B, Y))
1214 static Instruction *combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder,
1215                                                const BinaryOperator &I) {
1216   Value *A, *B, *Cnt;
1217   if (match(&I,
1218             m_c_Add(m_OneUse(m_Shl(m_OneUse(m_Neg(m_Value(B))), m_Value(Cnt))),
1219                     m_Value(A)))) {
1220     Value *NewShl = Builder.CreateShl(B, Cnt);
1221     return BinaryOperator::CreateSub(A, NewShl);
1222   }
1223   return nullptr;
1224 }
1225 
1226 /// Try to reduce signed division by power-of-2 to an arithmetic shift right.
1227 static Instruction *foldAddToAshr(BinaryOperator &Add) {
1228   // Division must be by power-of-2, but not the minimum signed value.
1229   Value *X;
1230   const APInt *DivC;
1231   if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) ||
1232       DivC->isNegative())
1233     return nullptr;
1234 
1235   // Rounding is done by adding -1 if the dividend (X) is negative and has any
1236   // low bits set. It recognizes two canonical patterns:
1237   // 1. For an 'ugt' cmp with the signed minimum value (SMIN), the
1238   //    pattern is: sext (icmp ugt (X & (DivC - 1)), SMIN).
1239   // 2. For an 'eq' cmp, the pattern's: sext (icmp eq X & (SMIN + 1), SMIN + 1).
1240   // Note that, by the time we end up here, if possible, ugt has been
1241   // canonicalized into eq.
1242   const APInt *MaskC, *MaskCCmp;
1243   ICmpInst::Predicate Pred;
1244   if (!match(Add.getOperand(1),
1245              m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)),
1246                            m_APInt(MaskCCmp)))))
1247     return nullptr;
1248 
1249   if ((Pred != ICmpInst::ICMP_UGT || !MaskCCmp->isSignMask()) &&
1250       (Pred != ICmpInst::ICMP_EQ || *MaskCCmp != *MaskC))
1251     return nullptr;
1252 
1253   APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits());
1254   bool IsMaskValid = Pred == ICmpInst::ICMP_UGT
1255                          ? (*MaskC == (SMin | (*DivC - 1)))
1256                          : (*DivC == 2 && *MaskC == SMin + 1);
1257   if (!IsMaskValid)
1258     return nullptr;
1259 
1260   // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC)
1261   return BinaryOperator::CreateAShr(
1262       X, ConstantInt::get(Add.getType(), DivC->exactLogBase2()));
1263 }
1264 
1265 Instruction *InstCombinerImpl::
1266     canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1267         BinaryOperator &I) {
1268   assert((I.getOpcode() == Instruction::Add ||
1269           I.getOpcode() == Instruction::Or ||
1270           I.getOpcode() == Instruction::Sub) &&
1271          "Expecting add/or/sub instruction");
1272 
1273   // We have a subtraction/addition between a (potentially truncated) *logical*
1274   // right-shift of X and a "select".
1275   Value *X, *Select;
1276   Instruction *LowBitsToSkip, *Extract;
1277   if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1278                                m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1279                                m_Instruction(Extract))),
1280                            m_Value(Select))))
1281     return nullptr;
1282 
1283   // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1284   if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1285     return nullptr;
1286 
1287   Type *XTy = X->getType();
1288   bool HadTrunc = I.getType() != XTy;
1289 
1290   // If there was a truncation of extracted value, then we'll need to produce
1291   // one extra instruction, so we need to ensure one instruction will go away.
1292   if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1293     return nullptr;
1294 
1295   // Extraction should extract high NBits bits, with shift amount calculated as:
1296   //   low bits to skip = shift bitwidth - high bits to extract
1297   // The shift amount itself may be extended, and we need to look past zero-ext
1298   // when matching NBits, that will matter for matching later.
1299   Constant *C;
1300   Value *NBits;
1301   if (!match(
1302           LowBitsToSkip,
1303           m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
1304       !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1305                                    APInt(C->getType()->getScalarSizeInBits(),
1306                                          X->getType()->getScalarSizeInBits()))))
1307     return nullptr;
1308 
1309   // Sign-extending value can be zero-extended if we `sub`tract it,
1310   // or sign-extended otherwise.
1311   auto SkipExtInMagic = [&I](Value *&V) {
1312     if (I.getOpcode() == Instruction::Sub)
1313       match(V, m_ZExtOrSelf(m_Value(V)));
1314     else
1315       match(V, m_SExtOrSelf(m_Value(V)));
1316   };
1317 
1318   // Now, finally validate the sign-extending magic.
1319   // `select` itself may be appropriately extended, look past that.
1320   SkipExtInMagic(Select);
1321 
1322   ICmpInst::Predicate Pred;
1323   const APInt *Thr;
1324   Value *SignExtendingValue, *Zero;
1325   bool ShouldSignext;
1326   // It must be a select between two values we will later establish to be a
1327   // sign-extending value and a zero constant. The condition guarding the
1328   // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1329   if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1330                               m_Value(SignExtendingValue), m_Value(Zero))) ||
1331       !isSignBitCheck(Pred, *Thr, ShouldSignext))
1332     return nullptr;
1333 
1334   // icmp-select pair is commutative.
1335   if (!ShouldSignext)
1336     std::swap(SignExtendingValue, Zero);
1337 
1338   // If we should not perform sign-extension then we must add/or/subtract zero.
1339   if (!match(Zero, m_Zero()))
1340     return nullptr;
1341   // Otherwise, it should be some constant, left-shifted by the same NBits we
1342   // had in `lshr`. Said left-shift can also be appropriately extended.
1343   // Again, we must look past zero-ext when looking for NBits.
1344   SkipExtInMagic(SignExtendingValue);
1345   Constant *SignExtendingValueBaseConstant;
1346   if (!match(SignExtendingValue,
1347              m_Shl(m_Constant(SignExtendingValueBaseConstant),
1348                    m_ZExtOrSelf(m_Specific(NBits)))))
1349     return nullptr;
1350   // If we `sub`, then the constant should be one, else it should be all-ones.
1351   if (I.getOpcode() == Instruction::Sub
1352           ? !match(SignExtendingValueBaseConstant, m_One())
1353           : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1354     return nullptr;
1355 
1356   auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1357                                              Extract->getName() + ".sext");
1358   NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1359   if (!HadTrunc)
1360     return NewAShr;
1361 
1362   Builder.Insert(NewAShr);
1363   return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1364 }
1365 
1366 /// This is a specialization of a more general transform from
1367 /// foldUsingDistributiveLaws. If that code can be made to work optimally
1368 /// for multi-use cases or propagating nsw/nuw, then we would not need this.
1369 static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
1370                                             InstCombiner::BuilderTy &Builder) {
1371   // TODO: Also handle mul by doubling the shift amount?
1372   assert((I.getOpcode() == Instruction::Add ||
1373           I.getOpcode() == Instruction::Sub) &&
1374          "Expected add/sub");
1375   auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
1376   auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
1377   if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1378     return nullptr;
1379 
1380   Value *X, *Y, *ShAmt;
1381   if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
1382       !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
1383     return nullptr;
1384 
1385   // No-wrap propagates only when all ops have no-wrap.
1386   bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1387                 Op1->hasNoSignedWrap();
1388   bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1389                 Op1->hasNoUnsignedWrap();
1390 
1391   // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1392   Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
1393   if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1394     NewI->setHasNoSignedWrap(HasNSW);
1395     NewI->setHasNoUnsignedWrap(HasNUW);
1396   }
1397   auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1398   NewShl->setHasNoSignedWrap(HasNSW);
1399   NewShl->setHasNoUnsignedWrap(HasNUW);
1400   return NewShl;
1401 }
1402 
1403 /// Reduce a sequence of masked half-width multiplies to a single multiply.
1404 /// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y
1405 static Instruction *foldBoxMultiply(BinaryOperator &I) {
1406   unsigned BitWidth = I.getType()->getScalarSizeInBits();
1407   // Skip the odd bitwidth types.
1408   if ((BitWidth & 0x1))
1409     return nullptr;
1410 
1411   unsigned HalfBits = BitWidth >> 1;
1412   APInt HalfMask = APInt::getMaxValue(HalfBits);
1413 
1414   // ResLo = (CrossSum << HalfBits) + (YLo * XLo)
1415   Value *XLo, *YLo;
1416   Value *CrossSum;
1417   // Require one-use on the multiply to avoid increasing the number of
1418   // multiplications.
1419   if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)),
1420                          m_OneUse(m_Mul(m_Value(YLo), m_Value(XLo))))))
1421     return nullptr;
1422 
1423   // XLo = X & HalfMask
1424   // YLo = Y & HalfMask
1425   // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros
1426   // to enhance robustness
1427   Value *X, *Y;
1428   if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) ||
1429       !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask))))
1430     return nullptr;
1431 
1432   // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits))
1433   // X' can be either X or XLo in the pattern (and the same for Y')
1434   if (match(CrossSum,
1435             m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)),
1436                             m_CombineOr(m_Specific(X), m_Specific(XLo))),
1437                     m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)),
1438                             m_CombineOr(m_Specific(Y), m_Specific(YLo))))))
1439     return BinaryOperator::CreateMul(X, Y);
1440 
1441   return nullptr;
1442 }
1443 
1444 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
1445   if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1),
1446                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1447                                  SQ.getWithInstruction(&I)))
1448     return replaceInstUsesWith(I, V);
1449 
1450   if (SimplifyAssociativeOrCommutative(I))
1451     return &I;
1452 
1453   if (Instruction *X = foldVectorBinop(I))
1454     return X;
1455 
1456   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1457     return Phi;
1458 
1459   // (A*B)+(A*C) -> A*(B+C) etc
1460   if (Value *V = foldUsingDistributiveLaws(I))
1461     return replaceInstUsesWith(I, V);
1462 
1463   if (Instruction *R = foldBoxMultiply(I))
1464     return R;
1465 
1466   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1467     return R;
1468 
1469   if (Instruction *X = foldAddWithConstant(I))
1470     return X;
1471 
1472   if (Instruction *X = foldNoWrapAdd(I, Builder))
1473     return X;
1474 
1475   if (Instruction *R = foldBinOpShiftWithShift(I))
1476     return R;
1477 
1478   if (Instruction *R = combineAddSubWithShlAddSub(Builder, I))
1479     return R;
1480 
1481   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1482   Type *Ty = I.getType();
1483   if (Ty->isIntOrIntVectorTy(1))
1484     return BinaryOperator::CreateXor(LHS, RHS);
1485 
1486   // X + X --> X << 1
1487   if (LHS == RHS) {
1488     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1489     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1490     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1491     return Shl;
1492   }
1493 
1494   Value *A, *B;
1495   if (match(LHS, m_Neg(m_Value(A)))) {
1496     // -A + -B --> -(A + B)
1497     if (match(RHS, m_Neg(m_Value(B))))
1498       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1499 
1500     // -A + B --> B - A
1501     auto *Sub = BinaryOperator::CreateSub(RHS, A);
1502     auto *OB0 = cast<OverflowingBinaryOperator>(LHS);
1503     Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OB0->hasNoSignedWrap());
1504 
1505     return Sub;
1506   }
1507 
1508   // A + -B  -->  A - B
1509   if (match(RHS, m_Neg(m_Value(B))))
1510     return BinaryOperator::CreateSub(LHS, B);
1511 
1512   if (Value *V = checkForNegativeOperand(I, Builder))
1513     return replaceInstUsesWith(I, V);
1514 
1515   // (A + 1) + ~B --> A - B
1516   // ~B + (A + 1) --> A - B
1517   // (~B + A) + 1 --> A - B
1518   // (A + ~B) + 1 --> A - B
1519   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1520       match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1521     return BinaryOperator::CreateSub(A, B);
1522 
1523   // (A + RHS) + RHS --> A + (RHS << 1)
1524   if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1525     return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1526 
1527   // LHS + (A + LHS) --> A + (LHS << 1)
1528   if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1529     return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1530 
1531   {
1532     // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1533     Constant *C1, *C2;
1534     if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
1535                           m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
1536         (LHS->hasOneUse() || RHS->hasOneUse())) {
1537       Value *Sub = Builder.CreateSub(A, B);
1538       return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
1539     }
1540 
1541     // Canonicalize a constant sub operand as an add operand for better folding:
1542     // (C1 - A) + B --> (B - A) + C1
1543     if (match(&I, m_c_Add(m_OneUse(m_Sub(m_ImmConstant(C1), m_Value(A))),
1544                           m_Value(B)))) {
1545       Value *Sub = Builder.CreateSub(B, A, "reass.sub");
1546       return BinaryOperator::CreateAdd(Sub, C1);
1547     }
1548   }
1549 
1550   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1551   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1552 
1553   // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1554   const APInt *C1, *C2;
1555   if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1556     APInt one(C2->getBitWidth(), 1);
1557     APInt minusC1 = -(*C1);
1558     if (minusC1 == (one << *C2)) {
1559       Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
1560       return BinaryOperator::CreateSRem(RHS, NewRHS);
1561     }
1562   }
1563 
1564   // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit
1565   if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) &&
1566       C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countl_zero())) {
1567     Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1);
1568     return BinaryOperator::CreateAnd(A, NewMask);
1569   }
1570 
1571   // ZExt (B - A) + ZExt(A) --> ZExt(B)
1572   if ((match(RHS, m_ZExt(m_Value(A))) &&
1573        match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) ||
1574       (match(LHS, m_ZExt(m_Value(A))) &&
1575        match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))))
1576     return new ZExtInst(B, LHS->getType());
1577 
1578   // zext(A) + sext(A) --> 0 if A is i1
1579   if (match(&I, m_c_BinOp(m_ZExt(m_Value(A)), m_SExt(m_Deferred(A)))) &&
1580       A->getType()->isIntOrIntVectorTy(1))
1581     return replaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1582 
1583   // A+B --> A|B iff A and B have no bits set in common.
1584   WithCache<const Value *> LHSCache(LHS), RHSCache(RHS);
1585   if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(&I)))
1586     return BinaryOperator::CreateDisjointOr(LHS, RHS);
1587 
1588   if (Instruction *Ext = narrowMathIfNoOverflow(I))
1589     return Ext;
1590 
1591   // (add (xor A, B) (and A, B)) --> (or A, B)
1592   // (add (and A, B) (xor A, B)) --> (or A, B)
1593   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1594                           m_c_And(m_Deferred(A), m_Deferred(B)))))
1595     return BinaryOperator::CreateOr(A, B);
1596 
1597   // (add (or A, B) (and A, B)) --> (add A, B)
1598   // (add (and A, B) (or A, B)) --> (add A, B)
1599   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1600                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
1601     // Replacing operands in-place to preserve nuw/nsw flags.
1602     replaceOperand(I, 0, A);
1603     replaceOperand(I, 1, B);
1604     return &I;
1605   }
1606 
1607   // (add A (or A, -A)) --> (and (add A, -1) A)
1608   // (add A (or -A, A)) --> (and (add A, -1) A)
1609   // (add (or A, -A) A) --> (and (add A, -1) A)
1610   // (add (or -A, A) A) --> (and (add A, -1) A)
1611   if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)),
1612                                                       m_Deferred(A)))))) {
1613     Value *Add =
1614         Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "",
1615                           I.hasNoUnsignedWrap(), I.hasNoSignedWrap());
1616     return BinaryOperator::CreateAnd(Add, A);
1617   }
1618 
1619   // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A)
1620   // Forms all commutable operations, and simplifies ctpop -> cttz folds.
1621   if (match(&I,
1622             m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))),
1623                   m_AllOnes()))) {
1624     Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType());
1625     Value *Dec = Builder.CreateAdd(A, AllOnes);
1626     Value *Not = Builder.CreateXor(A, AllOnes);
1627     return BinaryOperator::CreateAnd(Dec, Not);
1628   }
1629 
1630   // Disguised reassociation/factorization:
1631   // ~(A * C1) + A
1632   // ((A * -C1) - 1) + A
1633   // ((A * -C1) + A) - 1
1634   // (A * (1 - C1)) - 1
1635   if (match(&I,
1636             m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))),
1637                     m_Deferred(A)))) {
1638     Type *Ty = I.getType();
1639     Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1);
1640     Value *NewMul = Builder.CreateMul(A, NewMulC);
1641     return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty));
1642   }
1643 
1644   // (A * -2**C) + B --> B - (A << C)
1645   const APInt *NegPow2C;
1646   if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))),
1647                         m_Value(B)))) {
1648     Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countr_zero());
1649     Value *Shl = Builder.CreateShl(A, ShiftAmtC);
1650     return BinaryOperator::CreateSub(B, Shl);
1651   }
1652 
1653   // Canonicalize signum variant that ends in add:
1654   // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0))
1655   ICmpInst::Predicate Pred;
1656   uint64_t BitWidth = Ty->getScalarSizeInBits();
1657   if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowUndef(BitWidth - 1))) &&
1658       match(RHS, m_OneUse(m_ZExt(
1659                      m_OneUse(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))))) &&
1660       Pred == CmpInst::ICMP_SGT) {
1661     Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull");
1662     Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext");
1663     return BinaryOperator::CreateOr(LHS, Zext);
1664   }
1665 
1666   if (Instruction *Ashr = foldAddToAshr(I))
1667     return Ashr;
1668 
1669   // (~X) + (~Y) --> -2 - (X + Y)
1670   {
1671     // To ensure we can save instructions we need to ensure that we consume both
1672     // LHS/RHS (i.e they have a `not`).
1673     bool ConsumesLHS, ConsumesRHS;
1674     if (isFreeToInvert(LHS, LHS->hasOneUse(), ConsumesLHS) && ConsumesLHS &&
1675         isFreeToInvert(RHS, RHS->hasOneUse(), ConsumesRHS) && ConsumesRHS) {
1676       Value *NotLHS = getFreelyInverted(LHS, LHS->hasOneUse(), &Builder);
1677       Value *NotRHS = getFreelyInverted(RHS, RHS->hasOneUse(), &Builder);
1678       assert(NotLHS != nullptr && NotRHS != nullptr &&
1679              "isFreeToInvert desynced with getFreelyInverted");
1680       Value *LHSPlusRHS = Builder.CreateAdd(NotLHS, NotRHS);
1681       return BinaryOperator::CreateSub(
1682           ConstantInt::getSigned(RHS->getType(), -2), LHSPlusRHS);
1683     }
1684   }
1685 
1686   if (Instruction *R = tryFoldInstWithCtpopWithNot(&I))
1687     return R;
1688 
1689   // TODO(jingyue): Consider willNotOverflowSignedAdd and
1690   // willNotOverflowUnsignedAdd to reduce the number of invocations of
1691   // computeKnownBits.
1692   bool Changed = false;
1693   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHSCache, RHSCache, I)) {
1694     Changed = true;
1695     I.setHasNoSignedWrap(true);
1696   }
1697   if (!I.hasNoUnsignedWrap() &&
1698       willNotOverflowUnsignedAdd(LHSCache, RHSCache, I)) {
1699     Changed = true;
1700     I.setHasNoUnsignedWrap(true);
1701   }
1702 
1703   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1704     return V;
1705 
1706   if (Instruction *V =
1707           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1708     return V;
1709 
1710   if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1711     return SatAdd;
1712 
1713   // usub.sat(A, B) + B => umax(A, B)
1714   if (match(&I, m_c_BinOp(
1715           m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
1716           m_Deferred(B)))) {
1717     return replaceInstUsesWith(I,
1718         Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1719   }
1720 
1721   // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1722   if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
1723       match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
1724       haveNoCommonBitsSet(A, B, SQ.getWithInstruction(&I)))
1725     return replaceInstUsesWith(
1726         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1727                                    {Builder.CreateOr(A, B)}));
1728 
1729   // Fold the log2_ceil idiom:
1730   // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1))
1731   // -->
1732   // BW - ctlz(A - 1, false)
1733   const APInt *XorC;
1734   if (match(&I,
1735             m_c_Add(
1736                 m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)),
1737                               m_One())),
1738                 m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor(
1739                     m_OneUse(m_TruncOrSelf(m_OneUse(
1740                         m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))),
1741                     m_APInt(XorC))))))) &&
1742       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) &&
1743       *XorC == A->getType()->getScalarSizeInBits() - 1) {
1744     Value *Sub = Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()));
1745     Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()},
1746                                           {Sub, Builder.getFalse()});
1747     Value *Ret = Builder.CreateSub(
1748         ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()),
1749         Ctlz, "", /*HasNUW*/ true, /*HasNSW*/ true);
1750     return replaceInstUsesWith(I, Builder.CreateZExtOrTrunc(Ret, I.getType()));
1751   }
1752 
1753   if (Instruction *Res = foldSquareSumInt(I))
1754     return Res;
1755 
1756   if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
1757     return Res;
1758 
1759   if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
1760     return Res;
1761 
1762   return Changed ? &I : nullptr;
1763 }
1764 
1765 /// Eliminate an op from a linear interpolation (lerp) pattern.
1766 static Instruction *factorizeLerp(BinaryOperator &I,
1767                                   InstCombiner::BuilderTy &Builder) {
1768   Value *X, *Y, *Z;
1769   if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1770                                             m_OneUse(m_FSub(m_FPOne(),
1771                                                             m_Value(Z))))),
1772                           m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1773     return nullptr;
1774 
1775   // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1776   Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1777   Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1778   return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1779 }
1780 
1781 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1782 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1783                                       InstCombiner::BuilderTy &Builder) {
1784   assert((I.getOpcode() == Instruction::FAdd ||
1785           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1786   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1787          "FP factorization requires FMF");
1788 
1789   if (Instruction *Lerp = factorizeLerp(I, Builder))
1790     return Lerp;
1791 
1792   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1793   if (!Op0->hasOneUse() || !Op1->hasOneUse())
1794     return nullptr;
1795 
1796   Value *X, *Y, *Z;
1797   bool IsFMul;
1798   if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) &&
1799        match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) ||
1800       (match(Op0, m_FMul(m_Value(Z), m_Value(X))) &&
1801        match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))))
1802     IsFMul = true;
1803   else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) &&
1804            match(Op1, m_FDiv(m_Value(Y), m_Specific(Z))))
1805     IsFMul = false;
1806   else
1807     return nullptr;
1808 
1809   // (X * Z) + (Y * Z) --> (X + Y) * Z
1810   // (X * Z) - (Y * Z) --> (X - Y) * Z
1811   // (X / Z) + (Y / Z) --> (X + Y) / Z
1812   // (X / Z) - (Y / Z) --> (X - Y) / Z
1813   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1814   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1815                      : Builder.CreateFSubFMF(X, Y, &I);
1816 
1817   // Bail out if we just created a denormal constant.
1818   // TODO: This is copied from a previous implementation. Is it necessary?
1819   const APFloat *C;
1820   if (match(XY, m_APFloat(C)) && !C->isNormal())
1821     return nullptr;
1822 
1823   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1824                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1825 }
1826 
1827 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
1828   if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1),
1829                                   I.getFastMathFlags(),
1830                                   SQ.getWithInstruction(&I)))
1831     return replaceInstUsesWith(I, V);
1832 
1833   if (SimplifyAssociativeOrCommutative(I))
1834     return &I;
1835 
1836   if (Instruction *X = foldVectorBinop(I))
1837     return X;
1838 
1839   if (Instruction *Phi = foldBinopWithPhiOperands(I))
1840     return Phi;
1841 
1842   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1843     return FoldedFAdd;
1844 
1845   // (-X) + Y --> Y - X
1846   Value *X, *Y;
1847   if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1848     return BinaryOperator::CreateFSubFMF(Y, X, &I);
1849 
1850   // Similar to above, but look through fmul/fdiv for the negated term.
1851   // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1852   Value *Z;
1853   if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1854                          m_Value(Z)))) {
1855     Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1856     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1857   }
1858   // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1859   // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1860   if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1861                          m_Value(Z))) ||
1862       match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1863                          m_Value(Z)))) {
1864     Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1865     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1866   }
1867 
1868   // Check for (fadd double (sitofp x), y), see if we can merge this into an
1869   // integer add followed by a promotion.
1870   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1871   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1872     Value *LHSIntVal = LHSConv->getOperand(0);
1873     Type *FPType = LHSConv->getType();
1874 
1875     // TODO: This check is overly conservative. In many cases known bits
1876     // analysis can tell us that the result of the addition has less significant
1877     // bits than the integer type can hold.
1878     auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1879       Type *FScalarTy = FTy->getScalarType();
1880       Type *IScalarTy = ITy->getScalarType();
1881 
1882       // Do we have enough bits in the significand to represent the result of
1883       // the integer addition?
1884       unsigned MaxRepresentableBits =
1885           APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1886       return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1887     };
1888 
1889     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1890     // ... if the constant fits in the integer value.  This is useful for things
1891     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1892     // requires a constant pool load, and generally allows the add to be better
1893     // instcombined.
1894     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1895       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1896         Constant *CI = ConstantFoldCastOperand(Instruction::FPToSI, CFP,
1897                                                LHSIntVal->getType(), DL);
1898         if (LHSConv->hasOneUse() &&
1899             ConstantFoldCastOperand(Instruction::SIToFP, CI, I.getType(), DL) ==
1900                 CFP &&
1901             willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1902           // Insert the new integer add.
1903           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1904           return new SIToFPInst(NewAdd, I.getType());
1905         }
1906       }
1907 
1908     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1909     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1910       Value *RHSIntVal = RHSConv->getOperand(0);
1911       // It's enough to check LHS types only because we require int types to
1912       // be the same for this transform.
1913       if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1914         // Only do this if x/y have the same type, if at least one of them has a
1915         // single use (so we don't increase the number of int->fp conversions),
1916         // and if the integer add will not overflow.
1917         if (LHSIntVal->getType() == RHSIntVal->getType() &&
1918             (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1919             willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1920           // Insert the new integer add.
1921           Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1922           return new SIToFPInst(NewAdd, I.getType());
1923         }
1924       }
1925     }
1926   }
1927 
1928   // Handle specials cases for FAdd with selects feeding the operation
1929   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1930     return replaceInstUsesWith(I, V);
1931 
1932   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1933     if (Instruction *F = factorizeFAddFSub(I, Builder))
1934       return F;
1935 
1936     if (Instruction *F = foldSquareSumFP(I))
1937       return F;
1938 
1939     // Try to fold fadd into start value of reduction intrinsic.
1940     if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1941                                m_AnyZeroFP(), m_Value(X))),
1942                            m_Value(Y)))) {
1943       // fadd (rdx 0.0, X), Y --> rdx Y, X
1944       return replaceInstUsesWith(
1945           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1946                                      {X->getType()}, {Y, X}, &I));
1947     }
1948     const APFloat *StartC, *C;
1949     if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1950                        m_APFloat(StartC), m_Value(X)))) &&
1951         match(RHS, m_APFloat(C))) {
1952       // fadd (rdx StartC, X), C --> rdx (C + StartC), X
1953       Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
1954       return replaceInstUsesWith(
1955           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1956                                      {X->getType()}, {NewStartC, X}, &I));
1957     }
1958 
1959     // (X * MulC) + X --> X * (MulC + 1.0)
1960     Constant *MulC;
1961     if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)),
1962                            m_Deferred(X)))) {
1963       if (Constant *NewMulC = ConstantFoldBinaryOpOperands(
1964               Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL))
1965         return BinaryOperator::CreateFMulFMF(X, NewMulC, &I);
1966     }
1967 
1968     // (-X - Y) + (X + Z) --> Z - Y
1969     if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)),
1970                            m_c_FAdd(m_Deferred(X), m_Value(Z)))))
1971       return BinaryOperator::CreateFSubFMF(Z, Y, &I);
1972 
1973     if (Value *V = FAddCombine(Builder).simplify(&I))
1974       return replaceInstUsesWith(I, V);
1975   }
1976 
1977   // minumum(X, Y) + maximum(X, Y) => X + Y.
1978   if (match(&I,
1979             m_c_FAdd(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)),
1980                      m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X),
1981                                                        m_Deferred(Y))))) {
1982     BinaryOperator *Result = BinaryOperator::CreateFAddFMF(X, Y, &I);
1983     // We cannot preserve ninf if nnan flag is not set.
1984     // If X is NaN and Y is Inf then in original program we had NaN + NaN,
1985     // while in optimized version NaN + Inf and this is a poison with ninf flag.
1986     if (!Result->hasNoNaNs())
1987       Result->setHasNoInfs(false);
1988     return Result;
1989   }
1990 
1991   return nullptr;
1992 }
1993 
1994 /// Optimize pointer differences into the same array into a size.  Consider:
1995 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1996 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1997 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
1998                                                    Type *Ty, bool IsNUW) {
1999   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
2000   // this.
2001   bool Swapped = false;
2002   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
2003   if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
2004     std::swap(LHS, RHS);
2005     Swapped = true;
2006   }
2007 
2008   // Require at least one GEP with a common base pointer on both sides.
2009   if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
2010     // (gep X, ...) - X
2011     if (LHSGEP->getOperand(0)->stripPointerCasts() ==
2012         RHS->stripPointerCasts()) {
2013       GEP1 = LHSGEP;
2014     } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
2015       // (gep X, ...) - (gep X, ...)
2016       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
2017           RHSGEP->getOperand(0)->stripPointerCasts()) {
2018         GEP1 = LHSGEP;
2019         GEP2 = RHSGEP;
2020       }
2021     }
2022   }
2023 
2024   if (!GEP1)
2025     return nullptr;
2026 
2027   if (GEP2) {
2028     // (gep X, ...) - (gep X, ...)
2029     //
2030     // Avoid duplicating the arithmetic if there are more than one non-constant
2031     // indices between the two GEPs and either GEP has a non-constant index and
2032     // multiple users. If zero non-constant index, the result is a constant and
2033     // there is no duplication. If one non-constant index, the result is an add
2034     // or sub with a constant, which is no larger than the original code, and
2035     // there's no duplicated arithmetic, even if either GEP has multiple
2036     // users. If more than one non-constant indices combined, as long as the GEP
2037     // with at least one non-constant index doesn't have multiple users, there
2038     // is no duplication.
2039     unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
2040     unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
2041     if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
2042         ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
2043          (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
2044       return nullptr;
2045     }
2046   }
2047 
2048   // Emit the offset of the GEP and an intptr_t.
2049   Value *Result = EmitGEPOffset(GEP1);
2050 
2051   // If this is a single inbounds GEP and the original sub was nuw,
2052   // then the final multiplication is also nuw.
2053   if (auto *I = dyn_cast<Instruction>(Result))
2054     if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
2055         I->getOpcode() == Instruction::Mul)
2056       I->setHasNoUnsignedWrap();
2057 
2058   // If we have a 2nd GEP of the same base pointer, subtract the offsets.
2059   // If both GEPs are inbounds, then the subtract does not have signed overflow.
2060   if (GEP2) {
2061     Value *Offset = EmitGEPOffset(GEP2);
2062     Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
2063                                GEP1->isInBounds() && GEP2->isInBounds());
2064   }
2065 
2066   // If we have p - gep(p, ...)  then we have to negate the result.
2067   if (Swapped)
2068     Result = Builder.CreateNeg(Result, "diff.neg");
2069 
2070   return Builder.CreateIntCast(Result, Ty, true);
2071 }
2072 
2073 static Instruction *foldSubOfMinMax(BinaryOperator &I,
2074                                     InstCombiner::BuilderTy &Builder) {
2075   Value *Op0 = I.getOperand(0);
2076   Value *Op1 = I.getOperand(1);
2077   Type *Ty = I.getType();
2078   auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
2079   if (!MinMax)
2080     return nullptr;
2081 
2082   // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y)
2083   // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y)
2084   Value *X = MinMax->getLHS();
2085   Value *Y = MinMax->getRHS();
2086   if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) &&
2087       (Op0->hasOneUse() || Op1->hasOneUse())) {
2088     Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
2089     Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
2090     return CallInst::Create(F, {X, Y});
2091   }
2092 
2093   // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z))
2094   // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y))
2095   Value *Z;
2096   if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) {
2097     if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) {
2098       Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z});
2099       return BinaryOperator::CreateAdd(X, USub);
2100     }
2101     if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) {
2102       Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y});
2103       return BinaryOperator::CreateAdd(X, USub);
2104     }
2105   }
2106 
2107   // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z
2108   // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z
2109   if (MinMax->isSigned() && match(Y, m_ZeroInt()) &&
2110       match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) {
2111     Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
2112     Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
2113     return CallInst::Create(F, {Op0, Z});
2114   }
2115 
2116   return nullptr;
2117 }
2118 
2119 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
2120   if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1),
2121                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
2122                                  SQ.getWithInstruction(&I)))
2123     return replaceInstUsesWith(I, V);
2124 
2125   if (Instruction *X = foldVectorBinop(I))
2126     return X;
2127 
2128   if (Instruction *Phi = foldBinopWithPhiOperands(I))
2129     return Phi;
2130 
2131   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2132 
2133   // If this is a 'B = x-(-A)', change to B = x+A.
2134   // We deal with this without involving Negator to preserve NSW flag.
2135   if (Value *V = dyn_castNegVal(Op1)) {
2136     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
2137 
2138     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
2139       assert(BO->getOpcode() == Instruction::Sub &&
2140              "Expected a subtraction operator!");
2141       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
2142         Res->setHasNoSignedWrap(true);
2143     } else {
2144       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
2145         Res->setHasNoSignedWrap(true);
2146     }
2147 
2148     return Res;
2149   }
2150 
2151   // Try this before Negator to preserve NSW flag.
2152   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
2153     return R;
2154 
2155   Constant *C;
2156   if (match(Op0, m_ImmConstant(C))) {
2157     Value *X;
2158     Constant *C2;
2159 
2160     // C-(X+C2) --> (C-C2)-X
2161     if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) {
2162       // C-C2 never overflow, and C-(X+C2), (X+C2) has NSW/NUW
2163       // => (C-C2)-X can have NSW/NUW
2164       bool WillNotSOV = willNotOverflowSignedSub(C, C2, I);
2165       BinaryOperator *Res =
2166           BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
2167       auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2168       Res->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO1->hasNoSignedWrap() &&
2169                               WillNotSOV);
2170       Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() &&
2171                                 OBO1->hasNoUnsignedWrap());
2172       return Res;
2173     }
2174   }
2175 
2176   auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
2177     if (Instruction *Ext = narrowMathIfNoOverflow(I))
2178       return Ext;
2179 
2180     bool Changed = false;
2181     if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
2182       Changed = true;
2183       I.setHasNoSignedWrap(true);
2184     }
2185     if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
2186       Changed = true;
2187       I.setHasNoUnsignedWrap(true);
2188     }
2189 
2190     return Changed ? &I : nullptr;
2191   };
2192 
2193   // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
2194   // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
2195   // a pure negation used by a select that looks like abs/nabs.
2196   bool IsNegation = match(Op0, m_ZeroInt());
2197   if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
2198         const Instruction *UI = dyn_cast<Instruction>(U);
2199         if (!UI)
2200           return false;
2201         return match(UI,
2202                      m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
2203                match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
2204       })) {
2205     if (Value *NegOp1 = Negator::Negate(IsNegation, /* IsNSW */ IsNegation &&
2206                                                         I.hasNoSignedWrap(),
2207                                         Op1, *this))
2208       return BinaryOperator::CreateAdd(NegOp1, Op0);
2209   }
2210   if (IsNegation)
2211     return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
2212 
2213   // (A*B)-(A*C) -> A*(B-C) etc
2214   if (Value *V = foldUsingDistributiveLaws(I))
2215     return replaceInstUsesWith(I, V);
2216 
2217   if (I.getType()->isIntOrIntVectorTy(1))
2218     return BinaryOperator::CreateXor(Op0, Op1);
2219 
2220   // Replace (-1 - A) with (~A).
2221   if (match(Op0, m_AllOnes()))
2222     return BinaryOperator::CreateNot(Op1);
2223 
2224   // (X + -1) - Y --> ~Y + X
2225   Value *X, *Y;
2226   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
2227     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
2228 
2229   // Reassociate sub/add sequences to create more add instructions and
2230   // reduce dependency chains:
2231   // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2232   Value *Z;
2233   if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
2234                                   m_Value(Z))))) {
2235     Value *XZ = Builder.CreateAdd(X, Z);
2236     Value *YW = Builder.CreateAdd(Y, Op1);
2237     return BinaryOperator::CreateSub(XZ, YW);
2238   }
2239 
2240   // ((X - Y) - Op1)  -->  X - (Y + Op1)
2241   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
2242     OverflowingBinaryOperator *LHSSub = cast<OverflowingBinaryOperator>(Op0);
2243     bool HasNUW = I.hasNoUnsignedWrap() && LHSSub->hasNoUnsignedWrap();
2244     bool HasNSW = HasNUW && I.hasNoSignedWrap() && LHSSub->hasNoSignedWrap();
2245     Value *Add = Builder.CreateAdd(Y, Op1, "", /* HasNUW */ HasNUW,
2246                                    /* HasNSW */ HasNSW);
2247     BinaryOperator *Sub = BinaryOperator::CreateSub(X, Add);
2248     Sub->setHasNoUnsignedWrap(HasNUW);
2249     Sub->setHasNoSignedWrap(HasNSW);
2250     return Sub;
2251   }
2252 
2253   {
2254     // (X + Z) - (Y + Z) --> (X - Y)
2255     // This is done in other passes, but we want to be able to consume this
2256     // pattern in InstCombine so we can generate it without creating infinite
2257     // loops.
2258     if (match(Op0, m_Add(m_Value(X), m_Value(Z))) &&
2259         match(Op1, m_c_Add(m_Value(Y), m_Specific(Z))))
2260       return BinaryOperator::CreateSub(X, Y);
2261 
2262     // (X + C0) - (Y + C1) --> (X - Y) + (C0 - C1)
2263     Constant *CX, *CY;
2264     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(CX)))) &&
2265         match(Op1, m_OneUse(m_Add(m_Value(Y), m_ImmConstant(CY))))) {
2266       Value *OpsSub = Builder.CreateSub(X, Y);
2267       Constant *ConstsSub = ConstantExpr::getSub(CX, CY);
2268       return BinaryOperator::CreateAdd(OpsSub, ConstsSub);
2269     }
2270   }
2271 
2272   // (~X) - (~Y) --> Y - X
2273   {
2274     // Need to ensure we can consume at least one of the `not` instructions,
2275     // otherwise this can inf loop.
2276     bool ConsumesOp0, ConsumesOp1;
2277     if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) &&
2278         isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) &&
2279         (ConsumesOp0 || ConsumesOp1)) {
2280       Value *NotOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder);
2281       Value *NotOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder);
2282       assert(NotOp0 != nullptr && NotOp1 != nullptr &&
2283              "isFreeToInvert desynced with getFreelyInverted");
2284       return BinaryOperator::CreateSub(NotOp1, NotOp0);
2285     }
2286   }
2287 
2288   auto m_AddRdx = [](Value *&Vec) {
2289     return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
2290   };
2291   Value *V0, *V1;
2292   if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
2293       V0->getType() == V1->getType()) {
2294     // Difference of sums is sum of differences:
2295     // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
2296     Value *Sub = Builder.CreateSub(V0, V1);
2297     Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
2298                                          {Sub->getType()}, {Sub});
2299     return replaceInstUsesWith(I, Rdx);
2300   }
2301 
2302   if (Constant *C = dyn_cast<Constant>(Op0)) {
2303     Value *X;
2304     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2305       // C - (zext bool) --> bool ? C - 1 : C
2306       return SelectInst::Create(X, InstCombiner::SubOne(C), C);
2307     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2308       // C - (sext bool) --> bool ? C + 1 : C
2309       return SelectInst::Create(X, InstCombiner::AddOne(C), C);
2310 
2311     // C - ~X == X + (1+C)
2312     if (match(Op1, m_Not(m_Value(X))))
2313       return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
2314 
2315     // Try to fold constant sub into select arguments.
2316     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2317       if (Instruction *R = FoldOpIntoSelect(I, SI))
2318         return R;
2319 
2320     // Try to fold constant sub into PHI values.
2321     if (PHINode *PN = dyn_cast<PHINode>(Op1))
2322       if (Instruction *R = foldOpIntoPhi(I, PN))
2323         return R;
2324 
2325     Constant *C2;
2326 
2327     // C-(C2-X) --> X+(C-C2)
2328     if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
2329       return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
2330   }
2331 
2332   const APInt *Op0C;
2333   if (match(Op0, m_APInt(Op0C))) {
2334     if (Op0C->isMask()) {
2335       // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
2336       // zero.
2337       KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
2338       if ((*Op0C | RHSKnown.Zero).isAllOnes())
2339         return BinaryOperator::CreateXor(Op1, Op0);
2340     }
2341 
2342     // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when:
2343     // (C3 - ((C2 & C3) - 1)) is pow2
2344     // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1)
2345     // C2 is negative pow2 || sub nuw
2346     const APInt *C2, *C3;
2347     BinaryOperator *InnerSub;
2348     if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) &&
2349         match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) &&
2350         (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) {
2351       APInt C2AndC3 = *C2 & *C3;
2352       APInt C2AndC3Minus1 = C2AndC3 - 1;
2353       APInt C2AddC3 = *C2 + *C3;
2354       if ((*C3 - C2AndC3Minus1).isPowerOf2() &&
2355           C2AndC3Minus1.isSubsetOf(C2AddC3)) {
2356         Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2));
2357         return BinaryOperator::CreateAdd(
2358             And, ConstantInt::get(I.getType(), *Op0C - C2AndC3));
2359       }
2360     }
2361   }
2362 
2363   {
2364     Value *Y;
2365     // X-(X+Y) == -Y    X-(Y+X) == -Y
2366     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
2367       return BinaryOperator::CreateNeg(Y);
2368 
2369     // (X-Y)-X == -Y
2370     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
2371       return BinaryOperator::CreateNeg(Y);
2372   }
2373 
2374   // (sub (or A, B) (and A, B)) --> (xor A, B)
2375   {
2376     Value *A, *B;
2377     if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2378         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2379       return BinaryOperator::CreateXor(A, B);
2380   }
2381 
2382   // (sub (add A, B) (or A, B)) --> (and A, B)
2383   {
2384     Value *A, *B;
2385     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2386         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2387       return BinaryOperator::CreateAnd(A, B);
2388   }
2389 
2390   // (sub (add A, B) (and A, B)) --> (or A, B)
2391   {
2392     Value *A, *B;
2393     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2394         match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
2395       return BinaryOperator::CreateOr(A, B);
2396   }
2397 
2398   // (sub (and A, B) (or A, B)) --> neg (xor A, B)
2399   {
2400     Value *A, *B;
2401     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2402         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2403         (Op0->hasOneUse() || Op1->hasOneUse()))
2404       return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
2405   }
2406 
2407   // (sub (or A, B), (xor A, B)) --> (and A, B)
2408   {
2409     Value *A, *B;
2410     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2411         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2412       return BinaryOperator::CreateAnd(A, B);
2413   }
2414 
2415   // (sub (xor A, B) (or A, B)) --> neg (and A, B)
2416   {
2417     Value *A, *B;
2418     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2419         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2420         (Op0->hasOneUse() || Op1->hasOneUse()))
2421       return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
2422   }
2423 
2424   {
2425     Value *Y;
2426     // ((X | Y) - X) --> (~X & Y)
2427     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
2428       return BinaryOperator::CreateAnd(
2429           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
2430   }
2431 
2432   {
2433     // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
2434     Value *X;
2435     if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
2436                                     m_OneUse(m_Neg(m_Value(X))))))) {
2437       return BinaryOperator::CreateNeg(Builder.CreateAnd(
2438           Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
2439     }
2440   }
2441 
2442   {
2443     // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
2444     Constant *C;
2445     if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
2446       return BinaryOperator::CreateNeg(
2447           Builder.CreateAnd(Op1, Builder.CreateNot(C)));
2448     }
2449   }
2450 
2451   if (Instruction *R = tryFoldInstWithCtpopWithNot(&I))
2452     return R;
2453 
2454   if (Instruction *R = foldSubOfMinMax(I, Builder))
2455     return R;
2456 
2457   {
2458     // If we have a subtraction between some value and a select between
2459     // said value and something else, sink subtraction into select hands, i.e.:
2460     //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
2461     //     ->
2462     //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
2463     //  or
2464     //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
2465     //     ->
2466     //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2467     // This will result in select between new subtraction and 0.
2468     auto SinkSubIntoSelect =
2469         [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
2470                            auto SubBuilder) -> Instruction * {
2471       Value *Cond, *TrueVal, *FalseVal;
2472       if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
2473                                            m_Value(FalseVal)))))
2474         return nullptr;
2475       if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2476         return nullptr;
2477       // While it is really tempting to just create two subtractions and let
2478       // InstCombine fold one of those to 0, it isn't possible to do so
2479       // because of worklist visitation order. So ugly it is.
2480       bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2481       Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2482       Constant *Zero = Constant::getNullValue(Ty);
2483       SelectInst *NewSel =
2484           SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
2485                              OtherHandOfSubIsTrueVal ? NewSub : Zero);
2486       // Preserve prof metadata if any.
2487       NewSel->copyMetadata(cast<Instruction>(*Select));
2488       return NewSel;
2489     };
2490     if (Instruction *NewSel = SinkSubIntoSelect(
2491             /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
2492             [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
2493               return Builder->CreateSub(OtherHandOfSelect,
2494                                         /*OtherHandOfSub=*/Op1);
2495             }))
2496       return NewSel;
2497     if (Instruction *NewSel = SinkSubIntoSelect(
2498             /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
2499             [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
2500               return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
2501                                         OtherHandOfSelect);
2502             }))
2503       return NewSel;
2504   }
2505 
2506   // (X - (X & Y))   -->   (X & ~Y)
2507   if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
2508       (Op1->hasOneUse() || isa<Constant>(Y)))
2509     return BinaryOperator::CreateAnd(
2510         Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
2511 
2512   // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
2513   // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
2514   // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
2515   // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
2516   // As long as Y is freely invertible, this will be neutral or a win.
2517   // Note: We don't generate the inverse max/min, just create the 'not' of
2518   // it and let other folds do the rest.
2519   if (match(Op0, m_Not(m_Value(X))) &&
2520       match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
2521       !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2522     Value *Not = Builder.CreateNot(Op1);
2523     return BinaryOperator::CreateSub(Not, X);
2524   }
2525   if (match(Op1, m_Not(m_Value(X))) &&
2526       match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
2527       !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2528     Value *Not = Builder.CreateNot(Op0);
2529     return BinaryOperator::CreateSub(X, Not);
2530   }
2531 
2532   // Optimize pointer differences into the same array into a size.  Consider:
2533   //  &A[10] - &A[0]: we should compile this to "10".
2534   Value *LHSOp, *RHSOp;
2535   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2536       match(Op1, m_PtrToInt(m_Value(RHSOp))))
2537     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2538                                                I.hasNoUnsignedWrap()))
2539       return replaceInstUsesWith(I, Res);
2540 
2541   // trunc(p)-trunc(q) -> trunc(p-q)
2542   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2543       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2544     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2545                                                /* IsNUW */ false))
2546       return replaceInstUsesWith(I, Res);
2547 
2548   // Canonicalize a shifty way to code absolute value to the common pattern.
2549   // There are 2 potential commuted variants.
2550   // We're relying on the fact that we only do this transform when the shift has
2551   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2552   // instructions).
2553   Value *A;
2554   const APInt *ShAmt;
2555   Type *Ty = I.getType();
2556   unsigned BitWidth = Ty->getScalarSizeInBits();
2557   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2558       Op1->hasNUses(2) && *ShAmt == BitWidth - 1 &&
2559       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2560     // B = ashr i32 A, 31 ; smear the sign bit
2561     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
2562     // --> (A < 0) ? -A : A
2563     Value *IsNeg = Builder.CreateIsNeg(A);
2564     // Copy the nuw/nsw flags from the sub to the negate.
2565     Value *NegA = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
2566                                     I.hasNoSignedWrap());
2567     return SelectInst::Create(IsNeg, NegA, A);
2568   }
2569 
2570   // If we are subtracting a low-bit masked subset of some value from an add
2571   // of that same value with no low bits changed, that is clearing some low bits
2572   // of the sum:
2573   // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2574   const APInt *AddC, *AndC;
2575   if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
2576       match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
2577     unsigned Cttz = AddC->countr_zero();
2578     APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2579     if ((HighMask & *AndC).isZero())
2580       return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2581   }
2582 
2583   if (Instruction *V =
2584           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2585     return V;
2586 
2587   // X - usub.sat(X, Y) => umin(X, Y)
2588   if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
2589                                                            m_Value(Y)))))
2590     return replaceInstUsesWith(
2591         I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2592 
2593   // umax(X, Op1) - Op1 --> usub.sat(X, Op1)
2594   // TODO: The one-use restriction is not strictly necessary, but it may
2595   //       require improving other pattern matching and/or codegen.
2596   if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1)))))
2597     return replaceInstUsesWith(
2598         I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
2599 
2600   // Op0 - umin(X, Op0) --> usub.sat(Op0, X)
2601   if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0)))))
2602     return replaceInstUsesWith(
2603         I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X}));
2604 
2605   // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
2606   if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) {
2607     Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
2608     return BinaryOperator::CreateNeg(USub);
2609   }
2610 
2611   // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X)
2612   if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) {
2613     Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X});
2614     return BinaryOperator::CreateNeg(USub);
2615   }
2616 
2617   // C - ctpop(X) => ctpop(~X) if C is bitwidth
2618   if (match(Op0, m_SpecificInt(BitWidth)) &&
2619       match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
2620     return replaceInstUsesWith(
2621         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2622                                    {Builder.CreateNot(X)}));
2623 
2624   // Reduce multiplies for difference-of-squares by factoring:
2625   // (X * X) - (Y * Y) --> (X + Y) * (X - Y)
2626   if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) &&
2627       match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) {
2628     auto *OBO0 = cast<OverflowingBinaryOperator>(Op0);
2629     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2630     bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() &&
2631                         OBO1->hasNoSignedWrap() && BitWidth > 2;
2632     bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() &&
2633                         OBO1->hasNoUnsignedWrap() && BitWidth > 1;
2634     Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW);
2635     Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW);
2636     Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW);
2637     return replaceInstUsesWith(I, Mul);
2638   }
2639 
2640   // max(X,Y) nsw/nuw - min(X,Y) --> abs(X nsw - Y)
2641   if (match(Op0, m_OneUse(m_c_SMax(m_Value(X), m_Value(Y)))) &&
2642       match(Op1, m_OneUse(m_c_SMin(m_Specific(X), m_Specific(Y))))) {
2643     if (I.hasNoUnsignedWrap() || I.hasNoSignedWrap()) {
2644       Value *Sub =
2645           Builder.CreateSub(X, Y, "sub", /*HasNUW=*/false, /*HasNSW=*/true);
2646       Value *Call =
2647           Builder.CreateBinaryIntrinsic(Intrinsic::abs, Sub, Builder.getTrue());
2648       return replaceInstUsesWith(I, Call);
2649     }
2650   }
2651 
2652   if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
2653     return Res;
2654 
2655   return TryToNarrowDeduceFlags();
2656 }
2657 
2658 /// This eliminates floating-point negation in either 'fneg(X)' or
2659 /// 'fsub(-0.0, X)' form by combining into a constant operand.
2660 static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) {
2661   // This is limited with one-use because fneg is assumed better for
2662   // reassociation and cheaper in codegen than fmul/fdiv.
2663   // TODO: Should the m_OneUse restriction be removed?
2664   Instruction *FNegOp;
2665   if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
2666     return nullptr;
2667 
2668   Value *X;
2669   Constant *C;
2670 
2671   // Fold negation into constant operand.
2672   // -(X * C) --> X * (-C)
2673   if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
2674     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2675       return BinaryOperator::CreateFMulFMF(X, NegC, &I);
2676   // -(X / C) --> X / (-C)
2677   if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
2678     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2679       return BinaryOperator::CreateFDivFMF(X, NegC, &I);
2680   // -(C / X) --> (-C) / X
2681   if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X))))
2682     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) {
2683       Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I);
2684 
2685       // Intersect 'nsz' and 'ninf' because those special value exceptions may
2686       // not apply to the fdiv. Everything else propagates from the fneg.
2687       // TODO: We could propagate nsz/ninf from fdiv alone?
2688       FastMathFlags FMF = I.getFastMathFlags();
2689       FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2690       FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
2691       FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
2692       return FDiv;
2693     }
2694   // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2695   // -(X + C) --> -X + -C --> -C - X
2696   if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2697     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2698       return BinaryOperator::CreateFSubFMF(NegC, X, &I);
2699 
2700   return nullptr;
2701 }
2702 
2703 Instruction *InstCombinerImpl::hoistFNegAboveFMulFDiv(Value *FNegOp,
2704                                                       Instruction &FMFSource) {
2705   Value *X, *Y;
2706   if (match(FNegOp, m_FMul(m_Value(X), m_Value(Y)))) {
2707     return cast<Instruction>(Builder.CreateFMulFMF(
2708         Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource));
2709   }
2710 
2711   if (match(FNegOp, m_FDiv(m_Value(X), m_Value(Y)))) {
2712     return cast<Instruction>(Builder.CreateFDivFMF(
2713         Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource));
2714   }
2715 
2716   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(FNegOp)) {
2717     // Make sure to preserve flags and metadata on the call.
2718     if (II->getIntrinsicID() == Intrinsic::ldexp) {
2719       FastMathFlags FMF = FMFSource.getFastMathFlags() | II->getFastMathFlags();
2720       IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2721       Builder.setFastMathFlags(FMF);
2722 
2723       CallInst *New = Builder.CreateCall(
2724           II->getCalledFunction(),
2725           {Builder.CreateFNeg(II->getArgOperand(0)), II->getArgOperand(1)});
2726       New->copyMetadata(*II);
2727       return New;
2728     }
2729   }
2730 
2731   return nullptr;
2732 }
2733 
2734 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
2735   Value *Op = I.getOperand(0);
2736 
2737   if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(),
2738                                   getSimplifyQuery().getWithInstruction(&I)))
2739     return replaceInstUsesWith(I, V);
2740 
2741   if (Instruction *X = foldFNegIntoConstant(I, DL))
2742     return X;
2743 
2744   Value *X, *Y;
2745 
2746   // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2747   if (I.hasNoSignedZeros() &&
2748       match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2749     return BinaryOperator::CreateFSubFMF(Y, X, &I);
2750 
2751   Value *OneUse;
2752   if (!match(Op, m_OneUse(m_Value(OneUse))))
2753     return nullptr;
2754 
2755   if (Instruction *R = hoistFNegAboveFMulFDiv(OneUse, I))
2756     return replaceInstUsesWith(I, R);
2757 
2758   // Try to eliminate fneg if at least 1 arm of the select is negated.
2759   Value *Cond;
2760   if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) {
2761     // Unlike most transforms, this one is not safe to propagate nsz unless
2762     // it is present on the original select. We union the flags from the select
2763     // and fneg and then remove nsz if needed.
2764     auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) {
2765       S->copyFastMathFlags(&I);
2766       if (auto *OldSel = dyn_cast<SelectInst>(Op)) {
2767         FastMathFlags FMF = I.getFastMathFlags() | OldSel->getFastMathFlags();
2768         S->setFastMathFlags(FMF);
2769         if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
2770             !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition()))
2771           S->setHasNoSignedZeros(false);
2772       }
2773     };
2774     // -(Cond ? -P : Y) --> Cond ? P : -Y
2775     Value *P;
2776     if (match(X, m_FNeg(m_Value(P)))) {
2777       Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2778       SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
2779       propagateSelectFMF(NewSel, P == Y);
2780       return NewSel;
2781     }
2782     // -(Cond ? X : -P) --> Cond ? -X : P
2783     if (match(Y, m_FNeg(m_Value(P)))) {
2784       Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2785       SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
2786       propagateSelectFMF(NewSel, P == X);
2787       return NewSel;
2788     }
2789   }
2790 
2791   // fneg (copysign x, y) -> copysign x, (fneg y)
2792   if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) {
2793     // The source copysign has an additional value input, so we can't propagate
2794     // flags the copysign doesn't also have.
2795     FastMathFlags FMF = I.getFastMathFlags();
2796     FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags();
2797 
2798     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2799     Builder.setFastMathFlags(FMF);
2800 
2801     Value *NegY = Builder.CreateFNeg(Y);
2802     Value *NewCopySign = Builder.CreateCopySign(X, NegY);
2803     return replaceInstUsesWith(I, NewCopySign);
2804   }
2805 
2806   return nullptr;
2807 }
2808 
2809 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
2810   if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1),
2811                                   I.getFastMathFlags(),
2812                                   getSimplifyQuery().getWithInstruction(&I)))
2813     return replaceInstUsesWith(I, V);
2814 
2815   if (Instruction *X = foldVectorBinop(I))
2816     return X;
2817 
2818   if (Instruction *Phi = foldBinopWithPhiOperands(I))
2819     return Phi;
2820 
2821   // Subtraction from -0.0 is the canonical form of fneg.
2822   // fsub -0.0, X ==> fneg X
2823   // fsub nsz 0.0, X ==> fneg nsz X
2824   //
2825   // FIXME This matcher does not respect FTZ or DAZ yet:
2826   // fsub -0.0, Denorm ==> +-0
2827   // fneg Denorm ==> -Denorm
2828   Value *Op;
2829   if (match(&I, m_FNeg(m_Value(Op))))
2830     return UnaryOperator::CreateFNegFMF(Op, &I);
2831 
2832   if (Instruction *X = foldFNegIntoConstant(I, DL))
2833     return X;
2834 
2835   Value *X, *Y;
2836   Constant *C;
2837 
2838   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2839   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2840   // Canonicalize to fadd to make analysis easier.
2841   // This can also help codegen because fadd is commutative.
2842   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2843   // killed later. We still limit that particular transform with 'hasOneUse'
2844   // because an fneg is assumed better/cheaper than a generic fsub.
2845   if (I.hasNoSignedZeros() || cannotBeNegativeZero(Op0, SQ.DL, SQ.TLI)) {
2846     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2847       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2848       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2849     }
2850   }
2851 
2852   // (-X) - Op1 --> -(X + Op1)
2853   if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2854       match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2855     Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2856     return UnaryOperator::CreateFNegFMF(FAdd, &I);
2857   }
2858 
2859   if (isa<Constant>(Op0))
2860     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2861       if (Instruction *NV = FoldOpIntoSelect(I, SI))
2862         return NV;
2863 
2864   // X - C --> X + (-C)
2865   // But don't transform constant expressions because there's an inverse fold
2866   // for X + (-Y) --> X - Y.
2867   if (match(Op1, m_ImmConstant(C)))
2868     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2869       return BinaryOperator::CreateFAddFMF(Op0, NegC, &I);
2870 
2871   // X - (-Y) --> X + Y
2872   if (match(Op1, m_FNeg(m_Value(Y))))
2873     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2874 
2875   // Similar to above, but look through a cast of the negated value:
2876   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2877   Type *Ty = I.getType();
2878   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2879     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2880 
2881   // X - (fpext(-Y)) --> X + fpext(Y)
2882   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2883     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2884 
2885   // Similar to above, but look through fmul/fdiv of the negated value:
2886   // Op0 - (-X * Y) --> Op0 + (X * Y)
2887   // Op0 - (Y * -X) --> Op0 + (X * Y)
2888   if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2889     Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2890     return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2891   }
2892   // Op0 - (-X / Y) --> Op0 + (X / Y)
2893   // Op0 - (X / -Y) --> Op0 + (X / Y)
2894   if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2895       match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2896     Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2897     return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2898   }
2899 
2900   // Handle special cases for FSub with selects feeding the operation
2901   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2902     return replaceInstUsesWith(I, V);
2903 
2904   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2905     // (Y - X) - Y --> -X
2906     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2907       return UnaryOperator::CreateFNegFMF(X, &I);
2908 
2909     // Y - (X + Y) --> -X
2910     // Y - (Y + X) --> -X
2911     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2912       return UnaryOperator::CreateFNegFMF(X, &I);
2913 
2914     // (X * C) - X --> X * (C - 1.0)
2915     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2916       if (Constant *CSubOne = ConstantFoldBinaryOpOperands(
2917               Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL))
2918         return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2919     }
2920     // X - (X * C) --> X * (1.0 - C)
2921     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2922       if (Constant *OneSubC = ConstantFoldBinaryOpOperands(
2923               Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL))
2924         return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2925     }
2926 
2927     // Reassociate fsub/fadd sequences to create more fadd instructions and
2928     // reduce dependency chains:
2929     // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2930     Value *Z;
2931     if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
2932                                      m_Value(Z))))) {
2933       Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
2934       Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
2935       return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
2936     }
2937 
2938     auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
2939       return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
2940                                                                  m_Value(Vec)));
2941     };
2942     Value *A0, *A1, *V0, *V1;
2943     if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
2944         V0->getType() == V1->getType()) {
2945       // Difference of sums is sum of differences:
2946       // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
2947       Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
2948       Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2949                                            {Sub->getType()}, {A0, Sub}, &I);
2950       return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
2951     }
2952 
2953     if (Instruction *F = factorizeFAddFSub(I, Builder))
2954       return F;
2955 
2956     // TODO: This performs reassociative folds for FP ops. Some fraction of the
2957     // functionality has been subsumed by simple pattern matching here and in
2958     // InstSimplify. We should let a dedicated reassociation pass handle more
2959     // complex pattern matching and remove this from InstCombine.
2960     if (Value *V = FAddCombine(Builder).simplify(&I))
2961       return replaceInstUsesWith(I, V);
2962 
2963     // (X - Y) - Op1 --> X - (Y + Op1)
2964     if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2965       Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
2966       return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
2967     }
2968   }
2969 
2970   return nullptr;
2971 }
2972