1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for add, fadd, sub, and fsub. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/InstrTypes.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/IR/Value.h" 29 #include "llvm/Support/AlignOf.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/InstCombine/InstCombiner.h" 33 #include <cassert> 34 #include <utility> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "instcombine" 40 41 namespace { 42 43 /// Class representing coefficient of floating-point addend. 44 /// This class needs to be highly efficient, which is especially true for 45 /// the constructor. As of I write this comment, the cost of the default 46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to 47 /// perform write-merging). 48 /// 49 class FAddendCoef { 50 public: 51 // The constructor has to initialize a APFloat, which is unnecessary for 52 // most addends which have coefficient either 1 or -1. So, the constructor 53 // is expensive. In order to avoid the cost of the constructor, we should 54 // reuse some instances whenever possible. The pre-created instances 55 // FAddCombine::Add[0-5] embodies this idea. 56 FAddendCoef() = default; 57 ~FAddendCoef(); 58 59 // If possible, don't define operator+/operator- etc because these 60 // operators inevitably call FAddendCoef's constructor which is not cheap. 61 void operator=(const FAddendCoef &A); 62 void operator+=(const FAddendCoef &A); 63 void operator*=(const FAddendCoef &S); 64 65 void set(short C) { 66 assert(!insaneIntVal(C) && "Insane coefficient"); 67 IsFp = false; IntVal = C; 68 } 69 70 void set(const APFloat& C); 71 72 void negate(); 73 74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } 75 Value *getValue(Type *) const; 76 77 bool isOne() const { return isInt() && IntVal == 1; } 78 bool isTwo() const { return isInt() && IntVal == 2; } 79 bool isMinusOne() const { return isInt() && IntVal == -1; } 80 bool isMinusTwo() const { return isInt() && IntVal == -2; } 81 82 private: 83 bool insaneIntVal(int V) { return V > 4 || V < -4; } 84 85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); } 86 87 const APFloat *getFpValPtr() const { 88 return reinterpret_cast<const APFloat *>(&FpValBuf); 89 } 90 91 const APFloat &getFpVal() const { 92 assert(IsFp && BufHasFpVal && "Incorret state"); 93 return *getFpValPtr(); 94 } 95 96 APFloat &getFpVal() { 97 assert(IsFp && BufHasFpVal && "Incorret state"); 98 return *getFpValPtr(); 99 } 100 101 bool isInt() const { return !IsFp; } 102 103 // If the coefficient is represented by an integer, promote it to a 104 // floating point. 105 void convertToFpType(const fltSemantics &Sem); 106 107 // Construct an APFloat from a signed integer. 108 // TODO: We should get rid of this function when APFloat can be constructed 109 // from an *SIGNED* integer. 110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); 111 112 bool IsFp = false; 113 114 // True iff FpValBuf contains an instance of APFloat. 115 bool BufHasFpVal = false; 116 117 // The integer coefficient of an individual addend is either 1 or -1, 118 // and we try to simplify at most 4 addends from neighboring at most 119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt 120 // is overkill of this end. 121 short IntVal = 0; 122 123 AlignedCharArrayUnion<APFloat> FpValBuf; 124 }; 125 126 /// FAddend is used to represent floating-point addend. An addend is 127 /// represented as <C, V>, where the V is a symbolic value, and C is a 128 /// constant coefficient. A constant addend is represented as <C, 0>. 129 class FAddend { 130 public: 131 FAddend() = default; 132 133 void operator+=(const FAddend &T) { 134 assert((Val == T.Val) && "Symbolic-values disagree"); 135 Coeff += T.Coeff; 136 } 137 138 Value *getSymVal() const { return Val; } 139 const FAddendCoef &getCoef() const { return Coeff; } 140 141 bool isConstant() const { return Val == nullptr; } 142 bool isZero() const { return Coeff.isZero(); } 143 144 void set(short Coefficient, Value *V) { 145 Coeff.set(Coefficient); 146 Val = V; 147 } 148 void set(const APFloat &Coefficient, Value *V) { 149 Coeff.set(Coefficient); 150 Val = V; 151 } 152 void set(const ConstantFP *Coefficient, Value *V) { 153 Coeff.set(Coefficient->getValueAPF()); 154 Val = V; 155 } 156 157 void negate() { Coeff.negate(); } 158 159 /// Drill down the U-D chain one step to find the definition of V, and 160 /// try to break the definition into one or two addends. 161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); 162 163 /// Similar to FAddend::drillDownOneStep() except that the value being 164 /// splitted is the addend itself. 165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; 166 167 private: 168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } 169 170 // This addend has the value of "Coeff * Val". 171 Value *Val = nullptr; 172 FAddendCoef Coeff; 173 }; 174 175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along 176 /// with its neighboring at most two instructions. 177 /// 178 class FAddCombine { 179 public: 180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} 181 182 Value *simplify(Instruction *FAdd); 183 184 private: 185 using AddendVect = SmallVector<const FAddend *, 4>; 186 187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); 188 189 /// Convert given addend to a Value 190 Value *createAddendVal(const FAddend &A, bool& NeedNeg); 191 192 /// Return the number of instructions needed to emit the N-ary addition. 193 unsigned calcInstrNumber(const AddendVect& Vect); 194 195 Value *createFSub(Value *Opnd0, Value *Opnd1); 196 Value *createFAdd(Value *Opnd0, Value *Opnd1); 197 Value *createFMul(Value *Opnd0, Value *Opnd1); 198 Value *createFNeg(Value *V); 199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); 200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false); 201 202 // Debugging stuff are clustered here. 203 #ifndef NDEBUG 204 unsigned CreateInstrNum; 205 void initCreateInstNum() { CreateInstrNum = 0; } 206 void incCreateInstNum() { CreateInstrNum++; } 207 #else 208 void initCreateInstNum() {} 209 void incCreateInstNum() {} 210 #endif 211 212 InstCombiner::BuilderTy &Builder; 213 Instruction *Instr = nullptr; 214 }; 215 216 } // end anonymous namespace 217 218 //===----------------------------------------------------------------------===// 219 // 220 // Implementation of 221 // {FAddendCoef, FAddend, FAddition, FAddCombine}. 222 // 223 //===----------------------------------------------------------------------===// 224 FAddendCoef::~FAddendCoef() { 225 if (BufHasFpVal) 226 getFpValPtr()->~APFloat(); 227 } 228 229 void FAddendCoef::set(const APFloat& C) { 230 APFloat *P = getFpValPtr(); 231 232 if (isInt()) { 233 // As the buffer is meanless byte stream, we cannot call 234 // APFloat::operator=(). 235 new(P) APFloat(C); 236 } else 237 *P = C; 238 239 IsFp = BufHasFpVal = true; 240 } 241 242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) { 243 if (!isInt()) 244 return; 245 246 APFloat *P = getFpValPtr(); 247 if (IntVal > 0) 248 new(P) APFloat(Sem, IntVal); 249 else { 250 new(P) APFloat(Sem, 0 - IntVal); 251 P->changeSign(); 252 } 253 IsFp = BufHasFpVal = true; 254 } 255 256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { 257 if (Val >= 0) 258 return APFloat(Sem, Val); 259 260 APFloat T(Sem, 0 - Val); 261 T.changeSign(); 262 263 return T; 264 } 265 266 void FAddendCoef::operator=(const FAddendCoef &That) { 267 if (That.isInt()) 268 set(That.IntVal); 269 else 270 set(That.getFpVal()); 271 } 272 273 void FAddendCoef::operator+=(const FAddendCoef &That) { 274 RoundingMode RndMode = RoundingMode::NearestTiesToEven; 275 if (isInt() == That.isInt()) { 276 if (isInt()) 277 IntVal += That.IntVal; 278 else 279 getFpVal().add(That.getFpVal(), RndMode); 280 return; 281 } 282 283 if (isInt()) { 284 const APFloat &T = That.getFpVal(); 285 convertToFpType(T.getSemantics()); 286 getFpVal().add(T, RndMode); 287 return; 288 } 289 290 APFloat &T = getFpVal(); 291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); 292 } 293 294 void FAddendCoef::operator*=(const FAddendCoef &That) { 295 if (That.isOne()) 296 return; 297 298 if (That.isMinusOne()) { 299 negate(); 300 return; 301 } 302 303 if (isInt() && That.isInt()) { 304 int Res = IntVal * (int)That.IntVal; 305 assert(!insaneIntVal(Res) && "Insane int value"); 306 IntVal = Res; 307 return; 308 } 309 310 const fltSemantics &Semantic = 311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); 312 313 if (isInt()) 314 convertToFpType(Semantic); 315 APFloat &F0 = getFpVal(); 316 317 if (That.isInt()) 318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), 319 APFloat::rmNearestTiesToEven); 320 else 321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); 322 } 323 324 void FAddendCoef::negate() { 325 if (isInt()) 326 IntVal = 0 - IntVal; 327 else 328 getFpVal().changeSign(); 329 } 330 331 Value *FAddendCoef::getValue(Type *Ty) const { 332 return isInt() ? 333 ConstantFP::get(Ty, float(IntVal)) : 334 ConstantFP::get(Ty->getContext(), getFpVal()); 335 } 336 337 // The definition of <Val> Addends 338 // ========================================= 339 // A + B <1, A>, <1,B> 340 // A - B <1, A>, <1,B> 341 // 0 - B <-1, B> 342 // C * A, <C, A> 343 // A + C <1, A> <C, NULL> 344 // 0 +/- 0 <0, NULL> (corner case) 345 // 346 // Legend: A and B are not constant, C is constant 347 unsigned FAddend::drillValueDownOneStep 348 (Value *Val, FAddend &Addend0, FAddend &Addend1) { 349 Instruction *I = nullptr; 350 if (!Val || !(I = dyn_cast<Instruction>(Val))) 351 return 0; 352 353 unsigned Opcode = I->getOpcode(); 354 355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { 356 ConstantFP *C0, *C1; 357 Value *Opnd0 = I->getOperand(0); 358 Value *Opnd1 = I->getOperand(1); 359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) 360 Opnd0 = nullptr; 361 362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) 363 Opnd1 = nullptr; 364 365 if (Opnd0) { 366 if (!C0) 367 Addend0.set(1, Opnd0); 368 else 369 Addend0.set(C0, nullptr); 370 } 371 372 if (Opnd1) { 373 FAddend &Addend = Opnd0 ? Addend1 : Addend0; 374 if (!C1) 375 Addend.set(1, Opnd1); 376 else 377 Addend.set(C1, nullptr); 378 if (Opcode == Instruction::FSub) 379 Addend.negate(); 380 } 381 382 if (Opnd0 || Opnd1) 383 return Opnd0 && Opnd1 ? 2 : 1; 384 385 // Both operands are zero. Weird! 386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); 387 return 1; 388 } 389 390 if (I->getOpcode() == Instruction::FMul) { 391 Value *V0 = I->getOperand(0); 392 Value *V1 = I->getOperand(1); 393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { 394 Addend0.set(C, V1); 395 return 1; 396 } 397 398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { 399 Addend0.set(C, V0); 400 return 1; 401 } 402 } 403 404 return 0; 405 } 406 407 // Try to break *this* addend into two addends. e.g. Suppose this addend is 408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, 409 // i.e. <2.3, X> and <2.3, Y>. 410 unsigned FAddend::drillAddendDownOneStep 411 (FAddend &Addend0, FAddend &Addend1) const { 412 if (isConstant()) 413 return 0; 414 415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); 416 if (!BreakNum || Coeff.isOne()) 417 return BreakNum; 418 419 Addend0.Scale(Coeff); 420 421 if (BreakNum == 2) 422 Addend1.Scale(Coeff); 423 424 return BreakNum; 425 } 426 427 Value *FAddCombine::simplify(Instruction *I) { 428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && 429 "Expected 'reassoc'+'nsz' instruction"); 430 431 // Currently we are not able to handle vector type. 432 if (I->getType()->isVectorTy()) 433 return nullptr; 434 435 assert((I->getOpcode() == Instruction::FAdd || 436 I->getOpcode() == Instruction::FSub) && "Expect add/sub"); 437 438 // Save the instruction before calling other member-functions. 439 Instr = I; 440 441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; 442 443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); 444 445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. 446 unsigned Opnd0_ExpNum = 0; 447 unsigned Opnd1_ExpNum = 0; 448 449 if (!Opnd0.isConstant()) 450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); 451 452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. 453 if (OpndNum == 2 && !Opnd1.isConstant()) 454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); 455 456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 457 if (Opnd0_ExpNum && Opnd1_ExpNum) { 458 AddendVect AllOpnds; 459 AllOpnds.push_back(&Opnd0_0); 460 AllOpnds.push_back(&Opnd1_0); 461 if (Opnd0_ExpNum == 2) 462 AllOpnds.push_back(&Opnd0_1); 463 if (Opnd1_ExpNum == 2) 464 AllOpnds.push_back(&Opnd1_1); 465 466 // Compute instruction quota. We should save at least one instruction. 467 unsigned InstQuota = 0; 468 469 Value *V0 = I->getOperand(0); 470 Value *V1 = I->getOperand(1); 471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && 472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; 473 474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) 475 return R; 476 } 477 478 if (OpndNum != 2) { 479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be 480 // splitted into two addends, say "V = X - Y", the instruction would have 481 // been optimized into "I = Y - X" in the previous steps. 482 // 483 const FAddendCoef &CE = Opnd0.getCoef(); 484 return CE.isOne() ? Opnd0.getSymVal() : nullptr; 485 } 486 487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] 488 if (Opnd1_ExpNum) { 489 AddendVect AllOpnds; 490 AllOpnds.push_back(&Opnd0); 491 AllOpnds.push_back(&Opnd1_0); 492 if (Opnd1_ExpNum == 2) 493 AllOpnds.push_back(&Opnd1_1); 494 495 if (Value *R = simplifyFAdd(AllOpnds, 1)) 496 return R; 497 } 498 499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] 500 if (Opnd0_ExpNum) { 501 AddendVect AllOpnds; 502 AllOpnds.push_back(&Opnd1); 503 AllOpnds.push_back(&Opnd0_0); 504 if (Opnd0_ExpNum == 2) 505 AllOpnds.push_back(&Opnd0_1); 506 507 if (Value *R = simplifyFAdd(AllOpnds, 1)) 508 return R; 509 } 510 511 return nullptr; 512 } 513 514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { 515 unsigned AddendNum = Addends.size(); 516 assert(AddendNum <= 4 && "Too many addends"); 517 518 // For saving intermediate results; 519 unsigned NextTmpIdx = 0; 520 FAddend TmpResult[3]; 521 522 // Points to the constant addend of the resulting simplified expression. 523 // If the resulting expr has constant-addend, this constant-addend is 524 // desirable to reside at the top of the resulting expression tree. Placing 525 // constant close to supper-expr(s) will potentially reveal some optimization 526 // opportunities in super-expr(s). 527 const FAddend *ConstAdd = nullptr; 528 529 // Simplified addends are placed <SimpVect>. 530 AddendVect SimpVect; 531 532 // The outer loop works on one symbolic-value at a time. Suppose the input 533 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... 534 // The symbolic-values will be processed in this order: x, y, z. 535 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { 536 537 const FAddend *ThisAddend = Addends[SymIdx]; 538 if (!ThisAddend) { 539 // This addend was processed before. 540 continue; 541 } 542 543 Value *Val = ThisAddend->getSymVal(); 544 unsigned StartIdx = SimpVect.size(); 545 SimpVect.push_back(ThisAddend); 546 547 // The inner loop collects addends sharing same symbolic-value, and these 548 // addends will be later on folded into a single addend. Following above 549 // example, if the symbolic value "y" is being processed, the inner loop 550 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will 551 // be later on folded into "<b1+b2, y>". 552 for (unsigned SameSymIdx = SymIdx + 1; 553 SameSymIdx < AddendNum; SameSymIdx++) { 554 const FAddend *T = Addends[SameSymIdx]; 555 if (T && T->getSymVal() == Val) { 556 // Set null such that next iteration of the outer loop will not process 557 // this addend again. 558 Addends[SameSymIdx] = nullptr; 559 SimpVect.push_back(T); 560 } 561 } 562 563 // If multiple addends share same symbolic value, fold them together. 564 if (StartIdx + 1 != SimpVect.size()) { 565 FAddend &R = TmpResult[NextTmpIdx ++]; 566 R = *SimpVect[StartIdx]; 567 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) 568 R += *SimpVect[Idx]; 569 570 // Pop all addends being folded and push the resulting folded addend. 571 SimpVect.resize(StartIdx); 572 if (Val) { 573 if (!R.isZero()) { 574 SimpVect.push_back(&R); 575 } 576 } else { 577 // Don't push constant addend at this time. It will be the last element 578 // of <SimpVect>. 579 ConstAdd = &R; 580 } 581 } 582 } 583 584 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && 585 "out-of-bound access"); 586 587 if (ConstAdd) 588 SimpVect.push_back(ConstAdd); 589 590 Value *Result; 591 if (!SimpVect.empty()) 592 Result = createNaryFAdd(SimpVect, InstrQuota); 593 else { 594 // The addition is folded to 0.0. 595 Result = ConstantFP::get(Instr->getType(), 0.0); 596 } 597 598 return Result; 599 } 600 601 Value *FAddCombine::createNaryFAdd 602 (const AddendVect &Opnds, unsigned InstrQuota) { 603 assert(!Opnds.empty() && "Expect at least one addend"); 604 605 // Step 1: Check if the # of instructions needed exceeds the quota. 606 607 unsigned InstrNeeded = calcInstrNumber(Opnds); 608 if (InstrNeeded > InstrQuota) 609 return nullptr; 610 611 initCreateInstNum(); 612 613 // step 2: Emit the N-ary addition. 614 // Note that at most three instructions are involved in Fadd-InstCombine: the 615 // addition in question, and at most two neighboring instructions. 616 // The resulting optimized addition should have at least one less instruction 617 // than the original addition expression tree. This implies that the resulting 618 // N-ary addition has at most two instructions, and we don't need to worry 619 // about tree-height when constructing the N-ary addition. 620 621 Value *LastVal = nullptr; 622 bool LastValNeedNeg = false; 623 624 // Iterate the addends, creating fadd/fsub using adjacent two addends. 625 for (const FAddend *Opnd : Opnds) { 626 bool NeedNeg; 627 Value *V = createAddendVal(*Opnd, NeedNeg); 628 if (!LastVal) { 629 LastVal = V; 630 LastValNeedNeg = NeedNeg; 631 continue; 632 } 633 634 if (LastValNeedNeg == NeedNeg) { 635 LastVal = createFAdd(LastVal, V); 636 continue; 637 } 638 639 if (LastValNeedNeg) 640 LastVal = createFSub(V, LastVal); 641 else 642 LastVal = createFSub(LastVal, V); 643 644 LastValNeedNeg = false; 645 } 646 647 if (LastValNeedNeg) { 648 LastVal = createFNeg(LastVal); 649 } 650 651 #ifndef NDEBUG 652 assert(CreateInstrNum == InstrNeeded && 653 "Inconsistent in instruction numbers"); 654 #endif 655 656 return LastVal; 657 } 658 659 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { 660 Value *V = Builder.CreateFSub(Opnd0, Opnd1); 661 if (Instruction *I = dyn_cast<Instruction>(V)) 662 createInstPostProc(I); 663 return V; 664 } 665 666 Value *FAddCombine::createFNeg(Value *V) { 667 Value *NewV = Builder.CreateFNeg(V); 668 if (Instruction *I = dyn_cast<Instruction>(NewV)) 669 createInstPostProc(I, true); // fneg's don't receive instruction numbers. 670 return NewV; 671 } 672 673 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { 674 Value *V = Builder.CreateFAdd(Opnd0, Opnd1); 675 if (Instruction *I = dyn_cast<Instruction>(V)) 676 createInstPostProc(I); 677 return V; 678 } 679 680 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { 681 Value *V = Builder.CreateFMul(Opnd0, Opnd1); 682 if (Instruction *I = dyn_cast<Instruction>(V)) 683 createInstPostProc(I); 684 return V; 685 } 686 687 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { 688 NewInstr->setDebugLoc(Instr->getDebugLoc()); 689 690 // Keep track of the number of instruction created. 691 if (!NoNumber) 692 incCreateInstNum(); 693 694 // Propagate fast-math flags 695 NewInstr->setFastMathFlags(Instr->getFastMathFlags()); 696 } 697 698 // Return the number of instruction needed to emit the N-ary addition. 699 // NOTE: Keep this function in sync with createAddendVal(). 700 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { 701 unsigned OpndNum = Opnds.size(); 702 unsigned InstrNeeded = OpndNum - 1; 703 704 // The number of addends in the form of "(-1)*x". 705 unsigned NegOpndNum = 0; 706 707 // Adjust the number of instructions needed to emit the N-ary add. 708 for (const FAddend *Opnd : Opnds) { 709 if (Opnd->isConstant()) 710 continue; 711 712 // The constant check above is really for a few special constant 713 // coefficients. 714 if (isa<UndefValue>(Opnd->getSymVal())) 715 continue; 716 717 const FAddendCoef &CE = Opnd->getCoef(); 718 if (CE.isMinusOne() || CE.isMinusTwo()) 719 NegOpndNum++; 720 721 // Let the addend be "c * x". If "c == +/-1", the value of the addend 722 // is immediately available; otherwise, it needs exactly one instruction 723 // to evaluate the value. 724 if (!CE.isMinusOne() && !CE.isOne()) 725 InstrNeeded++; 726 } 727 return InstrNeeded; 728 } 729 730 // Input Addend Value NeedNeg(output) 731 // ================================================================ 732 // Constant C C false 733 // <+/-1, V> V coefficient is -1 734 // <2/-2, V> "fadd V, V" coefficient is -2 735 // <C, V> "fmul V, C" false 736 // 737 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. 738 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { 739 const FAddendCoef &Coeff = Opnd.getCoef(); 740 741 if (Opnd.isConstant()) { 742 NeedNeg = false; 743 return Coeff.getValue(Instr->getType()); 744 } 745 746 Value *OpndVal = Opnd.getSymVal(); 747 748 if (Coeff.isMinusOne() || Coeff.isOne()) { 749 NeedNeg = Coeff.isMinusOne(); 750 return OpndVal; 751 } 752 753 if (Coeff.isTwo() || Coeff.isMinusTwo()) { 754 NeedNeg = Coeff.isMinusTwo(); 755 return createFAdd(OpndVal, OpndVal); 756 } 757 758 NeedNeg = false; 759 return createFMul(OpndVal, Coeff.getValue(Instr->getType())); 760 } 761 762 // Checks if any operand is negative and we can convert add to sub. 763 // This function checks for following negative patterns 764 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) 765 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) 766 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even 767 static Value *checkForNegativeOperand(BinaryOperator &I, 768 InstCombiner::BuilderTy &Builder) { 769 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 770 771 // This function creates 2 instructions to replace ADD, we need at least one 772 // of LHS or RHS to have one use to ensure benefit in transform. 773 if (!LHS->hasOneUse() && !RHS->hasOneUse()) 774 return nullptr; 775 776 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 777 const APInt *C1 = nullptr, *C2 = nullptr; 778 779 // if ONE is on other side, swap 780 if (match(RHS, m_Add(m_Value(X), m_One()))) 781 std::swap(LHS, RHS); 782 783 if (match(LHS, m_Add(m_Value(X), m_One()))) { 784 // if XOR on other side, swap 785 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 786 std::swap(X, RHS); 787 788 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { 789 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) 790 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) 791 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { 792 Value *NewAnd = Builder.CreateAnd(Z, *C1); 793 return Builder.CreateSub(RHS, NewAnd, "sub"); 794 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { 795 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) 796 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) 797 Value *NewOr = Builder.CreateOr(Z, ~(*C1)); 798 return Builder.CreateSub(RHS, NewOr, "sub"); 799 } 800 } 801 } 802 803 // Restore LHS and RHS 804 LHS = I.getOperand(0); 805 RHS = I.getOperand(1); 806 807 // if XOR is on other side, swap 808 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) 809 std::swap(LHS, RHS); 810 811 // C2 is ODD 812 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) 813 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) 814 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) 815 if (C1->countTrailingZeros() == 0) 816 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { 817 Value *NewOr = Builder.CreateOr(Z, ~(*C2)); 818 return Builder.CreateSub(RHS, NewOr, "sub"); 819 } 820 return nullptr; 821 } 822 823 /// Wrapping flags may allow combining constants separated by an extend. 824 static Instruction *foldNoWrapAdd(BinaryOperator &Add, 825 InstCombiner::BuilderTy &Builder) { 826 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 827 Type *Ty = Add.getType(); 828 Constant *Op1C; 829 if (!match(Op1, m_Constant(Op1C))) 830 return nullptr; 831 832 // Try this match first because it results in an add in the narrow type. 833 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) 834 Value *X; 835 const APInt *C1, *C2; 836 if (match(Op1, m_APInt(C1)) && 837 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && 838 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { 839 Constant *NewC = 840 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); 841 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); 842 } 843 844 // More general combining of constants in the wide type. 845 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) 846 Constant *NarrowC; 847 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { 848 Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty); 849 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 850 Value *WideX = Builder.CreateSExt(X, Ty); 851 return BinaryOperator::CreateAdd(WideX, NewC); 852 } 853 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) 854 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { 855 Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty); 856 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); 857 Value *WideX = Builder.CreateZExt(X, Ty); 858 return BinaryOperator::CreateAdd(WideX, NewC); 859 } 860 861 return nullptr; 862 } 863 864 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) { 865 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); 866 Constant *Op1C; 867 if (!match(Op1, m_Constant(Op1C))) 868 return nullptr; 869 870 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) 871 return NV; 872 873 Value *X; 874 Constant *Op00C; 875 876 // add (sub C1, X), C2 --> sub (add C1, C2), X 877 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) 878 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); 879 880 Value *Y; 881 882 // add (sub X, Y), -1 --> add (not Y), X 883 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && 884 match(Op1, m_AllOnes())) 885 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); 886 887 // zext(bool) + C -> bool ? C + 1 : C 888 if (match(Op0, m_ZExt(m_Value(X))) && 889 X->getType()->getScalarSizeInBits() == 1) 890 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1); 891 // sext(bool) + C -> bool ? C - 1 : C 892 if (match(Op0, m_SExt(m_Value(X))) && 893 X->getType()->getScalarSizeInBits() == 1) 894 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1); 895 896 // ~X + C --> (C-1) - X 897 if (match(Op0, m_Not(m_Value(X)))) 898 return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X); 899 900 const APInt *C; 901 if (!match(Op1, m_APInt(C))) 902 return nullptr; 903 904 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) 905 const APInt *C2; 906 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) 907 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); 908 909 if (C->isSignMask()) { 910 // If wrapping is not allowed, then the addition must set the sign bit: 911 // X + (signmask) --> X | signmask 912 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) 913 return BinaryOperator::CreateOr(Op0, Op1); 914 915 // If wrapping is allowed, then the addition flips the sign bit of LHS: 916 // X + (signmask) --> X ^ signmask 917 return BinaryOperator::CreateXor(Op0, Op1); 918 } 919 920 // Is this add the last step in a convoluted sext? 921 // add(zext(xor i16 X, -32768), -32768) --> sext X 922 Type *Ty = Add.getType(); 923 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && 924 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) 925 return CastInst::Create(Instruction::SExt, X, Ty); 926 927 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) { 928 // (X ^ signmask) + C --> (X + (signmask ^ C)) 929 if (C2->isSignMask()) 930 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C)); 931 932 // If X has no high-bits set above an xor mask: 933 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X 934 if (C2->isMask()) { 935 KnownBits LHSKnown = computeKnownBits(X, 0, &Add); 936 if ((*C2 | LHSKnown.Zero).isAllOnesValue()) 937 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X); 938 } 939 940 // Look for a math+logic pattern that corresponds to sext-in-register of a 941 // value with cleared high bits. Convert that into a pair of shifts: 942 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC 943 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC 944 if (Op0->hasOneUse() && *C2 == -(*C)) { 945 unsigned BitWidth = Ty->getScalarSizeInBits(); 946 unsigned ShAmt = 0; 947 if (C->isPowerOf2()) 948 ShAmt = BitWidth - C->logBase2() - 1; 949 else if (C2->isPowerOf2()) 950 ShAmt = BitWidth - C2->logBase2() - 1; 951 if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt), 952 0, &Add)) { 953 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt); 954 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext"); 955 return BinaryOperator::CreateAShr(NewShl, ShAmtC); 956 } 957 } 958 } 959 960 if (C->isOneValue() && Op0->hasOneUse()) { 961 // add (sext i1 X), 1 --> zext (not X) 962 // TODO: The smallest IR representation is (select X, 0, 1), and that would 963 // not require the one-use check. But we need to remove a transform in 964 // visitSelect and make sure that IR value tracking for select is equal or 965 // better than for these ops. 966 if (match(Op0, m_SExt(m_Value(X))) && 967 X->getType()->getScalarSizeInBits() == 1) 968 return new ZExtInst(Builder.CreateNot(X), Ty); 969 970 // Shifts and add used to flip and mask off the low bit: 971 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 972 const APInt *C3; 973 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && 974 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { 975 Value *NotX = Builder.CreateNot(X); 976 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); 977 } 978 } 979 980 // If all bits affected by the add are included in a high-bit-mask, do the 981 // add before the mask op: 982 // (X & 0xFF00) + xx00 --> (X + xx00) & 0xFF00 983 if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C2)))) && 984 C2->isNegative() && C2->isShiftedMask() && *C == (*C & *C2)) { 985 Value *NewAdd = Builder.CreateAdd(X, ConstantInt::get(Ty, *C)); 986 return BinaryOperator::CreateAnd(NewAdd, ConstantInt::get(Ty, *C2)); 987 } 988 989 return nullptr; 990 } 991 992 // Matches multiplication expression Op * C where C is a constant. Returns the 993 // constant value in C and the other operand in Op. Returns true if such a 994 // match is found. 995 static bool MatchMul(Value *E, Value *&Op, APInt &C) { 996 const APInt *AI; 997 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { 998 C = *AI; 999 return true; 1000 } 1001 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { 1002 C = APInt(AI->getBitWidth(), 1); 1003 C <<= *AI; 1004 return true; 1005 } 1006 return false; 1007 } 1008 1009 // Matches remainder expression Op % C where C is a constant. Returns the 1010 // constant value in C and the other operand in Op. Returns the signedness of 1011 // the remainder operation in IsSigned. Returns true if such a match is 1012 // found. 1013 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { 1014 const APInt *AI; 1015 IsSigned = false; 1016 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { 1017 IsSigned = true; 1018 C = *AI; 1019 return true; 1020 } 1021 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { 1022 C = *AI; 1023 return true; 1024 } 1025 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { 1026 C = *AI + 1; 1027 return true; 1028 } 1029 return false; 1030 } 1031 1032 // Matches division expression Op / C with the given signedness as indicated 1033 // by IsSigned, where C is a constant. Returns the constant value in C and the 1034 // other operand in Op. Returns true if such a match is found. 1035 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { 1036 const APInt *AI; 1037 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { 1038 C = *AI; 1039 return true; 1040 } 1041 if (!IsSigned) { 1042 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { 1043 C = *AI; 1044 return true; 1045 } 1046 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { 1047 C = APInt(AI->getBitWidth(), 1); 1048 C <<= *AI; 1049 return true; 1050 } 1051 } 1052 return false; 1053 } 1054 1055 // Returns whether C0 * C1 with the given signedness overflows. 1056 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { 1057 bool overflow; 1058 if (IsSigned) 1059 (void)C0.smul_ov(C1, overflow); 1060 else 1061 (void)C0.umul_ov(C1, overflow); 1062 return overflow; 1063 } 1064 1065 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) 1066 // does not overflow. 1067 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) { 1068 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1069 Value *X, *MulOpV; 1070 APInt C0, MulOpC; 1071 bool IsSigned; 1072 // Match I = X % C0 + MulOpV * C0 1073 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || 1074 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && 1075 C0 == MulOpC) { 1076 Value *RemOpV; 1077 APInt C1; 1078 bool Rem2IsSigned; 1079 // Match MulOpC = RemOpV % C1 1080 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && 1081 IsSigned == Rem2IsSigned) { 1082 Value *DivOpV; 1083 APInt DivOpC; 1084 // Match RemOpV = X / C0 1085 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && 1086 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { 1087 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1); 1088 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") 1089 : Builder.CreateURem(X, NewDivisor, "urem"); 1090 } 1091 } 1092 } 1093 1094 return nullptr; 1095 } 1096 1097 /// Fold 1098 /// (1 << NBits) - 1 1099 /// Into: 1100 /// ~(-(1 << NBits)) 1101 /// Because a 'not' is better for bit-tracking analysis and other transforms 1102 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. 1103 static Instruction *canonicalizeLowbitMask(BinaryOperator &I, 1104 InstCombiner::BuilderTy &Builder) { 1105 Value *NBits; 1106 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) 1107 return nullptr; 1108 1109 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); 1110 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); 1111 // Be wary of constant folding. 1112 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { 1113 // Always NSW. But NUW propagates from `add`. 1114 BOp->setHasNoSignedWrap(); 1115 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1116 } 1117 1118 return BinaryOperator::CreateNot(NotMask, I.getName()); 1119 } 1120 1121 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { 1122 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); 1123 Type *Ty = I.getType(); 1124 auto getUAddSat = [&]() { 1125 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); 1126 }; 1127 1128 // add (umin X, ~Y), Y --> uaddsat X, Y 1129 Value *X, *Y; 1130 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), 1131 m_Deferred(Y)))) 1132 return CallInst::Create(getUAddSat(), { X, Y }); 1133 1134 // add (umin X, ~C), C --> uaddsat X, C 1135 const APInt *C, *NotC; 1136 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && 1137 *C == ~*NotC) 1138 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); 1139 1140 return nullptr; 1141 } 1142 1143 Instruction *InstCombinerImpl:: 1144 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( 1145 BinaryOperator &I) { 1146 assert((I.getOpcode() == Instruction::Add || 1147 I.getOpcode() == Instruction::Or || 1148 I.getOpcode() == Instruction::Sub) && 1149 "Expecting add/or/sub instruction"); 1150 1151 // We have a subtraction/addition between a (potentially truncated) *logical* 1152 // right-shift of X and a "select". 1153 Value *X, *Select; 1154 Instruction *LowBitsToSkip, *Extract; 1155 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( 1156 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), 1157 m_Instruction(Extract))), 1158 m_Value(Select)))) 1159 return nullptr; 1160 1161 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. 1162 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) 1163 return nullptr; 1164 1165 Type *XTy = X->getType(); 1166 bool HadTrunc = I.getType() != XTy; 1167 1168 // If there was a truncation of extracted value, then we'll need to produce 1169 // one extra instruction, so we need to ensure one instruction will go away. 1170 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1171 return nullptr; 1172 1173 // Extraction should extract high NBits bits, with shift amount calculated as: 1174 // low bits to skip = shift bitwidth - high bits to extract 1175 // The shift amount itself may be extended, and we need to look past zero-ext 1176 // when matching NBits, that will matter for matching later. 1177 Constant *C; 1178 Value *NBits; 1179 if (!match( 1180 LowBitsToSkip, 1181 m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || 1182 !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1183 APInt(C->getType()->getScalarSizeInBits(), 1184 X->getType()->getScalarSizeInBits())))) 1185 return nullptr; 1186 1187 // Sign-extending value can be zero-extended if we `sub`tract it, 1188 // or sign-extended otherwise. 1189 auto SkipExtInMagic = [&I](Value *&V) { 1190 if (I.getOpcode() == Instruction::Sub) 1191 match(V, m_ZExtOrSelf(m_Value(V))); 1192 else 1193 match(V, m_SExtOrSelf(m_Value(V))); 1194 }; 1195 1196 // Now, finally validate the sign-extending magic. 1197 // `select` itself may be appropriately extended, look past that. 1198 SkipExtInMagic(Select); 1199 1200 ICmpInst::Predicate Pred; 1201 const APInt *Thr; 1202 Value *SignExtendingValue, *Zero; 1203 bool ShouldSignext; 1204 // It must be a select between two values we will later establish to be a 1205 // sign-extending value and a zero constant. The condition guarding the 1206 // sign-extension must be based on a sign bit of the same X we had in `lshr`. 1207 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), 1208 m_Value(SignExtendingValue), m_Value(Zero))) || 1209 !isSignBitCheck(Pred, *Thr, ShouldSignext)) 1210 return nullptr; 1211 1212 // icmp-select pair is commutative. 1213 if (!ShouldSignext) 1214 std::swap(SignExtendingValue, Zero); 1215 1216 // If we should not perform sign-extension then we must add/or/subtract zero. 1217 if (!match(Zero, m_Zero())) 1218 return nullptr; 1219 // Otherwise, it should be some constant, left-shifted by the same NBits we 1220 // had in `lshr`. Said left-shift can also be appropriately extended. 1221 // Again, we must look past zero-ext when looking for NBits. 1222 SkipExtInMagic(SignExtendingValue); 1223 Constant *SignExtendingValueBaseConstant; 1224 if (!match(SignExtendingValue, 1225 m_Shl(m_Constant(SignExtendingValueBaseConstant), 1226 m_ZExtOrSelf(m_Specific(NBits))))) 1227 return nullptr; 1228 // If we `sub`, then the constant should be one, else it should be all-ones. 1229 if (I.getOpcode() == Instruction::Sub 1230 ? !match(SignExtendingValueBaseConstant, m_One()) 1231 : !match(SignExtendingValueBaseConstant, m_AllOnes())) 1232 return nullptr; 1233 1234 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, 1235 Extract->getName() + ".sext"); 1236 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. 1237 if (!HadTrunc) 1238 return NewAShr; 1239 1240 Builder.Insert(NewAShr); 1241 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); 1242 } 1243 1244 /// This is a specialization of a more general transform from 1245 /// SimplifyUsingDistributiveLaws. If that code can be made to work optimally 1246 /// for multi-use cases or propagating nsw/nuw, then we would not need this. 1247 static Instruction *factorizeMathWithShlOps(BinaryOperator &I, 1248 InstCombiner::BuilderTy &Builder) { 1249 // TODO: Also handle mul by doubling the shift amount? 1250 assert((I.getOpcode() == Instruction::Add || 1251 I.getOpcode() == Instruction::Sub) && 1252 "Expected add/sub"); 1253 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 1254 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 1255 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse())) 1256 return nullptr; 1257 1258 Value *X, *Y, *ShAmt; 1259 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) || 1260 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt)))) 1261 return nullptr; 1262 1263 // No-wrap propagates only when all ops have no-wrap. 1264 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() && 1265 Op1->hasNoSignedWrap(); 1266 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() && 1267 Op1->hasNoUnsignedWrap(); 1268 1269 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt 1270 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y); 1271 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) { 1272 NewI->setHasNoSignedWrap(HasNSW); 1273 NewI->setHasNoUnsignedWrap(HasNUW); 1274 } 1275 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt); 1276 NewShl->setHasNoSignedWrap(HasNSW); 1277 NewShl->setHasNoUnsignedWrap(HasNUW); 1278 return NewShl; 1279 } 1280 1281 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) { 1282 if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1), 1283 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1284 SQ.getWithInstruction(&I))) 1285 return replaceInstUsesWith(I, V); 1286 1287 if (SimplifyAssociativeOrCommutative(I)) 1288 return &I; 1289 1290 if (Instruction *X = foldVectorBinop(I)) 1291 return X; 1292 1293 // (A*B)+(A*C) -> A*(B+C) etc 1294 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1295 return replaceInstUsesWith(I, V); 1296 1297 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1298 return R; 1299 1300 if (Instruction *X = foldAddWithConstant(I)) 1301 return X; 1302 1303 if (Instruction *X = foldNoWrapAdd(I, Builder)) 1304 return X; 1305 1306 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1307 Type *Ty = I.getType(); 1308 if (Ty->isIntOrIntVectorTy(1)) 1309 return BinaryOperator::CreateXor(LHS, RHS); 1310 1311 // X + X --> X << 1 1312 if (LHS == RHS) { 1313 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); 1314 Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1315 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 1316 return Shl; 1317 } 1318 1319 Value *A, *B; 1320 if (match(LHS, m_Neg(m_Value(A)))) { 1321 // -A + -B --> -(A + B) 1322 if (match(RHS, m_Neg(m_Value(B)))) 1323 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); 1324 1325 // -A + B --> B - A 1326 return BinaryOperator::CreateSub(RHS, A); 1327 } 1328 1329 // A + -B --> A - B 1330 if (match(RHS, m_Neg(m_Value(B)))) 1331 return BinaryOperator::CreateSub(LHS, B); 1332 1333 if (Value *V = checkForNegativeOperand(I, Builder)) 1334 return replaceInstUsesWith(I, V); 1335 1336 // (A + 1) + ~B --> A - B 1337 // ~B + (A + 1) --> A - B 1338 // (~B + A) + 1 --> A - B 1339 // (A + ~B) + 1 --> A - B 1340 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || 1341 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) 1342 return BinaryOperator::CreateSub(A, B); 1343 1344 // (A + RHS) + RHS --> A + (RHS << 1) 1345 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS))))) 1346 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add")); 1347 1348 // LHS + (A + LHS) --> A + (LHS << 1) 1349 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS))))) 1350 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add")); 1351 1352 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) 1353 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); 1354 1355 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2 1356 const APInt *C1, *C2; 1357 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) { 1358 APInt one(C2->getBitWidth(), 1); 1359 APInt minusC1 = -(*C1); 1360 if (minusC1 == (one << *C2)) { 1361 Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1); 1362 return BinaryOperator::CreateSRem(RHS, NewRHS); 1363 } 1364 } 1365 1366 // A+B --> A|B iff A and B have no bits set in common. 1367 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) 1368 return BinaryOperator::CreateOr(LHS, RHS); 1369 1370 // add (select X 0 (sub n A)) A --> select X A n 1371 { 1372 SelectInst *SI = dyn_cast<SelectInst>(LHS); 1373 Value *A = RHS; 1374 if (!SI) { 1375 SI = dyn_cast<SelectInst>(RHS); 1376 A = LHS; 1377 } 1378 if (SI && SI->hasOneUse()) { 1379 Value *TV = SI->getTrueValue(); 1380 Value *FV = SI->getFalseValue(); 1381 Value *N; 1382 1383 // Can we fold the add into the argument of the select? 1384 // We check both true and false select arguments for a matching subtract. 1385 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 1386 // Fold the add into the true select value. 1387 return SelectInst::Create(SI->getCondition(), N, A); 1388 1389 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 1390 // Fold the add into the false select value. 1391 return SelectInst::Create(SI->getCondition(), A, N); 1392 } 1393 } 1394 1395 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1396 return Ext; 1397 1398 // (add (xor A, B) (and A, B)) --> (or A, B) 1399 // (add (and A, B) (xor A, B)) --> (or A, B) 1400 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), 1401 m_c_And(m_Deferred(A), m_Deferred(B))))) 1402 return BinaryOperator::CreateOr(A, B); 1403 1404 // (add (or A, B) (and A, B)) --> (add A, B) 1405 // (add (and A, B) (or A, B)) --> (add A, B) 1406 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), 1407 m_c_And(m_Deferred(A), m_Deferred(B))))) { 1408 // Replacing operands in-place to preserve nuw/nsw flags. 1409 replaceOperand(I, 0, A); 1410 replaceOperand(I, 1, B); 1411 return &I; 1412 } 1413 1414 // TODO(jingyue): Consider willNotOverflowSignedAdd and 1415 // willNotOverflowUnsignedAdd to reduce the number of invocations of 1416 // computeKnownBits. 1417 bool Changed = false; 1418 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { 1419 Changed = true; 1420 I.setHasNoSignedWrap(true); 1421 } 1422 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { 1423 Changed = true; 1424 I.setHasNoUnsignedWrap(true); 1425 } 1426 1427 if (Instruction *V = canonicalizeLowbitMask(I, Builder)) 1428 return V; 1429 1430 if (Instruction *V = 1431 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 1432 return V; 1433 1434 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) 1435 return SatAdd; 1436 1437 // usub.sat(A, B) + B => umax(A, B) 1438 if (match(&I, m_c_BinOp( 1439 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))), 1440 m_Deferred(B)))) { 1441 return replaceInstUsesWith(I, 1442 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B})); 1443 } 1444 1445 return Changed ? &I : nullptr; 1446 } 1447 1448 /// Eliminate an op from a linear interpolation (lerp) pattern. 1449 static Instruction *factorizeLerp(BinaryOperator &I, 1450 InstCombiner::BuilderTy &Builder) { 1451 Value *X, *Y, *Z; 1452 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), 1453 m_OneUse(m_FSub(m_FPOne(), 1454 m_Value(Z))))), 1455 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) 1456 return nullptr; 1457 1458 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] 1459 Value *XY = Builder.CreateFSubFMF(X, Y, &I); 1460 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); 1461 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); 1462 } 1463 1464 /// Factor a common operand out of fadd/fsub of fmul/fdiv. 1465 static Instruction *factorizeFAddFSub(BinaryOperator &I, 1466 InstCombiner::BuilderTy &Builder) { 1467 assert((I.getOpcode() == Instruction::FAdd || 1468 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); 1469 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && 1470 "FP factorization requires FMF"); 1471 1472 if (Instruction *Lerp = factorizeLerp(I, Builder)) 1473 return Lerp; 1474 1475 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1476 Value *X, *Y, *Z; 1477 bool IsFMul; 1478 if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) && 1479 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) || 1480 (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) && 1481 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z)))))) 1482 IsFMul = true; 1483 else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) && 1484 match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z))))) 1485 IsFMul = false; 1486 else 1487 return nullptr; 1488 1489 // (X * Z) + (Y * Z) --> (X + Y) * Z 1490 // (X * Z) - (Y * Z) --> (X - Y) * Z 1491 // (X / Z) + (Y / Z) --> (X + Y) / Z 1492 // (X / Z) - (Y / Z) --> (X - Y) / Z 1493 bool IsFAdd = I.getOpcode() == Instruction::FAdd; 1494 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) 1495 : Builder.CreateFSubFMF(X, Y, &I); 1496 1497 // Bail out if we just created a denormal constant. 1498 // TODO: This is copied from a previous implementation. Is it necessary? 1499 const APFloat *C; 1500 if (match(XY, m_APFloat(C)) && !C->isNormal()) 1501 return nullptr; 1502 1503 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) 1504 : BinaryOperator::CreateFDivFMF(XY, Z, &I); 1505 } 1506 1507 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) { 1508 if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1), 1509 I.getFastMathFlags(), 1510 SQ.getWithInstruction(&I))) 1511 return replaceInstUsesWith(I, V); 1512 1513 if (SimplifyAssociativeOrCommutative(I)) 1514 return &I; 1515 1516 if (Instruction *X = foldVectorBinop(I)) 1517 return X; 1518 1519 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) 1520 return FoldedFAdd; 1521 1522 // (-X) + Y --> Y - X 1523 Value *X, *Y; 1524 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) 1525 return BinaryOperator::CreateFSubFMF(Y, X, &I); 1526 1527 // Similar to above, but look through fmul/fdiv for the negated term. 1528 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] 1529 Value *Z; 1530 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), 1531 m_Value(Z)))) { 1532 Value *XY = Builder.CreateFMulFMF(X, Y, &I); 1533 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1534 } 1535 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] 1536 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] 1537 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), 1538 m_Value(Z))) || 1539 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), 1540 m_Value(Z)))) { 1541 Value *XY = Builder.CreateFDivFMF(X, Y, &I); 1542 return BinaryOperator::CreateFSubFMF(Z, XY, &I); 1543 } 1544 1545 // Check for (fadd double (sitofp x), y), see if we can merge this into an 1546 // integer add followed by a promotion. 1547 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1548 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 1549 Value *LHSIntVal = LHSConv->getOperand(0); 1550 Type *FPType = LHSConv->getType(); 1551 1552 // TODO: This check is overly conservative. In many cases known bits 1553 // analysis can tell us that the result of the addition has less significant 1554 // bits than the integer type can hold. 1555 auto IsValidPromotion = [](Type *FTy, Type *ITy) { 1556 Type *FScalarTy = FTy->getScalarType(); 1557 Type *IScalarTy = ITy->getScalarType(); 1558 1559 // Do we have enough bits in the significand to represent the result of 1560 // the integer addition? 1561 unsigned MaxRepresentableBits = 1562 APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); 1563 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; 1564 }; 1565 1566 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 1567 // ... if the constant fits in the integer value. This is useful for things 1568 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 1569 // requires a constant pool load, and generally allows the add to be better 1570 // instcombined. 1571 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 1572 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1573 Constant *CI = 1574 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); 1575 if (LHSConv->hasOneUse() && 1576 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 1577 willNotOverflowSignedAdd(LHSIntVal, CI, I)) { 1578 // Insert the new integer add. 1579 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); 1580 return new SIToFPInst(NewAdd, I.getType()); 1581 } 1582 } 1583 1584 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 1585 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 1586 Value *RHSIntVal = RHSConv->getOperand(0); 1587 // It's enough to check LHS types only because we require int types to 1588 // be the same for this transform. 1589 if (IsValidPromotion(FPType, LHSIntVal->getType())) { 1590 // Only do this if x/y have the same type, if at least one of them has a 1591 // single use (so we don't increase the number of int->fp conversions), 1592 // and if the integer add will not overflow. 1593 if (LHSIntVal->getType() == RHSIntVal->getType() && 1594 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 1595 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { 1596 // Insert the new integer add. 1597 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); 1598 return new SIToFPInst(NewAdd, I.getType()); 1599 } 1600 } 1601 } 1602 } 1603 1604 // Handle specials cases for FAdd with selects feeding the operation 1605 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) 1606 return replaceInstUsesWith(I, V); 1607 1608 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 1609 if (Instruction *F = factorizeFAddFSub(I, Builder)) 1610 return F; 1611 if (Value *V = FAddCombine(Builder).simplify(&I)) 1612 return replaceInstUsesWith(I, V); 1613 } 1614 1615 return nullptr; 1616 } 1617 1618 /// Optimize pointer differences into the same array into a size. Consider: 1619 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 1620 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 1621 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS, 1622 Type *Ty, bool IsNUW) { 1623 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 1624 // this. 1625 bool Swapped = false; 1626 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; 1627 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) { 1628 std::swap(LHS, RHS); 1629 Swapped = true; 1630 } 1631 1632 // Require at least one GEP with a common base pointer on both sides. 1633 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 1634 // (gep X, ...) - X 1635 if (LHSGEP->getOperand(0) == RHS) { 1636 GEP1 = LHSGEP; 1637 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 1638 // (gep X, ...) - (gep X, ...) 1639 if (LHSGEP->getOperand(0)->stripPointerCasts() == 1640 RHSGEP->getOperand(0)->stripPointerCasts()) { 1641 GEP1 = LHSGEP; 1642 GEP2 = RHSGEP; 1643 } 1644 } 1645 } 1646 1647 if (!GEP1) 1648 return nullptr; 1649 1650 if (GEP2) { 1651 // (gep X, ...) - (gep X, ...) 1652 // 1653 // Avoid duplicating the arithmetic if there are more than one non-constant 1654 // indices between the two GEPs and either GEP has a non-constant index and 1655 // multiple users. If zero non-constant index, the result is a constant and 1656 // there is no duplication. If one non-constant index, the result is an add 1657 // or sub with a constant, which is no larger than the original code, and 1658 // there's no duplicated arithmetic, even if either GEP has multiple 1659 // users. If more than one non-constant indices combined, as long as the GEP 1660 // with at least one non-constant index doesn't have multiple users, there 1661 // is no duplication. 1662 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); 1663 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); 1664 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && 1665 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || 1666 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { 1667 return nullptr; 1668 } 1669 } 1670 1671 // Emit the offset of the GEP and an intptr_t. 1672 Value *Result = EmitGEPOffset(GEP1); 1673 1674 // If this is a single inbounds GEP and the original sub was nuw, 1675 // then the final multiplication is also nuw. 1676 if (auto *I = dyn_cast<Instruction>(Result)) 1677 if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() && 1678 I->getOpcode() == Instruction::Mul) 1679 I->setHasNoUnsignedWrap(); 1680 1681 // If we have a 2nd GEP of the same base pointer, subtract the offsets. 1682 // If both GEPs are inbounds, then the subtract does not have signed overflow. 1683 if (GEP2) { 1684 Value *Offset = EmitGEPOffset(GEP2); 1685 Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false, 1686 GEP1->isInBounds() && GEP2->isInBounds()); 1687 } 1688 1689 // If we have p - gep(p, ...) then we have to negate the result. 1690 if (Swapped) 1691 Result = Builder.CreateNeg(Result, "diff.neg"); 1692 1693 return Builder.CreateIntCast(Result, Ty, true); 1694 } 1695 1696 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) { 1697 if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1), 1698 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), 1699 SQ.getWithInstruction(&I))) 1700 return replaceInstUsesWith(I, V); 1701 1702 if (Instruction *X = foldVectorBinop(I)) 1703 return X; 1704 1705 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1706 1707 // If this is a 'B = x-(-A)', change to B = x+A. 1708 // We deal with this without involving Negator to preserve NSW flag. 1709 if (Value *V = dyn_castNegVal(Op1)) { 1710 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 1711 1712 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { 1713 assert(BO->getOpcode() == Instruction::Sub && 1714 "Expected a subtraction operator!"); 1715 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) 1716 Res->setHasNoSignedWrap(true); 1717 } else { 1718 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) 1719 Res->setHasNoSignedWrap(true); 1720 } 1721 1722 return Res; 1723 } 1724 1725 // Try this before Negator to preserve NSW flag. 1726 if (Instruction *R = factorizeMathWithShlOps(I, Builder)) 1727 return R; 1728 1729 if (Constant *C = dyn_cast<Constant>(Op0)) { 1730 Value *X; 1731 Constant *C2; 1732 1733 // C-(X+C2) --> (C-C2)-X 1734 if (match(Op1, m_Add(m_Value(X), m_Constant(C2)))) 1735 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 1736 } 1737 1738 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * { 1739 if (Instruction *Ext = narrowMathIfNoOverflow(I)) 1740 return Ext; 1741 1742 bool Changed = false; 1743 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { 1744 Changed = true; 1745 I.setHasNoSignedWrap(true); 1746 } 1747 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { 1748 Changed = true; 1749 I.setHasNoUnsignedWrap(true); 1750 } 1751 1752 return Changed ? &I : nullptr; 1753 }; 1754 1755 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`, 1756 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't 1757 // a pure negation used by a select that looks like abs/nabs. 1758 bool IsNegation = match(Op0, m_ZeroInt()); 1759 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) { 1760 const Instruction *UI = dyn_cast<Instruction>(U); 1761 if (!UI) 1762 return false; 1763 return match(UI, 1764 m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) || 1765 match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1))); 1766 })) { 1767 if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this)) 1768 return BinaryOperator::CreateAdd(NegOp1, Op0); 1769 } 1770 if (IsNegation) 1771 return TryToNarrowDeduceFlags(); // Should have been handled in Negator! 1772 1773 // (A*B)-(A*C) -> A*(B-C) etc 1774 if (Value *V = SimplifyUsingDistributiveLaws(I)) 1775 return replaceInstUsesWith(I, V); 1776 1777 if (I.getType()->isIntOrIntVectorTy(1)) 1778 return BinaryOperator::CreateXor(Op0, Op1); 1779 1780 // Replace (-1 - A) with (~A). 1781 if (match(Op0, m_AllOnes())) 1782 return BinaryOperator::CreateNot(Op1); 1783 1784 // (~X) - (~Y) --> Y - X 1785 Value *X, *Y; 1786 if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y)))) 1787 return BinaryOperator::CreateSub(Y, X); 1788 1789 // (X + -1) - Y --> ~Y + X 1790 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) 1791 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); 1792 1793 // Reassociate sub/add sequences to create more add instructions and 1794 // reduce dependency chains: 1795 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 1796 Value *Z; 1797 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))), 1798 m_Value(Z))))) { 1799 Value *XZ = Builder.CreateAdd(X, Z); 1800 Value *YW = Builder.CreateAdd(Y, Op1); 1801 return BinaryOperator::CreateSub(XZ, YW); 1802 } 1803 1804 auto m_AddRdx = [](Value *&Vec) { 1805 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec))); 1806 }; 1807 Value *V0, *V1; 1808 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) && 1809 V0->getType() == V1->getType()) { 1810 // Difference of sums is sum of differences: 1811 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1) 1812 Value *Sub = Builder.CreateSub(V0, V1); 1813 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add, 1814 {Sub->getType()}, {Sub}); 1815 return replaceInstUsesWith(I, Rdx); 1816 } 1817 1818 if (Constant *C = dyn_cast<Constant>(Op0)) { 1819 Value *X; 1820 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1821 // C - (zext bool) --> bool ? C - 1 : C 1822 return SelectInst::Create(X, InstCombiner::SubOne(C), C); 1823 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1824 // C - (sext bool) --> bool ? C + 1 : C 1825 return SelectInst::Create(X, InstCombiner::AddOne(C), C); 1826 1827 // C - ~X == X + (1+C) 1828 if (match(Op1, m_Not(m_Value(X)))) 1829 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C)); 1830 1831 // Try to fold constant sub into select arguments. 1832 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 1833 if (Instruction *R = FoldOpIntoSelect(I, SI)) 1834 return R; 1835 1836 // Try to fold constant sub into PHI values. 1837 if (PHINode *PN = dyn_cast<PHINode>(Op1)) 1838 if (Instruction *R = foldOpIntoPhi(I, PN)) 1839 return R; 1840 1841 Constant *C2; 1842 1843 // C-(C2-X) --> X+(C-C2) 1844 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X)))) 1845 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); 1846 } 1847 1848 const APInt *Op0C; 1849 if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) { 1850 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 1851 // zero. 1852 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); 1853 if ((*Op0C | RHSKnown.Zero).isAllOnesValue()) 1854 return BinaryOperator::CreateXor(Op1, Op0); 1855 } 1856 1857 { 1858 Value *Y; 1859 // X-(X+Y) == -Y X-(Y+X) == -Y 1860 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) 1861 return BinaryOperator::CreateNeg(Y); 1862 1863 // (X-Y)-X == -Y 1864 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 1865 return BinaryOperator::CreateNeg(Y); 1866 } 1867 1868 // (sub (or A, B) (and A, B)) --> (xor A, B) 1869 { 1870 Value *A, *B; 1871 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1872 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1873 return BinaryOperator::CreateXor(A, B); 1874 } 1875 1876 // (sub (add A, B) (or A, B)) --> (and A, B) 1877 { 1878 Value *A, *B; 1879 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 1880 match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 1881 return BinaryOperator::CreateAnd(A, B); 1882 } 1883 1884 // (sub (add A, B) (and A, B)) --> (or A, B) 1885 { 1886 Value *A, *B; 1887 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 1888 match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 1889 return BinaryOperator::CreateOr(A, B); 1890 } 1891 1892 // (sub (and A, B) (or A, B)) --> neg (xor A, B) 1893 { 1894 Value *A, *B; 1895 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1896 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 1897 (Op0->hasOneUse() || Op1->hasOneUse())) 1898 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); 1899 } 1900 1901 // (sub (or A, B), (xor A, B)) --> (and A, B) 1902 { 1903 Value *A, *B; 1904 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1905 match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 1906 return BinaryOperator::CreateAnd(A, B); 1907 } 1908 1909 // (sub (xor A, B) (or A, B)) --> neg (and A, B) 1910 { 1911 Value *A, *B; 1912 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1913 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && 1914 (Op0->hasOneUse() || Op1->hasOneUse())) 1915 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); 1916 } 1917 1918 { 1919 Value *Y; 1920 // ((X | Y) - X) --> (~X & Y) 1921 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) 1922 return BinaryOperator::CreateAnd( 1923 Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); 1924 } 1925 1926 { 1927 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) 1928 Value *X; 1929 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), 1930 m_OneUse(m_Neg(m_Value(X))))))) { 1931 return BinaryOperator::CreateNeg(Builder.CreateAnd( 1932 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); 1933 } 1934 } 1935 1936 { 1937 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) 1938 Constant *C; 1939 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { 1940 return BinaryOperator::CreateNeg( 1941 Builder.CreateAnd(Op1, Builder.CreateNot(C))); 1942 } 1943 } 1944 1945 { 1946 // If we have a subtraction between some value and a select between 1947 // said value and something else, sink subtraction into select hands, i.e.: 1948 // sub (select %Cond, %TrueVal, %FalseVal), %Op1 1949 // -> 1950 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) 1951 // or 1952 // sub %Op0, (select %Cond, %TrueVal, %FalseVal) 1953 // -> 1954 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) 1955 // This will result in select between new subtraction and 0. 1956 auto SinkSubIntoSelect = 1957 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, 1958 auto SubBuilder) -> Instruction * { 1959 Value *Cond, *TrueVal, *FalseVal; 1960 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), 1961 m_Value(FalseVal))))) 1962 return nullptr; 1963 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) 1964 return nullptr; 1965 // While it is really tempting to just create two subtractions and let 1966 // InstCombine fold one of those to 0, it isn't possible to do so 1967 // because of worklist visitation order. So ugly it is. 1968 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; 1969 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); 1970 Constant *Zero = Constant::getNullValue(Ty); 1971 SelectInst *NewSel = 1972 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, 1973 OtherHandOfSubIsTrueVal ? NewSub : Zero); 1974 // Preserve prof metadata if any. 1975 NewSel->copyMetadata(cast<Instruction>(*Select)); 1976 return NewSel; 1977 }; 1978 if (Instruction *NewSel = SinkSubIntoSelect( 1979 /*Select=*/Op0, /*OtherHandOfSub=*/Op1, 1980 [Builder = &Builder, Op1](Value *OtherHandOfSelect) { 1981 return Builder->CreateSub(OtherHandOfSelect, 1982 /*OtherHandOfSub=*/Op1); 1983 })) 1984 return NewSel; 1985 if (Instruction *NewSel = SinkSubIntoSelect( 1986 /*Select=*/Op1, /*OtherHandOfSub=*/Op0, 1987 [Builder = &Builder, Op0](Value *OtherHandOfSelect) { 1988 return Builder->CreateSub(/*OtherHandOfSub=*/Op0, 1989 OtherHandOfSelect); 1990 })) 1991 return NewSel; 1992 } 1993 1994 // (X - (X & Y)) --> (X & ~Y) 1995 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) && 1996 (Op1->hasOneUse() || isa<Constant>(Y))) 1997 return BinaryOperator::CreateAnd( 1998 Op0, Builder.CreateNot(Y, Y->getName() + ".not")); 1999 2000 { 2001 // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A 2002 // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A 2003 // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O) 2004 // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O) 2005 // So long as O here is freely invertible, this will be neutral or a win. 2006 Value *LHS, *RHS, *A; 2007 Value *NotA = Op0, *MinMax = Op1; 2008 SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; 2009 if (!SelectPatternResult::isMinOrMax(SPF)) { 2010 NotA = Op1; 2011 MinMax = Op0; 2012 SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor; 2013 } 2014 if (SelectPatternResult::isMinOrMax(SPF) && 2015 match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) { 2016 if (NotA == LHS) 2017 std::swap(LHS, RHS); 2018 // LHS is now O above and expected to have at least 2 uses (the min/max) 2019 // NotA is epected to have 2 uses from the min/max and 1 from the sub. 2020 if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) && 2021 !NotA->hasNUsesOrMore(4)) { 2022 // Note: We don't generate the inverse max/min, just create the not of 2023 // it and let other folds do the rest. 2024 Value *Not = Builder.CreateNot(MinMax); 2025 if (NotA == Op0) 2026 return BinaryOperator::CreateSub(Not, A); 2027 else 2028 return BinaryOperator::CreateSub(A, Not); 2029 } 2030 } 2031 } 2032 2033 // Optimize pointer differences into the same array into a size. Consider: 2034 // &A[10] - &A[0]: we should compile this to "10". 2035 Value *LHSOp, *RHSOp; 2036 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 2037 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 2038 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2039 I.hasNoUnsignedWrap())) 2040 return replaceInstUsesWith(I, Res); 2041 2042 // trunc(p)-trunc(q) -> trunc(p-q) 2043 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 2044 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 2045 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), 2046 /* IsNUW */ false)) 2047 return replaceInstUsesWith(I, Res); 2048 2049 // Canonicalize a shifty way to code absolute value to the common pattern. 2050 // There are 2 potential commuted variants. 2051 // We're relying on the fact that we only do this transform when the shift has 2052 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase 2053 // instructions). 2054 Value *A; 2055 const APInt *ShAmt; 2056 Type *Ty = I.getType(); 2057 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 2058 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 2059 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { 2060 // B = ashr i32 A, 31 ; smear the sign bit 2061 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1) 2062 // --> (A < 0) ? -A : A 2063 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty)); 2064 // Copy the nuw/nsw flags from the sub to the negate. 2065 Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), 2066 I.hasNoSignedWrap()); 2067 return SelectInst::Create(Cmp, Neg, A); 2068 } 2069 2070 // If we are subtracting a low-bit masked subset of some value from an add 2071 // of that same value with no low bits changed, that is clearing some low bits 2072 // of the sum: 2073 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC 2074 const APInt *AddC, *AndC; 2075 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) && 2076 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) { 2077 unsigned BitWidth = Ty->getScalarSizeInBits(); 2078 unsigned Cttz = AddC->countTrailingZeros(); 2079 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz)); 2080 if ((HighMask & *AndC).isNullValue()) 2081 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC))); 2082 } 2083 2084 if (Instruction *V = 2085 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 2086 return V; 2087 2088 return TryToNarrowDeduceFlags(); 2089 } 2090 2091 /// This eliminates floating-point negation in either 'fneg(X)' or 2092 /// 'fsub(-0.0, X)' form by combining into a constant operand. 2093 static Instruction *foldFNegIntoConstant(Instruction &I) { 2094 Value *X; 2095 Constant *C; 2096 2097 // Fold negation into constant operand. This is limited with one-use because 2098 // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv. 2099 // -(X * C) --> X * (-C) 2100 // FIXME: It's arguable whether these should be m_OneUse or not. The current 2101 // belief is that the FNeg allows for better reassociation opportunities. 2102 if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C)))))) 2103 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); 2104 // -(X / C) --> X / (-C) 2105 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C)))))) 2106 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); 2107 // -(C / X) --> (-C) / X 2108 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X)))))) 2109 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); 2110 2111 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]: 2112 // -(X + C) --> -X + -C --> -C - X 2113 if (I.hasNoSignedZeros() && 2114 match(&I, m_FNeg(m_OneUse(m_FAdd(m_Value(X), m_Constant(C)))))) 2115 return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I); 2116 2117 return nullptr; 2118 } 2119 2120 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I, 2121 InstCombiner::BuilderTy &Builder) { 2122 Value *FNeg; 2123 if (!match(&I, m_FNeg(m_Value(FNeg)))) 2124 return nullptr; 2125 2126 Value *X, *Y; 2127 if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y))))) 2128 return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2129 2130 if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y))))) 2131 return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I); 2132 2133 return nullptr; 2134 } 2135 2136 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) { 2137 Value *Op = I.getOperand(0); 2138 2139 if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(), 2140 getSimplifyQuery().getWithInstruction(&I))) 2141 return replaceInstUsesWith(I, V); 2142 2143 if (Instruction *X = foldFNegIntoConstant(I)) 2144 return X; 2145 2146 Value *X, *Y; 2147 2148 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) 2149 if (I.hasNoSignedZeros() && 2150 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) 2151 return BinaryOperator::CreateFSubFMF(Y, X, &I); 2152 2153 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2154 return R; 2155 2156 return nullptr; 2157 } 2158 2159 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) { 2160 if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1), 2161 I.getFastMathFlags(), 2162 getSimplifyQuery().getWithInstruction(&I))) 2163 return replaceInstUsesWith(I, V); 2164 2165 if (Instruction *X = foldVectorBinop(I)) 2166 return X; 2167 2168 // Subtraction from -0.0 is the canonical form of fneg. 2169 // fsub -0.0, X ==> fneg X 2170 // fsub nsz 0.0, X ==> fneg nsz X 2171 // 2172 // FIXME This matcher does not respect FTZ or DAZ yet: 2173 // fsub -0.0, Denorm ==> +-0 2174 // fneg Denorm ==> -Denorm 2175 Value *Op; 2176 if (match(&I, m_FNeg(m_Value(Op)))) 2177 return UnaryOperator::CreateFNegFMF(Op, &I); 2178 2179 if (Instruction *X = foldFNegIntoConstant(I)) 2180 return X; 2181 2182 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) 2183 return R; 2184 2185 Value *X, *Y; 2186 Constant *C; 2187 2188 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2189 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) 2190 // Canonicalize to fadd to make analysis easier. 2191 // This can also help codegen because fadd is commutative. 2192 // Note that if this fsub was really an fneg, the fadd with -0.0 will get 2193 // killed later. We still limit that particular transform with 'hasOneUse' 2194 // because an fneg is assumed better/cheaper than a generic fsub. 2195 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { 2196 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2197 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); 2198 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); 2199 } 2200 } 2201 2202 // (-X) - Op1 --> -(X + Op1) 2203 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) && 2204 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) { 2205 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I); 2206 return UnaryOperator::CreateFNegFMF(FAdd, &I); 2207 } 2208 2209 if (isa<Constant>(Op0)) 2210 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 2211 if (Instruction *NV = FoldOpIntoSelect(I, SI)) 2212 return NV; 2213 2214 // X - C --> X + (-C) 2215 // But don't transform constant expressions because there's an inverse fold 2216 // for X + (-Y) --> X - Y. 2217 if (match(Op1, m_ImmConstant(C))) 2218 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); 2219 2220 // X - (-Y) --> X + Y 2221 if (match(Op1, m_FNeg(m_Value(Y)))) 2222 return BinaryOperator::CreateFAddFMF(Op0, Y, &I); 2223 2224 // Similar to above, but look through a cast of the negated value: 2225 // X - (fptrunc(-Y)) --> X + fptrunc(Y) 2226 Type *Ty = I.getType(); 2227 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) 2228 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); 2229 2230 // X - (fpext(-Y)) --> X + fpext(Y) 2231 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) 2232 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); 2233 2234 // Similar to above, but look through fmul/fdiv of the negated value: 2235 // Op0 - (-X * Y) --> Op0 + (X * Y) 2236 // Op0 - (Y * -X) --> Op0 + (X * Y) 2237 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { 2238 Value *FMul = Builder.CreateFMulFMF(X, Y, &I); 2239 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); 2240 } 2241 // Op0 - (-X / Y) --> Op0 + (X / Y) 2242 // Op0 - (X / -Y) --> Op0 + (X / Y) 2243 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || 2244 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { 2245 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); 2246 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); 2247 } 2248 2249 // Handle special cases for FSub with selects feeding the operation 2250 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) 2251 return replaceInstUsesWith(I, V); 2252 2253 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { 2254 // (Y - X) - Y --> -X 2255 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) 2256 return UnaryOperator::CreateFNegFMF(X, &I); 2257 2258 // Y - (X + Y) --> -X 2259 // Y - (Y + X) --> -X 2260 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) 2261 return UnaryOperator::CreateFNegFMF(X, &I); 2262 2263 // (X * C) - X --> X * (C - 1.0) 2264 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { 2265 Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0)); 2266 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); 2267 } 2268 // X - (X * C) --> X * (1.0 - C) 2269 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { 2270 Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C); 2271 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); 2272 } 2273 2274 // Reassociate fsub/fadd sequences to create more fadd instructions and 2275 // reduce dependency chains: 2276 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) 2277 Value *Z; 2278 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))), 2279 m_Value(Z))))) { 2280 Value *XZ = Builder.CreateFAddFMF(X, Z, &I); 2281 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I); 2282 return BinaryOperator::CreateFSubFMF(XZ, YW, &I); 2283 } 2284 2285 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) { 2286 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum), 2287 m_Value(Vec))); 2288 }; 2289 Value *A0, *A1, *V0, *V1; 2290 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) && 2291 V0->getType() == V1->getType()) { 2292 // Difference of sums is sum of differences: 2293 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1 2294 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I); 2295 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, 2296 {Sub->getType()}, {A0, Sub}, &I); 2297 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I); 2298 } 2299 2300 if (Instruction *F = factorizeFAddFSub(I, Builder)) 2301 return F; 2302 2303 // TODO: This performs reassociative folds for FP ops. Some fraction of the 2304 // functionality has been subsumed by simple pattern matching here and in 2305 // InstSimplify. We should let a dedicated reassociation pass handle more 2306 // complex pattern matching and remove this from InstCombine. 2307 if (Value *V = FAddCombine(Builder).simplify(&I)) 2308 return replaceInstUsesWith(I, V); 2309 2310 // (X - Y) - Op1 --> X - (Y + Op1) 2311 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { 2312 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I); 2313 return BinaryOperator::CreateFSubFMF(X, FAdd, &I); 2314 } 2315 } 2316 2317 return nullptr; 2318 } 2319