xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 //   possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 //   integer <=64 bits and all possible callees are readnone, for each class and
16 //   each list of constant arguments: evaluate the function, store the return
17 //   value alongside the virtual table, and rewrite each virtual call as a load
18 //   from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 //   propagation hold and each function returns the same constant value, replace
21 //   each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 //   for virtual constant propagation hold and a single vtable's function
24 //   returns 0, or a single vtable's function returns 1, replace each virtual
25 //   call with a comparison of the vptr against that vtable's address.
26 //
27 // This pass is intended to be used during the regular and thin LTO pipelines:
28 //
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33 //
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 //   that contains all vtables with !type metadata that participate in the link.
37 //   The pass computes a resolution for each virtual call and stores it in the
38 //   type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 //   modules. The pass applies the resolutions previously computed during the
41 //   import phase to each eligible virtual call.
42 //
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 //   contains a summary of all vtables with !type metadata that participate in
46 //   the link. It computes a resolution for each virtual call and stores it in
47 //   the type identifier summary. Only single implementation devirtualization
48 //   is supported.
49 // - Import phase: (same as with hybrid case above).
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Statistic.h"
61 #include "llvm/Analysis/AssumptionCache.h"
62 #include "llvm/Analysis/BasicAliasAnalysis.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TypeMetadataUtils.h"
65 #include "llvm/Bitcode/BitcodeReader.h"
66 #include "llvm/Bitcode/BitcodeWriter.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/MDBuilder.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/ModuleSummaryIndexYAML.h"
85 #include "llvm/Support/Casting.h"
86 #include "llvm/Support/CommandLine.h"
87 #include "llvm/Support/Errc.h"
88 #include "llvm/Support/Error.h"
89 #include "llvm/Support/FileSystem.h"
90 #include "llvm/Support/GlobPattern.h"
91 #include "llvm/Support/MathExtras.h"
92 #include "llvm/TargetParser/Triple.h"
93 #include "llvm/Transforms/IPO.h"
94 #include "llvm/Transforms/IPO/FunctionAttrs.h"
95 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
96 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
97 #include "llvm/Transforms/Utils/Evaluator.h"
98 #include <algorithm>
99 #include <cstddef>
100 #include <map>
101 #include <set>
102 #include <string>
103 
104 using namespace llvm;
105 using namespace wholeprogramdevirt;
106 
107 #define DEBUG_TYPE "wholeprogramdevirt"
108 
109 STATISTIC(NumDevirtTargets, "Number of whole program devirtualization targets");
110 STATISTIC(NumSingleImpl, "Number of single implementation devirtualizations");
111 STATISTIC(NumBranchFunnel, "Number of branch funnels");
112 STATISTIC(NumUniformRetVal, "Number of uniform return value optimizations");
113 STATISTIC(NumUniqueRetVal, "Number of unique return value optimizations");
114 STATISTIC(NumVirtConstProp1Bit,
115           "Number of 1 bit virtual constant propagations");
116 STATISTIC(NumVirtConstProp, "Number of virtual constant propagations");
117 
118 static cl::opt<PassSummaryAction> ClSummaryAction(
119     "wholeprogramdevirt-summary-action",
120     cl::desc("What to do with the summary when running this pass"),
121     cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
122                clEnumValN(PassSummaryAction::Import, "import",
123                           "Import typeid resolutions from summary and globals"),
124                clEnumValN(PassSummaryAction::Export, "export",
125                           "Export typeid resolutions to summary and globals")),
126     cl::Hidden);
127 
128 static cl::opt<std::string> ClReadSummary(
129     "wholeprogramdevirt-read-summary",
130     cl::desc(
131         "Read summary from given bitcode or YAML file before running pass"),
132     cl::Hidden);
133 
134 static cl::opt<std::string> ClWriteSummary(
135     "wholeprogramdevirt-write-summary",
136     cl::desc("Write summary to given bitcode or YAML file after running pass. "
137              "Output file format is deduced from extension: *.bc means writing "
138              "bitcode, otherwise YAML"),
139     cl::Hidden);
140 
141 static cl::opt<unsigned>
142     ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
143                 cl::init(10),
144                 cl::desc("Maximum number of call targets per "
145                          "call site to enable branch funnels"));
146 
147 static cl::opt<bool>
148     PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
149                        cl::desc("Print index-based devirtualization messages"));
150 
151 /// Provide a way to force enable whole program visibility in tests.
152 /// This is needed to support legacy tests that don't contain
153 /// !vcall_visibility metadata (the mere presense of type tests
154 /// previously implied hidden visibility).
155 static cl::opt<bool>
156     WholeProgramVisibility("whole-program-visibility", cl::Hidden,
157                            cl::desc("Enable whole program visibility"));
158 
159 /// Provide a way to force disable whole program for debugging or workarounds,
160 /// when enabled via the linker.
161 static cl::opt<bool> DisableWholeProgramVisibility(
162     "disable-whole-program-visibility", cl::Hidden,
163     cl::desc("Disable whole program visibility (overrides enabling options)"));
164 
165 /// Provide way to prevent certain function from being devirtualized
166 static cl::list<std::string>
167     SkipFunctionNames("wholeprogramdevirt-skip",
168                       cl::desc("Prevent function(s) from being devirtualized"),
169                       cl::Hidden, cl::CommaSeparated);
170 
171 /// Mechanism to add runtime checking of devirtualization decisions, optionally
172 /// trapping or falling back to indirect call on any that are not correct.
173 /// Trapping mode is useful for debugging undefined behavior leading to failures
174 /// with WPD. Fallback mode is useful for ensuring safety when whole program
175 /// visibility may be compromised.
176 enum WPDCheckMode { None, Trap, Fallback };
177 static cl::opt<WPDCheckMode> DevirtCheckMode(
178     "wholeprogramdevirt-check", cl::Hidden,
179     cl::desc("Type of checking for incorrect devirtualizations"),
180     cl::values(clEnumValN(WPDCheckMode::None, "none", "No checking"),
181                clEnumValN(WPDCheckMode::Trap, "trap", "Trap when incorrect"),
182                clEnumValN(WPDCheckMode::Fallback, "fallback",
183                           "Fallback to indirect when incorrect")));
184 
185 namespace {
186 struct PatternList {
187   std::vector<GlobPattern> Patterns;
188   template <class T> void init(const T &StringList) {
189     for (const auto &S : StringList)
190       if (Expected<GlobPattern> Pat = GlobPattern::create(S))
191         Patterns.push_back(std::move(*Pat));
192   }
193   bool match(StringRef S) {
194     for (const GlobPattern &P : Patterns)
195       if (P.match(S))
196         return true;
197     return false;
198   }
199 };
200 } // namespace
201 
202 // Find the minimum offset that we may store a value of size Size bits at. If
203 // IsAfter is set, look for an offset before the object, otherwise look for an
204 // offset after the object.
205 uint64_t
206 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
207                                      bool IsAfter, uint64_t Size) {
208   // Find a minimum offset taking into account only vtable sizes.
209   uint64_t MinByte = 0;
210   for (const VirtualCallTarget &Target : Targets) {
211     if (IsAfter)
212       MinByte = std::max(MinByte, Target.minAfterBytes());
213     else
214       MinByte = std::max(MinByte, Target.minBeforeBytes());
215   }
216 
217   // Build a vector of arrays of bytes covering, for each target, a slice of the
218   // used region (see AccumBitVector::BytesUsed in
219   // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
220   // this aligns the used regions to start at MinByte.
221   //
222   // In this example, A, B and C are vtables, # is a byte already allocated for
223   // a virtual function pointer, AAAA... (etc.) are the used regions for the
224   // vtables and Offset(X) is the value computed for the Offset variable below
225   // for X.
226   //
227   //                    Offset(A)
228   //                    |       |
229   //                            |MinByte
230   // A: ################AAAAAAAA|AAAAAAAA
231   // B: ########BBBBBBBBBBBBBBBB|BBBB
232   // C: ########################|CCCCCCCCCCCCCCCC
233   //            |   Offset(B)   |
234   //
235   // This code produces the slices of A, B and C that appear after the divider
236   // at MinByte.
237   std::vector<ArrayRef<uint8_t>> Used;
238   for (const VirtualCallTarget &Target : Targets) {
239     ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
240                                        : Target.TM->Bits->Before.BytesUsed;
241     uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
242                               : MinByte - Target.minBeforeBytes();
243 
244     // Disregard used regions that are smaller than Offset. These are
245     // effectively all-free regions that do not need to be checked.
246     if (VTUsed.size() > Offset)
247       Used.push_back(VTUsed.slice(Offset));
248   }
249 
250   if (Size == 1) {
251     // Find a free bit in each member of Used.
252     for (unsigned I = 0;; ++I) {
253       uint8_t BitsUsed = 0;
254       for (auto &&B : Used)
255         if (I < B.size())
256           BitsUsed |= B[I];
257       if (BitsUsed != 0xff)
258         return (MinByte + I) * 8 + llvm::countr_zero(uint8_t(~BitsUsed));
259     }
260   } else {
261     // Find a free (Size/8) byte region in each member of Used.
262     // FIXME: see if alignment helps.
263     for (unsigned I = 0;; ++I) {
264       for (auto &&B : Used) {
265         unsigned Byte = 0;
266         while ((I + Byte) < B.size() && Byte < (Size / 8)) {
267           if (B[I + Byte])
268             goto NextI;
269           ++Byte;
270         }
271       }
272       return (MinByte + I) * 8;
273     NextI:;
274     }
275   }
276 }
277 
278 void wholeprogramdevirt::setBeforeReturnValues(
279     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
280     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
281   if (BitWidth == 1)
282     OffsetByte = -(AllocBefore / 8 + 1);
283   else
284     OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
285   OffsetBit = AllocBefore % 8;
286 
287   for (VirtualCallTarget &Target : Targets) {
288     if (BitWidth == 1)
289       Target.setBeforeBit(AllocBefore);
290     else
291       Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
292   }
293 }
294 
295 void wholeprogramdevirt::setAfterReturnValues(
296     MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
297     unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
298   if (BitWidth == 1)
299     OffsetByte = AllocAfter / 8;
300   else
301     OffsetByte = (AllocAfter + 7) / 8;
302   OffsetBit = AllocAfter % 8;
303 
304   for (VirtualCallTarget &Target : Targets) {
305     if (BitWidth == 1)
306       Target.setAfterBit(AllocAfter);
307     else
308       Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
309   }
310 }
311 
312 VirtualCallTarget::VirtualCallTarget(GlobalValue *Fn, const TypeMemberInfo *TM)
313     : Fn(Fn), TM(TM),
314       IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()),
315       WasDevirt(false) {}
316 
317 namespace {
318 
319 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
320 // tables, and the ByteOffset is the offset in bytes from the address point to
321 // the virtual function pointer.
322 struct VTableSlot {
323   Metadata *TypeID;
324   uint64_t ByteOffset;
325 };
326 
327 } // end anonymous namespace
328 
329 namespace llvm {
330 
331 template <> struct DenseMapInfo<VTableSlot> {
332   static VTableSlot getEmptyKey() {
333     return {DenseMapInfo<Metadata *>::getEmptyKey(),
334             DenseMapInfo<uint64_t>::getEmptyKey()};
335   }
336   static VTableSlot getTombstoneKey() {
337     return {DenseMapInfo<Metadata *>::getTombstoneKey(),
338             DenseMapInfo<uint64_t>::getTombstoneKey()};
339   }
340   static unsigned getHashValue(const VTableSlot &I) {
341     return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
342            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
343   }
344   static bool isEqual(const VTableSlot &LHS,
345                       const VTableSlot &RHS) {
346     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
347   }
348 };
349 
350 template <> struct DenseMapInfo<VTableSlotSummary> {
351   static VTableSlotSummary getEmptyKey() {
352     return {DenseMapInfo<StringRef>::getEmptyKey(),
353             DenseMapInfo<uint64_t>::getEmptyKey()};
354   }
355   static VTableSlotSummary getTombstoneKey() {
356     return {DenseMapInfo<StringRef>::getTombstoneKey(),
357             DenseMapInfo<uint64_t>::getTombstoneKey()};
358   }
359   static unsigned getHashValue(const VTableSlotSummary &I) {
360     return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
361            DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
362   }
363   static bool isEqual(const VTableSlotSummary &LHS,
364                       const VTableSlotSummary &RHS) {
365     return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
366   }
367 };
368 
369 } // end namespace llvm
370 
371 // Returns true if the function must be unreachable based on ValueInfo.
372 //
373 // In particular, identifies a function as unreachable in the following
374 // conditions
375 //   1) All summaries are live.
376 //   2) All function summaries indicate it's unreachable
377 //   3) There is no non-function with the same GUID (which is rare)
378 static bool mustBeUnreachableFunction(ValueInfo TheFnVI) {
379   if ((!TheFnVI) || TheFnVI.getSummaryList().empty()) {
380     // Returns false if ValueInfo is absent, or the summary list is empty
381     // (e.g., function declarations).
382     return false;
383   }
384 
385   for (const auto &Summary : TheFnVI.getSummaryList()) {
386     // Conservatively returns false if any non-live functions are seen.
387     // In general either all summaries should be live or all should be dead.
388     if (!Summary->isLive())
389       return false;
390     if (auto *FS = dyn_cast<FunctionSummary>(Summary->getBaseObject())) {
391       if (!FS->fflags().MustBeUnreachable)
392         return false;
393     }
394     // Be conservative if a non-function has the same GUID (which is rare).
395     else
396       return false;
397   }
398   // All function summaries are live and all of them agree that the function is
399   // unreachble.
400   return true;
401 }
402 
403 namespace {
404 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
405 // the indirect virtual call.
406 struct VirtualCallSite {
407   Value *VTable = nullptr;
408   CallBase &CB;
409 
410   // If non-null, this field points to the associated unsafe use count stored in
411   // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
412   // of that field for details.
413   unsigned *NumUnsafeUses = nullptr;
414 
415   void
416   emitRemark(const StringRef OptName, const StringRef TargetName,
417              function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
418     Function *F = CB.getCaller();
419     DebugLoc DLoc = CB.getDebugLoc();
420     BasicBlock *Block = CB.getParent();
421 
422     using namespace ore;
423     OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
424                       << NV("Optimization", OptName)
425                       << ": devirtualized a call to "
426                       << NV("FunctionName", TargetName));
427   }
428 
429   void replaceAndErase(
430       const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
431       function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
432       Value *New) {
433     if (RemarksEnabled)
434       emitRemark(OptName, TargetName, OREGetter);
435     CB.replaceAllUsesWith(New);
436     if (auto *II = dyn_cast<InvokeInst>(&CB)) {
437       BranchInst::Create(II->getNormalDest(), &CB);
438       II->getUnwindDest()->removePredecessor(II->getParent());
439     }
440     CB.eraseFromParent();
441     // This use is no longer unsafe.
442     if (NumUnsafeUses)
443       --*NumUnsafeUses;
444   }
445 };
446 
447 // Call site information collected for a specific VTableSlot and possibly a list
448 // of constant integer arguments. The grouping by arguments is handled by the
449 // VTableSlotInfo class.
450 struct CallSiteInfo {
451   /// The set of call sites for this slot. Used during regular LTO and the
452   /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
453   /// call sites that appear in the merged module itself); in each of these
454   /// cases we are directly operating on the call sites at the IR level.
455   std::vector<VirtualCallSite> CallSites;
456 
457   /// Whether all call sites represented by this CallSiteInfo, including those
458   /// in summaries, have been devirtualized. This starts off as true because a
459   /// default constructed CallSiteInfo represents no call sites.
460   bool AllCallSitesDevirted = true;
461 
462   // These fields are used during the export phase of ThinLTO and reflect
463   // information collected from function summaries.
464 
465   /// Whether any function summary contains an llvm.assume(llvm.type.test) for
466   /// this slot.
467   bool SummaryHasTypeTestAssumeUsers = false;
468 
469   /// CFI-specific: a vector containing the list of function summaries that use
470   /// the llvm.type.checked.load intrinsic and therefore will require
471   /// resolutions for llvm.type.test in order to implement CFI checks if
472   /// devirtualization was unsuccessful. If devirtualization was successful, the
473   /// pass will clear this vector by calling markDevirt(). If at the end of the
474   /// pass the vector is non-empty, we will need to add a use of llvm.type.test
475   /// to each of the function summaries in the vector.
476   std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
477   std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
478 
479   bool isExported() const {
480     return SummaryHasTypeTestAssumeUsers ||
481            !SummaryTypeCheckedLoadUsers.empty();
482   }
483 
484   void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
485     SummaryTypeCheckedLoadUsers.push_back(FS);
486     AllCallSitesDevirted = false;
487   }
488 
489   void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
490     SummaryTypeTestAssumeUsers.push_back(FS);
491     SummaryHasTypeTestAssumeUsers = true;
492     AllCallSitesDevirted = false;
493   }
494 
495   void markDevirt() {
496     AllCallSitesDevirted = true;
497 
498     // As explained in the comment for SummaryTypeCheckedLoadUsers.
499     SummaryTypeCheckedLoadUsers.clear();
500   }
501 };
502 
503 // Call site information collected for a specific VTableSlot.
504 struct VTableSlotInfo {
505   // The set of call sites which do not have all constant integer arguments
506   // (excluding "this").
507   CallSiteInfo CSInfo;
508 
509   // The set of call sites with all constant integer arguments (excluding
510   // "this"), grouped by argument list.
511   std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
512 
513   void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);
514 
515 private:
516   CallSiteInfo &findCallSiteInfo(CallBase &CB);
517 };
518 
519 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
520   std::vector<uint64_t> Args;
521   auto *CBType = dyn_cast<IntegerType>(CB.getType());
522   if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
523     return CSInfo;
524   for (auto &&Arg : drop_begin(CB.args())) {
525     auto *CI = dyn_cast<ConstantInt>(Arg);
526     if (!CI || CI->getBitWidth() > 64)
527       return CSInfo;
528     Args.push_back(CI->getZExtValue());
529   }
530   return ConstCSInfo[Args];
531 }
532 
533 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
534                                  unsigned *NumUnsafeUses) {
535   auto &CSI = findCallSiteInfo(CB);
536   CSI.AllCallSitesDevirted = false;
537   CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
538 }
539 
540 struct DevirtModule {
541   Module &M;
542   function_ref<AAResults &(Function &)> AARGetter;
543   function_ref<DominatorTree &(Function &)> LookupDomTree;
544 
545   ModuleSummaryIndex *ExportSummary;
546   const ModuleSummaryIndex *ImportSummary;
547 
548   IntegerType *Int8Ty;
549   PointerType *Int8PtrTy;
550   IntegerType *Int32Ty;
551   IntegerType *Int64Ty;
552   IntegerType *IntPtrTy;
553   /// Sizeless array type, used for imported vtables. This provides a signal
554   /// to analyzers that these imports may alias, as they do for example
555   /// when multiple unique return values occur in the same vtable.
556   ArrayType *Int8Arr0Ty;
557 
558   bool RemarksEnabled;
559   function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
560 
561   MapVector<VTableSlot, VTableSlotInfo> CallSlots;
562 
563   // Calls that have already been optimized. We may add a call to multiple
564   // VTableSlotInfos if vtable loads are coalesced and need to make sure not to
565   // optimize a call more than once.
566   SmallPtrSet<CallBase *, 8> OptimizedCalls;
567 
568   // Store calls that had their ptrauth bundle removed. They are to be deleted
569   // at the end of the optimization.
570   SmallVector<CallBase *, 8> CallsWithPtrAuthBundleRemoved;
571 
572   // This map keeps track of the number of "unsafe" uses of a loaded function
573   // pointer. The key is the associated llvm.type.test intrinsic call generated
574   // by this pass. An unsafe use is one that calls the loaded function pointer
575   // directly. Every time we eliminate an unsafe use (for example, by
576   // devirtualizing it or by applying virtual constant propagation), we
577   // decrement the value stored in this map. If a value reaches zero, we can
578   // eliminate the type check by RAUWing the associated llvm.type.test call with
579   // true.
580   std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
581   PatternList FunctionsToSkip;
582 
583   DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
584                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
585                function_ref<DominatorTree &(Function &)> LookupDomTree,
586                ModuleSummaryIndex *ExportSummary,
587                const ModuleSummaryIndex *ImportSummary)
588       : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
589         ExportSummary(ExportSummary), ImportSummary(ImportSummary),
590         Int8Ty(Type::getInt8Ty(M.getContext())),
591         Int8PtrTy(PointerType::getUnqual(M.getContext())),
592         Int32Ty(Type::getInt32Ty(M.getContext())),
593         Int64Ty(Type::getInt64Ty(M.getContext())),
594         IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
595         Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
596         RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
597     assert(!(ExportSummary && ImportSummary));
598     FunctionsToSkip.init(SkipFunctionNames);
599   }
600 
601   bool areRemarksEnabled();
602 
603   void
604   scanTypeTestUsers(Function *TypeTestFunc,
605                     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
606   void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
607 
608   void buildTypeIdentifierMap(
609       std::vector<VTableBits> &Bits,
610       DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
611 
612   bool
613   tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
614                             const std::set<TypeMemberInfo> &TypeMemberInfos,
615                             uint64_t ByteOffset,
616                             ModuleSummaryIndex *ExportSummary);
617 
618   void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
619                              bool &IsExported);
620   bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
621                            MutableArrayRef<VirtualCallTarget> TargetsForSlot,
622                            VTableSlotInfo &SlotInfo,
623                            WholeProgramDevirtResolution *Res);
624 
625   void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
626                               bool &IsExported);
627   void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
628                             VTableSlotInfo &SlotInfo,
629                             WholeProgramDevirtResolution *Res, VTableSlot Slot);
630 
631   bool tryEvaluateFunctionsWithArgs(
632       MutableArrayRef<VirtualCallTarget> TargetsForSlot,
633       ArrayRef<uint64_t> Args);
634 
635   void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
636                              uint64_t TheRetVal);
637   bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
638                            CallSiteInfo &CSInfo,
639                            WholeProgramDevirtResolution::ByArg *Res);
640 
641   // Returns the global symbol name that is used to export information about the
642   // given vtable slot and list of arguments.
643   std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
644                             StringRef Name);
645 
646   bool shouldExportConstantsAsAbsoluteSymbols();
647 
648   // This function is called during the export phase to create a symbol
649   // definition containing information about the given vtable slot and list of
650   // arguments.
651   void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
652                     Constant *C);
653   void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
654                       uint32_t Const, uint32_t &Storage);
655 
656   // This function is called during the import phase to create a reference to
657   // the symbol definition created during the export phase.
658   Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
659                          StringRef Name);
660   Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
661                            StringRef Name, IntegerType *IntTy,
662                            uint32_t Storage);
663 
664   Constant *getMemberAddr(const TypeMemberInfo *M);
665 
666   void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
667                             Constant *UniqueMemberAddr);
668   bool tryUniqueRetValOpt(unsigned BitWidth,
669                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
670                           CallSiteInfo &CSInfo,
671                           WholeProgramDevirtResolution::ByArg *Res,
672                           VTableSlot Slot, ArrayRef<uint64_t> Args);
673 
674   void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
675                              Constant *Byte, Constant *Bit);
676   bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
677                            VTableSlotInfo &SlotInfo,
678                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
679 
680   void rebuildGlobal(VTableBits &B);
681 
682   // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
683   void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
684 
685   // If we were able to eliminate all unsafe uses for a type checked load,
686   // eliminate the associated type tests by replacing them with true.
687   void removeRedundantTypeTests();
688 
689   bool run();
690 
691   // Look up the corresponding ValueInfo entry of `TheFn` in `ExportSummary`.
692   //
693   // Caller guarantees that `ExportSummary` is not nullptr.
694   static ValueInfo lookUpFunctionValueInfo(Function *TheFn,
695                                            ModuleSummaryIndex *ExportSummary);
696 
697   // Returns true if the function definition must be unreachable.
698   //
699   // Note if this helper function returns true, `F` is guaranteed
700   // to be unreachable; if it returns false, `F` might still
701   // be unreachable but not covered by this helper function.
702   //
703   // Implementation-wise, if function definition is present, IR is analyzed; if
704   // not, look up function flags from ExportSummary as a fallback.
705   static bool mustBeUnreachableFunction(Function *const F,
706                                         ModuleSummaryIndex *ExportSummary);
707 
708   // Lower the module using the action and summary passed as command line
709   // arguments. For testing purposes only.
710   static bool
711   runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
712                 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
713                 function_ref<DominatorTree &(Function &)> LookupDomTree);
714 };
715 
716 struct DevirtIndex {
717   ModuleSummaryIndex &ExportSummary;
718   // The set in which to record GUIDs exported from their module by
719   // devirtualization, used by client to ensure they are not internalized.
720   std::set<GlobalValue::GUID> &ExportedGUIDs;
721   // A map in which to record the information necessary to locate the WPD
722   // resolution for local targets in case they are exported by cross module
723   // importing.
724   std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
725 
726   MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
727 
728   PatternList FunctionsToSkip;
729 
730   DevirtIndex(
731       ModuleSummaryIndex &ExportSummary,
732       std::set<GlobalValue::GUID> &ExportedGUIDs,
733       std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
734       : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
735         LocalWPDTargetsMap(LocalWPDTargetsMap) {
736     FunctionsToSkip.init(SkipFunctionNames);
737   }
738 
739   bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
740                                  const TypeIdCompatibleVtableInfo TIdInfo,
741                                  uint64_t ByteOffset);
742 
743   bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
744                            VTableSlotSummary &SlotSummary,
745                            VTableSlotInfo &SlotInfo,
746                            WholeProgramDevirtResolution *Res,
747                            std::set<ValueInfo> &DevirtTargets);
748 
749   void run();
750 };
751 } // end anonymous namespace
752 
753 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
754                                               ModuleAnalysisManager &AM) {
755   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
756   auto AARGetter = [&](Function &F) -> AAResults & {
757     return FAM.getResult<AAManager>(F);
758   };
759   auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
760     return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
761   };
762   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
763     return FAM.getResult<DominatorTreeAnalysis>(F);
764   };
765   if (UseCommandLine) {
766     if (!DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree))
767       return PreservedAnalyses::all();
768     return PreservedAnalyses::none();
769   }
770   if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
771                     ImportSummary)
772            .run())
773     return PreservedAnalyses::all();
774   return PreservedAnalyses::none();
775 }
776 
777 // Enable whole program visibility if enabled by client (e.g. linker) or
778 // internal option, and not force disabled.
779 bool llvm::hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
780   return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
781          !DisableWholeProgramVisibility;
782 }
783 
784 static bool
785 typeIDVisibleToRegularObj(StringRef TypeID,
786                           function_ref<bool(StringRef)> IsVisibleToRegularObj) {
787   // TypeID for member function pointer type is an internal construct
788   // and won't exist in IsVisibleToRegularObj. The full TypeID
789   // will be present and participate in invalidation.
790   if (TypeID.ends_with(".virtual"))
791     return false;
792 
793   // TypeID that doesn't start with Itanium mangling (_ZTS) will be
794   // non-externally visible types which cannot interact with
795   // external native files. See CodeGenModule::CreateMetadataIdentifierImpl.
796   if (!TypeID.consume_front("_ZTS"))
797     return false;
798 
799   // TypeID is keyed off the type name symbol (_ZTS). However, the native
800   // object may not contain this symbol if it does not contain a key
801   // function for the base type and thus only contains a reference to the
802   // type info (_ZTI). To catch this case we query using the type info
803   // symbol corresponding to the TypeID.
804   std::string typeInfo = ("_ZTI" + TypeID).str();
805   return IsVisibleToRegularObj(typeInfo);
806 }
807 
808 static bool
809 skipUpdateDueToValidation(GlobalVariable &GV,
810                           function_ref<bool(StringRef)> IsVisibleToRegularObj) {
811   SmallVector<MDNode *, 2> Types;
812   GV.getMetadata(LLVMContext::MD_type, Types);
813 
814   for (auto Type : Types)
815     if (auto *TypeID = dyn_cast<MDString>(Type->getOperand(1).get()))
816       return typeIDVisibleToRegularObj(TypeID->getString(),
817                                        IsVisibleToRegularObj);
818 
819   return false;
820 }
821 
822 /// If whole program visibility asserted, then upgrade all public vcall
823 /// visibility metadata on vtable definitions to linkage unit visibility in
824 /// Module IR (for regular or hybrid LTO).
825 void llvm::updateVCallVisibilityInModule(
826     Module &M, bool WholeProgramVisibilityEnabledInLTO,
827     const DenseSet<GlobalValue::GUID> &DynamicExportSymbols,
828     bool ValidateAllVtablesHaveTypeInfos,
829     function_ref<bool(StringRef)> IsVisibleToRegularObj) {
830   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
831     return;
832   for (GlobalVariable &GV : M.globals()) {
833     // Add linkage unit visibility to any variable with type metadata, which are
834     // the vtable definitions. We won't have an existing vcall_visibility
835     // metadata on vtable definitions with public visibility.
836     if (GV.hasMetadata(LLVMContext::MD_type) &&
837         GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic &&
838         // Don't upgrade the visibility for symbols exported to the dynamic
839         // linker, as we have no information on their eventual use.
840         !DynamicExportSymbols.count(GV.getGUID()) &&
841         // With validation enabled, we want to exclude symbols visible to
842         // regular objects. Local symbols will be in this group due to the
843         // current implementation but those with VCallVisibilityTranslationUnit
844         // will have already been marked in clang so are unaffected.
845         !(ValidateAllVtablesHaveTypeInfos &&
846           skipUpdateDueToValidation(GV, IsVisibleToRegularObj)))
847       GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
848   }
849 }
850 
851 void llvm::updatePublicTypeTestCalls(Module &M,
852                                      bool WholeProgramVisibilityEnabledInLTO) {
853   Function *PublicTypeTestFunc =
854       M.getFunction(Intrinsic::getName(Intrinsic::public_type_test));
855   if (!PublicTypeTestFunc)
856     return;
857   if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) {
858     Function *TypeTestFunc =
859         Intrinsic::getDeclaration(&M, Intrinsic::type_test);
860     for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
861       auto *CI = cast<CallInst>(U.getUser());
862       auto *NewCI = CallInst::Create(
863           TypeTestFunc, {CI->getArgOperand(0), CI->getArgOperand(1)},
864           std::nullopt, "", CI);
865       CI->replaceAllUsesWith(NewCI);
866       CI->eraseFromParent();
867     }
868   } else {
869     auto *True = ConstantInt::getTrue(M.getContext());
870     for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
871       auto *CI = cast<CallInst>(U.getUser());
872       CI->replaceAllUsesWith(True);
873       CI->eraseFromParent();
874     }
875   }
876 }
877 
878 /// Based on typeID string, get all associated vtable GUIDS that are
879 /// visible to regular objects.
880 void llvm::getVisibleToRegularObjVtableGUIDs(
881     ModuleSummaryIndex &Index,
882     DenseSet<GlobalValue::GUID> &VisibleToRegularObjSymbols,
883     function_ref<bool(StringRef)> IsVisibleToRegularObj) {
884   for (const auto &typeID : Index.typeIdCompatibleVtableMap()) {
885     if (typeIDVisibleToRegularObj(typeID.first, IsVisibleToRegularObj))
886       for (const TypeIdOffsetVtableInfo &P : typeID.second)
887         VisibleToRegularObjSymbols.insert(P.VTableVI.getGUID());
888   }
889 }
890 
891 /// If whole program visibility asserted, then upgrade all public vcall
892 /// visibility metadata on vtable definition summaries to linkage unit
893 /// visibility in Module summary index (for ThinLTO).
894 void llvm::updateVCallVisibilityInIndex(
895     ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO,
896     const DenseSet<GlobalValue::GUID> &DynamicExportSymbols,
897     const DenseSet<GlobalValue::GUID> &VisibleToRegularObjSymbols) {
898   if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
899     return;
900   for (auto &P : Index) {
901     // Don't upgrade the visibility for symbols exported to the dynamic
902     // linker, as we have no information on their eventual use.
903     if (DynamicExportSymbols.count(P.first))
904       continue;
905     for (auto &S : P.second.SummaryList) {
906       auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
907       if (!GVar ||
908           GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
909         continue;
910       // With validation enabled, we want to exclude symbols visible to regular
911       // objects. Local symbols will be in this group due to the current
912       // implementation but those with VCallVisibilityTranslationUnit will have
913       // already been marked in clang so are unaffected.
914       if (VisibleToRegularObjSymbols.count(P.first))
915         continue;
916       GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
917     }
918   }
919 }
920 
921 void llvm::runWholeProgramDevirtOnIndex(
922     ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
923     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
924   DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
925 }
926 
927 void llvm::updateIndexWPDForExports(
928     ModuleSummaryIndex &Summary,
929     function_ref<bool(StringRef, ValueInfo)> isExported,
930     std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
931   for (auto &T : LocalWPDTargetsMap) {
932     auto &VI = T.first;
933     // This was enforced earlier during trySingleImplDevirt.
934     assert(VI.getSummaryList().size() == 1 &&
935            "Devirt of local target has more than one copy");
936     auto &S = VI.getSummaryList()[0];
937     if (!isExported(S->modulePath(), VI))
938       continue;
939 
940     // It's been exported by a cross module import.
941     for (auto &SlotSummary : T.second) {
942       auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
943       assert(TIdSum);
944       auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
945       assert(WPDRes != TIdSum->WPDRes.end());
946       WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
947           WPDRes->second.SingleImplName,
948           Summary.getModuleHash(S->modulePath()));
949     }
950   }
951 }
952 
953 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
954   // Check that summary index contains regular LTO module when performing
955   // export to prevent occasional use of index from pure ThinLTO compilation
956   // (-fno-split-lto-module). This kind of summary index is passed to
957   // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
958   const auto &ModPaths = Summary->modulePaths();
959   if (ClSummaryAction != PassSummaryAction::Import &&
960       !ModPaths.contains(ModuleSummaryIndex::getRegularLTOModuleName()))
961     return createStringError(
962         errc::invalid_argument,
963         "combined summary should contain Regular LTO module");
964   return ErrorSuccess();
965 }
966 
967 bool DevirtModule::runForTesting(
968     Module &M, function_ref<AAResults &(Function &)> AARGetter,
969     function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
970     function_ref<DominatorTree &(Function &)> LookupDomTree) {
971   std::unique_ptr<ModuleSummaryIndex> Summary =
972       std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
973 
974   // Handle the command-line summary arguments. This code is for testing
975   // purposes only, so we handle errors directly.
976   if (!ClReadSummary.empty()) {
977     ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
978                           ": ");
979     auto ReadSummaryFile =
980         ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
981     if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
982             getModuleSummaryIndex(*ReadSummaryFile)) {
983       Summary = std::move(*SummaryOrErr);
984       ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
985     } else {
986       // Try YAML if we've failed with bitcode.
987       consumeError(SummaryOrErr.takeError());
988       yaml::Input In(ReadSummaryFile->getBuffer());
989       In >> *Summary;
990       ExitOnErr(errorCodeToError(In.error()));
991     }
992   }
993 
994   bool Changed =
995       DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
996                    ClSummaryAction == PassSummaryAction::Export ? Summary.get()
997                                                                 : nullptr,
998                    ClSummaryAction == PassSummaryAction::Import ? Summary.get()
999                                                                 : nullptr)
1000           .run();
1001 
1002   if (!ClWriteSummary.empty()) {
1003     ExitOnError ExitOnErr(
1004         "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
1005     std::error_code EC;
1006     if (StringRef(ClWriteSummary).ends_with(".bc")) {
1007       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
1008       ExitOnErr(errorCodeToError(EC));
1009       writeIndexToFile(*Summary, OS);
1010     } else {
1011       raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF);
1012       ExitOnErr(errorCodeToError(EC));
1013       yaml::Output Out(OS);
1014       Out << *Summary;
1015     }
1016   }
1017 
1018   return Changed;
1019 }
1020 
1021 void DevirtModule::buildTypeIdentifierMap(
1022     std::vector<VTableBits> &Bits,
1023     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1024   DenseMap<GlobalVariable *, VTableBits *> GVToBits;
1025   Bits.reserve(M.global_size());
1026   SmallVector<MDNode *, 2> Types;
1027   for (GlobalVariable &GV : M.globals()) {
1028     Types.clear();
1029     GV.getMetadata(LLVMContext::MD_type, Types);
1030     if (GV.isDeclaration() || Types.empty())
1031       continue;
1032 
1033     VTableBits *&BitsPtr = GVToBits[&GV];
1034     if (!BitsPtr) {
1035       Bits.emplace_back();
1036       Bits.back().GV = &GV;
1037       Bits.back().ObjectSize =
1038           M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
1039       BitsPtr = &Bits.back();
1040     }
1041 
1042     for (MDNode *Type : Types) {
1043       auto TypeID = Type->getOperand(1).get();
1044 
1045       uint64_t Offset =
1046           cast<ConstantInt>(
1047               cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
1048               ->getZExtValue();
1049 
1050       TypeIdMap[TypeID].insert({BitsPtr, Offset});
1051     }
1052   }
1053 }
1054 
1055 bool DevirtModule::tryFindVirtualCallTargets(
1056     std::vector<VirtualCallTarget> &TargetsForSlot,
1057     const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset,
1058     ModuleSummaryIndex *ExportSummary) {
1059   for (const TypeMemberInfo &TM : TypeMemberInfos) {
1060     if (!TM.Bits->GV->isConstant())
1061       return false;
1062 
1063     // We cannot perform whole program devirtualization analysis on a vtable
1064     // with public LTO visibility.
1065     if (TM.Bits->GV->getVCallVisibility() ==
1066         GlobalObject::VCallVisibilityPublic)
1067       return false;
1068 
1069     Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
1070                                        TM.Offset + ByteOffset, M, TM.Bits->GV);
1071     if (!Ptr)
1072       return false;
1073 
1074     auto C = Ptr->stripPointerCasts();
1075     // Make sure this is a function or alias to a function.
1076     auto Fn = dyn_cast<Function>(C);
1077     auto A = dyn_cast<GlobalAlias>(C);
1078     if (!Fn && A)
1079       Fn = dyn_cast<Function>(A->getAliasee());
1080 
1081     if (!Fn)
1082       return false;
1083 
1084     if (FunctionsToSkip.match(Fn->getName()))
1085       return false;
1086 
1087     // We can disregard __cxa_pure_virtual as a possible call target, as
1088     // calls to pure virtuals are UB.
1089     if (Fn->getName() == "__cxa_pure_virtual")
1090       continue;
1091 
1092     // We can disregard unreachable functions as possible call targets, as
1093     // unreachable functions shouldn't be called.
1094     if (mustBeUnreachableFunction(Fn, ExportSummary))
1095       continue;
1096 
1097     // Save the symbol used in the vtable to use as the devirtualization
1098     // target.
1099     auto GV = dyn_cast<GlobalValue>(C);
1100     assert(GV);
1101     TargetsForSlot.push_back({GV, &TM});
1102   }
1103 
1104   // Give up if we couldn't find any targets.
1105   return !TargetsForSlot.empty();
1106 }
1107 
1108 bool DevirtIndex::tryFindVirtualCallTargets(
1109     std::vector<ValueInfo> &TargetsForSlot,
1110     const TypeIdCompatibleVtableInfo TIdInfo, uint64_t ByteOffset) {
1111   for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
1112     // Find a representative copy of the vtable initializer.
1113     // We can have multiple available_externally, linkonce_odr and weak_odr
1114     // vtable initializers. We can also have multiple external vtable
1115     // initializers in the case of comdats, which we cannot check here.
1116     // The linker should give an error in this case.
1117     //
1118     // Also, handle the case of same-named local Vtables with the same path
1119     // and therefore the same GUID. This can happen if there isn't enough
1120     // distinguishing path when compiling the source file. In that case we
1121     // conservatively return false early.
1122     const GlobalVarSummary *VS = nullptr;
1123     bool LocalFound = false;
1124     for (const auto &S : P.VTableVI.getSummaryList()) {
1125       if (GlobalValue::isLocalLinkage(S->linkage())) {
1126         if (LocalFound)
1127           return false;
1128         LocalFound = true;
1129       }
1130       auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject());
1131       if (!CurVS->vTableFuncs().empty() ||
1132           // Previously clang did not attach the necessary type metadata to
1133           // available_externally vtables, in which case there would not
1134           // be any vtable functions listed in the summary and we need
1135           // to treat this case conservatively (in case the bitcode is old).
1136           // However, we will also not have any vtable functions in the
1137           // case of a pure virtual base class. In that case we do want
1138           // to set VS to avoid treating it conservatively.
1139           !GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
1140         VS = CurVS;
1141         // We cannot perform whole program devirtualization analysis on a vtable
1142         // with public LTO visibility.
1143         if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
1144           return false;
1145       }
1146     }
1147     // There will be no VS if all copies are available_externally having no
1148     // type metadata. In that case we can't safely perform WPD.
1149     if (!VS)
1150       return false;
1151     if (!VS->isLive())
1152       continue;
1153     for (auto VTP : VS->vTableFuncs()) {
1154       if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
1155         continue;
1156 
1157       if (mustBeUnreachableFunction(VTP.FuncVI))
1158         continue;
1159 
1160       TargetsForSlot.push_back(VTP.FuncVI);
1161     }
1162   }
1163 
1164   // Give up if we couldn't find any targets.
1165   return !TargetsForSlot.empty();
1166 }
1167 
1168 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
1169                                          Constant *TheFn, bool &IsExported) {
1170   // Don't devirtualize function if we're told to skip it
1171   // in -wholeprogramdevirt-skip.
1172   if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName()))
1173     return;
1174   auto Apply = [&](CallSiteInfo &CSInfo) {
1175     for (auto &&VCallSite : CSInfo.CallSites) {
1176       if (!OptimizedCalls.insert(&VCallSite.CB).second)
1177         continue;
1178 
1179       if (RemarksEnabled)
1180         VCallSite.emitRemark("single-impl",
1181                              TheFn->stripPointerCasts()->getName(), OREGetter);
1182       NumSingleImpl++;
1183       auto &CB = VCallSite.CB;
1184       assert(!CB.getCalledFunction() && "devirtualizing direct call?");
1185       IRBuilder<> Builder(&CB);
1186       Value *Callee =
1187           Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType());
1188 
1189       // If trap checking is enabled, add support to compare the virtual
1190       // function pointer to the devirtualized target. In case of a mismatch,
1191       // perform a debug trap.
1192       if (DevirtCheckMode == WPDCheckMode::Trap) {
1193         auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee);
1194         Instruction *ThenTerm =
1195             SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false);
1196         Builder.SetInsertPoint(ThenTerm);
1197         Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap);
1198         auto *CallTrap = Builder.CreateCall(TrapFn);
1199         CallTrap->setDebugLoc(CB.getDebugLoc());
1200       }
1201 
1202       // If fallback checking is enabled, add support to compare the virtual
1203       // function pointer to the devirtualized target. In case of a mismatch,
1204       // fall back to indirect call.
1205       if (DevirtCheckMode == WPDCheckMode::Fallback) {
1206         MDNode *Weights =
1207             MDBuilder(M.getContext()).createBranchWeights((1U << 20) - 1, 1);
1208         // Version the indirect call site. If the called value is equal to the
1209         // given callee, 'NewInst' will be executed, otherwise the original call
1210         // site will be executed.
1211         CallBase &NewInst = versionCallSite(CB, Callee, Weights);
1212         NewInst.setCalledOperand(Callee);
1213         // Since the new call site is direct, we must clear metadata that
1214         // is only appropriate for indirect calls. This includes !prof and
1215         // !callees metadata.
1216         NewInst.setMetadata(LLVMContext::MD_prof, nullptr);
1217         NewInst.setMetadata(LLVMContext::MD_callees, nullptr);
1218         // Additionally, we should remove them from the fallback indirect call,
1219         // so that we don't attempt to perform indirect call promotion later.
1220         CB.setMetadata(LLVMContext::MD_prof, nullptr);
1221         CB.setMetadata(LLVMContext::MD_callees, nullptr);
1222       }
1223 
1224       // In either trapping or non-checking mode, devirtualize original call.
1225       else {
1226         // Devirtualize unconditionally.
1227         CB.setCalledOperand(Callee);
1228         // Since the call site is now direct, we must clear metadata that
1229         // is only appropriate for indirect calls. This includes !prof and
1230         // !callees metadata.
1231         CB.setMetadata(LLVMContext::MD_prof, nullptr);
1232         CB.setMetadata(LLVMContext::MD_callees, nullptr);
1233         if (CB.getCalledOperand() &&
1234             CB.getOperandBundle(LLVMContext::OB_ptrauth)) {
1235           auto *NewCS =
1236               CallBase::removeOperandBundle(&CB, LLVMContext::OB_ptrauth, &CB);
1237           CB.replaceAllUsesWith(NewCS);
1238           // Schedule for deletion at the end of pass run.
1239           CallsWithPtrAuthBundleRemoved.push_back(&CB);
1240         }
1241       }
1242 
1243       // This use is no longer unsafe.
1244       if (VCallSite.NumUnsafeUses)
1245         --*VCallSite.NumUnsafeUses;
1246     }
1247     if (CSInfo.isExported())
1248       IsExported = true;
1249     CSInfo.markDevirt();
1250   };
1251   Apply(SlotInfo.CSInfo);
1252   for (auto &P : SlotInfo.ConstCSInfo)
1253     Apply(P.second);
1254 }
1255 
1256 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
1257   // We can't add calls if we haven't seen a definition
1258   if (Callee.getSummaryList().empty())
1259     return false;
1260 
1261   // Insert calls into the summary index so that the devirtualized targets
1262   // are eligible for import.
1263   // FIXME: Annotate type tests with hotness. For now, mark these as hot
1264   // to better ensure we have the opportunity to inline them.
1265   bool IsExported = false;
1266   auto &S = Callee.getSummaryList()[0];
1267   CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* HasTailCall = */ false,
1268                 /* RelBF = */ 0);
1269   auto AddCalls = [&](CallSiteInfo &CSInfo) {
1270     for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1271       FS->addCall({Callee, CI});
1272       IsExported |= S->modulePath() != FS->modulePath();
1273     }
1274     for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1275       FS->addCall({Callee, CI});
1276       IsExported |= S->modulePath() != FS->modulePath();
1277     }
1278   };
1279   AddCalls(SlotInfo.CSInfo);
1280   for (auto &P : SlotInfo.ConstCSInfo)
1281     AddCalls(P.second);
1282   return IsExported;
1283 }
1284 
1285 bool DevirtModule::trySingleImplDevirt(
1286     ModuleSummaryIndex *ExportSummary,
1287     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1288     WholeProgramDevirtResolution *Res) {
1289   // See if the program contains a single implementation of this virtual
1290   // function.
1291   auto *TheFn = TargetsForSlot[0].Fn;
1292   for (auto &&Target : TargetsForSlot)
1293     if (TheFn != Target.Fn)
1294       return false;
1295 
1296   // If so, update each call site to call that implementation directly.
1297   if (RemarksEnabled || AreStatisticsEnabled())
1298     TargetsForSlot[0].WasDevirt = true;
1299 
1300   bool IsExported = false;
1301   applySingleImplDevirt(SlotInfo, TheFn, IsExported);
1302   if (!IsExported)
1303     return false;
1304 
1305   // If the only implementation has local linkage, we must promote to external
1306   // to make it visible to thin LTO objects. We can only get here during the
1307   // ThinLTO export phase.
1308   if (TheFn->hasLocalLinkage()) {
1309     std::string NewName = (TheFn->getName() + ".llvm.merged").str();
1310 
1311     // Since we are renaming the function, any comdats with the same name must
1312     // also be renamed. This is required when targeting COFF, as the comdat name
1313     // must match one of the names of the symbols in the comdat.
1314     if (Comdat *C = TheFn->getComdat()) {
1315       if (C->getName() == TheFn->getName()) {
1316         Comdat *NewC = M.getOrInsertComdat(NewName);
1317         NewC->setSelectionKind(C->getSelectionKind());
1318         for (GlobalObject &GO : M.global_objects())
1319           if (GO.getComdat() == C)
1320             GO.setComdat(NewC);
1321       }
1322     }
1323 
1324     TheFn->setLinkage(GlobalValue::ExternalLinkage);
1325     TheFn->setVisibility(GlobalValue::HiddenVisibility);
1326     TheFn->setName(NewName);
1327   }
1328   if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1329     // Any needed promotion of 'TheFn' has already been done during
1330     // LTO unit split, so we can ignore return value of AddCalls.
1331     AddCalls(SlotInfo, TheFnVI);
1332 
1333   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1334   Res->SingleImplName = std::string(TheFn->getName());
1335 
1336   return true;
1337 }
1338 
1339 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1340                                       VTableSlotSummary &SlotSummary,
1341                                       VTableSlotInfo &SlotInfo,
1342                                       WholeProgramDevirtResolution *Res,
1343                                       std::set<ValueInfo> &DevirtTargets) {
1344   // See if the program contains a single implementation of this virtual
1345   // function.
1346   auto TheFn = TargetsForSlot[0];
1347   for (auto &&Target : TargetsForSlot)
1348     if (TheFn != Target)
1349       return false;
1350 
1351   // Don't devirtualize if we don't have target definition.
1352   auto Size = TheFn.getSummaryList().size();
1353   if (!Size)
1354     return false;
1355 
1356   // Don't devirtualize function if we're told to skip it
1357   // in -wholeprogramdevirt-skip.
1358   if (FunctionsToSkip.match(TheFn.name()))
1359     return false;
1360 
1361   // If the summary list contains multiple summaries where at least one is
1362   // a local, give up, as we won't know which (possibly promoted) name to use.
1363   for (const auto &S : TheFn.getSummaryList())
1364     if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1365       return false;
1366 
1367   // Collect functions devirtualized at least for one call site for stats.
1368   if (PrintSummaryDevirt || AreStatisticsEnabled())
1369     DevirtTargets.insert(TheFn);
1370 
1371   auto &S = TheFn.getSummaryList()[0];
1372   bool IsExported = AddCalls(SlotInfo, TheFn);
1373   if (IsExported)
1374     ExportedGUIDs.insert(TheFn.getGUID());
1375 
1376   // Record in summary for use in devirtualization during the ThinLTO import
1377   // step.
1378   Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1379   if (GlobalValue::isLocalLinkage(S->linkage())) {
1380     if (IsExported)
1381       // If target is a local function and we are exporting it by
1382       // devirtualizing a call in another module, we need to record the
1383       // promoted name.
1384       Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1385           TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1386     else {
1387       LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1388       Res->SingleImplName = std::string(TheFn.name());
1389     }
1390   } else
1391     Res->SingleImplName = std::string(TheFn.name());
1392 
1393   // Name will be empty if this thin link driven off of serialized combined
1394   // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1395   // legacy LTO API anyway.
1396   assert(!Res->SingleImplName.empty());
1397 
1398   return true;
1399 }
1400 
1401 void DevirtModule::tryICallBranchFunnel(
1402     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1403     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1404   Triple T(M.getTargetTriple());
1405   if (T.getArch() != Triple::x86_64)
1406     return;
1407 
1408   if (TargetsForSlot.size() > ClThreshold)
1409     return;
1410 
1411   bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1412   if (!HasNonDevirt)
1413     for (auto &P : SlotInfo.ConstCSInfo)
1414       if (!P.second.AllCallSitesDevirted) {
1415         HasNonDevirt = true;
1416         break;
1417       }
1418 
1419   if (!HasNonDevirt)
1420     return;
1421 
1422   FunctionType *FT =
1423       FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1424   Function *JT;
1425   if (isa<MDString>(Slot.TypeID)) {
1426     JT = Function::Create(FT, Function::ExternalLinkage,
1427                           M.getDataLayout().getProgramAddressSpace(),
1428                           getGlobalName(Slot, {}, "branch_funnel"), &M);
1429     JT->setVisibility(GlobalValue::HiddenVisibility);
1430   } else {
1431     JT = Function::Create(FT, Function::InternalLinkage,
1432                           M.getDataLayout().getProgramAddressSpace(),
1433                           "branch_funnel", &M);
1434   }
1435   JT->addParamAttr(0, Attribute::Nest);
1436 
1437   std::vector<Value *> JTArgs;
1438   JTArgs.push_back(JT->arg_begin());
1439   for (auto &T : TargetsForSlot) {
1440     JTArgs.push_back(getMemberAddr(T.TM));
1441     JTArgs.push_back(T.Fn);
1442   }
1443 
1444   BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1445   Function *Intr =
1446       Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1447 
1448   auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1449   CI->setTailCallKind(CallInst::TCK_MustTail);
1450   ReturnInst::Create(M.getContext(), nullptr, BB);
1451 
1452   bool IsExported = false;
1453   applyICallBranchFunnel(SlotInfo, JT, IsExported);
1454   if (IsExported)
1455     Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1456 }
1457 
1458 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1459                                           Constant *JT, bool &IsExported) {
1460   auto Apply = [&](CallSiteInfo &CSInfo) {
1461     if (CSInfo.isExported())
1462       IsExported = true;
1463     if (CSInfo.AllCallSitesDevirted)
1464       return;
1465 
1466     std::map<CallBase *, CallBase *> CallBases;
1467     for (auto &&VCallSite : CSInfo.CallSites) {
1468       CallBase &CB = VCallSite.CB;
1469 
1470       if (CallBases.find(&CB) != CallBases.end()) {
1471         // When finding devirtualizable calls, it's possible to find the same
1472         // vtable passed to multiple llvm.type.test or llvm.type.checked.load
1473         // calls, which can cause duplicate call sites to be recorded in
1474         // [Const]CallSites. If we've already found one of these
1475         // call instances, just ignore it. It will be replaced later.
1476         continue;
1477       }
1478 
1479       // Jump tables are only profitable if the retpoline mitigation is enabled.
1480       Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
1481       if (!FSAttr.isValid() ||
1482           !FSAttr.getValueAsString().contains("+retpoline"))
1483         continue;
1484 
1485       NumBranchFunnel++;
1486       if (RemarksEnabled)
1487         VCallSite.emitRemark("branch-funnel",
1488                              JT->stripPointerCasts()->getName(), OREGetter);
1489 
1490       // Pass the address of the vtable in the nest register, which is r10 on
1491       // x86_64.
1492       std::vector<Type *> NewArgs;
1493       NewArgs.push_back(Int8PtrTy);
1494       append_range(NewArgs, CB.getFunctionType()->params());
1495       FunctionType *NewFT =
1496           FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
1497                             CB.getFunctionType()->isVarArg());
1498       PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1499 
1500       IRBuilder<> IRB(&CB);
1501       std::vector<Value *> Args;
1502       Args.push_back(VCallSite.VTable);
1503       llvm::append_range(Args, CB.args());
1504 
1505       CallBase *NewCS = nullptr;
1506       if (isa<CallInst>(CB))
1507         NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1508       else
1509         NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1510                                  cast<InvokeInst>(CB).getNormalDest(),
1511                                  cast<InvokeInst>(CB).getUnwindDest(), Args);
1512       NewCS->setCallingConv(CB.getCallingConv());
1513 
1514       AttributeList Attrs = CB.getAttributes();
1515       std::vector<AttributeSet> NewArgAttrs;
1516       NewArgAttrs.push_back(AttributeSet::get(
1517           M.getContext(), ArrayRef<Attribute>{Attribute::get(
1518                               M.getContext(), Attribute::Nest)}));
1519       for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1520         NewArgAttrs.push_back(Attrs.getParamAttrs(I));
1521       NewCS->setAttributes(
1522           AttributeList::get(M.getContext(), Attrs.getFnAttrs(),
1523                              Attrs.getRetAttrs(), NewArgAttrs));
1524 
1525       CallBases[&CB] = NewCS;
1526 
1527       // This use is no longer unsafe.
1528       if (VCallSite.NumUnsafeUses)
1529         --*VCallSite.NumUnsafeUses;
1530     }
1531     // Don't mark as devirtualized because there may be callers compiled without
1532     // retpoline mitigation, which would mean that they are lowered to
1533     // llvm.type.test and therefore require an llvm.type.test resolution for the
1534     // type identifier.
1535 
1536     for (auto &[Old, New] : CallBases) {
1537       Old->replaceAllUsesWith(New);
1538       Old->eraseFromParent();
1539     }
1540   };
1541   Apply(SlotInfo.CSInfo);
1542   for (auto &P : SlotInfo.ConstCSInfo)
1543     Apply(P.second);
1544 }
1545 
1546 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1547     MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1548     ArrayRef<uint64_t> Args) {
1549   // Evaluate each function and store the result in each target's RetVal
1550   // field.
1551   for (VirtualCallTarget &Target : TargetsForSlot) {
1552     // TODO: Skip for now if the vtable symbol was an alias to a function,
1553     // need to evaluate whether it would be correct to analyze the aliasee
1554     // function for this optimization.
1555     auto Fn = dyn_cast<Function>(Target.Fn);
1556     if (!Fn)
1557       return false;
1558 
1559     if (Fn->arg_size() != Args.size() + 1)
1560       return false;
1561 
1562     Evaluator Eval(M.getDataLayout(), nullptr);
1563     SmallVector<Constant *, 2> EvalArgs;
1564     EvalArgs.push_back(
1565         Constant::getNullValue(Fn->getFunctionType()->getParamType(0)));
1566     for (unsigned I = 0; I != Args.size(); ++I) {
1567       auto *ArgTy =
1568           dyn_cast<IntegerType>(Fn->getFunctionType()->getParamType(I + 1));
1569       if (!ArgTy)
1570         return false;
1571       EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1572     }
1573 
1574     Constant *RetVal;
1575     if (!Eval.EvaluateFunction(Fn, RetVal, EvalArgs) ||
1576         !isa<ConstantInt>(RetVal))
1577       return false;
1578     Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1579   }
1580   return true;
1581 }
1582 
1583 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1584                                          uint64_t TheRetVal) {
1585   for (auto Call : CSInfo.CallSites) {
1586     if (!OptimizedCalls.insert(&Call.CB).second)
1587       continue;
1588     NumUniformRetVal++;
1589     Call.replaceAndErase(
1590         "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1591         ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
1592   }
1593   CSInfo.markDevirt();
1594 }
1595 
1596 bool DevirtModule::tryUniformRetValOpt(
1597     MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1598     WholeProgramDevirtResolution::ByArg *Res) {
1599   // Uniform return value optimization. If all functions return the same
1600   // constant, replace all calls with that constant.
1601   uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1602   for (const VirtualCallTarget &Target : TargetsForSlot)
1603     if (Target.RetVal != TheRetVal)
1604       return false;
1605 
1606   if (CSInfo.isExported()) {
1607     Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1608     Res->Info = TheRetVal;
1609   }
1610 
1611   applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1612   if (RemarksEnabled || AreStatisticsEnabled())
1613     for (auto &&Target : TargetsForSlot)
1614       Target.WasDevirt = true;
1615   return true;
1616 }
1617 
1618 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1619                                         ArrayRef<uint64_t> Args,
1620                                         StringRef Name) {
1621   std::string FullName = "__typeid_";
1622   raw_string_ostream OS(FullName);
1623   OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1624   for (uint64_t Arg : Args)
1625     OS << '_' << Arg;
1626   OS << '_' << Name;
1627   return OS.str();
1628 }
1629 
1630 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1631   Triple T(M.getTargetTriple());
1632   return T.isX86() && T.getObjectFormat() == Triple::ELF;
1633 }
1634 
1635 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1636                                 StringRef Name, Constant *C) {
1637   GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1638                                         getGlobalName(Slot, Args, Name), C, &M);
1639   GA->setVisibility(GlobalValue::HiddenVisibility);
1640 }
1641 
1642 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1643                                   StringRef Name, uint32_t Const,
1644                                   uint32_t &Storage) {
1645   if (shouldExportConstantsAsAbsoluteSymbols()) {
1646     exportGlobal(
1647         Slot, Args, Name,
1648         ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1649     return;
1650   }
1651 
1652   Storage = Const;
1653 }
1654 
1655 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1656                                      StringRef Name) {
1657   Constant *C =
1658       M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
1659   auto *GV = dyn_cast<GlobalVariable>(C);
1660   if (GV)
1661     GV->setVisibility(GlobalValue::HiddenVisibility);
1662   return C;
1663 }
1664 
1665 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1666                                        StringRef Name, IntegerType *IntTy,
1667                                        uint32_t Storage) {
1668   if (!shouldExportConstantsAsAbsoluteSymbols())
1669     return ConstantInt::get(IntTy, Storage);
1670 
1671   Constant *C = importGlobal(Slot, Args, Name);
1672   auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1673   C = ConstantExpr::getPtrToInt(C, IntTy);
1674 
1675   // We only need to set metadata if the global is newly created, in which
1676   // case it would not have hidden visibility.
1677   if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1678     return C;
1679 
1680   auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1681     auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1682     auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1683     GV->setMetadata(LLVMContext::MD_absolute_symbol,
1684                     MDNode::get(M.getContext(), {MinC, MaxC}));
1685   };
1686   unsigned AbsWidth = IntTy->getBitWidth();
1687   if (AbsWidth == IntPtrTy->getBitWidth())
1688     SetAbsRange(~0ull, ~0ull); // Full set.
1689   else
1690     SetAbsRange(0, 1ull << AbsWidth);
1691   return C;
1692 }
1693 
1694 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1695                                         bool IsOne,
1696                                         Constant *UniqueMemberAddr) {
1697   for (auto &&Call : CSInfo.CallSites) {
1698     if (!OptimizedCalls.insert(&Call.CB).second)
1699       continue;
1700     IRBuilder<> B(&Call.CB);
1701     Value *Cmp =
1702         B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
1703                      B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
1704     Cmp = B.CreateZExt(Cmp, Call.CB.getType());
1705     NumUniqueRetVal++;
1706     Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1707                          Cmp);
1708   }
1709   CSInfo.markDevirt();
1710 }
1711 
1712 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1713   return ConstantExpr::getGetElementPtr(Int8Ty, M->Bits->GV,
1714                                         ConstantInt::get(Int64Ty, M->Offset));
1715 }
1716 
1717 bool DevirtModule::tryUniqueRetValOpt(
1718     unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1719     CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1720     VTableSlot Slot, ArrayRef<uint64_t> Args) {
1721   // IsOne controls whether we look for a 0 or a 1.
1722   auto tryUniqueRetValOptFor = [&](bool IsOne) {
1723     const TypeMemberInfo *UniqueMember = nullptr;
1724     for (const VirtualCallTarget &Target : TargetsForSlot) {
1725       if (Target.RetVal == (IsOne ? 1 : 0)) {
1726         if (UniqueMember)
1727           return false;
1728         UniqueMember = Target.TM;
1729       }
1730     }
1731 
1732     // We should have found a unique member or bailed out by now. We already
1733     // checked for a uniform return value in tryUniformRetValOpt.
1734     assert(UniqueMember);
1735 
1736     Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1737     if (CSInfo.isExported()) {
1738       Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1739       Res->Info = IsOne;
1740 
1741       exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1742     }
1743 
1744     // Replace each call with the comparison.
1745     applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1746                          UniqueMemberAddr);
1747 
1748     // Update devirtualization statistics for targets.
1749     if (RemarksEnabled || AreStatisticsEnabled())
1750       for (auto &&Target : TargetsForSlot)
1751         Target.WasDevirt = true;
1752 
1753     return true;
1754   };
1755 
1756   if (BitWidth == 1) {
1757     if (tryUniqueRetValOptFor(true))
1758       return true;
1759     if (tryUniqueRetValOptFor(false))
1760       return true;
1761   }
1762   return false;
1763 }
1764 
1765 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1766                                          Constant *Byte, Constant *Bit) {
1767   for (auto Call : CSInfo.CallSites) {
1768     if (!OptimizedCalls.insert(&Call.CB).second)
1769       continue;
1770     auto *RetType = cast<IntegerType>(Call.CB.getType());
1771     IRBuilder<> B(&Call.CB);
1772     Value *Addr = B.CreatePtrAdd(Call.VTable, Byte);
1773     if (RetType->getBitWidth() == 1) {
1774       Value *Bits = B.CreateLoad(Int8Ty, Addr);
1775       Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1776       auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1777       NumVirtConstProp1Bit++;
1778       Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1779                            OREGetter, IsBitSet);
1780     } else {
1781       Value *Val = B.CreateLoad(RetType, Addr);
1782       NumVirtConstProp++;
1783       Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1784                            OREGetter, Val);
1785     }
1786   }
1787   CSInfo.markDevirt();
1788 }
1789 
1790 bool DevirtModule::tryVirtualConstProp(
1791     MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1792     WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1793   // TODO: Skip for now if the vtable symbol was an alias to a function,
1794   // need to evaluate whether it would be correct to analyze the aliasee
1795   // function for this optimization.
1796   auto Fn = dyn_cast<Function>(TargetsForSlot[0].Fn);
1797   if (!Fn)
1798     return false;
1799   // This only works if the function returns an integer.
1800   auto RetType = dyn_cast<IntegerType>(Fn->getReturnType());
1801   if (!RetType)
1802     return false;
1803   unsigned BitWidth = RetType->getBitWidth();
1804   if (BitWidth > 64)
1805     return false;
1806 
1807   // Make sure that each function is defined, does not access memory, takes at
1808   // least one argument, does not use its first argument (which we assume is
1809   // 'this'), and has the same return type.
1810   //
1811   // Note that we test whether this copy of the function is readnone, rather
1812   // than testing function attributes, which must hold for any copy of the
1813   // function, even a less optimized version substituted at link time. This is
1814   // sound because the virtual constant propagation optimizations effectively
1815   // inline all implementations of the virtual function into each call site,
1816   // rather than using function attributes to perform local optimization.
1817   for (VirtualCallTarget &Target : TargetsForSlot) {
1818     // TODO: Skip for now if the vtable symbol was an alias to a function,
1819     // need to evaluate whether it would be correct to analyze the aliasee
1820     // function for this optimization.
1821     auto Fn = dyn_cast<Function>(Target.Fn);
1822     if (!Fn)
1823       return false;
1824 
1825     if (Fn->isDeclaration() ||
1826         !computeFunctionBodyMemoryAccess(*Fn, AARGetter(*Fn))
1827              .doesNotAccessMemory() ||
1828         Fn->arg_empty() || !Fn->arg_begin()->use_empty() ||
1829         Fn->getReturnType() != RetType)
1830       return false;
1831   }
1832 
1833   for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1834     if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1835       continue;
1836 
1837     WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1838     if (Res)
1839       ResByArg = &Res->ResByArg[CSByConstantArg.first];
1840 
1841     if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1842       continue;
1843 
1844     if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1845                            ResByArg, Slot, CSByConstantArg.first))
1846       continue;
1847 
1848     // Find an allocation offset in bits in all vtables associated with the
1849     // type.
1850     uint64_t AllocBefore =
1851         findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1852     uint64_t AllocAfter =
1853         findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1854 
1855     // Calculate the total amount of padding needed to store a value at both
1856     // ends of the object.
1857     uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1858     for (auto &&Target : TargetsForSlot) {
1859       TotalPaddingBefore += std::max<int64_t>(
1860           (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1861       TotalPaddingAfter += std::max<int64_t>(
1862           (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1863     }
1864 
1865     // If the amount of padding is too large, give up.
1866     // FIXME: do something smarter here.
1867     if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1868       continue;
1869 
1870     // Calculate the offset to the value as a (possibly negative) byte offset
1871     // and (if applicable) a bit offset, and store the values in the targets.
1872     int64_t OffsetByte;
1873     uint64_t OffsetBit;
1874     if (TotalPaddingBefore <= TotalPaddingAfter)
1875       setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1876                             OffsetBit);
1877     else
1878       setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1879                            OffsetBit);
1880 
1881     if (RemarksEnabled || AreStatisticsEnabled())
1882       for (auto &&Target : TargetsForSlot)
1883         Target.WasDevirt = true;
1884 
1885 
1886     if (CSByConstantArg.second.isExported()) {
1887       ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1888       exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1889                      ResByArg->Byte);
1890       exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1891                      ResByArg->Bit);
1892     }
1893 
1894     // Rewrite each call to a load from OffsetByte/OffsetBit.
1895     Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1896     Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1897     applyVirtualConstProp(CSByConstantArg.second,
1898                           TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1899   }
1900   return true;
1901 }
1902 
1903 void DevirtModule::rebuildGlobal(VTableBits &B) {
1904   if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1905     return;
1906 
1907   // Align the before byte array to the global's minimum alignment so that we
1908   // don't break any alignment requirements on the global.
1909   Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
1910       B.GV->getAlign(), B.GV->getValueType());
1911   B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1912 
1913   // Before was stored in reverse order; flip it now.
1914   for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1915     std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1916 
1917   // Build an anonymous global containing the before bytes, followed by the
1918   // original initializer, followed by the after bytes.
1919   auto NewInit = ConstantStruct::getAnon(
1920       {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1921        B.GV->getInitializer(),
1922        ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1923   auto NewGV =
1924       new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1925                          GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1926   NewGV->setSection(B.GV->getSection());
1927   NewGV->setComdat(B.GV->getComdat());
1928   NewGV->setAlignment(B.GV->getAlign());
1929 
1930   // Copy the original vtable's metadata to the anonymous global, adjusting
1931   // offsets as required.
1932   NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1933 
1934   // Build an alias named after the original global, pointing at the second
1935   // element (the original initializer).
1936   auto Alias = GlobalAlias::create(
1937       B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1938       ConstantExpr::getGetElementPtr(
1939           NewInit->getType(), NewGV,
1940           ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1941                                ConstantInt::get(Int32Ty, 1)}),
1942       &M);
1943   Alias->setVisibility(B.GV->getVisibility());
1944   Alias->takeName(B.GV);
1945 
1946   B.GV->replaceAllUsesWith(Alias);
1947   B.GV->eraseFromParent();
1948 }
1949 
1950 bool DevirtModule::areRemarksEnabled() {
1951   const auto &FL = M.getFunctionList();
1952   for (const Function &Fn : FL) {
1953     if (Fn.empty())
1954       continue;
1955     auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &Fn.front());
1956     return DI.isEnabled();
1957   }
1958   return false;
1959 }
1960 
1961 void DevirtModule::scanTypeTestUsers(
1962     Function *TypeTestFunc,
1963     DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1964   // Find all virtual calls via a virtual table pointer %p under an assumption
1965   // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1966   // points to a member of the type identifier %md. Group calls by (type ID,
1967   // offset) pair (effectively the identity of the virtual function) and store
1968   // to CallSlots.
1969   for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
1970     auto *CI = dyn_cast<CallInst>(U.getUser());
1971     if (!CI)
1972       continue;
1973 
1974     // Search for virtual calls based on %p and add them to DevirtCalls.
1975     SmallVector<DevirtCallSite, 1> DevirtCalls;
1976     SmallVector<CallInst *, 1> Assumes;
1977     auto &DT = LookupDomTree(*CI->getFunction());
1978     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1979 
1980     Metadata *TypeId =
1981         cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1982     // If we found any, add them to CallSlots.
1983     if (!Assumes.empty()) {
1984       Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1985       for (DevirtCallSite Call : DevirtCalls)
1986         CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
1987     }
1988 
1989     auto RemoveTypeTestAssumes = [&]() {
1990       // We no longer need the assumes or the type test.
1991       for (auto *Assume : Assumes)
1992         Assume->eraseFromParent();
1993       // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1994       // may use the vtable argument later.
1995       if (CI->use_empty())
1996         CI->eraseFromParent();
1997     };
1998 
1999     // At this point we could remove all type test assume sequences, as they
2000     // were originally inserted for WPD. However, we can keep these in the
2001     // code stream for later analysis (e.g. to help drive more efficient ICP
2002     // sequences). They will eventually be removed by a second LowerTypeTests
2003     // invocation that cleans them up. In order to do this correctly, the first
2004     // LowerTypeTests invocation needs to know that they have "Unknown" type
2005     // test resolution, so that they aren't treated as Unsat and lowered to
2006     // False, which will break any uses on assumes. Below we remove any type
2007     // test assumes that will not be treated as Unknown by LTT.
2008 
2009     // The type test assumes will be treated by LTT as Unsat if the type id is
2010     // not used on a global (in which case it has no entry in the TypeIdMap).
2011     if (!TypeIdMap.count(TypeId))
2012       RemoveTypeTestAssumes();
2013 
2014     // For ThinLTO importing, we need to remove the type test assumes if this is
2015     // an MDString type id without a corresponding TypeIdSummary. Any
2016     // non-MDString type ids are ignored and treated as Unknown by LTT, so their
2017     // type test assumes can be kept. If the MDString type id is missing a
2018     // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
2019     // exporting phase of WPD from analyzing it), then it would be treated as
2020     // Unsat by LTT and we need to remove its type test assumes here. If not
2021     // used on a vcall we don't need them for later optimization use in any
2022     // case.
2023     else if (ImportSummary && isa<MDString>(TypeId)) {
2024       const TypeIdSummary *TidSummary =
2025           ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
2026       if (!TidSummary)
2027         RemoveTypeTestAssumes();
2028       else
2029         // If one was created it should not be Unsat, because if we reached here
2030         // the type id was used on a global.
2031         assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
2032     }
2033   }
2034 }
2035 
2036 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
2037   Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
2038 
2039   for (Use &U : llvm::make_early_inc_range(TypeCheckedLoadFunc->uses())) {
2040     auto *CI = dyn_cast<CallInst>(U.getUser());
2041     if (!CI)
2042       continue;
2043 
2044     Value *Ptr = CI->getArgOperand(0);
2045     Value *Offset = CI->getArgOperand(1);
2046     Value *TypeIdValue = CI->getArgOperand(2);
2047     Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
2048 
2049     SmallVector<DevirtCallSite, 1> DevirtCalls;
2050     SmallVector<Instruction *, 1> LoadedPtrs;
2051     SmallVector<Instruction *, 1> Preds;
2052     bool HasNonCallUses = false;
2053     auto &DT = LookupDomTree(*CI->getFunction());
2054     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
2055                                                HasNonCallUses, CI, DT);
2056 
2057     // Start by generating "pessimistic" code that explicitly loads the function
2058     // pointer from the vtable and performs the type check. If possible, we will
2059     // eliminate the load and the type check later.
2060 
2061     // If possible, only generate the load at the point where it is used.
2062     // This helps avoid unnecessary spills.
2063     IRBuilder<> LoadB(
2064         (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
2065 
2066     Value *LoadedValue = nullptr;
2067     if (TypeCheckedLoadFunc->getIntrinsicID() ==
2068         Intrinsic::type_checked_load_relative) {
2069       Value *GEP = LoadB.CreatePtrAdd(Ptr, Offset);
2070       LoadedValue = LoadB.CreateLoad(Int32Ty, GEP);
2071       LoadedValue = LoadB.CreateSExt(LoadedValue, IntPtrTy);
2072       GEP = LoadB.CreatePtrToInt(GEP, IntPtrTy);
2073       LoadedValue = LoadB.CreateAdd(GEP, LoadedValue);
2074       LoadedValue = LoadB.CreateIntToPtr(LoadedValue, Int8PtrTy);
2075     } else {
2076       Value *GEP = LoadB.CreatePtrAdd(Ptr, Offset);
2077       LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEP);
2078     }
2079 
2080     for (Instruction *LoadedPtr : LoadedPtrs) {
2081       LoadedPtr->replaceAllUsesWith(LoadedValue);
2082       LoadedPtr->eraseFromParent();
2083     }
2084 
2085     // Likewise for the type test.
2086     IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
2087     CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
2088 
2089     for (Instruction *Pred : Preds) {
2090       Pred->replaceAllUsesWith(TypeTestCall);
2091       Pred->eraseFromParent();
2092     }
2093 
2094     // We have already erased any extractvalue instructions that refer to the
2095     // intrinsic call, but the intrinsic may have other non-extractvalue uses
2096     // (although this is unlikely). In that case, explicitly build a pair and
2097     // RAUW it.
2098     if (!CI->use_empty()) {
2099       Value *Pair = PoisonValue::get(CI->getType());
2100       IRBuilder<> B(CI);
2101       Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
2102       Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
2103       CI->replaceAllUsesWith(Pair);
2104     }
2105 
2106     // The number of unsafe uses is initially the number of uses.
2107     auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
2108     NumUnsafeUses = DevirtCalls.size();
2109 
2110     // If the function pointer has a non-call user, we cannot eliminate the type
2111     // check, as one of those users may eventually call the pointer. Increment
2112     // the unsafe use count to make sure it cannot reach zero.
2113     if (HasNonCallUses)
2114       ++NumUnsafeUses;
2115     for (DevirtCallSite Call : DevirtCalls) {
2116       CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
2117                                                    &NumUnsafeUses);
2118     }
2119 
2120     CI->eraseFromParent();
2121   }
2122 }
2123 
2124 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
2125   auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
2126   if (!TypeId)
2127     return;
2128   const TypeIdSummary *TidSummary =
2129       ImportSummary->getTypeIdSummary(TypeId->getString());
2130   if (!TidSummary)
2131     return;
2132   auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
2133   if (ResI == TidSummary->WPDRes.end())
2134     return;
2135   const WholeProgramDevirtResolution &Res = ResI->second;
2136 
2137   if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
2138     assert(!Res.SingleImplName.empty());
2139     // The type of the function in the declaration is irrelevant because every
2140     // call site will cast it to the correct type.
2141     Constant *SingleImpl =
2142         cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
2143                                              Type::getVoidTy(M.getContext()))
2144                            .getCallee());
2145 
2146     // This is the import phase so we should not be exporting anything.
2147     bool IsExported = false;
2148     applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
2149     assert(!IsExported);
2150   }
2151 
2152   for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
2153     auto I = Res.ResByArg.find(CSByConstantArg.first);
2154     if (I == Res.ResByArg.end())
2155       continue;
2156     auto &ResByArg = I->second;
2157     // FIXME: We should figure out what to do about the "function name" argument
2158     // to the apply* functions, as the function names are unavailable during the
2159     // importing phase. For now we just pass the empty string. This does not
2160     // impact correctness because the function names are just used for remarks.
2161     switch (ResByArg.TheKind) {
2162     case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2163       applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
2164       break;
2165     case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
2166       Constant *UniqueMemberAddr =
2167           importGlobal(Slot, CSByConstantArg.first, "unique_member");
2168       applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
2169                            UniqueMemberAddr);
2170       break;
2171     }
2172     case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
2173       Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
2174                                       Int32Ty, ResByArg.Byte);
2175       Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
2176                                      ResByArg.Bit);
2177       applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
2178       break;
2179     }
2180     default:
2181       break;
2182     }
2183   }
2184 
2185   if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
2186     // The type of the function is irrelevant, because it's bitcast at calls
2187     // anyhow.
2188     Constant *JT = cast<Constant>(
2189         M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
2190                               Type::getVoidTy(M.getContext()))
2191             .getCallee());
2192     bool IsExported = false;
2193     applyICallBranchFunnel(SlotInfo, JT, IsExported);
2194     assert(!IsExported);
2195   }
2196 }
2197 
2198 void DevirtModule::removeRedundantTypeTests() {
2199   auto True = ConstantInt::getTrue(M.getContext());
2200   for (auto &&U : NumUnsafeUsesForTypeTest) {
2201     if (U.second == 0) {
2202       U.first->replaceAllUsesWith(True);
2203       U.first->eraseFromParent();
2204     }
2205   }
2206 }
2207 
2208 ValueInfo
2209 DevirtModule::lookUpFunctionValueInfo(Function *TheFn,
2210                                       ModuleSummaryIndex *ExportSummary) {
2211   assert((ExportSummary != nullptr) &&
2212          "Caller guarantees ExportSummary is not nullptr");
2213 
2214   const auto TheFnGUID = TheFn->getGUID();
2215   const auto TheFnGUIDWithExportedName = GlobalValue::getGUID(TheFn->getName());
2216   // Look up ValueInfo with the GUID in the current linkage.
2217   ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFnGUID);
2218   // If no entry is found and GUID is different from GUID computed using
2219   // exported name, look up ValueInfo with the exported name unconditionally.
2220   // This is a fallback.
2221   //
2222   // The reason to have a fallback:
2223   // 1. LTO could enable global value internalization via
2224   // `enable-lto-internalization`.
2225   // 2. The GUID in ExportedSummary is computed using exported name.
2226   if ((!TheFnVI) && (TheFnGUID != TheFnGUIDWithExportedName)) {
2227     TheFnVI = ExportSummary->getValueInfo(TheFnGUIDWithExportedName);
2228   }
2229   return TheFnVI;
2230 }
2231 
2232 bool DevirtModule::mustBeUnreachableFunction(
2233     Function *const F, ModuleSummaryIndex *ExportSummary) {
2234   // First, learn unreachability by analyzing function IR.
2235   if (!F->isDeclaration()) {
2236     // A function must be unreachable if its entry block ends with an
2237     // 'unreachable'.
2238     return isa<UnreachableInst>(F->getEntryBlock().getTerminator());
2239   }
2240   // Learn unreachability from ExportSummary if ExportSummary is present.
2241   return ExportSummary &&
2242          ::mustBeUnreachableFunction(
2243              DevirtModule::lookUpFunctionValueInfo(F, ExportSummary));
2244 }
2245 
2246 bool DevirtModule::run() {
2247   // If only some of the modules were split, we cannot correctly perform
2248   // this transformation. We already checked for the presense of type tests
2249   // with partially split modules during the thin link, and would have emitted
2250   // an error if any were found, so here we can simply return.
2251   if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
2252       (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
2253     return false;
2254 
2255   Function *TypeTestFunc =
2256       M.getFunction(Intrinsic::getName(Intrinsic::type_test));
2257   Function *TypeCheckedLoadFunc =
2258       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
2259   Function *TypeCheckedLoadRelativeFunc =
2260       M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load_relative));
2261   Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
2262 
2263   // Normally if there are no users of the devirtualization intrinsics in the
2264   // module, this pass has nothing to do. But if we are exporting, we also need
2265   // to handle any users that appear only in the function summaries.
2266   if (!ExportSummary &&
2267       (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
2268        AssumeFunc->use_empty()) &&
2269       (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()) &&
2270       (!TypeCheckedLoadRelativeFunc ||
2271        TypeCheckedLoadRelativeFunc->use_empty()))
2272     return false;
2273 
2274   // Rebuild type metadata into a map for easy lookup.
2275   std::vector<VTableBits> Bits;
2276   DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
2277   buildTypeIdentifierMap(Bits, TypeIdMap);
2278 
2279   if (TypeTestFunc && AssumeFunc)
2280     scanTypeTestUsers(TypeTestFunc, TypeIdMap);
2281 
2282   if (TypeCheckedLoadFunc)
2283     scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
2284 
2285   if (TypeCheckedLoadRelativeFunc)
2286     scanTypeCheckedLoadUsers(TypeCheckedLoadRelativeFunc);
2287 
2288   if (ImportSummary) {
2289     for (auto &S : CallSlots)
2290       importResolution(S.first, S.second);
2291 
2292     removeRedundantTypeTests();
2293 
2294     // We have lowered or deleted the type intrinsics, so we will no longer have
2295     // enough information to reason about the liveness of virtual function
2296     // pointers in GlobalDCE.
2297     for (GlobalVariable &GV : M.globals())
2298       GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2299 
2300     // The rest of the code is only necessary when exporting or during regular
2301     // LTO, so we are done.
2302     return true;
2303   }
2304 
2305   if (TypeIdMap.empty())
2306     return true;
2307 
2308   // Collect information from summary about which calls to try to devirtualize.
2309   if (ExportSummary) {
2310     DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2311     for (auto &P : TypeIdMap) {
2312       if (auto *TypeId = dyn_cast<MDString>(P.first))
2313         MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2314             TypeId);
2315     }
2316 
2317     for (auto &P : *ExportSummary) {
2318       for (auto &S : P.second.SummaryList) {
2319         auto *FS = dyn_cast<FunctionSummary>(S.get());
2320         if (!FS)
2321           continue;
2322         // FIXME: Only add live functions.
2323         for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2324           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2325             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2326           }
2327         }
2328         for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2329           for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2330             CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2331           }
2332         }
2333         for (const FunctionSummary::ConstVCall &VC :
2334              FS->type_test_assume_const_vcalls()) {
2335           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2336             CallSlots[{MD, VC.VFunc.Offset}]
2337                 .ConstCSInfo[VC.Args]
2338                 .addSummaryTypeTestAssumeUser(FS);
2339           }
2340         }
2341         for (const FunctionSummary::ConstVCall &VC :
2342              FS->type_checked_load_const_vcalls()) {
2343           for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2344             CallSlots[{MD, VC.VFunc.Offset}]
2345                 .ConstCSInfo[VC.Args]
2346                 .addSummaryTypeCheckedLoadUser(FS);
2347           }
2348         }
2349       }
2350     }
2351   }
2352 
2353   // For each (type, offset) pair:
2354   bool DidVirtualConstProp = false;
2355   std::map<std::string, GlobalValue *> DevirtTargets;
2356   for (auto &S : CallSlots) {
2357     // Search each of the members of the type identifier for the virtual
2358     // function implementation at offset S.first.ByteOffset, and add to
2359     // TargetsForSlot.
2360     std::vector<VirtualCallTarget> TargetsForSlot;
2361     WholeProgramDevirtResolution *Res = nullptr;
2362     const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
2363     if (ExportSummary && isa<MDString>(S.first.TypeID) &&
2364         TypeMemberInfos.size())
2365       // For any type id used on a global's type metadata, create the type id
2366       // summary resolution regardless of whether we can devirtualize, so that
2367       // lower type tests knows the type id is not Unsat. If it was not used on
2368       // a global's type metadata, the TypeIdMap entry set will be empty, and
2369       // we don't want to create an entry (with the default Unknown type
2370       // resolution), which can prevent detection of the Unsat.
2371       Res = &ExportSummary
2372                  ->getOrInsertTypeIdSummary(
2373                      cast<MDString>(S.first.TypeID)->getString())
2374                  .WPDRes[S.first.ByteOffset];
2375     if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
2376                                   S.first.ByteOffset, ExportSummary)) {
2377 
2378       if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
2379         DidVirtualConstProp |=
2380             tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
2381 
2382         tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
2383       }
2384 
2385       // Collect functions devirtualized at least for one call site for stats.
2386       if (RemarksEnabled || AreStatisticsEnabled())
2387         for (const auto &T : TargetsForSlot)
2388           if (T.WasDevirt)
2389             DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
2390     }
2391 
2392     // CFI-specific: if we are exporting and any llvm.type.checked.load
2393     // intrinsics were *not* devirtualized, we need to add the resulting
2394     // llvm.type.test intrinsics to the function summaries so that the
2395     // LowerTypeTests pass will export them.
2396     if (ExportSummary && isa<MDString>(S.first.TypeID)) {
2397       auto GUID =
2398           GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
2399       for (auto *FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
2400         FS->addTypeTest(GUID);
2401       for (auto &CCS : S.second.ConstCSInfo)
2402         for (auto *FS : CCS.second.SummaryTypeCheckedLoadUsers)
2403           FS->addTypeTest(GUID);
2404     }
2405   }
2406 
2407   if (RemarksEnabled) {
2408     // Generate remarks for each devirtualized function.
2409     for (const auto &DT : DevirtTargets) {
2410       GlobalValue *GV = DT.second;
2411       auto F = dyn_cast<Function>(GV);
2412       if (!F) {
2413         auto A = dyn_cast<GlobalAlias>(GV);
2414         assert(A && isa<Function>(A->getAliasee()));
2415         F = dyn_cast<Function>(A->getAliasee());
2416         assert(F);
2417       }
2418 
2419       using namespace ore;
2420       OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
2421                         << "devirtualized "
2422                         << NV("FunctionName", DT.first));
2423     }
2424   }
2425 
2426   NumDevirtTargets += DevirtTargets.size();
2427 
2428   removeRedundantTypeTests();
2429 
2430   // Rebuild each global we touched as part of virtual constant propagation to
2431   // include the before and after bytes.
2432   if (DidVirtualConstProp)
2433     for (VTableBits &B : Bits)
2434       rebuildGlobal(B);
2435 
2436   // We have lowered or deleted the type intrinsics, so we will no longer have
2437   // enough information to reason about the liveness of virtual function
2438   // pointers in GlobalDCE.
2439   for (GlobalVariable &GV : M.globals())
2440     GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2441 
2442   for (auto *CI : CallsWithPtrAuthBundleRemoved)
2443     CI->eraseFromParent();
2444 
2445   return true;
2446 }
2447 
2448 void DevirtIndex::run() {
2449   if (ExportSummary.typeIdCompatibleVtableMap().empty())
2450     return;
2451 
2452   DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
2453   for (const auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
2454     NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
2455     // Create the type id summary resolution regardlness of whether we can
2456     // devirtualize, so that lower type tests knows the type id is used on
2457     // a global and not Unsat. We do this here rather than in the loop over the
2458     // CallSlots, since that handling will only see type tests that directly
2459     // feed assumes, and we would miss any that aren't currently handled by WPD
2460     // (such as type tests that feed assumes via phis).
2461     ExportSummary.getOrInsertTypeIdSummary(P.first);
2462   }
2463 
2464   // Collect information from summary about which calls to try to devirtualize.
2465   for (auto &P : ExportSummary) {
2466     for (auto &S : P.second.SummaryList) {
2467       auto *FS = dyn_cast<FunctionSummary>(S.get());
2468       if (!FS)
2469         continue;
2470       // FIXME: Only add live functions.
2471       for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2472         for (StringRef Name : NameByGUID[VF.GUID]) {
2473           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2474         }
2475       }
2476       for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2477         for (StringRef Name : NameByGUID[VF.GUID]) {
2478           CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2479         }
2480       }
2481       for (const FunctionSummary::ConstVCall &VC :
2482            FS->type_test_assume_const_vcalls()) {
2483         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2484           CallSlots[{Name, VC.VFunc.Offset}]
2485               .ConstCSInfo[VC.Args]
2486               .addSummaryTypeTestAssumeUser(FS);
2487         }
2488       }
2489       for (const FunctionSummary::ConstVCall &VC :
2490            FS->type_checked_load_const_vcalls()) {
2491         for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2492           CallSlots[{Name, VC.VFunc.Offset}]
2493               .ConstCSInfo[VC.Args]
2494               .addSummaryTypeCheckedLoadUser(FS);
2495         }
2496       }
2497     }
2498   }
2499 
2500   std::set<ValueInfo> DevirtTargets;
2501   // For each (type, offset) pair:
2502   for (auto &S : CallSlots) {
2503     // Search each of the members of the type identifier for the virtual
2504     // function implementation at offset S.first.ByteOffset, and add to
2505     // TargetsForSlot.
2506     std::vector<ValueInfo> TargetsForSlot;
2507     auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2508     assert(TidSummary);
2509     // The type id summary would have been created while building the NameByGUID
2510     // map earlier.
2511     WholeProgramDevirtResolution *Res =
2512         &ExportSummary.getTypeIdSummary(S.first.TypeID)
2513              ->WPDRes[S.first.ByteOffset];
2514     if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2515                                   S.first.ByteOffset)) {
2516 
2517       if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2518                                DevirtTargets))
2519         continue;
2520     }
2521   }
2522 
2523   // Optionally have the thin link print message for each devirtualized
2524   // function.
2525   if (PrintSummaryDevirt)
2526     for (const auto &DT : DevirtTargets)
2527       errs() << "Devirtualized call to " << DT << "\n";
2528 
2529   NumDevirtTargets += DevirtTargets.size();
2530 }
2531