1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements whole program optimization of virtual calls in cases 10 // where we know (via !type metadata) that the list of callees is fixed. This 11 // includes the following: 12 // - Single implementation devirtualization: if a virtual call has a single 13 // possible callee, replace all calls with a direct call to that callee. 14 // - Virtual constant propagation: if the virtual function's return type is an 15 // integer <=64 bits and all possible callees are readnone, for each class and 16 // each list of constant arguments: evaluate the function, store the return 17 // value alongside the virtual table, and rewrite each virtual call as a load 18 // from the virtual table. 19 // - Uniform return value optimization: if the conditions for virtual constant 20 // propagation hold and each function returns the same constant value, replace 21 // each virtual call with that constant. 22 // - Unique return value optimization for i1 return values: if the conditions 23 // for virtual constant propagation hold and a single vtable's function 24 // returns 0, or a single vtable's function returns 1, replace each virtual 25 // call with a comparison of the vptr against that vtable's address. 26 // 27 // This pass is intended to be used during the regular and thin LTO pipelines: 28 // 29 // During regular LTO, the pass determines the best optimization for each 30 // virtual call and applies the resolutions directly to virtual calls that are 31 // eligible for virtual call optimization (i.e. calls that use either of the 32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics). 33 // 34 // During hybrid Regular/ThinLTO, the pass operates in two phases: 35 // - Export phase: this is run during the thin link over a single merged module 36 // that contains all vtables with !type metadata that participate in the link. 37 // The pass computes a resolution for each virtual call and stores it in the 38 // type identifier summary. 39 // - Import phase: this is run during the thin backends over the individual 40 // modules. The pass applies the resolutions previously computed during the 41 // import phase to each eligible virtual call. 42 // 43 // During ThinLTO, the pass operates in two phases: 44 // - Export phase: this is run during the thin link over the index which 45 // contains a summary of all vtables with !type metadata that participate in 46 // the link. It computes a resolution for each virtual call and stores it in 47 // the type identifier summary. Only single implementation devirtualization 48 // is supported. 49 // - Import phase: (same as with hybrid case above). 50 // 51 //===----------------------------------------------------------------------===// 52 53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/DenseMap.h" 56 #include "llvm/ADT/DenseMapInfo.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/MapVector.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/Triple.h" 62 #include "llvm/ADT/iterator_range.h" 63 #include "llvm/Analysis/AssumptionCache.h" 64 #include "llvm/Analysis/BasicAliasAnalysis.h" 65 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 66 #include "llvm/Analysis/TypeMetadataUtils.h" 67 #include "llvm/Bitcode/BitcodeReader.h" 68 #include "llvm/Bitcode/BitcodeWriter.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugLoc.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/Dominators.h" 74 #include "llvm/IR/Function.h" 75 #include "llvm/IR/GlobalAlias.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/InstrTypes.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Instructions.h" 81 #include "llvm/IR/Intrinsics.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MDBuilder.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/ModuleSummaryIndexYAML.h" 87 #include "llvm/InitializePasses.h" 88 #include "llvm/Pass.h" 89 #include "llvm/PassRegistry.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Errc.h" 93 #include "llvm/Support/Error.h" 94 #include "llvm/Support/FileSystem.h" 95 #include "llvm/Support/GlobPattern.h" 96 #include "llvm/Support/MathExtras.h" 97 #include "llvm/Transforms/IPO.h" 98 #include "llvm/Transforms/IPO/FunctionAttrs.h" 99 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 100 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 101 #include "llvm/Transforms/Utils/Evaluator.h" 102 #include <algorithm> 103 #include <cstddef> 104 #include <map> 105 #include <set> 106 #include <string> 107 108 using namespace llvm; 109 using namespace wholeprogramdevirt; 110 111 #define DEBUG_TYPE "wholeprogramdevirt" 112 113 STATISTIC(NumDevirtTargets, "Number of whole program devirtualization targets"); 114 STATISTIC(NumSingleImpl, "Number of single implementation devirtualizations"); 115 STATISTIC(NumBranchFunnel, "Number of branch funnels"); 116 STATISTIC(NumUniformRetVal, "Number of uniform return value optimizations"); 117 STATISTIC(NumUniqueRetVal, "Number of unique return value optimizations"); 118 STATISTIC(NumVirtConstProp1Bit, 119 "Number of 1 bit virtual constant propagations"); 120 STATISTIC(NumVirtConstProp, "Number of virtual constant propagations"); 121 122 static cl::opt<PassSummaryAction> ClSummaryAction( 123 "wholeprogramdevirt-summary-action", 124 cl::desc("What to do with the summary when running this pass"), 125 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"), 126 clEnumValN(PassSummaryAction::Import, "import", 127 "Import typeid resolutions from summary and globals"), 128 clEnumValN(PassSummaryAction::Export, "export", 129 "Export typeid resolutions to summary and globals")), 130 cl::Hidden); 131 132 static cl::opt<std::string> ClReadSummary( 133 "wholeprogramdevirt-read-summary", 134 cl::desc( 135 "Read summary from given bitcode or YAML file before running pass"), 136 cl::Hidden); 137 138 static cl::opt<std::string> ClWriteSummary( 139 "wholeprogramdevirt-write-summary", 140 cl::desc("Write summary to given bitcode or YAML file after running pass. " 141 "Output file format is deduced from extension: *.bc means writing " 142 "bitcode, otherwise YAML"), 143 cl::Hidden); 144 145 static cl::opt<unsigned> 146 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden, 147 cl::init(10), 148 cl::desc("Maximum number of call targets per " 149 "call site to enable branch funnels")); 150 151 static cl::opt<bool> 152 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden, 153 cl::desc("Print index-based devirtualization messages")); 154 155 /// Provide a way to force enable whole program visibility in tests. 156 /// This is needed to support legacy tests that don't contain 157 /// !vcall_visibility metadata (the mere presense of type tests 158 /// previously implied hidden visibility). 159 static cl::opt<bool> 160 WholeProgramVisibility("whole-program-visibility", cl::Hidden, 161 cl::desc("Enable whole program visibility")); 162 163 /// Provide a way to force disable whole program for debugging or workarounds, 164 /// when enabled via the linker. 165 static cl::opt<bool> DisableWholeProgramVisibility( 166 "disable-whole-program-visibility", cl::Hidden, 167 cl::desc("Disable whole program visibility (overrides enabling options)")); 168 169 /// Provide way to prevent certain function from being devirtualized 170 static cl::list<std::string> 171 SkipFunctionNames("wholeprogramdevirt-skip", 172 cl::desc("Prevent function(s) from being devirtualized"), 173 cl::Hidden, cl::CommaSeparated); 174 175 /// Mechanism to add runtime checking of devirtualization decisions, optionally 176 /// trapping or falling back to indirect call on any that are not correct. 177 /// Trapping mode is useful for debugging undefined behavior leading to failures 178 /// with WPD. Fallback mode is useful for ensuring safety when whole program 179 /// visibility may be compromised. 180 enum WPDCheckMode { None, Trap, Fallback }; 181 static cl::opt<WPDCheckMode> DevirtCheckMode( 182 "wholeprogramdevirt-check", cl::Hidden, 183 cl::desc("Type of checking for incorrect devirtualizations"), 184 cl::values(clEnumValN(WPDCheckMode::None, "none", "No checking"), 185 clEnumValN(WPDCheckMode::Trap, "trap", "Trap when incorrect"), 186 clEnumValN(WPDCheckMode::Fallback, "fallback", 187 "Fallback to indirect when incorrect"))); 188 189 namespace { 190 struct PatternList { 191 std::vector<GlobPattern> Patterns; 192 template <class T> void init(const T &StringList) { 193 for (const auto &S : StringList) 194 if (Expected<GlobPattern> Pat = GlobPattern::create(S)) 195 Patterns.push_back(std::move(*Pat)); 196 } 197 bool match(StringRef S) { 198 for (const GlobPattern &P : Patterns) 199 if (P.match(S)) 200 return true; 201 return false; 202 } 203 }; 204 } // namespace 205 206 // Find the minimum offset that we may store a value of size Size bits at. If 207 // IsAfter is set, look for an offset before the object, otherwise look for an 208 // offset after the object. 209 uint64_t 210 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets, 211 bool IsAfter, uint64_t Size) { 212 // Find a minimum offset taking into account only vtable sizes. 213 uint64_t MinByte = 0; 214 for (const VirtualCallTarget &Target : Targets) { 215 if (IsAfter) 216 MinByte = std::max(MinByte, Target.minAfterBytes()); 217 else 218 MinByte = std::max(MinByte, Target.minBeforeBytes()); 219 } 220 221 // Build a vector of arrays of bytes covering, for each target, a slice of the 222 // used region (see AccumBitVector::BytesUsed in 223 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively, 224 // this aligns the used regions to start at MinByte. 225 // 226 // In this example, A, B and C are vtables, # is a byte already allocated for 227 // a virtual function pointer, AAAA... (etc.) are the used regions for the 228 // vtables and Offset(X) is the value computed for the Offset variable below 229 // for X. 230 // 231 // Offset(A) 232 // | | 233 // |MinByte 234 // A: ################AAAAAAAA|AAAAAAAA 235 // B: ########BBBBBBBBBBBBBBBB|BBBB 236 // C: ########################|CCCCCCCCCCCCCCCC 237 // | Offset(B) | 238 // 239 // This code produces the slices of A, B and C that appear after the divider 240 // at MinByte. 241 std::vector<ArrayRef<uint8_t>> Used; 242 for (const VirtualCallTarget &Target : Targets) { 243 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed 244 : Target.TM->Bits->Before.BytesUsed; 245 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes() 246 : MinByte - Target.minBeforeBytes(); 247 248 // Disregard used regions that are smaller than Offset. These are 249 // effectively all-free regions that do not need to be checked. 250 if (VTUsed.size() > Offset) 251 Used.push_back(VTUsed.slice(Offset)); 252 } 253 254 if (Size == 1) { 255 // Find a free bit in each member of Used. 256 for (unsigned I = 0;; ++I) { 257 uint8_t BitsUsed = 0; 258 for (auto &&B : Used) 259 if (I < B.size()) 260 BitsUsed |= B[I]; 261 if (BitsUsed != 0xff) 262 return (MinByte + I) * 8 + countTrailingZeros(uint8_t(~BitsUsed)); 263 } 264 } else { 265 // Find a free (Size/8) byte region in each member of Used. 266 // FIXME: see if alignment helps. 267 for (unsigned I = 0;; ++I) { 268 for (auto &&B : Used) { 269 unsigned Byte = 0; 270 while ((I + Byte) < B.size() && Byte < (Size / 8)) { 271 if (B[I + Byte]) 272 goto NextI; 273 ++Byte; 274 } 275 } 276 return (MinByte + I) * 8; 277 NextI:; 278 } 279 } 280 } 281 282 void wholeprogramdevirt::setBeforeReturnValues( 283 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore, 284 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 285 if (BitWidth == 1) 286 OffsetByte = -(AllocBefore / 8 + 1); 287 else 288 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8); 289 OffsetBit = AllocBefore % 8; 290 291 for (VirtualCallTarget &Target : Targets) { 292 if (BitWidth == 1) 293 Target.setBeforeBit(AllocBefore); 294 else 295 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8); 296 } 297 } 298 299 void wholeprogramdevirt::setAfterReturnValues( 300 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter, 301 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) { 302 if (BitWidth == 1) 303 OffsetByte = AllocAfter / 8; 304 else 305 OffsetByte = (AllocAfter + 7) / 8; 306 OffsetBit = AllocAfter % 8; 307 308 for (VirtualCallTarget &Target : Targets) { 309 if (BitWidth == 1) 310 Target.setAfterBit(AllocAfter); 311 else 312 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8); 313 } 314 } 315 316 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM) 317 : Fn(Fn), TM(TM), 318 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {} 319 320 namespace { 321 322 // A slot in a set of virtual tables. The TypeID identifies the set of virtual 323 // tables, and the ByteOffset is the offset in bytes from the address point to 324 // the virtual function pointer. 325 struct VTableSlot { 326 Metadata *TypeID; 327 uint64_t ByteOffset; 328 }; 329 330 } // end anonymous namespace 331 332 namespace llvm { 333 334 template <> struct DenseMapInfo<VTableSlot> { 335 static VTableSlot getEmptyKey() { 336 return {DenseMapInfo<Metadata *>::getEmptyKey(), 337 DenseMapInfo<uint64_t>::getEmptyKey()}; 338 } 339 static VTableSlot getTombstoneKey() { 340 return {DenseMapInfo<Metadata *>::getTombstoneKey(), 341 DenseMapInfo<uint64_t>::getTombstoneKey()}; 342 } 343 static unsigned getHashValue(const VTableSlot &I) { 344 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^ 345 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 346 } 347 static bool isEqual(const VTableSlot &LHS, 348 const VTableSlot &RHS) { 349 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 350 } 351 }; 352 353 template <> struct DenseMapInfo<VTableSlotSummary> { 354 static VTableSlotSummary getEmptyKey() { 355 return {DenseMapInfo<StringRef>::getEmptyKey(), 356 DenseMapInfo<uint64_t>::getEmptyKey()}; 357 } 358 static VTableSlotSummary getTombstoneKey() { 359 return {DenseMapInfo<StringRef>::getTombstoneKey(), 360 DenseMapInfo<uint64_t>::getTombstoneKey()}; 361 } 362 static unsigned getHashValue(const VTableSlotSummary &I) { 363 return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^ 364 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset); 365 } 366 static bool isEqual(const VTableSlotSummary &LHS, 367 const VTableSlotSummary &RHS) { 368 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset; 369 } 370 }; 371 372 } // end namespace llvm 373 374 namespace { 375 376 // Returns true if the function must be unreachable based on ValueInfo. 377 // 378 // In particular, identifies a function as unreachable in the following 379 // conditions 380 // 1) All summaries are live. 381 // 2) All function summaries indicate it's unreachable 382 bool mustBeUnreachableFunction(ValueInfo TheFnVI) { 383 if ((!TheFnVI) || TheFnVI.getSummaryList().empty()) { 384 // Returns false if ValueInfo is absent, or the summary list is empty 385 // (e.g., function declarations). 386 return false; 387 } 388 389 for (const auto &Summary : TheFnVI.getSummaryList()) { 390 // Conservatively returns false if any non-live functions are seen. 391 // In general either all summaries should be live or all should be dead. 392 if (!Summary->isLive()) 393 return false; 394 if (auto *FS = dyn_cast<FunctionSummary>(Summary.get())) { 395 if (!FS->fflags().MustBeUnreachable) 396 return false; 397 } 398 // Do nothing if a non-function has the same GUID (which is rare). 399 // This is correct since non-function summaries are not relevant. 400 } 401 // All function summaries are live and all of them agree that the function is 402 // unreachble. 403 return true; 404 } 405 406 // A virtual call site. VTable is the loaded virtual table pointer, and CS is 407 // the indirect virtual call. 408 struct VirtualCallSite { 409 Value *VTable = nullptr; 410 CallBase &CB; 411 412 // If non-null, this field points to the associated unsafe use count stored in 413 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description 414 // of that field for details. 415 unsigned *NumUnsafeUses = nullptr; 416 417 void 418 emitRemark(const StringRef OptName, const StringRef TargetName, 419 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) { 420 Function *F = CB.getCaller(); 421 DebugLoc DLoc = CB.getDebugLoc(); 422 BasicBlock *Block = CB.getParent(); 423 424 using namespace ore; 425 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block) 426 << NV("Optimization", OptName) 427 << ": devirtualized a call to " 428 << NV("FunctionName", TargetName)); 429 } 430 431 void replaceAndErase( 432 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled, 433 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 434 Value *New) { 435 if (RemarksEnabled) 436 emitRemark(OptName, TargetName, OREGetter); 437 CB.replaceAllUsesWith(New); 438 if (auto *II = dyn_cast<InvokeInst>(&CB)) { 439 BranchInst::Create(II->getNormalDest(), &CB); 440 II->getUnwindDest()->removePredecessor(II->getParent()); 441 } 442 CB.eraseFromParent(); 443 // This use is no longer unsafe. 444 if (NumUnsafeUses) 445 --*NumUnsafeUses; 446 } 447 }; 448 449 // Call site information collected for a specific VTableSlot and possibly a list 450 // of constant integer arguments. The grouping by arguments is handled by the 451 // VTableSlotInfo class. 452 struct CallSiteInfo { 453 /// The set of call sites for this slot. Used during regular LTO and the 454 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any 455 /// call sites that appear in the merged module itself); in each of these 456 /// cases we are directly operating on the call sites at the IR level. 457 std::vector<VirtualCallSite> CallSites; 458 459 /// Whether all call sites represented by this CallSiteInfo, including those 460 /// in summaries, have been devirtualized. This starts off as true because a 461 /// default constructed CallSiteInfo represents no call sites. 462 bool AllCallSitesDevirted = true; 463 464 // These fields are used during the export phase of ThinLTO and reflect 465 // information collected from function summaries. 466 467 /// Whether any function summary contains an llvm.assume(llvm.type.test) for 468 /// this slot. 469 bool SummaryHasTypeTestAssumeUsers = false; 470 471 /// CFI-specific: a vector containing the list of function summaries that use 472 /// the llvm.type.checked.load intrinsic and therefore will require 473 /// resolutions for llvm.type.test in order to implement CFI checks if 474 /// devirtualization was unsuccessful. If devirtualization was successful, the 475 /// pass will clear this vector by calling markDevirt(). If at the end of the 476 /// pass the vector is non-empty, we will need to add a use of llvm.type.test 477 /// to each of the function summaries in the vector. 478 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers; 479 std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers; 480 481 bool isExported() const { 482 return SummaryHasTypeTestAssumeUsers || 483 !SummaryTypeCheckedLoadUsers.empty(); 484 } 485 486 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) { 487 SummaryTypeCheckedLoadUsers.push_back(FS); 488 AllCallSitesDevirted = false; 489 } 490 491 void addSummaryTypeTestAssumeUser(FunctionSummary *FS) { 492 SummaryTypeTestAssumeUsers.push_back(FS); 493 SummaryHasTypeTestAssumeUsers = true; 494 AllCallSitesDevirted = false; 495 } 496 497 void markDevirt() { 498 AllCallSitesDevirted = true; 499 500 // As explained in the comment for SummaryTypeCheckedLoadUsers. 501 SummaryTypeCheckedLoadUsers.clear(); 502 } 503 }; 504 505 // Call site information collected for a specific VTableSlot. 506 struct VTableSlotInfo { 507 // The set of call sites which do not have all constant integer arguments 508 // (excluding "this"). 509 CallSiteInfo CSInfo; 510 511 // The set of call sites with all constant integer arguments (excluding 512 // "this"), grouped by argument list. 513 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo; 514 515 void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses); 516 517 private: 518 CallSiteInfo &findCallSiteInfo(CallBase &CB); 519 }; 520 521 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) { 522 std::vector<uint64_t> Args; 523 auto *CBType = dyn_cast<IntegerType>(CB.getType()); 524 if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty()) 525 return CSInfo; 526 for (auto &&Arg : drop_begin(CB.args())) { 527 auto *CI = dyn_cast<ConstantInt>(Arg); 528 if (!CI || CI->getBitWidth() > 64) 529 return CSInfo; 530 Args.push_back(CI->getZExtValue()); 531 } 532 return ConstCSInfo[Args]; 533 } 534 535 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB, 536 unsigned *NumUnsafeUses) { 537 auto &CSI = findCallSiteInfo(CB); 538 CSI.AllCallSitesDevirted = false; 539 CSI.CallSites.push_back({VTable, CB, NumUnsafeUses}); 540 } 541 542 struct DevirtModule { 543 Module &M; 544 function_ref<AAResults &(Function &)> AARGetter; 545 function_ref<DominatorTree &(Function &)> LookupDomTree; 546 547 ModuleSummaryIndex *ExportSummary; 548 const ModuleSummaryIndex *ImportSummary; 549 550 IntegerType *Int8Ty; 551 PointerType *Int8PtrTy; 552 IntegerType *Int32Ty; 553 IntegerType *Int64Ty; 554 IntegerType *IntPtrTy; 555 /// Sizeless array type, used for imported vtables. This provides a signal 556 /// to analyzers that these imports may alias, as they do for example 557 /// when multiple unique return values occur in the same vtable. 558 ArrayType *Int8Arr0Ty; 559 560 bool RemarksEnabled; 561 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter; 562 563 MapVector<VTableSlot, VTableSlotInfo> CallSlots; 564 565 // Calls that have already been optimized. We may add a call to multiple 566 // VTableSlotInfos if vtable loads are coalesced and need to make sure not to 567 // optimize a call more than once. 568 SmallPtrSet<CallBase *, 8> OptimizedCalls; 569 570 // This map keeps track of the number of "unsafe" uses of a loaded function 571 // pointer. The key is the associated llvm.type.test intrinsic call generated 572 // by this pass. An unsafe use is one that calls the loaded function pointer 573 // directly. Every time we eliminate an unsafe use (for example, by 574 // devirtualizing it or by applying virtual constant propagation), we 575 // decrement the value stored in this map. If a value reaches zero, we can 576 // eliminate the type check by RAUWing the associated llvm.type.test call with 577 // true. 578 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest; 579 PatternList FunctionsToSkip; 580 581 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter, 582 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 583 function_ref<DominatorTree &(Function &)> LookupDomTree, 584 ModuleSummaryIndex *ExportSummary, 585 const ModuleSummaryIndex *ImportSummary) 586 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree), 587 ExportSummary(ExportSummary), ImportSummary(ImportSummary), 588 Int8Ty(Type::getInt8Ty(M.getContext())), 589 Int8PtrTy(Type::getInt8PtrTy(M.getContext())), 590 Int32Ty(Type::getInt32Ty(M.getContext())), 591 Int64Ty(Type::getInt64Ty(M.getContext())), 592 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)), 593 Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)), 594 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) { 595 assert(!(ExportSummary && ImportSummary)); 596 FunctionsToSkip.init(SkipFunctionNames); 597 } 598 599 bool areRemarksEnabled(); 600 601 void 602 scanTypeTestUsers(Function *TypeTestFunc, 603 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 604 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc); 605 606 void buildTypeIdentifierMap( 607 std::vector<VTableBits> &Bits, 608 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap); 609 610 bool 611 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot, 612 const std::set<TypeMemberInfo> &TypeMemberInfos, 613 uint64_t ByteOffset, 614 ModuleSummaryIndex *ExportSummary); 615 616 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn, 617 bool &IsExported); 618 bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary, 619 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 620 VTableSlotInfo &SlotInfo, 621 WholeProgramDevirtResolution *Res); 622 623 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT, 624 bool &IsExported); 625 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 626 VTableSlotInfo &SlotInfo, 627 WholeProgramDevirtResolution *Res, VTableSlot Slot); 628 629 bool tryEvaluateFunctionsWithArgs( 630 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 631 ArrayRef<uint64_t> Args); 632 633 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 634 uint64_t TheRetVal); 635 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 636 CallSiteInfo &CSInfo, 637 WholeProgramDevirtResolution::ByArg *Res); 638 639 // Returns the global symbol name that is used to export information about the 640 // given vtable slot and list of arguments. 641 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args, 642 StringRef Name); 643 644 bool shouldExportConstantsAsAbsoluteSymbols(); 645 646 // This function is called during the export phase to create a symbol 647 // definition containing information about the given vtable slot and list of 648 // arguments. 649 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 650 Constant *C); 651 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name, 652 uint32_t Const, uint32_t &Storage); 653 654 // This function is called during the import phase to create a reference to 655 // the symbol definition created during the export phase. 656 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 657 StringRef Name); 658 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 659 StringRef Name, IntegerType *IntTy, 660 uint32_t Storage); 661 662 Constant *getMemberAddr(const TypeMemberInfo *M); 663 664 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne, 665 Constant *UniqueMemberAddr); 666 bool tryUniqueRetValOpt(unsigned BitWidth, 667 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 668 CallSiteInfo &CSInfo, 669 WholeProgramDevirtResolution::ByArg *Res, 670 VTableSlot Slot, ArrayRef<uint64_t> Args); 671 672 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 673 Constant *Byte, Constant *Bit); 674 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot, 675 VTableSlotInfo &SlotInfo, 676 WholeProgramDevirtResolution *Res, VTableSlot Slot); 677 678 void rebuildGlobal(VTableBits &B); 679 680 // Apply the summary resolution for Slot to all virtual calls in SlotInfo. 681 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo); 682 683 // If we were able to eliminate all unsafe uses for a type checked load, 684 // eliminate the associated type tests by replacing them with true. 685 void removeRedundantTypeTests(); 686 687 bool run(); 688 689 // Look up the corresponding ValueInfo entry of `TheFn` in `ExportSummary`. 690 // 691 // Caller guarantees that `ExportSummary` is not nullptr. 692 static ValueInfo lookUpFunctionValueInfo(Function *TheFn, 693 ModuleSummaryIndex *ExportSummary); 694 695 // Returns true if the function definition must be unreachable. 696 // 697 // Note if this helper function returns true, `F` is guaranteed 698 // to be unreachable; if it returns false, `F` might still 699 // be unreachable but not covered by this helper function. 700 // 701 // Implementation-wise, if function definition is present, IR is analyzed; if 702 // not, look up function flags from ExportSummary as a fallback. 703 static bool mustBeUnreachableFunction(Function *const F, 704 ModuleSummaryIndex *ExportSummary); 705 706 // Lower the module using the action and summary passed as command line 707 // arguments. For testing purposes only. 708 static bool 709 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter, 710 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 711 function_ref<DominatorTree &(Function &)> LookupDomTree); 712 }; 713 714 struct DevirtIndex { 715 ModuleSummaryIndex &ExportSummary; 716 // The set in which to record GUIDs exported from their module by 717 // devirtualization, used by client to ensure they are not internalized. 718 std::set<GlobalValue::GUID> &ExportedGUIDs; 719 // A map in which to record the information necessary to locate the WPD 720 // resolution for local targets in case they are exported by cross module 721 // importing. 722 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap; 723 724 MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots; 725 726 PatternList FunctionsToSkip; 727 728 DevirtIndex( 729 ModuleSummaryIndex &ExportSummary, 730 std::set<GlobalValue::GUID> &ExportedGUIDs, 731 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) 732 : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs), 733 LocalWPDTargetsMap(LocalWPDTargetsMap) { 734 FunctionsToSkip.init(SkipFunctionNames); 735 } 736 737 bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot, 738 const TypeIdCompatibleVtableInfo TIdInfo, 739 uint64_t ByteOffset); 740 741 bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 742 VTableSlotSummary &SlotSummary, 743 VTableSlotInfo &SlotInfo, 744 WholeProgramDevirtResolution *Res, 745 std::set<ValueInfo> &DevirtTargets); 746 747 void run(); 748 }; 749 } // end anonymous namespace 750 751 PreservedAnalyses WholeProgramDevirtPass::run(Module &M, 752 ModuleAnalysisManager &AM) { 753 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 754 auto AARGetter = [&](Function &F) -> AAResults & { 755 return FAM.getResult<AAManager>(F); 756 }; 757 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & { 758 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F); 759 }; 760 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & { 761 return FAM.getResult<DominatorTreeAnalysis>(F); 762 }; 763 if (UseCommandLine) { 764 if (DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree)) 765 return PreservedAnalyses::all(); 766 return PreservedAnalyses::none(); 767 } 768 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary, 769 ImportSummary) 770 .run()) 771 return PreservedAnalyses::all(); 772 return PreservedAnalyses::none(); 773 } 774 775 namespace llvm { 776 // Enable whole program visibility if enabled by client (e.g. linker) or 777 // internal option, and not force disabled. 778 bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) { 779 return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) && 780 !DisableWholeProgramVisibility; 781 } 782 783 /// If whole program visibility asserted, then upgrade all public vcall 784 /// visibility metadata on vtable definitions to linkage unit visibility in 785 /// Module IR (for regular or hybrid LTO). 786 void updateVCallVisibilityInModule( 787 Module &M, bool WholeProgramVisibilityEnabledInLTO, 788 const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) { 789 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 790 return; 791 for (GlobalVariable &GV : M.globals()) { 792 // Add linkage unit visibility to any variable with type metadata, which are 793 // the vtable definitions. We won't have an existing vcall_visibility 794 // metadata on vtable definitions with public visibility. 795 if (GV.hasMetadata(LLVMContext::MD_type) && 796 GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic && 797 // Don't upgrade the visibility for symbols exported to the dynamic 798 // linker, as we have no information on their eventual use. 799 !DynamicExportSymbols.count(GV.getGUID())) 800 GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit); 801 } 802 } 803 804 void updatePublicTypeTestCalls(Module &M, 805 bool WholeProgramVisibilityEnabledInLTO) { 806 Function *PublicTypeTestFunc = 807 M.getFunction(Intrinsic::getName(Intrinsic::public_type_test)); 808 if (!PublicTypeTestFunc) 809 return; 810 if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) { 811 Function *TypeTestFunc = 812 Intrinsic::getDeclaration(&M, Intrinsic::type_test); 813 for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) { 814 auto *CI = cast<CallInst>(U.getUser()); 815 auto *NewCI = CallInst::Create( 816 TypeTestFunc, {CI->getArgOperand(0), CI->getArgOperand(1)}, 817 std::nullopt, "", CI); 818 CI->replaceAllUsesWith(NewCI); 819 CI->eraseFromParent(); 820 } 821 } else { 822 auto *True = ConstantInt::getTrue(M.getContext()); 823 for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) { 824 auto *CI = cast<CallInst>(U.getUser()); 825 CI->replaceAllUsesWith(True); 826 CI->eraseFromParent(); 827 } 828 } 829 } 830 831 /// If whole program visibility asserted, then upgrade all public vcall 832 /// visibility metadata on vtable definition summaries to linkage unit 833 /// visibility in Module summary index (for ThinLTO). 834 void updateVCallVisibilityInIndex( 835 ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO, 836 const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) { 837 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) 838 return; 839 for (auto &P : Index) { 840 // Don't upgrade the visibility for symbols exported to the dynamic 841 // linker, as we have no information on their eventual use. 842 if (DynamicExportSymbols.count(P.first)) 843 continue; 844 for (auto &S : P.second.SummaryList) { 845 auto *GVar = dyn_cast<GlobalVarSummary>(S.get()); 846 if (!GVar || 847 GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic) 848 continue; 849 GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit); 850 } 851 } 852 } 853 854 void runWholeProgramDevirtOnIndex( 855 ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs, 856 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 857 DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run(); 858 } 859 860 void updateIndexWPDForExports( 861 ModuleSummaryIndex &Summary, 862 function_ref<bool(StringRef, ValueInfo)> isExported, 863 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) { 864 for (auto &T : LocalWPDTargetsMap) { 865 auto &VI = T.first; 866 // This was enforced earlier during trySingleImplDevirt. 867 assert(VI.getSummaryList().size() == 1 && 868 "Devirt of local target has more than one copy"); 869 auto &S = VI.getSummaryList()[0]; 870 if (!isExported(S->modulePath(), VI)) 871 continue; 872 873 // It's been exported by a cross module import. 874 for (auto &SlotSummary : T.second) { 875 auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID); 876 assert(TIdSum); 877 auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset); 878 assert(WPDRes != TIdSum->WPDRes.end()); 879 WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 880 WPDRes->second.SingleImplName, 881 Summary.getModuleHash(S->modulePath())); 882 } 883 } 884 } 885 886 } // end namespace llvm 887 888 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) { 889 // Check that summary index contains regular LTO module when performing 890 // export to prevent occasional use of index from pure ThinLTO compilation 891 // (-fno-split-lto-module). This kind of summary index is passed to 892 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting. 893 const auto &ModPaths = Summary->modulePaths(); 894 if (ClSummaryAction != PassSummaryAction::Import && 895 ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) == 896 ModPaths.end()) 897 return createStringError( 898 errc::invalid_argument, 899 "combined summary should contain Regular LTO module"); 900 return ErrorSuccess(); 901 } 902 903 bool DevirtModule::runForTesting( 904 Module &M, function_ref<AAResults &(Function &)> AARGetter, 905 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter, 906 function_ref<DominatorTree &(Function &)> LookupDomTree) { 907 std::unique_ptr<ModuleSummaryIndex> Summary = 908 std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 909 910 // Handle the command-line summary arguments. This code is for testing 911 // purposes only, so we handle errors directly. 912 if (!ClReadSummary.empty()) { 913 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary + 914 ": "); 915 auto ReadSummaryFile = 916 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary))); 917 if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr = 918 getModuleSummaryIndex(*ReadSummaryFile)) { 919 Summary = std::move(*SummaryOrErr); 920 ExitOnErr(checkCombinedSummaryForTesting(Summary.get())); 921 } else { 922 // Try YAML if we've failed with bitcode. 923 consumeError(SummaryOrErr.takeError()); 924 yaml::Input In(ReadSummaryFile->getBuffer()); 925 In >> *Summary; 926 ExitOnErr(errorCodeToError(In.error())); 927 } 928 } 929 930 bool Changed = 931 DevirtModule(M, AARGetter, OREGetter, LookupDomTree, 932 ClSummaryAction == PassSummaryAction::Export ? Summary.get() 933 : nullptr, 934 ClSummaryAction == PassSummaryAction::Import ? Summary.get() 935 : nullptr) 936 .run(); 937 938 if (!ClWriteSummary.empty()) { 939 ExitOnError ExitOnErr( 940 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": "); 941 std::error_code EC; 942 if (StringRef(ClWriteSummary).endswith(".bc")) { 943 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None); 944 ExitOnErr(errorCodeToError(EC)); 945 writeIndexToFile(*Summary, OS); 946 } else { 947 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF); 948 ExitOnErr(errorCodeToError(EC)); 949 yaml::Output Out(OS); 950 Out << *Summary; 951 } 952 } 953 954 return Changed; 955 } 956 957 void DevirtModule::buildTypeIdentifierMap( 958 std::vector<VTableBits> &Bits, 959 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 960 DenseMap<GlobalVariable *, VTableBits *> GVToBits; 961 Bits.reserve(M.getGlobalList().size()); 962 SmallVector<MDNode *, 2> Types; 963 for (GlobalVariable &GV : M.globals()) { 964 Types.clear(); 965 GV.getMetadata(LLVMContext::MD_type, Types); 966 if (GV.isDeclaration() || Types.empty()) 967 continue; 968 969 VTableBits *&BitsPtr = GVToBits[&GV]; 970 if (!BitsPtr) { 971 Bits.emplace_back(); 972 Bits.back().GV = &GV; 973 Bits.back().ObjectSize = 974 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType()); 975 BitsPtr = &Bits.back(); 976 } 977 978 for (MDNode *Type : Types) { 979 auto TypeID = Type->getOperand(1).get(); 980 981 uint64_t Offset = 982 cast<ConstantInt>( 983 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 984 ->getZExtValue(); 985 986 TypeIdMap[TypeID].insert({BitsPtr, Offset}); 987 } 988 } 989 } 990 991 bool DevirtModule::tryFindVirtualCallTargets( 992 std::vector<VirtualCallTarget> &TargetsForSlot, 993 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset, 994 ModuleSummaryIndex *ExportSummary) { 995 for (const TypeMemberInfo &TM : TypeMemberInfos) { 996 if (!TM.Bits->GV->isConstant()) 997 return false; 998 999 // We cannot perform whole program devirtualization analysis on a vtable 1000 // with public LTO visibility. 1001 if (TM.Bits->GV->getVCallVisibility() == 1002 GlobalObject::VCallVisibilityPublic) 1003 return false; 1004 1005 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(), 1006 TM.Offset + ByteOffset, M); 1007 if (!Ptr) 1008 return false; 1009 1010 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts()); 1011 if (!Fn) 1012 return false; 1013 1014 if (FunctionsToSkip.match(Fn->getName())) 1015 return false; 1016 1017 // We can disregard __cxa_pure_virtual as a possible call target, as 1018 // calls to pure virtuals are UB. 1019 if (Fn->getName() == "__cxa_pure_virtual") 1020 continue; 1021 1022 // We can disregard unreachable functions as possible call targets, as 1023 // unreachable functions shouldn't be called. 1024 if (mustBeUnreachableFunction(Fn, ExportSummary)) 1025 continue; 1026 1027 TargetsForSlot.push_back({Fn, &TM}); 1028 } 1029 1030 // Give up if we couldn't find any targets. 1031 return !TargetsForSlot.empty(); 1032 } 1033 1034 bool DevirtIndex::tryFindVirtualCallTargets( 1035 std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo, 1036 uint64_t ByteOffset) { 1037 for (const TypeIdOffsetVtableInfo &P : TIdInfo) { 1038 // Find a representative copy of the vtable initializer. 1039 // We can have multiple available_externally, linkonce_odr and weak_odr 1040 // vtable initializers. We can also have multiple external vtable 1041 // initializers in the case of comdats, which we cannot check here. 1042 // The linker should give an error in this case. 1043 // 1044 // Also, handle the case of same-named local Vtables with the same path 1045 // and therefore the same GUID. This can happen if there isn't enough 1046 // distinguishing path when compiling the source file. In that case we 1047 // conservatively return false early. 1048 const GlobalVarSummary *VS = nullptr; 1049 bool LocalFound = false; 1050 for (const auto &S : P.VTableVI.getSummaryList()) { 1051 if (GlobalValue::isLocalLinkage(S->linkage())) { 1052 if (LocalFound) 1053 return false; 1054 LocalFound = true; 1055 } 1056 auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject()); 1057 if (!CurVS->vTableFuncs().empty() || 1058 // Previously clang did not attach the necessary type metadata to 1059 // available_externally vtables, in which case there would not 1060 // be any vtable functions listed in the summary and we need 1061 // to treat this case conservatively (in case the bitcode is old). 1062 // However, we will also not have any vtable functions in the 1063 // case of a pure virtual base class. In that case we do want 1064 // to set VS to avoid treating it conservatively. 1065 !GlobalValue::isAvailableExternallyLinkage(S->linkage())) { 1066 VS = CurVS; 1067 // We cannot perform whole program devirtualization analysis on a vtable 1068 // with public LTO visibility. 1069 if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic) 1070 return false; 1071 } 1072 } 1073 // There will be no VS if all copies are available_externally having no 1074 // type metadata. In that case we can't safely perform WPD. 1075 if (!VS) 1076 return false; 1077 if (!VS->isLive()) 1078 continue; 1079 for (auto VTP : VS->vTableFuncs()) { 1080 if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset) 1081 continue; 1082 1083 if (mustBeUnreachableFunction(VTP.FuncVI)) 1084 continue; 1085 1086 TargetsForSlot.push_back(VTP.FuncVI); 1087 } 1088 } 1089 1090 // Give up if we couldn't find any targets. 1091 return !TargetsForSlot.empty(); 1092 } 1093 1094 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo, 1095 Constant *TheFn, bool &IsExported) { 1096 // Don't devirtualize function if we're told to skip it 1097 // in -wholeprogramdevirt-skip. 1098 if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName())) 1099 return; 1100 auto Apply = [&](CallSiteInfo &CSInfo) { 1101 for (auto &&VCallSite : CSInfo.CallSites) { 1102 if (!OptimizedCalls.insert(&VCallSite.CB).second) 1103 continue; 1104 1105 if (RemarksEnabled) 1106 VCallSite.emitRemark("single-impl", 1107 TheFn->stripPointerCasts()->getName(), OREGetter); 1108 NumSingleImpl++; 1109 auto &CB = VCallSite.CB; 1110 assert(!CB.getCalledFunction() && "devirtualizing direct call?"); 1111 IRBuilder<> Builder(&CB); 1112 Value *Callee = 1113 Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType()); 1114 1115 // If trap checking is enabled, add support to compare the virtual 1116 // function pointer to the devirtualized target. In case of a mismatch, 1117 // perform a debug trap. 1118 if (DevirtCheckMode == WPDCheckMode::Trap) { 1119 auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee); 1120 Instruction *ThenTerm = 1121 SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false); 1122 Builder.SetInsertPoint(ThenTerm); 1123 Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap); 1124 auto *CallTrap = Builder.CreateCall(TrapFn); 1125 CallTrap->setDebugLoc(CB.getDebugLoc()); 1126 } 1127 1128 // If fallback checking is enabled, add support to compare the virtual 1129 // function pointer to the devirtualized target. In case of a mismatch, 1130 // fall back to indirect call. 1131 if (DevirtCheckMode == WPDCheckMode::Fallback) { 1132 MDNode *Weights = 1133 MDBuilder(M.getContext()).createBranchWeights((1U << 20) - 1, 1); 1134 // Version the indirect call site. If the called value is equal to the 1135 // given callee, 'NewInst' will be executed, otherwise the original call 1136 // site will be executed. 1137 CallBase &NewInst = versionCallSite(CB, Callee, Weights); 1138 NewInst.setCalledOperand(Callee); 1139 // Since the new call site is direct, we must clear metadata that 1140 // is only appropriate for indirect calls. This includes !prof and 1141 // !callees metadata. 1142 NewInst.setMetadata(LLVMContext::MD_prof, nullptr); 1143 NewInst.setMetadata(LLVMContext::MD_callees, nullptr); 1144 // Additionally, we should remove them from the fallback indirect call, 1145 // so that we don't attempt to perform indirect call promotion later. 1146 CB.setMetadata(LLVMContext::MD_prof, nullptr); 1147 CB.setMetadata(LLVMContext::MD_callees, nullptr); 1148 } 1149 1150 // In either trapping or non-checking mode, devirtualize original call. 1151 else { 1152 // Devirtualize unconditionally. 1153 CB.setCalledOperand(Callee); 1154 // Since the call site is now direct, we must clear metadata that 1155 // is only appropriate for indirect calls. This includes !prof and 1156 // !callees metadata. 1157 CB.setMetadata(LLVMContext::MD_prof, nullptr); 1158 CB.setMetadata(LLVMContext::MD_callees, nullptr); 1159 } 1160 1161 // This use is no longer unsafe. 1162 if (VCallSite.NumUnsafeUses) 1163 --*VCallSite.NumUnsafeUses; 1164 } 1165 if (CSInfo.isExported()) 1166 IsExported = true; 1167 CSInfo.markDevirt(); 1168 }; 1169 Apply(SlotInfo.CSInfo); 1170 for (auto &P : SlotInfo.ConstCSInfo) 1171 Apply(P.second); 1172 } 1173 1174 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) { 1175 // We can't add calls if we haven't seen a definition 1176 if (Callee.getSummaryList().empty()) 1177 return false; 1178 1179 // Insert calls into the summary index so that the devirtualized targets 1180 // are eligible for import. 1181 // FIXME: Annotate type tests with hotness. For now, mark these as hot 1182 // to better ensure we have the opportunity to inline them. 1183 bool IsExported = false; 1184 auto &S = Callee.getSummaryList()[0]; 1185 CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0); 1186 auto AddCalls = [&](CallSiteInfo &CSInfo) { 1187 for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) { 1188 FS->addCall({Callee, CI}); 1189 IsExported |= S->modulePath() != FS->modulePath(); 1190 } 1191 for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) { 1192 FS->addCall({Callee, CI}); 1193 IsExported |= S->modulePath() != FS->modulePath(); 1194 } 1195 }; 1196 AddCalls(SlotInfo.CSInfo); 1197 for (auto &P : SlotInfo.ConstCSInfo) 1198 AddCalls(P.second); 1199 return IsExported; 1200 } 1201 1202 bool DevirtModule::trySingleImplDevirt( 1203 ModuleSummaryIndex *ExportSummary, 1204 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1205 WholeProgramDevirtResolution *Res) { 1206 // See if the program contains a single implementation of this virtual 1207 // function. 1208 Function *TheFn = TargetsForSlot[0].Fn; 1209 for (auto &&Target : TargetsForSlot) 1210 if (TheFn != Target.Fn) 1211 return false; 1212 1213 // If so, update each call site to call that implementation directly. 1214 if (RemarksEnabled || AreStatisticsEnabled()) 1215 TargetsForSlot[0].WasDevirt = true; 1216 1217 bool IsExported = false; 1218 applySingleImplDevirt(SlotInfo, TheFn, IsExported); 1219 if (!IsExported) 1220 return false; 1221 1222 // If the only implementation has local linkage, we must promote to external 1223 // to make it visible to thin LTO objects. We can only get here during the 1224 // ThinLTO export phase. 1225 if (TheFn->hasLocalLinkage()) { 1226 std::string NewName = (TheFn->getName() + ".llvm.merged").str(); 1227 1228 // Since we are renaming the function, any comdats with the same name must 1229 // also be renamed. This is required when targeting COFF, as the comdat name 1230 // must match one of the names of the symbols in the comdat. 1231 if (Comdat *C = TheFn->getComdat()) { 1232 if (C->getName() == TheFn->getName()) { 1233 Comdat *NewC = M.getOrInsertComdat(NewName); 1234 NewC->setSelectionKind(C->getSelectionKind()); 1235 for (GlobalObject &GO : M.global_objects()) 1236 if (GO.getComdat() == C) 1237 GO.setComdat(NewC); 1238 } 1239 } 1240 1241 TheFn->setLinkage(GlobalValue::ExternalLinkage); 1242 TheFn->setVisibility(GlobalValue::HiddenVisibility); 1243 TheFn->setName(NewName); 1244 } 1245 if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID())) 1246 // Any needed promotion of 'TheFn' has already been done during 1247 // LTO unit split, so we can ignore return value of AddCalls. 1248 AddCalls(SlotInfo, TheFnVI); 1249 1250 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1251 Res->SingleImplName = std::string(TheFn->getName()); 1252 1253 return true; 1254 } 1255 1256 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot, 1257 VTableSlotSummary &SlotSummary, 1258 VTableSlotInfo &SlotInfo, 1259 WholeProgramDevirtResolution *Res, 1260 std::set<ValueInfo> &DevirtTargets) { 1261 // See if the program contains a single implementation of this virtual 1262 // function. 1263 auto TheFn = TargetsForSlot[0]; 1264 for (auto &&Target : TargetsForSlot) 1265 if (TheFn != Target) 1266 return false; 1267 1268 // Don't devirtualize if we don't have target definition. 1269 auto Size = TheFn.getSummaryList().size(); 1270 if (!Size) 1271 return false; 1272 1273 // Don't devirtualize function if we're told to skip it 1274 // in -wholeprogramdevirt-skip. 1275 if (FunctionsToSkip.match(TheFn.name())) 1276 return false; 1277 1278 // If the summary list contains multiple summaries where at least one is 1279 // a local, give up, as we won't know which (possibly promoted) name to use. 1280 for (const auto &S : TheFn.getSummaryList()) 1281 if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1) 1282 return false; 1283 1284 // Collect functions devirtualized at least for one call site for stats. 1285 if (PrintSummaryDevirt || AreStatisticsEnabled()) 1286 DevirtTargets.insert(TheFn); 1287 1288 auto &S = TheFn.getSummaryList()[0]; 1289 bool IsExported = AddCalls(SlotInfo, TheFn); 1290 if (IsExported) 1291 ExportedGUIDs.insert(TheFn.getGUID()); 1292 1293 // Record in summary for use in devirtualization during the ThinLTO import 1294 // step. 1295 Res->TheKind = WholeProgramDevirtResolution::SingleImpl; 1296 if (GlobalValue::isLocalLinkage(S->linkage())) { 1297 if (IsExported) 1298 // If target is a local function and we are exporting it by 1299 // devirtualizing a call in another module, we need to record the 1300 // promoted name. 1301 Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal( 1302 TheFn.name(), ExportSummary.getModuleHash(S->modulePath())); 1303 else { 1304 LocalWPDTargetsMap[TheFn].push_back(SlotSummary); 1305 Res->SingleImplName = std::string(TheFn.name()); 1306 } 1307 } else 1308 Res->SingleImplName = std::string(TheFn.name()); 1309 1310 // Name will be empty if this thin link driven off of serialized combined 1311 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the 1312 // legacy LTO API anyway. 1313 assert(!Res->SingleImplName.empty()); 1314 1315 return true; 1316 } 1317 1318 void DevirtModule::tryICallBranchFunnel( 1319 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1320 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1321 Triple T(M.getTargetTriple()); 1322 if (T.getArch() != Triple::x86_64) 1323 return; 1324 1325 if (TargetsForSlot.size() > ClThreshold) 1326 return; 1327 1328 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted; 1329 if (!HasNonDevirt) 1330 for (auto &P : SlotInfo.ConstCSInfo) 1331 if (!P.second.AllCallSitesDevirted) { 1332 HasNonDevirt = true; 1333 break; 1334 } 1335 1336 if (!HasNonDevirt) 1337 return; 1338 1339 FunctionType *FT = 1340 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true); 1341 Function *JT; 1342 if (isa<MDString>(Slot.TypeID)) { 1343 JT = Function::Create(FT, Function::ExternalLinkage, 1344 M.getDataLayout().getProgramAddressSpace(), 1345 getGlobalName(Slot, {}, "branch_funnel"), &M); 1346 JT->setVisibility(GlobalValue::HiddenVisibility); 1347 } else { 1348 JT = Function::Create(FT, Function::InternalLinkage, 1349 M.getDataLayout().getProgramAddressSpace(), 1350 "branch_funnel", &M); 1351 } 1352 JT->addParamAttr(0, Attribute::Nest); 1353 1354 std::vector<Value *> JTArgs; 1355 JTArgs.push_back(JT->arg_begin()); 1356 for (auto &T : TargetsForSlot) { 1357 JTArgs.push_back(getMemberAddr(T.TM)); 1358 JTArgs.push_back(T.Fn); 1359 } 1360 1361 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr); 1362 Function *Intr = 1363 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {}); 1364 1365 auto *CI = CallInst::Create(Intr, JTArgs, "", BB); 1366 CI->setTailCallKind(CallInst::TCK_MustTail); 1367 ReturnInst::Create(M.getContext(), nullptr, BB); 1368 1369 bool IsExported = false; 1370 applyICallBranchFunnel(SlotInfo, JT, IsExported); 1371 if (IsExported) 1372 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel; 1373 } 1374 1375 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo, 1376 Constant *JT, bool &IsExported) { 1377 auto Apply = [&](CallSiteInfo &CSInfo) { 1378 if (CSInfo.isExported()) 1379 IsExported = true; 1380 if (CSInfo.AllCallSitesDevirted) 1381 return; 1382 for (auto &&VCallSite : CSInfo.CallSites) { 1383 CallBase &CB = VCallSite.CB; 1384 1385 // Jump tables are only profitable if the retpoline mitigation is enabled. 1386 Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features"); 1387 if (!FSAttr.isValid() || 1388 !FSAttr.getValueAsString().contains("+retpoline")) 1389 continue; 1390 1391 NumBranchFunnel++; 1392 if (RemarksEnabled) 1393 VCallSite.emitRemark("branch-funnel", 1394 JT->stripPointerCasts()->getName(), OREGetter); 1395 1396 // Pass the address of the vtable in the nest register, which is r10 on 1397 // x86_64. 1398 std::vector<Type *> NewArgs; 1399 NewArgs.push_back(Int8PtrTy); 1400 append_range(NewArgs, CB.getFunctionType()->params()); 1401 FunctionType *NewFT = 1402 FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs, 1403 CB.getFunctionType()->isVarArg()); 1404 PointerType *NewFTPtr = PointerType::getUnqual(NewFT); 1405 1406 IRBuilder<> IRB(&CB); 1407 std::vector<Value *> Args; 1408 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy)); 1409 llvm::append_range(Args, CB.args()); 1410 1411 CallBase *NewCS = nullptr; 1412 if (isa<CallInst>(CB)) 1413 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args); 1414 else 1415 NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr), 1416 cast<InvokeInst>(CB).getNormalDest(), 1417 cast<InvokeInst>(CB).getUnwindDest(), Args); 1418 NewCS->setCallingConv(CB.getCallingConv()); 1419 1420 AttributeList Attrs = CB.getAttributes(); 1421 std::vector<AttributeSet> NewArgAttrs; 1422 NewArgAttrs.push_back(AttributeSet::get( 1423 M.getContext(), ArrayRef<Attribute>{Attribute::get( 1424 M.getContext(), Attribute::Nest)})); 1425 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I) 1426 NewArgAttrs.push_back(Attrs.getParamAttrs(I)); 1427 NewCS->setAttributes( 1428 AttributeList::get(M.getContext(), Attrs.getFnAttrs(), 1429 Attrs.getRetAttrs(), NewArgAttrs)); 1430 1431 CB.replaceAllUsesWith(NewCS); 1432 CB.eraseFromParent(); 1433 1434 // This use is no longer unsafe. 1435 if (VCallSite.NumUnsafeUses) 1436 --*VCallSite.NumUnsafeUses; 1437 } 1438 // Don't mark as devirtualized because there may be callers compiled without 1439 // retpoline mitigation, which would mean that they are lowered to 1440 // llvm.type.test and therefore require an llvm.type.test resolution for the 1441 // type identifier. 1442 }; 1443 Apply(SlotInfo.CSInfo); 1444 for (auto &P : SlotInfo.ConstCSInfo) 1445 Apply(P.second); 1446 } 1447 1448 bool DevirtModule::tryEvaluateFunctionsWithArgs( 1449 MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1450 ArrayRef<uint64_t> Args) { 1451 // Evaluate each function and store the result in each target's RetVal 1452 // field. 1453 for (VirtualCallTarget &Target : TargetsForSlot) { 1454 if (Target.Fn->arg_size() != Args.size() + 1) 1455 return false; 1456 1457 Evaluator Eval(M.getDataLayout(), nullptr); 1458 SmallVector<Constant *, 2> EvalArgs; 1459 EvalArgs.push_back( 1460 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0))); 1461 for (unsigned I = 0; I != Args.size(); ++I) { 1462 auto *ArgTy = dyn_cast<IntegerType>( 1463 Target.Fn->getFunctionType()->getParamType(I + 1)); 1464 if (!ArgTy) 1465 return false; 1466 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I])); 1467 } 1468 1469 Constant *RetVal; 1470 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) || 1471 !isa<ConstantInt>(RetVal)) 1472 return false; 1473 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue(); 1474 } 1475 return true; 1476 } 1477 1478 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1479 uint64_t TheRetVal) { 1480 for (auto Call : CSInfo.CallSites) { 1481 if (!OptimizedCalls.insert(&Call.CB).second) 1482 continue; 1483 NumUniformRetVal++; 1484 Call.replaceAndErase( 1485 "uniform-ret-val", FnName, RemarksEnabled, OREGetter, 1486 ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal)); 1487 } 1488 CSInfo.markDevirt(); 1489 } 1490 1491 bool DevirtModule::tryUniformRetValOpt( 1492 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo, 1493 WholeProgramDevirtResolution::ByArg *Res) { 1494 // Uniform return value optimization. If all functions return the same 1495 // constant, replace all calls with that constant. 1496 uint64_t TheRetVal = TargetsForSlot[0].RetVal; 1497 for (const VirtualCallTarget &Target : TargetsForSlot) 1498 if (Target.RetVal != TheRetVal) 1499 return false; 1500 1501 if (CSInfo.isExported()) { 1502 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 1503 Res->Info = TheRetVal; 1504 } 1505 1506 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal); 1507 if (RemarksEnabled || AreStatisticsEnabled()) 1508 for (auto &&Target : TargetsForSlot) 1509 Target.WasDevirt = true; 1510 return true; 1511 } 1512 1513 std::string DevirtModule::getGlobalName(VTableSlot Slot, 1514 ArrayRef<uint64_t> Args, 1515 StringRef Name) { 1516 std::string FullName = "__typeid_"; 1517 raw_string_ostream OS(FullName); 1518 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset; 1519 for (uint64_t Arg : Args) 1520 OS << '_' << Arg; 1521 OS << '_' << Name; 1522 return OS.str(); 1523 } 1524 1525 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() { 1526 Triple T(M.getTargetTriple()); 1527 return T.isX86() && T.getObjectFormat() == Triple::ELF; 1528 } 1529 1530 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1531 StringRef Name, Constant *C) { 1532 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage, 1533 getGlobalName(Slot, Args, Name), C, &M); 1534 GA->setVisibility(GlobalValue::HiddenVisibility); 1535 } 1536 1537 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1538 StringRef Name, uint32_t Const, 1539 uint32_t &Storage) { 1540 if (shouldExportConstantsAsAbsoluteSymbols()) { 1541 exportGlobal( 1542 Slot, Args, Name, 1543 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy)); 1544 return; 1545 } 1546 1547 Storage = Const; 1548 } 1549 1550 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, 1551 StringRef Name) { 1552 Constant *C = 1553 M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty); 1554 auto *GV = dyn_cast<GlobalVariable>(C); 1555 if (GV) 1556 GV->setVisibility(GlobalValue::HiddenVisibility); 1557 return C; 1558 } 1559 1560 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, 1561 StringRef Name, IntegerType *IntTy, 1562 uint32_t Storage) { 1563 if (!shouldExportConstantsAsAbsoluteSymbols()) 1564 return ConstantInt::get(IntTy, Storage); 1565 1566 Constant *C = importGlobal(Slot, Args, Name); 1567 auto *GV = cast<GlobalVariable>(C->stripPointerCasts()); 1568 C = ConstantExpr::getPtrToInt(C, IntTy); 1569 1570 // We only need to set metadata if the global is newly created, in which 1571 // case it would not have hidden visibility. 1572 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol)) 1573 return C; 1574 1575 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) { 1576 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min)); 1577 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max)); 1578 GV->setMetadata(LLVMContext::MD_absolute_symbol, 1579 MDNode::get(M.getContext(), {MinC, MaxC})); 1580 }; 1581 unsigned AbsWidth = IntTy->getBitWidth(); 1582 if (AbsWidth == IntPtrTy->getBitWidth()) 1583 SetAbsRange(~0ull, ~0ull); // Full set. 1584 else 1585 SetAbsRange(0, 1ull << AbsWidth); 1586 return C; 1587 } 1588 1589 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, 1590 bool IsOne, 1591 Constant *UniqueMemberAddr) { 1592 for (auto &&Call : CSInfo.CallSites) { 1593 if (!OptimizedCalls.insert(&Call.CB).second) 1594 continue; 1595 IRBuilder<> B(&Call.CB); 1596 Value *Cmp = 1597 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable, 1598 B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType())); 1599 Cmp = B.CreateZExt(Cmp, Call.CB.getType()); 1600 NumUniqueRetVal++; 1601 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter, 1602 Cmp); 1603 } 1604 CSInfo.markDevirt(); 1605 } 1606 1607 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) { 1608 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy); 1609 return ConstantExpr::getGetElementPtr(Int8Ty, C, 1610 ConstantInt::get(Int64Ty, M->Offset)); 1611 } 1612 1613 bool DevirtModule::tryUniqueRetValOpt( 1614 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot, 1615 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res, 1616 VTableSlot Slot, ArrayRef<uint64_t> Args) { 1617 // IsOne controls whether we look for a 0 or a 1. 1618 auto tryUniqueRetValOptFor = [&](bool IsOne) { 1619 const TypeMemberInfo *UniqueMember = nullptr; 1620 for (const VirtualCallTarget &Target : TargetsForSlot) { 1621 if (Target.RetVal == (IsOne ? 1 : 0)) { 1622 if (UniqueMember) 1623 return false; 1624 UniqueMember = Target.TM; 1625 } 1626 } 1627 1628 // We should have found a unique member or bailed out by now. We already 1629 // checked for a uniform return value in tryUniformRetValOpt. 1630 assert(UniqueMember); 1631 1632 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember); 1633 if (CSInfo.isExported()) { 1634 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 1635 Res->Info = IsOne; 1636 1637 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr); 1638 } 1639 1640 // Replace each call with the comparison. 1641 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne, 1642 UniqueMemberAddr); 1643 1644 // Update devirtualization statistics for targets. 1645 if (RemarksEnabled || AreStatisticsEnabled()) 1646 for (auto &&Target : TargetsForSlot) 1647 Target.WasDevirt = true; 1648 1649 return true; 1650 }; 1651 1652 if (BitWidth == 1) { 1653 if (tryUniqueRetValOptFor(true)) 1654 return true; 1655 if (tryUniqueRetValOptFor(false)) 1656 return true; 1657 } 1658 return false; 1659 } 1660 1661 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName, 1662 Constant *Byte, Constant *Bit) { 1663 for (auto Call : CSInfo.CallSites) { 1664 if (!OptimizedCalls.insert(&Call.CB).second) 1665 continue; 1666 auto *RetType = cast<IntegerType>(Call.CB.getType()); 1667 IRBuilder<> B(&Call.CB); 1668 Value *Addr = 1669 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte); 1670 if (RetType->getBitWidth() == 1) { 1671 Value *Bits = B.CreateLoad(Int8Ty, Addr); 1672 Value *BitsAndBit = B.CreateAnd(Bits, Bit); 1673 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0)); 1674 NumVirtConstProp1Bit++; 1675 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled, 1676 OREGetter, IsBitSet); 1677 } else { 1678 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo()); 1679 Value *Val = B.CreateLoad(RetType, ValAddr); 1680 NumVirtConstProp++; 1681 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled, 1682 OREGetter, Val); 1683 } 1684 } 1685 CSInfo.markDevirt(); 1686 } 1687 1688 bool DevirtModule::tryVirtualConstProp( 1689 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo, 1690 WholeProgramDevirtResolution *Res, VTableSlot Slot) { 1691 // This only works if the function returns an integer. 1692 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType()); 1693 if (!RetType) 1694 return false; 1695 unsigned BitWidth = RetType->getBitWidth(); 1696 if (BitWidth > 64) 1697 return false; 1698 1699 // Make sure that each function is defined, does not access memory, takes at 1700 // least one argument, does not use its first argument (which we assume is 1701 // 'this'), and has the same return type. 1702 // 1703 // Note that we test whether this copy of the function is readnone, rather 1704 // than testing function attributes, which must hold for any copy of the 1705 // function, even a less optimized version substituted at link time. This is 1706 // sound because the virtual constant propagation optimizations effectively 1707 // inline all implementations of the virtual function into each call site, 1708 // rather than using function attributes to perform local optimization. 1709 for (VirtualCallTarget &Target : TargetsForSlot) { 1710 if (Target.Fn->isDeclaration() || 1711 !computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) 1712 .doesNotAccessMemory() || 1713 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() || 1714 Target.Fn->getReturnType() != RetType) 1715 return false; 1716 } 1717 1718 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) { 1719 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first)) 1720 continue; 1721 1722 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr; 1723 if (Res) 1724 ResByArg = &Res->ResByArg[CSByConstantArg.first]; 1725 1726 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg)) 1727 continue; 1728 1729 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second, 1730 ResByArg, Slot, CSByConstantArg.first)) 1731 continue; 1732 1733 // Find an allocation offset in bits in all vtables associated with the 1734 // type. 1735 uint64_t AllocBefore = 1736 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth); 1737 uint64_t AllocAfter = 1738 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth); 1739 1740 // Calculate the total amount of padding needed to store a value at both 1741 // ends of the object. 1742 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0; 1743 for (auto &&Target : TargetsForSlot) { 1744 TotalPaddingBefore += std::max<int64_t>( 1745 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0); 1746 TotalPaddingAfter += std::max<int64_t>( 1747 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0); 1748 } 1749 1750 // If the amount of padding is too large, give up. 1751 // FIXME: do something smarter here. 1752 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128) 1753 continue; 1754 1755 // Calculate the offset to the value as a (possibly negative) byte offset 1756 // and (if applicable) a bit offset, and store the values in the targets. 1757 int64_t OffsetByte; 1758 uint64_t OffsetBit; 1759 if (TotalPaddingBefore <= TotalPaddingAfter) 1760 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte, 1761 OffsetBit); 1762 else 1763 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte, 1764 OffsetBit); 1765 1766 if (RemarksEnabled || AreStatisticsEnabled()) 1767 for (auto &&Target : TargetsForSlot) 1768 Target.WasDevirt = true; 1769 1770 1771 if (CSByConstantArg.second.isExported()) { 1772 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 1773 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte, 1774 ResByArg->Byte); 1775 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit, 1776 ResByArg->Bit); 1777 } 1778 1779 // Rewrite each call to a load from OffsetByte/OffsetBit. 1780 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte); 1781 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit); 1782 applyVirtualConstProp(CSByConstantArg.second, 1783 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst); 1784 } 1785 return true; 1786 } 1787 1788 void DevirtModule::rebuildGlobal(VTableBits &B) { 1789 if (B.Before.Bytes.empty() && B.After.Bytes.empty()) 1790 return; 1791 1792 // Align the before byte array to the global's minimum alignment so that we 1793 // don't break any alignment requirements on the global. 1794 Align Alignment = M.getDataLayout().getValueOrABITypeAlignment( 1795 B.GV->getAlign(), B.GV->getValueType()); 1796 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment)); 1797 1798 // Before was stored in reverse order; flip it now. 1799 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I) 1800 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]); 1801 1802 // Build an anonymous global containing the before bytes, followed by the 1803 // original initializer, followed by the after bytes. 1804 auto NewInit = ConstantStruct::getAnon( 1805 {ConstantDataArray::get(M.getContext(), B.Before.Bytes), 1806 B.GV->getInitializer(), 1807 ConstantDataArray::get(M.getContext(), B.After.Bytes)}); 1808 auto NewGV = 1809 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(), 1810 GlobalVariable::PrivateLinkage, NewInit, "", B.GV); 1811 NewGV->setSection(B.GV->getSection()); 1812 NewGV->setComdat(B.GV->getComdat()); 1813 NewGV->setAlignment(B.GV->getAlign()); 1814 1815 // Copy the original vtable's metadata to the anonymous global, adjusting 1816 // offsets as required. 1817 NewGV->copyMetadata(B.GV, B.Before.Bytes.size()); 1818 1819 // Build an alias named after the original global, pointing at the second 1820 // element (the original initializer). 1821 auto Alias = GlobalAlias::create( 1822 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "", 1823 ConstantExpr::getGetElementPtr( 1824 NewInit->getType(), NewGV, 1825 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0), 1826 ConstantInt::get(Int32Ty, 1)}), 1827 &M); 1828 Alias->setVisibility(B.GV->getVisibility()); 1829 Alias->takeName(B.GV); 1830 1831 B.GV->replaceAllUsesWith(Alias); 1832 B.GV->eraseFromParent(); 1833 } 1834 1835 bool DevirtModule::areRemarksEnabled() { 1836 const auto &FL = M.getFunctionList(); 1837 for (const Function &Fn : FL) { 1838 if (Fn.empty()) 1839 continue; 1840 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &Fn.front()); 1841 return DI.isEnabled(); 1842 } 1843 return false; 1844 } 1845 1846 void DevirtModule::scanTypeTestUsers( 1847 Function *TypeTestFunc, 1848 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) { 1849 // Find all virtual calls via a virtual table pointer %p under an assumption 1850 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p 1851 // points to a member of the type identifier %md. Group calls by (type ID, 1852 // offset) pair (effectively the identity of the virtual function) and store 1853 // to CallSlots. 1854 for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) { 1855 auto *CI = dyn_cast<CallInst>(U.getUser()); 1856 if (!CI) 1857 continue; 1858 1859 // Search for virtual calls based on %p and add them to DevirtCalls. 1860 SmallVector<DevirtCallSite, 1> DevirtCalls; 1861 SmallVector<CallInst *, 1> Assumes; 1862 auto &DT = LookupDomTree(*CI->getFunction()); 1863 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 1864 1865 Metadata *TypeId = 1866 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata(); 1867 // If we found any, add them to CallSlots. 1868 if (!Assumes.empty()) { 1869 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts(); 1870 for (DevirtCallSite Call : DevirtCalls) 1871 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr); 1872 } 1873 1874 auto RemoveTypeTestAssumes = [&]() { 1875 // We no longer need the assumes or the type test. 1876 for (auto *Assume : Assumes) 1877 Assume->eraseFromParent(); 1878 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we 1879 // may use the vtable argument later. 1880 if (CI->use_empty()) 1881 CI->eraseFromParent(); 1882 }; 1883 1884 // At this point we could remove all type test assume sequences, as they 1885 // were originally inserted for WPD. However, we can keep these in the 1886 // code stream for later analysis (e.g. to help drive more efficient ICP 1887 // sequences). They will eventually be removed by a second LowerTypeTests 1888 // invocation that cleans them up. In order to do this correctly, the first 1889 // LowerTypeTests invocation needs to know that they have "Unknown" type 1890 // test resolution, so that they aren't treated as Unsat and lowered to 1891 // False, which will break any uses on assumes. Below we remove any type 1892 // test assumes that will not be treated as Unknown by LTT. 1893 1894 // The type test assumes will be treated by LTT as Unsat if the type id is 1895 // not used on a global (in which case it has no entry in the TypeIdMap). 1896 if (!TypeIdMap.count(TypeId)) 1897 RemoveTypeTestAssumes(); 1898 1899 // For ThinLTO importing, we need to remove the type test assumes if this is 1900 // an MDString type id without a corresponding TypeIdSummary. Any 1901 // non-MDString type ids are ignored and treated as Unknown by LTT, so their 1902 // type test assumes can be kept. If the MDString type id is missing a 1903 // TypeIdSummary (e.g. because there was no use on a vcall, preventing the 1904 // exporting phase of WPD from analyzing it), then it would be treated as 1905 // Unsat by LTT and we need to remove its type test assumes here. If not 1906 // used on a vcall we don't need them for later optimization use in any 1907 // case. 1908 else if (ImportSummary && isa<MDString>(TypeId)) { 1909 const TypeIdSummary *TidSummary = 1910 ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString()); 1911 if (!TidSummary) 1912 RemoveTypeTestAssumes(); 1913 else 1914 // If one was created it should not be Unsat, because if we reached here 1915 // the type id was used on a global. 1916 assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat); 1917 } 1918 } 1919 } 1920 1921 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) { 1922 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test); 1923 1924 for (Use &U : llvm::make_early_inc_range(TypeCheckedLoadFunc->uses())) { 1925 auto *CI = dyn_cast<CallInst>(U.getUser()); 1926 if (!CI) 1927 continue; 1928 1929 Value *Ptr = CI->getArgOperand(0); 1930 Value *Offset = CI->getArgOperand(1); 1931 Value *TypeIdValue = CI->getArgOperand(2); 1932 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata(); 1933 1934 SmallVector<DevirtCallSite, 1> DevirtCalls; 1935 SmallVector<Instruction *, 1> LoadedPtrs; 1936 SmallVector<Instruction *, 1> Preds; 1937 bool HasNonCallUses = false; 1938 auto &DT = LookupDomTree(*CI->getFunction()); 1939 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 1940 HasNonCallUses, CI, DT); 1941 1942 // Start by generating "pessimistic" code that explicitly loads the function 1943 // pointer from the vtable and performs the type check. If possible, we will 1944 // eliminate the load and the type check later. 1945 1946 // If possible, only generate the load at the point where it is used. 1947 // This helps avoid unnecessary spills. 1948 IRBuilder<> LoadB( 1949 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI); 1950 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset); 1951 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy)); 1952 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr); 1953 1954 for (Instruction *LoadedPtr : LoadedPtrs) { 1955 LoadedPtr->replaceAllUsesWith(LoadedValue); 1956 LoadedPtr->eraseFromParent(); 1957 } 1958 1959 // Likewise for the type test. 1960 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI); 1961 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue}); 1962 1963 for (Instruction *Pred : Preds) { 1964 Pred->replaceAllUsesWith(TypeTestCall); 1965 Pred->eraseFromParent(); 1966 } 1967 1968 // We have already erased any extractvalue instructions that refer to the 1969 // intrinsic call, but the intrinsic may have other non-extractvalue uses 1970 // (although this is unlikely). In that case, explicitly build a pair and 1971 // RAUW it. 1972 if (!CI->use_empty()) { 1973 Value *Pair = PoisonValue::get(CI->getType()); 1974 IRBuilder<> B(CI); 1975 Pair = B.CreateInsertValue(Pair, LoadedValue, {0}); 1976 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1}); 1977 CI->replaceAllUsesWith(Pair); 1978 } 1979 1980 // The number of unsafe uses is initially the number of uses. 1981 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall]; 1982 NumUnsafeUses = DevirtCalls.size(); 1983 1984 // If the function pointer has a non-call user, we cannot eliminate the type 1985 // check, as one of those users may eventually call the pointer. Increment 1986 // the unsafe use count to make sure it cannot reach zero. 1987 if (HasNonCallUses) 1988 ++NumUnsafeUses; 1989 for (DevirtCallSite Call : DevirtCalls) { 1990 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, 1991 &NumUnsafeUses); 1992 } 1993 1994 CI->eraseFromParent(); 1995 } 1996 } 1997 1998 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) { 1999 auto *TypeId = dyn_cast<MDString>(Slot.TypeID); 2000 if (!TypeId) 2001 return; 2002 const TypeIdSummary *TidSummary = 2003 ImportSummary->getTypeIdSummary(TypeId->getString()); 2004 if (!TidSummary) 2005 return; 2006 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset); 2007 if (ResI == TidSummary->WPDRes.end()) 2008 return; 2009 const WholeProgramDevirtResolution &Res = ResI->second; 2010 2011 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) { 2012 assert(!Res.SingleImplName.empty()); 2013 // The type of the function in the declaration is irrelevant because every 2014 // call site will cast it to the correct type. 2015 Constant *SingleImpl = 2016 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName, 2017 Type::getVoidTy(M.getContext())) 2018 .getCallee()); 2019 2020 // This is the import phase so we should not be exporting anything. 2021 bool IsExported = false; 2022 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported); 2023 assert(!IsExported); 2024 } 2025 2026 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) { 2027 auto I = Res.ResByArg.find(CSByConstantArg.first); 2028 if (I == Res.ResByArg.end()) 2029 continue; 2030 auto &ResByArg = I->second; 2031 // FIXME: We should figure out what to do about the "function name" argument 2032 // to the apply* functions, as the function names are unavailable during the 2033 // importing phase. For now we just pass the empty string. This does not 2034 // impact correctness because the function names are just used for remarks. 2035 switch (ResByArg.TheKind) { 2036 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 2037 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info); 2038 break; 2039 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: { 2040 Constant *UniqueMemberAddr = 2041 importGlobal(Slot, CSByConstantArg.first, "unique_member"); 2042 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info, 2043 UniqueMemberAddr); 2044 break; 2045 } 2046 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: { 2047 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte", 2048 Int32Ty, ResByArg.Byte); 2049 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty, 2050 ResByArg.Bit); 2051 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit); 2052 break; 2053 } 2054 default: 2055 break; 2056 } 2057 } 2058 2059 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) { 2060 // The type of the function is irrelevant, because it's bitcast at calls 2061 // anyhow. 2062 Constant *JT = cast<Constant>( 2063 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"), 2064 Type::getVoidTy(M.getContext())) 2065 .getCallee()); 2066 bool IsExported = false; 2067 applyICallBranchFunnel(SlotInfo, JT, IsExported); 2068 assert(!IsExported); 2069 } 2070 } 2071 2072 void DevirtModule::removeRedundantTypeTests() { 2073 auto True = ConstantInt::getTrue(M.getContext()); 2074 for (auto &&U : NumUnsafeUsesForTypeTest) { 2075 if (U.second == 0) { 2076 U.first->replaceAllUsesWith(True); 2077 U.first->eraseFromParent(); 2078 } 2079 } 2080 } 2081 2082 ValueInfo 2083 DevirtModule::lookUpFunctionValueInfo(Function *TheFn, 2084 ModuleSummaryIndex *ExportSummary) { 2085 assert((ExportSummary != nullptr) && 2086 "Caller guarantees ExportSummary is not nullptr"); 2087 2088 const auto TheFnGUID = TheFn->getGUID(); 2089 const auto TheFnGUIDWithExportedName = GlobalValue::getGUID(TheFn->getName()); 2090 // Look up ValueInfo with the GUID in the current linkage. 2091 ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFnGUID); 2092 // If no entry is found and GUID is different from GUID computed using 2093 // exported name, look up ValueInfo with the exported name unconditionally. 2094 // This is a fallback. 2095 // 2096 // The reason to have a fallback: 2097 // 1. LTO could enable global value internalization via 2098 // `enable-lto-internalization`. 2099 // 2. The GUID in ExportedSummary is computed using exported name. 2100 if ((!TheFnVI) && (TheFnGUID != TheFnGUIDWithExportedName)) { 2101 TheFnVI = ExportSummary->getValueInfo(TheFnGUIDWithExportedName); 2102 } 2103 return TheFnVI; 2104 } 2105 2106 bool DevirtModule::mustBeUnreachableFunction( 2107 Function *const F, ModuleSummaryIndex *ExportSummary) { 2108 // First, learn unreachability by analyzing function IR. 2109 if (!F->isDeclaration()) { 2110 // A function must be unreachable if its entry block ends with an 2111 // 'unreachable'. 2112 return isa<UnreachableInst>(F->getEntryBlock().getTerminator()); 2113 } 2114 // Learn unreachability from ExportSummary if ExportSummary is present. 2115 return ExportSummary && 2116 ::mustBeUnreachableFunction( 2117 DevirtModule::lookUpFunctionValueInfo(F, ExportSummary)); 2118 } 2119 2120 bool DevirtModule::run() { 2121 // If only some of the modules were split, we cannot correctly perform 2122 // this transformation. We already checked for the presense of type tests 2123 // with partially split modules during the thin link, and would have emitted 2124 // an error if any were found, so here we can simply return. 2125 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) || 2126 (ImportSummary && ImportSummary->partiallySplitLTOUnits())) 2127 return false; 2128 2129 Function *TypeTestFunc = 2130 M.getFunction(Intrinsic::getName(Intrinsic::type_test)); 2131 Function *TypeCheckedLoadFunc = 2132 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load)); 2133 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume)); 2134 2135 // Normally if there are no users of the devirtualization intrinsics in the 2136 // module, this pass has nothing to do. But if we are exporting, we also need 2137 // to handle any users that appear only in the function summaries. 2138 if (!ExportSummary && 2139 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc || 2140 AssumeFunc->use_empty()) && 2141 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty())) 2142 return false; 2143 2144 // Rebuild type metadata into a map for easy lookup. 2145 std::vector<VTableBits> Bits; 2146 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap; 2147 buildTypeIdentifierMap(Bits, TypeIdMap); 2148 2149 if (TypeTestFunc && AssumeFunc) 2150 scanTypeTestUsers(TypeTestFunc, TypeIdMap); 2151 2152 if (TypeCheckedLoadFunc) 2153 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc); 2154 2155 if (ImportSummary) { 2156 for (auto &S : CallSlots) 2157 importResolution(S.first, S.second); 2158 2159 removeRedundantTypeTests(); 2160 2161 // We have lowered or deleted the type intrinsics, so we will no longer have 2162 // enough information to reason about the liveness of virtual function 2163 // pointers in GlobalDCE. 2164 for (GlobalVariable &GV : M.globals()) 2165 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 2166 2167 // The rest of the code is only necessary when exporting or during regular 2168 // LTO, so we are done. 2169 return true; 2170 } 2171 2172 if (TypeIdMap.empty()) 2173 return true; 2174 2175 // Collect information from summary about which calls to try to devirtualize. 2176 if (ExportSummary) { 2177 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID; 2178 for (auto &P : TypeIdMap) { 2179 if (auto *TypeId = dyn_cast<MDString>(P.first)) 2180 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back( 2181 TypeId); 2182 } 2183 2184 for (auto &P : *ExportSummary) { 2185 for (auto &S : P.second.SummaryList) { 2186 auto *FS = dyn_cast<FunctionSummary>(S.get()); 2187 if (!FS) 2188 continue; 2189 // FIXME: Only add live functions. 2190 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 2191 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 2192 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 2193 } 2194 } 2195 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 2196 for (Metadata *MD : MetadataByGUID[VF.GUID]) { 2197 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 2198 } 2199 } 2200 for (const FunctionSummary::ConstVCall &VC : 2201 FS->type_test_assume_const_vcalls()) { 2202 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 2203 CallSlots[{MD, VC.VFunc.Offset}] 2204 .ConstCSInfo[VC.Args] 2205 .addSummaryTypeTestAssumeUser(FS); 2206 } 2207 } 2208 for (const FunctionSummary::ConstVCall &VC : 2209 FS->type_checked_load_const_vcalls()) { 2210 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) { 2211 CallSlots[{MD, VC.VFunc.Offset}] 2212 .ConstCSInfo[VC.Args] 2213 .addSummaryTypeCheckedLoadUser(FS); 2214 } 2215 } 2216 } 2217 } 2218 } 2219 2220 // For each (type, offset) pair: 2221 bool DidVirtualConstProp = false; 2222 std::map<std::string, Function*> DevirtTargets; 2223 for (auto &S : CallSlots) { 2224 // Search each of the members of the type identifier for the virtual 2225 // function implementation at offset S.first.ByteOffset, and add to 2226 // TargetsForSlot. 2227 std::vector<VirtualCallTarget> TargetsForSlot; 2228 WholeProgramDevirtResolution *Res = nullptr; 2229 const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID]; 2230 if (ExportSummary && isa<MDString>(S.first.TypeID) && 2231 TypeMemberInfos.size()) 2232 // For any type id used on a global's type metadata, create the type id 2233 // summary resolution regardless of whether we can devirtualize, so that 2234 // lower type tests knows the type id is not Unsat. If it was not used on 2235 // a global's type metadata, the TypeIdMap entry set will be empty, and 2236 // we don't want to create an entry (with the default Unknown type 2237 // resolution), which can prevent detection of the Unsat. 2238 Res = &ExportSummary 2239 ->getOrInsertTypeIdSummary( 2240 cast<MDString>(S.first.TypeID)->getString()) 2241 .WPDRes[S.first.ByteOffset]; 2242 if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos, 2243 S.first.ByteOffset, ExportSummary)) { 2244 2245 if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) { 2246 DidVirtualConstProp |= 2247 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first); 2248 2249 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first); 2250 } 2251 2252 // Collect functions devirtualized at least for one call site for stats. 2253 if (RemarksEnabled || AreStatisticsEnabled()) 2254 for (const auto &T : TargetsForSlot) 2255 if (T.WasDevirt) 2256 DevirtTargets[std::string(T.Fn->getName())] = T.Fn; 2257 } 2258 2259 // CFI-specific: if we are exporting and any llvm.type.checked.load 2260 // intrinsics were *not* devirtualized, we need to add the resulting 2261 // llvm.type.test intrinsics to the function summaries so that the 2262 // LowerTypeTests pass will export them. 2263 if (ExportSummary && isa<MDString>(S.first.TypeID)) { 2264 auto GUID = 2265 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString()); 2266 for (auto *FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers) 2267 FS->addTypeTest(GUID); 2268 for (auto &CCS : S.second.ConstCSInfo) 2269 for (auto *FS : CCS.second.SummaryTypeCheckedLoadUsers) 2270 FS->addTypeTest(GUID); 2271 } 2272 } 2273 2274 if (RemarksEnabled) { 2275 // Generate remarks for each devirtualized function. 2276 for (const auto &DT : DevirtTargets) { 2277 Function *F = DT.second; 2278 2279 using namespace ore; 2280 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F) 2281 << "devirtualized " 2282 << NV("FunctionName", DT.first)); 2283 } 2284 } 2285 2286 NumDevirtTargets += DevirtTargets.size(); 2287 2288 removeRedundantTypeTests(); 2289 2290 // Rebuild each global we touched as part of virtual constant propagation to 2291 // include the before and after bytes. 2292 if (DidVirtualConstProp) 2293 for (VTableBits &B : Bits) 2294 rebuildGlobal(B); 2295 2296 // We have lowered or deleted the type intrinsics, so we will no longer have 2297 // enough information to reason about the liveness of virtual function 2298 // pointers in GlobalDCE. 2299 for (GlobalVariable &GV : M.globals()) 2300 GV.eraseMetadata(LLVMContext::MD_vcall_visibility); 2301 2302 return true; 2303 } 2304 2305 void DevirtIndex::run() { 2306 if (ExportSummary.typeIdCompatibleVtableMap().empty()) 2307 return; 2308 2309 DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID; 2310 for (const auto &P : ExportSummary.typeIdCompatibleVtableMap()) { 2311 NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first); 2312 // Create the type id summary resolution regardlness of whether we can 2313 // devirtualize, so that lower type tests knows the type id is used on 2314 // a global and not Unsat. We do this here rather than in the loop over the 2315 // CallSlots, since that handling will only see type tests that directly 2316 // feed assumes, and we would miss any that aren't currently handled by WPD 2317 // (such as type tests that feed assumes via phis). 2318 ExportSummary.getOrInsertTypeIdSummary(P.first); 2319 } 2320 2321 // Collect information from summary about which calls to try to devirtualize. 2322 for (auto &P : ExportSummary) { 2323 for (auto &S : P.second.SummaryList) { 2324 auto *FS = dyn_cast<FunctionSummary>(S.get()); 2325 if (!FS) 2326 continue; 2327 // FIXME: Only add live functions. 2328 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) { 2329 for (StringRef Name : NameByGUID[VF.GUID]) { 2330 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS); 2331 } 2332 } 2333 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) { 2334 for (StringRef Name : NameByGUID[VF.GUID]) { 2335 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS); 2336 } 2337 } 2338 for (const FunctionSummary::ConstVCall &VC : 2339 FS->type_test_assume_const_vcalls()) { 2340 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2341 CallSlots[{Name, VC.VFunc.Offset}] 2342 .ConstCSInfo[VC.Args] 2343 .addSummaryTypeTestAssumeUser(FS); 2344 } 2345 } 2346 for (const FunctionSummary::ConstVCall &VC : 2347 FS->type_checked_load_const_vcalls()) { 2348 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) { 2349 CallSlots[{Name, VC.VFunc.Offset}] 2350 .ConstCSInfo[VC.Args] 2351 .addSummaryTypeCheckedLoadUser(FS); 2352 } 2353 } 2354 } 2355 } 2356 2357 std::set<ValueInfo> DevirtTargets; 2358 // For each (type, offset) pair: 2359 for (auto &S : CallSlots) { 2360 // Search each of the members of the type identifier for the virtual 2361 // function implementation at offset S.first.ByteOffset, and add to 2362 // TargetsForSlot. 2363 std::vector<ValueInfo> TargetsForSlot; 2364 auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID); 2365 assert(TidSummary); 2366 // The type id summary would have been created while building the NameByGUID 2367 // map earlier. 2368 WholeProgramDevirtResolution *Res = 2369 &ExportSummary.getTypeIdSummary(S.first.TypeID) 2370 ->WPDRes[S.first.ByteOffset]; 2371 if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary, 2372 S.first.ByteOffset)) { 2373 2374 if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res, 2375 DevirtTargets)) 2376 continue; 2377 } 2378 } 2379 2380 // Optionally have the thin link print message for each devirtualized 2381 // function. 2382 if (PrintSummaryDevirt) 2383 for (const auto &DT : DevirtTargets) 2384 errs() << "Devirtualized call to " << DT << "\n"; 2385 2386 NumDevirtTargets += DevirtTargets.size(); 2387 } 2388